]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
mm: make remove_migration_ptes() beyond mm/migration.c
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f
AA
21#include <linux/kthread.h>
22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
3565fce3 26#include <linux/memremap.h>
325adeb5 27#include <linux/pagemap.h>
49071d43 28#include <linux/debugfs.h>
4daae3b4 29#include <linux/migrate.h>
43b5fbbd 30#include <linux/hashtable.h>
6b251fc9 31#include <linux/userfaultfd_k.h>
33c3fc71 32#include <linux/page_idle.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
7d2eba05
EA
38enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
b1caa957 52 SCAN_PAGE_COMPOUND,
7d2eba05
EA
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
60 SCAN_CGROUP_CHARGE_FAIL
61};
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/huge_memory.h>
65
ba76149f 66/*
8bfa3f9a
JW
67 * By default transparent hugepage support is disabled in order that avoid
68 * to risk increase the memory footprint of applications without a guaranteed
69 * benefit. When transparent hugepage support is enabled, is for all mappings,
70 * and khugepaged scans all mappings.
71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
72 * for all hugepage allocations.
ba76149f 73 */
71e3aac0 74unsigned long transparent_hugepage_flags __read_mostly =
13ece886 75#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 76 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
77#endif
78#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80#endif
444eb2a4 81 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
84
85/* default scan 8*512 pte (or vmas) every 30 second */
86static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
87static unsigned int khugepaged_pages_collapsed;
88static unsigned int khugepaged_full_scans;
89static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90/* during fragmentation poll the hugepage allocator once every minute */
91static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92static struct task_struct *khugepaged_thread __read_mostly;
93static DEFINE_MUTEX(khugepaged_mutex);
94static DEFINE_SPINLOCK(khugepaged_mm_lock);
95static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
96/*
97 * default collapse hugepages if there is at least one pte mapped like
98 * it would have happened if the vma was large enough during page
99 * fault.
100 */
101static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
102
103static int khugepaged(void *none);
ba76149f 104static int khugepaged_slab_init(void);
65ebb64f 105static void khugepaged_slab_exit(void);
ba76149f 106
43b5fbbd
SL
107#define MM_SLOTS_HASH_BITS 10
108static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
109
ba76149f
AA
110static struct kmem_cache *mm_slot_cache __read_mostly;
111
112/**
113 * struct mm_slot - hash lookup from mm to mm_slot
114 * @hash: hash collision list
115 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
116 * @mm: the mm that this information is valid for
117 */
118struct mm_slot {
119 struct hlist_node hash;
120 struct list_head mm_node;
121 struct mm_struct *mm;
122};
123
124/**
125 * struct khugepaged_scan - cursor for scanning
126 * @mm_head: the head of the mm list to scan
127 * @mm_slot: the current mm_slot we are scanning
128 * @address: the next address inside that to be scanned
129 *
130 * There is only the one khugepaged_scan instance of this cursor structure.
131 */
132struct khugepaged_scan {
133 struct list_head mm_head;
134 struct mm_slot *mm_slot;
135 unsigned long address;
2f1da642
HS
136};
137static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
138 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
139};
140
9a982250 141static struct shrinker deferred_split_shrinker;
f000565a 142
2c0b80d4 143static void set_recommended_min_free_kbytes(void)
f000565a
AA
144{
145 struct zone *zone;
146 int nr_zones = 0;
147 unsigned long recommended_min;
f000565a 148
f000565a
AA
149 for_each_populated_zone(zone)
150 nr_zones++;
151
974a786e 152 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
153 recommended_min = pageblock_nr_pages * nr_zones * 2;
154
155 /*
156 * Make sure that on average at least two pageblocks are almost free
157 * of another type, one for a migratetype to fall back to and a
158 * second to avoid subsequent fallbacks of other types There are 3
159 * MIGRATE_TYPES we care about.
160 */
161 recommended_min += pageblock_nr_pages * nr_zones *
162 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163
164 /* don't ever allow to reserve more than 5% of the lowmem */
165 recommended_min = min(recommended_min,
166 (unsigned long) nr_free_buffer_pages() / 20);
167 recommended_min <<= (PAGE_SHIFT-10);
168
42aa83cb
HP
169 if (recommended_min > min_free_kbytes) {
170 if (user_min_free_kbytes >= 0)
756a025f 171 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
42aa83cb
HP
172 min_free_kbytes, recommended_min);
173
f000565a 174 min_free_kbytes = recommended_min;
42aa83cb 175 }
f000565a 176 setup_per_zone_wmarks();
f000565a 177}
f000565a 178
79553da2 179static int start_stop_khugepaged(void)
ba76149f
AA
180{
181 int err = 0;
182 if (khugepaged_enabled()) {
ba76149f
AA
183 if (!khugepaged_thread)
184 khugepaged_thread = kthread_run(khugepaged, NULL,
185 "khugepaged");
18e8e5c7 186 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 187 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
188 err = PTR_ERR(khugepaged_thread);
189 khugepaged_thread = NULL;
79553da2 190 goto fail;
ba76149f 191 }
911891af
XG
192
193 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 194 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
195
196 set_recommended_min_free_kbytes();
911891af 197 } else if (khugepaged_thread) {
911891af
XG
198 kthread_stop(khugepaged_thread);
199 khugepaged_thread = NULL;
200 }
79553da2 201fail:
ba76149f
AA
202 return err;
203}
71e3aac0 204
97ae1749 205static atomic_t huge_zero_refcount;
56873f43 206struct page *huge_zero_page __read_mostly;
4a6c1297 207
fc437044 208struct page *get_huge_zero_page(void)
97ae1749
KS
209{
210 struct page *zero_page;
211retry:
212 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 213 return READ_ONCE(huge_zero_page);
97ae1749
KS
214
215 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 216 HPAGE_PMD_ORDER);
d8a8e1f0
KS
217 if (!zero_page) {
218 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 219 return NULL;
d8a8e1f0
KS
220 }
221 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 222 preempt_disable();
5918d10a 223 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 224 preempt_enable();
5ddacbe9 225 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
226 goto retry;
227 }
228
229 /* We take additional reference here. It will be put back by shrinker */
230 atomic_set(&huge_zero_refcount, 2);
231 preempt_enable();
4db0c3c2 232 return READ_ONCE(huge_zero_page);
4a6c1297
KS
233}
234
97ae1749 235static void put_huge_zero_page(void)
4a6c1297 236{
97ae1749
KS
237 /*
238 * Counter should never go to zero here. Only shrinker can put
239 * last reference.
240 */
241 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
242}
243
48896466
GC
244static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
245 struct shrink_control *sc)
4a6c1297 246{
48896466
GC
247 /* we can free zero page only if last reference remains */
248 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
249}
97ae1749 250
48896466
GC
251static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
252 struct shrink_control *sc)
253{
97ae1749 254 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
255 struct page *zero_page = xchg(&huge_zero_page, NULL);
256 BUG_ON(zero_page == NULL);
5ddacbe9 257 __free_pages(zero_page, compound_order(zero_page));
48896466 258 return HPAGE_PMD_NR;
97ae1749
KS
259 }
260
261 return 0;
4a6c1297
KS
262}
263
97ae1749 264static struct shrinker huge_zero_page_shrinker = {
48896466
GC
265 .count_objects = shrink_huge_zero_page_count,
266 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
267 .seeks = DEFAULT_SEEKS,
268};
269
71e3aac0 270#ifdef CONFIG_SYSFS
ba76149f 271
444eb2a4 272static ssize_t triple_flag_store(struct kobject *kobj,
71e3aac0
AA
273 struct kobj_attribute *attr,
274 const char *buf, size_t count,
275 enum transparent_hugepage_flag enabled,
444eb2a4 276 enum transparent_hugepage_flag deferred,
71e3aac0
AA
277 enum transparent_hugepage_flag req_madv)
278{
444eb2a4
MG
279 if (!memcmp("defer", buf,
280 min(sizeof("defer")-1, count))) {
281 if (enabled == deferred)
282 return -EINVAL;
283 clear_bit(enabled, &transparent_hugepage_flags);
284 clear_bit(req_madv, &transparent_hugepage_flags);
285 set_bit(deferred, &transparent_hugepage_flags);
286 } else if (!memcmp("always", buf,
71e3aac0 287 min(sizeof("always")-1, count))) {
444eb2a4 288 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0 289 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 290 set_bit(enabled, &transparent_hugepage_flags);
71e3aac0
AA
291 } else if (!memcmp("madvise", buf,
292 min(sizeof("madvise")-1, count))) {
293 clear_bit(enabled, &transparent_hugepage_flags);
444eb2a4 294 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
295 set_bit(req_madv, &transparent_hugepage_flags);
296 } else if (!memcmp("never", buf,
297 min(sizeof("never")-1, count))) {
298 clear_bit(enabled, &transparent_hugepage_flags);
299 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 300 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
301 } else
302 return -EINVAL;
303
304 return count;
305}
306
307static ssize_t enabled_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf)
309{
444eb2a4
MG
310 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
311 return sprintf(buf, "[always] madvise never\n");
312 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
313 return sprintf(buf, "always [madvise] never\n");
314 else
315 return sprintf(buf, "always madvise [never]\n");
71e3aac0 316}
444eb2a4 317
71e3aac0
AA
318static ssize_t enabled_store(struct kobject *kobj,
319 struct kobj_attribute *attr,
320 const char *buf, size_t count)
321{
ba76149f
AA
322 ssize_t ret;
323
444eb2a4
MG
324 ret = triple_flag_store(kobj, attr, buf, count,
325 TRANSPARENT_HUGEPAGE_FLAG,
ba76149f
AA
326 TRANSPARENT_HUGEPAGE_FLAG,
327 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
328
329 if (ret > 0) {
911891af
XG
330 int err;
331
332 mutex_lock(&khugepaged_mutex);
79553da2 333 err = start_stop_khugepaged();
911891af
XG
334 mutex_unlock(&khugepaged_mutex);
335
ba76149f
AA
336 if (err)
337 ret = err;
338 }
339
340 return ret;
71e3aac0
AA
341}
342static struct kobj_attribute enabled_attr =
343 __ATTR(enabled, 0644, enabled_show, enabled_store);
344
345static ssize_t single_flag_show(struct kobject *kobj,
346 struct kobj_attribute *attr, char *buf,
347 enum transparent_hugepage_flag flag)
348{
e27e6151
BH
349 return sprintf(buf, "%d\n",
350 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 351}
e27e6151 352
71e3aac0
AA
353static ssize_t single_flag_store(struct kobject *kobj,
354 struct kobj_attribute *attr,
355 const char *buf, size_t count,
356 enum transparent_hugepage_flag flag)
357{
e27e6151
BH
358 unsigned long value;
359 int ret;
360
361 ret = kstrtoul(buf, 10, &value);
362 if (ret < 0)
363 return ret;
364 if (value > 1)
365 return -EINVAL;
366
367 if (value)
71e3aac0 368 set_bit(flag, &transparent_hugepage_flags);
e27e6151 369 else
71e3aac0 370 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
371
372 return count;
373}
374
375/*
376 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
377 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
378 * memory just to allocate one more hugepage.
379 */
380static ssize_t defrag_show(struct kobject *kobj,
381 struct kobj_attribute *attr, char *buf)
382{
444eb2a4
MG
383 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
384 return sprintf(buf, "[always] defer madvise never\n");
385 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
386 return sprintf(buf, "always [defer] madvise never\n");
387 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
388 return sprintf(buf, "always defer [madvise] never\n");
389 else
390 return sprintf(buf, "always defer madvise [never]\n");
391
71e3aac0
AA
392}
393static ssize_t defrag_store(struct kobject *kobj,
394 struct kobj_attribute *attr,
395 const char *buf, size_t count)
396{
444eb2a4
MG
397 return triple_flag_store(kobj, attr, buf, count,
398 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
399 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
71e3aac0
AA
400 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
401}
402static struct kobj_attribute defrag_attr =
403 __ATTR(defrag, 0644, defrag_show, defrag_store);
404
79da5407
KS
405static ssize_t use_zero_page_show(struct kobject *kobj,
406 struct kobj_attribute *attr, char *buf)
407{
408 return single_flag_show(kobj, attr, buf,
409 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
410}
411static ssize_t use_zero_page_store(struct kobject *kobj,
412 struct kobj_attribute *attr, const char *buf, size_t count)
413{
414 return single_flag_store(kobj, attr, buf, count,
415 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
416}
417static struct kobj_attribute use_zero_page_attr =
418 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
419#ifdef CONFIG_DEBUG_VM
420static ssize_t debug_cow_show(struct kobject *kobj,
421 struct kobj_attribute *attr, char *buf)
422{
423 return single_flag_show(kobj, attr, buf,
424 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
425}
426static ssize_t debug_cow_store(struct kobject *kobj,
427 struct kobj_attribute *attr,
428 const char *buf, size_t count)
429{
430 return single_flag_store(kobj, attr, buf, count,
431 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
432}
433static struct kobj_attribute debug_cow_attr =
434 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
435#endif /* CONFIG_DEBUG_VM */
436
437static struct attribute *hugepage_attr[] = {
438 &enabled_attr.attr,
439 &defrag_attr.attr,
79da5407 440 &use_zero_page_attr.attr,
71e3aac0
AA
441#ifdef CONFIG_DEBUG_VM
442 &debug_cow_attr.attr,
443#endif
444 NULL,
445};
446
447static struct attribute_group hugepage_attr_group = {
448 .attrs = hugepage_attr,
ba76149f
AA
449};
450
451static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
452 struct kobj_attribute *attr,
453 char *buf)
454{
455 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
456}
457
458static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
459 struct kobj_attribute *attr,
460 const char *buf, size_t count)
461{
462 unsigned long msecs;
463 int err;
464
3dbb95f7 465 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
466 if (err || msecs > UINT_MAX)
467 return -EINVAL;
468
469 khugepaged_scan_sleep_millisecs = msecs;
470 wake_up_interruptible(&khugepaged_wait);
471
472 return count;
473}
474static struct kobj_attribute scan_sleep_millisecs_attr =
475 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
476 scan_sleep_millisecs_store);
477
478static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
479 struct kobj_attribute *attr,
480 char *buf)
481{
482 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
483}
484
485static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
486 struct kobj_attribute *attr,
487 const char *buf, size_t count)
488{
489 unsigned long msecs;
490 int err;
491
3dbb95f7 492 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
493 if (err || msecs > UINT_MAX)
494 return -EINVAL;
495
496 khugepaged_alloc_sleep_millisecs = msecs;
497 wake_up_interruptible(&khugepaged_wait);
498
499 return count;
500}
501static struct kobj_attribute alloc_sleep_millisecs_attr =
502 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
503 alloc_sleep_millisecs_store);
504
505static ssize_t pages_to_scan_show(struct kobject *kobj,
506 struct kobj_attribute *attr,
507 char *buf)
508{
509 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
510}
511static ssize_t pages_to_scan_store(struct kobject *kobj,
512 struct kobj_attribute *attr,
513 const char *buf, size_t count)
514{
515 int err;
516 unsigned long pages;
517
3dbb95f7 518 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
519 if (err || !pages || pages > UINT_MAX)
520 return -EINVAL;
521
522 khugepaged_pages_to_scan = pages;
523
524 return count;
525}
526static struct kobj_attribute pages_to_scan_attr =
527 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
528 pages_to_scan_store);
529
530static ssize_t pages_collapsed_show(struct kobject *kobj,
531 struct kobj_attribute *attr,
532 char *buf)
533{
534 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
535}
536static struct kobj_attribute pages_collapsed_attr =
537 __ATTR_RO(pages_collapsed);
538
539static ssize_t full_scans_show(struct kobject *kobj,
540 struct kobj_attribute *attr,
541 char *buf)
542{
543 return sprintf(buf, "%u\n", khugepaged_full_scans);
544}
545static struct kobj_attribute full_scans_attr =
546 __ATTR_RO(full_scans);
547
548static ssize_t khugepaged_defrag_show(struct kobject *kobj,
549 struct kobj_attribute *attr, char *buf)
550{
551 return single_flag_show(kobj, attr, buf,
552 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
553}
554static ssize_t khugepaged_defrag_store(struct kobject *kobj,
555 struct kobj_attribute *attr,
556 const char *buf, size_t count)
557{
558 return single_flag_store(kobj, attr, buf, count,
559 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
560}
561static struct kobj_attribute khugepaged_defrag_attr =
562 __ATTR(defrag, 0644, khugepaged_defrag_show,
563 khugepaged_defrag_store);
564
565/*
566 * max_ptes_none controls if khugepaged should collapse hugepages over
567 * any unmapped ptes in turn potentially increasing the memory
568 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
569 * reduce the available free memory in the system as it
570 * runs. Increasing max_ptes_none will instead potentially reduce the
571 * free memory in the system during the khugepaged scan.
572 */
573static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
574 struct kobj_attribute *attr,
575 char *buf)
576{
577 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
578}
579static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
580 struct kobj_attribute *attr,
581 const char *buf, size_t count)
582{
583 int err;
584 unsigned long max_ptes_none;
585
3dbb95f7 586 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
587 if (err || max_ptes_none > HPAGE_PMD_NR-1)
588 return -EINVAL;
589
590 khugepaged_max_ptes_none = max_ptes_none;
591
592 return count;
593}
594static struct kobj_attribute khugepaged_max_ptes_none_attr =
595 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
596 khugepaged_max_ptes_none_store);
597
598static struct attribute *khugepaged_attr[] = {
599 &khugepaged_defrag_attr.attr,
600 &khugepaged_max_ptes_none_attr.attr,
601 &pages_to_scan_attr.attr,
602 &pages_collapsed_attr.attr,
603 &full_scans_attr.attr,
604 &scan_sleep_millisecs_attr.attr,
605 &alloc_sleep_millisecs_attr.attr,
606 NULL,
607};
608
609static struct attribute_group khugepaged_attr_group = {
610 .attrs = khugepaged_attr,
611 .name = "khugepaged",
71e3aac0 612};
71e3aac0 613
569e5590 614static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 615{
71e3aac0
AA
616 int err;
617
569e5590
SL
618 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
619 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 620 pr_err("failed to create transparent hugepage kobject\n");
569e5590 621 return -ENOMEM;
ba76149f
AA
622 }
623
569e5590 624 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 625 if (err) {
ae3a8c1c 626 pr_err("failed to register transparent hugepage group\n");
569e5590 627 goto delete_obj;
ba76149f
AA
628 }
629
569e5590 630 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 631 if (err) {
ae3a8c1c 632 pr_err("failed to register transparent hugepage group\n");
569e5590 633 goto remove_hp_group;
ba76149f 634 }
569e5590
SL
635
636 return 0;
637
638remove_hp_group:
639 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
640delete_obj:
641 kobject_put(*hugepage_kobj);
642 return err;
643}
644
645static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
646{
647 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
648 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
649 kobject_put(hugepage_kobj);
650}
651#else
652static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
653{
654 return 0;
655}
656
657static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
658{
659}
660#endif /* CONFIG_SYSFS */
661
662static int __init hugepage_init(void)
663{
664 int err;
665 struct kobject *hugepage_kobj;
666
667 if (!has_transparent_hugepage()) {
668 transparent_hugepage_flags = 0;
669 return -EINVAL;
670 }
671
672 err = hugepage_init_sysfs(&hugepage_kobj);
673 if (err)
65ebb64f 674 goto err_sysfs;
ba76149f
AA
675
676 err = khugepaged_slab_init();
677 if (err)
65ebb64f 678 goto err_slab;
ba76149f 679
65ebb64f
KS
680 err = register_shrinker(&huge_zero_page_shrinker);
681 if (err)
682 goto err_hzp_shrinker;
9a982250
KS
683 err = register_shrinker(&deferred_split_shrinker);
684 if (err)
685 goto err_split_shrinker;
97ae1749 686
97562cd2
RR
687 /*
688 * By default disable transparent hugepages on smaller systems,
689 * where the extra memory used could hurt more than TLB overhead
690 * is likely to save. The admin can still enable it through /sys.
691 */
79553da2 692 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 693 transparent_hugepage_flags = 0;
79553da2
KS
694 return 0;
695 }
97562cd2 696
79553da2 697 err = start_stop_khugepaged();
65ebb64f
KS
698 if (err)
699 goto err_khugepaged;
ba76149f 700
569e5590 701 return 0;
65ebb64f 702err_khugepaged:
9a982250
KS
703 unregister_shrinker(&deferred_split_shrinker);
704err_split_shrinker:
65ebb64f
KS
705 unregister_shrinker(&huge_zero_page_shrinker);
706err_hzp_shrinker:
707 khugepaged_slab_exit();
708err_slab:
569e5590 709 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 710err_sysfs:
ba76149f 711 return err;
71e3aac0 712}
a64fb3cd 713subsys_initcall(hugepage_init);
71e3aac0
AA
714
715static int __init setup_transparent_hugepage(char *str)
716{
717 int ret = 0;
718 if (!str)
719 goto out;
720 if (!strcmp(str, "always")) {
721 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
722 &transparent_hugepage_flags);
723 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
724 &transparent_hugepage_flags);
725 ret = 1;
726 } else if (!strcmp(str, "madvise")) {
727 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
728 &transparent_hugepage_flags);
729 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
730 &transparent_hugepage_flags);
731 ret = 1;
732 } else if (!strcmp(str, "never")) {
733 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
734 &transparent_hugepage_flags);
735 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
736 &transparent_hugepage_flags);
737 ret = 1;
738 }
739out:
740 if (!ret)
ae3a8c1c 741 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
742 return ret;
743}
744__setup("transparent_hugepage=", setup_transparent_hugepage);
745
b32967ff 746pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
747{
748 if (likely(vma->vm_flags & VM_WRITE))
749 pmd = pmd_mkwrite(pmd);
750 return pmd;
751}
752
3122359a 753static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
754{
755 pmd_t entry;
3122359a 756 entry = mk_pmd(page, prot);
b3092b3b
BL
757 entry = pmd_mkhuge(entry);
758 return entry;
759}
760
9a982250
KS
761static inline struct list_head *page_deferred_list(struct page *page)
762{
763 /*
764 * ->lru in the tail pages is occupied by compound_head.
765 * Let's use ->mapping + ->index in the second tail page as list_head.
766 */
767 return (struct list_head *)&page[2].mapping;
768}
769
770void prep_transhuge_page(struct page *page)
771{
772 /*
773 * we use page->mapping and page->indexlru in second tail page
774 * as list_head: assuming THP order >= 2
775 */
776 BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
777
778 INIT_LIST_HEAD(page_deferred_list(page));
779 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
780}
781
71e3aac0
AA
782static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
783 struct vm_area_struct *vma,
230c92a8 784 unsigned long address, pmd_t *pmd,
6b251fc9
AA
785 struct page *page, gfp_t gfp,
786 unsigned int flags)
71e3aac0 787{
00501b53 788 struct mem_cgroup *memcg;
71e3aac0 789 pgtable_t pgtable;
c4088ebd 790 spinlock_t *ptl;
230c92a8 791 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 792
309381fe 793 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 794
f627c2f5 795 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
6b251fc9
AA
796 put_page(page);
797 count_vm_event(THP_FAULT_FALLBACK);
798 return VM_FAULT_FALLBACK;
799 }
00501b53 800
71e3aac0 801 pgtable = pte_alloc_one(mm, haddr);
00501b53 802 if (unlikely(!pgtable)) {
f627c2f5 803 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 804 put_page(page);
71e3aac0 805 return VM_FAULT_OOM;
00501b53 806 }
71e3aac0
AA
807
808 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
809 /*
810 * The memory barrier inside __SetPageUptodate makes sure that
811 * clear_huge_page writes become visible before the set_pmd_at()
812 * write.
813 */
71e3aac0
AA
814 __SetPageUptodate(page);
815
c4088ebd 816 ptl = pmd_lock(mm, pmd);
71e3aac0 817 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 818 spin_unlock(ptl);
f627c2f5 819 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0
AA
820 put_page(page);
821 pte_free(mm, pgtable);
822 } else {
823 pmd_t entry;
6b251fc9
AA
824
825 /* Deliver the page fault to userland */
826 if (userfaultfd_missing(vma)) {
827 int ret;
828
829 spin_unlock(ptl);
f627c2f5 830 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9
AA
831 put_page(page);
832 pte_free(mm, pgtable);
230c92a8 833 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
834 VM_UFFD_MISSING);
835 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
836 return ret;
837 }
838
3122359a
KS
839 entry = mk_huge_pmd(page, vma->vm_page_prot);
840 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 841 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 842 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 843 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 844 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 845 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 846 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 847 atomic_long_inc(&mm->nr_ptes);
c4088ebd 848 spin_unlock(ptl);
6b251fc9 849 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
850 }
851
aa2e878e 852 return 0;
71e3aac0
AA
853}
854
444eb2a4
MG
855/*
856 * If THP is set to always then directly reclaim/compact as necessary
857 * If set to defer then do no reclaim and defer to khugepaged
858 * If set to madvise and the VMA is flagged then directly reclaim/compact
859 */
860static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
861{
862 gfp_t reclaim_flags = 0;
863
864 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
865 (vma->vm_flags & VM_HUGEPAGE))
866 reclaim_flags = __GFP_DIRECT_RECLAIM;
867 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
868 reclaim_flags = __GFP_KSWAPD_RECLAIM;
869 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
870 reclaim_flags = __GFP_DIRECT_RECLAIM;
871
872 return GFP_TRANSHUGE | reclaim_flags;
873}
874
875/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
876static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
0bbbc0b3 877{
444eb2a4 878 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
0bbbc0b3
AA
879}
880
c4088ebd 881/* Caller must hold page table lock. */
d295e341 882static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 883 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 884 struct page *zero_page)
fc9fe822
KS
885{
886 pmd_t entry;
7c414164
AM
887 if (!pmd_none(*pmd))
888 return false;
5918d10a 889 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 890 entry = pmd_mkhuge(entry);
12c9d70b
MW
891 if (pgtable)
892 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 893 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 894 atomic_long_inc(&mm->nr_ptes);
7c414164 895 return true;
fc9fe822
KS
896}
897
71e3aac0
AA
898int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
899 unsigned long address, pmd_t *pmd,
900 unsigned int flags)
901{
077fcf11 902 gfp_t gfp;
71e3aac0
AA
903 struct page *page;
904 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 905
128ec037 906 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 907 return VM_FAULT_FALLBACK;
128ec037
KS
908 if (unlikely(anon_vma_prepare(vma)))
909 return VM_FAULT_OOM;
6d50e60c 910 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 911 return VM_FAULT_OOM;
593befa6 912 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 913 transparent_hugepage_use_zero_page()) {
c4088ebd 914 spinlock_t *ptl;
128ec037
KS
915 pgtable_t pgtable;
916 struct page *zero_page;
917 bool set;
6b251fc9 918 int ret;
128ec037
KS
919 pgtable = pte_alloc_one(mm, haddr);
920 if (unlikely(!pgtable))
ba76149f 921 return VM_FAULT_OOM;
128ec037
KS
922 zero_page = get_huge_zero_page();
923 if (unlikely(!zero_page)) {
924 pte_free(mm, pgtable);
81ab4201 925 count_vm_event(THP_FAULT_FALLBACK);
c0292554 926 return VM_FAULT_FALLBACK;
b9bbfbe3 927 }
c4088ebd 928 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
929 ret = 0;
930 set = false;
931 if (pmd_none(*pmd)) {
932 if (userfaultfd_missing(vma)) {
933 spin_unlock(ptl);
230c92a8 934 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
935 VM_UFFD_MISSING);
936 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
937 } else {
938 set_huge_zero_page(pgtable, mm, vma,
939 haddr, pmd,
940 zero_page);
941 spin_unlock(ptl);
942 set = true;
943 }
944 } else
945 spin_unlock(ptl);
128ec037
KS
946 if (!set) {
947 pte_free(mm, pgtable);
948 put_huge_zero_page();
edad9d2c 949 }
6b251fc9 950 return ret;
71e3aac0 951 }
444eb2a4 952 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 953 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
954 if (unlikely(!page)) {
955 count_vm_event(THP_FAULT_FALLBACK);
c0292554 956 return VM_FAULT_FALLBACK;
128ec037 957 }
9a982250 958 prep_transhuge_page(page);
230c92a8
AA
959 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
960 flags);
71e3aac0
AA
961}
962
ae18d6dc 963static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 964 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
965{
966 struct mm_struct *mm = vma->vm_mm;
967 pmd_t entry;
968 spinlock_t *ptl;
969
970 ptl = pmd_lock(mm, pmd);
f25748e3
DW
971 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
972 if (pfn_t_devmap(pfn))
973 entry = pmd_mkdevmap(entry);
01871e59
RZ
974 if (write) {
975 entry = pmd_mkyoung(pmd_mkdirty(entry));
976 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 977 }
01871e59
RZ
978 set_pmd_at(mm, addr, pmd, entry);
979 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 980 spin_unlock(ptl);
5cad465d
MW
981}
982
983int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 984 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
985{
986 pgprot_t pgprot = vma->vm_page_prot;
987 /*
988 * If we had pmd_special, we could avoid all these restrictions,
989 * but we need to be consistent with PTEs and architectures that
990 * can't support a 'special' bit.
991 */
992 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
993 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
994 (VM_PFNMAP|VM_MIXEDMAP));
995 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 996 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
997
998 if (addr < vma->vm_start || addr >= vma->vm_end)
999 return VM_FAULT_SIGBUS;
1000 if (track_pfn_insert(vma, &pgprot, pfn))
1001 return VM_FAULT_SIGBUS;
ae18d6dc
MW
1002 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1003 return VM_FAULT_NOPAGE;
5cad465d
MW
1004}
1005
3565fce3
DW
1006static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1007 pmd_t *pmd)
1008{
1009 pmd_t _pmd;
1010
1011 /*
1012 * We should set the dirty bit only for FOLL_WRITE but for now
1013 * the dirty bit in the pmd is meaningless. And if the dirty
1014 * bit will become meaningful and we'll only set it with
1015 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1016 * set the young bit, instead of the current set_pmd_at.
1017 */
1018 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1019 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1020 pmd, _pmd, 1))
1021 update_mmu_cache_pmd(vma, addr, pmd);
1022}
1023
1024struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1025 pmd_t *pmd, int flags)
1026{
1027 unsigned long pfn = pmd_pfn(*pmd);
1028 struct mm_struct *mm = vma->vm_mm;
1029 struct dev_pagemap *pgmap;
1030 struct page *page;
1031
1032 assert_spin_locked(pmd_lockptr(mm, pmd));
1033
1034 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1035 return NULL;
1036
1037 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1038 /* pass */;
1039 else
1040 return NULL;
1041
1042 if (flags & FOLL_TOUCH)
1043 touch_pmd(vma, addr, pmd);
1044
1045 /*
1046 * device mapped pages can only be returned if the
1047 * caller will manage the page reference count.
1048 */
1049 if (!(flags & FOLL_GET))
1050 return ERR_PTR(-EEXIST);
1051
1052 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1053 pgmap = get_dev_pagemap(pfn, NULL);
1054 if (!pgmap)
1055 return ERR_PTR(-EFAULT);
1056 page = pfn_to_page(pfn);
1057 get_page(page);
1058 put_dev_pagemap(pgmap);
1059
1060 return page;
1061}
1062
71e3aac0
AA
1063int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1064 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1065 struct vm_area_struct *vma)
1066{
c4088ebd 1067 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1068 struct page *src_page;
1069 pmd_t pmd;
12c9d70b 1070 pgtable_t pgtable = NULL;
71e3aac0
AA
1071 int ret;
1072
12c9d70b
MW
1073 if (!vma_is_dax(vma)) {
1074 ret = -ENOMEM;
1075 pgtable = pte_alloc_one(dst_mm, addr);
1076 if (unlikely(!pgtable))
1077 goto out;
1078 }
71e3aac0 1079
c4088ebd
KS
1080 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1081 src_ptl = pmd_lockptr(src_mm, src_pmd);
1082 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1083
1084 ret = -EAGAIN;
1085 pmd = *src_pmd;
5c7fb56e 1086 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
71e3aac0
AA
1087 pte_free(dst_mm, pgtable);
1088 goto out_unlock;
1089 }
fc9fe822 1090 /*
c4088ebd 1091 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1092 * under splitting since we don't split the page itself, only pmd to
1093 * a page table.
1094 */
1095 if (is_huge_zero_pmd(pmd)) {
5918d10a 1096 struct page *zero_page;
97ae1749
KS
1097 /*
1098 * get_huge_zero_page() will never allocate a new page here,
1099 * since we already have a zero page to copy. It just takes a
1100 * reference.
1101 */
5918d10a 1102 zero_page = get_huge_zero_page();
6b251fc9 1103 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1104 zero_page);
fc9fe822
KS
1105 ret = 0;
1106 goto out_unlock;
1107 }
de466bd6 1108
12c9d70b 1109 if (!vma_is_dax(vma)) {
5c7fb56e
DW
1110 /* thp accounting separate from pmd_devmap accounting */
1111 src_page = pmd_page(pmd);
1112 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1113 get_page(src_page);
1114 page_dup_rmap(src_page, true);
1115 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116 atomic_long_inc(&dst_mm->nr_ptes);
1117 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1118 }
71e3aac0
AA
1119
1120 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1121 pmd = pmd_mkold(pmd_wrprotect(pmd));
1122 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1123
1124 ret = 0;
1125out_unlock:
c4088ebd
KS
1126 spin_unlock(src_ptl);
1127 spin_unlock(dst_ptl);
71e3aac0
AA
1128out:
1129 return ret;
1130}
1131
a1dd450b
WD
1132void huge_pmd_set_accessed(struct mm_struct *mm,
1133 struct vm_area_struct *vma,
1134 unsigned long address,
1135 pmd_t *pmd, pmd_t orig_pmd,
1136 int dirty)
1137{
c4088ebd 1138 spinlock_t *ptl;
a1dd450b
WD
1139 pmd_t entry;
1140 unsigned long haddr;
1141
c4088ebd 1142 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
1143 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1144 goto unlock;
1145
1146 entry = pmd_mkyoung(orig_pmd);
1147 haddr = address & HPAGE_PMD_MASK;
1148 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1149 update_mmu_cache_pmd(vma, address, pmd);
1150
1151unlock:
c4088ebd 1152 spin_unlock(ptl);
a1dd450b
WD
1153}
1154
71e3aac0
AA
1155static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1156 struct vm_area_struct *vma,
1157 unsigned long address,
1158 pmd_t *pmd, pmd_t orig_pmd,
1159 struct page *page,
1160 unsigned long haddr)
1161{
00501b53 1162 struct mem_cgroup *memcg;
c4088ebd 1163 spinlock_t *ptl;
71e3aac0
AA
1164 pgtable_t pgtable;
1165 pmd_t _pmd;
1166 int ret = 0, i;
1167 struct page **pages;
2ec74c3e
SG
1168 unsigned long mmun_start; /* For mmu_notifiers */
1169 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1170
1171 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1172 GFP_KERNEL);
1173 if (unlikely(!pages)) {
1174 ret |= VM_FAULT_OOM;
1175 goto out;
1176 }
1177
1178 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1179 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1180 __GFP_OTHER_NODE,
19ee151e 1181 vma, address, page_to_nid(page));
b9bbfbe3 1182 if (unlikely(!pages[i] ||
00501b53 1183 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
f627c2f5 1184 &memcg, false))) {
b9bbfbe3 1185 if (pages[i])
71e3aac0 1186 put_page(pages[i]);
b9bbfbe3 1187 while (--i >= 0) {
00501b53
JW
1188 memcg = (void *)page_private(pages[i]);
1189 set_page_private(pages[i], 0);
f627c2f5
KS
1190 mem_cgroup_cancel_charge(pages[i], memcg,
1191 false);
b9bbfbe3
AA
1192 put_page(pages[i]);
1193 }
71e3aac0
AA
1194 kfree(pages);
1195 ret |= VM_FAULT_OOM;
1196 goto out;
1197 }
00501b53 1198 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1199 }
1200
1201 for (i = 0; i < HPAGE_PMD_NR; i++) {
1202 copy_user_highpage(pages[i], page + i,
0089e485 1203 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1204 __SetPageUptodate(pages[i]);
1205 cond_resched();
1206 }
1207
2ec74c3e
SG
1208 mmun_start = haddr;
1209 mmun_end = haddr + HPAGE_PMD_SIZE;
1210 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1211
c4088ebd 1212 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1213 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1214 goto out_free_pages;
309381fe 1215 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1216
8809aa2d 1217 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1218 /* leave pmd empty until pte is filled */
1219
6b0b50b0 1220 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1221 pmd_populate(mm, &_pmd, pgtable);
1222
1223 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1224 pte_t *pte, entry;
1225 entry = mk_pte(pages[i], vma->vm_page_prot);
1226 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1227 memcg = (void *)page_private(pages[i]);
1228 set_page_private(pages[i], 0);
d281ee61 1229 page_add_new_anon_rmap(pages[i], vma, haddr, false);
f627c2f5 1230 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1231 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1232 pte = pte_offset_map(&_pmd, haddr);
1233 VM_BUG_ON(!pte_none(*pte));
1234 set_pte_at(mm, haddr, pte, entry);
1235 pte_unmap(pte);
1236 }
1237 kfree(pages);
1238
71e3aac0
AA
1239 smp_wmb(); /* make pte visible before pmd */
1240 pmd_populate(mm, pmd, pgtable);
d281ee61 1241 page_remove_rmap(page, true);
c4088ebd 1242 spin_unlock(ptl);
71e3aac0 1243
2ec74c3e
SG
1244 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1245
71e3aac0
AA
1246 ret |= VM_FAULT_WRITE;
1247 put_page(page);
1248
1249out:
1250 return ret;
1251
1252out_free_pages:
c4088ebd 1253 spin_unlock(ptl);
2ec74c3e 1254 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1255 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1256 memcg = (void *)page_private(pages[i]);
1257 set_page_private(pages[i], 0);
f627c2f5 1258 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1259 put_page(pages[i]);
b9bbfbe3 1260 }
71e3aac0
AA
1261 kfree(pages);
1262 goto out;
1263}
1264
1265int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1266 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1267{
c4088ebd 1268 spinlock_t *ptl;
71e3aac0 1269 int ret = 0;
93b4796d 1270 struct page *page = NULL, *new_page;
00501b53 1271 struct mem_cgroup *memcg;
71e3aac0 1272 unsigned long haddr;
2ec74c3e
SG
1273 unsigned long mmun_start; /* For mmu_notifiers */
1274 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1275 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1276
c4088ebd 1277 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1278 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1279 haddr = address & HPAGE_PMD_MASK;
1280 if (is_huge_zero_pmd(orig_pmd))
1281 goto alloc;
c4088ebd 1282 spin_lock(ptl);
71e3aac0
AA
1283 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1284 goto out_unlock;
1285
1286 page = pmd_page(orig_pmd);
309381fe 1287 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1288 /*
1289 * We can only reuse the page if nobody else maps the huge page or it's
1290 * part. We can do it by checking page_mapcount() on each sub-page, but
1291 * it's expensive.
1292 * The cheaper way is to check page_count() to be equal 1: every
1293 * mapcount takes page reference reference, so this way we can
1294 * guarantee, that the PMD is the only mapping.
1295 * This can give false negative if somebody pinned the page, but that's
1296 * fine.
1297 */
1298 if (page_mapcount(page) == 1 && page_count(page) == 1) {
71e3aac0
AA
1299 pmd_t entry;
1300 entry = pmd_mkyoung(orig_pmd);
1301 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1302 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1303 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1304 ret |= VM_FAULT_WRITE;
1305 goto out_unlock;
1306 }
ddc58f27 1307 get_page(page);
c4088ebd 1308 spin_unlock(ptl);
93b4796d 1309alloc:
71e3aac0 1310 if (transparent_hugepage_enabled(vma) &&
077fcf11 1311 !transparent_hugepage_debug_cow()) {
444eb2a4 1312 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1313 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1314 } else
71e3aac0
AA
1315 new_page = NULL;
1316
9a982250
KS
1317 if (likely(new_page)) {
1318 prep_transhuge_page(new_page);
1319 } else {
eecc1e42 1320 if (!page) {
78ddc534 1321 split_huge_pmd(vma, pmd, address);
e9b71ca9 1322 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1323 } else {
1324 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1325 pmd, orig_pmd, page, haddr);
9845cbbd 1326 if (ret & VM_FAULT_OOM) {
78ddc534 1327 split_huge_pmd(vma, pmd, address);
9845cbbd
KS
1328 ret |= VM_FAULT_FALLBACK;
1329 }
ddc58f27 1330 put_page(page);
93b4796d 1331 }
17766dde 1332 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1333 goto out;
1334 }
1335
f627c2f5
KS
1336 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1337 true))) {
b9bbfbe3 1338 put_page(new_page);
93b4796d 1339 if (page) {
78ddc534 1340 split_huge_pmd(vma, pmd, address);
ddc58f27 1341 put_page(page);
9845cbbd 1342 } else
78ddc534 1343 split_huge_pmd(vma, pmd, address);
9845cbbd 1344 ret |= VM_FAULT_FALLBACK;
17766dde 1345 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1346 goto out;
1347 }
1348
17766dde
DR
1349 count_vm_event(THP_FAULT_ALLOC);
1350
eecc1e42 1351 if (!page)
93b4796d
KS
1352 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1353 else
1354 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1355 __SetPageUptodate(new_page);
1356
2ec74c3e
SG
1357 mmun_start = haddr;
1358 mmun_end = haddr + HPAGE_PMD_SIZE;
1359 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1360
c4088ebd 1361 spin_lock(ptl);
93b4796d 1362 if (page)
ddc58f27 1363 put_page(page);
b9bbfbe3 1364 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1365 spin_unlock(ptl);
f627c2f5 1366 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1367 put_page(new_page);
2ec74c3e 1368 goto out_mn;
b9bbfbe3 1369 } else {
71e3aac0 1370 pmd_t entry;
3122359a
KS
1371 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1372 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1373 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
d281ee61 1374 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1375 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1376 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1377 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1378 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1379 if (!page) {
93b4796d 1380 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1381 put_huge_zero_page();
1382 } else {
309381fe 1383 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1384 page_remove_rmap(page, true);
93b4796d
KS
1385 put_page(page);
1386 }
71e3aac0
AA
1387 ret |= VM_FAULT_WRITE;
1388 }
c4088ebd 1389 spin_unlock(ptl);
2ec74c3e
SG
1390out_mn:
1391 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1392out:
1393 return ret;
2ec74c3e 1394out_unlock:
c4088ebd 1395 spin_unlock(ptl);
2ec74c3e 1396 return ret;
71e3aac0
AA
1397}
1398
b676b293 1399struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1400 unsigned long addr,
1401 pmd_t *pmd,
1402 unsigned int flags)
1403{
b676b293 1404 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1405 struct page *page = NULL;
1406
c4088ebd 1407 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1408
1409 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1410 goto out;
1411
85facf25
KS
1412 /* Avoid dumping huge zero page */
1413 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1414 return ERR_PTR(-EFAULT);
1415
2b4847e7 1416 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1417 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1418 goto out;
1419
71e3aac0 1420 page = pmd_page(*pmd);
309381fe 1421 VM_BUG_ON_PAGE(!PageHead(page), page);
3565fce3
DW
1422 if (flags & FOLL_TOUCH)
1423 touch_pmd(vma, addr, pmd);
de60f5f1 1424 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1425 /*
1426 * We don't mlock() pte-mapped THPs. This way we can avoid
1427 * leaking mlocked pages into non-VM_LOCKED VMAs.
1428 *
1429 * In most cases the pmd is the only mapping of the page as we
1430 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1431 * writable private mappings in populate_vma_page_range().
1432 *
1433 * The only scenario when we have the page shared here is if we
1434 * mlocking read-only mapping shared over fork(). We skip
1435 * mlocking such pages.
1436 */
1437 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1438 page->mapping && trylock_page(page)) {
b676b293
DR
1439 lru_add_drain();
1440 if (page->mapping)
1441 mlock_vma_page(page);
1442 unlock_page(page);
1443 }
1444 }
71e3aac0 1445 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1446 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1447 if (flags & FOLL_GET)
ddc58f27 1448 get_page(page);
71e3aac0
AA
1449
1450out:
1451 return page;
1452}
1453
d10e63f2 1454/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1455int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1456 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1457{
c4088ebd 1458 spinlock_t *ptl;
b8916634 1459 struct anon_vma *anon_vma = NULL;
b32967ff 1460 struct page *page;
d10e63f2 1461 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1462 int page_nid = -1, this_nid = numa_node_id();
90572890 1463 int target_nid, last_cpupid = -1;
8191acbd
MG
1464 bool page_locked;
1465 bool migrated = false;
b191f9b1 1466 bool was_writable;
6688cc05 1467 int flags = 0;
d10e63f2 1468
c0e7cad9
MG
1469 /* A PROT_NONE fault should not end up here */
1470 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1471
c4088ebd 1472 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1473 if (unlikely(!pmd_same(pmd, *pmdp)))
1474 goto out_unlock;
1475
de466bd6
MG
1476 /*
1477 * If there are potential migrations, wait for completion and retry
1478 * without disrupting NUMA hinting information. Do not relock and
1479 * check_same as the page may no longer be mapped.
1480 */
1481 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1482 page = pmd_page(*pmdp);
de466bd6 1483 spin_unlock(ptl);
5d833062 1484 wait_on_page_locked(page);
de466bd6
MG
1485 goto out;
1486 }
1487
d10e63f2 1488 page = pmd_page(pmd);
a1a46184 1489 BUG_ON(is_huge_zero_page(page));
8191acbd 1490 page_nid = page_to_nid(page);
90572890 1491 last_cpupid = page_cpupid_last(page);
03c5a6e1 1492 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1493 if (page_nid == this_nid) {
03c5a6e1 1494 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1495 flags |= TNF_FAULT_LOCAL;
1496 }
4daae3b4 1497
bea66fbd
MG
1498 /* See similar comment in do_numa_page for explanation */
1499 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1500 flags |= TNF_NO_GROUP;
1501
ff9042b1
MG
1502 /*
1503 * Acquire the page lock to serialise THP migrations but avoid dropping
1504 * page_table_lock if at all possible
1505 */
b8916634
MG
1506 page_locked = trylock_page(page);
1507 target_nid = mpol_misplaced(page, vma, haddr);
1508 if (target_nid == -1) {
1509 /* If the page was locked, there are no parallel migrations */
a54a407f 1510 if (page_locked)
b8916634 1511 goto clear_pmdnuma;
2b4847e7 1512 }
4daae3b4 1513
de466bd6 1514 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1515 if (!page_locked) {
c4088ebd 1516 spin_unlock(ptl);
b8916634 1517 wait_on_page_locked(page);
a54a407f 1518 page_nid = -1;
b8916634
MG
1519 goto out;
1520 }
1521
2b4847e7
MG
1522 /*
1523 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1524 * to serialises splits
1525 */
b8916634 1526 get_page(page);
c4088ebd 1527 spin_unlock(ptl);
b8916634 1528 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1529
c69307d5 1530 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1531 spin_lock(ptl);
b32967ff
MG
1532 if (unlikely(!pmd_same(pmd, *pmdp))) {
1533 unlock_page(page);
1534 put_page(page);
a54a407f 1535 page_nid = -1;
4daae3b4 1536 goto out_unlock;
b32967ff 1537 }
ff9042b1 1538
c3a489ca
MG
1539 /* Bail if we fail to protect against THP splits for any reason */
1540 if (unlikely(!anon_vma)) {
1541 put_page(page);
1542 page_nid = -1;
1543 goto clear_pmdnuma;
1544 }
1545
a54a407f
MG
1546 /*
1547 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1548 * and access rights restored.
a54a407f 1549 */
c4088ebd 1550 spin_unlock(ptl);
b32967ff 1551 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1552 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1553 if (migrated) {
1554 flags |= TNF_MIGRATED;
8191acbd 1555 page_nid = target_nid;
074c2381
MG
1556 } else
1557 flags |= TNF_MIGRATE_FAIL;
b32967ff 1558
8191acbd 1559 goto out;
b32967ff 1560clear_pmdnuma:
a54a407f 1561 BUG_ON(!PageLocked(page));
b191f9b1 1562 was_writable = pmd_write(pmd);
4d942466 1563 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1564 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1565 if (was_writable)
1566 pmd = pmd_mkwrite(pmd);
d10e63f2 1567 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1568 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1569 unlock_page(page);
d10e63f2 1570out_unlock:
c4088ebd 1571 spin_unlock(ptl);
b8916634
MG
1572
1573out:
1574 if (anon_vma)
1575 page_unlock_anon_vma_read(anon_vma);
1576
8191acbd 1577 if (page_nid != -1)
6688cc05 1578 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1579
d10e63f2
MG
1580 return 0;
1581}
1582
b8d3c4c3
MK
1583int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1584 pmd_t *pmd, unsigned long addr, unsigned long next)
1585
1586{
1587 spinlock_t *ptl;
1588 pmd_t orig_pmd;
1589 struct page *page;
1590 struct mm_struct *mm = tlb->mm;
1591 int ret = 0;
1592
b6ec57f4
KS
1593 ptl = pmd_trans_huge_lock(pmd, vma);
1594 if (!ptl)
25eedabe 1595 goto out_unlocked;
b8d3c4c3
MK
1596
1597 orig_pmd = *pmd;
1598 if (is_huge_zero_pmd(orig_pmd)) {
1599 ret = 1;
1600 goto out;
1601 }
1602
1603 page = pmd_page(orig_pmd);
1604 /*
1605 * If other processes are mapping this page, we couldn't discard
1606 * the page unless they all do MADV_FREE so let's skip the page.
1607 */
1608 if (page_mapcount(page) != 1)
1609 goto out;
1610
1611 if (!trylock_page(page))
1612 goto out;
1613
1614 /*
1615 * If user want to discard part-pages of THP, split it so MADV_FREE
1616 * will deactivate only them.
1617 */
1618 if (next - addr != HPAGE_PMD_SIZE) {
1619 get_page(page);
1620 spin_unlock(ptl);
1621 if (split_huge_page(page)) {
1622 put_page(page);
1623 unlock_page(page);
1624 goto out_unlocked;
1625 }
1626 put_page(page);
1627 unlock_page(page);
1628 ret = 1;
1629 goto out_unlocked;
1630 }
1631
1632 if (PageDirty(page))
1633 ClearPageDirty(page);
1634 unlock_page(page);
1635
1636 if (PageActive(page))
1637 deactivate_page(page);
1638
1639 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1640 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1641 tlb->fullmm);
1642 orig_pmd = pmd_mkold(orig_pmd);
1643 orig_pmd = pmd_mkclean(orig_pmd);
1644
1645 set_pmd_at(mm, addr, pmd, orig_pmd);
1646 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1647 }
1648 ret = 1;
1649out:
1650 spin_unlock(ptl);
1651out_unlocked:
1652 return ret;
1653}
1654
71e3aac0 1655int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1656 pmd_t *pmd, unsigned long addr)
71e3aac0 1657{
da146769 1658 pmd_t orig_pmd;
bf929152 1659 spinlock_t *ptl;
71e3aac0 1660
b6ec57f4
KS
1661 ptl = __pmd_trans_huge_lock(pmd, vma);
1662 if (!ptl)
da146769
KS
1663 return 0;
1664 /*
1665 * For architectures like ppc64 we look at deposited pgtable
1666 * when calling pmdp_huge_get_and_clear. So do the
1667 * pgtable_trans_huge_withdraw after finishing pmdp related
1668 * operations.
1669 */
1670 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1671 tlb->fullmm);
1672 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1673 if (vma_is_dax(vma)) {
1674 spin_unlock(ptl);
1675 if (is_huge_zero_pmd(orig_pmd))
97ae1749 1676 put_huge_zero_page();
da146769
KS
1677 } else if (is_huge_zero_pmd(orig_pmd)) {
1678 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1679 atomic_long_dec(&tlb->mm->nr_ptes);
1680 spin_unlock(ptl);
1681 put_huge_zero_page();
1682 } else {
1683 struct page *page = pmd_page(orig_pmd);
d281ee61 1684 page_remove_rmap(page, true);
da146769
KS
1685 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1686 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1687 VM_BUG_ON_PAGE(!PageHead(page), page);
1688 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1689 atomic_long_dec(&tlb->mm->nr_ptes);
1690 spin_unlock(ptl);
1691 tlb_remove_page(tlb, page);
025c5b24 1692 }
da146769 1693 return 1;
71e3aac0
AA
1694}
1695
4b471e88 1696bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
37a1c49a
AA
1697 unsigned long old_addr,
1698 unsigned long new_addr, unsigned long old_end,
1699 pmd_t *old_pmd, pmd_t *new_pmd)
1700{
bf929152 1701 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1702 pmd_t pmd;
1703
1704 struct mm_struct *mm = vma->vm_mm;
1705
1706 if ((old_addr & ~HPAGE_PMD_MASK) ||
1707 (new_addr & ~HPAGE_PMD_MASK) ||
1708 old_end - old_addr < HPAGE_PMD_SIZE ||
1709 (new_vma->vm_flags & VM_NOHUGEPAGE))
4b471e88 1710 return false;
37a1c49a
AA
1711
1712 /*
1713 * The destination pmd shouldn't be established, free_pgtables()
1714 * should have release it.
1715 */
1716 if (WARN_ON(!pmd_none(*new_pmd))) {
1717 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1718 return false;
37a1c49a
AA
1719 }
1720
bf929152
KS
1721 /*
1722 * We don't have to worry about the ordering of src and dst
1723 * ptlocks because exclusive mmap_sem prevents deadlock.
1724 */
b6ec57f4
KS
1725 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1726 if (old_ptl) {
bf929152
KS
1727 new_ptl = pmd_lockptr(mm, new_pmd);
1728 if (new_ptl != old_ptl)
1729 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1730 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1731 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1732
69a8ec2d
KS
1733 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1734 vma_is_anonymous(vma)) {
b3084f4d 1735 pgtable_t pgtable;
3592806c
KS
1736 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1737 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1738 }
b3084f4d
AK
1739 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1740 if (new_ptl != old_ptl)
1741 spin_unlock(new_ptl);
bf929152 1742 spin_unlock(old_ptl);
4b471e88 1743 return true;
37a1c49a 1744 }
4b471e88 1745 return false;
37a1c49a
AA
1746}
1747
f123d74a
MG
1748/*
1749 * Returns
1750 * - 0 if PMD could not be locked
1751 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1752 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1753 */
cd7548ab 1754int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1755 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1756{
1757 struct mm_struct *mm = vma->vm_mm;
bf929152 1758 spinlock_t *ptl;
cd7548ab
JW
1759 int ret = 0;
1760
b6ec57f4
KS
1761 ptl = __pmd_trans_huge_lock(pmd, vma);
1762 if (ptl) {
025c5b24 1763 pmd_t entry;
b191f9b1 1764 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1765 ret = 1;
e944fd67
MG
1766
1767 /*
1768 * Avoid trapping faults against the zero page. The read-only
1769 * data is likely to be read-cached on the local CPU and
1770 * local/remote hits to the zero page are not interesting.
1771 */
1772 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1773 spin_unlock(ptl);
ba68bc01 1774 return ret;
e944fd67
MG
1775 }
1776
10c1045f 1777 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1778 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1779 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1780 if (preserve_write)
1781 entry = pmd_mkwrite(entry);
10c1045f
MG
1782 ret = HPAGE_PMD_NR;
1783 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1784 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1785 }
bf929152 1786 spin_unlock(ptl);
025c5b24
NH
1787 }
1788
1789 return ret;
1790}
1791
1792/*
4b471e88 1793 * Returns true if a given pmd maps a thp, false otherwise.
025c5b24 1794 *
4b471e88
KS
1795 * Note that if it returns true, this routine returns without unlocking page
1796 * table lock. So callers must unlock it.
025c5b24 1797 */
b6ec57f4 1798spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1799{
b6ec57f4
KS
1800 spinlock_t *ptl;
1801 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1802 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1803 return ptl;
1804 spin_unlock(ptl);
1805 return NULL;
cd7548ab
JW
1806}
1807
9050d7eb 1808#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1809
60ab3244
AA
1810int hugepage_madvise(struct vm_area_struct *vma,
1811 unsigned long *vm_flags, int advice)
0af4e98b 1812{
a664b2d8
AA
1813 switch (advice) {
1814 case MADV_HUGEPAGE:
1e1836e8
AT
1815#ifdef CONFIG_S390
1816 /*
1817 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1818 * can't handle this properly after s390_enable_sie, so we simply
1819 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1820 */
1821 if (mm_has_pgste(vma->vm_mm))
1822 return 0;
1823#endif
a664b2d8
AA
1824 /*
1825 * Be somewhat over-protective like KSM for now!
1826 */
1a763615 1827 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1828 return -EINVAL;
1829 *vm_flags &= ~VM_NOHUGEPAGE;
1830 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1831 /*
1832 * If the vma become good for khugepaged to scan,
1833 * register it here without waiting a page fault that
1834 * may not happen any time soon.
1835 */
6d50e60c 1836 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1837 return -ENOMEM;
a664b2d8
AA
1838 break;
1839 case MADV_NOHUGEPAGE:
1840 /*
1841 * Be somewhat over-protective like KSM for now!
1842 */
1a763615 1843 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1844 return -EINVAL;
1845 *vm_flags &= ~VM_HUGEPAGE;
1846 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1847 /*
1848 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1849 * this vma even if we leave the mm registered in khugepaged if
1850 * it got registered before VM_NOHUGEPAGE was set.
1851 */
a664b2d8
AA
1852 break;
1853 }
0af4e98b
AA
1854
1855 return 0;
1856}
1857
ba76149f
AA
1858static int __init khugepaged_slab_init(void)
1859{
1860 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1861 sizeof(struct mm_slot),
1862 __alignof__(struct mm_slot), 0, NULL);
1863 if (!mm_slot_cache)
1864 return -ENOMEM;
1865
1866 return 0;
1867}
1868
65ebb64f
KS
1869static void __init khugepaged_slab_exit(void)
1870{
1871 kmem_cache_destroy(mm_slot_cache);
1872}
1873
ba76149f
AA
1874static inline struct mm_slot *alloc_mm_slot(void)
1875{
1876 if (!mm_slot_cache) /* initialization failed */
1877 return NULL;
1878 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1879}
1880
1881static inline void free_mm_slot(struct mm_slot *mm_slot)
1882{
1883 kmem_cache_free(mm_slot_cache, mm_slot);
1884}
1885
ba76149f
AA
1886static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1887{
1888 struct mm_slot *mm_slot;
ba76149f 1889
b67bfe0d 1890 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1891 if (mm == mm_slot->mm)
1892 return mm_slot;
43b5fbbd 1893
ba76149f
AA
1894 return NULL;
1895}
1896
1897static void insert_to_mm_slots_hash(struct mm_struct *mm,
1898 struct mm_slot *mm_slot)
1899{
ba76149f 1900 mm_slot->mm = mm;
43b5fbbd 1901 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1902}
1903
1904static inline int khugepaged_test_exit(struct mm_struct *mm)
1905{
1906 return atomic_read(&mm->mm_users) == 0;
1907}
1908
1909int __khugepaged_enter(struct mm_struct *mm)
1910{
1911 struct mm_slot *mm_slot;
1912 int wakeup;
1913
1914 mm_slot = alloc_mm_slot();
1915 if (!mm_slot)
1916 return -ENOMEM;
1917
1918 /* __khugepaged_exit() must not run from under us */
96dad67f 1919 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
1920 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1921 free_mm_slot(mm_slot);
1922 return 0;
1923 }
1924
1925 spin_lock(&khugepaged_mm_lock);
1926 insert_to_mm_slots_hash(mm, mm_slot);
1927 /*
1928 * Insert just behind the scanning cursor, to let the area settle
1929 * down a little.
1930 */
1931 wakeup = list_empty(&khugepaged_scan.mm_head);
1932 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1933 spin_unlock(&khugepaged_mm_lock);
1934
1935 atomic_inc(&mm->mm_count);
1936 if (wakeup)
1937 wake_up_interruptible(&khugepaged_wait);
1938
1939 return 0;
1940}
1941
6d50e60c
DR
1942int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1943 unsigned long vm_flags)
ba76149f
AA
1944{
1945 unsigned long hstart, hend;
1946 if (!vma->anon_vma)
1947 /*
1948 * Not yet faulted in so we will register later in the
1949 * page fault if needed.
1950 */
1951 return 0;
78f11a25 1952 if (vma->vm_ops)
ba76149f
AA
1953 /* khugepaged not yet working on file or special mappings */
1954 return 0;
6d50e60c 1955 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
1956 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1957 hend = vma->vm_end & HPAGE_PMD_MASK;
1958 if (hstart < hend)
6d50e60c 1959 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
1960 return 0;
1961}
1962
1963void __khugepaged_exit(struct mm_struct *mm)
1964{
1965 struct mm_slot *mm_slot;
1966 int free = 0;
1967
1968 spin_lock(&khugepaged_mm_lock);
1969 mm_slot = get_mm_slot(mm);
1970 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1971 hash_del(&mm_slot->hash);
ba76149f
AA
1972 list_del(&mm_slot->mm_node);
1973 free = 1;
1974 }
d788e80a 1975 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1976
1977 if (free) {
ba76149f
AA
1978 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1979 free_mm_slot(mm_slot);
1980 mmdrop(mm);
1981 } else if (mm_slot) {
ba76149f
AA
1982 /*
1983 * This is required to serialize against
1984 * khugepaged_test_exit() (which is guaranteed to run
1985 * under mmap sem read mode). Stop here (after we
1986 * return all pagetables will be destroyed) until
1987 * khugepaged has finished working on the pagetables
1988 * under the mmap_sem.
1989 */
1990 down_write(&mm->mmap_sem);
1991 up_write(&mm->mmap_sem);
d788e80a 1992 }
ba76149f
AA
1993}
1994
1995static void release_pte_page(struct page *page)
1996{
1997 /* 0 stands for page_is_file_cache(page) == false */
1998 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1999 unlock_page(page);
2000 putback_lru_page(page);
2001}
2002
2003static void release_pte_pages(pte_t *pte, pte_t *_pte)
2004{
2005 while (--_pte >= pte) {
2006 pte_t pteval = *_pte;
ca0984ca 2007 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2008 release_pte_page(pte_page(pteval));
2009 }
2010}
2011
ba76149f
AA
2012static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2013 unsigned long address,
2014 pte_t *pte)
2015{
7d2eba05 2016 struct page *page = NULL;
ba76149f 2017 pte_t *_pte;
7d2eba05 2018 int none_or_zero = 0, result = 0;
10359213 2019 bool referenced = false, writable = false;
7d2eba05 2020
ba76149f
AA
2021 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2022 _pte++, address += PAGE_SIZE) {
2023 pte_t pteval = *_pte;
47aee4d8
MK
2024 if (pte_none(pteval) || (pte_present(pteval) &&
2025 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 2026 if (!userfaultfd_armed(vma) &&
7d2eba05 2027 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2028 continue;
7d2eba05
EA
2029 } else {
2030 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2031 goto out;
7d2eba05 2032 }
ba76149f 2033 }
7d2eba05
EA
2034 if (!pte_present(pteval)) {
2035 result = SCAN_PTE_NON_PRESENT;
ba76149f 2036 goto out;
7d2eba05 2037 }
ba76149f 2038 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
2039 if (unlikely(!page)) {
2040 result = SCAN_PAGE_NULL;
ba76149f 2041 goto out;
7d2eba05 2042 }
344aa35c 2043
309381fe
SL
2044 VM_BUG_ON_PAGE(PageCompound(page), page);
2045 VM_BUG_ON_PAGE(!PageAnon(page), page);
2046 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2047
ba76149f
AA
2048 /*
2049 * We can do it before isolate_lru_page because the
2050 * page can't be freed from under us. NOTE: PG_lock
2051 * is needed to serialize against split_huge_page
2052 * when invoked from the VM.
2053 */
7d2eba05
EA
2054 if (!trylock_page(page)) {
2055 result = SCAN_PAGE_LOCK;
ba76149f 2056 goto out;
7d2eba05 2057 }
10359213
EA
2058
2059 /*
2060 * cannot use mapcount: can't collapse if there's a gup pin.
2061 * The page must only be referenced by the scanned process
2062 * and page swap cache.
2063 */
2064 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2065 unlock_page(page);
7d2eba05 2066 result = SCAN_PAGE_COUNT;
10359213
EA
2067 goto out;
2068 }
2069 if (pte_write(pteval)) {
2070 writable = true;
2071 } else {
2072 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2073 unlock_page(page);
7d2eba05 2074 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
2075 goto out;
2076 }
2077 /*
2078 * Page is not in the swap cache. It can be collapsed
2079 * into a THP.
2080 */
2081 }
2082
ba76149f
AA
2083 /*
2084 * Isolate the page to avoid collapsing an hugepage
2085 * currently in use by the VM.
2086 */
2087 if (isolate_lru_page(page)) {
2088 unlock_page(page);
7d2eba05 2089 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
2090 goto out;
2091 }
2092 /* 0 stands for page_is_file_cache(page) == false */
2093 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2094 VM_BUG_ON_PAGE(!PageLocked(page), page);
2095 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2096
2097 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
2098 if (pte_young(pteval) ||
2099 page_is_young(page) || PageReferenced(page) ||
8ee53820 2100 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2101 referenced = true;
ba76149f 2102 }
7d2eba05
EA
2103 if (likely(writable)) {
2104 if (likely(referenced)) {
2105 result = SCAN_SUCCEED;
16fd0fe4 2106 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05
EA
2107 referenced, writable, result);
2108 return 1;
2109 }
2110 } else {
2111 result = SCAN_PAGE_RO;
2112 }
2113
ba76149f 2114out:
344aa35c 2115 release_pte_pages(pte, _pte);
16fd0fe4 2116 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05 2117 referenced, writable, result);
344aa35c 2118 return 0;
ba76149f
AA
2119}
2120
2121static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2122 struct vm_area_struct *vma,
2123 unsigned long address,
2124 spinlock_t *ptl)
2125{
2126 pte_t *_pte;
2127 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2128 pte_t pteval = *_pte;
2129 struct page *src_page;
2130
ca0984ca 2131 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2132 clear_user_highpage(page, address);
2133 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2134 if (is_zero_pfn(pte_pfn(pteval))) {
2135 /*
2136 * ptl mostly unnecessary.
2137 */
2138 spin_lock(ptl);
2139 /*
2140 * paravirt calls inside pte_clear here are
2141 * superfluous.
2142 */
2143 pte_clear(vma->vm_mm, address, _pte);
2144 spin_unlock(ptl);
2145 }
ba76149f
AA
2146 } else {
2147 src_page = pte_page(pteval);
2148 copy_user_highpage(page, src_page, address, vma);
309381fe 2149 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2150 release_pte_page(src_page);
2151 /*
2152 * ptl mostly unnecessary, but preempt has to
2153 * be disabled to update the per-cpu stats
2154 * inside page_remove_rmap().
2155 */
2156 spin_lock(ptl);
2157 /*
2158 * paravirt calls inside pte_clear here are
2159 * superfluous.
2160 */
2161 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2162 page_remove_rmap(src_page, false);
ba76149f
AA
2163 spin_unlock(ptl);
2164 free_page_and_swap_cache(src_page);
2165 }
2166
2167 address += PAGE_SIZE;
2168 page++;
2169 }
2170}
2171
26234f36 2172static void khugepaged_alloc_sleep(void)
ba76149f 2173{
bde43c6c
PM
2174 DEFINE_WAIT(wait);
2175
2176 add_wait_queue(&khugepaged_wait, &wait);
2177 freezable_schedule_timeout_interruptible(
2178 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2179 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2180}
ba76149f 2181
9f1b868a
BL
2182static int khugepaged_node_load[MAX_NUMNODES];
2183
14a4e214
DR
2184static bool khugepaged_scan_abort(int nid)
2185{
2186 int i;
2187
2188 /*
2189 * If zone_reclaim_mode is disabled, then no extra effort is made to
2190 * allocate memory locally.
2191 */
2192 if (!zone_reclaim_mode)
2193 return false;
2194
2195 /* If there is a count for this node already, it must be acceptable */
2196 if (khugepaged_node_load[nid])
2197 return false;
2198
2199 for (i = 0; i < MAX_NUMNODES; i++) {
2200 if (!khugepaged_node_load[i])
2201 continue;
2202 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2203 return true;
2204 }
2205 return false;
2206}
2207
26234f36 2208#ifdef CONFIG_NUMA
9f1b868a
BL
2209static int khugepaged_find_target_node(void)
2210{
2211 static int last_khugepaged_target_node = NUMA_NO_NODE;
2212 int nid, target_node = 0, max_value = 0;
2213
2214 /* find first node with max normal pages hit */
2215 for (nid = 0; nid < MAX_NUMNODES; nid++)
2216 if (khugepaged_node_load[nid] > max_value) {
2217 max_value = khugepaged_node_load[nid];
2218 target_node = nid;
2219 }
2220
2221 /* do some balance if several nodes have the same hit record */
2222 if (target_node <= last_khugepaged_target_node)
2223 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2224 nid++)
2225 if (max_value == khugepaged_node_load[nid]) {
2226 target_node = nid;
2227 break;
2228 }
2229
2230 last_khugepaged_target_node = target_node;
2231 return target_node;
2232}
2233
26234f36
XG
2234static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2235{
2236 if (IS_ERR(*hpage)) {
2237 if (!*wait)
2238 return false;
2239
2240 *wait = false;
e3b4126c 2241 *hpage = NULL;
26234f36
XG
2242 khugepaged_alloc_sleep();
2243 } else if (*hpage) {
2244 put_page(*hpage);
2245 *hpage = NULL;
2246 }
2247
2248 return true;
2249}
2250
3b363692
MH
2251static struct page *
2252khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2253 unsigned long address, int node)
26234f36 2254{
309381fe 2255 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2256
ce83d217 2257 /*
8b164568
VB
2258 * Before allocating the hugepage, release the mmap_sem read lock.
2259 * The allocation can take potentially a long time if it involves
2260 * sync compaction, and we do not need to hold the mmap_sem during
2261 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2262 */
8b164568
VB
2263 up_read(&mm->mmap_sem);
2264
96db800f 2265 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2266 if (unlikely(!*hpage)) {
81ab4201 2267 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2268 *hpage = ERR_PTR(-ENOMEM);
26234f36 2269 return NULL;
ce83d217 2270 }
26234f36 2271
9a982250 2272 prep_transhuge_page(*hpage);
65b3c07b 2273 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2274 return *hpage;
2275}
2276#else
9f1b868a
BL
2277static int khugepaged_find_target_node(void)
2278{
2279 return 0;
2280}
2281
444eb2a4 2282static inline struct page *alloc_khugepaged_hugepage(void)
10dc4155 2283{
9a982250
KS
2284 struct page *page;
2285
444eb2a4
MG
2286 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2287 HPAGE_PMD_ORDER);
9a982250
KS
2288 if (page)
2289 prep_transhuge_page(page);
2290 return page;
10dc4155
BL
2291}
2292
26234f36
XG
2293static struct page *khugepaged_alloc_hugepage(bool *wait)
2294{
2295 struct page *hpage;
2296
2297 do {
444eb2a4 2298 hpage = alloc_khugepaged_hugepage();
26234f36
XG
2299 if (!hpage) {
2300 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2301 if (!*wait)
2302 return NULL;
2303
2304 *wait = false;
2305 khugepaged_alloc_sleep();
2306 } else
2307 count_vm_event(THP_COLLAPSE_ALLOC);
2308 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2309
2310 return hpage;
2311}
2312
2313static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2314{
2315 if (!*hpage)
2316 *hpage = khugepaged_alloc_hugepage(wait);
2317
2318 if (unlikely(!*hpage))
2319 return false;
2320
2321 return true;
2322}
2323
3b363692
MH
2324static struct page *
2325khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2326 unsigned long address, int node)
26234f36
XG
2327{
2328 up_read(&mm->mmap_sem);
2329 VM_BUG_ON(!*hpage);
3b363692 2330
26234f36
XG
2331 return *hpage;
2332}
692e0b35
AA
2333#endif
2334
fa475e51
BL
2335static bool hugepage_vma_check(struct vm_area_struct *vma)
2336{
2337 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2338 (vma->vm_flags & VM_NOHUGEPAGE))
2339 return false;
fa475e51
BL
2340 if (!vma->anon_vma || vma->vm_ops)
2341 return false;
2342 if (is_vma_temporary_stack(vma))
2343 return false;
81d1b09c 2344 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2345 return true;
2346}
2347
26234f36
XG
2348static void collapse_huge_page(struct mm_struct *mm,
2349 unsigned long address,
2350 struct page **hpage,
2351 struct vm_area_struct *vma,
2352 int node)
2353{
26234f36
XG
2354 pmd_t *pmd, _pmd;
2355 pte_t *pte;
2356 pgtable_t pgtable;
2357 struct page *new_page;
c4088ebd 2358 spinlock_t *pmd_ptl, *pte_ptl;
629d9d1c 2359 int isolated = 0, result = 0;
26234f36 2360 unsigned long hstart, hend;
00501b53 2361 struct mem_cgroup *memcg;
2ec74c3e
SG
2362 unsigned long mmun_start; /* For mmu_notifiers */
2363 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2364 gfp_t gfp;
26234f36
XG
2365
2366 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2367
3b363692 2368 /* Only allocate from the target node */
444eb2a4 2369 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
3b363692 2370
26234f36 2371 /* release the mmap_sem read lock. */
d6669d68 2372 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2373 if (!new_page) {
2374 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2375 goto out_nolock;
2376 }
26234f36 2377
f627c2f5 2378 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2379 result = SCAN_CGROUP_CHARGE_FAIL;
2380 goto out_nolock;
2381 }
ba76149f
AA
2382
2383 /*
2384 * Prevent all access to pagetables with the exception of
2385 * gup_fast later hanlded by the ptep_clear_flush and the VM
2386 * handled by the anon_vma lock + PG_lock.
2387 */
2388 down_write(&mm->mmap_sem);
7d2eba05
EA
2389 if (unlikely(khugepaged_test_exit(mm))) {
2390 result = SCAN_ANY_PROCESS;
ba76149f 2391 goto out;
7d2eba05 2392 }
ba76149f
AA
2393
2394 vma = find_vma(mm, address);
7d2eba05
EA
2395 if (!vma) {
2396 result = SCAN_VMA_NULL;
a8f531eb 2397 goto out;
7d2eba05 2398 }
ba76149f
AA
2399 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2400 hend = vma->vm_end & HPAGE_PMD_MASK;
7d2eba05
EA
2401 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2402 result = SCAN_ADDRESS_RANGE;
ba76149f 2403 goto out;
7d2eba05
EA
2404 }
2405 if (!hugepage_vma_check(vma)) {
2406 result = SCAN_VMA_CHECK;
a7d6e4ec 2407 goto out;
7d2eba05 2408 }
6219049a 2409 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2410 if (!pmd) {
2411 result = SCAN_PMD_NULL;
ba76149f 2412 goto out;
7d2eba05 2413 }
ba76149f 2414
4fc3f1d6 2415 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2416
2417 pte = pte_offset_map(pmd, address);
c4088ebd 2418 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2419
2ec74c3e
SG
2420 mmun_start = address;
2421 mmun_end = address + HPAGE_PMD_SIZE;
2422 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2423 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2424 /*
2425 * After this gup_fast can't run anymore. This also removes
2426 * any huge TLB entry from the CPU so we won't allow
2427 * huge and small TLB entries for the same virtual address
2428 * to avoid the risk of CPU bugs in that area.
2429 */
15a25b2e 2430 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2431 spin_unlock(pmd_ptl);
2ec74c3e 2432 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2433
c4088ebd 2434 spin_lock(pte_ptl);
ba76149f 2435 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2436 spin_unlock(pte_ptl);
ba76149f
AA
2437
2438 if (unlikely(!isolated)) {
453c7192 2439 pte_unmap(pte);
c4088ebd 2440 spin_lock(pmd_ptl);
ba76149f 2441 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2442 /*
2443 * We can only use set_pmd_at when establishing
2444 * hugepmds and never for establishing regular pmds that
2445 * points to regular pagetables. Use pmd_populate for that
2446 */
2447 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2448 spin_unlock(pmd_ptl);
08b52706 2449 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2450 result = SCAN_FAIL;
ce83d217 2451 goto out;
ba76149f
AA
2452 }
2453
2454 /*
2455 * All pages are isolated and locked so anon_vma rmap
2456 * can't run anymore.
2457 */
08b52706 2458 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2459
c4088ebd 2460 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2461 pte_unmap(pte);
ba76149f
AA
2462 __SetPageUptodate(new_page);
2463 pgtable = pmd_pgtable(_pmd);
ba76149f 2464
3122359a
KS
2465 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2466 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2467
2468 /*
2469 * spin_lock() below is not the equivalent of smp_wmb(), so
2470 * this is needed to avoid the copy_huge_page writes to become
2471 * visible after the set_pmd_at() write.
2472 */
2473 smp_wmb();
2474
c4088ebd 2475 spin_lock(pmd_ptl);
ba76149f 2476 BUG_ON(!pmd_none(*pmd));
d281ee61 2477 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2478 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2479 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2480 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2481 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2482 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2483 spin_unlock(pmd_ptl);
ba76149f
AA
2484
2485 *hpage = NULL;
420256ef 2486
ba76149f 2487 khugepaged_pages_collapsed++;
7d2eba05 2488 result = SCAN_SUCCEED;
ce83d217 2489out_up_write:
ba76149f 2490 up_write(&mm->mmap_sem);
7d2eba05 2491 trace_mm_collapse_huge_page(mm, isolated, result);
0bbbc0b3
AA
2492 return;
2493
7d2eba05
EA
2494out_nolock:
2495 trace_mm_collapse_huge_page(mm, isolated, result);
2496 return;
ce83d217 2497out:
f627c2f5 2498 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2499 goto out_up_write;
ba76149f
AA
2500}
2501
2502static int khugepaged_scan_pmd(struct mm_struct *mm,
2503 struct vm_area_struct *vma,
2504 unsigned long address,
2505 struct page **hpage)
2506{
ba76149f
AA
2507 pmd_t *pmd;
2508 pte_t *pte, *_pte;
7d2eba05
EA
2509 int ret = 0, none_or_zero = 0, result = 0;
2510 struct page *page = NULL;
ba76149f
AA
2511 unsigned long _address;
2512 spinlock_t *ptl;
00ef2d2f 2513 int node = NUMA_NO_NODE;
10359213 2514 bool writable = false, referenced = false;
ba76149f
AA
2515
2516 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2517
6219049a 2518 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2519 if (!pmd) {
2520 result = SCAN_PMD_NULL;
ba76149f 2521 goto out;
7d2eba05 2522 }
ba76149f 2523
9f1b868a 2524 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2525 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2526 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2527 _pte++, _address += PAGE_SIZE) {
2528 pte_t pteval = *_pte;
ca0984ca 2529 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2530 if (!userfaultfd_armed(vma) &&
7d2eba05 2531 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2532 continue;
7d2eba05
EA
2533 } else {
2534 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2535 goto out_unmap;
7d2eba05 2536 }
ba76149f 2537 }
7d2eba05
EA
2538 if (!pte_present(pteval)) {
2539 result = SCAN_PTE_NON_PRESENT;
ba76149f 2540 goto out_unmap;
7d2eba05 2541 }
10359213
EA
2542 if (pte_write(pteval))
2543 writable = true;
2544
ba76149f 2545 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2546 if (unlikely(!page)) {
2547 result = SCAN_PAGE_NULL;
ba76149f 2548 goto out_unmap;
7d2eba05 2549 }
b1caa957
KS
2550
2551 /* TODO: teach khugepaged to collapse THP mapped with pte */
2552 if (PageCompound(page)) {
2553 result = SCAN_PAGE_COMPOUND;
2554 goto out_unmap;
2555 }
2556
5c4b4be3 2557 /*
9f1b868a
BL
2558 * Record which node the original page is from and save this
2559 * information to khugepaged_node_load[].
2560 * Khupaged will allocate hugepage from the node has the max
2561 * hit record.
5c4b4be3 2562 */
9f1b868a 2563 node = page_to_nid(page);
7d2eba05
EA
2564 if (khugepaged_scan_abort(node)) {
2565 result = SCAN_SCAN_ABORT;
14a4e214 2566 goto out_unmap;
7d2eba05 2567 }
9f1b868a 2568 khugepaged_node_load[node]++;
7d2eba05
EA
2569 if (!PageLRU(page)) {
2570 result = SCAN_SCAN_ABORT;
2571 goto out_unmap;
2572 }
2573 if (PageLocked(page)) {
2574 result = SCAN_PAGE_LOCK;
ba76149f 2575 goto out_unmap;
7d2eba05
EA
2576 }
2577 if (!PageAnon(page)) {
2578 result = SCAN_PAGE_ANON;
2579 goto out_unmap;
2580 }
2581
10359213
EA
2582 /*
2583 * cannot use mapcount: can't collapse if there's a gup pin.
2584 * The page must only be referenced by the scanned process
2585 * and page swap cache.
2586 */
7d2eba05
EA
2587 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2588 result = SCAN_PAGE_COUNT;
ba76149f 2589 goto out_unmap;
7d2eba05 2590 }
33c3fc71
VD
2591 if (pte_young(pteval) ||
2592 page_is_young(page) || PageReferenced(page) ||
8ee53820 2593 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2594 referenced = true;
ba76149f 2595 }
7d2eba05
EA
2596 if (writable) {
2597 if (referenced) {
2598 result = SCAN_SUCCEED;
2599 ret = 1;
2600 } else {
2601 result = SCAN_NO_REFERENCED_PAGE;
2602 }
2603 } else {
2604 result = SCAN_PAGE_RO;
2605 }
ba76149f
AA
2606out_unmap:
2607 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2608 if (ret) {
2609 node = khugepaged_find_target_node();
ce83d217 2610 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2611 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2612 }
ba76149f 2613out:
16fd0fe4 2614 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
7d2eba05 2615 none_or_zero, result);
ba76149f
AA
2616 return ret;
2617}
2618
2619static void collect_mm_slot(struct mm_slot *mm_slot)
2620{
2621 struct mm_struct *mm = mm_slot->mm;
2622
b9980cdc 2623 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2624
2625 if (khugepaged_test_exit(mm)) {
2626 /* free mm_slot */
43b5fbbd 2627 hash_del(&mm_slot->hash);
ba76149f
AA
2628 list_del(&mm_slot->mm_node);
2629
2630 /*
2631 * Not strictly needed because the mm exited already.
2632 *
2633 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2634 */
2635
2636 /* khugepaged_mm_lock actually not necessary for the below */
2637 free_mm_slot(mm_slot);
2638 mmdrop(mm);
2639 }
2640}
2641
2642static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2643 struct page **hpage)
2f1da642
HS
2644 __releases(&khugepaged_mm_lock)
2645 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2646{
2647 struct mm_slot *mm_slot;
2648 struct mm_struct *mm;
2649 struct vm_area_struct *vma;
2650 int progress = 0;
2651
2652 VM_BUG_ON(!pages);
b9980cdc 2653 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2654
2655 if (khugepaged_scan.mm_slot)
2656 mm_slot = khugepaged_scan.mm_slot;
2657 else {
2658 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2659 struct mm_slot, mm_node);
2660 khugepaged_scan.address = 0;
2661 khugepaged_scan.mm_slot = mm_slot;
2662 }
2663 spin_unlock(&khugepaged_mm_lock);
2664
2665 mm = mm_slot->mm;
2666 down_read(&mm->mmap_sem);
2667 if (unlikely(khugepaged_test_exit(mm)))
2668 vma = NULL;
2669 else
2670 vma = find_vma(mm, khugepaged_scan.address);
2671
2672 progress++;
2673 for (; vma; vma = vma->vm_next) {
2674 unsigned long hstart, hend;
2675
2676 cond_resched();
2677 if (unlikely(khugepaged_test_exit(mm))) {
2678 progress++;
2679 break;
2680 }
fa475e51
BL
2681 if (!hugepage_vma_check(vma)) {
2682skip:
ba76149f
AA
2683 progress++;
2684 continue;
2685 }
ba76149f
AA
2686 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2687 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2688 if (hstart >= hend)
2689 goto skip;
2690 if (khugepaged_scan.address > hend)
2691 goto skip;
ba76149f
AA
2692 if (khugepaged_scan.address < hstart)
2693 khugepaged_scan.address = hstart;
a7d6e4ec 2694 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2695
2696 while (khugepaged_scan.address < hend) {
2697 int ret;
2698 cond_resched();
2699 if (unlikely(khugepaged_test_exit(mm)))
2700 goto breakouterloop;
2701
2702 VM_BUG_ON(khugepaged_scan.address < hstart ||
2703 khugepaged_scan.address + HPAGE_PMD_SIZE >
2704 hend);
2705 ret = khugepaged_scan_pmd(mm, vma,
2706 khugepaged_scan.address,
2707 hpage);
2708 /* move to next address */
2709 khugepaged_scan.address += HPAGE_PMD_SIZE;
2710 progress += HPAGE_PMD_NR;
2711 if (ret)
2712 /* we released mmap_sem so break loop */
2713 goto breakouterloop_mmap_sem;
2714 if (progress >= pages)
2715 goto breakouterloop;
2716 }
2717 }
2718breakouterloop:
2719 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2720breakouterloop_mmap_sem:
2721
2722 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2723 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2724 /*
2725 * Release the current mm_slot if this mm is about to die, or
2726 * if we scanned all vmas of this mm.
2727 */
2728 if (khugepaged_test_exit(mm) || !vma) {
2729 /*
2730 * Make sure that if mm_users is reaching zero while
2731 * khugepaged runs here, khugepaged_exit will find
2732 * mm_slot not pointing to the exiting mm.
2733 */
2734 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2735 khugepaged_scan.mm_slot = list_entry(
2736 mm_slot->mm_node.next,
2737 struct mm_slot, mm_node);
2738 khugepaged_scan.address = 0;
2739 } else {
2740 khugepaged_scan.mm_slot = NULL;
2741 khugepaged_full_scans++;
2742 }
2743
2744 collect_mm_slot(mm_slot);
2745 }
2746
2747 return progress;
2748}
2749
2750static int khugepaged_has_work(void)
2751{
2752 return !list_empty(&khugepaged_scan.mm_head) &&
2753 khugepaged_enabled();
2754}
2755
2756static int khugepaged_wait_event(void)
2757{
2758 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2759 kthread_should_stop();
ba76149f
AA
2760}
2761
d516904b 2762static void khugepaged_do_scan(void)
ba76149f 2763{
d516904b 2764 struct page *hpage = NULL;
ba76149f
AA
2765 unsigned int progress = 0, pass_through_head = 0;
2766 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2767 bool wait = true;
ba76149f
AA
2768
2769 barrier(); /* write khugepaged_pages_to_scan to local stack */
2770
2771 while (progress < pages) {
26234f36 2772 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2773 break;
26234f36 2774
420256ef 2775 cond_resched();
ba76149f 2776
cd092411 2777 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2778 break;
2779
ba76149f
AA
2780 spin_lock(&khugepaged_mm_lock);
2781 if (!khugepaged_scan.mm_slot)
2782 pass_through_head++;
2783 if (khugepaged_has_work() &&
2784 pass_through_head < 2)
2785 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2786 &hpage);
ba76149f
AA
2787 else
2788 progress = pages;
2789 spin_unlock(&khugepaged_mm_lock);
2790 }
ba76149f 2791
d516904b
XG
2792 if (!IS_ERR_OR_NULL(hpage))
2793 put_page(hpage);
0bbbc0b3
AA
2794}
2795
2017c0bf
XG
2796static void khugepaged_wait_work(void)
2797{
2017c0bf
XG
2798 if (khugepaged_has_work()) {
2799 if (!khugepaged_scan_sleep_millisecs)
2800 return;
2801
2802 wait_event_freezable_timeout(khugepaged_wait,
2803 kthread_should_stop(),
2804 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2805 return;
2806 }
2807
2808 if (khugepaged_enabled())
2809 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2810}
2811
ba76149f
AA
2812static int khugepaged(void *none)
2813{
2814 struct mm_slot *mm_slot;
2815
878aee7d 2816 set_freezable();
8698a745 2817 set_user_nice(current, MAX_NICE);
ba76149f 2818
b7231789
XG
2819 while (!kthread_should_stop()) {
2820 khugepaged_do_scan();
2821 khugepaged_wait_work();
2822 }
ba76149f
AA
2823
2824 spin_lock(&khugepaged_mm_lock);
2825 mm_slot = khugepaged_scan.mm_slot;
2826 khugepaged_scan.mm_slot = NULL;
2827 if (mm_slot)
2828 collect_mm_slot(mm_slot);
2829 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2830 return 0;
2831}
2832
eef1b3ba
KS
2833static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2834 unsigned long haddr, pmd_t *pmd)
2835{
2836 struct mm_struct *mm = vma->vm_mm;
2837 pgtable_t pgtable;
2838 pmd_t _pmd;
2839 int i;
2840
2841 /* leave pmd empty until pte is filled */
2842 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2843
2844 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2845 pmd_populate(mm, &_pmd, pgtable);
2846
2847 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2848 pte_t *pte, entry;
2849 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2850 entry = pte_mkspecial(entry);
2851 pte = pte_offset_map(&_pmd, haddr);
2852 VM_BUG_ON(!pte_none(*pte));
2853 set_pte_at(mm, haddr, pte, entry);
2854 pte_unmap(pte);
2855 }
2856 smp_wmb(); /* make pte visible before pmd */
2857 pmd_populate(mm, pmd, pgtable);
2858 put_huge_zero_page();
2859}
2860
2861static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2862 unsigned long haddr, bool freeze)
eef1b3ba
KS
2863{
2864 struct mm_struct *mm = vma->vm_mm;
2865 struct page *page;
2866 pgtable_t pgtable;
2867 pmd_t _pmd;
b8d3c4c3 2868 bool young, write, dirty;
2ac015e2 2869 unsigned long addr;
eef1b3ba
KS
2870 int i;
2871
2872 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2873 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2874 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 2875 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
2876
2877 count_vm_event(THP_SPLIT_PMD);
2878
2879 if (vma_is_dax(vma)) {
2880 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2881 if (is_huge_zero_pmd(_pmd))
2882 put_huge_zero_page();
2883 return;
2884 } else if (is_huge_zero_pmd(*pmd)) {
2885 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2886 }
2887
2888 page = pmd_page(*pmd);
2889 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2890 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
2891 write = pmd_write(*pmd);
2892 young = pmd_young(*pmd);
b8d3c4c3 2893 dirty = pmd_dirty(*pmd);
eef1b3ba 2894
c777e2a8 2895 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
2896 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2897 pmd_populate(mm, &_pmd, pgtable);
2898
2ac015e2 2899 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2900 pte_t entry, *pte;
2901 /*
2902 * Note that NUMA hinting access restrictions are not
2903 * transferred to avoid any possibility of altering
2904 * permissions across VMAs.
2905 */
ba988280
KS
2906 if (freeze) {
2907 swp_entry_t swp_entry;
2908 swp_entry = make_migration_entry(page + i, write);
2909 entry = swp_entry_to_pte(swp_entry);
2910 } else {
2911 entry = mk_pte(page + i, vma->vm_page_prot);
b8d3c4c3 2912 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2913 if (!write)
2914 entry = pte_wrprotect(entry);
2915 if (!young)
2916 entry = pte_mkold(entry);
2917 }
b8d3c4c3
MK
2918 if (dirty)
2919 SetPageDirty(page + i);
2ac015e2 2920 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2921 BUG_ON(!pte_none(*pte));
2ac015e2 2922 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2923 atomic_inc(&page[i]._mapcount);
2924 pte_unmap(pte);
2925 }
2926
2927 /*
2928 * Set PG_double_map before dropping compound_mapcount to avoid
2929 * false-negative page_mapped().
2930 */
2931 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2932 for (i = 0; i < HPAGE_PMD_NR; i++)
2933 atomic_inc(&page[i]._mapcount);
2934 }
2935
2936 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2937 /* Last compound_mapcount is gone. */
2938 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2939 if (TestClearPageDoubleMap(page)) {
2940 /* No need in mapcount reference anymore */
2941 for (i = 0; i < HPAGE_PMD_NR; i++)
2942 atomic_dec(&page[i]._mapcount);
2943 }
2944 }
2945
2946 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2947 /*
2948 * Up to this point the pmd is present and huge and userland has the
2949 * whole access to the hugepage during the split (which happens in
2950 * place). If we overwrite the pmd with the not-huge version pointing
2951 * to the pte here (which of course we could if all CPUs were bug
2952 * free), userland could trigger a small page size TLB miss on the
2953 * small sized TLB while the hugepage TLB entry is still established in
2954 * the huge TLB. Some CPU doesn't like that.
2955 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2956 * 383 on page 93. Intel should be safe but is also warns that it's
2957 * only safe if the permission and cache attributes of the two entries
2958 * loaded in the two TLB is identical (which should be the case here).
2959 * But it is generally safer to never allow small and huge TLB entries
2960 * for the same virtual address to be loaded simultaneously. So instead
2961 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2962 * current pmd notpresent (atomically because here the pmd_trans_huge
2963 * and pmd_trans_splitting must remain set at all times on the pmd
2964 * until the split is complete for this pmd), then we flush the SMP TLB
2965 * and finally we write the non-huge version of the pmd entry with
2966 * pmd_populate.
2967 */
2968 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2969 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2970
2971 if (freeze) {
2ac015e2 2972 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2973 page_remove_rmap(page + i, false);
2974 put_page(page + i);
2975 }
2976 }
eef1b3ba
KS
2977}
2978
2979void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2980 unsigned long address)
2981{
2982 spinlock_t *ptl;
2983 struct mm_struct *mm = vma->vm_mm;
e90309c9 2984 struct page *page = NULL;
eef1b3ba
KS
2985 unsigned long haddr = address & HPAGE_PMD_MASK;
2986
2987 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2988 ptl = pmd_lock(mm, pmd);
5c7fb56e
DW
2989 if (pmd_trans_huge(*pmd)) {
2990 page = pmd_page(*pmd);
2991 if (PageMlocked(page))
2992 get_page(page);
2993 else
2994 page = NULL;
2995 } else if (!pmd_devmap(*pmd))
e90309c9 2996 goto out;
e90309c9 2997 __split_huge_pmd_locked(vma, pmd, haddr, false);
e90309c9 2998out:
eef1b3ba
KS
2999 spin_unlock(ptl);
3000 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
e90309c9
KS
3001 if (page) {
3002 lock_page(page);
3003 munlock_vma_page(page);
3004 unlock_page(page);
3005 put_page(page);
3006 }
eef1b3ba
KS
3007}
3008
2a52bcbc 3009void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address)
94fcc585 3010{
f72e7dcd
HD
3011 pgd_t *pgd;
3012 pud_t *pud;
94fcc585
AA
3013 pmd_t *pmd;
3014
78ddc534 3015 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
3016 if (!pgd_present(*pgd))
3017 return;
3018
3019 pud = pud_offset(pgd, address);
3020 if (!pud_present(*pud))
3021 return;
3022
3023 pmd = pmd_offset(pud, address);
5c7fb56e 3024 if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
94fcc585
AA
3025 return;
3026 /*
3027 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3028 * materialize from under us.
3029 */
ad0bed24 3030 split_huge_pmd(vma, pmd, address);
94fcc585
AA
3031}
3032
e1b9996b 3033void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
3034 unsigned long start,
3035 unsigned long end,
3036 long adjust_next)
3037{
3038 /*
3039 * If the new start address isn't hpage aligned and it could
3040 * previously contain an hugepage: check if we need to split
3041 * an huge pmd.
3042 */
3043 if (start & ~HPAGE_PMD_MASK &&
3044 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3045 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 3046 split_huge_pmd_address(vma, start);
94fcc585
AA
3047
3048 /*
3049 * If the new end address isn't hpage aligned and it could
3050 * previously contain an hugepage: check if we need to split
3051 * an huge pmd.
3052 */
3053 if (end & ~HPAGE_PMD_MASK &&
3054 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3055 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 3056 split_huge_pmd_address(vma, end);
94fcc585
AA
3057
3058 /*
3059 * If we're also updating the vma->vm_next->vm_start, if the new
3060 * vm_next->vm_start isn't page aligned and it could previously
3061 * contain an hugepage: check if we need to split an huge pmd.
3062 */
3063 if (adjust_next > 0) {
3064 struct vm_area_struct *next = vma->vm_next;
3065 unsigned long nstart = next->vm_start;
3066 nstart += adjust_next << PAGE_SHIFT;
3067 if (nstart & ~HPAGE_PMD_MASK &&
3068 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3069 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
78ddc534 3070 split_huge_pmd_address(next, nstart);
94fcc585
AA
3071 }
3072}
e9b61f19
KS
3073
3074static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
3075 unsigned long address)
3076{
bd56086f 3077 unsigned long haddr = address & HPAGE_PMD_MASK;
e9b61f19
KS
3078 spinlock_t *ptl;
3079 pgd_t *pgd;
3080 pud_t *pud;
3081 pmd_t *pmd;
3082 pte_t *pte;
3083 int i, nr = HPAGE_PMD_NR;
3084
3085 /* Skip pages which doesn't belong to the VMA */
3086 if (address < vma->vm_start) {
3087 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3088 page += off;
3089 nr -= off;
3090 address = vma->vm_start;
3091 }
3092
3093 pgd = pgd_offset(vma->vm_mm, address);
3094 if (!pgd_present(*pgd))
3095 return;
3096 pud = pud_offset(pgd, address);
3097 if (!pud_present(*pud))
3098 return;
3099 pmd = pmd_offset(pud, address);
3100 ptl = pmd_lock(vma->vm_mm, pmd);
3101 if (!pmd_present(*pmd)) {
3102 spin_unlock(ptl);
3103 return;
3104 }
3105 if (pmd_trans_huge(*pmd)) {
3106 if (page == pmd_page(*pmd))
bd56086f 3107 __split_huge_pmd_locked(vma, pmd, haddr, true);
e9b61f19
KS
3108 spin_unlock(ptl);
3109 return;
3110 }
3111 spin_unlock(ptl);
3112
3113 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
bd56086f 3114 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
e9b61f19
KS
3115 pte_t entry, swp_pte;
3116 swp_entry_t swp_entry;
3117
bd56086f
KS
3118 /*
3119 * We've just crossed page table boundary: need to map next one.
3120 * It can happen if THP was mremaped to non PMD-aligned address.
3121 */
3122 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3123 pte_unmap_unlock(pte - 1, ptl);
3124 pmd = mm_find_pmd(vma->vm_mm, address);
3125 if (!pmd)
3126 return;
3127 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3128 address, &ptl);
3129 }
3130
3131 if (!pte_present(*pte))
e9b61f19 3132 continue;
bd56086f 3133 if (page_to_pfn(page) != pte_pfn(*pte))
e9b61f19
KS
3134 continue;
3135 flush_cache_page(vma, address, page_to_pfn(page));
bd56086f 3136 entry = ptep_clear_flush(vma, address, pte);
b8d3c4c3
MK
3137 if (pte_dirty(entry))
3138 SetPageDirty(page);
e9b61f19
KS
3139 swp_entry = make_migration_entry(page, pte_write(entry));
3140 swp_pte = swp_entry_to_pte(swp_entry);
3141 if (pte_soft_dirty(entry))
3142 swp_pte = pte_swp_mksoft_dirty(swp_pte);
bd56086f 3143 set_pte_at(vma->vm_mm, address, pte, swp_pte);
e9b61f19
KS
3144 page_remove_rmap(page, false);
3145 put_page(page);
3146 }
bd56086f 3147 pte_unmap_unlock(pte - 1, ptl);
e9b61f19
KS
3148}
3149
3150static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3151{
3152 struct anon_vma_chain *avc;
3153 pgoff_t pgoff = page_to_pgoff(page);
3154
3155 VM_BUG_ON_PAGE(!PageHead(page), page);
3156
3157 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3158 pgoff + HPAGE_PMD_NR - 1) {
bd56086f 3159 unsigned long address = __vma_address(page, avc->vma);
e9b61f19 3160
e9b61f19 3161 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
bd56086f
KS
3162 address, address + HPAGE_PMD_SIZE);
3163 freeze_page_vma(avc->vma, page, address);
e9b61f19 3164 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
bd56086f 3165 address, address + HPAGE_PMD_SIZE);
e9b61f19
KS
3166 }
3167}
3168
3169static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3170 unsigned long address)
3171{
3172 spinlock_t *ptl;
3173 pmd_t *pmd;
3174 pte_t *pte, entry;
3175 swp_entry_t swp_entry;
bd56086f 3176 unsigned long haddr = address & HPAGE_PMD_MASK;
e9b61f19
KS
3177 int i, nr = HPAGE_PMD_NR;
3178
3179 /* Skip pages which doesn't belong to the VMA */
3180 if (address < vma->vm_start) {
3181 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3182 page += off;
3183 nr -= off;
3184 address = vma->vm_start;
3185 }
3186
3187 pmd = mm_find_pmd(vma->vm_mm, address);
3188 if (!pmd)
3189 return;
bd56086f 3190
e9b61f19 3191 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
bd56086f
KS
3192 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3193 /*
3194 * We've just crossed page table boundary: need to map next one.
3195 * It can happen if THP was mremaped to non-PMD aligned address.
3196 */
3197 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3198 pte_unmap_unlock(pte - 1, ptl);
3199 pmd = mm_find_pmd(vma->vm_mm, address);
3200 if (!pmd)
3201 return;
3202 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3203 address, &ptl);
3204 }
3205
3206 if (!is_swap_pte(*pte))
e9b61f19
KS
3207 continue;
3208
bd56086f 3209 swp_entry = pte_to_swp_entry(*pte);
e9b61f19
KS
3210 if (!is_migration_entry(swp_entry))
3211 continue;
3212 if (migration_entry_to_page(swp_entry) != page)
3213 continue;
3214
3215 get_page(page);
3216 page_add_anon_rmap(page, vma, address, false);
3217
3218 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
b8d3c4c3
MK
3219 if (PageDirty(page))
3220 entry = pte_mkdirty(entry);
e9b61f19
KS
3221 if (is_write_migration_entry(swp_entry))
3222 entry = maybe_mkwrite(entry, vma);
3223
3224 flush_dcache_page(page);
bd56086f 3225 set_pte_at(vma->vm_mm, address, pte, entry);
e9b61f19
KS
3226
3227 /* No need to invalidate - it was non-present before */
bd56086f 3228 update_mmu_cache(vma, address, pte);
e9b61f19 3229 }
bd56086f 3230 pte_unmap_unlock(pte - 1, ptl);
e9b61f19
KS
3231}
3232
3233static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3234{
3235 struct anon_vma_chain *avc;
3236 pgoff_t pgoff = page_to_pgoff(page);
3237
3238 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3239 pgoff, pgoff + HPAGE_PMD_NR - 1) {
3240 unsigned long address = __vma_address(page, avc->vma);
3241
3242 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3243 address, address + HPAGE_PMD_SIZE);
3244 unfreeze_page_vma(avc->vma, page, address);
3245 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3246 address, address + HPAGE_PMD_SIZE);
3247 }
3248}
3249
8df651c7 3250static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
3251 struct lruvec *lruvec, struct list_head *list)
3252{
e9b61f19
KS
3253 struct page *page_tail = head + tail;
3254
8df651c7 3255 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 3256 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
3257
3258 /*
3259 * tail_page->_count is zero and not changing from under us. But
3260 * get_page_unless_zero() may be running from under us on the
8df651c7 3261 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
e9b61f19
KS
3262 * would then run atomic_set() concurrently with
3263 * get_page_unless_zero(), and atomic_set() is implemented in C not
3264 * using locked ops. spin_unlock on x86 sometime uses locked ops
3265 * because of PPro errata 66, 92, so unless somebody can guarantee
3266 * atomic_set() here would be safe on all archs (and not only on x86),
8df651c7 3267 * it's safer to use atomic_inc().
e9b61f19 3268 */
fe896d18 3269 page_ref_inc(page_tail);
e9b61f19
KS
3270
3271 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3272 page_tail->flags |= (head->flags &
3273 ((1L << PG_referenced) |
3274 (1L << PG_swapbacked) |
3275 (1L << PG_mlocked) |
3276 (1L << PG_uptodate) |
3277 (1L << PG_active) |
3278 (1L << PG_locked) |
b8d3c4c3
MK
3279 (1L << PG_unevictable) |
3280 (1L << PG_dirty)));
e9b61f19
KS
3281
3282 /*
3283 * After clearing PageTail the gup refcount can be released.
3284 * Page flags also must be visible before we make the page non-compound.
3285 */
3286 smp_wmb();
3287
3288 clear_compound_head(page_tail);
3289
3290 if (page_is_young(head))
3291 set_page_young(page_tail);
3292 if (page_is_idle(head))
3293 set_page_idle(page_tail);
3294
3295 /* ->mapping in first tail page is compound_mapcount */
9a982250 3296 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
3297 page_tail);
3298 page_tail->mapping = head->mapping;
3299
3300 page_tail->index = head->index + tail;
3301 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3302 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
3303}
3304
3305static void __split_huge_page(struct page *page, struct list_head *list)
3306{
3307 struct page *head = compound_head(page);
3308 struct zone *zone = page_zone(head);
3309 struct lruvec *lruvec;
8df651c7 3310 int i;
e9b61f19
KS
3311
3312 /* prevent PageLRU to go away from under us, and freeze lru stats */
3313 spin_lock_irq(&zone->lru_lock);
3314 lruvec = mem_cgroup_page_lruvec(head, zone);
3315
3316 /* complete memcg works before add pages to LRU */
3317 mem_cgroup_split_huge_fixup(head);
3318
e9b61f19 3319 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
8df651c7 3320 __split_huge_page_tail(head, i, lruvec, list);
e9b61f19
KS
3321
3322 ClearPageCompound(head);
3323 spin_unlock_irq(&zone->lru_lock);
3324
3325 unfreeze_page(page_anon_vma(head), head);
3326
3327 for (i = 0; i < HPAGE_PMD_NR; i++) {
3328 struct page *subpage = head + i;
3329 if (subpage == page)
3330 continue;
3331 unlock_page(subpage);
3332
3333 /*
3334 * Subpages may be freed if there wasn't any mapping
3335 * like if add_to_swap() is running on a lru page that
3336 * had its mapping zapped. And freeing these pages
3337 * requires taking the lru_lock so we do the put_page
3338 * of the tail pages after the split is complete.
3339 */
3340 put_page(subpage);
3341 }
3342}
3343
b20ce5e0
KS
3344int total_mapcount(struct page *page)
3345{
3346 int i, ret;
3347
3348 VM_BUG_ON_PAGE(PageTail(page), page);
3349
3350 if (likely(!PageCompound(page)))
3351 return atomic_read(&page->_mapcount) + 1;
3352
3353 ret = compound_mapcount(page);
3354 if (PageHuge(page))
3355 return ret;
3356 for (i = 0; i < HPAGE_PMD_NR; i++)
3357 ret += atomic_read(&page[i]._mapcount) + 1;
3358 if (PageDoubleMap(page))
3359 ret -= HPAGE_PMD_NR;
3360 return ret;
3361}
3362
e9b61f19
KS
3363/*
3364 * This function splits huge page into normal pages. @page can point to any
3365 * subpage of huge page to split. Split doesn't change the position of @page.
3366 *
3367 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3368 * The huge page must be locked.
3369 *
3370 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3371 *
3372 * Both head page and tail pages will inherit mapping, flags, and so on from
3373 * the hugepage.
3374 *
3375 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3376 * they are not mapped.
3377 *
3378 * Returns 0 if the hugepage is split successfully.
3379 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3380 * us.
3381 */
3382int split_huge_page_to_list(struct page *page, struct list_head *list)
3383{
3384 struct page *head = compound_head(page);
a3d0a918 3385 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
e9b61f19
KS
3386 struct anon_vma *anon_vma;
3387 int count, mapcount, ret;
d9654322 3388 bool mlocked;
0b9b6fff 3389 unsigned long flags;
e9b61f19
KS
3390
3391 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3392 VM_BUG_ON_PAGE(!PageAnon(page), page);
3393 VM_BUG_ON_PAGE(!PageLocked(page), page);
3394 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3395 VM_BUG_ON_PAGE(!PageCompound(page), page);
3396
3397 /*
3398 * The caller does not necessarily hold an mmap_sem that would prevent
3399 * the anon_vma disappearing so we first we take a reference to it
3400 * and then lock the anon_vma for write. This is similar to
3401 * page_lock_anon_vma_read except the write lock is taken to serialise
3402 * against parallel split or collapse operations.
3403 */
3404 anon_vma = page_get_anon_vma(head);
3405 if (!anon_vma) {
3406 ret = -EBUSY;
3407 goto out;
3408 }
3409 anon_vma_lock_write(anon_vma);
3410
3411 /*
3412 * Racy check if we can split the page, before freeze_page() will
3413 * split PMDs
3414 */
3415 if (total_mapcount(head) != page_count(head) - 1) {
3416 ret = -EBUSY;
3417 goto out_unlock;
3418 }
3419
d9654322 3420 mlocked = PageMlocked(page);
e9b61f19
KS
3421 freeze_page(anon_vma, head);
3422 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3423
d9654322
KS
3424 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3425 if (mlocked)
3426 lru_add_drain();
3427
9a982250 3428 /* Prevent deferred_split_scan() touching ->_count */
a3d0a918 3429 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3430 count = page_count(head);
3431 mapcount = total_mapcount(head);
bd56086f 3432 if (!mapcount && count == 1) {
9a982250 3433 if (!list_empty(page_deferred_list(head))) {
a3d0a918 3434 pgdata->split_queue_len--;
9a982250
KS
3435 list_del(page_deferred_list(head));
3436 }
a3d0a918 3437 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3438 __split_huge_page(page, list);
3439 ret = 0;
bd56086f 3440 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
a3d0a918 3441 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3442 pr_alert("total_mapcount: %u, page_count(): %u\n",
3443 mapcount, count);
3444 if (PageTail(page))
3445 dump_page(head, NULL);
bd56086f 3446 dump_page(page, "total_mapcount(head) > 0");
e9b61f19
KS
3447 BUG();
3448 } else {
a3d0a918 3449 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3450 unfreeze_page(anon_vma, head);
3451 ret = -EBUSY;
3452 }
3453
3454out_unlock:
3455 anon_vma_unlock_write(anon_vma);
3456 put_anon_vma(anon_vma);
3457out:
3458 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3459 return ret;
3460}
9a982250
KS
3461
3462void free_transhuge_page(struct page *page)
3463{
a3d0a918 3464 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3465 unsigned long flags;
3466
a3d0a918 3467 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3468 if (!list_empty(page_deferred_list(page))) {
a3d0a918 3469 pgdata->split_queue_len--;
9a982250
KS
3470 list_del(page_deferred_list(page));
3471 }
a3d0a918 3472 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3473 free_compound_page(page);
3474}
3475
3476void deferred_split_huge_page(struct page *page)
3477{
a3d0a918 3478 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3479 unsigned long flags;
3480
3481 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3482
a3d0a918 3483 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3484 if (list_empty(page_deferred_list(page))) {
f9719a03 3485 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
3486 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3487 pgdata->split_queue_len++;
9a982250 3488 }
a3d0a918 3489 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3490}
3491
3492static unsigned long deferred_split_count(struct shrinker *shrink,
3493 struct shrink_control *sc)
3494{
a3d0a918 3495 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 3496 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
3497}
3498
3499static unsigned long deferred_split_scan(struct shrinker *shrink,
3500 struct shrink_control *sc)
3501{
a3d0a918 3502 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
3503 unsigned long flags;
3504 LIST_HEAD(list), *pos, *next;
3505 struct page *page;
3506 int split = 0;
3507
a3d0a918 3508 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3509 /* Take pin on all head pages to avoid freeing them under us */
ae026204 3510 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
3511 page = list_entry((void *)pos, struct page, mapping);
3512 page = compound_head(page);
e3ae1953
KS
3513 if (get_page_unless_zero(page)) {
3514 list_move(page_deferred_list(page), &list);
3515 } else {
3516 /* We lost race with put_compound_page() */
9a982250 3517 list_del_init(page_deferred_list(page));
a3d0a918 3518 pgdata->split_queue_len--;
9a982250 3519 }
e3ae1953
KS
3520 if (!--sc->nr_to_scan)
3521 break;
9a982250 3522 }
a3d0a918 3523 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3524
3525 list_for_each_safe(pos, next, &list) {
3526 page = list_entry((void *)pos, struct page, mapping);
3527 lock_page(page);
3528 /* split_huge_page() removes page from list on success */
3529 if (!split_huge_page(page))
3530 split++;
3531 unlock_page(page);
3532 put_page(page);
3533 }
3534
a3d0a918
KS
3535 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3536 list_splice_tail(&list, &pgdata->split_queue);
3537 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 3538
cb8d68ec
KS
3539 /*
3540 * Stop shrinker if we didn't split any page, but the queue is empty.
3541 * This can happen if pages were freed under us.
3542 */
3543 if (!split && list_empty(&pgdata->split_queue))
3544 return SHRINK_STOP;
3545 return split;
9a982250
KS
3546}
3547
3548static struct shrinker deferred_split_shrinker = {
3549 .count_objects = deferred_split_count,
3550 .scan_objects = deferred_split_scan,
3551 .seeks = DEFAULT_SEEKS,
a3d0a918 3552 .flags = SHRINKER_NUMA_AWARE,
9a982250 3553};
49071d43
KS
3554
3555#ifdef CONFIG_DEBUG_FS
3556static int split_huge_pages_set(void *data, u64 val)
3557{
3558 struct zone *zone;
3559 struct page *page;
3560 unsigned long pfn, max_zone_pfn;
3561 unsigned long total = 0, split = 0;
3562
3563 if (val != 1)
3564 return -EINVAL;
3565
3566 for_each_populated_zone(zone) {
3567 max_zone_pfn = zone_end_pfn(zone);
3568 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3569 if (!pfn_valid(pfn))
3570 continue;
3571
3572 page = pfn_to_page(pfn);
3573 if (!get_page_unless_zero(page))
3574 continue;
3575
3576 if (zone != page_zone(page))
3577 goto next;
3578
3579 if (!PageHead(page) || !PageAnon(page) ||
3580 PageHuge(page))
3581 goto next;
3582
3583 total++;
3584 lock_page(page);
3585 if (!split_huge_page(page))
3586 split++;
3587 unlock_page(page);
3588next:
3589 put_page(page);
3590 }
3591 }
3592
3593 pr_info("%lu of %lu THP split", split, total);
3594
3595 return 0;
3596}
3597DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3598 "%llu\n");
3599
3600static int __init split_huge_pages_debugfs(void)
3601{
3602 void *ret;
3603
3604 ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
3605 &split_huge_pages_fops);
3606 if (!ret)
3607 pr_warn("Failed to create split_huge_pages in debugfs");
3608 return 0;
3609}
3610late_initcall(split_huge_pages_debugfs);
3611#endif