]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/huge_memory.c
thp: use compaction for all allocation orders
[mirror_ubuntu-bionic-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
71e3aac0
AA
19#include <asm/tlb.h>
20#include <asm/pgalloc.h>
21#include "internal.h"
22
ba76149f
AA
23/*
24 * By default transparent hugepage support is enabled for all mappings
25 * and khugepaged scans all mappings. Defrag is only invoked by
26 * khugepaged hugepage allocations and by page faults inside
27 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
28 * allocations.
29 */
71e3aac0 30unsigned long transparent_hugepage_flags __read_mostly =
13ece886 31#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 32 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
33#endif
34#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
35 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
36#endif
d39d33c3 37 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
39
40/* default scan 8*512 pte (or vmas) every 30 second */
41static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
42static unsigned int khugepaged_pages_collapsed;
43static unsigned int khugepaged_full_scans;
44static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
45/* during fragmentation poll the hugepage allocator once every minute */
46static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
47static struct task_struct *khugepaged_thread __read_mostly;
48static DEFINE_MUTEX(khugepaged_mutex);
49static DEFINE_SPINLOCK(khugepaged_mm_lock);
50static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
51/*
52 * default collapse hugepages if there is at least one pte mapped like
53 * it would have happened if the vma was large enough during page
54 * fault.
55 */
56static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
57
58static int khugepaged(void *none);
59static int mm_slots_hash_init(void);
60static int khugepaged_slab_init(void);
61static void khugepaged_slab_free(void);
62
63#define MM_SLOTS_HASH_HEADS 1024
64static struct hlist_head *mm_slots_hash __read_mostly;
65static struct kmem_cache *mm_slot_cache __read_mostly;
66
67/**
68 * struct mm_slot - hash lookup from mm to mm_slot
69 * @hash: hash collision list
70 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
71 * @mm: the mm that this information is valid for
72 */
73struct mm_slot {
74 struct hlist_node hash;
75 struct list_head mm_node;
76 struct mm_struct *mm;
77};
78
79/**
80 * struct khugepaged_scan - cursor for scanning
81 * @mm_head: the head of the mm list to scan
82 * @mm_slot: the current mm_slot we are scanning
83 * @address: the next address inside that to be scanned
84 *
85 * There is only the one khugepaged_scan instance of this cursor structure.
86 */
87struct khugepaged_scan {
88 struct list_head mm_head;
89 struct mm_slot *mm_slot;
90 unsigned long address;
91} khugepaged_scan = {
92 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
93};
94
f000565a
AA
95
96static int set_recommended_min_free_kbytes(void)
97{
98 struct zone *zone;
99 int nr_zones = 0;
100 unsigned long recommended_min;
101 extern int min_free_kbytes;
102
103 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
104 &transparent_hugepage_flags) &&
105 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
106 &transparent_hugepage_flags))
107 return 0;
108
109 for_each_populated_zone(zone)
110 nr_zones++;
111
112 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
113 recommended_min = pageblock_nr_pages * nr_zones * 2;
114
115 /*
116 * Make sure that on average at least two pageblocks are almost free
117 * of another type, one for a migratetype to fall back to and a
118 * second to avoid subsequent fallbacks of other types There are 3
119 * MIGRATE_TYPES we care about.
120 */
121 recommended_min += pageblock_nr_pages * nr_zones *
122 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
123
124 /* don't ever allow to reserve more than 5% of the lowmem */
125 recommended_min = min(recommended_min,
126 (unsigned long) nr_free_buffer_pages() / 20);
127 recommended_min <<= (PAGE_SHIFT-10);
128
129 if (recommended_min > min_free_kbytes)
130 min_free_kbytes = recommended_min;
131 setup_per_zone_wmarks();
132 return 0;
133}
134late_initcall(set_recommended_min_free_kbytes);
135
ba76149f
AA
136static int start_khugepaged(void)
137{
138 int err = 0;
139 if (khugepaged_enabled()) {
140 int wakeup;
141 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
142 err = -ENOMEM;
143 goto out;
144 }
145 mutex_lock(&khugepaged_mutex);
146 if (!khugepaged_thread)
147 khugepaged_thread = kthread_run(khugepaged, NULL,
148 "khugepaged");
149 if (unlikely(IS_ERR(khugepaged_thread))) {
150 printk(KERN_ERR
151 "khugepaged: kthread_run(khugepaged) failed\n");
152 err = PTR_ERR(khugepaged_thread);
153 khugepaged_thread = NULL;
154 }
155 wakeup = !list_empty(&khugepaged_scan.mm_head);
156 mutex_unlock(&khugepaged_mutex);
157 if (wakeup)
158 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
159
160 set_recommended_min_free_kbytes();
ba76149f
AA
161 } else
162 /* wakeup to exit */
163 wake_up_interruptible(&khugepaged_wait);
164out:
165 return err;
166}
71e3aac0
AA
167
168#ifdef CONFIG_SYSFS
ba76149f 169
71e3aac0
AA
170static ssize_t double_flag_show(struct kobject *kobj,
171 struct kobj_attribute *attr, char *buf,
172 enum transparent_hugepage_flag enabled,
173 enum transparent_hugepage_flag req_madv)
174{
175 if (test_bit(enabled, &transparent_hugepage_flags)) {
176 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
177 return sprintf(buf, "[always] madvise never\n");
178 } else if (test_bit(req_madv, &transparent_hugepage_flags))
179 return sprintf(buf, "always [madvise] never\n");
180 else
181 return sprintf(buf, "always madvise [never]\n");
182}
183static ssize_t double_flag_store(struct kobject *kobj,
184 struct kobj_attribute *attr,
185 const char *buf, size_t count,
186 enum transparent_hugepage_flag enabled,
187 enum transparent_hugepage_flag req_madv)
188{
189 if (!memcmp("always", buf,
190 min(sizeof("always")-1, count))) {
191 set_bit(enabled, &transparent_hugepage_flags);
192 clear_bit(req_madv, &transparent_hugepage_flags);
193 } else if (!memcmp("madvise", buf,
194 min(sizeof("madvise")-1, count))) {
195 clear_bit(enabled, &transparent_hugepage_flags);
196 set_bit(req_madv, &transparent_hugepage_flags);
197 } else if (!memcmp("never", buf,
198 min(sizeof("never")-1, count))) {
199 clear_bit(enabled, &transparent_hugepage_flags);
200 clear_bit(req_madv, &transparent_hugepage_flags);
201 } else
202 return -EINVAL;
203
204 return count;
205}
206
207static ssize_t enabled_show(struct kobject *kobj,
208 struct kobj_attribute *attr, char *buf)
209{
210 return double_flag_show(kobj, attr, buf,
211 TRANSPARENT_HUGEPAGE_FLAG,
212 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
213}
214static ssize_t enabled_store(struct kobject *kobj,
215 struct kobj_attribute *attr,
216 const char *buf, size_t count)
217{
ba76149f
AA
218 ssize_t ret;
219
220 ret = double_flag_store(kobj, attr, buf, count,
221 TRANSPARENT_HUGEPAGE_FLAG,
222 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
223
224 if (ret > 0) {
225 int err = start_khugepaged();
226 if (err)
227 ret = err;
228 }
229
f000565a
AA
230 if (ret > 0 &&
231 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
232 &transparent_hugepage_flags) ||
233 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
234 &transparent_hugepage_flags)))
235 set_recommended_min_free_kbytes();
236
ba76149f 237 return ret;
71e3aac0
AA
238}
239static struct kobj_attribute enabled_attr =
240 __ATTR(enabled, 0644, enabled_show, enabled_store);
241
242static ssize_t single_flag_show(struct kobject *kobj,
243 struct kobj_attribute *attr, char *buf,
244 enum transparent_hugepage_flag flag)
245{
246 if (test_bit(flag, &transparent_hugepage_flags))
247 return sprintf(buf, "[yes] no\n");
248 else
249 return sprintf(buf, "yes [no]\n");
250}
251static ssize_t single_flag_store(struct kobject *kobj,
252 struct kobj_attribute *attr,
253 const char *buf, size_t count,
254 enum transparent_hugepage_flag flag)
255{
256 if (!memcmp("yes", buf,
257 min(sizeof("yes")-1, count))) {
258 set_bit(flag, &transparent_hugepage_flags);
259 } else if (!memcmp("no", buf,
260 min(sizeof("no")-1, count))) {
261 clear_bit(flag, &transparent_hugepage_flags);
262 } else
263 return -EINVAL;
264
265 return count;
266}
267
268/*
269 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
270 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
271 * memory just to allocate one more hugepage.
272 */
273static ssize_t defrag_show(struct kobject *kobj,
274 struct kobj_attribute *attr, char *buf)
275{
276 return double_flag_show(kobj, attr, buf,
277 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
278 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
279}
280static ssize_t defrag_store(struct kobject *kobj,
281 struct kobj_attribute *attr,
282 const char *buf, size_t count)
283{
284 return double_flag_store(kobj, attr, buf, count,
285 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
286 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
287}
288static struct kobj_attribute defrag_attr =
289 __ATTR(defrag, 0644, defrag_show, defrag_store);
290
291#ifdef CONFIG_DEBUG_VM
292static ssize_t debug_cow_show(struct kobject *kobj,
293 struct kobj_attribute *attr, char *buf)
294{
295 return single_flag_show(kobj, attr, buf,
296 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
297}
298static ssize_t debug_cow_store(struct kobject *kobj,
299 struct kobj_attribute *attr,
300 const char *buf, size_t count)
301{
302 return single_flag_store(kobj, attr, buf, count,
303 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
304}
305static struct kobj_attribute debug_cow_attr =
306 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
307#endif /* CONFIG_DEBUG_VM */
308
309static struct attribute *hugepage_attr[] = {
310 &enabled_attr.attr,
311 &defrag_attr.attr,
312#ifdef CONFIG_DEBUG_VM
313 &debug_cow_attr.attr,
314#endif
315 NULL,
316};
317
318static struct attribute_group hugepage_attr_group = {
319 .attrs = hugepage_attr,
ba76149f
AA
320};
321
322static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
323 struct kobj_attribute *attr,
324 char *buf)
325{
326 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
327}
328
329static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
330 struct kobj_attribute *attr,
331 const char *buf, size_t count)
332{
333 unsigned long msecs;
334 int err;
335
336 err = strict_strtoul(buf, 10, &msecs);
337 if (err || msecs > UINT_MAX)
338 return -EINVAL;
339
340 khugepaged_scan_sleep_millisecs = msecs;
341 wake_up_interruptible(&khugepaged_wait);
342
343 return count;
344}
345static struct kobj_attribute scan_sleep_millisecs_attr =
346 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
347 scan_sleep_millisecs_store);
348
349static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
350 struct kobj_attribute *attr,
351 char *buf)
352{
353 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
354}
355
356static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
357 struct kobj_attribute *attr,
358 const char *buf, size_t count)
359{
360 unsigned long msecs;
361 int err;
362
363 err = strict_strtoul(buf, 10, &msecs);
364 if (err || msecs > UINT_MAX)
365 return -EINVAL;
366
367 khugepaged_alloc_sleep_millisecs = msecs;
368 wake_up_interruptible(&khugepaged_wait);
369
370 return count;
371}
372static struct kobj_attribute alloc_sleep_millisecs_attr =
373 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
374 alloc_sleep_millisecs_store);
375
376static ssize_t pages_to_scan_show(struct kobject *kobj,
377 struct kobj_attribute *attr,
378 char *buf)
379{
380 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
381}
382static ssize_t pages_to_scan_store(struct kobject *kobj,
383 struct kobj_attribute *attr,
384 const char *buf, size_t count)
385{
386 int err;
387 unsigned long pages;
388
389 err = strict_strtoul(buf, 10, &pages);
390 if (err || !pages || pages > UINT_MAX)
391 return -EINVAL;
392
393 khugepaged_pages_to_scan = pages;
394
395 return count;
396}
397static struct kobj_attribute pages_to_scan_attr =
398 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
399 pages_to_scan_store);
400
401static ssize_t pages_collapsed_show(struct kobject *kobj,
402 struct kobj_attribute *attr,
403 char *buf)
404{
405 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
406}
407static struct kobj_attribute pages_collapsed_attr =
408 __ATTR_RO(pages_collapsed);
409
410static ssize_t full_scans_show(struct kobject *kobj,
411 struct kobj_attribute *attr,
412 char *buf)
413{
414 return sprintf(buf, "%u\n", khugepaged_full_scans);
415}
416static struct kobj_attribute full_scans_attr =
417 __ATTR_RO(full_scans);
418
419static ssize_t khugepaged_defrag_show(struct kobject *kobj,
420 struct kobj_attribute *attr, char *buf)
421{
422 return single_flag_show(kobj, attr, buf,
423 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
424}
425static ssize_t khugepaged_defrag_store(struct kobject *kobj,
426 struct kobj_attribute *attr,
427 const char *buf, size_t count)
428{
429 return single_flag_store(kobj, attr, buf, count,
430 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
431}
432static struct kobj_attribute khugepaged_defrag_attr =
433 __ATTR(defrag, 0644, khugepaged_defrag_show,
434 khugepaged_defrag_store);
435
436/*
437 * max_ptes_none controls if khugepaged should collapse hugepages over
438 * any unmapped ptes in turn potentially increasing the memory
439 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
440 * reduce the available free memory in the system as it
441 * runs. Increasing max_ptes_none will instead potentially reduce the
442 * free memory in the system during the khugepaged scan.
443 */
444static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
445 struct kobj_attribute *attr,
446 char *buf)
447{
448 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
449}
450static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
451 struct kobj_attribute *attr,
452 const char *buf, size_t count)
453{
454 int err;
455 unsigned long max_ptes_none;
456
457 err = strict_strtoul(buf, 10, &max_ptes_none);
458 if (err || max_ptes_none > HPAGE_PMD_NR-1)
459 return -EINVAL;
460
461 khugepaged_max_ptes_none = max_ptes_none;
462
463 return count;
464}
465static struct kobj_attribute khugepaged_max_ptes_none_attr =
466 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
467 khugepaged_max_ptes_none_store);
468
469static struct attribute *khugepaged_attr[] = {
470 &khugepaged_defrag_attr.attr,
471 &khugepaged_max_ptes_none_attr.attr,
472 &pages_to_scan_attr.attr,
473 &pages_collapsed_attr.attr,
474 &full_scans_attr.attr,
475 &scan_sleep_millisecs_attr.attr,
476 &alloc_sleep_millisecs_attr.attr,
477 NULL,
478};
479
480static struct attribute_group khugepaged_attr_group = {
481 .attrs = khugepaged_attr,
482 .name = "khugepaged",
71e3aac0
AA
483};
484#endif /* CONFIG_SYSFS */
485
486static int __init hugepage_init(void)
487{
71e3aac0 488 int err;
ba76149f
AA
489#ifdef CONFIG_SYSFS
490 static struct kobject *hugepage_kobj;
4b7167b9 491#endif
71e3aac0 492
4b7167b9
AA
493 err = -EINVAL;
494 if (!has_transparent_hugepage()) {
495 transparent_hugepage_flags = 0;
496 goto out;
497 }
498
499#ifdef CONFIG_SYSFS
ba76149f
AA
500 err = -ENOMEM;
501 hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
502 if (unlikely(!hugepage_kobj)) {
503 printk(KERN_ERR "hugepage: failed kobject create\n");
504 goto out;
505 }
506
507 err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
508 if (err) {
509 printk(KERN_ERR "hugepage: failed register hugeage group\n");
510 goto out;
511 }
512
513 err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
514 if (err) {
515 printk(KERN_ERR "hugepage: failed register hugeage group\n");
516 goto out;
517 }
71e3aac0 518#endif
ba76149f
AA
519
520 err = khugepaged_slab_init();
521 if (err)
522 goto out;
523
524 err = mm_slots_hash_init();
525 if (err) {
526 khugepaged_slab_free();
527 goto out;
528 }
529
530 start_khugepaged();
531
f000565a
AA
532 set_recommended_min_free_kbytes();
533
ba76149f
AA
534out:
535 return err;
71e3aac0
AA
536}
537module_init(hugepage_init)
538
539static int __init setup_transparent_hugepage(char *str)
540{
541 int ret = 0;
542 if (!str)
543 goto out;
544 if (!strcmp(str, "always")) {
545 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
546 &transparent_hugepage_flags);
547 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
548 &transparent_hugepage_flags);
549 ret = 1;
550 } else if (!strcmp(str, "madvise")) {
551 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
552 &transparent_hugepage_flags);
553 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
554 &transparent_hugepage_flags);
555 ret = 1;
556 } else if (!strcmp(str, "never")) {
557 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
558 &transparent_hugepage_flags);
559 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
560 &transparent_hugepage_flags);
561 ret = 1;
562 }
563out:
564 if (!ret)
565 printk(KERN_WARNING
566 "transparent_hugepage= cannot parse, ignored\n");
567 return ret;
568}
569__setup("transparent_hugepage=", setup_transparent_hugepage);
570
571static void prepare_pmd_huge_pte(pgtable_t pgtable,
572 struct mm_struct *mm)
573{
574 assert_spin_locked(&mm->page_table_lock);
575
576 /* FIFO */
577 if (!mm->pmd_huge_pte)
578 INIT_LIST_HEAD(&pgtable->lru);
579 else
580 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
581 mm->pmd_huge_pte = pgtable;
582}
583
584static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
585{
586 if (likely(vma->vm_flags & VM_WRITE))
587 pmd = pmd_mkwrite(pmd);
588 return pmd;
589}
590
591static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
592 struct vm_area_struct *vma,
593 unsigned long haddr, pmd_t *pmd,
594 struct page *page)
595{
596 int ret = 0;
597 pgtable_t pgtable;
598
599 VM_BUG_ON(!PageCompound(page));
600 pgtable = pte_alloc_one(mm, haddr);
601 if (unlikely(!pgtable)) {
b9bbfbe3 602 mem_cgroup_uncharge_page(page);
71e3aac0
AA
603 put_page(page);
604 return VM_FAULT_OOM;
605 }
606
607 clear_huge_page(page, haddr, HPAGE_PMD_NR);
608 __SetPageUptodate(page);
609
610 spin_lock(&mm->page_table_lock);
611 if (unlikely(!pmd_none(*pmd))) {
612 spin_unlock(&mm->page_table_lock);
b9bbfbe3 613 mem_cgroup_uncharge_page(page);
71e3aac0
AA
614 put_page(page);
615 pte_free(mm, pgtable);
616 } else {
617 pmd_t entry;
618 entry = mk_pmd(page, vma->vm_page_prot);
619 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
620 entry = pmd_mkhuge(entry);
621 /*
622 * The spinlocking to take the lru_lock inside
623 * page_add_new_anon_rmap() acts as a full memory
624 * barrier to be sure clear_huge_page writes become
625 * visible after the set_pmd_at() write.
626 */
627 page_add_new_anon_rmap(page, vma, haddr);
628 set_pmd_at(mm, haddr, pmd, entry);
629 prepare_pmd_huge_pte(pgtable, mm);
630 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
631 spin_unlock(&mm->page_table_lock);
632 }
633
634 return ret;
635}
636
0bbbc0b3
AA
637static inline gfp_t alloc_hugepage_gfpmask(int defrag)
638{
639 return GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT);
640}
641
642static inline struct page *alloc_hugepage_vma(int defrag,
643 struct vm_area_struct *vma,
644 unsigned long haddr)
645{
646 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag),
647 HPAGE_PMD_ORDER, vma, haddr);
648}
649
650#ifndef CONFIG_NUMA
71e3aac0
AA
651static inline struct page *alloc_hugepage(int defrag)
652{
0bbbc0b3 653 return alloc_pages(alloc_hugepage_gfpmask(defrag),
71e3aac0
AA
654 HPAGE_PMD_ORDER);
655}
0bbbc0b3 656#endif
71e3aac0
AA
657
658int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
659 unsigned long address, pmd_t *pmd,
660 unsigned int flags)
661{
662 struct page *page;
663 unsigned long haddr = address & HPAGE_PMD_MASK;
664 pte_t *pte;
665
666 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
667 if (unlikely(anon_vma_prepare(vma)))
668 return VM_FAULT_OOM;
ba76149f
AA
669 if (unlikely(khugepaged_enter(vma)))
670 return VM_FAULT_OOM;
0bbbc0b3
AA
671 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
672 vma, haddr);
71e3aac0
AA
673 if (unlikely(!page))
674 goto out;
b9bbfbe3
AA
675 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
676 put_page(page);
677 goto out;
678 }
71e3aac0
AA
679
680 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
681 }
682out:
683 /*
684 * Use __pte_alloc instead of pte_alloc_map, because we can't
685 * run pte_offset_map on the pmd, if an huge pmd could
686 * materialize from under us from a different thread.
687 */
688 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
689 return VM_FAULT_OOM;
690 /* if an huge pmd materialized from under us just retry later */
691 if (unlikely(pmd_trans_huge(*pmd)))
692 return 0;
693 /*
694 * A regular pmd is established and it can't morph into a huge pmd
695 * from under us anymore at this point because we hold the mmap_sem
696 * read mode and khugepaged takes it in write mode. So now it's
697 * safe to run pte_offset_map().
698 */
699 pte = pte_offset_map(pmd, address);
700 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
701}
702
703int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
704 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
705 struct vm_area_struct *vma)
706{
707 struct page *src_page;
708 pmd_t pmd;
709 pgtable_t pgtable;
710 int ret;
711
712 ret = -ENOMEM;
713 pgtable = pte_alloc_one(dst_mm, addr);
714 if (unlikely(!pgtable))
715 goto out;
716
717 spin_lock(&dst_mm->page_table_lock);
718 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
719
720 ret = -EAGAIN;
721 pmd = *src_pmd;
722 if (unlikely(!pmd_trans_huge(pmd))) {
723 pte_free(dst_mm, pgtable);
724 goto out_unlock;
725 }
726 if (unlikely(pmd_trans_splitting(pmd))) {
727 /* split huge page running from under us */
728 spin_unlock(&src_mm->page_table_lock);
729 spin_unlock(&dst_mm->page_table_lock);
730 pte_free(dst_mm, pgtable);
731
732 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
733 goto out;
734 }
735 src_page = pmd_page(pmd);
736 VM_BUG_ON(!PageHead(src_page));
737 get_page(src_page);
738 page_dup_rmap(src_page);
739 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
740
741 pmdp_set_wrprotect(src_mm, addr, src_pmd);
742 pmd = pmd_mkold(pmd_wrprotect(pmd));
743 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
744 prepare_pmd_huge_pte(pgtable, dst_mm);
745
746 ret = 0;
747out_unlock:
748 spin_unlock(&src_mm->page_table_lock);
749 spin_unlock(&dst_mm->page_table_lock);
750out:
751 return ret;
752}
753
754/* no "address" argument so destroys page coloring of some arch */
755pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
756{
757 pgtable_t pgtable;
758
759 assert_spin_locked(&mm->page_table_lock);
760
761 /* FIFO */
762 pgtable = mm->pmd_huge_pte;
763 if (list_empty(&pgtable->lru))
764 mm->pmd_huge_pte = NULL;
765 else {
766 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
767 struct page, lru);
768 list_del(&pgtable->lru);
769 }
770 return pgtable;
771}
772
773static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
774 struct vm_area_struct *vma,
775 unsigned long address,
776 pmd_t *pmd, pmd_t orig_pmd,
777 struct page *page,
778 unsigned long haddr)
779{
780 pgtable_t pgtable;
781 pmd_t _pmd;
782 int ret = 0, i;
783 struct page **pages;
784
785 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
786 GFP_KERNEL);
787 if (unlikely(!pages)) {
788 ret |= VM_FAULT_OOM;
789 goto out;
790 }
791
792 for (i = 0; i < HPAGE_PMD_NR; i++) {
793 pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
794 vma, address);
b9bbfbe3
AA
795 if (unlikely(!pages[i] ||
796 mem_cgroup_newpage_charge(pages[i], mm,
797 GFP_KERNEL))) {
798 if (pages[i])
71e3aac0 799 put_page(pages[i]);
b9bbfbe3
AA
800 mem_cgroup_uncharge_start();
801 while (--i >= 0) {
802 mem_cgroup_uncharge_page(pages[i]);
803 put_page(pages[i]);
804 }
805 mem_cgroup_uncharge_end();
71e3aac0
AA
806 kfree(pages);
807 ret |= VM_FAULT_OOM;
808 goto out;
809 }
810 }
811
812 for (i = 0; i < HPAGE_PMD_NR; i++) {
813 copy_user_highpage(pages[i], page + i,
814 haddr + PAGE_SHIFT*i, vma);
815 __SetPageUptodate(pages[i]);
816 cond_resched();
817 }
818
819 spin_lock(&mm->page_table_lock);
820 if (unlikely(!pmd_same(*pmd, orig_pmd)))
821 goto out_free_pages;
822 VM_BUG_ON(!PageHead(page));
823
824 pmdp_clear_flush_notify(vma, haddr, pmd);
825 /* leave pmd empty until pte is filled */
826
827 pgtable = get_pmd_huge_pte(mm);
828 pmd_populate(mm, &_pmd, pgtable);
829
830 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
831 pte_t *pte, entry;
832 entry = mk_pte(pages[i], vma->vm_page_prot);
833 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
834 page_add_new_anon_rmap(pages[i], vma, haddr);
835 pte = pte_offset_map(&_pmd, haddr);
836 VM_BUG_ON(!pte_none(*pte));
837 set_pte_at(mm, haddr, pte, entry);
838 pte_unmap(pte);
839 }
840 kfree(pages);
841
842 mm->nr_ptes++;
843 smp_wmb(); /* make pte visible before pmd */
844 pmd_populate(mm, pmd, pgtable);
845 page_remove_rmap(page);
846 spin_unlock(&mm->page_table_lock);
847
848 ret |= VM_FAULT_WRITE;
849 put_page(page);
850
851out:
852 return ret;
853
854out_free_pages:
855 spin_unlock(&mm->page_table_lock);
b9bbfbe3
AA
856 mem_cgroup_uncharge_start();
857 for (i = 0; i < HPAGE_PMD_NR; i++) {
858 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 859 put_page(pages[i]);
b9bbfbe3
AA
860 }
861 mem_cgroup_uncharge_end();
71e3aac0
AA
862 kfree(pages);
863 goto out;
864}
865
866int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
867 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
868{
869 int ret = 0;
870 struct page *page, *new_page;
871 unsigned long haddr;
872
873 VM_BUG_ON(!vma->anon_vma);
874 spin_lock(&mm->page_table_lock);
875 if (unlikely(!pmd_same(*pmd, orig_pmd)))
876 goto out_unlock;
877
878 page = pmd_page(orig_pmd);
879 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
880 haddr = address & HPAGE_PMD_MASK;
881 if (page_mapcount(page) == 1) {
882 pmd_t entry;
883 entry = pmd_mkyoung(orig_pmd);
884 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
885 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
886 update_mmu_cache(vma, address, entry);
887 ret |= VM_FAULT_WRITE;
888 goto out_unlock;
889 }
890 get_page(page);
891 spin_unlock(&mm->page_table_lock);
892
893 if (transparent_hugepage_enabled(vma) &&
894 !transparent_hugepage_debug_cow())
0bbbc0b3
AA
895 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
896 vma, haddr);
71e3aac0
AA
897 else
898 new_page = NULL;
899
900 if (unlikely(!new_page)) {
901 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
902 pmd, orig_pmd, page, haddr);
903 put_page(page);
904 goto out;
905 }
906
b9bbfbe3
AA
907 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
908 put_page(new_page);
909 put_page(page);
910 ret |= VM_FAULT_OOM;
911 goto out;
912 }
913
71e3aac0
AA
914 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
915 __SetPageUptodate(new_page);
916
917 spin_lock(&mm->page_table_lock);
918 put_page(page);
b9bbfbe3
AA
919 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
920 mem_cgroup_uncharge_page(new_page);
71e3aac0 921 put_page(new_page);
b9bbfbe3 922 } else {
71e3aac0
AA
923 pmd_t entry;
924 VM_BUG_ON(!PageHead(page));
925 entry = mk_pmd(new_page, vma->vm_page_prot);
926 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
927 entry = pmd_mkhuge(entry);
928 pmdp_clear_flush_notify(vma, haddr, pmd);
929 page_add_new_anon_rmap(new_page, vma, haddr);
930 set_pmd_at(mm, haddr, pmd, entry);
931 update_mmu_cache(vma, address, entry);
932 page_remove_rmap(page);
933 put_page(page);
934 ret |= VM_FAULT_WRITE;
935 }
936out_unlock:
937 spin_unlock(&mm->page_table_lock);
938out:
939 return ret;
940}
941
942struct page *follow_trans_huge_pmd(struct mm_struct *mm,
943 unsigned long addr,
944 pmd_t *pmd,
945 unsigned int flags)
946{
947 struct page *page = NULL;
948
949 assert_spin_locked(&mm->page_table_lock);
950
951 if (flags & FOLL_WRITE && !pmd_write(*pmd))
952 goto out;
953
954 page = pmd_page(*pmd);
955 VM_BUG_ON(!PageHead(page));
956 if (flags & FOLL_TOUCH) {
957 pmd_t _pmd;
958 /*
959 * We should set the dirty bit only for FOLL_WRITE but
960 * for now the dirty bit in the pmd is meaningless.
961 * And if the dirty bit will become meaningful and
962 * we'll only set it with FOLL_WRITE, an atomic
963 * set_bit will be required on the pmd to set the
964 * young bit, instead of the current set_pmd_at.
965 */
966 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
967 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
968 }
969 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
970 VM_BUG_ON(!PageCompound(page));
971 if (flags & FOLL_GET)
972 get_page(page);
973
974out:
975 return page;
976}
977
978int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
979 pmd_t *pmd)
980{
981 int ret = 0;
982
983 spin_lock(&tlb->mm->page_table_lock);
984 if (likely(pmd_trans_huge(*pmd))) {
985 if (unlikely(pmd_trans_splitting(*pmd))) {
986 spin_unlock(&tlb->mm->page_table_lock);
987 wait_split_huge_page(vma->anon_vma,
988 pmd);
989 } else {
990 struct page *page;
991 pgtable_t pgtable;
992 pgtable = get_pmd_huge_pte(tlb->mm);
993 page = pmd_page(*pmd);
994 pmd_clear(pmd);
995 page_remove_rmap(page);
996 VM_BUG_ON(page_mapcount(page) < 0);
997 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
998 VM_BUG_ON(!PageHead(page));
999 spin_unlock(&tlb->mm->page_table_lock);
1000 tlb_remove_page(tlb, page);
1001 pte_free(tlb->mm, pgtable);
1002 ret = 1;
1003 }
1004 } else
1005 spin_unlock(&tlb->mm->page_table_lock);
1006
1007 return ret;
1008}
1009
0ca1634d
JW
1010int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1011 unsigned long addr, unsigned long end,
1012 unsigned char *vec)
1013{
1014 int ret = 0;
1015
1016 spin_lock(&vma->vm_mm->page_table_lock);
1017 if (likely(pmd_trans_huge(*pmd))) {
1018 ret = !pmd_trans_splitting(*pmd);
1019 spin_unlock(&vma->vm_mm->page_table_lock);
1020 if (unlikely(!ret))
1021 wait_split_huge_page(vma->anon_vma, pmd);
1022 else {
1023 /*
1024 * All logical pages in the range are present
1025 * if backed by a huge page.
1026 */
1027 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1028 }
1029 } else
1030 spin_unlock(&vma->vm_mm->page_table_lock);
1031
1032 return ret;
1033}
1034
cd7548ab
JW
1035int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1036 unsigned long addr, pgprot_t newprot)
1037{
1038 struct mm_struct *mm = vma->vm_mm;
1039 int ret = 0;
1040
1041 spin_lock(&mm->page_table_lock);
1042 if (likely(pmd_trans_huge(*pmd))) {
1043 if (unlikely(pmd_trans_splitting(*pmd))) {
1044 spin_unlock(&mm->page_table_lock);
1045 wait_split_huge_page(vma->anon_vma, pmd);
1046 } else {
1047 pmd_t entry;
1048
1049 entry = pmdp_get_and_clear(mm, addr, pmd);
1050 entry = pmd_modify(entry, newprot);
1051 set_pmd_at(mm, addr, pmd, entry);
1052 spin_unlock(&vma->vm_mm->page_table_lock);
1053 flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1054 ret = 1;
1055 }
1056 } else
1057 spin_unlock(&vma->vm_mm->page_table_lock);
1058
1059 return ret;
1060}
1061
71e3aac0
AA
1062pmd_t *page_check_address_pmd(struct page *page,
1063 struct mm_struct *mm,
1064 unsigned long address,
1065 enum page_check_address_pmd_flag flag)
1066{
1067 pgd_t *pgd;
1068 pud_t *pud;
1069 pmd_t *pmd, *ret = NULL;
1070
1071 if (address & ~HPAGE_PMD_MASK)
1072 goto out;
1073
1074 pgd = pgd_offset(mm, address);
1075 if (!pgd_present(*pgd))
1076 goto out;
1077
1078 pud = pud_offset(pgd, address);
1079 if (!pud_present(*pud))
1080 goto out;
1081
1082 pmd = pmd_offset(pud, address);
1083 if (pmd_none(*pmd))
1084 goto out;
1085 if (pmd_page(*pmd) != page)
1086 goto out;
94fcc585
AA
1087 /*
1088 * split_vma() may create temporary aliased mappings. There is
1089 * no risk as long as all huge pmd are found and have their
1090 * splitting bit set before __split_huge_page_refcount
1091 * runs. Finding the same huge pmd more than once during the
1092 * same rmap walk is not a problem.
1093 */
1094 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1095 pmd_trans_splitting(*pmd))
1096 goto out;
71e3aac0
AA
1097 if (pmd_trans_huge(*pmd)) {
1098 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1099 !pmd_trans_splitting(*pmd));
1100 ret = pmd;
1101 }
1102out:
1103 return ret;
1104}
1105
1106static int __split_huge_page_splitting(struct page *page,
1107 struct vm_area_struct *vma,
1108 unsigned long address)
1109{
1110 struct mm_struct *mm = vma->vm_mm;
1111 pmd_t *pmd;
1112 int ret = 0;
1113
1114 spin_lock(&mm->page_table_lock);
1115 pmd = page_check_address_pmd(page, mm, address,
1116 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1117 if (pmd) {
1118 /*
1119 * We can't temporarily set the pmd to null in order
1120 * to split it, the pmd must remain marked huge at all
1121 * times or the VM won't take the pmd_trans_huge paths
1122 * and it won't wait on the anon_vma->root->lock to
1123 * serialize against split_huge_page*.
1124 */
1125 pmdp_splitting_flush_notify(vma, address, pmd);
1126 ret = 1;
1127 }
1128 spin_unlock(&mm->page_table_lock);
1129
1130 return ret;
1131}
1132
1133static void __split_huge_page_refcount(struct page *page)
1134{
1135 int i;
1136 unsigned long head_index = page->index;
1137 struct zone *zone = page_zone(page);
1138
1139 /* prevent PageLRU to go away from under us, and freeze lru stats */
1140 spin_lock_irq(&zone->lru_lock);
1141 compound_lock(page);
1142
1143 for (i = 1; i < HPAGE_PMD_NR; i++) {
1144 struct page *page_tail = page + i;
1145
1146 /* tail_page->_count cannot change */
1147 atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1148 BUG_ON(page_count(page) <= 0);
1149 atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1150 BUG_ON(atomic_read(&page_tail->_count) <= 0);
1151
1152 /* after clearing PageTail the gup refcount can be released */
1153 smp_mb();
1154
1155 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1156 page_tail->flags |= (page->flags &
1157 ((1L << PG_referenced) |
1158 (1L << PG_swapbacked) |
1159 (1L << PG_mlocked) |
1160 (1L << PG_uptodate)));
1161 page_tail->flags |= (1L << PG_dirty);
1162
1163 /*
1164 * 1) clear PageTail before overwriting first_page
1165 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1166 */
1167 smp_wmb();
1168
1169 /*
1170 * __split_huge_page_splitting() already set the
1171 * splitting bit in all pmd that could map this
1172 * hugepage, that will ensure no CPU can alter the
1173 * mapcount on the head page. The mapcount is only
1174 * accounted in the head page and it has to be
1175 * transferred to all tail pages in the below code. So
1176 * for this code to be safe, the split the mapcount
1177 * can't change. But that doesn't mean userland can't
1178 * keep changing and reading the page contents while
1179 * we transfer the mapcount, so the pmd splitting
1180 * status is achieved setting a reserved bit in the
1181 * pmd, not by clearing the present bit.
1182 */
1183 BUG_ON(page_mapcount(page_tail));
1184 page_tail->_mapcount = page->_mapcount;
1185
1186 BUG_ON(page_tail->mapping);
1187 page_tail->mapping = page->mapping;
1188
1189 page_tail->index = ++head_index;
1190
1191 BUG_ON(!PageAnon(page_tail));
1192 BUG_ON(!PageUptodate(page_tail));
1193 BUG_ON(!PageDirty(page_tail));
1194 BUG_ON(!PageSwapBacked(page_tail));
1195
1196 lru_add_page_tail(zone, page, page_tail);
1197 }
1198
79134171
AA
1199 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1200 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1201
71e3aac0
AA
1202 ClearPageCompound(page);
1203 compound_unlock(page);
1204 spin_unlock_irq(&zone->lru_lock);
1205
1206 for (i = 1; i < HPAGE_PMD_NR; i++) {
1207 struct page *page_tail = page + i;
1208 BUG_ON(page_count(page_tail) <= 0);
1209 /*
1210 * Tail pages may be freed if there wasn't any mapping
1211 * like if add_to_swap() is running on a lru page that
1212 * had its mapping zapped. And freeing these pages
1213 * requires taking the lru_lock so we do the put_page
1214 * of the tail pages after the split is complete.
1215 */
1216 put_page(page_tail);
1217 }
1218
1219 /*
1220 * Only the head page (now become a regular page) is required
1221 * to be pinned by the caller.
1222 */
1223 BUG_ON(page_count(page) <= 0);
1224}
1225
1226static int __split_huge_page_map(struct page *page,
1227 struct vm_area_struct *vma,
1228 unsigned long address)
1229{
1230 struct mm_struct *mm = vma->vm_mm;
1231 pmd_t *pmd, _pmd;
1232 int ret = 0, i;
1233 pgtable_t pgtable;
1234 unsigned long haddr;
1235
1236 spin_lock(&mm->page_table_lock);
1237 pmd = page_check_address_pmd(page, mm, address,
1238 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1239 if (pmd) {
1240 pgtable = get_pmd_huge_pte(mm);
1241 pmd_populate(mm, &_pmd, pgtable);
1242
1243 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1244 i++, haddr += PAGE_SIZE) {
1245 pte_t *pte, entry;
1246 BUG_ON(PageCompound(page+i));
1247 entry = mk_pte(page + i, vma->vm_page_prot);
1248 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1249 if (!pmd_write(*pmd))
1250 entry = pte_wrprotect(entry);
1251 else
1252 BUG_ON(page_mapcount(page) != 1);
1253 if (!pmd_young(*pmd))
1254 entry = pte_mkold(entry);
1255 pte = pte_offset_map(&_pmd, haddr);
1256 BUG_ON(!pte_none(*pte));
1257 set_pte_at(mm, haddr, pte, entry);
1258 pte_unmap(pte);
1259 }
1260
1261 mm->nr_ptes++;
1262 smp_wmb(); /* make pte visible before pmd */
1263 /*
1264 * Up to this point the pmd is present and huge and
1265 * userland has the whole access to the hugepage
1266 * during the split (which happens in place). If we
1267 * overwrite the pmd with the not-huge version
1268 * pointing to the pte here (which of course we could
1269 * if all CPUs were bug free), userland could trigger
1270 * a small page size TLB miss on the small sized TLB
1271 * while the hugepage TLB entry is still established
1272 * in the huge TLB. Some CPU doesn't like that. See
1273 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1274 * Erratum 383 on page 93. Intel should be safe but is
1275 * also warns that it's only safe if the permission
1276 * and cache attributes of the two entries loaded in
1277 * the two TLB is identical (which should be the case
1278 * here). But it is generally safer to never allow
1279 * small and huge TLB entries for the same virtual
1280 * address to be loaded simultaneously. So instead of
1281 * doing "pmd_populate(); flush_tlb_range();" we first
1282 * mark the current pmd notpresent (atomically because
1283 * here the pmd_trans_huge and pmd_trans_splitting
1284 * must remain set at all times on the pmd until the
1285 * split is complete for this pmd), then we flush the
1286 * SMP TLB and finally we write the non-huge version
1287 * of the pmd entry with pmd_populate.
1288 */
1289 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1290 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1291 pmd_populate(mm, pmd, pgtable);
1292 ret = 1;
1293 }
1294 spin_unlock(&mm->page_table_lock);
1295
1296 return ret;
1297}
1298
1299/* must be called with anon_vma->root->lock hold */
1300static void __split_huge_page(struct page *page,
1301 struct anon_vma *anon_vma)
1302{
1303 int mapcount, mapcount2;
1304 struct anon_vma_chain *avc;
1305
1306 BUG_ON(!PageHead(page));
1307 BUG_ON(PageTail(page));
1308
1309 mapcount = 0;
1310 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1311 struct vm_area_struct *vma = avc->vma;
1312 unsigned long addr = vma_address(page, vma);
1313 BUG_ON(is_vma_temporary_stack(vma));
1314 if (addr == -EFAULT)
1315 continue;
1316 mapcount += __split_huge_page_splitting(page, vma, addr);
1317 }
05759d38
AA
1318 /*
1319 * It is critical that new vmas are added to the tail of the
1320 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1321 * and establishes a child pmd before
1322 * __split_huge_page_splitting() freezes the parent pmd (so if
1323 * we fail to prevent copy_huge_pmd() from running until the
1324 * whole __split_huge_page() is complete), we will still see
1325 * the newly established pmd of the child later during the
1326 * walk, to be able to set it as pmd_trans_splitting too.
1327 */
1328 if (mapcount != page_mapcount(page))
1329 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1330 mapcount, page_mapcount(page));
71e3aac0
AA
1331 BUG_ON(mapcount != page_mapcount(page));
1332
1333 __split_huge_page_refcount(page);
1334
1335 mapcount2 = 0;
1336 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1337 struct vm_area_struct *vma = avc->vma;
1338 unsigned long addr = vma_address(page, vma);
1339 BUG_ON(is_vma_temporary_stack(vma));
1340 if (addr == -EFAULT)
1341 continue;
1342 mapcount2 += __split_huge_page_map(page, vma, addr);
1343 }
05759d38
AA
1344 if (mapcount != mapcount2)
1345 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1346 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1347 BUG_ON(mapcount != mapcount2);
1348}
1349
1350int split_huge_page(struct page *page)
1351{
1352 struct anon_vma *anon_vma;
1353 int ret = 1;
1354
1355 BUG_ON(!PageAnon(page));
1356 anon_vma = page_lock_anon_vma(page);
1357 if (!anon_vma)
1358 goto out;
1359 ret = 0;
1360 if (!PageCompound(page))
1361 goto out_unlock;
1362
1363 BUG_ON(!PageSwapBacked(page));
1364 __split_huge_page(page, anon_vma);
1365
1366 BUG_ON(PageCompound(page));
1367out_unlock:
1368 page_unlock_anon_vma(anon_vma);
1369out:
1370 return ret;
1371}
1372
0af4e98b
AA
1373int hugepage_madvise(unsigned long *vm_flags)
1374{
1375 /*
1376 * Be somewhat over-protective like KSM for now!
1377 */
1378 if (*vm_flags & (VM_HUGEPAGE | VM_SHARED | VM_MAYSHARE |
1379 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1380 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1381 VM_MIXEDMAP | VM_SAO))
1382 return -EINVAL;
1383
1384 *vm_flags |= VM_HUGEPAGE;
1385
1386 return 0;
1387}
1388
ba76149f
AA
1389static int __init khugepaged_slab_init(void)
1390{
1391 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1392 sizeof(struct mm_slot),
1393 __alignof__(struct mm_slot), 0, NULL);
1394 if (!mm_slot_cache)
1395 return -ENOMEM;
1396
1397 return 0;
1398}
1399
1400static void __init khugepaged_slab_free(void)
1401{
1402 kmem_cache_destroy(mm_slot_cache);
1403 mm_slot_cache = NULL;
1404}
1405
1406static inline struct mm_slot *alloc_mm_slot(void)
1407{
1408 if (!mm_slot_cache) /* initialization failed */
1409 return NULL;
1410 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1411}
1412
1413static inline void free_mm_slot(struct mm_slot *mm_slot)
1414{
1415 kmem_cache_free(mm_slot_cache, mm_slot);
1416}
1417
1418static int __init mm_slots_hash_init(void)
1419{
1420 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1421 GFP_KERNEL);
1422 if (!mm_slots_hash)
1423 return -ENOMEM;
1424 return 0;
1425}
1426
1427#if 0
1428static void __init mm_slots_hash_free(void)
1429{
1430 kfree(mm_slots_hash);
1431 mm_slots_hash = NULL;
1432}
1433#endif
1434
1435static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1436{
1437 struct mm_slot *mm_slot;
1438 struct hlist_head *bucket;
1439 struct hlist_node *node;
1440
1441 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1442 % MM_SLOTS_HASH_HEADS];
1443 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1444 if (mm == mm_slot->mm)
1445 return mm_slot;
1446 }
1447 return NULL;
1448}
1449
1450static void insert_to_mm_slots_hash(struct mm_struct *mm,
1451 struct mm_slot *mm_slot)
1452{
1453 struct hlist_head *bucket;
1454
1455 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1456 % MM_SLOTS_HASH_HEADS];
1457 mm_slot->mm = mm;
1458 hlist_add_head(&mm_slot->hash, bucket);
1459}
1460
1461static inline int khugepaged_test_exit(struct mm_struct *mm)
1462{
1463 return atomic_read(&mm->mm_users) == 0;
1464}
1465
1466int __khugepaged_enter(struct mm_struct *mm)
1467{
1468 struct mm_slot *mm_slot;
1469 int wakeup;
1470
1471 mm_slot = alloc_mm_slot();
1472 if (!mm_slot)
1473 return -ENOMEM;
1474
1475 /* __khugepaged_exit() must not run from under us */
1476 VM_BUG_ON(khugepaged_test_exit(mm));
1477 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1478 free_mm_slot(mm_slot);
1479 return 0;
1480 }
1481
1482 spin_lock(&khugepaged_mm_lock);
1483 insert_to_mm_slots_hash(mm, mm_slot);
1484 /*
1485 * Insert just behind the scanning cursor, to let the area settle
1486 * down a little.
1487 */
1488 wakeup = list_empty(&khugepaged_scan.mm_head);
1489 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1490 spin_unlock(&khugepaged_mm_lock);
1491
1492 atomic_inc(&mm->mm_count);
1493 if (wakeup)
1494 wake_up_interruptible(&khugepaged_wait);
1495
1496 return 0;
1497}
1498
1499int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1500{
1501 unsigned long hstart, hend;
1502 if (!vma->anon_vma)
1503 /*
1504 * Not yet faulted in so we will register later in the
1505 * page fault if needed.
1506 */
1507 return 0;
1508 if (vma->vm_file || vma->vm_ops)
1509 /* khugepaged not yet working on file or special mappings */
1510 return 0;
1511 VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1512 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1513 hend = vma->vm_end & HPAGE_PMD_MASK;
1514 if (hstart < hend)
1515 return khugepaged_enter(vma);
1516 return 0;
1517}
1518
1519void __khugepaged_exit(struct mm_struct *mm)
1520{
1521 struct mm_slot *mm_slot;
1522 int free = 0;
1523
1524 spin_lock(&khugepaged_mm_lock);
1525 mm_slot = get_mm_slot(mm);
1526 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1527 hlist_del(&mm_slot->hash);
1528 list_del(&mm_slot->mm_node);
1529 free = 1;
1530 }
1531
1532 if (free) {
1533 spin_unlock(&khugepaged_mm_lock);
1534 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1535 free_mm_slot(mm_slot);
1536 mmdrop(mm);
1537 } else if (mm_slot) {
1538 spin_unlock(&khugepaged_mm_lock);
1539 /*
1540 * This is required to serialize against
1541 * khugepaged_test_exit() (which is guaranteed to run
1542 * under mmap sem read mode). Stop here (after we
1543 * return all pagetables will be destroyed) until
1544 * khugepaged has finished working on the pagetables
1545 * under the mmap_sem.
1546 */
1547 down_write(&mm->mmap_sem);
1548 up_write(&mm->mmap_sem);
1549 } else
1550 spin_unlock(&khugepaged_mm_lock);
1551}
1552
1553static void release_pte_page(struct page *page)
1554{
1555 /* 0 stands for page_is_file_cache(page) == false */
1556 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1557 unlock_page(page);
1558 putback_lru_page(page);
1559}
1560
1561static void release_pte_pages(pte_t *pte, pte_t *_pte)
1562{
1563 while (--_pte >= pte) {
1564 pte_t pteval = *_pte;
1565 if (!pte_none(pteval))
1566 release_pte_page(pte_page(pteval));
1567 }
1568}
1569
1570static void release_all_pte_pages(pte_t *pte)
1571{
1572 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1573}
1574
1575static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1576 unsigned long address,
1577 pte_t *pte)
1578{
1579 struct page *page;
1580 pte_t *_pte;
1581 int referenced = 0, isolated = 0, none = 0;
1582 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1583 _pte++, address += PAGE_SIZE) {
1584 pte_t pteval = *_pte;
1585 if (pte_none(pteval)) {
1586 if (++none <= khugepaged_max_ptes_none)
1587 continue;
1588 else {
1589 release_pte_pages(pte, _pte);
1590 goto out;
1591 }
1592 }
1593 if (!pte_present(pteval) || !pte_write(pteval)) {
1594 release_pte_pages(pte, _pte);
1595 goto out;
1596 }
1597 page = vm_normal_page(vma, address, pteval);
1598 if (unlikely(!page)) {
1599 release_pte_pages(pte, _pte);
1600 goto out;
1601 }
1602 VM_BUG_ON(PageCompound(page));
1603 BUG_ON(!PageAnon(page));
1604 VM_BUG_ON(!PageSwapBacked(page));
1605
1606 /* cannot use mapcount: can't collapse if there's a gup pin */
1607 if (page_count(page) != 1) {
1608 release_pte_pages(pte, _pte);
1609 goto out;
1610 }
1611 /*
1612 * We can do it before isolate_lru_page because the
1613 * page can't be freed from under us. NOTE: PG_lock
1614 * is needed to serialize against split_huge_page
1615 * when invoked from the VM.
1616 */
1617 if (!trylock_page(page)) {
1618 release_pte_pages(pte, _pte);
1619 goto out;
1620 }
1621 /*
1622 * Isolate the page to avoid collapsing an hugepage
1623 * currently in use by the VM.
1624 */
1625 if (isolate_lru_page(page)) {
1626 unlock_page(page);
1627 release_pte_pages(pte, _pte);
1628 goto out;
1629 }
1630 /* 0 stands for page_is_file_cache(page) == false */
1631 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1632 VM_BUG_ON(!PageLocked(page));
1633 VM_BUG_ON(PageLRU(page));
1634
1635 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1636 if (pte_young(pteval) || PageReferenced(page) ||
1637 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1638 referenced = 1;
1639 }
1640 if (unlikely(!referenced))
1641 release_all_pte_pages(pte);
1642 else
1643 isolated = 1;
1644out:
1645 return isolated;
1646}
1647
1648static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1649 struct vm_area_struct *vma,
1650 unsigned long address,
1651 spinlock_t *ptl)
1652{
1653 pte_t *_pte;
1654 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1655 pte_t pteval = *_pte;
1656 struct page *src_page;
1657
1658 if (pte_none(pteval)) {
1659 clear_user_highpage(page, address);
1660 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1661 } else {
1662 src_page = pte_page(pteval);
1663 copy_user_highpage(page, src_page, address, vma);
1664 VM_BUG_ON(page_mapcount(src_page) != 1);
1665 VM_BUG_ON(page_count(src_page) != 2);
1666 release_pte_page(src_page);
1667 /*
1668 * ptl mostly unnecessary, but preempt has to
1669 * be disabled to update the per-cpu stats
1670 * inside page_remove_rmap().
1671 */
1672 spin_lock(ptl);
1673 /*
1674 * paravirt calls inside pte_clear here are
1675 * superfluous.
1676 */
1677 pte_clear(vma->vm_mm, address, _pte);
1678 page_remove_rmap(src_page);
1679 spin_unlock(ptl);
1680 free_page_and_swap_cache(src_page);
1681 }
1682
1683 address += PAGE_SIZE;
1684 page++;
1685 }
1686}
1687
1688static void collapse_huge_page(struct mm_struct *mm,
1689 unsigned long address,
ce83d217
AA
1690 struct page **hpage,
1691 struct vm_area_struct *vma)
ba76149f 1692{
ba76149f
AA
1693 pgd_t *pgd;
1694 pud_t *pud;
1695 pmd_t *pmd, _pmd;
1696 pte_t *pte;
1697 pgtable_t pgtable;
1698 struct page *new_page;
1699 spinlock_t *ptl;
1700 int isolated;
1701 unsigned long hstart, hend;
1702
1703 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
0bbbc0b3 1704#ifndef CONFIG_NUMA
ba76149f 1705 VM_BUG_ON(!*hpage);
ce83d217 1706 new_page = *hpage;
0bbbc0b3
AA
1707#else
1708 VM_BUG_ON(*hpage);
ce83d217
AA
1709 /*
1710 * Allocate the page while the vma is still valid and under
1711 * the mmap_sem read mode so there is no memory allocation
1712 * later when we take the mmap_sem in write mode. This is more
1713 * friendly behavior (OTOH it may actually hide bugs) to
1714 * filesystems in userland with daemons allocating memory in
1715 * the userland I/O paths. Allocating memory with the
1716 * mmap_sem in read mode is good idea also to allow greater
1717 * scalability.
1718 */
1719 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address);
1720 if (unlikely(!new_page)) {
1721 up_read(&mm->mmap_sem);
1722 *hpage = ERR_PTR(-ENOMEM);
1723 return;
1724 }
0bbbc0b3 1725#endif
ce83d217
AA
1726 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1727 up_read(&mm->mmap_sem);
1728 put_page(new_page);
1729 return;
1730 }
1731
1732 /* after allocating the hugepage upgrade to mmap_sem write mode */
1733 up_read(&mm->mmap_sem);
ba76149f
AA
1734
1735 /*
1736 * Prevent all access to pagetables with the exception of
1737 * gup_fast later hanlded by the ptep_clear_flush and the VM
1738 * handled by the anon_vma lock + PG_lock.
1739 */
1740 down_write(&mm->mmap_sem);
1741 if (unlikely(khugepaged_test_exit(mm)))
1742 goto out;
1743
1744 vma = find_vma(mm, address);
1745 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1746 hend = vma->vm_end & HPAGE_PMD_MASK;
1747 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1748 goto out;
1749
1750 if (!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always())
1751 goto out;
1752
1753 /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1754 if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
1755 goto out;
1756 VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1757
1758 pgd = pgd_offset(mm, address);
1759 if (!pgd_present(*pgd))
1760 goto out;
1761
1762 pud = pud_offset(pgd, address);
1763 if (!pud_present(*pud))
1764 goto out;
1765
1766 pmd = pmd_offset(pud, address);
1767 /* pmd can't go away or become huge under us */
1768 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1769 goto out;
1770
ba76149f
AA
1771 anon_vma_lock(vma->anon_vma);
1772
1773 pte = pte_offset_map(pmd, address);
1774 ptl = pte_lockptr(mm, pmd);
1775
1776 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1777 /*
1778 * After this gup_fast can't run anymore. This also removes
1779 * any huge TLB entry from the CPU so we won't allow
1780 * huge and small TLB entries for the same virtual address
1781 * to avoid the risk of CPU bugs in that area.
1782 */
1783 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1784 spin_unlock(&mm->page_table_lock);
1785
1786 spin_lock(ptl);
1787 isolated = __collapse_huge_page_isolate(vma, address, pte);
1788 spin_unlock(ptl);
1789 pte_unmap(pte);
1790
1791 if (unlikely(!isolated)) {
1792 spin_lock(&mm->page_table_lock);
1793 BUG_ON(!pmd_none(*pmd));
1794 set_pmd_at(mm, address, pmd, _pmd);
1795 spin_unlock(&mm->page_table_lock);
1796 anon_vma_unlock(vma->anon_vma);
1797 mem_cgroup_uncharge_page(new_page);
ce83d217 1798 goto out;
ba76149f
AA
1799 }
1800
1801 /*
1802 * All pages are isolated and locked so anon_vma rmap
1803 * can't run anymore.
1804 */
1805 anon_vma_unlock(vma->anon_vma);
1806
1807 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1808 __SetPageUptodate(new_page);
1809 pgtable = pmd_pgtable(_pmd);
1810 VM_BUG_ON(page_count(pgtable) != 1);
1811 VM_BUG_ON(page_mapcount(pgtable) != 0);
1812
1813 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1814 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1815 _pmd = pmd_mkhuge(_pmd);
1816
1817 /*
1818 * spin_lock() below is not the equivalent of smp_wmb(), so
1819 * this is needed to avoid the copy_huge_page writes to become
1820 * visible after the set_pmd_at() write.
1821 */
1822 smp_wmb();
1823
1824 spin_lock(&mm->page_table_lock);
1825 BUG_ON(!pmd_none(*pmd));
1826 page_add_new_anon_rmap(new_page, vma, address);
1827 set_pmd_at(mm, address, pmd, _pmd);
1828 update_mmu_cache(vma, address, entry);
1829 prepare_pmd_huge_pte(pgtable, mm);
1830 mm->nr_ptes--;
1831 spin_unlock(&mm->page_table_lock);
1832
0bbbc0b3 1833#ifndef CONFIG_NUMA
ba76149f 1834 *hpage = NULL;
0bbbc0b3 1835#endif
ba76149f 1836 khugepaged_pages_collapsed++;
ce83d217 1837out_up_write:
ba76149f 1838 up_write(&mm->mmap_sem);
0bbbc0b3
AA
1839 return;
1840
ce83d217 1841out:
0bbbc0b3
AA
1842#ifdef CONFIG_NUMA
1843 put_page(new_page);
1844#endif
ce83d217 1845 goto out_up_write;
ba76149f
AA
1846}
1847
1848static int khugepaged_scan_pmd(struct mm_struct *mm,
1849 struct vm_area_struct *vma,
1850 unsigned long address,
1851 struct page **hpage)
1852{
1853 pgd_t *pgd;
1854 pud_t *pud;
1855 pmd_t *pmd;
1856 pte_t *pte, *_pte;
1857 int ret = 0, referenced = 0, none = 0;
1858 struct page *page;
1859 unsigned long _address;
1860 spinlock_t *ptl;
1861
1862 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1863
1864 pgd = pgd_offset(mm, address);
1865 if (!pgd_present(*pgd))
1866 goto out;
1867
1868 pud = pud_offset(pgd, address);
1869 if (!pud_present(*pud))
1870 goto out;
1871
1872 pmd = pmd_offset(pud, address);
1873 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1874 goto out;
1875
1876 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1877 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1878 _pte++, _address += PAGE_SIZE) {
1879 pte_t pteval = *_pte;
1880 if (pte_none(pteval)) {
1881 if (++none <= khugepaged_max_ptes_none)
1882 continue;
1883 else
1884 goto out_unmap;
1885 }
1886 if (!pte_present(pteval) || !pte_write(pteval))
1887 goto out_unmap;
1888 page = vm_normal_page(vma, _address, pteval);
1889 if (unlikely(!page))
1890 goto out_unmap;
1891 VM_BUG_ON(PageCompound(page));
1892 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1893 goto out_unmap;
1894 /* cannot use mapcount: can't collapse if there's a gup pin */
1895 if (page_count(page) != 1)
1896 goto out_unmap;
8ee53820
AA
1897 if (pte_young(pteval) || PageReferenced(page) ||
1898 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1899 referenced = 1;
1900 }
1901 if (referenced)
1902 ret = 1;
1903out_unmap:
1904 pte_unmap_unlock(pte, ptl);
ce83d217
AA
1905 if (ret)
1906 /* collapse_huge_page will return with the mmap_sem released */
1907 collapse_huge_page(mm, address, hpage, vma);
ba76149f
AA
1908out:
1909 return ret;
1910}
1911
1912static void collect_mm_slot(struct mm_slot *mm_slot)
1913{
1914 struct mm_struct *mm = mm_slot->mm;
1915
1916 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
1917
1918 if (khugepaged_test_exit(mm)) {
1919 /* free mm_slot */
1920 hlist_del(&mm_slot->hash);
1921 list_del(&mm_slot->mm_node);
1922
1923 /*
1924 * Not strictly needed because the mm exited already.
1925 *
1926 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1927 */
1928
1929 /* khugepaged_mm_lock actually not necessary for the below */
1930 free_mm_slot(mm_slot);
1931 mmdrop(mm);
1932 }
1933}
1934
1935static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1936 struct page **hpage)
1937{
1938 struct mm_slot *mm_slot;
1939 struct mm_struct *mm;
1940 struct vm_area_struct *vma;
1941 int progress = 0;
1942
1943 VM_BUG_ON(!pages);
1944 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
1945
1946 if (khugepaged_scan.mm_slot)
1947 mm_slot = khugepaged_scan.mm_slot;
1948 else {
1949 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1950 struct mm_slot, mm_node);
1951 khugepaged_scan.address = 0;
1952 khugepaged_scan.mm_slot = mm_slot;
1953 }
1954 spin_unlock(&khugepaged_mm_lock);
1955
1956 mm = mm_slot->mm;
1957 down_read(&mm->mmap_sem);
1958 if (unlikely(khugepaged_test_exit(mm)))
1959 vma = NULL;
1960 else
1961 vma = find_vma(mm, khugepaged_scan.address);
1962
1963 progress++;
1964 for (; vma; vma = vma->vm_next) {
1965 unsigned long hstart, hend;
1966
1967 cond_resched();
1968 if (unlikely(khugepaged_test_exit(mm))) {
1969 progress++;
1970 break;
1971 }
1972
1973 if (!(vma->vm_flags & VM_HUGEPAGE) &&
1974 !khugepaged_always()) {
1975 progress++;
1976 continue;
1977 }
1978
1979 /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1980 if (!vma->anon_vma || vma->vm_ops || vma->vm_file) {
1981 khugepaged_scan.address = vma->vm_end;
1982 progress++;
1983 continue;
1984 }
1985 VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1986
1987 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1988 hend = vma->vm_end & HPAGE_PMD_MASK;
1989 if (hstart >= hend) {
1990 progress++;
1991 continue;
1992 }
1993 if (khugepaged_scan.address < hstart)
1994 khugepaged_scan.address = hstart;
1995 if (khugepaged_scan.address > hend) {
1996 khugepaged_scan.address = hend + HPAGE_PMD_SIZE;
1997 progress++;
1998 continue;
1999 }
2000 BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2001
2002 while (khugepaged_scan.address < hend) {
2003 int ret;
2004 cond_resched();
2005 if (unlikely(khugepaged_test_exit(mm)))
2006 goto breakouterloop;
2007
2008 VM_BUG_ON(khugepaged_scan.address < hstart ||
2009 khugepaged_scan.address + HPAGE_PMD_SIZE >
2010 hend);
2011 ret = khugepaged_scan_pmd(mm, vma,
2012 khugepaged_scan.address,
2013 hpage);
2014 /* move to next address */
2015 khugepaged_scan.address += HPAGE_PMD_SIZE;
2016 progress += HPAGE_PMD_NR;
2017 if (ret)
2018 /* we released mmap_sem so break loop */
2019 goto breakouterloop_mmap_sem;
2020 if (progress >= pages)
2021 goto breakouterloop;
2022 }
2023 }
2024breakouterloop:
2025 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2026breakouterloop_mmap_sem:
2027
2028 spin_lock(&khugepaged_mm_lock);
2029 BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2030 /*
2031 * Release the current mm_slot if this mm is about to die, or
2032 * if we scanned all vmas of this mm.
2033 */
2034 if (khugepaged_test_exit(mm) || !vma) {
2035 /*
2036 * Make sure that if mm_users is reaching zero while
2037 * khugepaged runs here, khugepaged_exit will find
2038 * mm_slot not pointing to the exiting mm.
2039 */
2040 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2041 khugepaged_scan.mm_slot = list_entry(
2042 mm_slot->mm_node.next,
2043 struct mm_slot, mm_node);
2044 khugepaged_scan.address = 0;
2045 } else {
2046 khugepaged_scan.mm_slot = NULL;
2047 khugepaged_full_scans++;
2048 }
2049
2050 collect_mm_slot(mm_slot);
2051 }
2052
2053 return progress;
2054}
2055
2056static int khugepaged_has_work(void)
2057{
2058 return !list_empty(&khugepaged_scan.mm_head) &&
2059 khugepaged_enabled();
2060}
2061
2062static int khugepaged_wait_event(void)
2063{
2064 return !list_empty(&khugepaged_scan.mm_head) ||
2065 !khugepaged_enabled();
2066}
2067
2068static void khugepaged_do_scan(struct page **hpage)
2069{
2070 unsigned int progress = 0, pass_through_head = 0;
2071 unsigned int pages = khugepaged_pages_to_scan;
2072
2073 barrier(); /* write khugepaged_pages_to_scan to local stack */
2074
2075 while (progress < pages) {
2076 cond_resched();
2077
0bbbc0b3 2078#ifndef CONFIG_NUMA
ba76149f
AA
2079 if (!*hpage) {
2080 *hpage = alloc_hugepage(khugepaged_defrag());
2081 if (unlikely(!*hpage))
2082 break;
2083 }
0bbbc0b3
AA
2084#else
2085 if (IS_ERR(*hpage))
2086 break;
2087#endif
ba76149f 2088
878aee7d
AA
2089 if (unlikely(kthread_should_stop() || freezing(current)))
2090 break;
2091
ba76149f
AA
2092 spin_lock(&khugepaged_mm_lock);
2093 if (!khugepaged_scan.mm_slot)
2094 pass_through_head++;
2095 if (khugepaged_has_work() &&
2096 pass_through_head < 2)
2097 progress += khugepaged_scan_mm_slot(pages - progress,
2098 hpage);
2099 else
2100 progress = pages;
2101 spin_unlock(&khugepaged_mm_lock);
2102 }
2103}
2104
0bbbc0b3
AA
2105static void khugepaged_alloc_sleep(void)
2106{
2107 DEFINE_WAIT(wait);
2108 add_wait_queue(&khugepaged_wait, &wait);
2109 schedule_timeout_interruptible(
2110 msecs_to_jiffies(
2111 khugepaged_alloc_sleep_millisecs));
2112 remove_wait_queue(&khugepaged_wait, &wait);
2113}
2114
2115#ifndef CONFIG_NUMA
ba76149f
AA
2116static struct page *khugepaged_alloc_hugepage(void)
2117{
2118 struct page *hpage;
2119
2120 do {
2121 hpage = alloc_hugepage(khugepaged_defrag());
0bbbc0b3
AA
2122 if (!hpage)
2123 khugepaged_alloc_sleep();
ba76149f
AA
2124 } while (unlikely(!hpage) &&
2125 likely(khugepaged_enabled()));
2126 return hpage;
2127}
0bbbc0b3 2128#endif
ba76149f
AA
2129
2130static void khugepaged_loop(void)
2131{
2132 struct page *hpage;
2133
0bbbc0b3
AA
2134#ifdef CONFIG_NUMA
2135 hpage = NULL;
2136#endif
ba76149f 2137 while (likely(khugepaged_enabled())) {
0bbbc0b3 2138#ifndef CONFIG_NUMA
ba76149f
AA
2139 hpage = khugepaged_alloc_hugepage();
2140 if (unlikely(!hpage))
2141 break;
0bbbc0b3
AA
2142#else
2143 if (IS_ERR(hpage)) {
2144 khugepaged_alloc_sleep();
2145 hpage = NULL;
2146 }
2147#endif
ba76149f
AA
2148
2149 khugepaged_do_scan(&hpage);
0bbbc0b3 2150#ifndef CONFIG_NUMA
ba76149f
AA
2151 if (hpage)
2152 put_page(hpage);
0bbbc0b3 2153#endif
878aee7d
AA
2154 try_to_freeze();
2155 if (unlikely(kthread_should_stop()))
2156 break;
ba76149f
AA
2157 if (khugepaged_has_work()) {
2158 DEFINE_WAIT(wait);
2159 if (!khugepaged_scan_sleep_millisecs)
2160 continue;
2161 add_wait_queue(&khugepaged_wait, &wait);
2162 schedule_timeout_interruptible(
2163 msecs_to_jiffies(
2164 khugepaged_scan_sleep_millisecs));
2165 remove_wait_queue(&khugepaged_wait, &wait);
2166 } else if (khugepaged_enabled())
878aee7d
AA
2167 wait_event_freezable(khugepaged_wait,
2168 khugepaged_wait_event());
ba76149f
AA
2169 }
2170}
2171
2172static int khugepaged(void *none)
2173{
2174 struct mm_slot *mm_slot;
2175
878aee7d 2176 set_freezable();
ba76149f
AA
2177 set_user_nice(current, 19);
2178
2179 /* serialize with start_khugepaged() */
2180 mutex_lock(&khugepaged_mutex);
2181
2182 for (;;) {
2183 mutex_unlock(&khugepaged_mutex);
2184 BUG_ON(khugepaged_thread != current);
2185 khugepaged_loop();
2186 BUG_ON(khugepaged_thread != current);
2187
2188 mutex_lock(&khugepaged_mutex);
2189 if (!khugepaged_enabled())
2190 break;
878aee7d
AA
2191 if (unlikely(kthread_should_stop()))
2192 break;
ba76149f
AA
2193 }
2194
2195 spin_lock(&khugepaged_mm_lock);
2196 mm_slot = khugepaged_scan.mm_slot;
2197 khugepaged_scan.mm_slot = NULL;
2198 if (mm_slot)
2199 collect_mm_slot(mm_slot);
2200 spin_unlock(&khugepaged_mm_lock);
2201
2202 khugepaged_thread = NULL;
2203 mutex_unlock(&khugepaged_mutex);
2204
2205 return 0;
2206}
2207
71e3aac0
AA
2208void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2209{
2210 struct page *page;
2211
2212 spin_lock(&mm->page_table_lock);
2213 if (unlikely(!pmd_trans_huge(*pmd))) {
2214 spin_unlock(&mm->page_table_lock);
2215 return;
2216 }
2217 page = pmd_page(*pmd);
2218 VM_BUG_ON(!page_count(page));
2219 get_page(page);
2220 spin_unlock(&mm->page_table_lock);
2221
2222 split_huge_page(page);
2223
2224 put_page(page);
2225 BUG_ON(pmd_trans_huge(*pmd));
2226}
94fcc585
AA
2227
2228static void split_huge_page_address(struct mm_struct *mm,
2229 unsigned long address)
2230{
2231 pgd_t *pgd;
2232 pud_t *pud;
2233 pmd_t *pmd;
2234
2235 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2236
2237 pgd = pgd_offset(mm, address);
2238 if (!pgd_present(*pgd))
2239 return;
2240
2241 pud = pud_offset(pgd, address);
2242 if (!pud_present(*pud))
2243 return;
2244
2245 pmd = pmd_offset(pud, address);
2246 if (!pmd_present(*pmd))
2247 return;
2248 /*
2249 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2250 * materialize from under us.
2251 */
2252 split_huge_page_pmd(mm, pmd);
2253}
2254
2255void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2256 unsigned long start,
2257 unsigned long end,
2258 long adjust_next)
2259{
2260 /*
2261 * If the new start address isn't hpage aligned and it could
2262 * previously contain an hugepage: check if we need to split
2263 * an huge pmd.
2264 */
2265 if (start & ~HPAGE_PMD_MASK &&
2266 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2267 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2268 split_huge_page_address(vma->vm_mm, start);
2269
2270 /*
2271 * If the new end address isn't hpage aligned and it could
2272 * previously contain an hugepage: check if we need to split
2273 * an huge pmd.
2274 */
2275 if (end & ~HPAGE_PMD_MASK &&
2276 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2277 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2278 split_huge_page_address(vma->vm_mm, end);
2279
2280 /*
2281 * If we're also updating the vma->vm_next->vm_start, if the new
2282 * vm_next->vm_start isn't page aligned and it could previously
2283 * contain an hugepage: check if we need to split an huge pmd.
2284 */
2285 if (adjust_next > 0) {
2286 struct vm_area_struct *next = vma->vm_next;
2287 unsigned long nstart = next->vm_start;
2288 nstart += adjust_next << PAGE_SHIFT;
2289 if (nstart & ~HPAGE_PMD_MASK &&
2290 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2291 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2292 split_huge_page_address(next->vm_mm, nstart);
2293 }
2294}