]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
vmlinux.lds: account for destructor sections
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f
AA
21#include <linux/kthread.h>
22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
3565fce3 26#include <linux/memremap.h>
325adeb5 27#include <linux/pagemap.h>
49071d43 28#include <linux/debugfs.h>
4daae3b4 29#include <linux/migrate.h>
43b5fbbd 30#include <linux/hashtable.h>
6b251fc9 31#include <linux/userfaultfd_k.h>
33c3fc71 32#include <linux/page_idle.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
7d2eba05
EA
38enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
b1caa957 52 SCAN_PAGE_COMPOUND,
7d2eba05
EA
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
60 SCAN_CGROUP_CHARGE_FAIL
61};
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/huge_memory.h>
65
ba76149f 66/*
8bfa3f9a
JW
67 * By default transparent hugepage support is disabled in order that avoid
68 * to risk increase the memory footprint of applications without a guaranteed
69 * benefit. When transparent hugepage support is enabled, is for all mappings,
70 * and khugepaged scans all mappings.
71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
72 * for all hugepage allocations.
ba76149f 73 */
71e3aac0 74unsigned long transparent_hugepage_flags __read_mostly =
13ece886 75#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 76 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
77#endif
78#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80#endif
444eb2a4 81 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
84
85/* default scan 8*512 pte (or vmas) every 30 second */
ff20c2e0 86static unsigned int khugepaged_pages_to_scan __read_mostly;
ba76149f
AA
87static unsigned int khugepaged_pages_collapsed;
88static unsigned int khugepaged_full_scans;
89static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90/* during fragmentation poll the hugepage allocator once every minute */
91static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
f0508977 92static unsigned long khugepaged_sleep_expire;
ba76149f
AA
93static struct task_struct *khugepaged_thread __read_mostly;
94static DEFINE_MUTEX(khugepaged_mutex);
95static DEFINE_SPINLOCK(khugepaged_mm_lock);
96static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
97/*
98 * default collapse hugepages if there is at least one pte mapped like
99 * it would have happened if the vma was large enough during page
100 * fault.
101 */
ff20c2e0 102static unsigned int khugepaged_max_ptes_none __read_mostly;
ba76149f
AA
103
104static int khugepaged(void *none);
ba76149f 105static int khugepaged_slab_init(void);
65ebb64f 106static void khugepaged_slab_exit(void);
ba76149f 107
43b5fbbd
SL
108#define MM_SLOTS_HASH_BITS 10
109static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
110
ba76149f
AA
111static struct kmem_cache *mm_slot_cache __read_mostly;
112
113/**
114 * struct mm_slot - hash lookup from mm to mm_slot
115 * @hash: hash collision list
116 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
117 * @mm: the mm that this information is valid for
118 */
119struct mm_slot {
120 struct hlist_node hash;
121 struct list_head mm_node;
122 struct mm_struct *mm;
123};
124
125/**
126 * struct khugepaged_scan - cursor for scanning
127 * @mm_head: the head of the mm list to scan
128 * @mm_slot: the current mm_slot we are scanning
129 * @address: the next address inside that to be scanned
130 *
131 * There is only the one khugepaged_scan instance of this cursor structure.
132 */
133struct khugepaged_scan {
134 struct list_head mm_head;
135 struct mm_slot *mm_slot;
136 unsigned long address;
2f1da642
HS
137};
138static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
139 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
140};
141
9a982250 142static struct shrinker deferred_split_shrinker;
f000565a 143
2c0b80d4 144static void set_recommended_min_free_kbytes(void)
f000565a
AA
145{
146 struct zone *zone;
147 int nr_zones = 0;
148 unsigned long recommended_min;
f000565a 149
f000565a
AA
150 for_each_populated_zone(zone)
151 nr_zones++;
152
974a786e 153 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
154 recommended_min = pageblock_nr_pages * nr_zones * 2;
155
156 /*
157 * Make sure that on average at least two pageblocks are almost free
158 * of another type, one for a migratetype to fall back to and a
159 * second to avoid subsequent fallbacks of other types There are 3
160 * MIGRATE_TYPES we care about.
161 */
162 recommended_min += pageblock_nr_pages * nr_zones *
163 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
164
165 /* don't ever allow to reserve more than 5% of the lowmem */
166 recommended_min = min(recommended_min,
167 (unsigned long) nr_free_buffer_pages() / 20);
168 recommended_min <<= (PAGE_SHIFT-10);
169
42aa83cb
HP
170 if (recommended_min > min_free_kbytes) {
171 if (user_min_free_kbytes >= 0)
756a025f 172 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
42aa83cb
HP
173 min_free_kbytes, recommended_min);
174
f000565a 175 min_free_kbytes = recommended_min;
42aa83cb 176 }
f000565a 177 setup_per_zone_wmarks();
f000565a 178}
f000565a 179
79553da2 180static int start_stop_khugepaged(void)
ba76149f
AA
181{
182 int err = 0;
183 if (khugepaged_enabled()) {
ba76149f
AA
184 if (!khugepaged_thread)
185 khugepaged_thread = kthread_run(khugepaged, NULL,
186 "khugepaged");
18e8e5c7 187 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 188 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
189 err = PTR_ERR(khugepaged_thread);
190 khugepaged_thread = NULL;
79553da2 191 goto fail;
ba76149f 192 }
911891af
XG
193
194 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 195 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
196
197 set_recommended_min_free_kbytes();
911891af 198 } else if (khugepaged_thread) {
911891af
XG
199 kthread_stop(khugepaged_thread);
200 khugepaged_thread = NULL;
201 }
79553da2 202fail:
ba76149f
AA
203 return err;
204}
71e3aac0 205
97ae1749 206static atomic_t huge_zero_refcount;
56873f43 207struct page *huge_zero_page __read_mostly;
4a6c1297 208
fc437044 209struct page *get_huge_zero_page(void)
97ae1749
KS
210{
211 struct page *zero_page;
212retry:
213 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 214 return READ_ONCE(huge_zero_page);
97ae1749
KS
215
216 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 217 HPAGE_PMD_ORDER);
d8a8e1f0
KS
218 if (!zero_page) {
219 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 220 return NULL;
d8a8e1f0
KS
221 }
222 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 223 preempt_disable();
5918d10a 224 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 225 preempt_enable();
5ddacbe9 226 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
227 goto retry;
228 }
229
230 /* We take additional reference here. It will be put back by shrinker */
231 atomic_set(&huge_zero_refcount, 2);
232 preempt_enable();
4db0c3c2 233 return READ_ONCE(huge_zero_page);
4a6c1297
KS
234}
235
aa88b68c 236void put_huge_zero_page(void)
4a6c1297 237{
97ae1749
KS
238 /*
239 * Counter should never go to zero here. Only shrinker can put
240 * last reference.
241 */
242 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
243}
244
48896466
GC
245static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246 struct shrink_control *sc)
4a6c1297 247{
48896466
GC
248 /* we can free zero page only if last reference remains */
249 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250}
97ae1749 251
48896466
GC
252static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253 struct shrink_control *sc)
254{
97ae1749 255 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
256 struct page *zero_page = xchg(&huge_zero_page, NULL);
257 BUG_ON(zero_page == NULL);
5ddacbe9 258 __free_pages(zero_page, compound_order(zero_page));
48896466 259 return HPAGE_PMD_NR;
97ae1749
KS
260 }
261
262 return 0;
4a6c1297
KS
263}
264
97ae1749 265static struct shrinker huge_zero_page_shrinker = {
48896466
GC
266 .count_objects = shrink_huge_zero_page_count,
267 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
268 .seeks = DEFAULT_SEEKS,
269};
270
71e3aac0 271#ifdef CONFIG_SYSFS
ba76149f 272
444eb2a4 273static ssize_t triple_flag_store(struct kobject *kobj,
71e3aac0
AA
274 struct kobj_attribute *attr,
275 const char *buf, size_t count,
276 enum transparent_hugepage_flag enabled,
444eb2a4 277 enum transparent_hugepage_flag deferred,
71e3aac0
AA
278 enum transparent_hugepage_flag req_madv)
279{
444eb2a4
MG
280 if (!memcmp("defer", buf,
281 min(sizeof("defer")-1, count))) {
282 if (enabled == deferred)
283 return -EINVAL;
284 clear_bit(enabled, &transparent_hugepage_flags);
285 clear_bit(req_madv, &transparent_hugepage_flags);
286 set_bit(deferred, &transparent_hugepage_flags);
287 } else if (!memcmp("always", buf,
71e3aac0 288 min(sizeof("always")-1, count))) {
444eb2a4 289 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0 290 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 291 set_bit(enabled, &transparent_hugepage_flags);
71e3aac0
AA
292 } else if (!memcmp("madvise", buf,
293 min(sizeof("madvise")-1, count))) {
294 clear_bit(enabled, &transparent_hugepage_flags);
444eb2a4 295 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
296 set_bit(req_madv, &transparent_hugepage_flags);
297 } else if (!memcmp("never", buf,
298 min(sizeof("never")-1, count))) {
299 clear_bit(enabled, &transparent_hugepage_flags);
300 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 301 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
302 } else
303 return -EINVAL;
304
305 return count;
306}
307
308static ssize_t enabled_show(struct kobject *kobj,
309 struct kobj_attribute *attr, char *buf)
310{
444eb2a4
MG
311 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
312 return sprintf(buf, "[always] madvise never\n");
313 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
314 return sprintf(buf, "always [madvise] never\n");
315 else
316 return sprintf(buf, "always madvise [never]\n");
71e3aac0 317}
444eb2a4 318
71e3aac0
AA
319static ssize_t enabled_store(struct kobject *kobj,
320 struct kobj_attribute *attr,
321 const char *buf, size_t count)
322{
ba76149f
AA
323 ssize_t ret;
324
444eb2a4
MG
325 ret = triple_flag_store(kobj, attr, buf, count,
326 TRANSPARENT_HUGEPAGE_FLAG,
ba76149f
AA
327 TRANSPARENT_HUGEPAGE_FLAG,
328 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
329
330 if (ret > 0) {
911891af
XG
331 int err;
332
333 mutex_lock(&khugepaged_mutex);
79553da2 334 err = start_stop_khugepaged();
911891af
XG
335 mutex_unlock(&khugepaged_mutex);
336
ba76149f
AA
337 if (err)
338 ret = err;
339 }
340
341 return ret;
71e3aac0
AA
342}
343static struct kobj_attribute enabled_attr =
344 __ATTR(enabled, 0644, enabled_show, enabled_store);
345
346static ssize_t single_flag_show(struct kobject *kobj,
347 struct kobj_attribute *attr, char *buf,
348 enum transparent_hugepage_flag flag)
349{
e27e6151
BH
350 return sprintf(buf, "%d\n",
351 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 352}
e27e6151 353
71e3aac0
AA
354static ssize_t single_flag_store(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 const char *buf, size_t count,
357 enum transparent_hugepage_flag flag)
358{
e27e6151
BH
359 unsigned long value;
360 int ret;
361
362 ret = kstrtoul(buf, 10, &value);
363 if (ret < 0)
364 return ret;
365 if (value > 1)
366 return -EINVAL;
367
368 if (value)
71e3aac0 369 set_bit(flag, &transparent_hugepage_flags);
e27e6151 370 else
71e3aac0 371 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
372
373 return count;
374}
375
376/*
377 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
378 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
379 * memory just to allocate one more hugepage.
380 */
381static ssize_t defrag_show(struct kobject *kobj,
382 struct kobj_attribute *attr, char *buf)
383{
444eb2a4
MG
384 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
385 return sprintf(buf, "[always] defer madvise never\n");
386 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
387 return sprintf(buf, "always [defer] madvise never\n");
388 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
389 return sprintf(buf, "always defer [madvise] never\n");
390 else
391 return sprintf(buf, "always defer madvise [never]\n");
392
71e3aac0
AA
393}
394static ssize_t defrag_store(struct kobject *kobj,
395 struct kobj_attribute *attr,
396 const char *buf, size_t count)
397{
444eb2a4
MG
398 return triple_flag_store(kobj, attr, buf, count,
399 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
400 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
71e3aac0
AA
401 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
402}
403static struct kobj_attribute defrag_attr =
404 __ATTR(defrag, 0644, defrag_show, defrag_store);
405
79da5407
KS
406static ssize_t use_zero_page_show(struct kobject *kobj,
407 struct kobj_attribute *attr, char *buf)
408{
409 return single_flag_show(kobj, attr, buf,
410 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
411}
412static ssize_t use_zero_page_store(struct kobject *kobj,
413 struct kobj_attribute *attr, const char *buf, size_t count)
414{
415 return single_flag_store(kobj, attr, buf, count,
416 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
417}
418static struct kobj_attribute use_zero_page_attr =
419 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
420#ifdef CONFIG_DEBUG_VM
421static ssize_t debug_cow_show(struct kobject *kobj,
422 struct kobj_attribute *attr, char *buf)
423{
424 return single_flag_show(kobj, attr, buf,
425 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
426}
427static ssize_t debug_cow_store(struct kobject *kobj,
428 struct kobj_attribute *attr,
429 const char *buf, size_t count)
430{
431 return single_flag_store(kobj, attr, buf, count,
432 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
433}
434static struct kobj_attribute debug_cow_attr =
435 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
436#endif /* CONFIG_DEBUG_VM */
437
438static struct attribute *hugepage_attr[] = {
439 &enabled_attr.attr,
440 &defrag_attr.attr,
79da5407 441 &use_zero_page_attr.attr,
71e3aac0
AA
442#ifdef CONFIG_DEBUG_VM
443 &debug_cow_attr.attr,
444#endif
445 NULL,
446};
447
448static struct attribute_group hugepage_attr_group = {
449 .attrs = hugepage_attr,
ba76149f
AA
450};
451
452static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
453 struct kobj_attribute *attr,
454 char *buf)
455{
456 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
457}
458
459static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
460 struct kobj_attribute *attr,
461 const char *buf, size_t count)
462{
463 unsigned long msecs;
464 int err;
465
3dbb95f7 466 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
467 if (err || msecs > UINT_MAX)
468 return -EINVAL;
469
470 khugepaged_scan_sleep_millisecs = msecs;
f0508977 471 khugepaged_sleep_expire = 0;
ba76149f
AA
472 wake_up_interruptible(&khugepaged_wait);
473
474 return count;
475}
476static struct kobj_attribute scan_sleep_millisecs_attr =
477 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
478 scan_sleep_millisecs_store);
479
480static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
481 struct kobj_attribute *attr,
482 char *buf)
483{
484 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
485}
486
487static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
488 struct kobj_attribute *attr,
489 const char *buf, size_t count)
490{
491 unsigned long msecs;
492 int err;
493
3dbb95f7 494 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
495 if (err || msecs > UINT_MAX)
496 return -EINVAL;
497
498 khugepaged_alloc_sleep_millisecs = msecs;
f0508977 499 khugepaged_sleep_expire = 0;
ba76149f
AA
500 wake_up_interruptible(&khugepaged_wait);
501
502 return count;
503}
504static struct kobj_attribute alloc_sleep_millisecs_attr =
505 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
506 alloc_sleep_millisecs_store);
507
508static ssize_t pages_to_scan_show(struct kobject *kobj,
509 struct kobj_attribute *attr,
510 char *buf)
511{
512 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
513}
514static ssize_t pages_to_scan_store(struct kobject *kobj,
515 struct kobj_attribute *attr,
516 const char *buf, size_t count)
517{
518 int err;
519 unsigned long pages;
520
3dbb95f7 521 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
522 if (err || !pages || pages > UINT_MAX)
523 return -EINVAL;
524
525 khugepaged_pages_to_scan = pages;
526
527 return count;
528}
529static struct kobj_attribute pages_to_scan_attr =
530 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
531 pages_to_scan_store);
532
533static ssize_t pages_collapsed_show(struct kobject *kobj,
534 struct kobj_attribute *attr,
535 char *buf)
536{
537 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
538}
539static struct kobj_attribute pages_collapsed_attr =
540 __ATTR_RO(pages_collapsed);
541
542static ssize_t full_scans_show(struct kobject *kobj,
543 struct kobj_attribute *attr,
544 char *buf)
545{
546 return sprintf(buf, "%u\n", khugepaged_full_scans);
547}
548static struct kobj_attribute full_scans_attr =
549 __ATTR_RO(full_scans);
550
551static ssize_t khugepaged_defrag_show(struct kobject *kobj,
552 struct kobj_attribute *attr, char *buf)
553{
554 return single_flag_show(kobj, attr, buf,
555 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
556}
557static ssize_t khugepaged_defrag_store(struct kobject *kobj,
558 struct kobj_attribute *attr,
559 const char *buf, size_t count)
560{
561 return single_flag_store(kobj, attr, buf, count,
562 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
563}
564static struct kobj_attribute khugepaged_defrag_attr =
565 __ATTR(defrag, 0644, khugepaged_defrag_show,
566 khugepaged_defrag_store);
567
568/*
569 * max_ptes_none controls if khugepaged should collapse hugepages over
570 * any unmapped ptes in turn potentially increasing the memory
571 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
572 * reduce the available free memory in the system as it
573 * runs. Increasing max_ptes_none will instead potentially reduce the
574 * free memory in the system during the khugepaged scan.
575 */
576static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
577 struct kobj_attribute *attr,
578 char *buf)
579{
580 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
581}
582static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
583 struct kobj_attribute *attr,
584 const char *buf, size_t count)
585{
586 int err;
587 unsigned long max_ptes_none;
588
3dbb95f7 589 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
590 if (err || max_ptes_none > HPAGE_PMD_NR-1)
591 return -EINVAL;
592
593 khugepaged_max_ptes_none = max_ptes_none;
594
595 return count;
596}
597static struct kobj_attribute khugepaged_max_ptes_none_attr =
598 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
599 khugepaged_max_ptes_none_store);
600
601static struct attribute *khugepaged_attr[] = {
602 &khugepaged_defrag_attr.attr,
603 &khugepaged_max_ptes_none_attr.attr,
604 &pages_to_scan_attr.attr,
605 &pages_collapsed_attr.attr,
606 &full_scans_attr.attr,
607 &scan_sleep_millisecs_attr.attr,
608 &alloc_sleep_millisecs_attr.attr,
609 NULL,
610};
611
612static struct attribute_group khugepaged_attr_group = {
613 .attrs = khugepaged_attr,
614 .name = "khugepaged",
71e3aac0 615};
71e3aac0 616
569e5590 617static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 618{
71e3aac0
AA
619 int err;
620
569e5590
SL
621 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
622 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 623 pr_err("failed to create transparent hugepage kobject\n");
569e5590 624 return -ENOMEM;
ba76149f
AA
625 }
626
569e5590 627 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 628 if (err) {
ae3a8c1c 629 pr_err("failed to register transparent hugepage group\n");
569e5590 630 goto delete_obj;
ba76149f
AA
631 }
632
569e5590 633 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 634 if (err) {
ae3a8c1c 635 pr_err("failed to register transparent hugepage group\n");
569e5590 636 goto remove_hp_group;
ba76149f 637 }
569e5590
SL
638
639 return 0;
640
641remove_hp_group:
642 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
643delete_obj:
644 kobject_put(*hugepage_kobj);
645 return err;
646}
647
648static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
649{
650 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
651 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
652 kobject_put(hugepage_kobj);
653}
654#else
655static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
656{
657 return 0;
658}
659
660static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
661{
662}
663#endif /* CONFIG_SYSFS */
664
665static int __init hugepage_init(void)
666{
667 int err;
668 struct kobject *hugepage_kobj;
669
670 if (!has_transparent_hugepage()) {
671 transparent_hugepage_flags = 0;
672 return -EINVAL;
673 }
674
ff20c2e0
KS
675 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
676 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
677 /*
678 * hugepages can't be allocated by the buddy allocator
679 */
680 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
681 /*
682 * we use page->mapping and page->index in second tail page
683 * as list_head: assuming THP order >= 2
684 */
685 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
686
569e5590
SL
687 err = hugepage_init_sysfs(&hugepage_kobj);
688 if (err)
65ebb64f 689 goto err_sysfs;
ba76149f
AA
690
691 err = khugepaged_slab_init();
692 if (err)
65ebb64f 693 goto err_slab;
ba76149f 694
65ebb64f
KS
695 err = register_shrinker(&huge_zero_page_shrinker);
696 if (err)
697 goto err_hzp_shrinker;
9a982250
KS
698 err = register_shrinker(&deferred_split_shrinker);
699 if (err)
700 goto err_split_shrinker;
97ae1749 701
97562cd2
RR
702 /*
703 * By default disable transparent hugepages on smaller systems,
704 * where the extra memory used could hurt more than TLB overhead
705 * is likely to save. The admin can still enable it through /sys.
706 */
79553da2 707 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 708 transparent_hugepage_flags = 0;
79553da2
KS
709 return 0;
710 }
97562cd2 711
79553da2 712 err = start_stop_khugepaged();
65ebb64f
KS
713 if (err)
714 goto err_khugepaged;
ba76149f 715
569e5590 716 return 0;
65ebb64f 717err_khugepaged:
9a982250
KS
718 unregister_shrinker(&deferred_split_shrinker);
719err_split_shrinker:
65ebb64f
KS
720 unregister_shrinker(&huge_zero_page_shrinker);
721err_hzp_shrinker:
722 khugepaged_slab_exit();
723err_slab:
569e5590 724 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 725err_sysfs:
ba76149f 726 return err;
71e3aac0 727}
a64fb3cd 728subsys_initcall(hugepage_init);
71e3aac0
AA
729
730static int __init setup_transparent_hugepage(char *str)
731{
732 int ret = 0;
733 if (!str)
734 goto out;
735 if (!strcmp(str, "always")) {
736 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
737 &transparent_hugepage_flags);
738 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
739 &transparent_hugepage_flags);
740 ret = 1;
741 } else if (!strcmp(str, "madvise")) {
742 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
743 &transparent_hugepage_flags);
744 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
745 &transparent_hugepage_flags);
746 ret = 1;
747 } else if (!strcmp(str, "never")) {
748 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
749 &transparent_hugepage_flags);
750 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
751 &transparent_hugepage_flags);
752 ret = 1;
753 }
754out:
755 if (!ret)
ae3a8c1c 756 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
757 return ret;
758}
759__setup("transparent_hugepage=", setup_transparent_hugepage);
760
b32967ff 761pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
762{
763 if (likely(vma->vm_flags & VM_WRITE))
764 pmd = pmd_mkwrite(pmd);
765 return pmd;
766}
767
3122359a 768static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b 769{
340a43be 770 return pmd_mkhuge(mk_pmd(page, prot));
b3092b3b
BL
771}
772
9a982250
KS
773static inline struct list_head *page_deferred_list(struct page *page)
774{
775 /*
776 * ->lru in the tail pages is occupied by compound_head.
777 * Let's use ->mapping + ->index in the second tail page as list_head.
778 */
779 return (struct list_head *)&page[2].mapping;
780}
781
782void prep_transhuge_page(struct page *page)
783{
784 /*
785 * we use page->mapping and page->indexlru in second tail page
786 * as list_head: assuming THP order >= 2
787 */
9a982250
KS
788
789 INIT_LIST_HEAD(page_deferred_list(page));
790 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
791}
792
71e3aac0
AA
793static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
794 struct vm_area_struct *vma,
230c92a8 795 unsigned long address, pmd_t *pmd,
6b251fc9
AA
796 struct page *page, gfp_t gfp,
797 unsigned int flags)
71e3aac0 798{
00501b53 799 struct mem_cgroup *memcg;
71e3aac0 800 pgtable_t pgtable;
c4088ebd 801 spinlock_t *ptl;
230c92a8 802 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 803
309381fe 804 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 805
f627c2f5 806 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
6b251fc9
AA
807 put_page(page);
808 count_vm_event(THP_FAULT_FALLBACK);
809 return VM_FAULT_FALLBACK;
810 }
00501b53 811
71e3aac0 812 pgtable = pte_alloc_one(mm, haddr);
00501b53 813 if (unlikely(!pgtable)) {
f627c2f5 814 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 815 put_page(page);
71e3aac0 816 return VM_FAULT_OOM;
00501b53 817 }
71e3aac0
AA
818
819 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
820 /*
821 * The memory barrier inside __SetPageUptodate makes sure that
822 * clear_huge_page writes become visible before the set_pmd_at()
823 * write.
824 */
71e3aac0
AA
825 __SetPageUptodate(page);
826
c4088ebd 827 ptl = pmd_lock(mm, pmd);
71e3aac0 828 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 829 spin_unlock(ptl);
f627c2f5 830 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0
AA
831 put_page(page);
832 pte_free(mm, pgtable);
833 } else {
834 pmd_t entry;
6b251fc9
AA
835
836 /* Deliver the page fault to userland */
837 if (userfaultfd_missing(vma)) {
838 int ret;
839
840 spin_unlock(ptl);
f627c2f5 841 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9
AA
842 put_page(page);
843 pte_free(mm, pgtable);
230c92a8 844 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
845 VM_UFFD_MISSING);
846 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847 return ret;
848 }
849
3122359a
KS
850 entry = mk_huge_pmd(page, vma->vm_page_prot);
851 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 852 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 853 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 854 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 855 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 856 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 857 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 858 atomic_long_inc(&mm->nr_ptes);
c4088ebd 859 spin_unlock(ptl);
6b251fc9 860 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
861 }
862
aa2e878e 863 return 0;
71e3aac0
AA
864}
865
444eb2a4
MG
866/*
867 * If THP is set to always then directly reclaim/compact as necessary
868 * If set to defer then do no reclaim and defer to khugepaged
869 * If set to madvise and the VMA is flagged then directly reclaim/compact
870 */
871static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
872{
873 gfp_t reclaim_flags = 0;
874
875 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
876 (vma->vm_flags & VM_HUGEPAGE))
877 reclaim_flags = __GFP_DIRECT_RECLAIM;
878 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
879 reclaim_flags = __GFP_KSWAPD_RECLAIM;
880 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
881 reclaim_flags = __GFP_DIRECT_RECLAIM;
882
883 return GFP_TRANSHUGE | reclaim_flags;
884}
885
886/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
887static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
0bbbc0b3 888{
444eb2a4 889 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
0bbbc0b3
AA
890}
891
c4088ebd 892/* Caller must hold page table lock. */
d295e341 893static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 894 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 895 struct page *zero_page)
fc9fe822
KS
896{
897 pmd_t entry;
7c414164
AM
898 if (!pmd_none(*pmd))
899 return false;
5918d10a 900 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 901 entry = pmd_mkhuge(entry);
12c9d70b
MW
902 if (pgtable)
903 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 904 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 905 atomic_long_inc(&mm->nr_ptes);
7c414164 906 return true;
fc9fe822
KS
907}
908
71e3aac0
AA
909int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
910 unsigned long address, pmd_t *pmd,
911 unsigned int flags)
912{
077fcf11 913 gfp_t gfp;
71e3aac0
AA
914 struct page *page;
915 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 916
128ec037 917 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 918 return VM_FAULT_FALLBACK;
128ec037
KS
919 if (unlikely(anon_vma_prepare(vma)))
920 return VM_FAULT_OOM;
6d50e60c 921 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 922 return VM_FAULT_OOM;
593befa6 923 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 924 transparent_hugepage_use_zero_page()) {
c4088ebd 925 spinlock_t *ptl;
128ec037
KS
926 pgtable_t pgtable;
927 struct page *zero_page;
928 bool set;
6b251fc9 929 int ret;
128ec037
KS
930 pgtable = pte_alloc_one(mm, haddr);
931 if (unlikely(!pgtable))
ba76149f 932 return VM_FAULT_OOM;
128ec037
KS
933 zero_page = get_huge_zero_page();
934 if (unlikely(!zero_page)) {
935 pte_free(mm, pgtable);
81ab4201 936 count_vm_event(THP_FAULT_FALLBACK);
c0292554 937 return VM_FAULT_FALLBACK;
b9bbfbe3 938 }
c4088ebd 939 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
940 ret = 0;
941 set = false;
942 if (pmd_none(*pmd)) {
943 if (userfaultfd_missing(vma)) {
944 spin_unlock(ptl);
230c92a8 945 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
946 VM_UFFD_MISSING);
947 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
948 } else {
949 set_huge_zero_page(pgtable, mm, vma,
950 haddr, pmd,
951 zero_page);
952 spin_unlock(ptl);
953 set = true;
954 }
955 } else
956 spin_unlock(ptl);
128ec037
KS
957 if (!set) {
958 pte_free(mm, pgtable);
959 put_huge_zero_page();
edad9d2c 960 }
6b251fc9 961 return ret;
71e3aac0 962 }
444eb2a4 963 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 964 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
965 if (unlikely(!page)) {
966 count_vm_event(THP_FAULT_FALLBACK);
c0292554 967 return VM_FAULT_FALLBACK;
128ec037 968 }
9a982250 969 prep_transhuge_page(page);
230c92a8
AA
970 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
971 flags);
71e3aac0
AA
972}
973
ae18d6dc 974static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 975 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
976{
977 struct mm_struct *mm = vma->vm_mm;
978 pmd_t entry;
979 spinlock_t *ptl;
980
981 ptl = pmd_lock(mm, pmd);
f25748e3
DW
982 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
983 if (pfn_t_devmap(pfn))
984 entry = pmd_mkdevmap(entry);
01871e59
RZ
985 if (write) {
986 entry = pmd_mkyoung(pmd_mkdirty(entry));
987 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 988 }
01871e59
RZ
989 set_pmd_at(mm, addr, pmd, entry);
990 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 991 spin_unlock(ptl);
5cad465d
MW
992}
993
994int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 995 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
996{
997 pgprot_t pgprot = vma->vm_page_prot;
998 /*
999 * If we had pmd_special, we could avoid all these restrictions,
1000 * but we need to be consistent with PTEs and architectures that
1001 * can't support a 'special' bit.
1002 */
1003 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1004 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005 (VM_PFNMAP|VM_MIXEDMAP));
1006 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 1007 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
1008
1009 if (addr < vma->vm_start || addr >= vma->vm_end)
1010 return VM_FAULT_SIGBUS;
1011 if (track_pfn_insert(vma, &pgprot, pfn))
1012 return VM_FAULT_SIGBUS;
ae18d6dc
MW
1013 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1014 return VM_FAULT_NOPAGE;
5cad465d 1015}
dee41079 1016EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 1017
3565fce3
DW
1018static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1019 pmd_t *pmd)
1020{
1021 pmd_t _pmd;
1022
1023 /*
1024 * We should set the dirty bit only for FOLL_WRITE but for now
1025 * the dirty bit in the pmd is meaningless. And if the dirty
1026 * bit will become meaningful and we'll only set it with
1027 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1028 * set the young bit, instead of the current set_pmd_at.
1029 */
1030 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1031 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1032 pmd, _pmd, 1))
1033 update_mmu_cache_pmd(vma, addr, pmd);
1034}
1035
1036struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1037 pmd_t *pmd, int flags)
1038{
1039 unsigned long pfn = pmd_pfn(*pmd);
1040 struct mm_struct *mm = vma->vm_mm;
1041 struct dev_pagemap *pgmap;
1042 struct page *page;
1043
1044 assert_spin_locked(pmd_lockptr(mm, pmd));
1045
1046 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1047 return NULL;
1048
1049 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1050 /* pass */;
1051 else
1052 return NULL;
1053
1054 if (flags & FOLL_TOUCH)
1055 touch_pmd(vma, addr, pmd);
1056
1057 /*
1058 * device mapped pages can only be returned if the
1059 * caller will manage the page reference count.
1060 */
1061 if (!(flags & FOLL_GET))
1062 return ERR_PTR(-EEXIST);
1063
1064 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1065 pgmap = get_dev_pagemap(pfn, NULL);
1066 if (!pgmap)
1067 return ERR_PTR(-EFAULT);
1068 page = pfn_to_page(pfn);
1069 get_page(page);
1070 put_dev_pagemap(pgmap);
1071
1072 return page;
1073}
1074
71e3aac0
AA
1075int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1076 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1077 struct vm_area_struct *vma)
1078{
c4088ebd 1079 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1080 struct page *src_page;
1081 pmd_t pmd;
12c9d70b 1082 pgtable_t pgtable = NULL;
71e3aac0
AA
1083 int ret;
1084
12c9d70b
MW
1085 if (!vma_is_dax(vma)) {
1086 ret = -ENOMEM;
1087 pgtable = pte_alloc_one(dst_mm, addr);
1088 if (unlikely(!pgtable))
1089 goto out;
1090 }
71e3aac0 1091
c4088ebd
KS
1092 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1093 src_ptl = pmd_lockptr(src_mm, src_pmd);
1094 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1095
1096 ret = -EAGAIN;
1097 pmd = *src_pmd;
5c7fb56e 1098 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
71e3aac0
AA
1099 pte_free(dst_mm, pgtable);
1100 goto out_unlock;
1101 }
fc9fe822 1102 /*
c4088ebd 1103 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1104 * under splitting since we don't split the page itself, only pmd to
1105 * a page table.
1106 */
1107 if (is_huge_zero_pmd(pmd)) {
5918d10a 1108 struct page *zero_page;
97ae1749
KS
1109 /*
1110 * get_huge_zero_page() will never allocate a new page here,
1111 * since we already have a zero page to copy. It just takes a
1112 * reference.
1113 */
5918d10a 1114 zero_page = get_huge_zero_page();
6b251fc9 1115 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1116 zero_page);
fc9fe822
KS
1117 ret = 0;
1118 goto out_unlock;
1119 }
de466bd6 1120
12c9d70b 1121 if (!vma_is_dax(vma)) {
5c7fb56e
DW
1122 /* thp accounting separate from pmd_devmap accounting */
1123 src_page = pmd_page(pmd);
1124 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1125 get_page(src_page);
1126 page_dup_rmap(src_page, true);
1127 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1128 atomic_long_inc(&dst_mm->nr_ptes);
1129 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1130 }
71e3aac0
AA
1131
1132 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1133 pmd = pmd_mkold(pmd_wrprotect(pmd));
1134 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1135
1136 ret = 0;
1137out_unlock:
c4088ebd
KS
1138 spin_unlock(src_ptl);
1139 spin_unlock(dst_ptl);
71e3aac0
AA
1140out:
1141 return ret;
1142}
1143
a1dd450b
WD
1144void huge_pmd_set_accessed(struct mm_struct *mm,
1145 struct vm_area_struct *vma,
1146 unsigned long address,
1147 pmd_t *pmd, pmd_t orig_pmd,
1148 int dirty)
1149{
c4088ebd 1150 spinlock_t *ptl;
a1dd450b
WD
1151 pmd_t entry;
1152 unsigned long haddr;
1153
c4088ebd 1154 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
1155 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1156 goto unlock;
1157
1158 entry = pmd_mkyoung(orig_pmd);
1159 haddr = address & HPAGE_PMD_MASK;
1160 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1161 update_mmu_cache_pmd(vma, address, pmd);
1162
1163unlock:
c4088ebd 1164 spin_unlock(ptl);
a1dd450b
WD
1165}
1166
71e3aac0
AA
1167static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1168 struct vm_area_struct *vma,
1169 unsigned long address,
1170 pmd_t *pmd, pmd_t orig_pmd,
1171 struct page *page,
1172 unsigned long haddr)
1173{
00501b53 1174 struct mem_cgroup *memcg;
c4088ebd 1175 spinlock_t *ptl;
71e3aac0
AA
1176 pgtable_t pgtable;
1177 pmd_t _pmd;
1178 int ret = 0, i;
1179 struct page **pages;
2ec74c3e
SG
1180 unsigned long mmun_start; /* For mmu_notifiers */
1181 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1182
1183 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1184 GFP_KERNEL);
1185 if (unlikely(!pages)) {
1186 ret |= VM_FAULT_OOM;
1187 goto out;
1188 }
1189
1190 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1191 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1192 __GFP_OTHER_NODE,
19ee151e 1193 vma, address, page_to_nid(page));
b9bbfbe3 1194 if (unlikely(!pages[i] ||
00501b53 1195 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
f627c2f5 1196 &memcg, false))) {
b9bbfbe3 1197 if (pages[i])
71e3aac0 1198 put_page(pages[i]);
b9bbfbe3 1199 while (--i >= 0) {
00501b53
JW
1200 memcg = (void *)page_private(pages[i]);
1201 set_page_private(pages[i], 0);
f627c2f5
KS
1202 mem_cgroup_cancel_charge(pages[i], memcg,
1203 false);
b9bbfbe3
AA
1204 put_page(pages[i]);
1205 }
71e3aac0
AA
1206 kfree(pages);
1207 ret |= VM_FAULT_OOM;
1208 goto out;
1209 }
00501b53 1210 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1211 }
1212
1213 for (i = 0; i < HPAGE_PMD_NR; i++) {
1214 copy_user_highpage(pages[i], page + i,
0089e485 1215 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1216 __SetPageUptodate(pages[i]);
1217 cond_resched();
1218 }
1219
2ec74c3e
SG
1220 mmun_start = haddr;
1221 mmun_end = haddr + HPAGE_PMD_SIZE;
1222 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1223
c4088ebd 1224 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1225 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1226 goto out_free_pages;
309381fe 1227 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1228
8809aa2d 1229 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1230 /* leave pmd empty until pte is filled */
1231
6b0b50b0 1232 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1233 pmd_populate(mm, &_pmd, pgtable);
1234
1235 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1236 pte_t *pte, entry;
1237 entry = mk_pte(pages[i], vma->vm_page_prot);
1238 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1239 memcg = (void *)page_private(pages[i]);
1240 set_page_private(pages[i], 0);
d281ee61 1241 page_add_new_anon_rmap(pages[i], vma, haddr, false);
f627c2f5 1242 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1243 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1244 pte = pte_offset_map(&_pmd, haddr);
1245 VM_BUG_ON(!pte_none(*pte));
1246 set_pte_at(mm, haddr, pte, entry);
1247 pte_unmap(pte);
1248 }
1249 kfree(pages);
1250
71e3aac0
AA
1251 smp_wmb(); /* make pte visible before pmd */
1252 pmd_populate(mm, pmd, pgtable);
d281ee61 1253 page_remove_rmap(page, true);
c4088ebd 1254 spin_unlock(ptl);
71e3aac0 1255
2ec74c3e
SG
1256 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1257
71e3aac0
AA
1258 ret |= VM_FAULT_WRITE;
1259 put_page(page);
1260
1261out:
1262 return ret;
1263
1264out_free_pages:
c4088ebd 1265 spin_unlock(ptl);
2ec74c3e 1266 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1267 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1268 memcg = (void *)page_private(pages[i]);
1269 set_page_private(pages[i], 0);
f627c2f5 1270 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1271 put_page(pages[i]);
b9bbfbe3 1272 }
71e3aac0
AA
1273 kfree(pages);
1274 goto out;
1275}
1276
1277int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1278 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1279{
c4088ebd 1280 spinlock_t *ptl;
71e3aac0 1281 int ret = 0;
93b4796d 1282 struct page *page = NULL, *new_page;
00501b53 1283 struct mem_cgroup *memcg;
71e3aac0 1284 unsigned long haddr;
2ec74c3e
SG
1285 unsigned long mmun_start; /* For mmu_notifiers */
1286 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1287 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1288
c4088ebd 1289 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1290 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1291 haddr = address & HPAGE_PMD_MASK;
1292 if (is_huge_zero_pmd(orig_pmd))
1293 goto alloc;
c4088ebd 1294 spin_lock(ptl);
71e3aac0
AA
1295 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1296 goto out_unlock;
1297
1298 page = pmd_page(orig_pmd);
309381fe 1299 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1300 /*
1301 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1302 * part.
1f25fe20 1303 */
6d0a07ed 1304 if (page_trans_huge_mapcount(page, NULL) == 1) {
71e3aac0
AA
1305 pmd_t entry;
1306 entry = pmd_mkyoung(orig_pmd);
1307 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1308 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1309 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1310 ret |= VM_FAULT_WRITE;
1311 goto out_unlock;
1312 }
ddc58f27 1313 get_page(page);
c4088ebd 1314 spin_unlock(ptl);
93b4796d 1315alloc:
71e3aac0 1316 if (transparent_hugepage_enabled(vma) &&
077fcf11 1317 !transparent_hugepage_debug_cow()) {
444eb2a4 1318 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1319 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1320 } else
71e3aac0
AA
1321 new_page = NULL;
1322
9a982250
KS
1323 if (likely(new_page)) {
1324 prep_transhuge_page(new_page);
1325 } else {
eecc1e42 1326 if (!page) {
78ddc534 1327 split_huge_pmd(vma, pmd, address);
e9b71ca9 1328 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1329 } else {
1330 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1331 pmd, orig_pmd, page, haddr);
9845cbbd 1332 if (ret & VM_FAULT_OOM) {
78ddc534 1333 split_huge_pmd(vma, pmd, address);
9845cbbd
KS
1334 ret |= VM_FAULT_FALLBACK;
1335 }
ddc58f27 1336 put_page(page);
93b4796d 1337 }
17766dde 1338 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1339 goto out;
1340 }
1341
f627c2f5
KS
1342 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1343 true))) {
b9bbfbe3 1344 put_page(new_page);
93b4796d 1345 if (page) {
78ddc534 1346 split_huge_pmd(vma, pmd, address);
ddc58f27 1347 put_page(page);
9845cbbd 1348 } else
78ddc534 1349 split_huge_pmd(vma, pmd, address);
9845cbbd 1350 ret |= VM_FAULT_FALLBACK;
17766dde 1351 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1352 goto out;
1353 }
1354
17766dde
DR
1355 count_vm_event(THP_FAULT_ALLOC);
1356
eecc1e42 1357 if (!page)
93b4796d
KS
1358 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1359 else
1360 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1361 __SetPageUptodate(new_page);
1362
2ec74c3e
SG
1363 mmun_start = haddr;
1364 mmun_end = haddr + HPAGE_PMD_SIZE;
1365 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1366
c4088ebd 1367 spin_lock(ptl);
93b4796d 1368 if (page)
ddc58f27 1369 put_page(page);
b9bbfbe3 1370 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1371 spin_unlock(ptl);
f627c2f5 1372 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1373 put_page(new_page);
2ec74c3e 1374 goto out_mn;
b9bbfbe3 1375 } else {
71e3aac0 1376 pmd_t entry;
3122359a
KS
1377 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1378 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1379 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
d281ee61 1380 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1381 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1382 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1383 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1384 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1385 if (!page) {
93b4796d 1386 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1387 put_huge_zero_page();
1388 } else {
309381fe 1389 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1390 page_remove_rmap(page, true);
93b4796d
KS
1391 put_page(page);
1392 }
71e3aac0
AA
1393 ret |= VM_FAULT_WRITE;
1394 }
c4088ebd 1395 spin_unlock(ptl);
2ec74c3e
SG
1396out_mn:
1397 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1398out:
1399 return ret;
2ec74c3e 1400out_unlock:
c4088ebd 1401 spin_unlock(ptl);
2ec74c3e 1402 return ret;
71e3aac0
AA
1403}
1404
b676b293 1405struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1406 unsigned long addr,
1407 pmd_t *pmd,
1408 unsigned int flags)
1409{
b676b293 1410 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1411 struct page *page = NULL;
1412
c4088ebd 1413 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1414
1415 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1416 goto out;
1417
85facf25
KS
1418 /* Avoid dumping huge zero page */
1419 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1420 return ERR_PTR(-EFAULT);
1421
2b4847e7 1422 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1423 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1424 goto out;
1425
71e3aac0 1426 page = pmd_page(*pmd);
309381fe 1427 VM_BUG_ON_PAGE(!PageHead(page), page);
3565fce3
DW
1428 if (flags & FOLL_TOUCH)
1429 touch_pmd(vma, addr, pmd);
de60f5f1 1430 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1431 /*
1432 * We don't mlock() pte-mapped THPs. This way we can avoid
1433 * leaking mlocked pages into non-VM_LOCKED VMAs.
1434 *
1435 * In most cases the pmd is the only mapping of the page as we
1436 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1437 * writable private mappings in populate_vma_page_range().
1438 *
1439 * The only scenario when we have the page shared here is if we
1440 * mlocking read-only mapping shared over fork(). We skip
1441 * mlocking such pages.
1442 */
1443 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1444 page->mapping && trylock_page(page)) {
b676b293
DR
1445 lru_add_drain();
1446 if (page->mapping)
1447 mlock_vma_page(page);
1448 unlock_page(page);
1449 }
1450 }
71e3aac0 1451 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1452 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1453 if (flags & FOLL_GET)
ddc58f27 1454 get_page(page);
71e3aac0
AA
1455
1456out:
1457 return page;
1458}
1459
d10e63f2 1460/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1461int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1462 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1463{
c4088ebd 1464 spinlock_t *ptl;
b8916634 1465 struct anon_vma *anon_vma = NULL;
b32967ff 1466 struct page *page;
d10e63f2 1467 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1468 int page_nid = -1, this_nid = numa_node_id();
90572890 1469 int target_nid, last_cpupid = -1;
8191acbd
MG
1470 bool page_locked;
1471 bool migrated = false;
b191f9b1 1472 bool was_writable;
6688cc05 1473 int flags = 0;
d10e63f2 1474
c0e7cad9
MG
1475 /* A PROT_NONE fault should not end up here */
1476 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1477
c4088ebd 1478 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1479 if (unlikely(!pmd_same(pmd, *pmdp)))
1480 goto out_unlock;
1481
de466bd6
MG
1482 /*
1483 * If there are potential migrations, wait for completion and retry
1484 * without disrupting NUMA hinting information. Do not relock and
1485 * check_same as the page may no longer be mapped.
1486 */
1487 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1488 page = pmd_page(*pmdp);
de466bd6 1489 spin_unlock(ptl);
5d833062 1490 wait_on_page_locked(page);
de466bd6
MG
1491 goto out;
1492 }
1493
d10e63f2 1494 page = pmd_page(pmd);
a1a46184 1495 BUG_ON(is_huge_zero_page(page));
8191acbd 1496 page_nid = page_to_nid(page);
90572890 1497 last_cpupid = page_cpupid_last(page);
03c5a6e1 1498 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1499 if (page_nid == this_nid) {
03c5a6e1 1500 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1501 flags |= TNF_FAULT_LOCAL;
1502 }
4daae3b4 1503
bea66fbd
MG
1504 /* See similar comment in do_numa_page for explanation */
1505 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1506 flags |= TNF_NO_GROUP;
1507
ff9042b1
MG
1508 /*
1509 * Acquire the page lock to serialise THP migrations but avoid dropping
1510 * page_table_lock if at all possible
1511 */
b8916634
MG
1512 page_locked = trylock_page(page);
1513 target_nid = mpol_misplaced(page, vma, haddr);
1514 if (target_nid == -1) {
1515 /* If the page was locked, there are no parallel migrations */
a54a407f 1516 if (page_locked)
b8916634 1517 goto clear_pmdnuma;
2b4847e7 1518 }
4daae3b4 1519
de466bd6 1520 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1521 if (!page_locked) {
c4088ebd 1522 spin_unlock(ptl);
b8916634 1523 wait_on_page_locked(page);
a54a407f 1524 page_nid = -1;
b8916634
MG
1525 goto out;
1526 }
1527
2b4847e7
MG
1528 /*
1529 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1530 * to serialises splits
1531 */
b8916634 1532 get_page(page);
c4088ebd 1533 spin_unlock(ptl);
b8916634 1534 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1535
c69307d5 1536 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1537 spin_lock(ptl);
b32967ff
MG
1538 if (unlikely(!pmd_same(pmd, *pmdp))) {
1539 unlock_page(page);
1540 put_page(page);
a54a407f 1541 page_nid = -1;
4daae3b4 1542 goto out_unlock;
b32967ff 1543 }
ff9042b1 1544
c3a489ca
MG
1545 /* Bail if we fail to protect against THP splits for any reason */
1546 if (unlikely(!anon_vma)) {
1547 put_page(page);
1548 page_nid = -1;
1549 goto clear_pmdnuma;
1550 }
1551
a54a407f
MG
1552 /*
1553 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1554 * and access rights restored.
a54a407f 1555 */
c4088ebd 1556 spin_unlock(ptl);
b32967ff 1557 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1558 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1559 if (migrated) {
1560 flags |= TNF_MIGRATED;
8191acbd 1561 page_nid = target_nid;
074c2381
MG
1562 } else
1563 flags |= TNF_MIGRATE_FAIL;
b32967ff 1564
8191acbd 1565 goto out;
b32967ff 1566clear_pmdnuma:
a54a407f 1567 BUG_ON(!PageLocked(page));
b191f9b1 1568 was_writable = pmd_write(pmd);
4d942466 1569 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1570 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1571 if (was_writable)
1572 pmd = pmd_mkwrite(pmd);
d10e63f2 1573 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1574 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1575 unlock_page(page);
d10e63f2 1576out_unlock:
c4088ebd 1577 spin_unlock(ptl);
b8916634
MG
1578
1579out:
1580 if (anon_vma)
1581 page_unlock_anon_vma_read(anon_vma);
1582
8191acbd 1583 if (page_nid != -1)
6688cc05 1584 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1585
d10e63f2
MG
1586 return 0;
1587}
1588
b8d3c4c3
MK
1589int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1590 pmd_t *pmd, unsigned long addr, unsigned long next)
1591
1592{
1593 spinlock_t *ptl;
1594 pmd_t orig_pmd;
1595 struct page *page;
1596 struct mm_struct *mm = tlb->mm;
1597 int ret = 0;
1598
b6ec57f4
KS
1599 ptl = pmd_trans_huge_lock(pmd, vma);
1600 if (!ptl)
25eedabe 1601 goto out_unlocked;
b8d3c4c3
MK
1602
1603 orig_pmd = *pmd;
1604 if (is_huge_zero_pmd(orig_pmd)) {
1605 ret = 1;
1606 goto out;
1607 }
1608
1609 page = pmd_page(orig_pmd);
1610 /*
1611 * If other processes are mapping this page, we couldn't discard
1612 * the page unless they all do MADV_FREE so let's skip the page.
1613 */
1614 if (page_mapcount(page) != 1)
1615 goto out;
1616
1617 if (!trylock_page(page))
1618 goto out;
1619
1620 /*
1621 * If user want to discard part-pages of THP, split it so MADV_FREE
1622 * will deactivate only them.
1623 */
1624 if (next - addr != HPAGE_PMD_SIZE) {
1625 get_page(page);
1626 spin_unlock(ptl);
9818b8cd 1627 split_huge_page(page);
b8d3c4c3
MK
1628 put_page(page);
1629 unlock_page(page);
b8d3c4c3
MK
1630 goto out_unlocked;
1631 }
1632
1633 if (PageDirty(page))
1634 ClearPageDirty(page);
1635 unlock_page(page);
1636
1637 if (PageActive(page))
1638 deactivate_page(page);
1639
1640 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1641 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1642 tlb->fullmm);
1643 orig_pmd = pmd_mkold(orig_pmd);
1644 orig_pmd = pmd_mkclean(orig_pmd);
1645
1646 set_pmd_at(mm, addr, pmd, orig_pmd);
1647 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1648 }
1649 ret = 1;
1650out:
1651 spin_unlock(ptl);
1652out_unlocked:
1653 return ret;
1654}
1655
71e3aac0 1656int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1657 pmd_t *pmd, unsigned long addr)
71e3aac0 1658{
da146769 1659 pmd_t orig_pmd;
bf929152 1660 spinlock_t *ptl;
71e3aac0 1661
b6ec57f4
KS
1662 ptl = __pmd_trans_huge_lock(pmd, vma);
1663 if (!ptl)
da146769
KS
1664 return 0;
1665 /*
1666 * For architectures like ppc64 we look at deposited pgtable
1667 * when calling pmdp_huge_get_and_clear. So do the
1668 * pgtable_trans_huge_withdraw after finishing pmdp related
1669 * operations.
1670 */
1671 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1672 tlb->fullmm);
1673 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1674 if (vma_is_dax(vma)) {
1675 spin_unlock(ptl);
1676 if (is_huge_zero_pmd(orig_pmd))
aa88b68c 1677 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1678 } else if (is_huge_zero_pmd(orig_pmd)) {
1679 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1680 atomic_long_dec(&tlb->mm->nr_ptes);
1681 spin_unlock(ptl);
aa88b68c 1682 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1683 } else {
1684 struct page *page = pmd_page(orig_pmd);
d281ee61 1685 page_remove_rmap(page, true);
da146769
KS
1686 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1687 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1688 VM_BUG_ON_PAGE(!PageHead(page), page);
1689 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1690 atomic_long_dec(&tlb->mm->nr_ptes);
1691 spin_unlock(ptl);
1692 tlb_remove_page(tlb, page);
025c5b24 1693 }
da146769 1694 return 1;
71e3aac0
AA
1695}
1696
bf8616d5 1697bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a
AA
1698 unsigned long new_addr, unsigned long old_end,
1699 pmd_t *old_pmd, pmd_t *new_pmd)
1700{
bf929152 1701 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1702 pmd_t pmd;
37a1c49a
AA
1703 struct mm_struct *mm = vma->vm_mm;
1704
1705 if ((old_addr & ~HPAGE_PMD_MASK) ||
1706 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1707 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1708 return false;
37a1c49a
AA
1709
1710 /*
1711 * The destination pmd shouldn't be established, free_pgtables()
1712 * should have release it.
1713 */
1714 if (WARN_ON(!pmd_none(*new_pmd))) {
1715 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1716 return false;
37a1c49a
AA
1717 }
1718
bf929152
KS
1719 /*
1720 * We don't have to worry about the ordering of src and dst
1721 * ptlocks because exclusive mmap_sem prevents deadlock.
1722 */
b6ec57f4
KS
1723 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1724 if (old_ptl) {
bf929152
KS
1725 new_ptl = pmd_lockptr(mm, new_pmd);
1726 if (new_ptl != old_ptl)
1727 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1728 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1729 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1730
69a8ec2d
KS
1731 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1732 vma_is_anonymous(vma)) {
b3084f4d 1733 pgtable_t pgtable;
3592806c
KS
1734 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1735 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1736 }
b3084f4d
AK
1737 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1738 if (new_ptl != old_ptl)
1739 spin_unlock(new_ptl);
bf929152 1740 spin_unlock(old_ptl);
4b471e88 1741 return true;
37a1c49a 1742 }
4b471e88 1743 return false;
37a1c49a
AA
1744}
1745
f123d74a
MG
1746/*
1747 * Returns
1748 * - 0 if PMD could not be locked
1749 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1750 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1751 */
cd7548ab 1752int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1753 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1754{
1755 struct mm_struct *mm = vma->vm_mm;
bf929152 1756 spinlock_t *ptl;
cd7548ab
JW
1757 int ret = 0;
1758
b6ec57f4
KS
1759 ptl = __pmd_trans_huge_lock(pmd, vma);
1760 if (ptl) {
025c5b24 1761 pmd_t entry;
b191f9b1 1762 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1763 ret = 1;
e944fd67
MG
1764
1765 /*
1766 * Avoid trapping faults against the zero page. The read-only
1767 * data is likely to be read-cached on the local CPU and
1768 * local/remote hits to the zero page are not interesting.
1769 */
1770 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1771 spin_unlock(ptl);
ba68bc01 1772 return ret;
e944fd67
MG
1773 }
1774
10c1045f 1775 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1776 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1777 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1778 if (preserve_write)
1779 entry = pmd_mkwrite(entry);
10c1045f
MG
1780 ret = HPAGE_PMD_NR;
1781 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1782 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1783 }
bf929152 1784 spin_unlock(ptl);
025c5b24
NH
1785 }
1786
1787 return ret;
1788}
1789
1790/*
4b471e88 1791 * Returns true if a given pmd maps a thp, false otherwise.
025c5b24 1792 *
4b471e88
KS
1793 * Note that if it returns true, this routine returns without unlocking page
1794 * table lock. So callers must unlock it.
025c5b24 1795 */
b6ec57f4 1796spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1797{
b6ec57f4
KS
1798 spinlock_t *ptl;
1799 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1800 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1801 return ptl;
1802 spin_unlock(ptl);
1803 return NULL;
cd7548ab
JW
1804}
1805
9050d7eb 1806#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1807
60ab3244
AA
1808int hugepage_madvise(struct vm_area_struct *vma,
1809 unsigned long *vm_flags, int advice)
0af4e98b 1810{
a664b2d8
AA
1811 switch (advice) {
1812 case MADV_HUGEPAGE:
1e1836e8
AT
1813#ifdef CONFIG_S390
1814 /*
1815 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1816 * can't handle this properly after s390_enable_sie, so we simply
1817 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1818 */
1819 if (mm_has_pgste(vma->vm_mm))
1820 return 0;
1821#endif
a664b2d8
AA
1822 /*
1823 * Be somewhat over-protective like KSM for now!
1824 */
1a763615 1825 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1826 return -EINVAL;
1827 *vm_flags &= ~VM_NOHUGEPAGE;
1828 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1829 /*
1830 * If the vma become good for khugepaged to scan,
1831 * register it here without waiting a page fault that
1832 * may not happen any time soon.
1833 */
6d50e60c 1834 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1835 return -ENOMEM;
a664b2d8
AA
1836 break;
1837 case MADV_NOHUGEPAGE:
1838 /*
1839 * Be somewhat over-protective like KSM for now!
1840 */
1a763615 1841 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1842 return -EINVAL;
1843 *vm_flags &= ~VM_HUGEPAGE;
1844 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1845 /*
1846 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1847 * this vma even if we leave the mm registered in khugepaged if
1848 * it got registered before VM_NOHUGEPAGE was set.
1849 */
a664b2d8
AA
1850 break;
1851 }
0af4e98b
AA
1852
1853 return 0;
1854}
1855
ba76149f
AA
1856static int __init khugepaged_slab_init(void)
1857{
1858 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1859 sizeof(struct mm_slot),
1860 __alignof__(struct mm_slot), 0, NULL);
1861 if (!mm_slot_cache)
1862 return -ENOMEM;
1863
1864 return 0;
1865}
1866
65ebb64f
KS
1867static void __init khugepaged_slab_exit(void)
1868{
1869 kmem_cache_destroy(mm_slot_cache);
1870}
1871
ba76149f
AA
1872static inline struct mm_slot *alloc_mm_slot(void)
1873{
1874 if (!mm_slot_cache) /* initialization failed */
1875 return NULL;
1876 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1877}
1878
1879static inline void free_mm_slot(struct mm_slot *mm_slot)
1880{
1881 kmem_cache_free(mm_slot_cache, mm_slot);
1882}
1883
ba76149f
AA
1884static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1885{
1886 struct mm_slot *mm_slot;
ba76149f 1887
b67bfe0d 1888 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1889 if (mm == mm_slot->mm)
1890 return mm_slot;
43b5fbbd 1891
ba76149f
AA
1892 return NULL;
1893}
1894
1895static void insert_to_mm_slots_hash(struct mm_struct *mm,
1896 struct mm_slot *mm_slot)
1897{
ba76149f 1898 mm_slot->mm = mm;
43b5fbbd 1899 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1900}
1901
1902static inline int khugepaged_test_exit(struct mm_struct *mm)
1903{
1904 return atomic_read(&mm->mm_users) == 0;
1905}
1906
1907int __khugepaged_enter(struct mm_struct *mm)
1908{
1909 struct mm_slot *mm_slot;
1910 int wakeup;
1911
1912 mm_slot = alloc_mm_slot();
1913 if (!mm_slot)
1914 return -ENOMEM;
1915
1916 /* __khugepaged_exit() must not run from under us */
96dad67f 1917 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
1918 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1919 free_mm_slot(mm_slot);
1920 return 0;
1921 }
1922
1923 spin_lock(&khugepaged_mm_lock);
1924 insert_to_mm_slots_hash(mm, mm_slot);
1925 /*
1926 * Insert just behind the scanning cursor, to let the area settle
1927 * down a little.
1928 */
1929 wakeup = list_empty(&khugepaged_scan.mm_head);
1930 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1931 spin_unlock(&khugepaged_mm_lock);
1932
1933 atomic_inc(&mm->mm_count);
1934 if (wakeup)
1935 wake_up_interruptible(&khugepaged_wait);
1936
1937 return 0;
1938}
1939
6d50e60c
DR
1940int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1941 unsigned long vm_flags)
ba76149f
AA
1942{
1943 unsigned long hstart, hend;
1944 if (!vma->anon_vma)
1945 /*
1946 * Not yet faulted in so we will register later in the
1947 * page fault if needed.
1948 */
1949 return 0;
3486b85a 1950 if (vma->vm_ops || (vm_flags & VM_NO_THP))
ba76149f
AA
1951 /* khugepaged not yet working on file or special mappings */
1952 return 0;
ba76149f
AA
1953 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1954 hend = vma->vm_end & HPAGE_PMD_MASK;
1955 if (hstart < hend)
6d50e60c 1956 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
1957 return 0;
1958}
1959
1960void __khugepaged_exit(struct mm_struct *mm)
1961{
1962 struct mm_slot *mm_slot;
1963 int free = 0;
1964
1965 spin_lock(&khugepaged_mm_lock);
1966 mm_slot = get_mm_slot(mm);
1967 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1968 hash_del(&mm_slot->hash);
ba76149f
AA
1969 list_del(&mm_slot->mm_node);
1970 free = 1;
1971 }
d788e80a 1972 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1973
1974 if (free) {
ba76149f
AA
1975 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1976 free_mm_slot(mm_slot);
1977 mmdrop(mm);
1978 } else if (mm_slot) {
ba76149f
AA
1979 /*
1980 * This is required to serialize against
1981 * khugepaged_test_exit() (which is guaranteed to run
1982 * under mmap sem read mode). Stop here (after we
1983 * return all pagetables will be destroyed) until
1984 * khugepaged has finished working on the pagetables
1985 * under the mmap_sem.
1986 */
1987 down_write(&mm->mmap_sem);
1988 up_write(&mm->mmap_sem);
d788e80a 1989 }
ba76149f
AA
1990}
1991
1992static void release_pte_page(struct page *page)
1993{
1994 /* 0 stands for page_is_file_cache(page) == false */
1995 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1996 unlock_page(page);
1997 putback_lru_page(page);
1998}
1999
2000static void release_pte_pages(pte_t *pte, pte_t *_pte)
2001{
2002 while (--_pte >= pte) {
2003 pte_t pteval = *_pte;
ca0984ca 2004 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2005 release_pte_page(pte_page(pteval));
2006 }
2007}
2008
ba76149f
AA
2009static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2010 unsigned long address,
2011 pte_t *pte)
2012{
7d2eba05 2013 struct page *page = NULL;
ba76149f 2014 pte_t *_pte;
7d2eba05 2015 int none_or_zero = 0, result = 0;
10359213 2016 bool referenced = false, writable = false;
7d2eba05 2017
ba76149f
AA
2018 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2019 _pte++, address += PAGE_SIZE) {
2020 pte_t pteval = *_pte;
47aee4d8
MK
2021 if (pte_none(pteval) || (pte_present(pteval) &&
2022 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 2023 if (!userfaultfd_armed(vma) &&
7d2eba05 2024 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2025 continue;
7d2eba05
EA
2026 } else {
2027 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2028 goto out;
7d2eba05 2029 }
ba76149f 2030 }
7d2eba05
EA
2031 if (!pte_present(pteval)) {
2032 result = SCAN_PTE_NON_PRESENT;
ba76149f 2033 goto out;
7d2eba05 2034 }
ba76149f 2035 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
2036 if (unlikely(!page)) {
2037 result = SCAN_PAGE_NULL;
ba76149f 2038 goto out;
7d2eba05 2039 }
344aa35c 2040
309381fe
SL
2041 VM_BUG_ON_PAGE(PageCompound(page), page);
2042 VM_BUG_ON_PAGE(!PageAnon(page), page);
2043 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2044
ba76149f
AA
2045 /*
2046 * We can do it before isolate_lru_page because the
2047 * page can't be freed from under us. NOTE: PG_lock
2048 * is needed to serialize against split_huge_page
2049 * when invoked from the VM.
2050 */
7d2eba05
EA
2051 if (!trylock_page(page)) {
2052 result = SCAN_PAGE_LOCK;
ba76149f 2053 goto out;
7d2eba05 2054 }
10359213
EA
2055
2056 /*
2057 * cannot use mapcount: can't collapse if there's a gup pin.
2058 * The page must only be referenced by the scanned process
2059 * and page swap cache.
2060 */
2061 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2062 unlock_page(page);
7d2eba05 2063 result = SCAN_PAGE_COUNT;
10359213
EA
2064 goto out;
2065 }
2066 if (pte_write(pteval)) {
2067 writable = true;
2068 } else {
6d0a07ed
AA
2069 if (PageSwapCache(page) &&
2070 !reuse_swap_page(page, NULL)) {
10359213 2071 unlock_page(page);
7d2eba05 2072 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
2073 goto out;
2074 }
2075 /*
2076 * Page is not in the swap cache. It can be collapsed
2077 * into a THP.
2078 */
2079 }
2080
ba76149f
AA
2081 /*
2082 * Isolate the page to avoid collapsing an hugepage
2083 * currently in use by the VM.
2084 */
2085 if (isolate_lru_page(page)) {
2086 unlock_page(page);
7d2eba05 2087 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
2088 goto out;
2089 }
2090 /* 0 stands for page_is_file_cache(page) == false */
2091 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2092 VM_BUG_ON_PAGE(!PageLocked(page), page);
2093 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2094
2095 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
2096 if (pte_young(pteval) ||
2097 page_is_young(page) || PageReferenced(page) ||
8ee53820 2098 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2099 referenced = true;
ba76149f 2100 }
7d2eba05
EA
2101 if (likely(writable)) {
2102 if (likely(referenced)) {
2103 result = SCAN_SUCCEED;
16fd0fe4 2104 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05
EA
2105 referenced, writable, result);
2106 return 1;
2107 }
2108 } else {
2109 result = SCAN_PAGE_RO;
2110 }
2111
ba76149f 2112out:
344aa35c 2113 release_pte_pages(pte, _pte);
16fd0fe4 2114 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05 2115 referenced, writable, result);
344aa35c 2116 return 0;
ba76149f
AA
2117}
2118
2119static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2120 struct vm_area_struct *vma,
2121 unsigned long address,
2122 spinlock_t *ptl)
2123{
2124 pte_t *_pte;
2125 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2126 pte_t pteval = *_pte;
2127 struct page *src_page;
2128
ca0984ca 2129 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2130 clear_user_highpage(page, address);
2131 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2132 if (is_zero_pfn(pte_pfn(pteval))) {
2133 /*
2134 * ptl mostly unnecessary.
2135 */
2136 spin_lock(ptl);
2137 /*
2138 * paravirt calls inside pte_clear here are
2139 * superfluous.
2140 */
2141 pte_clear(vma->vm_mm, address, _pte);
2142 spin_unlock(ptl);
2143 }
ba76149f
AA
2144 } else {
2145 src_page = pte_page(pteval);
2146 copy_user_highpage(page, src_page, address, vma);
309381fe 2147 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2148 release_pte_page(src_page);
2149 /*
2150 * ptl mostly unnecessary, but preempt has to
2151 * be disabled to update the per-cpu stats
2152 * inside page_remove_rmap().
2153 */
2154 spin_lock(ptl);
2155 /*
2156 * paravirt calls inside pte_clear here are
2157 * superfluous.
2158 */
2159 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2160 page_remove_rmap(src_page, false);
ba76149f
AA
2161 spin_unlock(ptl);
2162 free_page_and_swap_cache(src_page);
2163 }
2164
2165 address += PAGE_SIZE;
2166 page++;
2167 }
2168}
2169
26234f36 2170static void khugepaged_alloc_sleep(void)
ba76149f 2171{
bde43c6c
PM
2172 DEFINE_WAIT(wait);
2173
2174 add_wait_queue(&khugepaged_wait, &wait);
2175 freezable_schedule_timeout_interruptible(
2176 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2177 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2178}
ba76149f 2179
9f1b868a
BL
2180static int khugepaged_node_load[MAX_NUMNODES];
2181
14a4e214
DR
2182static bool khugepaged_scan_abort(int nid)
2183{
2184 int i;
2185
2186 /*
2187 * If zone_reclaim_mode is disabled, then no extra effort is made to
2188 * allocate memory locally.
2189 */
2190 if (!zone_reclaim_mode)
2191 return false;
2192
2193 /* If there is a count for this node already, it must be acceptable */
2194 if (khugepaged_node_load[nid])
2195 return false;
2196
2197 for (i = 0; i < MAX_NUMNODES; i++) {
2198 if (!khugepaged_node_load[i])
2199 continue;
2200 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2201 return true;
2202 }
2203 return false;
2204}
2205
26234f36 2206#ifdef CONFIG_NUMA
9f1b868a
BL
2207static int khugepaged_find_target_node(void)
2208{
2209 static int last_khugepaged_target_node = NUMA_NO_NODE;
2210 int nid, target_node = 0, max_value = 0;
2211
2212 /* find first node with max normal pages hit */
2213 for (nid = 0; nid < MAX_NUMNODES; nid++)
2214 if (khugepaged_node_load[nid] > max_value) {
2215 max_value = khugepaged_node_load[nid];
2216 target_node = nid;
2217 }
2218
2219 /* do some balance if several nodes have the same hit record */
2220 if (target_node <= last_khugepaged_target_node)
2221 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2222 nid++)
2223 if (max_value == khugepaged_node_load[nid]) {
2224 target_node = nid;
2225 break;
2226 }
2227
2228 last_khugepaged_target_node = target_node;
2229 return target_node;
2230}
2231
26234f36
XG
2232static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2233{
2234 if (IS_ERR(*hpage)) {
2235 if (!*wait)
2236 return false;
2237
2238 *wait = false;
e3b4126c 2239 *hpage = NULL;
26234f36
XG
2240 khugepaged_alloc_sleep();
2241 } else if (*hpage) {
2242 put_page(*hpage);
2243 *hpage = NULL;
2244 }
2245
2246 return true;
2247}
2248
3b363692
MH
2249static struct page *
2250khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2251 unsigned long address, int node)
26234f36 2252{
309381fe 2253 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2254
ce83d217 2255 /*
8b164568
VB
2256 * Before allocating the hugepage, release the mmap_sem read lock.
2257 * The allocation can take potentially a long time if it involves
2258 * sync compaction, and we do not need to hold the mmap_sem during
2259 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2260 */
8b164568
VB
2261 up_read(&mm->mmap_sem);
2262
96db800f 2263 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2264 if (unlikely(!*hpage)) {
81ab4201 2265 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2266 *hpage = ERR_PTR(-ENOMEM);
26234f36 2267 return NULL;
ce83d217 2268 }
26234f36 2269
9a982250 2270 prep_transhuge_page(*hpage);
65b3c07b 2271 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2272 return *hpage;
2273}
2274#else
9f1b868a
BL
2275static int khugepaged_find_target_node(void)
2276{
2277 return 0;
2278}
2279
444eb2a4 2280static inline struct page *alloc_khugepaged_hugepage(void)
10dc4155 2281{
9a982250
KS
2282 struct page *page;
2283
444eb2a4
MG
2284 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2285 HPAGE_PMD_ORDER);
9a982250
KS
2286 if (page)
2287 prep_transhuge_page(page);
2288 return page;
10dc4155
BL
2289}
2290
26234f36
XG
2291static struct page *khugepaged_alloc_hugepage(bool *wait)
2292{
2293 struct page *hpage;
2294
2295 do {
444eb2a4 2296 hpage = alloc_khugepaged_hugepage();
26234f36
XG
2297 if (!hpage) {
2298 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2299 if (!*wait)
2300 return NULL;
2301
2302 *wait = false;
2303 khugepaged_alloc_sleep();
2304 } else
2305 count_vm_event(THP_COLLAPSE_ALLOC);
2306 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2307
2308 return hpage;
2309}
2310
2311static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2312{
2313 if (!*hpage)
2314 *hpage = khugepaged_alloc_hugepage(wait);
2315
2316 if (unlikely(!*hpage))
2317 return false;
2318
2319 return true;
2320}
2321
3b363692
MH
2322static struct page *
2323khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2324 unsigned long address, int node)
26234f36
XG
2325{
2326 up_read(&mm->mmap_sem);
2327 VM_BUG_ON(!*hpage);
3b363692 2328
26234f36
XG
2329 return *hpage;
2330}
692e0b35
AA
2331#endif
2332
fa475e51
BL
2333static bool hugepage_vma_check(struct vm_area_struct *vma)
2334{
2335 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2336 (vma->vm_flags & VM_NOHUGEPAGE))
2337 return false;
fa475e51
BL
2338 if (!vma->anon_vma || vma->vm_ops)
2339 return false;
2340 if (is_vma_temporary_stack(vma))
2341 return false;
3486b85a 2342 return !(vma->vm_flags & VM_NO_THP);
fa475e51
BL
2343}
2344
26234f36
XG
2345static void collapse_huge_page(struct mm_struct *mm,
2346 unsigned long address,
2347 struct page **hpage,
2348 struct vm_area_struct *vma,
2349 int node)
2350{
26234f36
XG
2351 pmd_t *pmd, _pmd;
2352 pte_t *pte;
2353 pgtable_t pgtable;
2354 struct page *new_page;
c4088ebd 2355 spinlock_t *pmd_ptl, *pte_ptl;
629d9d1c 2356 int isolated = 0, result = 0;
26234f36 2357 unsigned long hstart, hend;
00501b53 2358 struct mem_cgroup *memcg;
2ec74c3e
SG
2359 unsigned long mmun_start; /* For mmu_notifiers */
2360 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2361 gfp_t gfp;
26234f36
XG
2362
2363 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2364
3b363692 2365 /* Only allocate from the target node */
444eb2a4 2366 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
3b363692 2367
26234f36 2368 /* release the mmap_sem read lock. */
d6669d68 2369 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2370 if (!new_page) {
2371 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2372 goto out_nolock;
2373 }
26234f36 2374
f627c2f5 2375 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2376 result = SCAN_CGROUP_CHARGE_FAIL;
2377 goto out_nolock;
2378 }
ba76149f
AA
2379
2380 /*
2381 * Prevent all access to pagetables with the exception of
2382 * gup_fast later hanlded by the ptep_clear_flush and the VM
2383 * handled by the anon_vma lock + PG_lock.
2384 */
2385 down_write(&mm->mmap_sem);
7d2eba05
EA
2386 if (unlikely(khugepaged_test_exit(mm))) {
2387 result = SCAN_ANY_PROCESS;
ba76149f 2388 goto out;
7d2eba05 2389 }
ba76149f
AA
2390
2391 vma = find_vma(mm, address);
7d2eba05
EA
2392 if (!vma) {
2393 result = SCAN_VMA_NULL;
a8f531eb 2394 goto out;
7d2eba05 2395 }
ba76149f
AA
2396 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2397 hend = vma->vm_end & HPAGE_PMD_MASK;
7d2eba05
EA
2398 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2399 result = SCAN_ADDRESS_RANGE;
ba76149f 2400 goto out;
7d2eba05
EA
2401 }
2402 if (!hugepage_vma_check(vma)) {
2403 result = SCAN_VMA_CHECK;
a7d6e4ec 2404 goto out;
7d2eba05 2405 }
6219049a 2406 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2407 if (!pmd) {
2408 result = SCAN_PMD_NULL;
ba76149f 2409 goto out;
7d2eba05 2410 }
ba76149f 2411
4fc3f1d6 2412 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2413
2414 pte = pte_offset_map(pmd, address);
c4088ebd 2415 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2416
2ec74c3e
SG
2417 mmun_start = address;
2418 mmun_end = address + HPAGE_PMD_SIZE;
2419 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2420 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2421 /*
2422 * After this gup_fast can't run anymore. This also removes
2423 * any huge TLB entry from the CPU so we won't allow
2424 * huge and small TLB entries for the same virtual address
2425 * to avoid the risk of CPU bugs in that area.
2426 */
15a25b2e 2427 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2428 spin_unlock(pmd_ptl);
2ec74c3e 2429 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2430
c4088ebd 2431 spin_lock(pte_ptl);
ba76149f 2432 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2433 spin_unlock(pte_ptl);
ba76149f
AA
2434
2435 if (unlikely(!isolated)) {
453c7192 2436 pte_unmap(pte);
c4088ebd 2437 spin_lock(pmd_ptl);
ba76149f 2438 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2439 /*
2440 * We can only use set_pmd_at when establishing
2441 * hugepmds and never for establishing regular pmds that
2442 * points to regular pagetables. Use pmd_populate for that
2443 */
2444 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2445 spin_unlock(pmd_ptl);
08b52706 2446 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2447 result = SCAN_FAIL;
ce83d217 2448 goto out;
ba76149f
AA
2449 }
2450
2451 /*
2452 * All pages are isolated and locked so anon_vma rmap
2453 * can't run anymore.
2454 */
08b52706 2455 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2456
c4088ebd 2457 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2458 pte_unmap(pte);
ba76149f
AA
2459 __SetPageUptodate(new_page);
2460 pgtable = pmd_pgtable(_pmd);
ba76149f 2461
3122359a
KS
2462 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2463 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2464
2465 /*
2466 * spin_lock() below is not the equivalent of smp_wmb(), so
2467 * this is needed to avoid the copy_huge_page writes to become
2468 * visible after the set_pmd_at() write.
2469 */
2470 smp_wmb();
2471
c4088ebd 2472 spin_lock(pmd_ptl);
ba76149f 2473 BUG_ON(!pmd_none(*pmd));
d281ee61 2474 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2475 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2476 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2477 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2478 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2479 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2480 spin_unlock(pmd_ptl);
ba76149f
AA
2481
2482 *hpage = NULL;
420256ef 2483
ba76149f 2484 khugepaged_pages_collapsed++;
7d2eba05 2485 result = SCAN_SUCCEED;
ce83d217 2486out_up_write:
ba76149f 2487 up_write(&mm->mmap_sem);
7d2eba05 2488 trace_mm_collapse_huge_page(mm, isolated, result);
0bbbc0b3
AA
2489 return;
2490
7d2eba05
EA
2491out_nolock:
2492 trace_mm_collapse_huge_page(mm, isolated, result);
2493 return;
ce83d217 2494out:
f627c2f5 2495 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2496 goto out_up_write;
ba76149f
AA
2497}
2498
2499static int khugepaged_scan_pmd(struct mm_struct *mm,
2500 struct vm_area_struct *vma,
2501 unsigned long address,
2502 struct page **hpage)
2503{
ba76149f
AA
2504 pmd_t *pmd;
2505 pte_t *pte, *_pte;
7d2eba05
EA
2506 int ret = 0, none_or_zero = 0, result = 0;
2507 struct page *page = NULL;
ba76149f
AA
2508 unsigned long _address;
2509 spinlock_t *ptl;
00ef2d2f 2510 int node = NUMA_NO_NODE;
10359213 2511 bool writable = false, referenced = false;
ba76149f
AA
2512
2513 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2514
6219049a 2515 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2516 if (!pmd) {
2517 result = SCAN_PMD_NULL;
ba76149f 2518 goto out;
7d2eba05 2519 }
ba76149f 2520
9f1b868a 2521 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2522 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2523 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2524 _pte++, _address += PAGE_SIZE) {
2525 pte_t pteval = *_pte;
ca0984ca 2526 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2527 if (!userfaultfd_armed(vma) &&
7d2eba05 2528 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2529 continue;
7d2eba05
EA
2530 } else {
2531 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2532 goto out_unmap;
7d2eba05 2533 }
ba76149f 2534 }
7d2eba05
EA
2535 if (!pte_present(pteval)) {
2536 result = SCAN_PTE_NON_PRESENT;
ba76149f 2537 goto out_unmap;
7d2eba05 2538 }
10359213
EA
2539 if (pte_write(pteval))
2540 writable = true;
2541
ba76149f 2542 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2543 if (unlikely(!page)) {
2544 result = SCAN_PAGE_NULL;
ba76149f 2545 goto out_unmap;
7d2eba05 2546 }
b1caa957
KS
2547
2548 /* TODO: teach khugepaged to collapse THP mapped with pte */
2549 if (PageCompound(page)) {
2550 result = SCAN_PAGE_COMPOUND;
2551 goto out_unmap;
2552 }
2553
5c4b4be3 2554 /*
9f1b868a
BL
2555 * Record which node the original page is from and save this
2556 * information to khugepaged_node_load[].
2557 * Khupaged will allocate hugepage from the node has the max
2558 * hit record.
5c4b4be3 2559 */
9f1b868a 2560 node = page_to_nid(page);
7d2eba05
EA
2561 if (khugepaged_scan_abort(node)) {
2562 result = SCAN_SCAN_ABORT;
14a4e214 2563 goto out_unmap;
7d2eba05 2564 }
9f1b868a 2565 khugepaged_node_load[node]++;
7d2eba05 2566 if (!PageLRU(page)) {
0fda2788 2567 result = SCAN_PAGE_LRU;
7d2eba05
EA
2568 goto out_unmap;
2569 }
2570 if (PageLocked(page)) {
2571 result = SCAN_PAGE_LOCK;
ba76149f 2572 goto out_unmap;
7d2eba05
EA
2573 }
2574 if (!PageAnon(page)) {
2575 result = SCAN_PAGE_ANON;
2576 goto out_unmap;
2577 }
2578
10359213
EA
2579 /*
2580 * cannot use mapcount: can't collapse if there's a gup pin.
2581 * The page must only be referenced by the scanned process
2582 * and page swap cache.
2583 */
7d2eba05
EA
2584 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2585 result = SCAN_PAGE_COUNT;
ba76149f 2586 goto out_unmap;
7d2eba05 2587 }
33c3fc71
VD
2588 if (pte_young(pteval) ||
2589 page_is_young(page) || PageReferenced(page) ||
8ee53820 2590 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2591 referenced = true;
ba76149f 2592 }
7d2eba05
EA
2593 if (writable) {
2594 if (referenced) {
2595 result = SCAN_SUCCEED;
2596 ret = 1;
2597 } else {
2598 result = SCAN_NO_REFERENCED_PAGE;
2599 }
2600 } else {
2601 result = SCAN_PAGE_RO;
2602 }
ba76149f
AA
2603out_unmap:
2604 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2605 if (ret) {
2606 node = khugepaged_find_target_node();
ce83d217 2607 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2608 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2609 }
ba76149f 2610out:
16fd0fe4 2611 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
7d2eba05 2612 none_or_zero, result);
ba76149f
AA
2613 return ret;
2614}
2615
2616static void collect_mm_slot(struct mm_slot *mm_slot)
2617{
2618 struct mm_struct *mm = mm_slot->mm;
2619
b9980cdc 2620 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2621
2622 if (khugepaged_test_exit(mm)) {
2623 /* free mm_slot */
43b5fbbd 2624 hash_del(&mm_slot->hash);
ba76149f
AA
2625 list_del(&mm_slot->mm_node);
2626
2627 /*
2628 * Not strictly needed because the mm exited already.
2629 *
2630 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2631 */
2632
2633 /* khugepaged_mm_lock actually not necessary for the below */
2634 free_mm_slot(mm_slot);
2635 mmdrop(mm);
2636 }
2637}
2638
2639static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2640 struct page **hpage)
2f1da642
HS
2641 __releases(&khugepaged_mm_lock)
2642 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2643{
2644 struct mm_slot *mm_slot;
2645 struct mm_struct *mm;
2646 struct vm_area_struct *vma;
2647 int progress = 0;
2648
2649 VM_BUG_ON(!pages);
b9980cdc 2650 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2651
2652 if (khugepaged_scan.mm_slot)
2653 mm_slot = khugepaged_scan.mm_slot;
2654 else {
2655 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2656 struct mm_slot, mm_node);
2657 khugepaged_scan.address = 0;
2658 khugepaged_scan.mm_slot = mm_slot;
2659 }
2660 spin_unlock(&khugepaged_mm_lock);
2661
2662 mm = mm_slot->mm;
2663 down_read(&mm->mmap_sem);
2664 if (unlikely(khugepaged_test_exit(mm)))
2665 vma = NULL;
2666 else
2667 vma = find_vma(mm, khugepaged_scan.address);
2668
2669 progress++;
2670 for (; vma; vma = vma->vm_next) {
2671 unsigned long hstart, hend;
2672
2673 cond_resched();
2674 if (unlikely(khugepaged_test_exit(mm))) {
2675 progress++;
2676 break;
2677 }
fa475e51
BL
2678 if (!hugepage_vma_check(vma)) {
2679skip:
ba76149f
AA
2680 progress++;
2681 continue;
2682 }
ba76149f
AA
2683 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2684 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2685 if (hstart >= hend)
2686 goto skip;
2687 if (khugepaged_scan.address > hend)
2688 goto skip;
ba76149f
AA
2689 if (khugepaged_scan.address < hstart)
2690 khugepaged_scan.address = hstart;
a7d6e4ec 2691 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2692
2693 while (khugepaged_scan.address < hend) {
2694 int ret;
2695 cond_resched();
2696 if (unlikely(khugepaged_test_exit(mm)))
2697 goto breakouterloop;
2698
2699 VM_BUG_ON(khugepaged_scan.address < hstart ||
2700 khugepaged_scan.address + HPAGE_PMD_SIZE >
2701 hend);
2702 ret = khugepaged_scan_pmd(mm, vma,
2703 khugepaged_scan.address,
2704 hpage);
2705 /* move to next address */
2706 khugepaged_scan.address += HPAGE_PMD_SIZE;
2707 progress += HPAGE_PMD_NR;
2708 if (ret)
2709 /* we released mmap_sem so break loop */
2710 goto breakouterloop_mmap_sem;
2711 if (progress >= pages)
2712 goto breakouterloop;
2713 }
2714 }
2715breakouterloop:
2716 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2717breakouterloop_mmap_sem:
2718
2719 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2720 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2721 /*
2722 * Release the current mm_slot if this mm is about to die, or
2723 * if we scanned all vmas of this mm.
2724 */
2725 if (khugepaged_test_exit(mm) || !vma) {
2726 /*
2727 * Make sure that if mm_users is reaching zero while
2728 * khugepaged runs here, khugepaged_exit will find
2729 * mm_slot not pointing to the exiting mm.
2730 */
2731 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2732 khugepaged_scan.mm_slot = list_entry(
2733 mm_slot->mm_node.next,
2734 struct mm_slot, mm_node);
2735 khugepaged_scan.address = 0;
2736 } else {
2737 khugepaged_scan.mm_slot = NULL;
2738 khugepaged_full_scans++;
2739 }
2740
2741 collect_mm_slot(mm_slot);
2742 }
2743
2744 return progress;
2745}
2746
2747static int khugepaged_has_work(void)
2748{
2749 return !list_empty(&khugepaged_scan.mm_head) &&
2750 khugepaged_enabled();
2751}
2752
2753static int khugepaged_wait_event(void)
2754{
2755 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2756 kthread_should_stop();
ba76149f
AA
2757}
2758
d516904b 2759static void khugepaged_do_scan(void)
ba76149f 2760{
d516904b 2761 struct page *hpage = NULL;
ba76149f
AA
2762 unsigned int progress = 0, pass_through_head = 0;
2763 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2764 bool wait = true;
ba76149f
AA
2765
2766 barrier(); /* write khugepaged_pages_to_scan to local stack */
2767
2768 while (progress < pages) {
26234f36 2769 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2770 break;
26234f36 2771
420256ef 2772 cond_resched();
ba76149f 2773
cd092411 2774 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2775 break;
2776
ba76149f
AA
2777 spin_lock(&khugepaged_mm_lock);
2778 if (!khugepaged_scan.mm_slot)
2779 pass_through_head++;
2780 if (khugepaged_has_work() &&
2781 pass_through_head < 2)
2782 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2783 &hpage);
ba76149f
AA
2784 else
2785 progress = pages;
2786 spin_unlock(&khugepaged_mm_lock);
2787 }
ba76149f 2788
d516904b
XG
2789 if (!IS_ERR_OR_NULL(hpage))
2790 put_page(hpage);
0bbbc0b3
AA
2791}
2792
f0508977
DR
2793static bool khugepaged_should_wakeup(void)
2794{
2795 return kthread_should_stop() ||
2796 time_after_eq(jiffies, khugepaged_sleep_expire);
2797}
2798
2017c0bf
XG
2799static void khugepaged_wait_work(void)
2800{
2017c0bf 2801 if (khugepaged_has_work()) {
f0508977
DR
2802 const unsigned long scan_sleep_jiffies =
2803 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2804
2805 if (!scan_sleep_jiffies)
2017c0bf
XG
2806 return;
2807
f0508977 2808 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2017c0bf 2809 wait_event_freezable_timeout(khugepaged_wait,
f0508977
DR
2810 khugepaged_should_wakeup(),
2811 scan_sleep_jiffies);
2017c0bf
XG
2812 return;
2813 }
2814
2815 if (khugepaged_enabled())
2816 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2817}
2818
ba76149f
AA
2819static int khugepaged(void *none)
2820{
2821 struct mm_slot *mm_slot;
2822
878aee7d 2823 set_freezable();
8698a745 2824 set_user_nice(current, MAX_NICE);
ba76149f 2825
b7231789
XG
2826 while (!kthread_should_stop()) {
2827 khugepaged_do_scan();
2828 khugepaged_wait_work();
2829 }
ba76149f
AA
2830
2831 spin_lock(&khugepaged_mm_lock);
2832 mm_slot = khugepaged_scan.mm_slot;
2833 khugepaged_scan.mm_slot = NULL;
2834 if (mm_slot)
2835 collect_mm_slot(mm_slot);
2836 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2837 return 0;
2838}
2839
eef1b3ba
KS
2840static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2841 unsigned long haddr, pmd_t *pmd)
2842{
2843 struct mm_struct *mm = vma->vm_mm;
2844 pgtable_t pgtable;
2845 pmd_t _pmd;
2846 int i;
2847
2848 /* leave pmd empty until pte is filled */
2849 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2850
2851 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2852 pmd_populate(mm, &_pmd, pgtable);
2853
2854 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2855 pte_t *pte, entry;
2856 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2857 entry = pte_mkspecial(entry);
2858 pte = pte_offset_map(&_pmd, haddr);
2859 VM_BUG_ON(!pte_none(*pte));
2860 set_pte_at(mm, haddr, pte, entry);
2861 pte_unmap(pte);
2862 }
2863 smp_wmb(); /* make pte visible before pmd */
2864 pmd_populate(mm, pmd, pgtable);
2865 put_huge_zero_page();
2866}
2867
2868static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2869 unsigned long haddr, bool freeze)
eef1b3ba
KS
2870{
2871 struct mm_struct *mm = vma->vm_mm;
2872 struct page *page;
2873 pgtable_t pgtable;
2874 pmd_t _pmd;
b8d3c4c3 2875 bool young, write, dirty;
2ac015e2 2876 unsigned long addr;
eef1b3ba
KS
2877 int i;
2878
2879 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2880 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2881 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 2882 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
2883
2884 count_vm_event(THP_SPLIT_PMD);
2885
2886 if (vma_is_dax(vma)) {
2887 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2888 if (is_huge_zero_pmd(_pmd))
2889 put_huge_zero_page();
2890 return;
2891 } else if (is_huge_zero_pmd(*pmd)) {
2892 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2893 }
2894
2895 page = pmd_page(*pmd);
2896 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2897 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
2898 write = pmd_write(*pmd);
2899 young = pmd_young(*pmd);
b8d3c4c3 2900 dirty = pmd_dirty(*pmd);
eef1b3ba 2901
c777e2a8 2902 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
2903 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2904 pmd_populate(mm, &_pmd, pgtable);
2905
2ac015e2 2906 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2907 pte_t entry, *pte;
2908 /*
2909 * Note that NUMA hinting access restrictions are not
2910 * transferred to avoid any possibility of altering
2911 * permissions across VMAs.
2912 */
ba988280
KS
2913 if (freeze) {
2914 swp_entry_t swp_entry;
2915 swp_entry = make_migration_entry(page + i, write);
2916 entry = swp_entry_to_pte(swp_entry);
2917 } else {
2918 entry = mk_pte(page + i, vma->vm_page_prot);
b8d3c4c3 2919 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2920 if (!write)
2921 entry = pte_wrprotect(entry);
2922 if (!young)
2923 entry = pte_mkold(entry);
2924 }
b8d3c4c3
MK
2925 if (dirty)
2926 SetPageDirty(page + i);
2ac015e2 2927 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2928 BUG_ON(!pte_none(*pte));
2ac015e2 2929 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2930 atomic_inc(&page[i]._mapcount);
2931 pte_unmap(pte);
2932 }
2933
2934 /*
2935 * Set PG_double_map before dropping compound_mapcount to avoid
2936 * false-negative page_mapped().
2937 */
2938 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2939 for (i = 0; i < HPAGE_PMD_NR; i++)
2940 atomic_inc(&page[i]._mapcount);
2941 }
2942
2943 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2944 /* Last compound_mapcount is gone. */
2945 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2946 if (TestClearPageDoubleMap(page)) {
2947 /* No need in mapcount reference anymore */
2948 for (i = 0; i < HPAGE_PMD_NR; i++)
2949 atomic_dec(&page[i]._mapcount);
2950 }
2951 }
2952
2953 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2954 /*
2955 * Up to this point the pmd is present and huge and userland has the
2956 * whole access to the hugepage during the split (which happens in
2957 * place). If we overwrite the pmd with the not-huge version pointing
2958 * to the pte here (which of course we could if all CPUs were bug
2959 * free), userland could trigger a small page size TLB miss on the
2960 * small sized TLB while the hugepage TLB entry is still established in
2961 * the huge TLB. Some CPU doesn't like that.
2962 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2963 * 383 on page 93. Intel should be safe but is also warns that it's
2964 * only safe if the permission and cache attributes of the two entries
2965 * loaded in the two TLB is identical (which should be the case here).
2966 * But it is generally safer to never allow small and huge TLB entries
2967 * for the same virtual address to be loaded simultaneously. So instead
2968 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2969 * current pmd notpresent (atomically because here the pmd_trans_huge
2970 * and pmd_trans_splitting must remain set at all times on the pmd
2971 * until the split is complete for this pmd), then we flush the SMP TLB
2972 * and finally we write the non-huge version of the pmd entry with
2973 * pmd_populate.
2974 */
2975 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2976 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2977
2978 if (freeze) {
2ac015e2 2979 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2980 page_remove_rmap(page + i, false);
2981 put_page(page + i);
2982 }
2983 }
eef1b3ba
KS
2984}
2985
2986void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
fec89c10 2987 unsigned long address, bool freeze)
eef1b3ba
KS
2988{
2989 spinlock_t *ptl;
2990 struct mm_struct *mm = vma->vm_mm;
2991 unsigned long haddr = address & HPAGE_PMD_MASK;
2992
2993 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2994 ptl = pmd_lock(mm, pmd);
5c7fb56e 2995 if (pmd_trans_huge(*pmd)) {
5f737714 2996 struct page *page = pmd_page(*pmd);
5c7fb56e 2997 if (PageMlocked(page))
5f737714 2998 clear_page_mlock(page);
5c7fb56e 2999 } else if (!pmd_devmap(*pmd))
e90309c9 3000 goto out;
fec89c10 3001 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 3002out:
eef1b3ba
KS
3003 spin_unlock(ptl);
3004 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3005}
3006
fec89c10
KS
3007void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3008 bool freeze, struct page *page)
94fcc585 3009{
f72e7dcd
HD
3010 pgd_t *pgd;
3011 pud_t *pud;
94fcc585
AA
3012 pmd_t *pmd;
3013
78ddc534 3014 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
3015 if (!pgd_present(*pgd))
3016 return;
3017
3018 pud = pud_offset(pgd, address);
3019 if (!pud_present(*pud))
3020 return;
3021
3022 pmd = pmd_offset(pud, address);
5c7fb56e 3023 if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
94fcc585 3024 return;
fec89c10
KS
3025
3026 /*
3027 * If caller asks to setup a migration entries, we need a page to check
3028 * pmd against. Otherwise we can end up replacing wrong page.
3029 */
3030 VM_BUG_ON(freeze && !page);
3031 if (page && page != pmd_page(*pmd))
3032 return;
3033
94fcc585 3034 /*
d5ee7c3b
AA
3035 * Caller holds the mmap_sem write mode or the anon_vma lock,
3036 * so a huge pmd cannot materialize from under us (khugepaged
3037 * holds both the mmap_sem write mode and the anon_vma lock
3038 * write mode).
94fcc585 3039 */
fec89c10 3040 __split_huge_pmd(vma, pmd, address, freeze);
94fcc585
AA
3041}
3042
e1b9996b 3043void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
3044 unsigned long start,
3045 unsigned long end,
3046 long adjust_next)
3047{
3048 /*
3049 * If the new start address isn't hpage aligned and it could
3050 * previously contain an hugepage: check if we need to split
3051 * an huge pmd.
3052 */
3053 if (start & ~HPAGE_PMD_MASK &&
3054 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3055 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 3056 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
3057
3058 /*
3059 * If the new end address isn't hpage aligned and it could
3060 * previously contain an hugepage: check if we need to split
3061 * an huge pmd.
3062 */
3063 if (end & ~HPAGE_PMD_MASK &&
3064 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3065 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 3066 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
3067
3068 /*
3069 * If we're also updating the vma->vm_next->vm_start, if the new
3070 * vm_next->vm_start isn't page aligned and it could previously
3071 * contain an hugepage: check if we need to split an huge pmd.
3072 */
3073 if (adjust_next > 0) {
3074 struct vm_area_struct *next = vma->vm_next;
3075 unsigned long nstart = next->vm_start;
3076 nstart += adjust_next << PAGE_SHIFT;
3077 if (nstart & ~HPAGE_PMD_MASK &&
3078 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3079 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 3080 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
3081 }
3082}
e9b61f19 3083
fec89c10 3084static void freeze_page(struct page *page)
e9b61f19 3085{
fec89c10
KS
3086 enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3087 TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3088 int i, ret;
e9b61f19
KS
3089
3090 VM_BUG_ON_PAGE(!PageHead(page), page);
3091
fec89c10
KS
3092 /* We only need TTU_SPLIT_HUGE_PMD once */
3093 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3094 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3095 /* Cut short if the page is unmapped */
3096 if (page_count(page) == 1)
3097 return;
e9b61f19 3098
fec89c10 3099 ret = try_to_unmap(page + i, ttu_flags);
e9b61f19 3100 }
fec89c10 3101 VM_BUG_ON(ret);
e9b61f19
KS
3102}
3103
fec89c10 3104static void unfreeze_page(struct page *page)
e9b61f19 3105{
fec89c10 3106 int i;
e9b61f19 3107
fec89c10
KS
3108 for (i = 0; i < HPAGE_PMD_NR; i++)
3109 remove_migration_ptes(page + i, page + i, true);
e9b61f19
KS
3110}
3111
8df651c7 3112static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
3113 struct lruvec *lruvec, struct list_head *list)
3114{
e9b61f19
KS
3115 struct page *page_tail = head + tail;
3116
8df651c7 3117 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 3118 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
3119
3120 /*
0139aa7b 3121 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 3122 * get_page_unless_zero() may be running from under us on the
8df651c7 3123 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
e9b61f19
KS
3124 * would then run atomic_set() concurrently with
3125 * get_page_unless_zero(), and atomic_set() is implemented in C not
3126 * using locked ops. spin_unlock on x86 sometime uses locked ops
3127 * because of PPro errata 66, 92, so unless somebody can guarantee
3128 * atomic_set() here would be safe on all archs (and not only on x86),
8df651c7 3129 * it's safer to use atomic_inc().
e9b61f19 3130 */
fe896d18 3131 page_ref_inc(page_tail);
e9b61f19
KS
3132
3133 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3134 page_tail->flags |= (head->flags &
3135 ((1L << PG_referenced) |
3136 (1L << PG_swapbacked) |
3137 (1L << PG_mlocked) |
3138 (1L << PG_uptodate) |
3139 (1L << PG_active) |
3140 (1L << PG_locked) |
b8d3c4c3
MK
3141 (1L << PG_unevictable) |
3142 (1L << PG_dirty)));
e9b61f19
KS
3143
3144 /*
3145 * After clearing PageTail the gup refcount can be released.
3146 * Page flags also must be visible before we make the page non-compound.
3147 */
3148 smp_wmb();
3149
3150 clear_compound_head(page_tail);
3151
3152 if (page_is_young(head))
3153 set_page_young(page_tail);
3154 if (page_is_idle(head))
3155 set_page_idle(page_tail);
3156
3157 /* ->mapping in first tail page is compound_mapcount */
9a982250 3158 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
3159 page_tail);
3160 page_tail->mapping = head->mapping;
3161
3162 page_tail->index = head->index + tail;
3163 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3164 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
3165}
3166
3167static void __split_huge_page(struct page *page, struct list_head *list)
3168{
3169 struct page *head = compound_head(page);
3170 struct zone *zone = page_zone(head);
3171 struct lruvec *lruvec;
8df651c7 3172 int i;
e9b61f19
KS
3173
3174 /* prevent PageLRU to go away from under us, and freeze lru stats */
3175 spin_lock_irq(&zone->lru_lock);
3176 lruvec = mem_cgroup_page_lruvec(head, zone);
3177
3178 /* complete memcg works before add pages to LRU */
3179 mem_cgroup_split_huge_fixup(head);
3180
e9b61f19 3181 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
8df651c7 3182 __split_huge_page_tail(head, i, lruvec, list);
e9b61f19
KS
3183
3184 ClearPageCompound(head);
3185 spin_unlock_irq(&zone->lru_lock);
3186
fec89c10 3187 unfreeze_page(head);
e9b61f19
KS
3188
3189 for (i = 0; i < HPAGE_PMD_NR; i++) {
3190 struct page *subpage = head + i;
3191 if (subpage == page)
3192 continue;
3193 unlock_page(subpage);
3194
3195 /*
3196 * Subpages may be freed if there wasn't any mapping
3197 * like if add_to_swap() is running on a lru page that
3198 * had its mapping zapped. And freeing these pages
3199 * requires taking the lru_lock so we do the put_page
3200 * of the tail pages after the split is complete.
3201 */
3202 put_page(subpage);
3203 }
3204}
3205
b20ce5e0
KS
3206int total_mapcount(struct page *page)
3207{
3208 int i, ret;
3209
3210 VM_BUG_ON_PAGE(PageTail(page), page);
3211
3212 if (likely(!PageCompound(page)))
3213 return atomic_read(&page->_mapcount) + 1;
3214
3215 ret = compound_mapcount(page);
3216 if (PageHuge(page))
3217 return ret;
3218 for (i = 0; i < HPAGE_PMD_NR; i++)
3219 ret += atomic_read(&page[i]._mapcount) + 1;
3220 if (PageDoubleMap(page))
3221 ret -= HPAGE_PMD_NR;
3222 return ret;
3223}
3224
6d0a07ed
AA
3225/*
3226 * This calculates accurately how many mappings a transparent hugepage
3227 * has (unlike page_mapcount() which isn't fully accurate). This full
3228 * accuracy is primarily needed to know if copy-on-write faults can
3229 * reuse the page and change the mapping to read-write instead of
3230 * copying them. At the same time this returns the total_mapcount too.
3231 *
3232 * The function returns the highest mapcount any one of the subpages
3233 * has. If the return value is one, even if different processes are
3234 * mapping different subpages of the transparent hugepage, they can
3235 * all reuse it, because each process is reusing a different subpage.
3236 *
3237 * The total_mapcount is instead counting all virtual mappings of the
3238 * subpages. If the total_mapcount is equal to "one", it tells the
3239 * caller all mappings belong to the same "mm" and in turn the
3240 * anon_vma of the transparent hugepage can become the vma->anon_vma
3241 * local one as no other process may be mapping any of the subpages.
3242 *
3243 * It would be more accurate to replace page_mapcount() with
3244 * page_trans_huge_mapcount(), however we only use
3245 * page_trans_huge_mapcount() in the copy-on-write faults where we
3246 * need full accuracy to avoid breaking page pinning, because
3247 * page_trans_huge_mapcount() is slower than page_mapcount().
3248 */
3249int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3250{
3251 int i, ret, _total_mapcount, mapcount;
3252
3253 /* hugetlbfs shouldn't call it */
3254 VM_BUG_ON_PAGE(PageHuge(page), page);
3255
3256 if (likely(!PageTransCompound(page))) {
3257 mapcount = atomic_read(&page->_mapcount) + 1;
3258 if (total_mapcount)
3259 *total_mapcount = mapcount;
3260 return mapcount;
3261 }
3262
3263 page = compound_head(page);
3264
3265 _total_mapcount = ret = 0;
3266 for (i = 0; i < HPAGE_PMD_NR; i++) {
3267 mapcount = atomic_read(&page[i]._mapcount) + 1;
3268 ret = max(ret, mapcount);
3269 _total_mapcount += mapcount;
3270 }
3271 if (PageDoubleMap(page)) {
3272 ret -= 1;
3273 _total_mapcount -= HPAGE_PMD_NR;
3274 }
3275 mapcount = compound_mapcount(page);
3276 ret += mapcount;
3277 _total_mapcount += mapcount;
3278 if (total_mapcount)
3279 *total_mapcount = _total_mapcount;
3280 return ret;
3281}
3282
e9b61f19
KS
3283/*
3284 * This function splits huge page into normal pages. @page can point to any
3285 * subpage of huge page to split. Split doesn't change the position of @page.
3286 *
3287 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3288 * The huge page must be locked.
3289 *
3290 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3291 *
3292 * Both head page and tail pages will inherit mapping, flags, and so on from
3293 * the hugepage.
3294 *
3295 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3296 * they are not mapped.
3297 *
3298 * Returns 0 if the hugepage is split successfully.
3299 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3300 * us.
3301 */
3302int split_huge_page_to_list(struct page *page, struct list_head *list)
3303{
3304 struct page *head = compound_head(page);
a3d0a918 3305 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
e9b61f19
KS
3306 struct anon_vma *anon_vma;
3307 int count, mapcount, ret;
d9654322 3308 bool mlocked;
0b9b6fff 3309 unsigned long flags;
e9b61f19
KS
3310
3311 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3312 VM_BUG_ON_PAGE(!PageAnon(page), page);
3313 VM_BUG_ON_PAGE(!PageLocked(page), page);
3314 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3315 VM_BUG_ON_PAGE(!PageCompound(page), page);
3316
3317 /*
3318 * The caller does not necessarily hold an mmap_sem that would prevent
3319 * the anon_vma disappearing so we first we take a reference to it
3320 * and then lock the anon_vma for write. This is similar to
3321 * page_lock_anon_vma_read except the write lock is taken to serialise
3322 * against parallel split or collapse operations.
3323 */
3324 anon_vma = page_get_anon_vma(head);
3325 if (!anon_vma) {
3326 ret = -EBUSY;
3327 goto out;
3328 }
3329 anon_vma_lock_write(anon_vma);
3330
3331 /*
3332 * Racy check if we can split the page, before freeze_page() will
3333 * split PMDs
3334 */
3335 if (total_mapcount(head) != page_count(head) - 1) {
3336 ret = -EBUSY;
3337 goto out_unlock;
3338 }
3339
d9654322 3340 mlocked = PageMlocked(page);
fec89c10 3341 freeze_page(head);
e9b61f19
KS
3342 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3343
d9654322
KS
3344 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3345 if (mlocked)
3346 lru_add_drain();
3347
0139aa7b 3348 /* Prevent deferred_split_scan() touching ->_refcount */
a3d0a918 3349 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3350 count = page_count(head);
3351 mapcount = total_mapcount(head);
bd56086f 3352 if (!mapcount && count == 1) {
9a982250 3353 if (!list_empty(page_deferred_list(head))) {
a3d0a918 3354 pgdata->split_queue_len--;
9a982250
KS
3355 list_del(page_deferred_list(head));
3356 }
a3d0a918 3357 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3358 __split_huge_page(page, list);
3359 ret = 0;
bd56086f 3360 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
a3d0a918 3361 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3362 pr_alert("total_mapcount: %u, page_count(): %u\n",
3363 mapcount, count);
3364 if (PageTail(page))
3365 dump_page(head, NULL);
bd56086f 3366 dump_page(page, "total_mapcount(head) > 0");
e9b61f19
KS
3367 BUG();
3368 } else {
a3d0a918 3369 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
fec89c10 3370 unfreeze_page(head);
e9b61f19
KS
3371 ret = -EBUSY;
3372 }
3373
3374out_unlock:
3375 anon_vma_unlock_write(anon_vma);
3376 put_anon_vma(anon_vma);
3377out:
3378 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3379 return ret;
3380}
9a982250
KS
3381
3382void free_transhuge_page(struct page *page)
3383{
a3d0a918 3384 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3385 unsigned long flags;
3386
a3d0a918 3387 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3388 if (!list_empty(page_deferred_list(page))) {
a3d0a918 3389 pgdata->split_queue_len--;
9a982250
KS
3390 list_del(page_deferred_list(page));
3391 }
a3d0a918 3392 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3393 free_compound_page(page);
3394}
3395
3396void deferred_split_huge_page(struct page *page)
3397{
a3d0a918 3398 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3399 unsigned long flags;
3400
3401 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3402
a3d0a918 3403 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3404 if (list_empty(page_deferred_list(page))) {
f9719a03 3405 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
3406 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3407 pgdata->split_queue_len++;
9a982250 3408 }
a3d0a918 3409 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3410}
3411
3412static unsigned long deferred_split_count(struct shrinker *shrink,
3413 struct shrink_control *sc)
3414{
a3d0a918 3415 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 3416 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
3417}
3418
3419static unsigned long deferred_split_scan(struct shrinker *shrink,
3420 struct shrink_control *sc)
3421{
a3d0a918 3422 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
3423 unsigned long flags;
3424 LIST_HEAD(list), *pos, *next;
3425 struct page *page;
3426 int split = 0;
3427
a3d0a918 3428 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3429 /* Take pin on all head pages to avoid freeing them under us */
ae026204 3430 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
3431 page = list_entry((void *)pos, struct page, mapping);
3432 page = compound_head(page);
e3ae1953
KS
3433 if (get_page_unless_zero(page)) {
3434 list_move(page_deferred_list(page), &list);
3435 } else {
3436 /* We lost race with put_compound_page() */
9a982250 3437 list_del_init(page_deferred_list(page));
a3d0a918 3438 pgdata->split_queue_len--;
9a982250 3439 }
e3ae1953
KS
3440 if (!--sc->nr_to_scan)
3441 break;
9a982250 3442 }
a3d0a918 3443 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3444
3445 list_for_each_safe(pos, next, &list) {
3446 page = list_entry((void *)pos, struct page, mapping);
3447 lock_page(page);
3448 /* split_huge_page() removes page from list on success */
3449 if (!split_huge_page(page))
3450 split++;
3451 unlock_page(page);
3452 put_page(page);
3453 }
3454
a3d0a918
KS
3455 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3456 list_splice_tail(&list, &pgdata->split_queue);
3457 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 3458
cb8d68ec
KS
3459 /*
3460 * Stop shrinker if we didn't split any page, but the queue is empty.
3461 * This can happen if pages were freed under us.
3462 */
3463 if (!split && list_empty(&pgdata->split_queue))
3464 return SHRINK_STOP;
3465 return split;
9a982250
KS
3466}
3467
3468static struct shrinker deferred_split_shrinker = {
3469 .count_objects = deferred_split_count,
3470 .scan_objects = deferred_split_scan,
3471 .seeks = DEFAULT_SEEKS,
a3d0a918 3472 .flags = SHRINKER_NUMA_AWARE,
9a982250 3473};
49071d43
KS
3474
3475#ifdef CONFIG_DEBUG_FS
3476static int split_huge_pages_set(void *data, u64 val)
3477{
3478 struct zone *zone;
3479 struct page *page;
3480 unsigned long pfn, max_zone_pfn;
3481 unsigned long total = 0, split = 0;
3482
3483 if (val != 1)
3484 return -EINVAL;
3485
3486 for_each_populated_zone(zone) {
3487 max_zone_pfn = zone_end_pfn(zone);
3488 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3489 if (!pfn_valid(pfn))
3490 continue;
3491
3492 page = pfn_to_page(pfn);
3493 if (!get_page_unless_zero(page))
3494 continue;
3495
3496 if (zone != page_zone(page))
3497 goto next;
3498
3499 if (!PageHead(page) || !PageAnon(page) ||
3500 PageHuge(page))
3501 goto next;
3502
3503 total++;
3504 lock_page(page);
3505 if (!split_huge_page(page))
3506 split++;
3507 unlock_page(page);
3508next:
3509 put_page(page);
3510 }
3511 }
3512
145bdaa1 3513 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
3514
3515 return 0;
3516}
3517DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3518 "%llu\n");
3519
3520static int __init split_huge_pages_debugfs(void)
3521{
3522 void *ret;
3523
145bdaa1 3524 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
3525 &split_huge_pages_fops);
3526 if (!ret)
3527 pr_warn("Failed to create split_huge_pages in debugfs");
3528 return 0;
3529}
3530late_initcall(split_huge_pages_debugfs);
3531#endif