]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
mm, hugetlb: convert hugetlbfs to use split pmd lock
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
97ae1749 15#include <linux/shrinker.h>
ba76149f
AA
16#include <linux/mm_inline.h>
17#include <linux/kthread.h>
18#include <linux/khugepaged.h>
878aee7d 19#include <linux/freezer.h>
a664b2d8 20#include <linux/mman.h>
325adeb5 21#include <linux/pagemap.h>
4daae3b4 22#include <linux/migrate.h>
43b5fbbd 23#include <linux/hashtable.h>
97ae1749 24
71e3aac0
AA
25#include <asm/tlb.h>
26#include <asm/pgalloc.h>
27#include "internal.h"
28
ba76149f 29/*
8bfa3f9a
JW
30 * By default transparent hugepage support is disabled in order that avoid
31 * to risk increase the memory footprint of applications without a guaranteed
32 * benefit. When transparent hugepage support is enabled, is for all mappings,
33 * and khugepaged scans all mappings.
34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
35 * for all hugepage allocations.
ba76149f 36 */
71e3aac0 37unsigned long transparent_hugepage_flags __read_mostly =
13ece886 38#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 39 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
40#endif
41#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43#endif
d39d33c3 44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
45 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
47
48/* default scan 8*512 pte (or vmas) every 30 second */
49static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50static unsigned int khugepaged_pages_collapsed;
51static unsigned int khugepaged_full_scans;
52static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53/* during fragmentation poll the hugepage allocator once every minute */
54static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55static struct task_struct *khugepaged_thread __read_mostly;
56static DEFINE_MUTEX(khugepaged_mutex);
57static DEFINE_SPINLOCK(khugepaged_mm_lock);
58static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59/*
60 * default collapse hugepages if there is at least one pte mapped like
61 * it would have happened if the vma was large enough during page
62 * fault.
63 */
64static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65
66static int khugepaged(void *none);
ba76149f 67static int khugepaged_slab_init(void);
ba76149f 68
43b5fbbd
SL
69#define MM_SLOTS_HASH_BITS 10
70static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71
ba76149f
AA
72static struct kmem_cache *mm_slot_cache __read_mostly;
73
74/**
75 * struct mm_slot - hash lookup from mm to mm_slot
76 * @hash: hash collision list
77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78 * @mm: the mm that this information is valid for
79 */
80struct mm_slot {
81 struct hlist_node hash;
82 struct list_head mm_node;
83 struct mm_struct *mm;
84};
85
86/**
87 * struct khugepaged_scan - cursor for scanning
88 * @mm_head: the head of the mm list to scan
89 * @mm_slot: the current mm_slot we are scanning
90 * @address: the next address inside that to be scanned
91 *
92 * There is only the one khugepaged_scan instance of this cursor structure.
93 */
94struct khugepaged_scan {
95 struct list_head mm_head;
96 struct mm_slot *mm_slot;
97 unsigned long address;
2f1da642
HS
98};
99static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
100 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101};
102
f000565a
AA
103
104static int set_recommended_min_free_kbytes(void)
105{
106 struct zone *zone;
107 int nr_zones = 0;
108 unsigned long recommended_min;
f000565a 109
17c230af 110 if (!khugepaged_enabled())
f000565a
AA
111 return 0;
112
113 for_each_populated_zone(zone)
114 nr_zones++;
115
116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 recommended_min = pageblock_nr_pages * nr_zones * 2;
118
119 /*
120 * Make sure that on average at least two pageblocks are almost free
121 * of another type, one for a migratetype to fall back to and a
122 * second to avoid subsequent fallbacks of other types There are 3
123 * MIGRATE_TYPES we care about.
124 */
125 recommended_min += pageblock_nr_pages * nr_zones *
126 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127
128 /* don't ever allow to reserve more than 5% of the lowmem */
129 recommended_min = min(recommended_min,
130 (unsigned long) nr_free_buffer_pages() / 20);
131 recommended_min <<= (PAGE_SHIFT-10);
132
133 if (recommended_min > min_free_kbytes)
134 min_free_kbytes = recommended_min;
135 setup_per_zone_wmarks();
136 return 0;
137}
138late_initcall(set_recommended_min_free_kbytes);
139
ba76149f
AA
140static int start_khugepaged(void)
141{
142 int err = 0;
143 if (khugepaged_enabled()) {
ba76149f
AA
144 if (!khugepaged_thread)
145 khugepaged_thread = kthread_run(khugepaged, NULL,
146 "khugepaged");
147 if (unlikely(IS_ERR(khugepaged_thread))) {
148 printk(KERN_ERR
149 "khugepaged: kthread_run(khugepaged) failed\n");
150 err = PTR_ERR(khugepaged_thread);
151 khugepaged_thread = NULL;
152 }
911891af
XG
153
154 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 155 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
156
157 set_recommended_min_free_kbytes();
911891af 158 } else if (khugepaged_thread) {
911891af
XG
159 kthread_stop(khugepaged_thread);
160 khugepaged_thread = NULL;
161 }
637e3a27 162
ba76149f
AA
163 return err;
164}
71e3aac0 165
97ae1749 166static atomic_t huge_zero_refcount;
5918d10a 167static struct page *huge_zero_page __read_mostly;
97ae1749 168
5918d10a 169static inline bool is_huge_zero_page(struct page *page)
4a6c1297 170{
5918d10a 171 return ACCESS_ONCE(huge_zero_page) == page;
97ae1749 172}
4a6c1297 173
97ae1749
KS
174static inline bool is_huge_zero_pmd(pmd_t pmd)
175{
5918d10a 176 return is_huge_zero_page(pmd_page(pmd));
97ae1749
KS
177}
178
5918d10a 179static struct page *get_huge_zero_page(void)
97ae1749
KS
180{
181 struct page *zero_page;
182retry:
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
5918d10a 184 return ACCESS_ONCE(huge_zero_page);
97ae1749
KS
185
186 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 187 HPAGE_PMD_ORDER);
d8a8e1f0
KS
188 if (!zero_page) {
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 190 return NULL;
d8a8e1f0
KS
191 }
192 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 193 preempt_disable();
5918d10a 194 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749
KS
195 preempt_enable();
196 __free_page(zero_page);
197 goto retry;
198 }
199
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount, 2);
202 preempt_enable();
5918d10a 203 return ACCESS_ONCE(huge_zero_page);
4a6c1297
KS
204}
205
97ae1749 206static void put_huge_zero_page(void)
4a6c1297 207{
97ae1749
KS
208 /*
209 * Counter should never go to zero here. Only shrinker can put
210 * last reference.
211 */
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
213}
214
48896466
GC
215static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
216 struct shrink_control *sc)
4a6c1297 217{
48896466
GC
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
220}
97ae1749 221
48896466
GC
222static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
223 struct shrink_control *sc)
224{
97ae1749 225 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
226 struct page *zero_page = xchg(&huge_zero_page, NULL);
227 BUG_ON(zero_page == NULL);
228 __free_page(zero_page);
48896466 229 return HPAGE_PMD_NR;
97ae1749
KS
230 }
231
232 return 0;
4a6c1297
KS
233}
234
97ae1749 235static struct shrinker huge_zero_page_shrinker = {
48896466
GC
236 .count_objects = shrink_huge_zero_page_count,
237 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
238 .seeks = DEFAULT_SEEKS,
239};
240
71e3aac0 241#ifdef CONFIG_SYSFS
ba76149f 242
71e3aac0
AA
243static ssize_t double_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag enabled,
246 enum transparent_hugepage_flag req_madv)
247{
248 if (test_bit(enabled, &transparent_hugepage_flags)) {
249 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
250 return sprintf(buf, "[always] madvise never\n");
251 } else if (test_bit(req_madv, &transparent_hugepage_flags))
252 return sprintf(buf, "always [madvise] never\n");
253 else
254 return sprintf(buf, "always madvise [never]\n");
255}
256static ssize_t double_flag_store(struct kobject *kobj,
257 struct kobj_attribute *attr,
258 const char *buf, size_t count,
259 enum transparent_hugepage_flag enabled,
260 enum transparent_hugepage_flag req_madv)
261{
262 if (!memcmp("always", buf,
263 min(sizeof("always")-1, count))) {
264 set_bit(enabled, &transparent_hugepage_flags);
265 clear_bit(req_madv, &transparent_hugepage_flags);
266 } else if (!memcmp("madvise", buf,
267 min(sizeof("madvise")-1, count))) {
268 clear_bit(enabled, &transparent_hugepage_flags);
269 set_bit(req_madv, &transparent_hugepage_flags);
270 } else if (!memcmp("never", buf,
271 min(sizeof("never")-1, count))) {
272 clear_bit(enabled, &transparent_hugepage_flags);
273 clear_bit(req_madv, &transparent_hugepage_flags);
274 } else
275 return -EINVAL;
276
277 return count;
278}
279
280static ssize_t enabled_show(struct kobject *kobj,
281 struct kobj_attribute *attr, char *buf)
282{
283 return double_flag_show(kobj, attr, buf,
284 TRANSPARENT_HUGEPAGE_FLAG,
285 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
286}
287static ssize_t enabled_store(struct kobject *kobj,
288 struct kobj_attribute *attr,
289 const char *buf, size_t count)
290{
ba76149f
AA
291 ssize_t ret;
292
293 ret = double_flag_store(kobj, attr, buf, count,
294 TRANSPARENT_HUGEPAGE_FLAG,
295 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
296
297 if (ret > 0) {
911891af
XG
298 int err;
299
300 mutex_lock(&khugepaged_mutex);
301 err = start_khugepaged();
302 mutex_unlock(&khugepaged_mutex);
303
ba76149f
AA
304 if (err)
305 ret = err;
306 }
307
308 return ret;
71e3aac0
AA
309}
310static struct kobj_attribute enabled_attr =
311 __ATTR(enabled, 0644, enabled_show, enabled_store);
312
313static ssize_t single_flag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf,
315 enum transparent_hugepage_flag flag)
316{
e27e6151
BH
317 return sprintf(buf, "%d\n",
318 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 319}
e27e6151 320
71e3aac0
AA
321static ssize_t single_flag_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count,
324 enum transparent_hugepage_flag flag)
325{
e27e6151
BH
326 unsigned long value;
327 int ret;
328
329 ret = kstrtoul(buf, 10, &value);
330 if (ret < 0)
331 return ret;
332 if (value > 1)
333 return -EINVAL;
334
335 if (value)
71e3aac0 336 set_bit(flag, &transparent_hugepage_flags);
e27e6151 337 else
71e3aac0 338 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
339
340 return count;
341}
342
343/*
344 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
345 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
346 * memory just to allocate one more hugepage.
347 */
348static ssize_t defrag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf)
350{
351 return double_flag_show(kobj, attr, buf,
352 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
353 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
354}
355static ssize_t defrag_store(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 const char *buf, size_t count)
358{
359 return double_flag_store(kobj, attr, buf, count,
360 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
361 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
362}
363static struct kobj_attribute defrag_attr =
364 __ATTR(defrag, 0644, defrag_show, defrag_store);
365
79da5407
KS
366static ssize_t use_zero_page_show(struct kobject *kobj,
367 struct kobj_attribute *attr, char *buf)
368{
369 return single_flag_show(kobj, attr, buf,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
371}
372static ssize_t use_zero_page_store(struct kobject *kobj,
373 struct kobj_attribute *attr, const char *buf, size_t count)
374{
375 return single_flag_store(kobj, attr, buf, count,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377}
378static struct kobj_attribute use_zero_page_attr =
379 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
380#ifdef CONFIG_DEBUG_VM
381static ssize_t debug_cow_show(struct kobject *kobj,
382 struct kobj_attribute *attr, char *buf)
383{
384 return single_flag_show(kobj, attr, buf,
385 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
386}
387static ssize_t debug_cow_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
390{
391 return single_flag_store(kobj, attr, buf, count,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393}
394static struct kobj_attribute debug_cow_attr =
395 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
396#endif /* CONFIG_DEBUG_VM */
397
398static struct attribute *hugepage_attr[] = {
399 &enabled_attr.attr,
400 &defrag_attr.attr,
79da5407 401 &use_zero_page_attr.attr,
71e3aac0
AA
402#ifdef CONFIG_DEBUG_VM
403 &debug_cow_attr.attr,
404#endif
405 NULL,
406};
407
408static struct attribute_group hugepage_attr_group = {
409 .attrs = hugepage_attr,
ba76149f
AA
410};
411
412static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
413 struct kobj_attribute *attr,
414 char *buf)
415{
416 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
417}
418
419static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 const char *buf, size_t count)
422{
423 unsigned long msecs;
424 int err;
425
3dbb95f7 426 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
427 if (err || msecs > UINT_MAX)
428 return -EINVAL;
429
430 khugepaged_scan_sleep_millisecs = msecs;
431 wake_up_interruptible(&khugepaged_wait);
432
433 return count;
434}
435static struct kobj_attribute scan_sleep_millisecs_attr =
436 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
437 scan_sleep_millisecs_store);
438
439static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
440 struct kobj_attribute *attr,
441 char *buf)
442{
443 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
444}
445
446static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 const char *buf, size_t count)
449{
450 unsigned long msecs;
451 int err;
452
3dbb95f7 453 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
454 if (err || msecs > UINT_MAX)
455 return -EINVAL;
456
457 khugepaged_alloc_sleep_millisecs = msecs;
458 wake_up_interruptible(&khugepaged_wait);
459
460 return count;
461}
462static struct kobj_attribute alloc_sleep_millisecs_attr =
463 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
464 alloc_sleep_millisecs_store);
465
466static ssize_t pages_to_scan_show(struct kobject *kobj,
467 struct kobj_attribute *attr,
468 char *buf)
469{
470 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
471}
472static ssize_t pages_to_scan_store(struct kobject *kobj,
473 struct kobj_attribute *attr,
474 const char *buf, size_t count)
475{
476 int err;
477 unsigned long pages;
478
3dbb95f7 479 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
480 if (err || !pages || pages > UINT_MAX)
481 return -EINVAL;
482
483 khugepaged_pages_to_scan = pages;
484
485 return count;
486}
487static struct kobj_attribute pages_to_scan_attr =
488 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
489 pages_to_scan_store);
490
491static ssize_t pages_collapsed_show(struct kobject *kobj,
492 struct kobj_attribute *attr,
493 char *buf)
494{
495 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
496}
497static struct kobj_attribute pages_collapsed_attr =
498 __ATTR_RO(pages_collapsed);
499
500static ssize_t full_scans_show(struct kobject *kobj,
501 struct kobj_attribute *attr,
502 char *buf)
503{
504 return sprintf(buf, "%u\n", khugepaged_full_scans);
505}
506static struct kobj_attribute full_scans_attr =
507 __ATTR_RO(full_scans);
508
509static ssize_t khugepaged_defrag_show(struct kobject *kobj,
510 struct kobj_attribute *attr, char *buf)
511{
512 return single_flag_show(kobj, attr, buf,
513 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
514}
515static ssize_t khugepaged_defrag_store(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 const char *buf, size_t count)
518{
519 return single_flag_store(kobj, attr, buf, count,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521}
522static struct kobj_attribute khugepaged_defrag_attr =
523 __ATTR(defrag, 0644, khugepaged_defrag_show,
524 khugepaged_defrag_store);
525
526/*
527 * max_ptes_none controls if khugepaged should collapse hugepages over
528 * any unmapped ptes in turn potentially increasing the memory
529 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
530 * reduce the available free memory in the system as it
531 * runs. Increasing max_ptes_none will instead potentially reduce the
532 * free memory in the system during the khugepaged scan.
533 */
534static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
535 struct kobj_attribute *attr,
536 char *buf)
537{
538 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
539}
540static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 const char *buf, size_t count)
543{
544 int err;
545 unsigned long max_ptes_none;
546
3dbb95f7 547 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
548 if (err || max_ptes_none > HPAGE_PMD_NR-1)
549 return -EINVAL;
550
551 khugepaged_max_ptes_none = max_ptes_none;
552
553 return count;
554}
555static struct kobj_attribute khugepaged_max_ptes_none_attr =
556 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
557 khugepaged_max_ptes_none_store);
558
559static struct attribute *khugepaged_attr[] = {
560 &khugepaged_defrag_attr.attr,
561 &khugepaged_max_ptes_none_attr.attr,
562 &pages_to_scan_attr.attr,
563 &pages_collapsed_attr.attr,
564 &full_scans_attr.attr,
565 &scan_sleep_millisecs_attr.attr,
566 &alloc_sleep_millisecs_attr.attr,
567 NULL,
568};
569
570static struct attribute_group khugepaged_attr_group = {
571 .attrs = khugepaged_attr,
572 .name = "khugepaged",
71e3aac0 573};
71e3aac0 574
569e5590 575static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 576{
71e3aac0
AA
577 int err;
578
569e5590
SL
579 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
580 if (unlikely(!*hugepage_kobj)) {
2c79737a 581 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
569e5590 582 return -ENOMEM;
ba76149f
AA
583 }
584
569e5590 585 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 586 if (err) {
2c79737a 587 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
569e5590 588 goto delete_obj;
ba76149f
AA
589 }
590
569e5590 591 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 592 if (err) {
2c79737a 593 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
569e5590 594 goto remove_hp_group;
ba76149f 595 }
569e5590
SL
596
597 return 0;
598
599remove_hp_group:
600 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
601delete_obj:
602 kobject_put(*hugepage_kobj);
603 return err;
604}
605
606static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
607{
608 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
609 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
610 kobject_put(hugepage_kobj);
611}
612#else
613static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
614{
615 return 0;
616}
617
618static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
619{
620}
621#endif /* CONFIG_SYSFS */
622
623static int __init hugepage_init(void)
624{
625 int err;
626 struct kobject *hugepage_kobj;
627
628 if (!has_transparent_hugepage()) {
629 transparent_hugepage_flags = 0;
630 return -EINVAL;
631 }
632
633 err = hugepage_init_sysfs(&hugepage_kobj);
634 if (err)
635 return err;
ba76149f
AA
636
637 err = khugepaged_slab_init();
638 if (err)
639 goto out;
640
97ae1749
KS
641 register_shrinker(&huge_zero_page_shrinker);
642
97562cd2
RR
643 /*
644 * By default disable transparent hugepages on smaller systems,
645 * where the extra memory used could hurt more than TLB overhead
646 * is likely to save. The admin can still enable it through /sys.
647 */
648 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
649 transparent_hugepage_flags = 0;
650
ba76149f
AA
651 start_khugepaged();
652
569e5590 653 return 0;
ba76149f 654out:
569e5590 655 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 656 return err;
71e3aac0
AA
657}
658module_init(hugepage_init)
659
660static int __init setup_transparent_hugepage(char *str)
661{
662 int ret = 0;
663 if (!str)
664 goto out;
665 if (!strcmp(str, "always")) {
666 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 &transparent_hugepage_flags);
668 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 &transparent_hugepage_flags);
670 ret = 1;
671 } else if (!strcmp(str, "madvise")) {
672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
676 ret = 1;
677 } else if (!strcmp(str, "never")) {
678 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 &transparent_hugepage_flags);
680 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 &transparent_hugepage_flags);
682 ret = 1;
683 }
684out:
685 if (!ret)
686 printk(KERN_WARNING
687 "transparent_hugepage= cannot parse, ignored\n");
688 return ret;
689}
690__setup("transparent_hugepage=", setup_transparent_hugepage);
691
b32967ff 692pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
693{
694 if (likely(vma->vm_flags & VM_WRITE))
695 pmd = pmd_mkwrite(pmd);
696 return pmd;
697}
698
3122359a 699static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
700{
701 pmd_t entry;
3122359a 702 entry = mk_pmd(page, prot);
b3092b3b
BL
703 entry = pmd_mkhuge(entry);
704 return entry;
705}
706
71e3aac0
AA
707static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
708 struct vm_area_struct *vma,
709 unsigned long haddr, pmd_t *pmd,
710 struct page *page)
711{
71e3aac0
AA
712 pgtable_t pgtable;
713
714 VM_BUG_ON(!PageCompound(page));
715 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 716 if (unlikely(!pgtable))
71e3aac0 717 return VM_FAULT_OOM;
71e3aac0
AA
718
719 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
720 /*
721 * The memory barrier inside __SetPageUptodate makes sure that
722 * clear_huge_page writes become visible before the set_pmd_at()
723 * write.
724 */
71e3aac0
AA
725 __SetPageUptodate(page);
726
727 spin_lock(&mm->page_table_lock);
728 if (unlikely(!pmd_none(*pmd))) {
729 spin_unlock(&mm->page_table_lock);
b9bbfbe3 730 mem_cgroup_uncharge_page(page);
71e3aac0
AA
731 put_page(page);
732 pte_free(mm, pgtable);
733 } else {
734 pmd_t entry;
3122359a
KS
735 entry = mk_huge_pmd(page, vma->vm_page_prot);
736 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
71e3aac0 737 page_add_new_anon_rmap(page, vma, haddr);
6b0b50b0 738 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 739 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 740 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 741 atomic_long_inc(&mm->nr_ptes);
71e3aac0
AA
742 spin_unlock(&mm->page_table_lock);
743 }
744
aa2e878e 745 return 0;
71e3aac0
AA
746}
747
cc5d462f 748static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 749{
cc5d462f 750 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
751}
752
753static inline struct page *alloc_hugepage_vma(int defrag,
754 struct vm_area_struct *vma,
cc5d462f
AK
755 unsigned long haddr, int nd,
756 gfp_t extra_gfp)
0bbbc0b3 757{
cc5d462f 758 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 759 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
760}
761
3ea41e62 762static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 763 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 764 struct page *zero_page)
fc9fe822
KS
765{
766 pmd_t entry;
3ea41e62
KS
767 if (!pmd_none(*pmd))
768 return false;
5918d10a 769 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822
KS
770 entry = pmd_wrprotect(entry);
771 entry = pmd_mkhuge(entry);
6b0b50b0 772 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 773 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 774 atomic_long_inc(&mm->nr_ptes);
3ea41e62 775 return true;
fc9fe822
KS
776}
777
71e3aac0
AA
778int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
779 unsigned long address, pmd_t *pmd,
780 unsigned int flags)
781{
782 struct page *page;
783 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 784
128ec037 785 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 786 return VM_FAULT_FALLBACK;
128ec037
KS
787 if (unlikely(anon_vma_prepare(vma)))
788 return VM_FAULT_OOM;
789 if (unlikely(khugepaged_enter(vma)))
790 return VM_FAULT_OOM;
791 if (!(flags & FAULT_FLAG_WRITE) &&
792 transparent_hugepage_use_zero_page()) {
793 pgtable_t pgtable;
794 struct page *zero_page;
795 bool set;
796 pgtable = pte_alloc_one(mm, haddr);
797 if (unlikely(!pgtable))
ba76149f 798 return VM_FAULT_OOM;
128ec037
KS
799 zero_page = get_huge_zero_page();
800 if (unlikely(!zero_page)) {
801 pte_free(mm, pgtable);
81ab4201 802 count_vm_event(THP_FAULT_FALLBACK);
c0292554 803 return VM_FAULT_FALLBACK;
b9bbfbe3 804 }
128ec037
KS
805 spin_lock(&mm->page_table_lock);
806 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
807 zero_page);
808 spin_unlock(&mm->page_table_lock);
809 if (!set) {
810 pte_free(mm, pgtable);
811 put_huge_zero_page();
edad9d2c 812 }
edad9d2c 813 return 0;
71e3aac0 814 }
128ec037
KS
815 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
816 vma, haddr, numa_node_id(), 0);
817 if (unlikely(!page)) {
818 count_vm_event(THP_FAULT_FALLBACK);
c0292554 819 return VM_FAULT_FALLBACK;
128ec037 820 }
128ec037
KS
821 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
822 put_page(page);
17766dde 823 count_vm_event(THP_FAULT_FALLBACK);
c0292554 824 return VM_FAULT_FALLBACK;
128ec037
KS
825 }
826 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
827 mem_cgroup_uncharge_page(page);
828 put_page(page);
17766dde 829 count_vm_event(THP_FAULT_FALLBACK);
c0292554 830 return VM_FAULT_FALLBACK;
128ec037
KS
831 }
832
17766dde 833 count_vm_event(THP_FAULT_ALLOC);
128ec037 834 return 0;
71e3aac0
AA
835}
836
837int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
838 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
839 struct vm_area_struct *vma)
840{
841 struct page *src_page;
842 pmd_t pmd;
843 pgtable_t pgtable;
844 int ret;
845
846 ret = -ENOMEM;
847 pgtable = pte_alloc_one(dst_mm, addr);
848 if (unlikely(!pgtable))
849 goto out;
850
851 spin_lock(&dst_mm->page_table_lock);
852 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
853
854 ret = -EAGAIN;
855 pmd = *src_pmd;
856 if (unlikely(!pmd_trans_huge(pmd))) {
857 pte_free(dst_mm, pgtable);
858 goto out_unlock;
859 }
fc9fe822
KS
860 /*
861 * mm->page_table_lock is enough to be sure that huge zero pmd is not
862 * under splitting since we don't split the page itself, only pmd to
863 * a page table.
864 */
865 if (is_huge_zero_pmd(pmd)) {
5918d10a 866 struct page *zero_page;
3ea41e62 867 bool set;
97ae1749
KS
868 /*
869 * get_huge_zero_page() will never allocate a new page here,
870 * since we already have a zero page to copy. It just takes a
871 * reference.
872 */
5918d10a 873 zero_page = get_huge_zero_page();
3ea41e62 874 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 875 zero_page);
3ea41e62 876 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
fc9fe822
KS
877 ret = 0;
878 goto out_unlock;
879 }
71e3aac0
AA
880 if (unlikely(pmd_trans_splitting(pmd))) {
881 /* split huge page running from under us */
882 spin_unlock(&src_mm->page_table_lock);
883 spin_unlock(&dst_mm->page_table_lock);
884 pte_free(dst_mm, pgtable);
885
886 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
887 goto out;
888 }
889 src_page = pmd_page(pmd);
890 VM_BUG_ON(!PageHead(src_page));
891 get_page(src_page);
892 page_dup_rmap(src_page);
893 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
894
895 pmdp_set_wrprotect(src_mm, addr, src_pmd);
896 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 897 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 898 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 899 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
900
901 ret = 0;
902out_unlock:
903 spin_unlock(&src_mm->page_table_lock);
904 spin_unlock(&dst_mm->page_table_lock);
905out:
906 return ret;
907}
908
a1dd450b
WD
909void huge_pmd_set_accessed(struct mm_struct *mm,
910 struct vm_area_struct *vma,
911 unsigned long address,
912 pmd_t *pmd, pmd_t orig_pmd,
913 int dirty)
914{
915 pmd_t entry;
916 unsigned long haddr;
917
918 spin_lock(&mm->page_table_lock);
919 if (unlikely(!pmd_same(*pmd, orig_pmd)))
920 goto unlock;
921
922 entry = pmd_mkyoung(orig_pmd);
923 haddr = address & HPAGE_PMD_MASK;
924 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
925 update_mmu_cache_pmd(vma, address, pmd);
926
927unlock:
928 spin_unlock(&mm->page_table_lock);
929}
930
93b4796d
KS
931static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
932 struct vm_area_struct *vma, unsigned long address,
3ea41e62 933 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
93b4796d
KS
934{
935 pgtable_t pgtable;
936 pmd_t _pmd;
937 struct page *page;
938 int i, ret = 0;
939 unsigned long mmun_start; /* For mmu_notifiers */
940 unsigned long mmun_end; /* For mmu_notifiers */
941
942 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
943 if (!page) {
944 ret |= VM_FAULT_OOM;
945 goto out;
946 }
947
948 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
949 put_page(page);
950 ret |= VM_FAULT_OOM;
951 goto out;
952 }
953
954 clear_user_highpage(page, address);
955 __SetPageUptodate(page);
956
957 mmun_start = haddr;
958 mmun_end = haddr + HPAGE_PMD_SIZE;
959 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
960
961 spin_lock(&mm->page_table_lock);
3ea41e62
KS
962 if (unlikely(!pmd_same(*pmd, orig_pmd)))
963 goto out_free_page;
964
93b4796d
KS
965 pmdp_clear_flush(vma, haddr, pmd);
966 /* leave pmd empty until pte is filled */
967
6b0b50b0 968 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
93b4796d
KS
969 pmd_populate(mm, &_pmd, pgtable);
970
971 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
972 pte_t *pte, entry;
973 if (haddr == (address & PAGE_MASK)) {
974 entry = mk_pte(page, vma->vm_page_prot);
975 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
976 page_add_new_anon_rmap(page, vma, haddr);
977 } else {
978 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
979 entry = pte_mkspecial(entry);
980 }
981 pte = pte_offset_map(&_pmd, haddr);
982 VM_BUG_ON(!pte_none(*pte));
983 set_pte_at(mm, haddr, pte, entry);
984 pte_unmap(pte);
985 }
986 smp_wmb(); /* make pte visible before pmd */
987 pmd_populate(mm, pmd, pgtable);
988 spin_unlock(&mm->page_table_lock);
97ae1749 989 put_huge_zero_page();
93b4796d
KS
990 inc_mm_counter(mm, MM_ANONPAGES);
991
992 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
993
994 ret |= VM_FAULT_WRITE;
995out:
996 return ret;
3ea41e62
KS
997out_free_page:
998 spin_unlock(&mm->page_table_lock);
999 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1000 mem_cgroup_uncharge_page(page);
1001 put_page(page);
1002 goto out;
93b4796d
KS
1003}
1004
71e3aac0
AA
1005static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1006 struct vm_area_struct *vma,
1007 unsigned long address,
1008 pmd_t *pmd, pmd_t orig_pmd,
1009 struct page *page,
1010 unsigned long haddr)
1011{
1012 pgtable_t pgtable;
1013 pmd_t _pmd;
1014 int ret = 0, i;
1015 struct page **pages;
2ec74c3e
SG
1016 unsigned long mmun_start; /* For mmu_notifiers */
1017 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1018
1019 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1020 GFP_KERNEL);
1021 if (unlikely(!pages)) {
1022 ret |= VM_FAULT_OOM;
1023 goto out;
1024 }
1025
1026 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1027 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1028 __GFP_OTHER_NODE,
19ee151e 1029 vma, address, page_to_nid(page));
b9bbfbe3
AA
1030 if (unlikely(!pages[i] ||
1031 mem_cgroup_newpage_charge(pages[i], mm,
1032 GFP_KERNEL))) {
1033 if (pages[i])
71e3aac0 1034 put_page(pages[i]);
b9bbfbe3
AA
1035 mem_cgroup_uncharge_start();
1036 while (--i >= 0) {
1037 mem_cgroup_uncharge_page(pages[i]);
1038 put_page(pages[i]);
1039 }
1040 mem_cgroup_uncharge_end();
71e3aac0
AA
1041 kfree(pages);
1042 ret |= VM_FAULT_OOM;
1043 goto out;
1044 }
1045 }
1046
1047 for (i = 0; i < HPAGE_PMD_NR; i++) {
1048 copy_user_highpage(pages[i], page + i,
0089e485 1049 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1050 __SetPageUptodate(pages[i]);
1051 cond_resched();
1052 }
1053
2ec74c3e
SG
1054 mmun_start = haddr;
1055 mmun_end = haddr + HPAGE_PMD_SIZE;
1056 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1057
71e3aac0
AA
1058 spin_lock(&mm->page_table_lock);
1059 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1060 goto out_free_pages;
1061 VM_BUG_ON(!PageHead(page));
1062
2ec74c3e 1063 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1064 /* leave pmd empty until pte is filled */
1065
6b0b50b0 1066 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1067 pmd_populate(mm, &_pmd, pgtable);
1068
1069 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1070 pte_t *pte, entry;
1071 entry = mk_pte(pages[i], vma->vm_page_prot);
1072 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1073 page_add_new_anon_rmap(pages[i], vma, haddr);
1074 pte = pte_offset_map(&_pmd, haddr);
1075 VM_BUG_ON(!pte_none(*pte));
1076 set_pte_at(mm, haddr, pte, entry);
1077 pte_unmap(pte);
1078 }
1079 kfree(pages);
1080
71e3aac0
AA
1081 smp_wmb(); /* make pte visible before pmd */
1082 pmd_populate(mm, pmd, pgtable);
1083 page_remove_rmap(page);
1084 spin_unlock(&mm->page_table_lock);
1085
2ec74c3e
SG
1086 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1087
71e3aac0
AA
1088 ret |= VM_FAULT_WRITE;
1089 put_page(page);
1090
1091out:
1092 return ret;
1093
1094out_free_pages:
1095 spin_unlock(&mm->page_table_lock);
2ec74c3e 1096 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3
AA
1097 mem_cgroup_uncharge_start();
1098 for (i = 0; i < HPAGE_PMD_NR; i++) {
1099 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 1100 put_page(pages[i]);
b9bbfbe3
AA
1101 }
1102 mem_cgroup_uncharge_end();
71e3aac0
AA
1103 kfree(pages);
1104 goto out;
1105}
1106
1107int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1108 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1109{
1110 int ret = 0;
93b4796d 1111 struct page *page = NULL, *new_page;
71e3aac0 1112 unsigned long haddr;
2ec74c3e
SG
1113 unsigned long mmun_start; /* For mmu_notifiers */
1114 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1115
1116 VM_BUG_ON(!vma->anon_vma);
93b4796d
KS
1117 haddr = address & HPAGE_PMD_MASK;
1118 if (is_huge_zero_pmd(orig_pmd))
1119 goto alloc;
71e3aac0
AA
1120 spin_lock(&mm->page_table_lock);
1121 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1122 goto out_unlock;
1123
1124 page = pmd_page(orig_pmd);
1125 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
71e3aac0
AA
1126 if (page_mapcount(page) == 1) {
1127 pmd_t entry;
1128 entry = pmd_mkyoung(orig_pmd);
1129 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1130 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1131 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1132 ret |= VM_FAULT_WRITE;
1133 goto out_unlock;
1134 }
1135 get_page(page);
1136 spin_unlock(&mm->page_table_lock);
93b4796d 1137alloc:
71e3aac0
AA
1138 if (transparent_hugepage_enabled(vma) &&
1139 !transparent_hugepage_debug_cow())
0bbbc0b3 1140 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 1141 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
1142 else
1143 new_page = NULL;
1144
1145 if (unlikely(!new_page)) {
93b4796d
KS
1146 if (is_huge_zero_pmd(orig_pmd)) {
1147 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
3ea41e62 1148 address, pmd, orig_pmd, haddr);
93b4796d
KS
1149 } else {
1150 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1151 pmd, orig_pmd, page, haddr);
1152 if (ret & VM_FAULT_OOM)
1153 split_huge_page(page);
1154 put_page(page);
1155 }
17766dde 1156 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1157 goto out;
1158 }
1159
b9bbfbe3
AA
1160 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1161 put_page(new_page);
93b4796d
KS
1162 if (page) {
1163 split_huge_page(page);
1164 put_page(page);
1165 }
17766dde 1166 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1167 ret |= VM_FAULT_OOM;
1168 goto out;
1169 }
1170
17766dde
DR
1171 count_vm_event(THP_FAULT_ALLOC);
1172
93b4796d
KS
1173 if (is_huge_zero_pmd(orig_pmd))
1174 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1175 else
1176 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1177 __SetPageUptodate(new_page);
1178
2ec74c3e
SG
1179 mmun_start = haddr;
1180 mmun_end = haddr + HPAGE_PMD_SIZE;
1181 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1182
71e3aac0 1183 spin_lock(&mm->page_table_lock);
93b4796d
KS
1184 if (page)
1185 put_page(page);
b9bbfbe3 1186 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 1187 spin_unlock(&mm->page_table_lock);
b9bbfbe3 1188 mem_cgroup_uncharge_page(new_page);
71e3aac0 1189 put_page(new_page);
2ec74c3e 1190 goto out_mn;
b9bbfbe3 1191 } else {
71e3aac0 1192 pmd_t entry;
3122359a
KS
1193 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1194 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2ec74c3e 1195 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1196 page_add_new_anon_rmap(new_page, vma, haddr);
1197 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1198 update_mmu_cache_pmd(vma, address, pmd);
97ae1749 1199 if (is_huge_zero_pmd(orig_pmd)) {
93b4796d 1200 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1201 put_huge_zero_page();
1202 } else {
93b4796d
KS
1203 VM_BUG_ON(!PageHead(page));
1204 page_remove_rmap(page);
1205 put_page(page);
1206 }
71e3aac0
AA
1207 ret |= VM_FAULT_WRITE;
1208 }
71e3aac0 1209 spin_unlock(&mm->page_table_lock);
2ec74c3e
SG
1210out_mn:
1211 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1212out:
1213 return ret;
2ec74c3e
SG
1214out_unlock:
1215 spin_unlock(&mm->page_table_lock);
1216 return ret;
71e3aac0
AA
1217}
1218
b676b293 1219struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1220 unsigned long addr,
1221 pmd_t *pmd,
1222 unsigned int flags)
1223{
b676b293 1224 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1225 struct page *page = NULL;
1226
1227 assert_spin_locked(&mm->page_table_lock);
1228
1229 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1230 goto out;
1231
85facf25
KS
1232 /* Avoid dumping huge zero page */
1233 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1234 return ERR_PTR(-EFAULT);
1235
71e3aac0
AA
1236 page = pmd_page(*pmd);
1237 VM_BUG_ON(!PageHead(page));
1238 if (flags & FOLL_TOUCH) {
1239 pmd_t _pmd;
1240 /*
1241 * We should set the dirty bit only for FOLL_WRITE but
1242 * for now the dirty bit in the pmd is meaningless.
1243 * And if the dirty bit will become meaningful and
1244 * we'll only set it with FOLL_WRITE, an atomic
1245 * set_bit will be required on the pmd to set the
1246 * young bit, instead of the current set_pmd_at.
1247 */
1248 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1249 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1250 pmd, _pmd, 1))
1251 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1252 }
b676b293
DR
1253 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1254 if (page->mapping && trylock_page(page)) {
1255 lru_add_drain();
1256 if (page->mapping)
1257 mlock_vma_page(page);
1258 unlock_page(page);
1259 }
1260 }
71e3aac0
AA
1261 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1262 VM_BUG_ON(!PageCompound(page));
1263 if (flags & FOLL_GET)
70b50f94 1264 get_page_foll(page);
71e3aac0
AA
1265
1266out:
1267 return page;
1268}
1269
d10e63f2 1270/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1271int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1272 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1273{
b8916634 1274 struct anon_vma *anon_vma = NULL;
b32967ff 1275 struct page *page;
d10e63f2 1276 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1277 int page_nid = -1, this_nid = numa_node_id();
90572890 1278 int target_nid, last_cpupid = -1;
8191acbd
MG
1279 bool page_locked;
1280 bool migrated = false;
6688cc05 1281 int flags = 0;
d10e63f2
MG
1282
1283 spin_lock(&mm->page_table_lock);
1284 if (unlikely(!pmd_same(pmd, *pmdp)))
1285 goto out_unlock;
1286
1287 page = pmd_page(pmd);
a1a46184 1288 BUG_ON(is_huge_zero_page(page));
8191acbd 1289 page_nid = page_to_nid(page);
90572890 1290 last_cpupid = page_cpupid_last(page);
03c5a6e1 1291 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1292 if (page_nid == this_nid) {
03c5a6e1 1293 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1294 flags |= TNF_FAULT_LOCAL;
1295 }
4daae3b4 1296
6688cc05
PZ
1297 /*
1298 * Avoid grouping on DSO/COW pages in specific and RO pages
1299 * in general, RO pages shouldn't hurt as much anyway since
1300 * they can be in shared cache state.
1301 */
1302 if (!pmd_write(pmd))
1303 flags |= TNF_NO_GROUP;
1304
ff9042b1
MG
1305 /*
1306 * Acquire the page lock to serialise THP migrations but avoid dropping
1307 * page_table_lock if at all possible
1308 */
b8916634
MG
1309 page_locked = trylock_page(page);
1310 target_nid = mpol_misplaced(page, vma, haddr);
1311 if (target_nid == -1) {
1312 /* If the page was locked, there are no parallel migrations */
a54a407f 1313 if (page_locked)
b8916634 1314 goto clear_pmdnuma;
4daae3b4 1315
a54a407f
MG
1316 /*
1317 * Otherwise wait for potential migrations and retry. We do
1318 * relock and check_same as the page may no longer be mapped.
1319 * As the fault is being retried, do not account for it.
1320 */
b8916634
MG
1321 spin_unlock(&mm->page_table_lock);
1322 wait_on_page_locked(page);
a54a407f 1323 page_nid = -1;
b8916634
MG
1324 goto out;
1325 }
1326
1327 /* Page is misplaced, serialise migrations and parallel THP splits */
1328 get_page(page);
b32967ff 1329 spin_unlock(&mm->page_table_lock);
a54a407f 1330 if (!page_locked)
b8916634 1331 lock_page(page);
b8916634 1332 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1333
c69307d5 1334 /* Confirm the PMD did not change while page_table_lock was released */
4daae3b4 1335 spin_lock(&mm->page_table_lock);
b32967ff
MG
1336 if (unlikely(!pmd_same(pmd, *pmdp))) {
1337 unlock_page(page);
1338 put_page(page);
a54a407f 1339 page_nid = -1;
4daae3b4 1340 goto out_unlock;
b32967ff 1341 }
ff9042b1 1342
a54a407f
MG
1343 /*
1344 * Migrate the THP to the requested node, returns with page unlocked
1345 * and pmd_numa cleared.
1346 */
ff9042b1 1347 spin_unlock(&mm->page_table_lock);
b32967ff 1348 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1349 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1350 if (migrated) {
1351 flags |= TNF_MIGRATED;
8191acbd 1352 page_nid = target_nid;
6688cc05 1353 }
b32967ff 1354
8191acbd 1355 goto out;
b32967ff 1356clear_pmdnuma:
a54a407f 1357 BUG_ON(!PageLocked(page));
d10e63f2
MG
1358 pmd = pmd_mknonnuma(pmd);
1359 set_pmd_at(mm, haddr, pmdp, pmd);
1360 VM_BUG_ON(pmd_numa(*pmdp));
1361 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1362 unlock_page(page);
d10e63f2
MG
1363out_unlock:
1364 spin_unlock(&mm->page_table_lock);
b8916634
MG
1365
1366out:
1367 if (anon_vma)
1368 page_unlock_anon_vma_read(anon_vma);
1369
8191acbd 1370 if (page_nid != -1)
6688cc05 1371 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1372
d10e63f2
MG
1373 return 0;
1374}
1375
71e3aac0 1376int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1377 pmd_t *pmd, unsigned long addr)
71e3aac0 1378{
bf929152 1379 spinlock_t *ptl;
71e3aac0
AA
1380 int ret = 0;
1381
bf929152 1382 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24
NH
1383 struct page *page;
1384 pgtable_t pgtable;
f5c8ad47 1385 pmd_t orig_pmd;
a6bf2bb0
AK
1386 /*
1387 * For architectures like ppc64 we look at deposited pgtable
1388 * when calling pmdp_get_and_clear. So do the
1389 * pgtable_trans_huge_withdraw after finishing pmdp related
1390 * operations.
1391 */
f5c8ad47 1392 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
025c5b24 1393 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
a6bf2bb0 1394 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
479f0abb 1395 if (is_huge_zero_pmd(orig_pmd)) {
e1f56c89 1396 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1397 spin_unlock(ptl);
97ae1749 1398 put_huge_zero_page();
479f0abb
KS
1399 } else {
1400 page = pmd_page(orig_pmd);
1401 page_remove_rmap(page);
1402 VM_BUG_ON(page_mapcount(page) < 0);
1403 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1404 VM_BUG_ON(!PageHead(page));
e1f56c89 1405 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1406 spin_unlock(ptl);
479f0abb
KS
1407 tlb_remove_page(tlb, page);
1408 }
025c5b24
NH
1409 pte_free(tlb->mm, pgtable);
1410 ret = 1;
1411 }
71e3aac0
AA
1412 return ret;
1413}
1414
0ca1634d
JW
1415int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1416 unsigned long addr, unsigned long end,
1417 unsigned char *vec)
1418{
bf929152 1419 spinlock_t *ptl;
0ca1634d
JW
1420 int ret = 0;
1421
bf929152 1422 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24
NH
1423 /*
1424 * All logical pages in the range are present
1425 * if backed by a huge page.
1426 */
bf929152 1427 spin_unlock(ptl);
025c5b24
NH
1428 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1429 ret = 1;
1430 }
0ca1634d
JW
1431
1432 return ret;
1433}
1434
37a1c49a
AA
1435int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1436 unsigned long old_addr,
1437 unsigned long new_addr, unsigned long old_end,
1438 pmd_t *old_pmd, pmd_t *new_pmd)
1439{
bf929152 1440 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1441 int ret = 0;
1442 pmd_t pmd;
1443
1444 struct mm_struct *mm = vma->vm_mm;
1445
1446 if ((old_addr & ~HPAGE_PMD_MASK) ||
1447 (new_addr & ~HPAGE_PMD_MASK) ||
1448 old_end - old_addr < HPAGE_PMD_SIZE ||
1449 (new_vma->vm_flags & VM_NOHUGEPAGE))
1450 goto out;
1451
1452 /*
1453 * The destination pmd shouldn't be established, free_pgtables()
1454 * should have release it.
1455 */
1456 if (WARN_ON(!pmd_none(*new_pmd))) {
1457 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1458 goto out;
1459 }
1460
bf929152
KS
1461 /*
1462 * We don't have to worry about the ordering of src and dst
1463 * ptlocks because exclusive mmap_sem prevents deadlock.
1464 */
1465 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1466 if (ret == 1) {
bf929152
KS
1467 new_ptl = pmd_lockptr(mm, new_pmd);
1468 if (new_ptl != old_ptl)
1469 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
025c5b24
NH
1470 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1471 VM_BUG_ON(!pmd_none(*new_pmd));
0f8975ec 1472 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
bf929152
KS
1473 if (new_ptl != old_ptl)
1474 spin_unlock(new_ptl);
1475 spin_unlock(old_ptl);
37a1c49a
AA
1476 }
1477out:
1478 return ret;
1479}
1480
f123d74a
MG
1481/*
1482 * Returns
1483 * - 0 if PMD could not be locked
1484 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1485 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1486 */
cd7548ab 1487int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
4b10e7d5 1488 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1489{
1490 struct mm_struct *mm = vma->vm_mm;
bf929152 1491 spinlock_t *ptl;
cd7548ab
JW
1492 int ret = 0;
1493
bf929152 1494 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1495 pmd_t entry;
f123d74a 1496 ret = 1;
a4f1de17 1497 if (!prot_numa) {
f123d74a 1498 entry = pmdp_get_and_clear(mm, addr, pmd);
4b10e7d5 1499 entry = pmd_modify(entry, newprot);
f123d74a 1500 ret = HPAGE_PMD_NR;
a4f1de17
HD
1501 BUG_ON(pmd_write(entry));
1502 } else {
4b10e7d5
MG
1503 struct page *page = pmd_page(*pmd);
1504
a1a46184 1505 /*
1bc115d8
MG
1506 * Do not trap faults against the zero page. The
1507 * read-only data is likely to be read-cached on the
1508 * local CPU cache and it is less useful to know about
1509 * local vs remote hits on the zero page.
a1a46184 1510 */
1bc115d8 1511 if (!is_huge_zero_page(page) &&
4b10e7d5 1512 !pmd_numa(*pmd)) {
f123d74a 1513 entry = pmdp_get_and_clear(mm, addr, pmd);
4b10e7d5 1514 entry = pmd_mknuma(entry);
f123d74a 1515 ret = HPAGE_PMD_NR;
4b10e7d5
MG
1516 }
1517 }
f123d74a
MG
1518
1519 /* Set PMD if cleared earlier */
1520 if (ret == HPAGE_PMD_NR)
1521 set_pmd_at(mm, addr, pmd, entry);
1522
bf929152 1523 spin_unlock(ptl);
025c5b24
NH
1524 }
1525
1526 return ret;
1527}
1528
1529/*
1530 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1531 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1532 *
1533 * Note that if it returns 1, this routine returns without unlocking page
1534 * table locks. So callers must unlock them.
1535 */
bf929152
KS
1536int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1537 spinlock_t **ptl)
025c5b24 1538{
bf929152 1539 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1540 if (likely(pmd_trans_huge(*pmd))) {
1541 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1542 spin_unlock(*ptl);
cd7548ab 1543 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1544 return -1;
cd7548ab 1545 } else {
025c5b24
NH
1546 /* Thp mapped by 'pmd' is stable, so we can
1547 * handle it as it is. */
1548 return 1;
cd7548ab 1549 }
025c5b24 1550 }
bf929152 1551 spin_unlock(*ptl);
025c5b24 1552 return 0;
cd7548ab
JW
1553}
1554
117b0791
KS
1555/*
1556 * This function returns whether a given @page is mapped onto the @address
1557 * in the virtual space of @mm.
1558 *
1559 * When it's true, this function returns *pmd with holding the page table lock
1560 * and passing it back to the caller via @ptl.
1561 * If it's false, returns NULL without holding the page table lock.
1562 */
71e3aac0
AA
1563pmd_t *page_check_address_pmd(struct page *page,
1564 struct mm_struct *mm,
1565 unsigned long address,
117b0791
KS
1566 enum page_check_address_pmd_flag flag,
1567 spinlock_t **ptl)
71e3aac0 1568{
117b0791 1569 pmd_t *pmd;
71e3aac0
AA
1570
1571 if (address & ~HPAGE_PMD_MASK)
117b0791 1572 return NULL;
71e3aac0 1573
6219049a
BL
1574 pmd = mm_find_pmd(mm, address);
1575 if (!pmd)
117b0791
KS
1576 return NULL;
1577 *ptl = pmd_lock(mm, pmd);
71e3aac0 1578 if (pmd_none(*pmd))
117b0791 1579 goto unlock;
71e3aac0 1580 if (pmd_page(*pmd) != page)
117b0791 1581 goto unlock;
94fcc585
AA
1582 /*
1583 * split_vma() may create temporary aliased mappings. There is
1584 * no risk as long as all huge pmd are found and have their
1585 * splitting bit set before __split_huge_page_refcount
1586 * runs. Finding the same huge pmd more than once during the
1587 * same rmap walk is not a problem.
1588 */
1589 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1590 pmd_trans_splitting(*pmd))
117b0791 1591 goto unlock;
71e3aac0
AA
1592 if (pmd_trans_huge(*pmd)) {
1593 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1594 !pmd_trans_splitting(*pmd));
117b0791 1595 return pmd;
71e3aac0 1596 }
117b0791
KS
1597unlock:
1598 spin_unlock(*ptl);
1599 return NULL;
71e3aac0
AA
1600}
1601
1602static int __split_huge_page_splitting(struct page *page,
1603 struct vm_area_struct *vma,
1604 unsigned long address)
1605{
1606 struct mm_struct *mm = vma->vm_mm;
117b0791 1607 spinlock_t *ptl;
71e3aac0
AA
1608 pmd_t *pmd;
1609 int ret = 0;
2ec74c3e
SG
1610 /* For mmu_notifiers */
1611 const unsigned long mmun_start = address;
1612 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1613
2ec74c3e 1614 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0 1615 pmd = page_check_address_pmd(page, mm, address,
117b0791 1616 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
71e3aac0
AA
1617 if (pmd) {
1618 /*
1619 * We can't temporarily set the pmd to null in order
1620 * to split it, the pmd must remain marked huge at all
1621 * times or the VM won't take the pmd_trans_huge paths
5a505085 1622 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1623 * serialize against split_huge_page*.
1624 */
2ec74c3e 1625 pmdp_splitting_flush(vma, address, pmd);
71e3aac0 1626 ret = 1;
117b0791 1627 spin_unlock(ptl);
71e3aac0 1628 }
2ec74c3e 1629 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1630
1631 return ret;
1632}
1633
5bc7b8ac
SL
1634static void __split_huge_page_refcount(struct page *page,
1635 struct list_head *list)
71e3aac0
AA
1636{
1637 int i;
71e3aac0 1638 struct zone *zone = page_zone(page);
fa9add64 1639 struct lruvec *lruvec;
70b50f94 1640 int tail_count = 0;
71e3aac0
AA
1641
1642 /* prevent PageLRU to go away from under us, and freeze lru stats */
1643 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1644 lruvec = mem_cgroup_page_lruvec(page, zone);
1645
71e3aac0 1646 compound_lock(page);
e94c8a9c
KH
1647 /* complete memcg works before add pages to LRU */
1648 mem_cgroup_split_huge_fixup(page);
71e3aac0 1649
45676885 1650 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1651 struct page *page_tail = page + i;
1652
70b50f94
AA
1653 /* tail_page->_mapcount cannot change */
1654 BUG_ON(page_mapcount(page_tail) < 0);
1655 tail_count += page_mapcount(page_tail);
1656 /* check for overflow */
1657 BUG_ON(tail_count < 0);
1658 BUG_ON(atomic_read(&page_tail->_count) != 0);
1659 /*
1660 * tail_page->_count is zero and not changing from
1661 * under us. But get_page_unless_zero() may be running
1662 * from under us on the tail_page. If we used
1663 * atomic_set() below instead of atomic_add(), we
1664 * would then run atomic_set() concurrently with
1665 * get_page_unless_zero(), and atomic_set() is
1666 * implemented in C not using locked ops. spin_unlock
1667 * on x86 sometime uses locked ops because of PPro
1668 * errata 66, 92, so unless somebody can guarantee
1669 * atomic_set() here would be safe on all archs (and
1670 * not only on x86), it's safer to use atomic_add().
1671 */
1672 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1673 &page_tail->_count);
71e3aac0
AA
1674
1675 /* after clearing PageTail the gup refcount can be released */
1676 smp_mb();
1677
a6d30ddd
JD
1678 /*
1679 * retain hwpoison flag of the poisoned tail page:
1680 * fix for the unsuitable process killed on Guest Machine(KVM)
1681 * by the memory-failure.
1682 */
1683 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1684 page_tail->flags |= (page->flags &
1685 ((1L << PG_referenced) |
1686 (1L << PG_swapbacked) |
1687 (1L << PG_mlocked) |
e180cf80
KS
1688 (1L << PG_uptodate) |
1689 (1L << PG_active) |
1690 (1L << PG_unevictable)));
71e3aac0
AA
1691 page_tail->flags |= (1L << PG_dirty);
1692
70b50f94 1693 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1694 smp_wmb();
1695
1696 /*
1697 * __split_huge_page_splitting() already set the
1698 * splitting bit in all pmd that could map this
1699 * hugepage, that will ensure no CPU can alter the
1700 * mapcount on the head page. The mapcount is only
1701 * accounted in the head page and it has to be
1702 * transferred to all tail pages in the below code. So
1703 * for this code to be safe, the split the mapcount
1704 * can't change. But that doesn't mean userland can't
1705 * keep changing and reading the page contents while
1706 * we transfer the mapcount, so the pmd splitting
1707 * status is achieved setting a reserved bit in the
1708 * pmd, not by clearing the present bit.
1709 */
71e3aac0
AA
1710 page_tail->_mapcount = page->_mapcount;
1711
1712 BUG_ON(page_tail->mapping);
1713 page_tail->mapping = page->mapping;
1714
45676885 1715 page_tail->index = page->index + i;
90572890 1716 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
71e3aac0
AA
1717
1718 BUG_ON(!PageAnon(page_tail));
1719 BUG_ON(!PageUptodate(page_tail));
1720 BUG_ON(!PageDirty(page_tail));
1721 BUG_ON(!PageSwapBacked(page_tail));
1722
5bc7b8ac 1723 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1724 }
70b50f94
AA
1725 atomic_sub(tail_count, &page->_count);
1726 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1727
fa9add64 1728 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1729
71e3aac0
AA
1730 ClearPageCompound(page);
1731 compound_unlock(page);
1732 spin_unlock_irq(&zone->lru_lock);
1733
1734 for (i = 1; i < HPAGE_PMD_NR; i++) {
1735 struct page *page_tail = page + i;
1736 BUG_ON(page_count(page_tail) <= 0);
1737 /*
1738 * Tail pages may be freed if there wasn't any mapping
1739 * like if add_to_swap() is running on a lru page that
1740 * had its mapping zapped. And freeing these pages
1741 * requires taking the lru_lock so we do the put_page
1742 * of the tail pages after the split is complete.
1743 */
1744 put_page(page_tail);
1745 }
1746
1747 /*
1748 * Only the head page (now become a regular page) is required
1749 * to be pinned by the caller.
1750 */
1751 BUG_ON(page_count(page) <= 0);
1752}
1753
1754static int __split_huge_page_map(struct page *page,
1755 struct vm_area_struct *vma,
1756 unsigned long address)
1757{
1758 struct mm_struct *mm = vma->vm_mm;
117b0791 1759 spinlock_t *ptl;
71e3aac0
AA
1760 pmd_t *pmd, _pmd;
1761 int ret = 0, i;
1762 pgtable_t pgtable;
1763 unsigned long haddr;
1764
71e3aac0 1765 pmd = page_check_address_pmd(page, mm, address,
117b0791 1766 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
71e3aac0 1767 if (pmd) {
6b0b50b0 1768 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1769 pmd_populate(mm, &_pmd, pgtable);
1770
e3ebcf64
GS
1771 haddr = address;
1772 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1773 pte_t *pte, entry;
1774 BUG_ON(PageCompound(page+i));
1775 entry = mk_pte(page + i, vma->vm_page_prot);
1776 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1777 if (!pmd_write(*pmd))
1778 entry = pte_wrprotect(entry);
1779 else
1780 BUG_ON(page_mapcount(page) != 1);
1781 if (!pmd_young(*pmd))
1782 entry = pte_mkold(entry);
1ba6e0b5
AA
1783 if (pmd_numa(*pmd))
1784 entry = pte_mknuma(entry);
71e3aac0
AA
1785 pte = pte_offset_map(&_pmd, haddr);
1786 BUG_ON(!pte_none(*pte));
1787 set_pte_at(mm, haddr, pte, entry);
1788 pte_unmap(pte);
1789 }
1790
71e3aac0
AA
1791 smp_wmb(); /* make pte visible before pmd */
1792 /*
1793 * Up to this point the pmd is present and huge and
1794 * userland has the whole access to the hugepage
1795 * during the split (which happens in place). If we
1796 * overwrite the pmd with the not-huge version
1797 * pointing to the pte here (which of course we could
1798 * if all CPUs were bug free), userland could trigger
1799 * a small page size TLB miss on the small sized TLB
1800 * while the hugepage TLB entry is still established
1801 * in the huge TLB. Some CPU doesn't like that. See
1802 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1803 * Erratum 383 on page 93. Intel should be safe but is
1804 * also warns that it's only safe if the permission
1805 * and cache attributes of the two entries loaded in
1806 * the two TLB is identical (which should be the case
1807 * here). But it is generally safer to never allow
1808 * small and huge TLB entries for the same virtual
1809 * address to be loaded simultaneously. So instead of
1810 * doing "pmd_populate(); flush_tlb_range();" we first
1811 * mark the current pmd notpresent (atomically because
1812 * here the pmd_trans_huge and pmd_trans_splitting
1813 * must remain set at all times on the pmd until the
1814 * split is complete for this pmd), then we flush the
1815 * SMP TLB and finally we write the non-huge version
1816 * of the pmd entry with pmd_populate.
1817 */
46dcde73 1818 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1819 pmd_populate(mm, pmd, pgtable);
1820 ret = 1;
117b0791 1821 spin_unlock(ptl);
71e3aac0 1822 }
71e3aac0
AA
1823
1824 return ret;
1825}
1826
5a505085 1827/* must be called with anon_vma->root->rwsem held */
71e3aac0 1828static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1829 struct anon_vma *anon_vma,
1830 struct list_head *list)
71e3aac0
AA
1831{
1832 int mapcount, mapcount2;
bf181b9f 1833 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1834 struct anon_vma_chain *avc;
1835
1836 BUG_ON(!PageHead(page));
1837 BUG_ON(PageTail(page));
1838
1839 mapcount = 0;
bf181b9f 1840 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1841 struct vm_area_struct *vma = avc->vma;
1842 unsigned long addr = vma_address(page, vma);
1843 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1844 mapcount += __split_huge_page_splitting(page, vma, addr);
1845 }
05759d38
AA
1846 /*
1847 * It is critical that new vmas are added to the tail of the
1848 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1849 * and establishes a child pmd before
1850 * __split_huge_page_splitting() freezes the parent pmd (so if
1851 * we fail to prevent copy_huge_pmd() from running until the
1852 * whole __split_huge_page() is complete), we will still see
1853 * the newly established pmd of the child later during the
1854 * walk, to be able to set it as pmd_trans_splitting too.
1855 */
1856 if (mapcount != page_mapcount(page))
1857 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1858 mapcount, page_mapcount(page));
71e3aac0
AA
1859 BUG_ON(mapcount != page_mapcount(page));
1860
5bc7b8ac 1861 __split_huge_page_refcount(page, list);
71e3aac0
AA
1862
1863 mapcount2 = 0;
bf181b9f 1864 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1865 struct vm_area_struct *vma = avc->vma;
1866 unsigned long addr = vma_address(page, vma);
1867 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1868 mapcount2 += __split_huge_page_map(page, vma, addr);
1869 }
05759d38
AA
1870 if (mapcount != mapcount2)
1871 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1872 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1873 BUG_ON(mapcount != mapcount2);
1874}
1875
5bc7b8ac
SL
1876/*
1877 * Split a hugepage into normal pages. This doesn't change the position of head
1878 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1879 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1880 * from the hugepage.
1881 * Return 0 if the hugepage is split successfully otherwise return 1.
1882 */
1883int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1884{
1885 struct anon_vma *anon_vma;
1886 int ret = 1;
1887
5918d10a 1888 BUG_ON(is_huge_zero_page(page));
71e3aac0 1889 BUG_ON(!PageAnon(page));
062f1af2
MG
1890
1891 /*
1892 * The caller does not necessarily hold an mmap_sem that would prevent
1893 * the anon_vma disappearing so we first we take a reference to it
1894 * and then lock the anon_vma for write. This is similar to
1895 * page_lock_anon_vma_read except the write lock is taken to serialise
1896 * against parallel split or collapse operations.
1897 */
1898 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
1899 if (!anon_vma)
1900 goto out;
062f1af2
MG
1901 anon_vma_lock_write(anon_vma);
1902
71e3aac0
AA
1903 ret = 0;
1904 if (!PageCompound(page))
1905 goto out_unlock;
1906
1907 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 1908 __split_huge_page(page, anon_vma, list);
81ab4201 1909 count_vm_event(THP_SPLIT);
71e3aac0
AA
1910
1911 BUG_ON(PageCompound(page));
1912out_unlock:
08b52706 1913 anon_vma_unlock_write(anon_vma);
062f1af2 1914 put_anon_vma(anon_vma);
71e3aac0
AA
1915out:
1916 return ret;
1917}
1918
4b6e1e37 1919#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1920
60ab3244
AA
1921int hugepage_madvise(struct vm_area_struct *vma,
1922 unsigned long *vm_flags, int advice)
0af4e98b 1923{
8e72033f
GS
1924 struct mm_struct *mm = vma->vm_mm;
1925
a664b2d8
AA
1926 switch (advice) {
1927 case MADV_HUGEPAGE:
1928 /*
1929 * Be somewhat over-protective like KSM for now!
1930 */
78f11a25 1931 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1932 return -EINVAL;
8e72033f
GS
1933 if (mm->def_flags & VM_NOHUGEPAGE)
1934 return -EINVAL;
a664b2d8
AA
1935 *vm_flags &= ~VM_NOHUGEPAGE;
1936 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1937 /*
1938 * If the vma become good for khugepaged to scan,
1939 * register it here without waiting a page fault that
1940 * may not happen any time soon.
1941 */
1942 if (unlikely(khugepaged_enter_vma_merge(vma)))
1943 return -ENOMEM;
a664b2d8
AA
1944 break;
1945 case MADV_NOHUGEPAGE:
1946 /*
1947 * Be somewhat over-protective like KSM for now!
1948 */
78f11a25 1949 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1950 return -EINVAL;
1951 *vm_flags &= ~VM_HUGEPAGE;
1952 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1953 /*
1954 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1955 * this vma even if we leave the mm registered in khugepaged if
1956 * it got registered before VM_NOHUGEPAGE was set.
1957 */
a664b2d8
AA
1958 break;
1959 }
0af4e98b
AA
1960
1961 return 0;
1962}
1963
ba76149f
AA
1964static int __init khugepaged_slab_init(void)
1965{
1966 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1967 sizeof(struct mm_slot),
1968 __alignof__(struct mm_slot), 0, NULL);
1969 if (!mm_slot_cache)
1970 return -ENOMEM;
1971
1972 return 0;
1973}
1974
ba76149f
AA
1975static inline struct mm_slot *alloc_mm_slot(void)
1976{
1977 if (!mm_slot_cache) /* initialization failed */
1978 return NULL;
1979 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1980}
1981
1982static inline void free_mm_slot(struct mm_slot *mm_slot)
1983{
1984 kmem_cache_free(mm_slot_cache, mm_slot);
1985}
1986
ba76149f
AA
1987static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1988{
1989 struct mm_slot *mm_slot;
ba76149f 1990
b67bfe0d 1991 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1992 if (mm == mm_slot->mm)
1993 return mm_slot;
43b5fbbd 1994
ba76149f
AA
1995 return NULL;
1996}
1997
1998static void insert_to_mm_slots_hash(struct mm_struct *mm,
1999 struct mm_slot *mm_slot)
2000{
ba76149f 2001 mm_slot->mm = mm;
43b5fbbd 2002 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
2003}
2004
2005static inline int khugepaged_test_exit(struct mm_struct *mm)
2006{
2007 return atomic_read(&mm->mm_users) == 0;
2008}
2009
2010int __khugepaged_enter(struct mm_struct *mm)
2011{
2012 struct mm_slot *mm_slot;
2013 int wakeup;
2014
2015 mm_slot = alloc_mm_slot();
2016 if (!mm_slot)
2017 return -ENOMEM;
2018
2019 /* __khugepaged_exit() must not run from under us */
2020 VM_BUG_ON(khugepaged_test_exit(mm));
2021 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2022 free_mm_slot(mm_slot);
2023 return 0;
2024 }
2025
2026 spin_lock(&khugepaged_mm_lock);
2027 insert_to_mm_slots_hash(mm, mm_slot);
2028 /*
2029 * Insert just behind the scanning cursor, to let the area settle
2030 * down a little.
2031 */
2032 wakeup = list_empty(&khugepaged_scan.mm_head);
2033 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2034 spin_unlock(&khugepaged_mm_lock);
2035
2036 atomic_inc(&mm->mm_count);
2037 if (wakeup)
2038 wake_up_interruptible(&khugepaged_wait);
2039
2040 return 0;
2041}
2042
2043int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2044{
2045 unsigned long hstart, hend;
2046 if (!vma->anon_vma)
2047 /*
2048 * Not yet faulted in so we will register later in the
2049 * page fault if needed.
2050 */
2051 return 0;
78f11a25 2052 if (vma->vm_ops)
ba76149f
AA
2053 /* khugepaged not yet working on file or special mappings */
2054 return 0;
b3b9c293 2055 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
2056 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2057 hend = vma->vm_end & HPAGE_PMD_MASK;
2058 if (hstart < hend)
2059 return khugepaged_enter(vma);
2060 return 0;
2061}
2062
2063void __khugepaged_exit(struct mm_struct *mm)
2064{
2065 struct mm_slot *mm_slot;
2066 int free = 0;
2067
2068 spin_lock(&khugepaged_mm_lock);
2069 mm_slot = get_mm_slot(mm);
2070 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2071 hash_del(&mm_slot->hash);
ba76149f
AA
2072 list_del(&mm_slot->mm_node);
2073 free = 1;
2074 }
d788e80a 2075 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2076
2077 if (free) {
ba76149f
AA
2078 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2079 free_mm_slot(mm_slot);
2080 mmdrop(mm);
2081 } else if (mm_slot) {
ba76149f
AA
2082 /*
2083 * This is required to serialize against
2084 * khugepaged_test_exit() (which is guaranteed to run
2085 * under mmap sem read mode). Stop here (after we
2086 * return all pagetables will be destroyed) until
2087 * khugepaged has finished working on the pagetables
2088 * under the mmap_sem.
2089 */
2090 down_write(&mm->mmap_sem);
2091 up_write(&mm->mmap_sem);
d788e80a 2092 }
ba76149f
AA
2093}
2094
2095static void release_pte_page(struct page *page)
2096{
2097 /* 0 stands for page_is_file_cache(page) == false */
2098 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2099 unlock_page(page);
2100 putback_lru_page(page);
2101}
2102
2103static void release_pte_pages(pte_t *pte, pte_t *_pte)
2104{
2105 while (--_pte >= pte) {
2106 pte_t pteval = *_pte;
2107 if (!pte_none(pteval))
2108 release_pte_page(pte_page(pteval));
2109 }
2110}
2111
ba76149f
AA
2112static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2113 unsigned long address,
2114 pte_t *pte)
2115{
2116 struct page *page;
2117 pte_t *_pte;
344aa35c 2118 int referenced = 0, none = 0;
ba76149f
AA
2119 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2120 _pte++, address += PAGE_SIZE) {
2121 pte_t pteval = *_pte;
2122 if (pte_none(pteval)) {
2123 if (++none <= khugepaged_max_ptes_none)
2124 continue;
344aa35c 2125 else
ba76149f 2126 goto out;
ba76149f 2127 }
344aa35c 2128 if (!pte_present(pteval) || !pte_write(pteval))
ba76149f 2129 goto out;
ba76149f 2130 page = vm_normal_page(vma, address, pteval);
344aa35c 2131 if (unlikely(!page))
ba76149f 2132 goto out;
344aa35c 2133
ba76149f
AA
2134 VM_BUG_ON(PageCompound(page));
2135 BUG_ON(!PageAnon(page));
2136 VM_BUG_ON(!PageSwapBacked(page));
2137
2138 /* cannot use mapcount: can't collapse if there's a gup pin */
344aa35c 2139 if (page_count(page) != 1)
ba76149f 2140 goto out;
ba76149f
AA
2141 /*
2142 * We can do it before isolate_lru_page because the
2143 * page can't be freed from under us. NOTE: PG_lock
2144 * is needed to serialize against split_huge_page
2145 * when invoked from the VM.
2146 */
344aa35c 2147 if (!trylock_page(page))
ba76149f 2148 goto out;
ba76149f
AA
2149 /*
2150 * Isolate the page to avoid collapsing an hugepage
2151 * currently in use by the VM.
2152 */
2153 if (isolate_lru_page(page)) {
2154 unlock_page(page);
ba76149f
AA
2155 goto out;
2156 }
2157 /* 0 stands for page_is_file_cache(page) == false */
2158 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2159 VM_BUG_ON(!PageLocked(page));
2160 VM_BUG_ON(PageLRU(page));
2161
2162 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2163 if (pte_young(pteval) || PageReferenced(page) ||
2164 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2165 referenced = 1;
2166 }
344aa35c
BL
2167 if (likely(referenced))
2168 return 1;
ba76149f 2169out:
344aa35c
BL
2170 release_pte_pages(pte, _pte);
2171 return 0;
ba76149f
AA
2172}
2173
2174static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2175 struct vm_area_struct *vma,
2176 unsigned long address,
2177 spinlock_t *ptl)
2178{
2179 pte_t *_pte;
2180 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2181 pte_t pteval = *_pte;
2182 struct page *src_page;
2183
2184 if (pte_none(pteval)) {
2185 clear_user_highpage(page, address);
2186 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2187 } else {
2188 src_page = pte_page(pteval);
2189 copy_user_highpage(page, src_page, address, vma);
2190 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
2191 release_pte_page(src_page);
2192 /*
2193 * ptl mostly unnecessary, but preempt has to
2194 * be disabled to update the per-cpu stats
2195 * inside page_remove_rmap().
2196 */
2197 spin_lock(ptl);
2198 /*
2199 * paravirt calls inside pte_clear here are
2200 * superfluous.
2201 */
2202 pte_clear(vma->vm_mm, address, _pte);
2203 page_remove_rmap(src_page);
2204 spin_unlock(ptl);
2205 free_page_and_swap_cache(src_page);
2206 }
2207
2208 address += PAGE_SIZE;
2209 page++;
2210 }
2211}
2212
26234f36 2213static void khugepaged_alloc_sleep(void)
ba76149f 2214{
26234f36
XG
2215 wait_event_freezable_timeout(khugepaged_wait, false,
2216 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2217}
ba76149f 2218
9f1b868a
BL
2219static int khugepaged_node_load[MAX_NUMNODES];
2220
26234f36 2221#ifdef CONFIG_NUMA
9f1b868a
BL
2222static int khugepaged_find_target_node(void)
2223{
2224 static int last_khugepaged_target_node = NUMA_NO_NODE;
2225 int nid, target_node = 0, max_value = 0;
2226
2227 /* find first node with max normal pages hit */
2228 for (nid = 0; nid < MAX_NUMNODES; nid++)
2229 if (khugepaged_node_load[nid] > max_value) {
2230 max_value = khugepaged_node_load[nid];
2231 target_node = nid;
2232 }
2233
2234 /* do some balance if several nodes have the same hit record */
2235 if (target_node <= last_khugepaged_target_node)
2236 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2237 nid++)
2238 if (max_value == khugepaged_node_load[nid]) {
2239 target_node = nid;
2240 break;
2241 }
2242
2243 last_khugepaged_target_node = target_node;
2244 return target_node;
2245}
2246
26234f36
XG
2247static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2248{
2249 if (IS_ERR(*hpage)) {
2250 if (!*wait)
2251 return false;
2252
2253 *wait = false;
e3b4126c 2254 *hpage = NULL;
26234f36
XG
2255 khugepaged_alloc_sleep();
2256 } else if (*hpage) {
2257 put_page(*hpage);
2258 *hpage = NULL;
2259 }
2260
2261 return true;
2262}
2263
2264static struct page
2265*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2266 struct vm_area_struct *vma, unsigned long address,
2267 int node)
2268{
0bbbc0b3 2269 VM_BUG_ON(*hpage);
ce83d217
AA
2270 /*
2271 * Allocate the page while the vma is still valid and under
2272 * the mmap_sem read mode so there is no memory allocation
2273 * later when we take the mmap_sem in write mode. This is more
2274 * friendly behavior (OTOH it may actually hide bugs) to
2275 * filesystems in userland with daemons allocating memory in
2276 * the userland I/O paths. Allocating memory with the
2277 * mmap_sem in read mode is good idea also to allow greater
2278 * scalability.
2279 */
9f1b868a
BL
2280 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2281 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
692e0b35
AA
2282 /*
2283 * After allocating the hugepage, release the mmap_sem read lock in
2284 * preparation for taking it in write mode.
2285 */
2286 up_read(&mm->mmap_sem);
26234f36 2287 if (unlikely(!*hpage)) {
81ab4201 2288 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2289 *hpage = ERR_PTR(-ENOMEM);
26234f36 2290 return NULL;
ce83d217 2291 }
26234f36 2292
65b3c07b 2293 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2294 return *hpage;
2295}
2296#else
9f1b868a
BL
2297static int khugepaged_find_target_node(void)
2298{
2299 return 0;
2300}
2301
10dc4155
BL
2302static inline struct page *alloc_hugepage(int defrag)
2303{
2304 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2305 HPAGE_PMD_ORDER);
2306}
2307
26234f36
XG
2308static struct page *khugepaged_alloc_hugepage(bool *wait)
2309{
2310 struct page *hpage;
2311
2312 do {
2313 hpage = alloc_hugepage(khugepaged_defrag());
2314 if (!hpage) {
2315 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2316 if (!*wait)
2317 return NULL;
2318
2319 *wait = false;
2320 khugepaged_alloc_sleep();
2321 } else
2322 count_vm_event(THP_COLLAPSE_ALLOC);
2323 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2324
2325 return hpage;
2326}
2327
2328static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2329{
2330 if (!*hpage)
2331 *hpage = khugepaged_alloc_hugepage(wait);
2332
2333 if (unlikely(!*hpage))
2334 return false;
2335
2336 return true;
2337}
2338
2339static struct page
2340*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2341 struct vm_area_struct *vma, unsigned long address,
2342 int node)
2343{
2344 up_read(&mm->mmap_sem);
2345 VM_BUG_ON(!*hpage);
2346 return *hpage;
2347}
692e0b35
AA
2348#endif
2349
fa475e51
BL
2350static bool hugepage_vma_check(struct vm_area_struct *vma)
2351{
2352 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2353 (vma->vm_flags & VM_NOHUGEPAGE))
2354 return false;
2355
2356 if (!vma->anon_vma || vma->vm_ops)
2357 return false;
2358 if (is_vma_temporary_stack(vma))
2359 return false;
2360 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2361 return true;
2362}
2363
26234f36
XG
2364static void collapse_huge_page(struct mm_struct *mm,
2365 unsigned long address,
2366 struct page **hpage,
2367 struct vm_area_struct *vma,
2368 int node)
2369{
26234f36
XG
2370 pmd_t *pmd, _pmd;
2371 pte_t *pte;
2372 pgtable_t pgtable;
2373 struct page *new_page;
2374 spinlock_t *ptl;
2375 int isolated;
2376 unsigned long hstart, hend;
2ec74c3e
SG
2377 unsigned long mmun_start; /* For mmu_notifiers */
2378 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
2379
2380 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2381
2382 /* release the mmap_sem read lock. */
2383 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2384 if (!new_page)
2385 return;
2386
420256ef 2387 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 2388 return;
ba76149f
AA
2389
2390 /*
2391 * Prevent all access to pagetables with the exception of
2392 * gup_fast later hanlded by the ptep_clear_flush and the VM
2393 * handled by the anon_vma lock + PG_lock.
2394 */
2395 down_write(&mm->mmap_sem);
2396 if (unlikely(khugepaged_test_exit(mm)))
2397 goto out;
2398
2399 vma = find_vma(mm, address);
a8f531eb
L
2400 if (!vma)
2401 goto out;
ba76149f
AA
2402 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2403 hend = vma->vm_end & HPAGE_PMD_MASK;
2404 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2405 goto out;
fa475e51 2406 if (!hugepage_vma_check(vma))
a7d6e4ec 2407 goto out;
6219049a
BL
2408 pmd = mm_find_pmd(mm, address);
2409 if (!pmd)
ba76149f 2410 goto out;
6219049a 2411 if (pmd_trans_huge(*pmd))
ba76149f
AA
2412 goto out;
2413
4fc3f1d6 2414 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2415
2416 pte = pte_offset_map(pmd, address);
2417 ptl = pte_lockptr(mm, pmd);
2418
2ec74c3e
SG
2419 mmun_start = address;
2420 mmun_end = address + HPAGE_PMD_SIZE;
2421 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ba76149f
AA
2422 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2423 /*
2424 * After this gup_fast can't run anymore. This also removes
2425 * any huge TLB entry from the CPU so we won't allow
2426 * huge and small TLB entries for the same virtual address
2427 * to avoid the risk of CPU bugs in that area.
2428 */
2ec74c3e 2429 _pmd = pmdp_clear_flush(vma, address, pmd);
ba76149f 2430 spin_unlock(&mm->page_table_lock);
2ec74c3e 2431 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f
AA
2432
2433 spin_lock(ptl);
2434 isolated = __collapse_huge_page_isolate(vma, address, pte);
2435 spin_unlock(ptl);
ba76149f
AA
2436
2437 if (unlikely(!isolated)) {
453c7192 2438 pte_unmap(pte);
ba76149f
AA
2439 spin_lock(&mm->page_table_lock);
2440 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2441 /*
2442 * We can only use set_pmd_at when establishing
2443 * hugepmds and never for establishing regular pmds that
2444 * points to regular pagetables. Use pmd_populate for that
2445 */
2446 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
ba76149f 2447 spin_unlock(&mm->page_table_lock);
08b52706 2448 anon_vma_unlock_write(vma->anon_vma);
ce83d217 2449 goto out;
ba76149f
AA
2450 }
2451
2452 /*
2453 * All pages are isolated and locked so anon_vma rmap
2454 * can't run anymore.
2455 */
08b52706 2456 anon_vma_unlock_write(vma->anon_vma);
ba76149f
AA
2457
2458 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 2459 pte_unmap(pte);
ba76149f
AA
2460 __SetPageUptodate(new_page);
2461 pgtable = pmd_pgtable(_pmd);
ba76149f 2462
3122359a
KS
2463 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2464 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2465
2466 /*
2467 * spin_lock() below is not the equivalent of smp_wmb(), so
2468 * this is needed to avoid the copy_huge_page writes to become
2469 * visible after the set_pmd_at() write.
2470 */
2471 smp_wmb();
2472
2473 spin_lock(&mm->page_table_lock);
2474 BUG_ON(!pmd_none(*pmd));
2475 page_add_new_anon_rmap(new_page, vma, address);
fce144b4 2476 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2477 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2478 update_mmu_cache_pmd(vma, address, pmd);
ba76149f
AA
2479 spin_unlock(&mm->page_table_lock);
2480
2481 *hpage = NULL;
420256ef 2482
ba76149f 2483 khugepaged_pages_collapsed++;
ce83d217 2484out_up_write:
ba76149f 2485 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2486 return;
2487
ce83d217 2488out:
678ff896 2489 mem_cgroup_uncharge_page(new_page);
ce83d217 2490 goto out_up_write;
ba76149f
AA
2491}
2492
2493static int khugepaged_scan_pmd(struct mm_struct *mm,
2494 struct vm_area_struct *vma,
2495 unsigned long address,
2496 struct page **hpage)
2497{
ba76149f
AA
2498 pmd_t *pmd;
2499 pte_t *pte, *_pte;
2500 int ret = 0, referenced = 0, none = 0;
2501 struct page *page;
2502 unsigned long _address;
2503 spinlock_t *ptl;
00ef2d2f 2504 int node = NUMA_NO_NODE;
ba76149f
AA
2505
2506 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2507
6219049a
BL
2508 pmd = mm_find_pmd(mm, address);
2509 if (!pmd)
ba76149f 2510 goto out;
6219049a 2511 if (pmd_trans_huge(*pmd))
ba76149f
AA
2512 goto out;
2513
9f1b868a 2514 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2515 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2516 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2517 _pte++, _address += PAGE_SIZE) {
2518 pte_t pteval = *_pte;
2519 if (pte_none(pteval)) {
2520 if (++none <= khugepaged_max_ptes_none)
2521 continue;
2522 else
2523 goto out_unmap;
2524 }
2525 if (!pte_present(pteval) || !pte_write(pteval))
2526 goto out_unmap;
2527 page = vm_normal_page(vma, _address, pteval);
2528 if (unlikely(!page))
2529 goto out_unmap;
5c4b4be3 2530 /*
9f1b868a
BL
2531 * Record which node the original page is from and save this
2532 * information to khugepaged_node_load[].
2533 * Khupaged will allocate hugepage from the node has the max
2534 * hit record.
5c4b4be3 2535 */
9f1b868a
BL
2536 node = page_to_nid(page);
2537 khugepaged_node_load[node]++;
ba76149f
AA
2538 VM_BUG_ON(PageCompound(page));
2539 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2540 goto out_unmap;
2541 /* cannot use mapcount: can't collapse if there's a gup pin */
2542 if (page_count(page) != 1)
2543 goto out_unmap;
8ee53820
AA
2544 if (pte_young(pteval) || PageReferenced(page) ||
2545 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2546 referenced = 1;
2547 }
2548 if (referenced)
2549 ret = 1;
2550out_unmap:
2551 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2552 if (ret) {
2553 node = khugepaged_find_target_node();
ce83d217 2554 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2555 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2556 }
ba76149f
AA
2557out:
2558 return ret;
2559}
2560
2561static void collect_mm_slot(struct mm_slot *mm_slot)
2562{
2563 struct mm_struct *mm = mm_slot->mm;
2564
b9980cdc 2565 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2566
2567 if (khugepaged_test_exit(mm)) {
2568 /* free mm_slot */
43b5fbbd 2569 hash_del(&mm_slot->hash);
ba76149f
AA
2570 list_del(&mm_slot->mm_node);
2571
2572 /*
2573 * Not strictly needed because the mm exited already.
2574 *
2575 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2576 */
2577
2578 /* khugepaged_mm_lock actually not necessary for the below */
2579 free_mm_slot(mm_slot);
2580 mmdrop(mm);
2581 }
2582}
2583
2584static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2585 struct page **hpage)
2f1da642
HS
2586 __releases(&khugepaged_mm_lock)
2587 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2588{
2589 struct mm_slot *mm_slot;
2590 struct mm_struct *mm;
2591 struct vm_area_struct *vma;
2592 int progress = 0;
2593
2594 VM_BUG_ON(!pages);
b9980cdc 2595 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2596
2597 if (khugepaged_scan.mm_slot)
2598 mm_slot = khugepaged_scan.mm_slot;
2599 else {
2600 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2601 struct mm_slot, mm_node);
2602 khugepaged_scan.address = 0;
2603 khugepaged_scan.mm_slot = mm_slot;
2604 }
2605 spin_unlock(&khugepaged_mm_lock);
2606
2607 mm = mm_slot->mm;
2608 down_read(&mm->mmap_sem);
2609 if (unlikely(khugepaged_test_exit(mm)))
2610 vma = NULL;
2611 else
2612 vma = find_vma(mm, khugepaged_scan.address);
2613
2614 progress++;
2615 for (; vma; vma = vma->vm_next) {
2616 unsigned long hstart, hend;
2617
2618 cond_resched();
2619 if (unlikely(khugepaged_test_exit(mm))) {
2620 progress++;
2621 break;
2622 }
fa475e51
BL
2623 if (!hugepage_vma_check(vma)) {
2624skip:
ba76149f
AA
2625 progress++;
2626 continue;
2627 }
ba76149f
AA
2628 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2629 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2630 if (hstart >= hend)
2631 goto skip;
2632 if (khugepaged_scan.address > hend)
2633 goto skip;
ba76149f
AA
2634 if (khugepaged_scan.address < hstart)
2635 khugepaged_scan.address = hstart;
a7d6e4ec 2636 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2637
2638 while (khugepaged_scan.address < hend) {
2639 int ret;
2640 cond_resched();
2641 if (unlikely(khugepaged_test_exit(mm)))
2642 goto breakouterloop;
2643
2644 VM_BUG_ON(khugepaged_scan.address < hstart ||
2645 khugepaged_scan.address + HPAGE_PMD_SIZE >
2646 hend);
2647 ret = khugepaged_scan_pmd(mm, vma,
2648 khugepaged_scan.address,
2649 hpage);
2650 /* move to next address */
2651 khugepaged_scan.address += HPAGE_PMD_SIZE;
2652 progress += HPAGE_PMD_NR;
2653 if (ret)
2654 /* we released mmap_sem so break loop */
2655 goto breakouterloop_mmap_sem;
2656 if (progress >= pages)
2657 goto breakouterloop;
2658 }
2659 }
2660breakouterloop:
2661 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2662breakouterloop_mmap_sem:
2663
2664 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2665 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2666 /*
2667 * Release the current mm_slot if this mm is about to die, or
2668 * if we scanned all vmas of this mm.
2669 */
2670 if (khugepaged_test_exit(mm) || !vma) {
2671 /*
2672 * Make sure that if mm_users is reaching zero while
2673 * khugepaged runs here, khugepaged_exit will find
2674 * mm_slot not pointing to the exiting mm.
2675 */
2676 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2677 khugepaged_scan.mm_slot = list_entry(
2678 mm_slot->mm_node.next,
2679 struct mm_slot, mm_node);
2680 khugepaged_scan.address = 0;
2681 } else {
2682 khugepaged_scan.mm_slot = NULL;
2683 khugepaged_full_scans++;
2684 }
2685
2686 collect_mm_slot(mm_slot);
2687 }
2688
2689 return progress;
2690}
2691
2692static int khugepaged_has_work(void)
2693{
2694 return !list_empty(&khugepaged_scan.mm_head) &&
2695 khugepaged_enabled();
2696}
2697
2698static int khugepaged_wait_event(void)
2699{
2700 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2701 kthread_should_stop();
ba76149f
AA
2702}
2703
d516904b 2704static void khugepaged_do_scan(void)
ba76149f 2705{
d516904b 2706 struct page *hpage = NULL;
ba76149f
AA
2707 unsigned int progress = 0, pass_through_head = 0;
2708 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2709 bool wait = true;
ba76149f
AA
2710
2711 barrier(); /* write khugepaged_pages_to_scan to local stack */
2712
2713 while (progress < pages) {
26234f36 2714 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2715 break;
26234f36 2716
420256ef 2717 cond_resched();
ba76149f 2718
878aee7d
AA
2719 if (unlikely(kthread_should_stop() || freezing(current)))
2720 break;
2721
ba76149f
AA
2722 spin_lock(&khugepaged_mm_lock);
2723 if (!khugepaged_scan.mm_slot)
2724 pass_through_head++;
2725 if (khugepaged_has_work() &&
2726 pass_through_head < 2)
2727 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2728 &hpage);
ba76149f
AA
2729 else
2730 progress = pages;
2731 spin_unlock(&khugepaged_mm_lock);
2732 }
ba76149f 2733
d516904b
XG
2734 if (!IS_ERR_OR_NULL(hpage))
2735 put_page(hpage);
0bbbc0b3
AA
2736}
2737
2017c0bf
XG
2738static void khugepaged_wait_work(void)
2739{
2740 try_to_freeze();
2741
2742 if (khugepaged_has_work()) {
2743 if (!khugepaged_scan_sleep_millisecs)
2744 return;
2745
2746 wait_event_freezable_timeout(khugepaged_wait,
2747 kthread_should_stop(),
2748 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2749 return;
2750 }
2751
2752 if (khugepaged_enabled())
2753 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2754}
2755
ba76149f
AA
2756static int khugepaged(void *none)
2757{
2758 struct mm_slot *mm_slot;
2759
878aee7d 2760 set_freezable();
ba76149f
AA
2761 set_user_nice(current, 19);
2762
b7231789
XG
2763 while (!kthread_should_stop()) {
2764 khugepaged_do_scan();
2765 khugepaged_wait_work();
2766 }
ba76149f
AA
2767
2768 spin_lock(&khugepaged_mm_lock);
2769 mm_slot = khugepaged_scan.mm_slot;
2770 khugepaged_scan.mm_slot = NULL;
2771 if (mm_slot)
2772 collect_mm_slot(mm_slot);
2773 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2774 return 0;
2775}
2776
c5a647d0
KS
2777static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2778 unsigned long haddr, pmd_t *pmd)
2779{
2780 struct mm_struct *mm = vma->vm_mm;
2781 pgtable_t pgtable;
2782 pmd_t _pmd;
2783 int i;
2784
2785 pmdp_clear_flush(vma, haddr, pmd);
2786 /* leave pmd empty until pte is filled */
2787
6b0b50b0 2788 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
2789 pmd_populate(mm, &_pmd, pgtable);
2790
2791 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2792 pte_t *pte, entry;
2793 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2794 entry = pte_mkspecial(entry);
2795 pte = pte_offset_map(&_pmd, haddr);
2796 VM_BUG_ON(!pte_none(*pte));
2797 set_pte_at(mm, haddr, pte, entry);
2798 pte_unmap(pte);
2799 }
2800 smp_wmb(); /* make pte visible before pmd */
2801 pmd_populate(mm, pmd, pgtable);
97ae1749 2802 put_huge_zero_page();
c5a647d0
KS
2803}
2804
e180377f
KS
2805void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2806 pmd_t *pmd)
71e3aac0
AA
2807{
2808 struct page *page;
e180377f 2809 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2810 unsigned long haddr = address & HPAGE_PMD_MASK;
2811 unsigned long mmun_start; /* For mmu_notifiers */
2812 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2813
2814 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2815
c5a647d0
KS
2816 mmun_start = haddr;
2817 mmun_end = haddr + HPAGE_PMD_SIZE;
750e8165 2818again:
c5a647d0 2819 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
2820 spin_lock(&mm->page_table_lock);
2821 if (unlikely(!pmd_trans_huge(*pmd))) {
2822 spin_unlock(&mm->page_table_lock);
c5a647d0
KS
2823 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2824 return;
2825 }
2826 if (is_huge_zero_pmd(*pmd)) {
2827 __split_huge_zero_page_pmd(vma, haddr, pmd);
2828 spin_unlock(&mm->page_table_lock);
2829 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2830 return;
2831 }
2832 page = pmd_page(*pmd);
2833 VM_BUG_ON(!page_count(page));
2834 get_page(page);
2835 spin_unlock(&mm->page_table_lock);
c5a647d0 2836 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2837
2838 split_huge_page(page);
2839
2840 put_page(page);
750e8165
HD
2841
2842 /*
2843 * We don't always have down_write of mmap_sem here: a racing
2844 * do_huge_pmd_wp_page() might have copied-on-write to another
2845 * huge page before our split_huge_page() got the anon_vma lock.
2846 */
2847 if (unlikely(pmd_trans_huge(*pmd)))
2848 goto again;
71e3aac0 2849}
94fcc585 2850
e180377f
KS
2851void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2852 pmd_t *pmd)
2853{
2854 struct vm_area_struct *vma;
2855
2856 vma = find_vma(mm, address);
2857 BUG_ON(vma == NULL);
2858 split_huge_page_pmd(vma, address, pmd);
2859}
2860
94fcc585
AA
2861static void split_huge_page_address(struct mm_struct *mm,
2862 unsigned long address)
2863{
94fcc585
AA
2864 pmd_t *pmd;
2865
2866 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2867
6219049a
BL
2868 pmd = mm_find_pmd(mm, address);
2869 if (!pmd)
94fcc585
AA
2870 return;
2871 /*
2872 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2873 * materialize from under us.
2874 */
e180377f 2875 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2876}
2877
2878void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2879 unsigned long start,
2880 unsigned long end,
2881 long adjust_next)
2882{
2883 /*
2884 * If the new start address isn't hpage aligned and it could
2885 * previously contain an hugepage: check if we need to split
2886 * an huge pmd.
2887 */
2888 if (start & ~HPAGE_PMD_MASK &&
2889 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2890 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2891 split_huge_page_address(vma->vm_mm, start);
2892
2893 /*
2894 * If the new end address isn't hpage aligned and it could
2895 * previously contain an hugepage: check if we need to split
2896 * an huge pmd.
2897 */
2898 if (end & ~HPAGE_PMD_MASK &&
2899 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2900 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2901 split_huge_page_address(vma->vm_mm, end);
2902
2903 /*
2904 * If we're also updating the vma->vm_next->vm_start, if the new
2905 * vm_next->vm_start isn't page aligned and it could previously
2906 * contain an hugepage: check if we need to split an huge pmd.
2907 */
2908 if (adjust_next > 0) {
2909 struct vm_area_struct *next = vma->vm_next;
2910 unsigned long nstart = next->vm_start;
2911 nstart += adjust_next << PAGE_SHIFT;
2912 if (nstart & ~HPAGE_PMD_MASK &&
2913 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2914 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2915 split_huge_page_address(next->vm_mm, nstart);
2916 }
2917}