]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
memcg: avoid accessing memcg after releasing reference
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
97ae1749 15#include <linux/shrinker.h>
ba76149f
AA
16#include <linux/mm_inline.h>
17#include <linux/kthread.h>
18#include <linux/khugepaged.h>
878aee7d 19#include <linux/freezer.h>
a664b2d8 20#include <linux/mman.h>
325adeb5 21#include <linux/pagemap.h>
4daae3b4 22#include <linux/migrate.h>
43b5fbbd 23#include <linux/hashtable.h>
97ae1749 24
71e3aac0
AA
25#include <asm/tlb.h>
26#include <asm/pgalloc.h>
27#include "internal.h"
28
ba76149f
AA
29/*
30 * By default transparent hugepage support is enabled for all mappings
31 * and khugepaged scans all mappings. Defrag is only invoked by
32 * khugepaged hugepage allocations and by page faults inside
33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34 * allocations.
35 */
71e3aac0 36unsigned long transparent_hugepage_flags __read_mostly =
13ece886 37#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 38 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
39#endif
40#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42#endif
d39d33c3 43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
46
47/* default scan 8*512 pte (or vmas) every 30 second */
48static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49static unsigned int khugepaged_pages_collapsed;
50static unsigned int khugepaged_full_scans;
51static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52/* during fragmentation poll the hugepage allocator once every minute */
53static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54static struct task_struct *khugepaged_thread __read_mostly;
55static DEFINE_MUTEX(khugepaged_mutex);
56static DEFINE_SPINLOCK(khugepaged_mm_lock);
57static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
58/*
59 * default collapse hugepages if there is at least one pte mapped like
60 * it would have happened if the vma was large enough during page
61 * fault.
62 */
63static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
64
65static int khugepaged(void *none);
ba76149f 66static int khugepaged_slab_init(void);
ba76149f 67
43b5fbbd
SL
68#define MM_SLOTS_HASH_BITS 10
69static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
70
ba76149f
AA
71static struct kmem_cache *mm_slot_cache __read_mostly;
72
73/**
74 * struct mm_slot - hash lookup from mm to mm_slot
75 * @hash: hash collision list
76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77 * @mm: the mm that this information is valid for
78 */
79struct mm_slot {
80 struct hlist_node hash;
81 struct list_head mm_node;
82 struct mm_struct *mm;
83};
84
85/**
86 * struct khugepaged_scan - cursor for scanning
87 * @mm_head: the head of the mm list to scan
88 * @mm_slot: the current mm_slot we are scanning
89 * @address: the next address inside that to be scanned
90 *
91 * There is only the one khugepaged_scan instance of this cursor structure.
92 */
93struct khugepaged_scan {
94 struct list_head mm_head;
95 struct mm_slot *mm_slot;
96 unsigned long address;
2f1da642
HS
97};
98static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
99 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100};
101
f000565a
AA
102
103static int set_recommended_min_free_kbytes(void)
104{
105 struct zone *zone;
106 int nr_zones = 0;
107 unsigned long recommended_min;
f000565a 108
17c230af 109 if (!khugepaged_enabled())
f000565a
AA
110 return 0;
111
112 for_each_populated_zone(zone)
113 nr_zones++;
114
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min = pageblock_nr_pages * nr_zones * 2;
117
118 /*
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
123 */
124 recommended_min += pageblock_nr_pages * nr_zones *
125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min = min(recommended_min,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min <<= (PAGE_SHIFT-10);
131
132 if (recommended_min > min_free_kbytes)
133 min_free_kbytes = recommended_min;
134 setup_per_zone_wmarks();
135 return 0;
136}
137late_initcall(set_recommended_min_free_kbytes);
138
ba76149f
AA
139static int start_khugepaged(void)
140{
141 int err = 0;
142 if (khugepaged_enabled()) {
ba76149f
AA
143 if (!khugepaged_thread)
144 khugepaged_thread = kthread_run(khugepaged, NULL,
145 "khugepaged");
146 if (unlikely(IS_ERR(khugepaged_thread))) {
147 printk(KERN_ERR
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err = PTR_ERR(khugepaged_thread);
150 khugepaged_thread = NULL;
151 }
911891af
XG
152
153 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 154 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
155
156 set_recommended_min_free_kbytes();
911891af 157 } else if (khugepaged_thread) {
911891af
XG
158 kthread_stop(khugepaged_thread);
159 khugepaged_thread = NULL;
160 }
637e3a27 161
ba76149f
AA
162 return err;
163}
71e3aac0 164
97ae1749
KS
165static atomic_t huge_zero_refcount;
166static unsigned long huge_zero_pfn __read_mostly;
167
168static inline bool is_huge_zero_pfn(unsigned long pfn)
4a6c1297 169{
97ae1749
KS
170 unsigned long zero_pfn = ACCESS_ONCE(huge_zero_pfn);
171 return zero_pfn && pfn == zero_pfn;
172}
4a6c1297 173
97ae1749
KS
174static inline bool is_huge_zero_pmd(pmd_t pmd)
175{
176 return is_huge_zero_pfn(pmd_pfn(pmd));
177}
178
179static unsigned long get_huge_zero_page(void)
180{
181 struct page *zero_page;
182retry:
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184 return ACCESS_ONCE(huge_zero_pfn);
185
186 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 187 HPAGE_PMD_ORDER);
d8a8e1f0
KS
188 if (!zero_page) {
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
97ae1749 190 return 0;
d8a8e1f0
KS
191 }
192 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749
KS
193 preempt_disable();
194 if (cmpxchg(&huge_zero_pfn, 0, page_to_pfn(zero_page))) {
195 preempt_enable();
196 __free_page(zero_page);
197 goto retry;
198 }
199
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount, 2);
202 preempt_enable();
203 return ACCESS_ONCE(huge_zero_pfn);
4a6c1297
KS
204}
205
97ae1749 206static void put_huge_zero_page(void)
4a6c1297 207{
97ae1749
KS
208 /*
209 * Counter should never go to zero here. Only shrinker can put
210 * last reference.
211 */
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
213}
214
97ae1749
KS
215static int shrink_huge_zero_page(struct shrinker *shrink,
216 struct shrink_control *sc)
4a6c1297 217{
97ae1749
KS
218 if (!sc->nr_to_scan)
219 /* we can free zero page only if last reference remains */
220 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
221
222 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
223 unsigned long zero_pfn = xchg(&huge_zero_pfn, 0);
224 BUG_ON(zero_pfn == 0);
225 __free_page(__pfn_to_page(zero_pfn));
226 }
227
228 return 0;
4a6c1297
KS
229}
230
97ae1749
KS
231static struct shrinker huge_zero_page_shrinker = {
232 .shrink = shrink_huge_zero_page,
233 .seeks = DEFAULT_SEEKS,
234};
235
71e3aac0 236#ifdef CONFIG_SYSFS
ba76149f 237
71e3aac0
AA
238static ssize_t double_flag_show(struct kobject *kobj,
239 struct kobj_attribute *attr, char *buf,
240 enum transparent_hugepage_flag enabled,
241 enum transparent_hugepage_flag req_madv)
242{
243 if (test_bit(enabled, &transparent_hugepage_flags)) {
244 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
245 return sprintf(buf, "[always] madvise never\n");
246 } else if (test_bit(req_madv, &transparent_hugepage_flags))
247 return sprintf(buf, "always [madvise] never\n");
248 else
249 return sprintf(buf, "always madvise [never]\n");
250}
251static ssize_t double_flag_store(struct kobject *kobj,
252 struct kobj_attribute *attr,
253 const char *buf, size_t count,
254 enum transparent_hugepage_flag enabled,
255 enum transparent_hugepage_flag req_madv)
256{
257 if (!memcmp("always", buf,
258 min(sizeof("always")-1, count))) {
259 set_bit(enabled, &transparent_hugepage_flags);
260 clear_bit(req_madv, &transparent_hugepage_flags);
261 } else if (!memcmp("madvise", buf,
262 min(sizeof("madvise")-1, count))) {
263 clear_bit(enabled, &transparent_hugepage_flags);
264 set_bit(req_madv, &transparent_hugepage_flags);
265 } else if (!memcmp("never", buf,
266 min(sizeof("never")-1, count))) {
267 clear_bit(enabled, &transparent_hugepage_flags);
268 clear_bit(req_madv, &transparent_hugepage_flags);
269 } else
270 return -EINVAL;
271
272 return count;
273}
274
275static ssize_t enabled_show(struct kobject *kobj,
276 struct kobj_attribute *attr, char *buf)
277{
278 return double_flag_show(kobj, attr, buf,
279 TRANSPARENT_HUGEPAGE_FLAG,
280 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
281}
282static ssize_t enabled_store(struct kobject *kobj,
283 struct kobj_attribute *attr,
284 const char *buf, size_t count)
285{
ba76149f
AA
286 ssize_t ret;
287
288 ret = double_flag_store(kobj, attr, buf, count,
289 TRANSPARENT_HUGEPAGE_FLAG,
290 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
291
292 if (ret > 0) {
911891af
XG
293 int err;
294
295 mutex_lock(&khugepaged_mutex);
296 err = start_khugepaged();
297 mutex_unlock(&khugepaged_mutex);
298
ba76149f
AA
299 if (err)
300 ret = err;
301 }
302
303 return ret;
71e3aac0
AA
304}
305static struct kobj_attribute enabled_attr =
306 __ATTR(enabled, 0644, enabled_show, enabled_store);
307
308static ssize_t single_flag_show(struct kobject *kobj,
309 struct kobj_attribute *attr, char *buf,
310 enum transparent_hugepage_flag flag)
311{
e27e6151
BH
312 return sprintf(buf, "%d\n",
313 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 314}
e27e6151 315
71e3aac0
AA
316static ssize_t single_flag_store(struct kobject *kobj,
317 struct kobj_attribute *attr,
318 const char *buf, size_t count,
319 enum transparent_hugepage_flag flag)
320{
e27e6151
BH
321 unsigned long value;
322 int ret;
323
324 ret = kstrtoul(buf, 10, &value);
325 if (ret < 0)
326 return ret;
327 if (value > 1)
328 return -EINVAL;
329
330 if (value)
71e3aac0 331 set_bit(flag, &transparent_hugepage_flags);
e27e6151 332 else
71e3aac0 333 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
334
335 return count;
336}
337
338/*
339 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
340 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
341 * memory just to allocate one more hugepage.
342 */
343static ssize_t defrag_show(struct kobject *kobj,
344 struct kobj_attribute *attr, char *buf)
345{
346 return double_flag_show(kobj, attr, buf,
347 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
348 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
349}
350static ssize_t defrag_store(struct kobject *kobj,
351 struct kobj_attribute *attr,
352 const char *buf, size_t count)
353{
354 return double_flag_store(kobj, attr, buf, count,
355 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
356 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
357}
358static struct kobj_attribute defrag_attr =
359 __ATTR(defrag, 0644, defrag_show, defrag_store);
360
79da5407
KS
361static ssize_t use_zero_page_show(struct kobject *kobj,
362 struct kobj_attribute *attr, char *buf)
363{
364 return single_flag_show(kobj, attr, buf,
365 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
366}
367static ssize_t use_zero_page_store(struct kobject *kobj,
368 struct kobj_attribute *attr, const char *buf, size_t count)
369{
370 return single_flag_store(kobj, attr, buf, count,
371 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
372}
373static struct kobj_attribute use_zero_page_attr =
374 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
375#ifdef CONFIG_DEBUG_VM
376static ssize_t debug_cow_show(struct kobject *kobj,
377 struct kobj_attribute *attr, char *buf)
378{
379 return single_flag_show(kobj, attr, buf,
380 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
381}
382static ssize_t debug_cow_store(struct kobject *kobj,
383 struct kobj_attribute *attr,
384 const char *buf, size_t count)
385{
386 return single_flag_store(kobj, attr, buf, count,
387 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
388}
389static struct kobj_attribute debug_cow_attr =
390 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
391#endif /* CONFIG_DEBUG_VM */
392
393static struct attribute *hugepage_attr[] = {
394 &enabled_attr.attr,
395 &defrag_attr.attr,
79da5407 396 &use_zero_page_attr.attr,
71e3aac0
AA
397#ifdef CONFIG_DEBUG_VM
398 &debug_cow_attr.attr,
399#endif
400 NULL,
401};
402
403static struct attribute_group hugepage_attr_group = {
404 .attrs = hugepage_attr,
ba76149f
AA
405};
406
407static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
408 struct kobj_attribute *attr,
409 char *buf)
410{
411 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
412}
413
414static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
415 struct kobj_attribute *attr,
416 const char *buf, size_t count)
417{
418 unsigned long msecs;
419 int err;
420
421 err = strict_strtoul(buf, 10, &msecs);
422 if (err || msecs > UINT_MAX)
423 return -EINVAL;
424
425 khugepaged_scan_sleep_millisecs = msecs;
426 wake_up_interruptible(&khugepaged_wait);
427
428 return count;
429}
430static struct kobj_attribute scan_sleep_millisecs_attr =
431 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
432 scan_sleep_millisecs_store);
433
434static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
435 struct kobj_attribute *attr,
436 char *buf)
437{
438 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
439}
440
441static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
442 struct kobj_attribute *attr,
443 const char *buf, size_t count)
444{
445 unsigned long msecs;
446 int err;
447
448 err = strict_strtoul(buf, 10, &msecs);
449 if (err || msecs > UINT_MAX)
450 return -EINVAL;
451
452 khugepaged_alloc_sleep_millisecs = msecs;
453 wake_up_interruptible(&khugepaged_wait);
454
455 return count;
456}
457static struct kobj_attribute alloc_sleep_millisecs_attr =
458 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
459 alloc_sleep_millisecs_store);
460
461static ssize_t pages_to_scan_show(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 char *buf)
464{
465 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
466}
467static ssize_t pages_to_scan_store(struct kobject *kobj,
468 struct kobj_attribute *attr,
469 const char *buf, size_t count)
470{
471 int err;
472 unsigned long pages;
473
474 err = strict_strtoul(buf, 10, &pages);
475 if (err || !pages || pages > UINT_MAX)
476 return -EINVAL;
477
478 khugepaged_pages_to_scan = pages;
479
480 return count;
481}
482static struct kobj_attribute pages_to_scan_attr =
483 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
484 pages_to_scan_store);
485
486static ssize_t pages_collapsed_show(struct kobject *kobj,
487 struct kobj_attribute *attr,
488 char *buf)
489{
490 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
491}
492static struct kobj_attribute pages_collapsed_attr =
493 __ATTR_RO(pages_collapsed);
494
495static ssize_t full_scans_show(struct kobject *kobj,
496 struct kobj_attribute *attr,
497 char *buf)
498{
499 return sprintf(buf, "%u\n", khugepaged_full_scans);
500}
501static struct kobj_attribute full_scans_attr =
502 __ATTR_RO(full_scans);
503
504static ssize_t khugepaged_defrag_show(struct kobject *kobj,
505 struct kobj_attribute *attr, char *buf)
506{
507 return single_flag_show(kobj, attr, buf,
508 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
509}
510static ssize_t khugepaged_defrag_store(struct kobject *kobj,
511 struct kobj_attribute *attr,
512 const char *buf, size_t count)
513{
514 return single_flag_store(kobj, attr, buf, count,
515 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
516}
517static struct kobj_attribute khugepaged_defrag_attr =
518 __ATTR(defrag, 0644, khugepaged_defrag_show,
519 khugepaged_defrag_store);
520
521/*
522 * max_ptes_none controls if khugepaged should collapse hugepages over
523 * any unmapped ptes in turn potentially increasing the memory
524 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
525 * reduce the available free memory in the system as it
526 * runs. Increasing max_ptes_none will instead potentially reduce the
527 * free memory in the system during the khugepaged scan.
528 */
529static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
530 struct kobj_attribute *attr,
531 char *buf)
532{
533 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
534}
535static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 const char *buf, size_t count)
538{
539 int err;
540 unsigned long max_ptes_none;
541
542 err = strict_strtoul(buf, 10, &max_ptes_none);
543 if (err || max_ptes_none > HPAGE_PMD_NR-1)
544 return -EINVAL;
545
546 khugepaged_max_ptes_none = max_ptes_none;
547
548 return count;
549}
550static struct kobj_attribute khugepaged_max_ptes_none_attr =
551 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
552 khugepaged_max_ptes_none_store);
553
554static struct attribute *khugepaged_attr[] = {
555 &khugepaged_defrag_attr.attr,
556 &khugepaged_max_ptes_none_attr.attr,
557 &pages_to_scan_attr.attr,
558 &pages_collapsed_attr.attr,
559 &full_scans_attr.attr,
560 &scan_sleep_millisecs_attr.attr,
561 &alloc_sleep_millisecs_attr.attr,
562 NULL,
563};
564
565static struct attribute_group khugepaged_attr_group = {
566 .attrs = khugepaged_attr,
567 .name = "khugepaged",
71e3aac0 568};
71e3aac0 569
569e5590 570static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 571{
71e3aac0
AA
572 int err;
573
569e5590
SL
574 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
575 if (unlikely(!*hugepage_kobj)) {
2c79737a 576 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
569e5590 577 return -ENOMEM;
ba76149f
AA
578 }
579
569e5590 580 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 581 if (err) {
2c79737a 582 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
569e5590 583 goto delete_obj;
ba76149f
AA
584 }
585
569e5590 586 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 587 if (err) {
2c79737a 588 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
569e5590 589 goto remove_hp_group;
ba76149f 590 }
569e5590
SL
591
592 return 0;
593
594remove_hp_group:
595 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
596delete_obj:
597 kobject_put(*hugepage_kobj);
598 return err;
599}
600
601static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
602{
603 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
604 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
605 kobject_put(hugepage_kobj);
606}
607#else
608static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
609{
610 return 0;
611}
612
613static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
614{
615}
616#endif /* CONFIG_SYSFS */
617
618static int __init hugepage_init(void)
619{
620 int err;
621 struct kobject *hugepage_kobj;
622
623 if (!has_transparent_hugepage()) {
624 transparent_hugepage_flags = 0;
625 return -EINVAL;
626 }
627
628 err = hugepage_init_sysfs(&hugepage_kobj);
629 if (err)
630 return err;
ba76149f
AA
631
632 err = khugepaged_slab_init();
633 if (err)
634 goto out;
635
97ae1749
KS
636 register_shrinker(&huge_zero_page_shrinker);
637
97562cd2
RR
638 /*
639 * By default disable transparent hugepages on smaller systems,
640 * where the extra memory used could hurt more than TLB overhead
641 * is likely to save. The admin can still enable it through /sys.
642 */
643 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
644 transparent_hugepage_flags = 0;
645
ba76149f
AA
646 start_khugepaged();
647
569e5590 648 return 0;
ba76149f 649out:
569e5590 650 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 651 return err;
71e3aac0
AA
652}
653module_init(hugepage_init)
654
655static int __init setup_transparent_hugepage(char *str)
656{
657 int ret = 0;
658 if (!str)
659 goto out;
660 if (!strcmp(str, "always")) {
661 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
662 &transparent_hugepage_flags);
663 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
664 &transparent_hugepage_flags);
665 ret = 1;
666 } else if (!strcmp(str, "madvise")) {
667 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
668 &transparent_hugepage_flags);
669 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
670 &transparent_hugepage_flags);
671 ret = 1;
672 } else if (!strcmp(str, "never")) {
673 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 &transparent_hugepage_flags);
675 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 &transparent_hugepage_flags);
677 ret = 1;
678 }
679out:
680 if (!ret)
681 printk(KERN_WARNING
682 "transparent_hugepage= cannot parse, ignored\n");
683 return ret;
684}
685__setup("transparent_hugepage=", setup_transparent_hugepage);
686
b32967ff 687pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
688{
689 if (likely(vma->vm_flags & VM_WRITE))
690 pmd = pmd_mkwrite(pmd);
691 return pmd;
692}
693
b3092b3b
BL
694static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
695{
696 pmd_t entry;
697 entry = mk_pmd(page, vma->vm_page_prot);
698 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
699 entry = pmd_mkhuge(entry);
700 return entry;
701}
702
71e3aac0
AA
703static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
704 struct vm_area_struct *vma,
705 unsigned long haddr, pmd_t *pmd,
706 struct page *page)
707{
71e3aac0
AA
708 pgtable_t pgtable;
709
710 VM_BUG_ON(!PageCompound(page));
711 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 712 if (unlikely(!pgtable))
71e3aac0 713 return VM_FAULT_OOM;
71e3aac0
AA
714
715 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
716 /*
717 * The memory barrier inside __SetPageUptodate makes sure that
718 * clear_huge_page writes become visible before the set_pmd_at()
719 * write.
720 */
71e3aac0
AA
721 __SetPageUptodate(page);
722
723 spin_lock(&mm->page_table_lock);
724 if (unlikely(!pmd_none(*pmd))) {
725 spin_unlock(&mm->page_table_lock);
b9bbfbe3 726 mem_cgroup_uncharge_page(page);
71e3aac0
AA
727 put_page(page);
728 pte_free(mm, pgtable);
729 } else {
730 pmd_t entry;
b3092b3b 731 entry = mk_huge_pmd(page, vma);
71e3aac0
AA
732 page_add_new_anon_rmap(page, vma, haddr);
733 set_pmd_at(mm, haddr, pmd, entry);
e3ebcf64 734 pgtable_trans_huge_deposit(mm, pgtable);
71e3aac0 735 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 736 mm->nr_ptes++;
71e3aac0
AA
737 spin_unlock(&mm->page_table_lock);
738 }
739
aa2e878e 740 return 0;
71e3aac0
AA
741}
742
cc5d462f 743static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 744{
cc5d462f 745 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
746}
747
748static inline struct page *alloc_hugepage_vma(int defrag,
749 struct vm_area_struct *vma,
cc5d462f
AK
750 unsigned long haddr, int nd,
751 gfp_t extra_gfp)
0bbbc0b3 752{
cc5d462f 753 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 754 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
755}
756
757#ifndef CONFIG_NUMA
71e3aac0
AA
758static inline struct page *alloc_hugepage(int defrag)
759{
cc5d462f 760 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
761 HPAGE_PMD_ORDER);
762}
0bbbc0b3 763#endif
71e3aac0 764
3ea41e62 765static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749
KS
766 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 unsigned long zero_pfn)
fc9fe822
KS
768{
769 pmd_t entry;
3ea41e62
KS
770 if (!pmd_none(*pmd))
771 return false;
97ae1749 772 entry = pfn_pmd(zero_pfn, vma->vm_page_prot);
fc9fe822
KS
773 entry = pmd_wrprotect(entry);
774 entry = pmd_mkhuge(entry);
775 set_pmd_at(mm, haddr, pmd, entry);
776 pgtable_trans_huge_deposit(mm, pgtable);
777 mm->nr_ptes++;
3ea41e62 778 return true;
fc9fe822
KS
779}
780
71e3aac0
AA
781int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
782 unsigned long address, pmd_t *pmd,
783 unsigned int flags)
784{
785 struct page *page;
786 unsigned long haddr = address & HPAGE_PMD_MASK;
787 pte_t *pte;
788
789 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
790 if (unlikely(anon_vma_prepare(vma)))
791 return VM_FAULT_OOM;
ba76149f
AA
792 if (unlikely(khugepaged_enter(vma)))
793 return VM_FAULT_OOM;
79da5407
KS
794 if (!(flags & FAULT_FLAG_WRITE) &&
795 transparent_hugepage_use_zero_page()) {
80371957 796 pgtable_t pgtable;
97ae1749 797 unsigned long zero_pfn;
3ea41e62 798 bool set;
80371957
KS
799 pgtable = pte_alloc_one(mm, haddr);
800 if (unlikely(!pgtable))
801 return VM_FAULT_OOM;
97ae1749
KS
802 zero_pfn = get_huge_zero_page();
803 if (unlikely(!zero_pfn)) {
804 pte_free(mm, pgtable);
805 count_vm_event(THP_FAULT_FALLBACK);
806 goto out;
807 }
80371957 808 spin_lock(&mm->page_table_lock);
3ea41e62 809 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
97ae1749 810 zero_pfn);
80371957 811 spin_unlock(&mm->page_table_lock);
3ea41e62
KS
812 if (!set) {
813 pte_free(mm, pgtable);
814 put_huge_zero_page();
815 }
80371957
KS
816 return 0;
817 }
0bbbc0b3 818 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 819 vma, haddr, numa_node_id(), 0);
81ab4201
AK
820 if (unlikely(!page)) {
821 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 822 goto out;
81ab4201
AK
823 }
824 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
825 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
826 put_page(page);
827 goto out;
828 }
edad9d2c
DR
829 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
830 page))) {
831 mem_cgroup_uncharge_page(page);
832 put_page(page);
833 goto out;
834 }
71e3aac0 835
edad9d2c 836 return 0;
71e3aac0
AA
837 }
838out:
839 /*
840 * Use __pte_alloc instead of pte_alloc_map, because we can't
841 * run pte_offset_map on the pmd, if an huge pmd could
842 * materialize from under us from a different thread.
843 */
4fd01770
MG
844 if (unlikely(pmd_none(*pmd)) &&
845 unlikely(__pte_alloc(mm, vma, pmd, address)))
71e3aac0
AA
846 return VM_FAULT_OOM;
847 /* if an huge pmd materialized from under us just retry later */
848 if (unlikely(pmd_trans_huge(*pmd)))
849 return 0;
850 /*
851 * A regular pmd is established and it can't morph into a huge pmd
852 * from under us anymore at this point because we hold the mmap_sem
853 * read mode and khugepaged takes it in write mode. So now it's
854 * safe to run pte_offset_map().
855 */
856 pte = pte_offset_map(pmd, address);
857 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
858}
859
860int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
861 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
862 struct vm_area_struct *vma)
863{
864 struct page *src_page;
865 pmd_t pmd;
866 pgtable_t pgtable;
867 int ret;
868
869 ret = -ENOMEM;
870 pgtable = pte_alloc_one(dst_mm, addr);
871 if (unlikely(!pgtable))
872 goto out;
873
874 spin_lock(&dst_mm->page_table_lock);
875 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
876
877 ret = -EAGAIN;
878 pmd = *src_pmd;
879 if (unlikely(!pmd_trans_huge(pmd))) {
880 pte_free(dst_mm, pgtable);
881 goto out_unlock;
882 }
fc9fe822
KS
883 /*
884 * mm->page_table_lock is enough to be sure that huge zero pmd is not
885 * under splitting since we don't split the page itself, only pmd to
886 * a page table.
887 */
888 if (is_huge_zero_pmd(pmd)) {
97ae1749 889 unsigned long zero_pfn;
3ea41e62 890 bool set;
97ae1749
KS
891 /*
892 * get_huge_zero_page() will never allocate a new page here,
893 * since we already have a zero page to copy. It just takes a
894 * reference.
895 */
896 zero_pfn = get_huge_zero_page();
3ea41e62 897 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
97ae1749 898 zero_pfn);
3ea41e62 899 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
fc9fe822
KS
900 ret = 0;
901 goto out_unlock;
902 }
71e3aac0
AA
903 if (unlikely(pmd_trans_splitting(pmd))) {
904 /* split huge page running from under us */
905 spin_unlock(&src_mm->page_table_lock);
906 spin_unlock(&dst_mm->page_table_lock);
907 pte_free(dst_mm, pgtable);
908
909 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
910 goto out;
911 }
912 src_page = pmd_page(pmd);
913 VM_BUG_ON(!PageHead(src_page));
914 get_page(src_page);
915 page_dup_rmap(src_page);
916 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
917
918 pmdp_set_wrprotect(src_mm, addr, src_pmd);
919 pmd = pmd_mkold(pmd_wrprotect(pmd));
920 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e3ebcf64 921 pgtable_trans_huge_deposit(dst_mm, pgtable);
1c641e84 922 dst_mm->nr_ptes++;
71e3aac0
AA
923
924 ret = 0;
925out_unlock:
926 spin_unlock(&src_mm->page_table_lock);
927 spin_unlock(&dst_mm->page_table_lock);
928out:
929 return ret;
930}
931
a1dd450b
WD
932void huge_pmd_set_accessed(struct mm_struct *mm,
933 struct vm_area_struct *vma,
934 unsigned long address,
935 pmd_t *pmd, pmd_t orig_pmd,
936 int dirty)
937{
938 pmd_t entry;
939 unsigned long haddr;
940
941 spin_lock(&mm->page_table_lock);
942 if (unlikely(!pmd_same(*pmd, orig_pmd)))
943 goto unlock;
944
945 entry = pmd_mkyoung(orig_pmd);
946 haddr = address & HPAGE_PMD_MASK;
947 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
948 update_mmu_cache_pmd(vma, address, pmd);
949
950unlock:
951 spin_unlock(&mm->page_table_lock);
952}
953
93b4796d
KS
954static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
955 struct vm_area_struct *vma, unsigned long address,
3ea41e62 956 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
93b4796d
KS
957{
958 pgtable_t pgtable;
959 pmd_t _pmd;
960 struct page *page;
961 int i, ret = 0;
962 unsigned long mmun_start; /* For mmu_notifiers */
963 unsigned long mmun_end; /* For mmu_notifiers */
964
965 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
966 if (!page) {
967 ret |= VM_FAULT_OOM;
968 goto out;
969 }
970
971 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
972 put_page(page);
973 ret |= VM_FAULT_OOM;
974 goto out;
975 }
976
977 clear_user_highpage(page, address);
978 __SetPageUptodate(page);
979
980 mmun_start = haddr;
981 mmun_end = haddr + HPAGE_PMD_SIZE;
982 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
983
984 spin_lock(&mm->page_table_lock);
3ea41e62
KS
985 if (unlikely(!pmd_same(*pmd, orig_pmd)))
986 goto out_free_page;
987
93b4796d
KS
988 pmdp_clear_flush(vma, haddr, pmd);
989 /* leave pmd empty until pte is filled */
990
991 pgtable = pgtable_trans_huge_withdraw(mm);
992 pmd_populate(mm, &_pmd, pgtable);
993
994 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
995 pte_t *pte, entry;
996 if (haddr == (address & PAGE_MASK)) {
997 entry = mk_pte(page, vma->vm_page_prot);
998 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
999 page_add_new_anon_rmap(page, vma, haddr);
1000 } else {
1001 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1002 entry = pte_mkspecial(entry);
1003 }
1004 pte = pte_offset_map(&_pmd, haddr);
1005 VM_BUG_ON(!pte_none(*pte));
1006 set_pte_at(mm, haddr, pte, entry);
1007 pte_unmap(pte);
1008 }
1009 smp_wmb(); /* make pte visible before pmd */
1010 pmd_populate(mm, pmd, pgtable);
1011 spin_unlock(&mm->page_table_lock);
97ae1749 1012 put_huge_zero_page();
93b4796d
KS
1013 inc_mm_counter(mm, MM_ANONPAGES);
1014
1015 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1016
1017 ret |= VM_FAULT_WRITE;
1018out:
1019 return ret;
3ea41e62
KS
1020out_free_page:
1021 spin_unlock(&mm->page_table_lock);
1022 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1023 mem_cgroup_uncharge_page(page);
1024 put_page(page);
1025 goto out;
93b4796d
KS
1026}
1027
71e3aac0
AA
1028static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1029 struct vm_area_struct *vma,
1030 unsigned long address,
1031 pmd_t *pmd, pmd_t orig_pmd,
1032 struct page *page,
1033 unsigned long haddr)
1034{
1035 pgtable_t pgtable;
1036 pmd_t _pmd;
1037 int ret = 0, i;
1038 struct page **pages;
2ec74c3e
SG
1039 unsigned long mmun_start; /* For mmu_notifiers */
1040 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1041
1042 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1043 GFP_KERNEL);
1044 if (unlikely(!pages)) {
1045 ret |= VM_FAULT_OOM;
1046 goto out;
1047 }
1048
1049 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1050 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1051 __GFP_OTHER_NODE,
19ee151e 1052 vma, address, page_to_nid(page));
b9bbfbe3
AA
1053 if (unlikely(!pages[i] ||
1054 mem_cgroup_newpage_charge(pages[i], mm,
1055 GFP_KERNEL))) {
1056 if (pages[i])
71e3aac0 1057 put_page(pages[i]);
b9bbfbe3
AA
1058 mem_cgroup_uncharge_start();
1059 while (--i >= 0) {
1060 mem_cgroup_uncharge_page(pages[i]);
1061 put_page(pages[i]);
1062 }
1063 mem_cgroup_uncharge_end();
71e3aac0
AA
1064 kfree(pages);
1065 ret |= VM_FAULT_OOM;
1066 goto out;
1067 }
1068 }
1069
1070 for (i = 0; i < HPAGE_PMD_NR; i++) {
1071 copy_user_highpage(pages[i], page + i,
0089e485 1072 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1073 __SetPageUptodate(pages[i]);
1074 cond_resched();
1075 }
1076
2ec74c3e
SG
1077 mmun_start = haddr;
1078 mmun_end = haddr + HPAGE_PMD_SIZE;
1079 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1080
71e3aac0
AA
1081 spin_lock(&mm->page_table_lock);
1082 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1083 goto out_free_pages;
1084 VM_BUG_ON(!PageHead(page));
1085
2ec74c3e 1086 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1087 /* leave pmd empty until pte is filled */
1088
e3ebcf64 1089 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
1090 pmd_populate(mm, &_pmd, pgtable);
1091
1092 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1093 pte_t *pte, entry;
1094 entry = mk_pte(pages[i], vma->vm_page_prot);
1095 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1096 page_add_new_anon_rmap(pages[i], vma, haddr);
1097 pte = pte_offset_map(&_pmd, haddr);
1098 VM_BUG_ON(!pte_none(*pte));
1099 set_pte_at(mm, haddr, pte, entry);
1100 pte_unmap(pte);
1101 }
1102 kfree(pages);
1103
71e3aac0
AA
1104 smp_wmb(); /* make pte visible before pmd */
1105 pmd_populate(mm, pmd, pgtable);
1106 page_remove_rmap(page);
1107 spin_unlock(&mm->page_table_lock);
1108
2ec74c3e
SG
1109 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1110
71e3aac0
AA
1111 ret |= VM_FAULT_WRITE;
1112 put_page(page);
1113
1114out:
1115 return ret;
1116
1117out_free_pages:
1118 spin_unlock(&mm->page_table_lock);
2ec74c3e 1119 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3
AA
1120 mem_cgroup_uncharge_start();
1121 for (i = 0; i < HPAGE_PMD_NR; i++) {
1122 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 1123 put_page(pages[i]);
b9bbfbe3
AA
1124 }
1125 mem_cgroup_uncharge_end();
71e3aac0
AA
1126 kfree(pages);
1127 goto out;
1128}
1129
1130int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1131 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1132{
1133 int ret = 0;
93b4796d 1134 struct page *page = NULL, *new_page;
71e3aac0 1135 unsigned long haddr;
2ec74c3e
SG
1136 unsigned long mmun_start; /* For mmu_notifiers */
1137 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1138
1139 VM_BUG_ON(!vma->anon_vma);
93b4796d
KS
1140 haddr = address & HPAGE_PMD_MASK;
1141 if (is_huge_zero_pmd(orig_pmd))
1142 goto alloc;
71e3aac0
AA
1143 spin_lock(&mm->page_table_lock);
1144 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1145 goto out_unlock;
1146
1147 page = pmd_page(orig_pmd);
1148 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
71e3aac0
AA
1149 if (page_mapcount(page) == 1) {
1150 pmd_t entry;
1151 entry = pmd_mkyoung(orig_pmd);
1152 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1153 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1154 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1155 ret |= VM_FAULT_WRITE;
1156 goto out_unlock;
1157 }
1158 get_page(page);
1159 spin_unlock(&mm->page_table_lock);
93b4796d 1160alloc:
71e3aac0
AA
1161 if (transparent_hugepage_enabled(vma) &&
1162 !transparent_hugepage_debug_cow())
0bbbc0b3 1163 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 1164 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
1165 else
1166 new_page = NULL;
1167
1168 if (unlikely(!new_page)) {
81ab4201 1169 count_vm_event(THP_FAULT_FALLBACK);
93b4796d
KS
1170 if (is_huge_zero_pmd(orig_pmd)) {
1171 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
3ea41e62 1172 address, pmd, orig_pmd, haddr);
93b4796d
KS
1173 } else {
1174 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1175 pmd, orig_pmd, page, haddr);
1176 if (ret & VM_FAULT_OOM)
1177 split_huge_page(page);
1178 put_page(page);
1179 }
71e3aac0
AA
1180 goto out;
1181 }
81ab4201 1182 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 1183
b9bbfbe3
AA
1184 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1185 put_page(new_page);
93b4796d
KS
1186 if (page) {
1187 split_huge_page(page);
1188 put_page(page);
1189 }
b9bbfbe3
AA
1190 ret |= VM_FAULT_OOM;
1191 goto out;
1192 }
1193
93b4796d
KS
1194 if (is_huge_zero_pmd(orig_pmd))
1195 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1196 else
1197 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1198 __SetPageUptodate(new_page);
1199
2ec74c3e
SG
1200 mmun_start = haddr;
1201 mmun_end = haddr + HPAGE_PMD_SIZE;
1202 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1203
71e3aac0 1204 spin_lock(&mm->page_table_lock);
93b4796d
KS
1205 if (page)
1206 put_page(page);
b9bbfbe3 1207 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 1208 spin_unlock(&mm->page_table_lock);
b9bbfbe3 1209 mem_cgroup_uncharge_page(new_page);
71e3aac0 1210 put_page(new_page);
2ec74c3e 1211 goto out_mn;
b9bbfbe3 1212 } else {
71e3aac0 1213 pmd_t entry;
b3092b3b 1214 entry = mk_huge_pmd(new_page, vma);
2ec74c3e 1215 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1216 page_add_new_anon_rmap(new_page, vma, haddr);
1217 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1218 update_mmu_cache_pmd(vma, address, pmd);
97ae1749 1219 if (is_huge_zero_pmd(orig_pmd)) {
93b4796d 1220 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1221 put_huge_zero_page();
1222 } else {
93b4796d
KS
1223 VM_BUG_ON(!PageHead(page));
1224 page_remove_rmap(page);
1225 put_page(page);
1226 }
71e3aac0
AA
1227 ret |= VM_FAULT_WRITE;
1228 }
71e3aac0 1229 spin_unlock(&mm->page_table_lock);
2ec74c3e
SG
1230out_mn:
1231 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1232out:
1233 return ret;
2ec74c3e
SG
1234out_unlock:
1235 spin_unlock(&mm->page_table_lock);
1236 return ret;
71e3aac0
AA
1237}
1238
b676b293 1239struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1240 unsigned long addr,
1241 pmd_t *pmd,
1242 unsigned int flags)
1243{
b676b293 1244 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1245 struct page *page = NULL;
1246
1247 assert_spin_locked(&mm->page_table_lock);
1248
1249 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1250 goto out;
1251
85facf25
KS
1252 /* Avoid dumping huge zero page */
1253 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1254 return ERR_PTR(-EFAULT);
1255
71e3aac0
AA
1256 page = pmd_page(*pmd);
1257 VM_BUG_ON(!PageHead(page));
1258 if (flags & FOLL_TOUCH) {
1259 pmd_t _pmd;
1260 /*
1261 * We should set the dirty bit only for FOLL_WRITE but
1262 * for now the dirty bit in the pmd is meaningless.
1263 * And if the dirty bit will become meaningful and
1264 * we'll only set it with FOLL_WRITE, an atomic
1265 * set_bit will be required on the pmd to set the
1266 * young bit, instead of the current set_pmd_at.
1267 */
1268 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1269 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1270 }
b676b293
DR
1271 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1272 if (page->mapping && trylock_page(page)) {
1273 lru_add_drain();
1274 if (page->mapping)
1275 mlock_vma_page(page);
1276 unlock_page(page);
1277 }
1278 }
71e3aac0
AA
1279 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1280 VM_BUG_ON(!PageCompound(page));
1281 if (flags & FOLL_GET)
70b50f94 1282 get_page_foll(page);
71e3aac0
AA
1283
1284out:
1285 return page;
1286}
1287
d10e63f2 1288/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1289int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1290 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1291{
b32967ff 1292 struct page *page;
d10e63f2 1293 unsigned long haddr = addr & HPAGE_PMD_MASK;
4daae3b4 1294 int target_nid;
03c5a6e1 1295 int current_nid = -1;
b32967ff 1296 bool migrated;
d10e63f2
MG
1297
1298 spin_lock(&mm->page_table_lock);
1299 if (unlikely(!pmd_same(pmd, *pmdp)))
1300 goto out_unlock;
1301
1302 page = pmd_page(pmd);
4daae3b4 1303 get_page(page);
03c5a6e1
MG
1304 current_nid = page_to_nid(page);
1305 count_vm_numa_event(NUMA_HINT_FAULTS);
1306 if (current_nid == numa_node_id())
1307 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4daae3b4
MG
1308
1309 target_nid = mpol_misplaced(page, vma, haddr);
b32967ff
MG
1310 if (target_nid == -1) {
1311 put_page(page);
4daae3b4 1312 goto clear_pmdnuma;
b32967ff 1313 }
4daae3b4 1314
b32967ff
MG
1315 /* Acquire the page lock to serialise THP migrations */
1316 spin_unlock(&mm->page_table_lock);
1317 lock_page(page);
4daae3b4 1318
b32967ff 1319 /* Confirm the PTE did not while locked */
4daae3b4 1320 spin_lock(&mm->page_table_lock);
b32967ff
MG
1321 if (unlikely(!pmd_same(pmd, *pmdp))) {
1322 unlock_page(page);
1323 put_page(page);
4daae3b4 1324 goto out_unlock;
b32967ff
MG
1325 }
1326 spin_unlock(&mm->page_table_lock);
4daae3b4 1327
b32967ff
MG
1328 /* Migrate the THP to the requested node */
1329 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390
HD
1330 pmdp, pmd, addr, page, target_nid);
1331 if (!migrated)
1332 goto check_same;
b32967ff 1333
340ef390 1334 task_numa_fault(target_nid, HPAGE_PMD_NR, true);
b32967ff
MG
1335 return 0;
1336
340ef390
HD
1337check_same:
1338 spin_lock(&mm->page_table_lock);
1339 if (unlikely(!pmd_same(pmd, *pmdp)))
1340 goto out_unlock;
b32967ff 1341clear_pmdnuma:
d10e63f2
MG
1342 pmd = pmd_mknonnuma(pmd);
1343 set_pmd_at(mm, haddr, pmdp, pmd);
1344 VM_BUG_ON(pmd_numa(*pmdp));
1345 update_mmu_cache_pmd(vma, addr, pmdp);
d10e63f2
MG
1346out_unlock:
1347 spin_unlock(&mm->page_table_lock);
b32967ff 1348 if (current_nid != -1)
340ef390 1349 task_numa_fault(current_nid, HPAGE_PMD_NR, false);
d10e63f2
MG
1350 return 0;
1351}
1352
71e3aac0 1353int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1354 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1355{
1356 int ret = 0;
1357
025c5b24
NH
1358 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1359 struct page *page;
1360 pgtable_t pgtable;
f5c8ad47 1361 pmd_t orig_pmd;
e3ebcf64 1362 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
f5c8ad47 1363 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
025c5b24 1364 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
479f0abb
KS
1365 if (is_huge_zero_pmd(orig_pmd)) {
1366 tlb->mm->nr_ptes--;
1367 spin_unlock(&tlb->mm->page_table_lock);
97ae1749 1368 put_huge_zero_page();
479f0abb
KS
1369 } else {
1370 page = pmd_page(orig_pmd);
1371 page_remove_rmap(page);
1372 VM_BUG_ON(page_mapcount(page) < 0);
1373 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1374 VM_BUG_ON(!PageHead(page));
1375 tlb->mm->nr_ptes--;
1376 spin_unlock(&tlb->mm->page_table_lock);
1377 tlb_remove_page(tlb, page);
1378 }
025c5b24
NH
1379 pte_free(tlb->mm, pgtable);
1380 ret = 1;
1381 }
71e3aac0
AA
1382 return ret;
1383}
1384
0ca1634d
JW
1385int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1386 unsigned long addr, unsigned long end,
1387 unsigned char *vec)
1388{
1389 int ret = 0;
1390
025c5b24
NH
1391 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1392 /*
1393 * All logical pages in the range are present
1394 * if backed by a huge page.
1395 */
0ca1634d 1396 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1397 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1398 ret = 1;
1399 }
0ca1634d
JW
1400
1401 return ret;
1402}
1403
37a1c49a
AA
1404int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1405 unsigned long old_addr,
1406 unsigned long new_addr, unsigned long old_end,
1407 pmd_t *old_pmd, pmd_t *new_pmd)
1408{
1409 int ret = 0;
1410 pmd_t pmd;
1411
1412 struct mm_struct *mm = vma->vm_mm;
1413
1414 if ((old_addr & ~HPAGE_PMD_MASK) ||
1415 (new_addr & ~HPAGE_PMD_MASK) ||
1416 old_end - old_addr < HPAGE_PMD_SIZE ||
1417 (new_vma->vm_flags & VM_NOHUGEPAGE))
1418 goto out;
1419
1420 /*
1421 * The destination pmd shouldn't be established, free_pgtables()
1422 * should have release it.
1423 */
1424 if (WARN_ON(!pmd_none(*new_pmd))) {
1425 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1426 goto out;
1427 }
1428
025c5b24
NH
1429 ret = __pmd_trans_huge_lock(old_pmd, vma);
1430 if (ret == 1) {
1431 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1432 VM_BUG_ON(!pmd_none(*new_pmd));
1433 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1434 spin_unlock(&mm->page_table_lock);
1435 }
1436out:
1437 return ret;
1438}
1439
cd7548ab 1440int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
4b10e7d5 1441 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1442{
1443 struct mm_struct *mm = vma->vm_mm;
1444 int ret = 0;
1445
025c5b24
NH
1446 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1447 pmd_t entry;
1448 entry = pmdp_get_and_clear(mm, addr, pmd);
a4f1de17 1449 if (!prot_numa) {
4b10e7d5 1450 entry = pmd_modify(entry, newprot);
a4f1de17
HD
1451 BUG_ON(pmd_write(entry));
1452 } else {
4b10e7d5
MG
1453 struct page *page = pmd_page(*pmd);
1454
1455 /* only check non-shared pages */
1456 if (page_mapcount(page) == 1 &&
1457 !pmd_numa(*pmd)) {
1458 entry = pmd_mknuma(entry);
1459 }
1460 }
025c5b24
NH
1461 set_pmd_at(mm, addr, pmd, entry);
1462 spin_unlock(&vma->vm_mm->page_table_lock);
1463 ret = 1;
1464 }
1465
1466 return ret;
1467}
1468
1469/*
1470 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1471 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1472 *
1473 * Note that if it returns 1, this routine returns without unlocking page
1474 * table locks. So callers must unlock them.
1475 */
1476int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1477{
1478 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1479 if (likely(pmd_trans_huge(*pmd))) {
1480 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1481 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1482 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1483 return -1;
cd7548ab 1484 } else {
025c5b24
NH
1485 /* Thp mapped by 'pmd' is stable, so we can
1486 * handle it as it is. */
1487 return 1;
cd7548ab 1488 }
025c5b24
NH
1489 }
1490 spin_unlock(&vma->vm_mm->page_table_lock);
1491 return 0;
cd7548ab
JW
1492}
1493
71e3aac0
AA
1494pmd_t *page_check_address_pmd(struct page *page,
1495 struct mm_struct *mm,
1496 unsigned long address,
1497 enum page_check_address_pmd_flag flag)
1498{
71e3aac0
AA
1499 pmd_t *pmd, *ret = NULL;
1500
1501 if (address & ~HPAGE_PMD_MASK)
1502 goto out;
1503
6219049a
BL
1504 pmd = mm_find_pmd(mm, address);
1505 if (!pmd)
71e3aac0 1506 goto out;
71e3aac0
AA
1507 if (pmd_none(*pmd))
1508 goto out;
1509 if (pmd_page(*pmd) != page)
1510 goto out;
94fcc585
AA
1511 /*
1512 * split_vma() may create temporary aliased mappings. There is
1513 * no risk as long as all huge pmd are found and have their
1514 * splitting bit set before __split_huge_page_refcount
1515 * runs. Finding the same huge pmd more than once during the
1516 * same rmap walk is not a problem.
1517 */
1518 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1519 pmd_trans_splitting(*pmd))
1520 goto out;
71e3aac0
AA
1521 if (pmd_trans_huge(*pmd)) {
1522 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1523 !pmd_trans_splitting(*pmd));
1524 ret = pmd;
1525 }
1526out:
1527 return ret;
1528}
1529
1530static int __split_huge_page_splitting(struct page *page,
1531 struct vm_area_struct *vma,
1532 unsigned long address)
1533{
1534 struct mm_struct *mm = vma->vm_mm;
1535 pmd_t *pmd;
1536 int ret = 0;
2ec74c3e
SG
1537 /* For mmu_notifiers */
1538 const unsigned long mmun_start = address;
1539 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1540
2ec74c3e 1541 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
1542 spin_lock(&mm->page_table_lock);
1543 pmd = page_check_address_pmd(page, mm, address,
1544 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1545 if (pmd) {
1546 /*
1547 * We can't temporarily set the pmd to null in order
1548 * to split it, the pmd must remain marked huge at all
1549 * times or the VM won't take the pmd_trans_huge paths
5a505085 1550 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1551 * serialize against split_huge_page*.
1552 */
2ec74c3e 1553 pmdp_splitting_flush(vma, address, pmd);
71e3aac0
AA
1554 ret = 1;
1555 }
1556 spin_unlock(&mm->page_table_lock);
2ec74c3e 1557 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1558
1559 return ret;
1560}
1561
5bc7b8ac
SL
1562static void __split_huge_page_refcount(struct page *page,
1563 struct list_head *list)
71e3aac0
AA
1564{
1565 int i;
71e3aac0 1566 struct zone *zone = page_zone(page);
fa9add64 1567 struct lruvec *lruvec;
70b50f94 1568 int tail_count = 0;
71e3aac0
AA
1569
1570 /* prevent PageLRU to go away from under us, and freeze lru stats */
1571 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1572 lruvec = mem_cgroup_page_lruvec(page, zone);
1573
71e3aac0 1574 compound_lock(page);
e94c8a9c
KH
1575 /* complete memcg works before add pages to LRU */
1576 mem_cgroup_split_huge_fixup(page);
71e3aac0 1577
45676885 1578 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1579 struct page *page_tail = page + i;
1580
70b50f94
AA
1581 /* tail_page->_mapcount cannot change */
1582 BUG_ON(page_mapcount(page_tail) < 0);
1583 tail_count += page_mapcount(page_tail);
1584 /* check for overflow */
1585 BUG_ON(tail_count < 0);
1586 BUG_ON(atomic_read(&page_tail->_count) != 0);
1587 /*
1588 * tail_page->_count is zero and not changing from
1589 * under us. But get_page_unless_zero() may be running
1590 * from under us on the tail_page. If we used
1591 * atomic_set() below instead of atomic_add(), we
1592 * would then run atomic_set() concurrently with
1593 * get_page_unless_zero(), and atomic_set() is
1594 * implemented in C not using locked ops. spin_unlock
1595 * on x86 sometime uses locked ops because of PPro
1596 * errata 66, 92, so unless somebody can guarantee
1597 * atomic_set() here would be safe on all archs (and
1598 * not only on x86), it's safer to use atomic_add().
1599 */
1600 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1601 &page_tail->_count);
71e3aac0
AA
1602
1603 /* after clearing PageTail the gup refcount can be released */
1604 smp_mb();
1605
a6d30ddd
JD
1606 /*
1607 * retain hwpoison flag of the poisoned tail page:
1608 * fix for the unsuitable process killed on Guest Machine(KVM)
1609 * by the memory-failure.
1610 */
1611 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1612 page_tail->flags |= (page->flags &
1613 ((1L << PG_referenced) |
1614 (1L << PG_swapbacked) |
1615 (1L << PG_mlocked) |
1616 (1L << PG_uptodate)));
1617 page_tail->flags |= (1L << PG_dirty);
1618
70b50f94 1619 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1620 smp_wmb();
1621
1622 /*
1623 * __split_huge_page_splitting() already set the
1624 * splitting bit in all pmd that could map this
1625 * hugepage, that will ensure no CPU can alter the
1626 * mapcount on the head page. The mapcount is only
1627 * accounted in the head page and it has to be
1628 * transferred to all tail pages in the below code. So
1629 * for this code to be safe, the split the mapcount
1630 * can't change. But that doesn't mean userland can't
1631 * keep changing and reading the page contents while
1632 * we transfer the mapcount, so the pmd splitting
1633 * status is achieved setting a reserved bit in the
1634 * pmd, not by clearing the present bit.
1635 */
71e3aac0
AA
1636 page_tail->_mapcount = page->_mapcount;
1637
1638 BUG_ON(page_tail->mapping);
1639 page_tail->mapping = page->mapping;
1640
45676885 1641 page_tail->index = page->index + i;
22b751c3 1642 page_nid_xchg_last(page_tail, page_nid_last(page));
71e3aac0
AA
1643
1644 BUG_ON(!PageAnon(page_tail));
1645 BUG_ON(!PageUptodate(page_tail));
1646 BUG_ON(!PageDirty(page_tail));
1647 BUG_ON(!PageSwapBacked(page_tail));
1648
5bc7b8ac 1649 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1650 }
70b50f94
AA
1651 atomic_sub(tail_count, &page->_count);
1652 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1653
fa9add64 1654 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1655 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1656
71e3aac0
AA
1657 ClearPageCompound(page);
1658 compound_unlock(page);
1659 spin_unlock_irq(&zone->lru_lock);
1660
1661 for (i = 1; i < HPAGE_PMD_NR; i++) {
1662 struct page *page_tail = page + i;
1663 BUG_ON(page_count(page_tail) <= 0);
1664 /*
1665 * Tail pages may be freed if there wasn't any mapping
1666 * like if add_to_swap() is running on a lru page that
1667 * had its mapping zapped. And freeing these pages
1668 * requires taking the lru_lock so we do the put_page
1669 * of the tail pages after the split is complete.
1670 */
1671 put_page(page_tail);
1672 }
1673
1674 /*
1675 * Only the head page (now become a regular page) is required
1676 * to be pinned by the caller.
1677 */
1678 BUG_ON(page_count(page) <= 0);
1679}
1680
1681static int __split_huge_page_map(struct page *page,
1682 struct vm_area_struct *vma,
1683 unsigned long address)
1684{
1685 struct mm_struct *mm = vma->vm_mm;
1686 pmd_t *pmd, _pmd;
1687 int ret = 0, i;
1688 pgtable_t pgtable;
1689 unsigned long haddr;
1690
1691 spin_lock(&mm->page_table_lock);
1692 pmd = page_check_address_pmd(page, mm, address,
1693 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1694 if (pmd) {
e3ebcf64 1695 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
1696 pmd_populate(mm, &_pmd, pgtable);
1697
e3ebcf64
GS
1698 haddr = address;
1699 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1700 pte_t *pte, entry;
1701 BUG_ON(PageCompound(page+i));
1702 entry = mk_pte(page + i, vma->vm_page_prot);
1703 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1704 if (!pmd_write(*pmd))
1705 entry = pte_wrprotect(entry);
1706 else
1707 BUG_ON(page_mapcount(page) != 1);
1708 if (!pmd_young(*pmd))
1709 entry = pte_mkold(entry);
1ba6e0b5
AA
1710 if (pmd_numa(*pmd))
1711 entry = pte_mknuma(entry);
71e3aac0
AA
1712 pte = pte_offset_map(&_pmd, haddr);
1713 BUG_ON(!pte_none(*pte));
1714 set_pte_at(mm, haddr, pte, entry);
1715 pte_unmap(pte);
1716 }
1717
71e3aac0
AA
1718 smp_wmb(); /* make pte visible before pmd */
1719 /*
1720 * Up to this point the pmd is present and huge and
1721 * userland has the whole access to the hugepage
1722 * during the split (which happens in place). If we
1723 * overwrite the pmd with the not-huge version
1724 * pointing to the pte here (which of course we could
1725 * if all CPUs were bug free), userland could trigger
1726 * a small page size TLB miss on the small sized TLB
1727 * while the hugepage TLB entry is still established
1728 * in the huge TLB. Some CPU doesn't like that. See
1729 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1730 * Erratum 383 on page 93. Intel should be safe but is
1731 * also warns that it's only safe if the permission
1732 * and cache attributes of the two entries loaded in
1733 * the two TLB is identical (which should be the case
1734 * here). But it is generally safer to never allow
1735 * small and huge TLB entries for the same virtual
1736 * address to be loaded simultaneously. So instead of
1737 * doing "pmd_populate(); flush_tlb_range();" we first
1738 * mark the current pmd notpresent (atomically because
1739 * here the pmd_trans_huge and pmd_trans_splitting
1740 * must remain set at all times on the pmd until the
1741 * split is complete for this pmd), then we flush the
1742 * SMP TLB and finally we write the non-huge version
1743 * of the pmd entry with pmd_populate.
1744 */
46dcde73 1745 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1746 pmd_populate(mm, pmd, pgtable);
1747 ret = 1;
1748 }
1749 spin_unlock(&mm->page_table_lock);
1750
1751 return ret;
1752}
1753
5a505085 1754/* must be called with anon_vma->root->rwsem held */
71e3aac0 1755static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1756 struct anon_vma *anon_vma,
1757 struct list_head *list)
71e3aac0
AA
1758{
1759 int mapcount, mapcount2;
bf181b9f 1760 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1761 struct anon_vma_chain *avc;
1762
1763 BUG_ON(!PageHead(page));
1764 BUG_ON(PageTail(page));
1765
1766 mapcount = 0;
bf181b9f 1767 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1768 struct vm_area_struct *vma = avc->vma;
1769 unsigned long addr = vma_address(page, vma);
1770 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1771 mapcount += __split_huge_page_splitting(page, vma, addr);
1772 }
05759d38
AA
1773 /*
1774 * It is critical that new vmas are added to the tail of the
1775 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1776 * and establishes a child pmd before
1777 * __split_huge_page_splitting() freezes the parent pmd (so if
1778 * we fail to prevent copy_huge_pmd() from running until the
1779 * whole __split_huge_page() is complete), we will still see
1780 * the newly established pmd of the child later during the
1781 * walk, to be able to set it as pmd_trans_splitting too.
1782 */
1783 if (mapcount != page_mapcount(page))
1784 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1785 mapcount, page_mapcount(page));
71e3aac0
AA
1786 BUG_ON(mapcount != page_mapcount(page));
1787
5bc7b8ac 1788 __split_huge_page_refcount(page, list);
71e3aac0
AA
1789
1790 mapcount2 = 0;
bf181b9f 1791 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1792 struct vm_area_struct *vma = avc->vma;
1793 unsigned long addr = vma_address(page, vma);
1794 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1795 mapcount2 += __split_huge_page_map(page, vma, addr);
1796 }
05759d38
AA
1797 if (mapcount != mapcount2)
1798 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1799 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1800 BUG_ON(mapcount != mapcount2);
1801}
1802
5bc7b8ac
SL
1803/*
1804 * Split a hugepage into normal pages. This doesn't change the position of head
1805 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1806 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1807 * from the hugepage.
1808 * Return 0 if the hugepage is split successfully otherwise return 1.
1809 */
1810int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1811{
1812 struct anon_vma *anon_vma;
1813 int ret = 1;
1814
c5a647d0 1815 BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
71e3aac0 1816 BUG_ON(!PageAnon(page));
062f1af2
MG
1817
1818 /*
1819 * The caller does not necessarily hold an mmap_sem that would prevent
1820 * the anon_vma disappearing so we first we take a reference to it
1821 * and then lock the anon_vma for write. This is similar to
1822 * page_lock_anon_vma_read except the write lock is taken to serialise
1823 * against parallel split or collapse operations.
1824 */
1825 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
1826 if (!anon_vma)
1827 goto out;
062f1af2
MG
1828 anon_vma_lock_write(anon_vma);
1829
71e3aac0
AA
1830 ret = 0;
1831 if (!PageCompound(page))
1832 goto out_unlock;
1833
1834 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 1835 __split_huge_page(page, anon_vma, list);
81ab4201 1836 count_vm_event(THP_SPLIT);
71e3aac0
AA
1837
1838 BUG_ON(PageCompound(page));
1839out_unlock:
08b52706 1840 anon_vma_unlock_write(anon_vma);
062f1af2 1841 put_anon_vma(anon_vma);
71e3aac0
AA
1842out:
1843 return ret;
1844}
1845
4b6e1e37 1846#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1847
60ab3244
AA
1848int hugepage_madvise(struct vm_area_struct *vma,
1849 unsigned long *vm_flags, int advice)
0af4e98b 1850{
8e72033f
GS
1851 struct mm_struct *mm = vma->vm_mm;
1852
a664b2d8
AA
1853 switch (advice) {
1854 case MADV_HUGEPAGE:
1855 /*
1856 * Be somewhat over-protective like KSM for now!
1857 */
78f11a25 1858 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1859 return -EINVAL;
8e72033f
GS
1860 if (mm->def_flags & VM_NOHUGEPAGE)
1861 return -EINVAL;
a664b2d8
AA
1862 *vm_flags &= ~VM_NOHUGEPAGE;
1863 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1864 /*
1865 * If the vma become good for khugepaged to scan,
1866 * register it here without waiting a page fault that
1867 * may not happen any time soon.
1868 */
1869 if (unlikely(khugepaged_enter_vma_merge(vma)))
1870 return -ENOMEM;
a664b2d8
AA
1871 break;
1872 case MADV_NOHUGEPAGE:
1873 /*
1874 * Be somewhat over-protective like KSM for now!
1875 */
78f11a25 1876 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1877 return -EINVAL;
1878 *vm_flags &= ~VM_HUGEPAGE;
1879 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1880 /*
1881 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1882 * this vma even if we leave the mm registered in khugepaged if
1883 * it got registered before VM_NOHUGEPAGE was set.
1884 */
a664b2d8
AA
1885 break;
1886 }
0af4e98b
AA
1887
1888 return 0;
1889}
1890
ba76149f
AA
1891static int __init khugepaged_slab_init(void)
1892{
1893 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1894 sizeof(struct mm_slot),
1895 __alignof__(struct mm_slot), 0, NULL);
1896 if (!mm_slot_cache)
1897 return -ENOMEM;
1898
1899 return 0;
1900}
1901
ba76149f
AA
1902static inline struct mm_slot *alloc_mm_slot(void)
1903{
1904 if (!mm_slot_cache) /* initialization failed */
1905 return NULL;
1906 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1907}
1908
1909static inline void free_mm_slot(struct mm_slot *mm_slot)
1910{
1911 kmem_cache_free(mm_slot_cache, mm_slot);
1912}
1913
ba76149f
AA
1914static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1915{
1916 struct mm_slot *mm_slot;
ba76149f 1917
b67bfe0d 1918 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1919 if (mm == mm_slot->mm)
1920 return mm_slot;
43b5fbbd 1921
ba76149f
AA
1922 return NULL;
1923}
1924
1925static void insert_to_mm_slots_hash(struct mm_struct *mm,
1926 struct mm_slot *mm_slot)
1927{
ba76149f 1928 mm_slot->mm = mm;
43b5fbbd 1929 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1930}
1931
1932static inline int khugepaged_test_exit(struct mm_struct *mm)
1933{
1934 return atomic_read(&mm->mm_users) == 0;
1935}
1936
1937int __khugepaged_enter(struct mm_struct *mm)
1938{
1939 struct mm_slot *mm_slot;
1940 int wakeup;
1941
1942 mm_slot = alloc_mm_slot();
1943 if (!mm_slot)
1944 return -ENOMEM;
1945
1946 /* __khugepaged_exit() must not run from under us */
1947 VM_BUG_ON(khugepaged_test_exit(mm));
1948 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1949 free_mm_slot(mm_slot);
1950 return 0;
1951 }
1952
1953 spin_lock(&khugepaged_mm_lock);
1954 insert_to_mm_slots_hash(mm, mm_slot);
1955 /*
1956 * Insert just behind the scanning cursor, to let the area settle
1957 * down a little.
1958 */
1959 wakeup = list_empty(&khugepaged_scan.mm_head);
1960 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1961 spin_unlock(&khugepaged_mm_lock);
1962
1963 atomic_inc(&mm->mm_count);
1964 if (wakeup)
1965 wake_up_interruptible(&khugepaged_wait);
1966
1967 return 0;
1968}
1969
1970int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1971{
1972 unsigned long hstart, hend;
1973 if (!vma->anon_vma)
1974 /*
1975 * Not yet faulted in so we will register later in the
1976 * page fault if needed.
1977 */
1978 return 0;
78f11a25 1979 if (vma->vm_ops)
ba76149f
AA
1980 /* khugepaged not yet working on file or special mappings */
1981 return 0;
b3b9c293 1982 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1983 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1984 hend = vma->vm_end & HPAGE_PMD_MASK;
1985 if (hstart < hend)
1986 return khugepaged_enter(vma);
1987 return 0;
1988}
1989
1990void __khugepaged_exit(struct mm_struct *mm)
1991{
1992 struct mm_slot *mm_slot;
1993 int free = 0;
1994
1995 spin_lock(&khugepaged_mm_lock);
1996 mm_slot = get_mm_slot(mm);
1997 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1998 hash_del(&mm_slot->hash);
ba76149f
AA
1999 list_del(&mm_slot->mm_node);
2000 free = 1;
2001 }
d788e80a 2002 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2003
2004 if (free) {
ba76149f
AA
2005 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2006 free_mm_slot(mm_slot);
2007 mmdrop(mm);
2008 } else if (mm_slot) {
ba76149f
AA
2009 /*
2010 * This is required to serialize against
2011 * khugepaged_test_exit() (which is guaranteed to run
2012 * under mmap sem read mode). Stop here (after we
2013 * return all pagetables will be destroyed) until
2014 * khugepaged has finished working on the pagetables
2015 * under the mmap_sem.
2016 */
2017 down_write(&mm->mmap_sem);
2018 up_write(&mm->mmap_sem);
d788e80a 2019 }
ba76149f
AA
2020}
2021
2022static void release_pte_page(struct page *page)
2023{
2024 /* 0 stands for page_is_file_cache(page) == false */
2025 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2026 unlock_page(page);
2027 putback_lru_page(page);
2028}
2029
2030static void release_pte_pages(pte_t *pte, pte_t *_pte)
2031{
2032 while (--_pte >= pte) {
2033 pte_t pteval = *_pte;
2034 if (!pte_none(pteval))
2035 release_pte_page(pte_page(pteval));
2036 }
2037}
2038
ba76149f
AA
2039static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2040 unsigned long address,
2041 pte_t *pte)
2042{
2043 struct page *page;
2044 pte_t *_pte;
344aa35c 2045 int referenced = 0, none = 0;
ba76149f
AA
2046 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2047 _pte++, address += PAGE_SIZE) {
2048 pte_t pteval = *_pte;
2049 if (pte_none(pteval)) {
2050 if (++none <= khugepaged_max_ptes_none)
2051 continue;
344aa35c 2052 else
ba76149f 2053 goto out;
ba76149f 2054 }
344aa35c 2055 if (!pte_present(pteval) || !pte_write(pteval))
ba76149f 2056 goto out;
ba76149f 2057 page = vm_normal_page(vma, address, pteval);
344aa35c 2058 if (unlikely(!page))
ba76149f 2059 goto out;
344aa35c 2060
ba76149f
AA
2061 VM_BUG_ON(PageCompound(page));
2062 BUG_ON(!PageAnon(page));
2063 VM_BUG_ON(!PageSwapBacked(page));
2064
2065 /* cannot use mapcount: can't collapse if there's a gup pin */
344aa35c 2066 if (page_count(page) != 1)
ba76149f 2067 goto out;
ba76149f
AA
2068 /*
2069 * We can do it before isolate_lru_page because the
2070 * page can't be freed from under us. NOTE: PG_lock
2071 * is needed to serialize against split_huge_page
2072 * when invoked from the VM.
2073 */
344aa35c 2074 if (!trylock_page(page))
ba76149f 2075 goto out;
ba76149f
AA
2076 /*
2077 * Isolate the page to avoid collapsing an hugepage
2078 * currently in use by the VM.
2079 */
2080 if (isolate_lru_page(page)) {
2081 unlock_page(page);
ba76149f
AA
2082 goto out;
2083 }
2084 /* 0 stands for page_is_file_cache(page) == false */
2085 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2086 VM_BUG_ON(!PageLocked(page));
2087 VM_BUG_ON(PageLRU(page));
2088
2089 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2090 if (pte_young(pteval) || PageReferenced(page) ||
2091 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2092 referenced = 1;
2093 }
344aa35c
BL
2094 if (likely(referenced))
2095 return 1;
ba76149f 2096out:
344aa35c
BL
2097 release_pte_pages(pte, _pte);
2098 return 0;
ba76149f
AA
2099}
2100
2101static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2102 struct vm_area_struct *vma,
2103 unsigned long address,
2104 spinlock_t *ptl)
2105{
2106 pte_t *_pte;
2107 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2108 pte_t pteval = *_pte;
2109 struct page *src_page;
2110
2111 if (pte_none(pteval)) {
2112 clear_user_highpage(page, address);
2113 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2114 } else {
2115 src_page = pte_page(pteval);
2116 copy_user_highpage(page, src_page, address, vma);
2117 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
2118 release_pte_page(src_page);
2119 /*
2120 * ptl mostly unnecessary, but preempt has to
2121 * be disabled to update the per-cpu stats
2122 * inside page_remove_rmap().
2123 */
2124 spin_lock(ptl);
2125 /*
2126 * paravirt calls inside pte_clear here are
2127 * superfluous.
2128 */
2129 pte_clear(vma->vm_mm, address, _pte);
2130 page_remove_rmap(src_page);
2131 spin_unlock(ptl);
2132 free_page_and_swap_cache(src_page);
2133 }
2134
2135 address += PAGE_SIZE;
2136 page++;
2137 }
2138}
2139
26234f36 2140static void khugepaged_alloc_sleep(void)
ba76149f 2141{
26234f36
XG
2142 wait_event_freezable_timeout(khugepaged_wait, false,
2143 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2144}
ba76149f 2145
26234f36
XG
2146#ifdef CONFIG_NUMA
2147static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2148{
2149 if (IS_ERR(*hpage)) {
2150 if (!*wait)
2151 return false;
2152
2153 *wait = false;
e3b4126c 2154 *hpage = NULL;
26234f36
XG
2155 khugepaged_alloc_sleep();
2156 } else if (*hpage) {
2157 put_page(*hpage);
2158 *hpage = NULL;
2159 }
2160
2161 return true;
2162}
2163
2164static struct page
2165*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2166 struct vm_area_struct *vma, unsigned long address,
2167 int node)
2168{
0bbbc0b3 2169 VM_BUG_ON(*hpage);
ce83d217
AA
2170 /*
2171 * Allocate the page while the vma is still valid and under
2172 * the mmap_sem read mode so there is no memory allocation
2173 * later when we take the mmap_sem in write mode. This is more
2174 * friendly behavior (OTOH it may actually hide bugs) to
2175 * filesystems in userland with daemons allocating memory in
2176 * the userland I/O paths. Allocating memory with the
2177 * mmap_sem in read mode is good idea also to allow greater
2178 * scalability.
2179 */
26234f36 2180 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 2181 node, __GFP_OTHER_NODE);
692e0b35
AA
2182
2183 /*
2184 * After allocating the hugepage, release the mmap_sem read lock in
2185 * preparation for taking it in write mode.
2186 */
2187 up_read(&mm->mmap_sem);
26234f36 2188 if (unlikely(!*hpage)) {
81ab4201 2189 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2190 *hpage = ERR_PTR(-ENOMEM);
26234f36 2191 return NULL;
ce83d217 2192 }
26234f36 2193
65b3c07b 2194 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2195 return *hpage;
2196}
2197#else
2198static struct page *khugepaged_alloc_hugepage(bool *wait)
2199{
2200 struct page *hpage;
2201
2202 do {
2203 hpage = alloc_hugepage(khugepaged_defrag());
2204 if (!hpage) {
2205 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2206 if (!*wait)
2207 return NULL;
2208
2209 *wait = false;
2210 khugepaged_alloc_sleep();
2211 } else
2212 count_vm_event(THP_COLLAPSE_ALLOC);
2213 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2214
2215 return hpage;
2216}
2217
2218static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2219{
2220 if (!*hpage)
2221 *hpage = khugepaged_alloc_hugepage(wait);
2222
2223 if (unlikely(!*hpage))
2224 return false;
2225
2226 return true;
2227}
2228
2229static struct page
2230*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2231 struct vm_area_struct *vma, unsigned long address,
2232 int node)
2233{
2234 up_read(&mm->mmap_sem);
2235 VM_BUG_ON(!*hpage);
2236 return *hpage;
2237}
692e0b35
AA
2238#endif
2239
fa475e51
BL
2240static bool hugepage_vma_check(struct vm_area_struct *vma)
2241{
2242 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2243 (vma->vm_flags & VM_NOHUGEPAGE))
2244 return false;
2245
2246 if (!vma->anon_vma || vma->vm_ops)
2247 return false;
2248 if (is_vma_temporary_stack(vma))
2249 return false;
2250 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2251 return true;
2252}
2253
26234f36
XG
2254static void collapse_huge_page(struct mm_struct *mm,
2255 unsigned long address,
2256 struct page **hpage,
2257 struct vm_area_struct *vma,
2258 int node)
2259{
26234f36
XG
2260 pmd_t *pmd, _pmd;
2261 pte_t *pte;
2262 pgtable_t pgtable;
2263 struct page *new_page;
2264 spinlock_t *ptl;
2265 int isolated;
2266 unsigned long hstart, hend;
2ec74c3e
SG
2267 unsigned long mmun_start; /* For mmu_notifiers */
2268 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
2269
2270 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2271
2272 /* release the mmap_sem read lock. */
2273 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2274 if (!new_page)
2275 return;
2276
420256ef 2277 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 2278 return;
ba76149f
AA
2279
2280 /*
2281 * Prevent all access to pagetables with the exception of
2282 * gup_fast later hanlded by the ptep_clear_flush and the VM
2283 * handled by the anon_vma lock + PG_lock.
2284 */
2285 down_write(&mm->mmap_sem);
2286 if (unlikely(khugepaged_test_exit(mm)))
2287 goto out;
2288
2289 vma = find_vma(mm, address);
2290 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2291 hend = vma->vm_end & HPAGE_PMD_MASK;
2292 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2293 goto out;
fa475e51 2294 if (!hugepage_vma_check(vma))
a7d6e4ec 2295 goto out;
6219049a
BL
2296 pmd = mm_find_pmd(mm, address);
2297 if (!pmd)
ba76149f 2298 goto out;
6219049a 2299 if (pmd_trans_huge(*pmd))
ba76149f
AA
2300 goto out;
2301
4fc3f1d6 2302 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2303
2304 pte = pte_offset_map(pmd, address);
2305 ptl = pte_lockptr(mm, pmd);
2306
2ec74c3e
SG
2307 mmun_start = address;
2308 mmun_end = address + HPAGE_PMD_SIZE;
2309 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ba76149f
AA
2310 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2311 /*
2312 * After this gup_fast can't run anymore. This also removes
2313 * any huge TLB entry from the CPU so we won't allow
2314 * huge and small TLB entries for the same virtual address
2315 * to avoid the risk of CPU bugs in that area.
2316 */
2ec74c3e 2317 _pmd = pmdp_clear_flush(vma, address, pmd);
ba76149f 2318 spin_unlock(&mm->page_table_lock);
2ec74c3e 2319 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f
AA
2320
2321 spin_lock(ptl);
2322 isolated = __collapse_huge_page_isolate(vma, address, pte);
2323 spin_unlock(ptl);
ba76149f
AA
2324
2325 if (unlikely(!isolated)) {
453c7192 2326 pte_unmap(pte);
ba76149f
AA
2327 spin_lock(&mm->page_table_lock);
2328 BUG_ON(!pmd_none(*pmd));
2329 set_pmd_at(mm, address, pmd, _pmd);
2330 spin_unlock(&mm->page_table_lock);
08b52706 2331 anon_vma_unlock_write(vma->anon_vma);
ce83d217 2332 goto out;
ba76149f
AA
2333 }
2334
2335 /*
2336 * All pages are isolated and locked so anon_vma rmap
2337 * can't run anymore.
2338 */
08b52706 2339 anon_vma_unlock_write(vma->anon_vma);
ba76149f
AA
2340
2341 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 2342 pte_unmap(pte);
ba76149f
AA
2343 __SetPageUptodate(new_page);
2344 pgtable = pmd_pgtable(_pmd);
ba76149f 2345
b3092b3b 2346 _pmd = mk_huge_pmd(new_page, vma);
ba76149f
AA
2347
2348 /*
2349 * spin_lock() below is not the equivalent of smp_wmb(), so
2350 * this is needed to avoid the copy_huge_page writes to become
2351 * visible after the set_pmd_at() write.
2352 */
2353 smp_wmb();
2354
2355 spin_lock(&mm->page_table_lock);
2356 BUG_ON(!pmd_none(*pmd));
2357 page_add_new_anon_rmap(new_page, vma, address);
2358 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2359 update_mmu_cache_pmd(vma, address, pmd);
e3ebcf64 2360 pgtable_trans_huge_deposit(mm, pgtable);
ba76149f
AA
2361 spin_unlock(&mm->page_table_lock);
2362
2363 *hpage = NULL;
420256ef 2364
ba76149f 2365 khugepaged_pages_collapsed++;
ce83d217 2366out_up_write:
ba76149f 2367 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2368 return;
2369
ce83d217 2370out:
678ff896 2371 mem_cgroup_uncharge_page(new_page);
ce83d217 2372 goto out_up_write;
ba76149f
AA
2373}
2374
2375static int khugepaged_scan_pmd(struct mm_struct *mm,
2376 struct vm_area_struct *vma,
2377 unsigned long address,
2378 struct page **hpage)
2379{
ba76149f
AA
2380 pmd_t *pmd;
2381 pte_t *pte, *_pte;
2382 int ret = 0, referenced = 0, none = 0;
2383 struct page *page;
2384 unsigned long _address;
2385 spinlock_t *ptl;
00ef2d2f 2386 int node = NUMA_NO_NODE;
ba76149f
AA
2387
2388 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2389
6219049a
BL
2390 pmd = mm_find_pmd(mm, address);
2391 if (!pmd)
ba76149f 2392 goto out;
6219049a 2393 if (pmd_trans_huge(*pmd))
ba76149f
AA
2394 goto out;
2395
2396 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2397 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2398 _pte++, _address += PAGE_SIZE) {
2399 pte_t pteval = *_pte;
2400 if (pte_none(pteval)) {
2401 if (++none <= khugepaged_max_ptes_none)
2402 continue;
2403 else
2404 goto out_unmap;
2405 }
2406 if (!pte_present(pteval) || !pte_write(pteval))
2407 goto out_unmap;
2408 page = vm_normal_page(vma, _address, pteval);
2409 if (unlikely(!page))
2410 goto out_unmap;
5c4b4be3
AK
2411 /*
2412 * Chose the node of the first page. This could
2413 * be more sophisticated and look at more pages,
2414 * but isn't for now.
2415 */
00ef2d2f 2416 if (node == NUMA_NO_NODE)
5c4b4be3 2417 node = page_to_nid(page);
ba76149f
AA
2418 VM_BUG_ON(PageCompound(page));
2419 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2420 goto out_unmap;
2421 /* cannot use mapcount: can't collapse if there's a gup pin */
2422 if (page_count(page) != 1)
2423 goto out_unmap;
8ee53820
AA
2424 if (pte_young(pteval) || PageReferenced(page) ||
2425 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2426 referenced = 1;
2427 }
2428 if (referenced)
2429 ret = 1;
2430out_unmap:
2431 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2432 if (ret)
2433 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2434 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2435out:
2436 return ret;
2437}
2438
2439static void collect_mm_slot(struct mm_slot *mm_slot)
2440{
2441 struct mm_struct *mm = mm_slot->mm;
2442
b9980cdc 2443 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2444
2445 if (khugepaged_test_exit(mm)) {
2446 /* free mm_slot */
43b5fbbd 2447 hash_del(&mm_slot->hash);
ba76149f
AA
2448 list_del(&mm_slot->mm_node);
2449
2450 /*
2451 * Not strictly needed because the mm exited already.
2452 *
2453 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2454 */
2455
2456 /* khugepaged_mm_lock actually not necessary for the below */
2457 free_mm_slot(mm_slot);
2458 mmdrop(mm);
2459 }
2460}
2461
2462static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2463 struct page **hpage)
2f1da642
HS
2464 __releases(&khugepaged_mm_lock)
2465 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2466{
2467 struct mm_slot *mm_slot;
2468 struct mm_struct *mm;
2469 struct vm_area_struct *vma;
2470 int progress = 0;
2471
2472 VM_BUG_ON(!pages);
b9980cdc 2473 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2474
2475 if (khugepaged_scan.mm_slot)
2476 mm_slot = khugepaged_scan.mm_slot;
2477 else {
2478 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2479 struct mm_slot, mm_node);
2480 khugepaged_scan.address = 0;
2481 khugepaged_scan.mm_slot = mm_slot;
2482 }
2483 spin_unlock(&khugepaged_mm_lock);
2484
2485 mm = mm_slot->mm;
2486 down_read(&mm->mmap_sem);
2487 if (unlikely(khugepaged_test_exit(mm)))
2488 vma = NULL;
2489 else
2490 vma = find_vma(mm, khugepaged_scan.address);
2491
2492 progress++;
2493 for (; vma; vma = vma->vm_next) {
2494 unsigned long hstart, hend;
2495
2496 cond_resched();
2497 if (unlikely(khugepaged_test_exit(mm))) {
2498 progress++;
2499 break;
2500 }
fa475e51
BL
2501 if (!hugepage_vma_check(vma)) {
2502skip:
ba76149f
AA
2503 progress++;
2504 continue;
2505 }
ba76149f
AA
2506 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2507 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2508 if (hstart >= hend)
2509 goto skip;
2510 if (khugepaged_scan.address > hend)
2511 goto skip;
ba76149f
AA
2512 if (khugepaged_scan.address < hstart)
2513 khugepaged_scan.address = hstart;
a7d6e4ec 2514 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2515
2516 while (khugepaged_scan.address < hend) {
2517 int ret;
2518 cond_resched();
2519 if (unlikely(khugepaged_test_exit(mm)))
2520 goto breakouterloop;
2521
2522 VM_BUG_ON(khugepaged_scan.address < hstart ||
2523 khugepaged_scan.address + HPAGE_PMD_SIZE >
2524 hend);
2525 ret = khugepaged_scan_pmd(mm, vma,
2526 khugepaged_scan.address,
2527 hpage);
2528 /* move to next address */
2529 khugepaged_scan.address += HPAGE_PMD_SIZE;
2530 progress += HPAGE_PMD_NR;
2531 if (ret)
2532 /* we released mmap_sem so break loop */
2533 goto breakouterloop_mmap_sem;
2534 if (progress >= pages)
2535 goto breakouterloop;
2536 }
2537 }
2538breakouterloop:
2539 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2540breakouterloop_mmap_sem:
2541
2542 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2543 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2544 /*
2545 * Release the current mm_slot if this mm is about to die, or
2546 * if we scanned all vmas of this mm.
2547 */
2548 if (khugepaged_test_exit(mm) || !vma) {
2549 /*
2550 * Make sure that if mm_users is reaching zero while
2551 * khugepaged runs here, khugepaged_exit will find
2552 * mm_slot not pointing to the exiting mm.
2553 */
2554 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2555 khugepaged_scan.mm_slot = list_entry(
2556 mm_slot->mm_node.next,
2557 struct mm_slot, mm_node);
2558 khugepaged_scan.address = 0;
2559 } else {
2560 khugepaged_scan.mm_slot = NULL;
2561 khugepaged_full_scans++;
2562 }
2563
2564 collect_mm_slot(mm_slot);
2565 }
2566
2567 return progress;
2568}
2569
2570static int khugepaged_has_work(void)
2571{
2572 return !list_empty(&khugepaged_scan.mm_head) &&
2573 khugepaged_enabled();
2574}
2575
2576static int khugepaged_wait_event(void)
2577{
2578 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2579 kthread_should_stop();
ba76149f
AA
2580}
2581
d516904b 2582static void khugepaged_do_scan(void)
ba76149f 2583{
d516904b 2584 struct page *hpage = NULL;
ba76149f
AA
2585 unsigned int progress = 0, pass_through_head = 0;
2586 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2587 bool wait = true;
ba76149f
AA
2588
2589 barrier(); /* write khugepaged_pages_to_scan to local stack */
2590
2591 while (progress < pages) {
26234f36 2592 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2593 break;
26234f36 2594
420256ef 2595 cond_resched();
ba76149f 2596
878aee7d
AA
2597 if (unlikely(kthread_should_stop() || freezing(current)))
2598 break;
2599
ba76149f
AA
2600 spin_lock(&khugepaged_mm_lock);
2601 if (!khugepaged_scan.mm_slot)
2602 pass_through_head++;
2603 if (khugepaged_has_work() &&
2604 pass_through_head < 2)
2605 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2606 &hpage);
ba76149f
AA
2607 else
2608 progress = pages;
2609 spin_unlock(&khugepaged_mm_lock);
2610 }
ba76149f 2611
d516904b
XG
2612 if (!IS_ERR_OR_NULL(hpage))
2613 put_page(hpage);
0bbbc0b3
AA
2614}
2615
2017c0bf
XG
2616static void khugepaged_wait_work(void)
2617{
2618 try_to_freeze();
2619
2620 if (khugepaged_has_work()) {
2621 if (!khugepaged_scan_sleep_millisecs)
2622 return;
2623
2624 wait_event_freezable_timeout(khugepaged_wait,
2625 kthread_should_stop(),
2626 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2627 return;
2628 }
2629
2630 if (khugepaged_enabled())
2631 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2632}
2633
ba76149f
AA
2634static int khugepaged(void *none)
2635{
2636 struct mm_slot *mm_slot;
2637
878aee7d 2638 set_freezable();
ba76149f
AA
2639 set_user_nice(current, 19);
2640
b7231789
XG
2641 while (!kthread_should_stop()) {
2642 khugepaged_do_scan();
2643 khugepaged_wait_work();
2644 }
ba76149f
AA
2645
2646 spin_lock(&khugepaged_mm_lock);
2647 mm_slot = khugepaged_scan.mm_slot;
2648 khugepaged_scan.mm_slot = NULL;
2649 if (mm_slot)
2650 collect_mm_slot(mm_slot);
2651 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2652 return 0;
2653}
2654
c5a647d0
KS
2655static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2656 unsigned long haddr, pmd_t *pmd)
2657{
2658 struct mm_struct *mm = vma->vm_mm;
2659 pgtable_t pgtable;
2660 pmd_t _pmd;
2661 int i;
2662
2663 pmdp_clear_flush(vma, haddr, pmd);
2664 /* leave pmd empty until pte is filled */
2665
2666 pgtable = pgtable_trans_huge_withdraw(mm);
2667 pmd_populate(mm, &_pmd, pgtable);
2668
2669 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2670 pte_t *pte, entry;
2671 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2672 entry = pte_mkspecial(entry);
2673 pte = pte_offset_map(&_pmd, haddr);
2674 VM_BUG_ON(!pte_none(*pte));
2675 set_pte_at(mm, haddr, pte, entry);
2676 pte_unmap(pte);
2677 }
2678 smp_wmb(); /* make pte visible before pmd */
2679 pmd_populate(mm, pmd, pgtable);
97ae1749 2680 put_huge_zero_page();
c5a647d0
KS
2681}
2682
e180377f
KS
2683void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2684 pmd_t *pmd)
71e3aac0
AA
2685{
2686 struct page *page;
e180377f 2687 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2688 unsigned long haddr = address & HPAGE_PMD_MASK;
2689 unsigned long mmun_start; /* For mmu_notifiers */
2690 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2691
2692 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2693
c5a647d0
KS
2694 mmun_start = haddr;
2695 mmun_end = haddr + HPAGE_PMD_SIZE;
2696 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
2697 spin_lock(&mm->page_table_lock);
2698 if (unlikely(!pmd_trans_huge(*pmd))) {
2699 spin_unlock(&mm->page_table_lock);
c5a647d0
KS
2700 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2701 return;
2702 }
2703 if (is_huge_zero_pmd(*pmd)) {
2704 __split_huge_zero_page_pmd(vma, haddr, pmd);
2705 spin_unlock(&mm->page_table_lock);
2706 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2707 return;
2708 }
2709 page = pmd_page(*pmd);
2710 VM_BUG_ON(!page_count(page));
2711 get_page(page);
2712 spin_unlock(&mm->page_table_lock);
c5a647d0 2713 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2714
2715 split_huge_page(page);
2716
2717 put_page(page);
2718 BUG_ON(pmd_trans_huge(*pmd));
2719}
94fcc585 2720
e180377f
KS
2721void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2722 pmd_t *pmd)
2723{
2724 struct vm_area_struct *vma;
2725
2726 vma = find_vma(mm, address);
2727 BUG_ON(vma == NULL);
2728 split_huge_page_pmd(vma, address, pmd);
2729}
2730
94fcc585
AA
2731static void split_huge_page_address(struct mm_struct *mm,
2732 unsigned long address)
2733{
94fcc585
AA
2734 pmd_t *pmd;
2735
2736 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2737
6219049a
BL
2738 pmd = mm_find_pmd(mm, address);
2739 if (!pmd)
94fcc585
AA
2740 return;
2741 /*
2742 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2743 * materialize from under us.
2744 */
e180377f 2745 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2746}
2747
2748void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2749 unsigned long start,
2750 unsigned long end,
2751 long adjust_next)
2752{
2753 /*
2754 * If the new start address isn't hpage aligned and it could
2755 * previously contain an hugepage: check if we need to split
2756 * an huge pmd.
2757 */
2758 if (start & ~HPAGE_PMD_MASK &&
2759 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2760 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2761 split_huge_page_address(vma->vm_mm, start);
2762
2763 /*
2764 * If the new end address isn't hpage aligned and it could
2765 * previously contain an hugepage: check if we need to split
2766 * an huge pmd.
2767 */
2768 if (end & ~HPAGE_PMD_MASK &&
2769 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2770 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2771 split_huge_page_address(vma->vm_mm, end);
2772
2773 /*
2774 * If we're also updating the vma->vm_next->vm_start, if the new
2775 * vm_next->vm_start isn't page aligned and it could previously
2776 * contain an hugepage: check if we need to split an huge pmd.
2777 */
2778 if (adjust_next > 0) {
2779 struct vm_area_struct *next = vma->vm_next;
2780 unsigned long nstart = next->vm_start;
2781 nstart += adjust_next << PAGE_SHIFT;
2782 if (nstart & ~HPAGE_PMD_MASK &&
2783 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2784 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2785 split_huge_page_address(next->vm_mm, nstart);
2786 }
2787}