]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/hugetlb.c
mm/cma.c: warn if the CMA area could not be activated
[mirror_ubuntu-artful-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
174cd4b1 21#include <linux/sched/signal.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
8382d914 25#include <linux/jhash.h>
d6606683 26
63551ae0
DG
27#include <asm/page.h>
28#include <asm/pgtable.h>
24669e58 29#include <asm/tlb.h>
63551ae0 30
24669e58 31#include <linux/io.h>
63551ae0 32#include <linux/hugetlb.h>
9dd540e2 33#include <linux/hugetlb_cgroup.h>
9a305230 34#include <linux/node.h>
1a1aad8a 35#include <linux/userfaultfd_k.h>
7835e98b 36#include "internal.h"
1da177e4 37
753162cd 38int hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 48
53ba51d2
JT
49__initdata LIST_HEAD(huge_boot_pages);
50
e5ff2159
AK
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 54static unsigned long __initdata default_hstate_size;
9fee021d 55static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 56
3935baa9 57/*
31caf665
NH
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
3935baa9 60 */
c3f38a38 61DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 62
8382d914
DB
63/*
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 */
67static int num_fault_mutexes;
c672c7f2 68struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 69
7ca02d0a
MK
70/* Forward declaration */
71static int hugetlb_acct_memory(struct hstate *h, long delta);
72
90481622
DG
73static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74{
75 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77 spin_unlock(&spool->lock);
78
79 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
80 * remain, give up any reservations mased on minimum size and
81 * free the subpool */
82 if (free) {
83 if (spool->min_hpages != -1)
84 hugetlb_acct_memory(spool->hstate,
85 -spool->min_hpages);
90481622 86 kfree(spool);
7ca02d0a 87 }
90481622
DG
88}
89
7ca02d0a
MK
90struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91 long min_hpages)
90481622
DG
92{
93 struct hugepage_subpool *spool;
94
c6a91820 95 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
96 if (!spool)
97 return NULL;
98
99 spin_lock_init(&spool->lock);
100 spool->count = 1;
7ca02d0a
MK
101 spool->max_hpages = max_hpages;
102 spool->hstate = h;
103 spool->min_hpages = min_hpages;
104
105 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106 kfree(spool);
107 return NULL;
108 }
109 spool->rsv_hpages = min_hpages;
90481622
DG
110
111 return spool;
112}
113
114void hugepage_put_subpool(struct hugepage_subpool *spool)
115{
116 spin_lock(&spool->lock);
117 BUG_ON(!spool->count);
118 spool->count--;
119 unlock_or_release_subpool(spool);
120}
121
1c5ecae3
MK
122/*
123 * Subpool accounting for allocating and reserving pages.
124 * Return -ENOMEM if there are not enough resources to satisfy the
125 * the request. Otherwise, return the number of pages by which the
126 * global pools must be adjusted (upward). The returned value may
127 * only be different than the passed value (delta) in the case where
128 * a subpool minimum size must be manitained.
129 */
130static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
131 long delta)
132{
1c5ecae3 133 long ret = delta;
90481622
DG
134
135 if (!spool)
1c5ecae3 136 return ret;
90481622
DG
137
138 spin_lock(&spool->lock);
1c5ecae3
MK
139
140 if (spool->max_hpages != -1) { /* maximum size accounting */
141 if ((spool->used_hpages + delta) <= spool->max_hpages)
142 spool->used_hpages += delta;
143 else {
144 ret = -ENOMEM;
145 goto unlock_ret;
146 }
90481622 147 }
90481622 148
09a95e29
MK
149 /* minimum size accounting */
150 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
151 if (delta > spool->rsv_hpages) {
152 /*
153 * Asking for more reserves than those already taken on
154 * behalf of subpool. Return difference.
155 */
156 ret = delta - spool->rsv_hpages;
157 spool->rsv_hpages = 0;
158 } else {
159 ret = 0; /* reserves already accounted for */
160 spool->rsv_hpages -= delta;
161 }
162 }
163
164unlock_ret:
165 spin_unlock(&spool->lock);
90481622
DG
166 return ret;
167}
168
1c5ecae3
MK
169/*
170 * Subpool accounting for freeing and unreserving pages.
171 * Return the number of global page reservations that must be dropped.
172 * The return value may only be different than the passed value (delta)
173 * in the case where a subpool minimum size must be maintained.
174 */
175static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
176 long delta)
177{
1c5ecae3
MK
178 long ret = delta;
179
90481622 180 if (!spool)
1c5ecae3 181 return delta;
90481622
DG
182
183 spin_lock(&spool->lock);
1c5ecae3
MK
184
185 if (spool->max_hpages != -1) /* maximum size accounting */
186 spool->used_hpages -= delta;
187
09a95e29
MK
188 /* minimum size accounting */
189 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
190 if (spool->rsv_hpages + delta <= spool->min_hpages)
191 ret = 0;
192 else
193 ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195 spool->rsv_hpages += delta;
196 if (spool->rsv_hpages > spool->min_hpages)
197 spool->rsv_hpages = spool->min_hpages;
198 }
199
200 /*
201 * If hugetlbfs_put_super couldn't free spool due to an outstanding
202 * quota reference, free it now.
203 */
90481622 204 unlock_or_release_subpool(spool);
1c5ecae3
MK
205
206 return ret;
90481622
DG
207}
208
209static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210{
211 return HUGETLBFS_SB(inode->i_sb)->spool;
212}
213
214static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215{
496ad9aa 216 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
217}
218
96822904
AW
219/*
220 * Region tracking -- allows tracking of reservations and instantiated pages
221 * across the pages in a mapping.
84afd99b 222 *
1dd308a7
MK
223 * The region data structures are embedded into a resv_map and protected
224 * by a resv_map's lock. The set of regions within the resv_map represent
225 * reservations for huge pages, or huge pages that have already been
226 * instantiated within the map. The from and to elements are huge page
227 * indicies into the associated mapping. from indicates the starting index
228 * of the region. to represents the first index past the end of the region.
229 *
230 * For example, a file region structure with from == 0 and to == 4 represents
231 * four huge pages in a mapping. It is important to note that the to element
232 * represents the first element past the end of the region. This is used in
233 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 *
235 * Interval notation of the form [from, to) will be used to indicate that
236 * the endpoint from is inclusive and to is exclusive.
96822904
AW
237 */
238struct file_region {
239 struct list_head link;
240 long from;
241 long to;
242};
243
1dd308a7
MK
244/*
245 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
246 * map. In the normal case, existing regions will be expanded
247 * to accommodate the specified range. Sufficient regions should
248 * exist for expansion due to the previous call to region_chg
249 * with the same range. However, it is possible that region_del
250 * could have been called after region_chg and modifed the map
251 * in such a way that no region exists to be expanded. In this
252 * case, pull a region descriptor from the cache associated with
253 * the map and use that for the new range.
cf3ad20b
MK
254 *
255 * Return the number of new huge pages added to the map. This
256 * number is greater than or equal to zero.
1dd308a7 257 */
1406ec9b 258static long region_add(struct resv_map *resv, long f, long t)
96822904 259{
1406ec9b 260 struct list_head *head = &resv->regions;
96822904 261 struct file_region *rg, *nrg, *trg;
cf3ad20b 262 long add = 0;
96822904 263
7b24d861 264 spin_lock(&resv->lock);
96822904
AW
265 /* Locate the region we are either in or before. */
266 list_for_each_entry(rg, head, link)
267 if (f <= rg->to)
268 break;
269
5e911373
MK
270 /*
271 * If no region exists which can be expanded to include the
272 * specified range, the list must have been modified by an
273 * interleving call to region_del(). Pull a region descriptor
274 * from the cache and use it for this range.
275 */
276 if (&rg->link == head || t < rg->from) {
277 VM_BUG_ON(resv->region_cache_count <= 0);
278
279 resv->region_cache_count--;
280 nrg = list_first_entry(&resv->region_cache, struct file_region,
281 link);
282 list_del(&nrg->link);
283
284 nrg->from = f;
285 nrg->to = t;
286 list_add(&nrg->link, rg->link.prev);
287
288 add += t - f;
289 goto out_locked;
290 }
291
96822904
AW
292 /* Round our left edge to the current segment if it encloses us. */
293 if (f > rg->from)
294 f = rg->from;
295
296 /* Check for and consume any regions we now overlap with. */
297 nrg = rg;
298 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299 if (&rg->link == head)
300 break;
301 if (rg->from > t)
302 break;
303
304 /* If this area reaches higher then extend our area to
305 * include it completely. If this is not the first area
306 * which we intend to reuse, free it. */
307 if (rg->to > t)
308 t = rg->to;
309 if (rg != nrg) {
cf3ad20b
MK
310 /* Decrement return value by the deleted range.
311 * Another range will span this area so that by
312 * end of routine add will be >= zero
313 */
314 add -= (rg->to - rg->from);
96822904
AW
315 list_del(&rg->link);
316 kfree(rg);
317 }
318 }
cf3ad20b
MK
319
320 add += (nrg->from - f); /* Added to beginning of region */
96822904 321 nrg->from = f;
cf3ad20b 322 add += t - nrg->to; /* Added to end of region */
96822904 323 nrg->to = t;
cf3ad20b 324
5e911373
MK
325out_locked:
326 resv->adds_in_progress--;
7b24d861 327 spin_unlock(&resv->lock);
cf3ad20b
MK
328 VM_BUG_ON(add < 0);
329 return add;
96822904
AW
330}
331
1dd308a7
MK
332/*
333 * Examine the existing reserve map and determine how many
334 * huge pages in the specified range [f, t) are NOT currently
335 * represented. This routine is called before a subsequent
336 * call to region_add that will actually modify the reserve
337 * map to add the specified range [f, t). region_chg does
338 * not change the number of huge pages represented by the
339 * map. However, if the existing regions in the map can not
340 * be expanded to represent the new range, a new file_region
341 * structure is added to the map as a placeholder. This is
342 * so that the subsequent region_add call will have all the
343 * regions it needs and will not fail.
344 *
5e911373
MK
345 * Upon entry, region_chg will also examine the cache of region descriptors
346 * associated with the map. If there are not enough descriptors cached, one
347 * will be allocated for the in progress add operation.
348 *
349 * Returns the number of huge pages that need to be added to the existing
350 * reservation map for the range [f, t). This number is greater or equal to
351 * zero. -ENOMEM is returned if a new file_region structure or cache entry
352 * is needed and can not be allocated.
1dd308a7 353 */
1406ec9b 354static long region_chg(struct resv_map *resv, long f, long t)
96822904 355{
1406ec9b 356 struct list_head *head = &resv->regions;
7b24d861 357 struct file_region *rg, *nrg = NULL;
96822904
AW
358 long chg = 0;
359
7b24d861
DB
360retry:
361 spin_lock(&resv->lock);
5e911373
MK
362retry_locked:
363 resv->adds_in_progress++;
364
365 /*
366 * Check for sufficient descriptors in the cache to accommodate
367 * the number of in progress add operations.
368 */
369 if (resv->adds_in_progress > resv->region_cache_count) {
370 struct file_region *trg;
371
372 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373 /* Must drop lock to allocate a new descriptor. */
374 resv->adds_in_progress--;
375 spin_unlock(&resv->lock);
376
377 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
378 if (!trg) {
379 kfree(nrg);
5e911373 380 return -ENOMEM;
dbe409e4 381 }
5e911373
MK
382
383 spin_lock(&resv->lock);
384 list_add(&trg->link, &resv->region_cache);
385 resv->region_cache_count++;
386 goto retry_locked;
387 }
388
96822904
AW
389 /* Locate the region we are before or in. */
390 list_for_each_entry(rg, head, link)
391 if (f <= rg->to)
392 break;
393
394 /* If we are below the current region then a new region is required.
395 * Subtle, allocate a new region at the position but make it zero
396 * size such that we can guarantee to record the reservation. */
397 if (&rg->link == head || t < rg->from) {
7b24d861 398 if (!nrg) {
5e911373 399 resv->adds_in_progress--;
7b24d861
DB
400 spin_unlock(&resv->lock);
401 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402 if (!nrg)
403 return -ENOMEM;
404
405 nrg->from = f;
406 nrg->to = f;
407 INIT_LIST_HEAD(&nrg->link);
408 goto retry;
409 }
96822904 410
7b24d861
DB
411 list_add(&nrg->link, rg->link.prev);
412 chg = t - f;
413 goto out_nrg;
96822904
AW
414 }
415
416 /* Round our left edge to the current segment if it encloses us. */
417 if (f > rg->from)
418 f = rg->from;
419 chg = t - f;
420
421 /* Check for and consume any regions we now overlap with. */
422 list_for_each_entry(rg, rg->link.prev, link) {
423 if (&rg->link == head)
424 break;
425 if (rg->from > t)
7b24d861 426 goto out;
96822904 427
25985edc 428 /* We overlap with this area, if it extends further than
96822904
AW
429 * us then we must extend ourselves. Account for its
430 * existing reservation. */
431 if (rg->to > t) {
432 chg += rg->to - t;
433 t = rg->to;
434 }
435 chg -= rg->to - rg->from;
436 }
7b24d861
DB
437
438out:
439 spin_unlock(&resv->lock);
440 /* We already know we raced and no longer need the new region */
441 kfree(nrg);
442 return chg;
443out_nrg:
444 spin_unlock(&resv->lock);
96822904
AW
445 return chg;
446}
447
5e911373
MK
448/*
449 * Abort the in progress add operation. The adds_in_progress field
450 * of the resv_map keeps track of the operations in progress between
451 * calls to region_chg and region_add. Operations are sometimes
452 * aborted after the call to region_chg. In such cases, region_abort
453 * is called to decrement the adds_in_progress counter.
454 *
455 * NOTE: The range arguments [f, t) are not needed or used in this
456 * routine. They are kept to make reading the calling code easier as
457 * arguments will match the associated region_chg call.
458 */
459static void region_abort(struct resv_map *resv, long f, long t)
460{
461 spin_lock(&resv->lock);
462 VM_BUG_ON(!resv->region_cache_count);
463 resv->adds_in_progress--;
464 spin_unlock(&resv->lock);
465}
466
1dd308a7 467/*
feba16e2
MK
468 * Delete the specified range [f, t) from the reserve map. If the
469 * t parameter is LONG_MAX, this indicates that ALL regions after f
470 * should be deleted. Locate the regions which intersect [f, t)
471 * and either trim, delete or split the existing regions.
472 *
473 * Returns the number of huge pages deleted from the reserve map.
474 * In the normal case, the return value is zero or more. In the
475 * case where a region must be split, a new region descriptor must
476 * be allocated. If the allocation fails, -ENOMEM will be returned.
477 * NOTE: If the parameter t == LONG_MAX, then we will never split
478 * a region and possibly return -ENOMEM. Callers specifying
479 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 480 */
feba16e2 481static long region_del(struct resv_map *resv, long f, long t)
96822904 482{
1406ec9b 483 struct list_head *head = &resv->regions;
96822904 484 struct file_region *rg, *trg;
feba16e2
MK
485 struct file_region *nrg = NULL;
486 long del = 0;
96822904 487
feba16e2 488retry:
7b24d861 489 spin_lock(&resv->lock);
feba16e2 490 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
491 /*
492 * Skip regions before the range to be deleted. file_region
493 * ranges are normally of the form [from, to). However, there
494 * may be a "placeholder" entry in the map which is of the form
495 * (from, to) with from == to. Check for placeholder entries
496 * at the beginning of the range to be deleted.
497 */
498 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 499 continue;
dbe409e4 500
feba16e2 501 if (rg->from >= t)
96822904 502 break;
96822904 503
feba16e2
MK
504 if (f > rg->from && t < rg->to) { /* Must split region */
505 /*
506 * Check for an entry in the cache before dropping
507 * lock and attempting allocation.
508 */
509 if (!nrg &&
510 resv->region_cache_count > resv->adds_in_progress) {
511 nrg = list_first_entry(&resv->region_cache,
512 struct file_region,
513 link);
514 list_del(&nrg->link);
515 resv->region_cache_count--;
516 }
96822904 517
feba16e2
MK
518 if (!nrg) {
519 spin_unlock(&resv->lock);
520 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521 if (!nrg)
522 return -ENOMEM;
523 goto retry;
524 }
525
526 del += t - f;
527
528 /* New entry for end of split region */
529 nrg->from = t;
530 nrg->to = rg->to;
531 INIT_LIST_HEAD(&nrg->link);
532
533 /* Original entry is trimmed */
534 rg->to = f;
535
536 list_add(&nrg->link, &rg->link);
537 nrg = NULL;
96822904 538 break;
feba16e2
MK
539 }
540
541 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542 del += rg->to - rg->from;
543 list_del(&rg->link);
544 kfree(rg);
545 continue;
546 }
547
548 if (f <= rg->from) { /* Trim beginning of region */
549 del += t - rg->from;
550 rg->from = t;
551 } else { /* Trim end of region */
552 del += rg->to - f;
553 rg->to = f;
554 }
96822904 555 }
7b24d861 556
7b24d861 557 spin_unlock(&resv->lock);
feba16e2
MK
558 kfree(nrg);
559 return del;
96822904
AW
560}
561
b5cec28d
MK
562/*
563 * A rare out of memory error was encountered which prevented removal of
564 * the reserve map region for a page. The huge page itself was free'ed
565 * and removed from the page cache. This routine will adjust the subpool
566 * usage count, and the global reserve count if needed. By incrementing
567 * these counts, the reserve map entry which could not be deleted will
568 * appear as a "reserved" entry instead of simply dangling with incorrect
569 * counts.
570 */
72e2936c 571void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
572{
573 struct hugepage_subpool *spool = subpool_inode(inode);
574 long rsv_adjust;
575
576 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 577 if (rsv_adjust) {
b5cec28d
MK
578 struct hstate *h = hstate_inode(inode);
579
580 hugetlb_acct_memory(h, 1);
581 }
582}
583
1dd308a7
MK
584/*
585 * Count and return the number of huge pages in the reserve map
586 * that intersect with the range [f, t).
587 */
1406ec9b 588static long region_count(struct resv_map *resv, long f, long t)
84afd99b 589{
1406ec9b 590 struct list_head *head = &resv->regions;
84afd99b
AW
591 struct file_region *rg;
592 long chg = 0;
593
7b24d861 594 spin_lock(&resv->lock);
84afd99b
AW
595 /* Locate each segment we overlap with, and count that overlap. */
596 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
597 long seg_from;
598 long seg_to;
84afd99b
AW
599
600 if (rg->to <= f)
601 continue;
602 if (rg->from >= t)
603 break;
604
605 seg_from = max(rg->from, f);
606 seg_to = min(rg->to, t);
607
608 chg += seg_to - seg_from;
609 }
7b24d861 610 spin_unlock(&resv->lock);
84afd99b
AW
611
612 return chg;
613}
614
e7c4b0bf
AW
615/*
616 * Convert the address within this vma to the page offset within
617 * the mapping, in pagecache page units; huge pages here.
618 */
a5516438
AK
619static pgoff_t vma_hugecache_offset(struct hstate *h,
620 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 621{
a5516438
AK
622 return ((address - vma->vm_start) >> huge_page_shift(h)) +
623 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
624}
625
0fe6e20b
NH
626pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627 unsigned long address)
628{
629 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630}
dee41079 631EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 632
08fba699
MG
633/*
634 * Return the size of the pages allocated when backing a VMA. In the majority
635 * cases this will be same size as used by the page table entries.
636 */
637unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638{
639 struct hstate *hstate;
640
641 if (!is_vm_hugetlb_page(vma))
642 return PAGE_SIZE;
643
644 hstate = hstate_vma(vma);
645
2415cf12 646 return 1UL << huge_page_shift(hstate);
08fba699 647}
f340ca0f 648EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 649
3340289d
MG
650/*
651 * Return the page size being used by the MMU to back a VMA. In the majority
652 * of cases, the page size used by the kernel matches the MMU size. On
653 * architectures where it differs, an architecture-specific version of this
654 * function is required.
655 */
656#ifndef vma_mmu_pagesize
657unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658{
659 return vma_kernel_pagesize(vma);
660}
661#endif
662
84afd99b
AW
663/*
664 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
665 * bits of the reservation map pointer, which are always clear due to
666 * alignment.
667 */
668#define HPAGE_RESV_OWNER (1UL << 0)
669#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 670#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 671
a1e78772
MG
672/*
673 * These helpers are used to track how many pages are reserved for
674 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675 * is guaranteed to have their future faults succeed.
676 *
677 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678 * the reserve counters are updated with the hugetlb_lock held. It is safe
679 * to reset the VMA at fork() time as it is not in use yet and there is no
680 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
681 *
682 * The private mapping reservation is represented in a subtly different
683 * manner to a shared mapping. A shared mapping has a region map associated
684 * with the underlying file, this region map represents the backing file
685 * pages which have ever had a reservation assigned which this persists even
686 * after the page is instantiated. A private mapping has a region map
687 * associated with the original mmap which is attached to all VMAs which
688 * reference it, this region map represents those offsets which have consumed
689 * reservation ie. where pages have been instantiated.
a1e78772 690 */
e7c4b0bf
AW
691static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692{
693 return (unsigned long)vma->vm_private_data;
694}
695
696static void set_vma_private_data(struct vm_area_struct *vma,
697 unsigned long value)
698{
699 vma->vm_private_data = (void *)value;
700}
701
9119a41e 702struct resv_map *resv_map_alloc(void)
84afd99b
AW
703{
704 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
705 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707 if (!resv_map || !rg) {
708 kfree(resv_map);
709 kfree(rg);
84afd99b 710 return NULL;
5e911373 711 }
84afd99b
AW
712
713 kref_init(&resv_map->refs);
7b24d861 714 spin_lock_init(&resv_map->lock);
84afd99b
AW
715 INIT_LIST_HEAD(&resv_map->regions);
716
5e911373
MK
717 resv_map->adds_in_progress = 0;
718
719 INIT_LIST_HEAD(&resv_map->region_cache);
720 list_add(&rg->link, &resv_map->region_cache);
721 resv_map->region_cache_count = 1;
722
84afd99b
AW
723 return resv_map;
724}
725
9119a41e 726void resv_map_release(struct kref *ref)
84afd99b
AW
727{
728 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
729 struct list_head *head = &resv_map->region_cache;
730 struct file_region *rg, *trg;
84afd99b
AW
731
732 /* Clear out any active regions before we release the map. */
feba16e2 733 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
734
735 /* ... and any entries left in the cache */
736 list_for_each_entry_safe(rg, trg, head, link) {
737 list_del(&rg->link);
738 kfree(rg);
739 }
740
741 VM_BUG_ON(resv_map->adds_in_progress);
742
84afd99b
AW
743 kfree(resv_map);
744}
745
4e35f483
JK
746static inline struct resv_map *inode_resv_map(struct inode *inode)
747{
748 return inode->i_mapping->private_data;
749}
750
84afd99b 751static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 752{
81d1b09c 753 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
754 if (vma->vm_flags & VM_MAYSHARE) {
755 struct address_space *mapping = vma->vm_file->f_mapping;
756 struct inode *inode = mapping->host;
757
758 return inode_resv_map(inode);
759
760 } else {
84afd99b
AW
761 return (struct resv_map *)(get_vma_private_data(vma) &
762 ~HPAGE_RESV_MASK);
4e35f483 763 }
a1e78772
MG
764}
765
84afd99b 766static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 767{
81d1b09c
SL
768 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 770
84afd99b
AW
771 set_vma_private_data(vma, (get_vma_private_data(vma) &
772 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
773}
774
775static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776{
81d1b09c
SL
777 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
779
780 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
781}
782
783static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784{
81d1b09c 785 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
786
787 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
788}
789
04f2cbe3 790/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
791void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792{
81d1b09c 793 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 794 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
795 vma->vm_private_data = (void *)0;
796}
797
798/* Returns true if the VMA has associated reserve pages */
559ec2f8 799static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 800{
af0ed73e
JK
801 if (vma->vm_flags & VM_NORESERVE) {
802 /*
803 * This address is already reserved by other process(chg == 0),
804 * so, we should decrement reserved count. Without decrementing,
805 * reserve count remains after releasing inode, because this
806 * allocated page will go into page cache and is regarded as
807 * coming from reserved pool in releasing step. Currently, we
808 * don't have any other solution to deal with this situation
809 * properly, so add work-around here.
810 */
811 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 812 return true;
af0ed73e 813 else
559ec2f8 814 return false;
af0ed73e 815 }
a63884e9
JK
816
817 /* Shared mappings always use reserves */
1fb1b0e9
MK
818 if (vma->vm_flags & VM_MAYSHARE) {
819 /*
820 * We know VM_NORESERVE is not set. Therefore, there SHOULD
821 * be a region map for all pages. The only situation where
822 * there is no region map is if a hole was punched via
823 * fallocate. In this case, there really are no reverves to
824 * use. This situation is indicated if chg != 0.
825 */
826 if (chg)
827 return false;
828 else
829 return true;
830 }
a63884e9
JK
831
832 /*
833 * Only the process that called mmap() has reserves for
834 * private mappings.
835 */
67961f9d
MK
836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 /*
838 * Like the shared case above, a hole punch or truncate
839 * could have been performed on the private mapping.
840 * Examine the value of chg to determine if reserves
841 * actually exist or were previously consumed.
842 * Very Subtle - The value of chg comes from a previous
843 * call to vma_needs_reserves(). The reserve map for
844 * private mappings has different (opposite) semantics
845 * than that of shared mappings. vma_needs_reserves()
846 * has already taken this difference in semantics into
847 * account. Therefore, the meaning of chg is the same
848 * as in the shared case above. Code could easily be
849 * combined, but keeping it separate draws attention to
850 * subtle differences.
851 */
852 if (chg)
853 return false;
854 else
855 return true;
856 }
a63884e9 857
559ec2f8 858 return false;
a1e78772
MG
859}
860
a5516438 861static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
862{
863 int nid = page_to_nid(page);
0edaecfa 864 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
865 h->free_huge_pages++;
866 h->free_huge_pages_node[nid]++;
1da177e4
LT
867}
868
94310cbc 869static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
870{
871 struct page *page;
872
c8721bbb 873 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 874 if (!PageHWPoison(page))
c8721bbb
NH
875 break;
876 /*
877 * if 'non-isolated free hugepage' not found on the list,
878 * the allocation fails.
879 */
880 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 881 return NULL;
0edaecfa 882 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 883 set_page_refcounted(page);
bf50bab2
NH
884 h->free_huge_pages--;
885 h->free_huge_pages_node[nid]--;
886 return page;
887}
888
94310cbc
AK
889static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
890{
891 struct page *page;
892 int node;
893
894 if (nid != NUMA_NO_NODE)
895 return dequeue_huge_page_node_exact(h, nid);
896
897 for_each_online_node(node) {
898 page = dequeue_huge_page_node_exact(h, node);
899 if (page)
900 return page;
901 }
902 return NULL;
903}
904
86cdb465
NH
905/* Movability of hugepages depends on migration support. */
906static inline gfp_t htlb_alloc_mask(struct hstate *h)
907{
100873d7 908 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
909 return GFP_HIGHUSER_MOVABLE;
910 else
911 return GFP_HIGHUSER;
912}
913
a5516438
AK
914static struct page *dequeue_huge_page_vma(struct hstate *h,
915 struct vm_area_struct *vma,
af0ed73e
JK
916 unsigned long address, int avoid_reserve,
917 long chg)
1da177e4 918{
b1c12cbc 919 struct page *page = NULL;
480eccf9 920 struct mempolicy *mpol;
19770b32 921 nodemask_t *nodemask;
04ec6264
VB
922 gfp_t gfp_mask;
923 int nid;
c0ff7453 924 struct zonelist *zonelist;
dd1a239f
MG
925 struct zone *zone;
926 struct zoneref *z;
cc9a6c87 927 unsigned int cpuset_mems_cookie;
1da177e4 928
a1e78772
MG
929 /*
930 * A child process with MAP_PRIVATE mappings created by their parent
931 * have no page reserves. This check ensures that reservations are
932 * not "stolen". The child may still get SIGKILLed
933 */
af0ed73e 934 if (!vma_has_reserves(vma, chg) &&
a5516438 935 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 936 goto err;
a1e78772 937
04f2cbe3 938 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 939 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 940 goto err;
04f2cbe3 941
9966c4bb 942retry_cpuset:
d26914d1 943 cpuset_mems_cookie = read_mems_allowed_begin();
04ec6264
VB
944 gfp_mask = htlb_alloc_mask(h);
945 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
946 zonelist = node_zonelist(nid, gfp_mask);
9966c4bb 947
19770b32
MG
948 for_each_zone_zonelist_nodemask(zone, z, zonelist,
949 MAX_NR_ZONES - 1, nodemask) {
04ec6264 950 if (cpuset_zone_allowed(zone, gfp_mask)) {
bf50bab2
NH
951 page = dequeue_huge_page_node(h, zone_to_nid(zone));
952 if (page) {
af0ed73e
JK
953 if (avoid_reserve)
954 break;
955 if (!vma_has_reserves(vma, chg))
956 break;
957
07443a85 958 SetPagePrivate(page);
af0ed73e 959 h->resv_huge_pages--;
bf50bab2
NH
960 break;
961 }
3abf7afd 962 }
1da177e4 963 }
cc9a6c87 964
52cd3b07 965 mpol_cond_put(mpol);
d26914d1 966 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 967 goto retry_cpuset;
1da177e4 968 return page;
cc9a6c87
MG
969
970err:
cc9a6c87 971 return NULL;
1da177e4
LT
972}
973
1cac6f2c
LC
974/*
975 * common helper functions for hstate_next_node_to_{alloc|free}.
976 * We may have allocated or freed a huge page based on a different
977 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
978 * be outside of *nodes_allowed. Ensure that we use an allowed
979 * node for alloc or free.
980 */
981static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
982{
0edaf86c 983 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
984 VM_BUG_ON(nid >= MAX_NUMNODES);
985
986 return nid;
987}
988
989static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
990{
991 if (!node_isset(nid, *nodes_allowed))
992 nid = next_node_allowed(nid, nodes_allowed);
993 return nid;
994}
995
996/*
997 * returns the previously saved node ["this node"] from which to
998 * allocate a persistent huge page for the pool and advance the
999 * next node from which to allocate, handling wrap at end of node
1000 * mask.
1001 */
1002static int hstate_next_node_to_alloc(struct hstate *h,
1003 nodemask_t *nodes_allowed)
1004{
1005 int nid;
1006
1007 VM_BUG_ON(!nodes_allowed);
1008
1009 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1010 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1011
1012 return nid;
1013}
1014
1015/*
1016 * helper for free_pool_huge_page() - return the previously saved
1017 * node ["this node"] from which to free a huge page. Advance the
1018 * next node id whether or not we find a free huge page to free so
1019 * that the next attempt to free addresses the next node.
1020 */
1021static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1022{
1023 int nid;
1024
1025 VM_BUG_ON(!nodes_allowed);
1026
1027 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1028 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1029
1030 return nid;
1031}
1032
1033#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1034 for (nr_nodes = nodes_weight(*mask); \
1035 nr_nodes > 0 && \
1036 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1037 nr_nodes--)
1038
1039#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1040 for (nr_nodes = nodes_weight(*mask); \
1041 nr_nodes > 0 && \
1042 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1043 nr_nodes--)
1044
e1073d1e 1045#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1046static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1047 unsigned int order)
944d9fec
LC
1048{
1049 int i;
1050 int nr_pages = 1 << order;
1051 struct page *p = page + 1;
1052
c8cc708a 1053 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1054 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1055 clear_compound_head(p);
944d9fec 1056 set_page_refcounted(p);
944d9fec
LC
1057 }
1058
1059 set_compound_order(page, 0);
1060 __ClearPageHead(page);
1061}
1062
d00181b9 1063static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1064{
1065 free_contig_range(page_to_pfn(page), 1 << order);
1066}
1067
1068static int __alloc_gigantic_page(unsigned long start_pfn,
1069 unsigned long nr_pages)
1070{
1071 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625
LS
1072 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1073 GFP_KERNEL);
944d9fec
LC
1074}
1075
f44b2dda
JK
1076static bool pfn_range_valid_gigantic(struct zone *z,
1077 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1078{
1079 unsigned long i, end_pfn = start_pfn + nr_pages;
1080 struct page *page;
1081
1082 for (i = start_pfn; i < end_pfn; i++) {
1083 if (!pfn_valid(i))
1084 return false;
1085
1086 page = pfn_to_page(i);
1087
f44b2dda
JK
1088 if (page_zone(page) != z)
1089 return false;
1090
944d9fec
LC
1091 if (PageReserved(page))
1092 return false;
1093
1094 if (page_count(page) > 0)
1095 return false;
1096
1097 if (PageHuge(page))
1098 return false;
1099 }
1100
1101 return true;
1102}
1103
1104static bool zone_spans_last_pfn(const struct zone *zone,
1105 unsigned long start_pfn, unsigned long nr_pages)
1106{
1107 unsigned long last_pfn = start_pfn + nr_pages - 1;
1108 return zone_spans_pfn(zone, last_pfn);
1109}
1110
d00181b9 1111static struct page *alloc_gigantic_page(int nid, unsigned int order)
944d9fec
LC
1112{
1113 unsigned long nr_pages = 1 << order;
1114 unsigned long ret, pfn, flags;
1115 struct zone *z;
1116
1117 z = NODE_DATA(nid)->node_zones;
1118 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1119 spin_lock_irqsave(&z->lock, flags);
1120
1121 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1122 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
f44b2dda 1123 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
944d9fec
LC
1124 /*
1125 * We release the zone lock here because
1126 * alloc_contig_range() will also lock the zone
1127 * at some point. If there's an allocation
1128 * spinning on this lock, it may win the race
1129 * and cause alloc_contig_range() to fail...
1130 */
1131 spin_unlock_irqrestore(&z->lock, flags);
1132 ret = __alloc_gigantic_page(pfn, nr_pages);
1133 if (!ret)
1134 return pfn_to_page(pfn);
1135 spin_lock_irqsave(&z->lock, flags);
1136 }
1137 pfn += nr_pages;
1138 }
1139
1140 spin_unlock_irqrestore(&z->lock, flags);
1141 }
1142
1143 return NULL;
1144}
1145
1146static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1147static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1148
1149static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1150{
1151 struct page *page;
1152
1153 page = alloc_gigantic_page(nid, huge_page_order(h));
1154 if (page) {
1155 prep_compound_gigantic_page(page, huge_page_order(h));
1156 prep_new_huge_page(h, page, nid);
1157 }
1158
1159 return page;
1160}
1161
1162static int alloc_fresh_gigantic_page(struct hstate *h,
1163 nodemask_t *nodes_allowed)
1164{
1165 struct page *page = NULL;
1166 int nr_nodes, node;
1167
1168 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1169 page = alloc_fresh_gigantic_page_node(h, node);
1170 if (page)
1171 return 1;
1172 }
1173
1174 return 0;
1175}
1176
e1073d1e 1177#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1178static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1179static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1180static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1181 unsigned int order) { }
944d9fec
LC
1182static inline int alloc_fresh_gigantic_page(struct hstate *h,
1183 nodemask_t *nodes_allowed) { return 0; }
1184#endif
1185
a5516438 1186static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1187{
1188 int i;
a5516438 1189
944d9fec
LC
1190 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1191 return;
18229df5 1192
a5516438
AK
1193 h->nr_huge_pages--;
1194 h->nr_huge_pages_node[page_to_nid(page)]--;
1195 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1196 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1197 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1198 1 << PG_active | 1 << PG_private |
1199 1 << PG_writeback);
6af2acb6 1200 }
309381fe 1201 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1202 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1203 set_page_refcounted(page);
944d9fec
LC
1204 if (hstate_is_gigantic(h)) {
1205 destroy_compound_gigantic_page(page, huge_page_order(h));
1206 free_gigantic_page(page, huge_page_order(h));
1207 } else {
944d9fec
LC
1208 __free_pages(page, huge_page_order(h));
1209 }
6af2acb6
AL
1210}
1211
e5ff2159
AK
1212struct hstate *size_to_hstate(unsigned long size)
1213{
1214 struct hstate *h;
1215
1216 for_each_hstate(h) {
1217 if (huge_page_size(h) == size)
1218 return h;
1219 }
1220 return NULL;
1221}
1222
bcc54222
NH
1223/*
1224 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1225 * to hstate->hugepage_activelist.)
1226 *
1227 * This function can be called for tail pages, but never returns true for them.
1228 */
1229bool page_huge_active(struct page *page)
1230{
1231 VM_BUG_ON_PAGE(!PageHuge(page), page);
1232 return PageHead(page) && PagePrivate(&page[1]);
1233}
1234
1235/* never called for tail page */
1236static void set_page_huge_active(struct page *page)
1237{
1238 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1239 SetPagePrivate(&page[1]);
1240}
1241
1242static void clear_page_huge_active(struct page *page)
1243{
1244 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1245 ClearPagePrivate(&page[1]);
1246}
1247
8f1d26d0 1248void free_huge_page(struct page *page)
27a85ef1 1249{
a5516438
AK
1250 /*
1251 * Can't pass hstate in here because it is called from the
1252 * compound page destructor.
1253 */
e5ff2159 1254 struct hstate *h = page_hstate(page);
7893d1d5 1255 int nid = page_to_nid(page);
90481622
DG
1256 struct hugepage_subpool *spool =
1257 (struct hugepage_subpool *)page_private(page);
07443a85 1258 bool restore_reserve;
27a85ef1 1259
e5df70ab 1260 set_page_private(page, 0);
23be7468 1261 page->mapping = NULL;
b4330afb
MK
1262 VM_BUG_ON_PAGE(page_count(page), page);
1263 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1264 restore_reserve = PagePrivate(page);
16c794b4 1265 ClearPagePrivate(page);
27a85ef1 1266
1c5ecae3
MK
1267 /*
1268 * A return code of zero implies that the subpool will be under its
1269 * minimum size if the reservation is not restored after page is free.
1270 * Therefore, force restore_reserve operation.
1271 */
1272 if (hugepage_subpool_put_pages(spool, 1) == 0)
1273 restore_reserve = true;
1274
27a85ef1 1275 spin_lock(&hugetlb_lock);
bcc54222 1276 clear_page_huge_active(page);
6d76dcf4
AK
1277 hugetlb_cgroup_uncharge_page(hstate_index(h),
1278 pages_per_huge_page(h), page);
07443a85
JK
1279 if (restore_reserve)
1280 h->resv_huge_pages++;
1281
944d9fec 1282 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1283 /* remove the page from active list */
1284 list_del(&page->lru);
a5516438
AK
1285 update_and_free_page(h, page);
1286 h->surplus_huge_pages--;
1287 h->surplus_huge_pages_node[nid]--;
7893d1d5 1288 } else {
5d3a551c 1289 arch_clear_hugepage_flags(page);
a5516438 1290 enqueue_huge_page(h, page);
7893d1d5 1291 }
27a85ef1
DG
1292 spin_unlock(&hugetlb_lock);
1293}
1294
a5516438 1295static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1296{
0edaecfa 1297 INIT_LIST_HEAD(&page->lru);
f1e61557 1298 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1299 spin_lock(&hugetlb_lock);
9dd540e2 1300 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1301 h->nr_huge_pages++;
1302 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1303 spin_unlock(&hugetlb_lock);
1304 put_page(page); /* free it into the hugepage allocator */
1305}
1306
d00181b9 1307static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1308{
1309 int i;
1310 int nr_pages = 1 << order;
1311 struct page *p = page + 1;
1312
1313 /* we rely on prep_new_huge_page to set the destructor */
1314 set_compound_order(page, order);
ef5a22be 1315 __ClearPageReserved(page);
de09d31d 1316 __SetPageHead(page);
20a0307c 1317 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1318 /*
1319 * For gigantic hugepages allocated through bootmem at
1320 * boot, it's safer to be consistent with the not-gigantic
1321 * hugepages and clear the PG_reserved bit from all tail pages
1322 * too. Otherwse drivers using get_user_pages() to access tail
1323 * pages may get the reference counting wrong if they see
1324 * PG_reserved set on a tail page (despite the head page not
1325 * having PG_reserved set). Enforcing this consistency between
1326 * head and tail pages allows drivers to optimize away a check
1327 * on the head page when they need know if put_page() is needed
1328 * after get_user_pages().
1329 */
1330 __ClearPageReserved(p);
58a84aa9 1331 set_page_count(p, 0);
1d798ca3 1332 set_compound_head(p, page);
20a0307c 1333 }
b4330afb 1334 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1335}
1336
7795912c
AM
1337/*
1338 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339 * transparent huge pages. See the PageTransHuge() documentation for more
1340 * details.
1341 */
20a0307c
WF
1342int PageHuge(struct page *page)
1343{
20a0307c
WF
1344 if (!PageCompound(page))
1345 return 0;
1346
1347 page = compound_head(page);
f1e61557 1348 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1349}
43131e14
NH
1350EXPORT_SYMBOL_GPL(PageHuge);
1351
27c73ae7
AA
1352/*
1353 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354 * normal or transparent huge pages.
1355 */
1356int PageHeadHuge(struct page *page_head)
1357{
27c73ae7
AA
1358 if (!PageHead(page_head))
1359 return 0;
1360
758f66a2 1361 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1362}
27c73ae7 1363
13d60f4b
ZY
1364pgoff_t __basepage_index(struct page *page)
1365{
1366 struct page *page_head = compound_head(page);
1367 pgoff_t index = page_index(page_head);
1368 unsigned long compound_idx;
1369
1370 if (!PageHuge(page_head))
1371 return page_index(page);
1372
1373 if (compound_order(page_head) >= MAX_ORDER)
1374 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375 else
1376 compound_idx = page - page_head;
1377
1378 return (index << compound_order(page_head)) + compound_idx;
1379}
1380
a5516438 1381static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1382{
1da177e4 1383 struct page *page;
f96efd58 1384
96db800f 1385 page = __alloc_pages_node(nid,
86cdb465 1386 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1387 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1388 huge_page_order(h));
1da177e4 1389 if (page) {
a5516438 1390 prep_new_huge_page(h, page, nid);
1da177e4 1391 }
63b4613c
NA
1392
1393 return page;
1394}
1395
b2261026
JK
1396static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1397{
1398 struct page *page;
1399 int nr_nodes, node;
1400 int ret = 0;
1401
1402 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1403 page = alloc_fresh_huge_page_node(h, node);
1404 if (page) {
1405 ret = 1;
1406 break;
1407 }
1408 }
1409
1410 if (ret)
1411 count_vm_event(HTLB_BUDDY_PGALLOC);
1412 else
1413 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1414
1415 return ret;
1416}
1417
e8c5c824
LS
1418/*
1419 * Free huge page from pool from next node to free.
1420 * Attempt to keep persistent huge pages more or less
1421 * balanced over allowed nodes.
1422 * Called with hugetlb_lock locked.
1423 */
6ae11b27
LS
1424static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1425 bool acct_surplus)
e8c5c824 1426{
b2261026 1427 int nr_nodes, node;
e8c5c824
LS
1428 int ret = 0;
1429
b2261026 1430 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1431 /*
1432 * If we're returning unused surplus pages, only examine
1433 * nodes with surplus pages.
1434 */
b2261026
JK
1435 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1436 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1437 struct page *page =
b2261026 1438 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1439 struct page, lru);
1440 list_del(&page->lru);
1441 h->free_huge_pages--;
b2261026 1442 h->free_huge_pages_node[node]--;
685f3457
LS
1443 if (acct_surplus) {
1444 h->surplus_huge_pages--;
b2261026 1445 h->surplus_huge_pages_node[node]--;
685f3457 1446 }
e8c5c824
LS
1447 update_and_free_page(h, page);
1448 ret = 1;
9a76db09 1449 break;
e8c5c824 1450 }
b2261026 1451 }
e8c5c824
LS
1452
1453 return ret;
1454}
1455
c8721bbb
NH
1456/*
1457 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1458 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1459 * number of free hugepages would be reduced below the number of reserved
1460 * hugepages.
c8721bbb 1461 */
c3114a84 1462int dissolve_free_huge_page(struct page *page)
c8721bbb 1463{
082d5b6b
GS
1464 int rc = 0;
1465
c8721bbb
NH
1466 spin_lock(&hugetlb_lock);
1467 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1468 struct page *head = compound_head(page);
1469 struct hstate *h = page_hstate(head);
1470 int nid = page_to_nid(head);
082d5b6b
GS
1471 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1472 rc = -EBUSY;
1473 goto out;
1474 }
c3114a84
AK
1475 /*
1476 * Move PageHWPoison flag from head page to the raw error page,
1477 * which makes any subpages rather than the error page reusable.
1478 */
1479 if (PageHWPoison(head) && page != head) {
1480 SetPageHWPoison(page);
1481 ClearPageHWPoison(head);
1482 }
2247bb33 1483 list_del(&head->lru);
c8721bbb
NH
1484 h->free_huge_pages--;
1485 h->free_huge_pages_node[nid]--;
c1470b33 1486 h->max_huge_pages--;
2247bb33 1487 update_and_free_page(h, head);
c8721bbb 1488 }
082d5b6b 1489out:
c8721bbb 1490 spin_unlock(&hugetlb_lock);
082d5b6b 1491 return rc;
c8721bbb
NH
1492}
1493
1494/*
1495 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1496 * make specified memory blocks removable from the system.
2247bb33
GS
1497 * Note that this will dissolve a free gigantic hugepage completely, if any
1498 * part of it lies within the given range.
082d5b6b
GS
1499 * Also note that if dissolve_free_huge_page() returns with an error, all
1500 * free hugepages that were dissolved before that error are lost.
c8721bbb 1501 */
082d5b6b 1502int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1503{
c8721bbb 1504 unsigned long pfn;
eb03aa00 1505 struct page *page;
082d5b6b 1506 int rc = 0;
c8721bbb 1507
d0177639 1508 if (!hugepages_supported())
082d5b6b 1509 return rc;
d0177639 1510
eb03aa00
GS
1511 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1512 page = pfn_to_page(pfn);
1513 if (PageHuge(page) && !page_count(page)) {
1514 rc = dissolve_free_huge_page(page);
1515 if (rc)
1516 break;
1517 }
1518 }
082d5b6b
GS
1519
1520 return rc;
c8721bbb
NH
1521}
1522
099730d6
DH
1523/*
1524 * There are 3 ways this can get called:
1525 * 1. With vma+addr: we use the VMA's memory policy
1526 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1527 * page from any node, and let the buddy allocator itself figure
1528 * it out.
1529 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1530 * strictly from 'nid'
1531 */
1532static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1533 struct vm_area_struct *vma, unsigned long addr, int nid)
1534{
1535 int order = huge_page_order(h);
1536 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1537 unsigned int cpuset_mems_cookie;
1538
1539 /*
1540 * We need a VMA to get a memory policy. If we do not
e0ec90ee
DH
1541 * have one, we use the 'nid' argument.
1542 *
1543 * The mempolicy stuff below has some non-inlined bits
1544 * and calls ->vm_ops. That makes it hard to optimize at
1545 * compile-time, even when NUMA is off and it does
1546 * nothing. This helps the compiler optimize it out.
099730d6 1547 */
e0ec90ee 1548 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
099730d6
DH
1549 /*
1550 * If a specific node is requested, make sure to
1551 * get memory from there, but only when a node
1552 * is explicitly specified.
1553 */
1554 if (nid != NUMA_NO_NODE)
1555 gfp |= __GFP_THISNODE;
1556 /*
1557 * Make sure to call something that can handle
1558 * nid=NUMA_NO_NODE
1559 */
1560 return alloc_pages_node(nid, gfp, order);
1561 }
1562
1563 /*
1564 * OK, so we have a VMA. Fetch the mempolicy and try to
e0ec90ee
DH
1565 * allocate a huge page with it. We will only reach this
1566 * when CONFIG_NUMA=y.
099730d6
DH
1567 */
1568 do {
1569 struct page *page;
1570 struct mempolicy *mpol;
04ec6264 1571 int nid;
099730d6
DH
1572 nodemask_t *nodemask;
1573
1574 cpuset_mems_cookie = read_mems_allowed_begin();
04ec6264 1575 nid = huge_node(vma, addr, gfp, &mpol, &nodemask);
099730d6 1576 mpol_cond_put(mpol);
04ec6264 1577 page = __alloc_pages_nodemask(gfp, order, nid, nodemask);
099730d6
DH
1578 if (page)
1579 return page;
1580 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1581
1582 return NULL;
1583}
1584
1585/*
1586 * There are two ways to allocate a huge page:
1587 * 1. When you have a VMA and an address (like a fault)
1588 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1589 *
1590 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1591 * this case which signifies that the allocation should be done with
1592 * respect for the VMA's memory policy.
1593 *
1594 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1595 * implies that memory policies will not be taken in to account.
1596 */
1597static struct page *__alloc_buddy_huge_page(struct hstate *h,
1598 struct vm_area_struct *vma, unsigned long addr, int nid)
7893d1d5
AL
1599{
1600 struct page *page;
bf50bab2 1601 unsigned int r_nid;
7893d1d5 1602
bae7f4ae 1603 if (hstate_is_gigantic(h))
aa888a74
AK
1604 return NULL;
1605
099730d6
DH
1606 /*
1607 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1608 * This makes sure the caller is picking _one_ of the modes with which
1609 * we can call this function, not both.
1610 */
1611 if (vma || (addr != -1)) {
e0ec90ee
DH
1612 VM_WARN_ON_ONCE(addr == -1);
1613 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
099730d6 1614 }
d1c3fb1f
NA
1615 /*
1616 * Assume we will successfully allocate the surplus page to
1617 * prevent racing processes from causing the surplus to exceed
1618 * overcommit
1619 *
1620 * This however introduces a different race, where a process B
1621 * tries to grow the static hugepage pool while alloc_pages() is
1622 * called by process A. B will only examine the per-node
1623 * counters in determining if surplus huge pages can be
1624 * converted to normal huge pages in adjust_pool_surplus(). A
1625 * won't be able to increment the per-node counter, until the
1626 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1627 * no more huge pages can be converted from surplus to normal
1628 * state (and doesn't try to convert again). Thus, we have a
1629 * case where a surplus huge page exists, the pool is grown, and
1630 * the surplus huge page still exists after, even though it
1631 * should just have been converted to a normal huge page. This
1632 * does not leak memory, though, as the hugepage will be freed
1633 * once it is out of use. It also does not allow the counters to
1634 * go out of whack in adjust_pool_surplus() as we don't modify
1635 * the node values until we've gotten the hugepage and only the
1636 * per-node value is checked there.
1637 */
1638 spin_lock(&hugetlb_lock);
a5516438 1639 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1640 spin_unlock(&hugetlb_lock);
1641 return NULL;
1642 } else {
a5516438
AK
1643 h->nr_huge_pages++;
1644 h->surplus_huge_pages++;
d1c3fb1f
NA
1645 }
1646 spin_unlock(&hugetlb_lock);
1647
099730d6 1648 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
d1c3fb1f
NA
1649
1650 spin_lock(&hugetlb_lock);
7893d1d5 1651 if (page) {
0edaecfa 1652 INIT_LIST_HEAD(&page->lru);
bf50bab2 1653 r_nid = page_to_nid(page);
f1e61557 1654 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1655 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1656 /*
1657 * We incremented the global counters already
1658 */
bf50bab2
NH
1659 h->nr_huge_pages_node[r_nid]++;
1660 h->surplus_huge_pages_node[r_nid]++;
3b116300 1661 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1662 } else {
a5516438
AK
1663 h->nr_huge_pages--;
1664 h->surplus_huge_pages--;
3b116300 1665 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1666 }
d1c3fb1f 1667 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1668
1669 return page;
1670}
1671
099730d6
DH
1672/*
1673 * Allocate a huge page from 'nid'. Note, 'nid' may be
1674 * NUMA_NO_NODE, which means that it may be allocated
1675 * anywhere.
1676 */
e0ec90ee 1677static
099730d6
DH
1678struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1679{
1680 unsigned long addr = -1;
1681
1682 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1683}
1684
1685/*
1686 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1687 */
e0ec90ee 1688static
099730d6
DH
1689struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1690 struct vm_area_struct *vma, unsigned long addr)
1691{
1692 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1693}
1694
bf50bab2
NH
1695/*
1696 * This allocation function is useful in the context where vma is irrelevant.
1697 * E.g. soft-offlining uses this function because it only cares physical
1698 * address of error page.
1699 */
1700struct page *alloc_huge_page_node(struct hstate *h, int nid)
1701{
4ef91848 1702 struct page *page = NULL;
bf50bab2
NH
1703
1704 spin_lock(&hugetlb_lock);
4ef91848
JK
1705 if (h->free_huge_pages - h->resv_huge_pages > 0)
1706 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1707 spin_unlock(&hugetlb_lock);
1708
94ae8ba7 1709 if (!page)
099730d6 1710 page = __alloc_buddy_huge_page_no_mpol(h, nid);
bf50bab2
NH
1711
1712 return page;
1713}
1714
e4e574b7 1715/*
25985edc 1716 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1717 * of size 'delta'.
1718 */
a5516438 1719static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1720{
1721 struct list_head surplus_list;
1722 struct page *page, *tmp;
1723 int ret, i;
1724 int needed, allocated;
28073b02 1725 bool alloc_ok = true;
e4e574b7 1726
a5516438 1727 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1728 if (needed <= 0) {
a5516438 1729 h->resv_huge_pages += delta;
e4e574b7 1730 return 0;
ac09b3a1 1731 }
e4e574b7
AL
1732
1733 allocated = 0;
1734 INIT_LIST_HEAD(&surplus_list);
1735
1736 ret = -ENOMEM;
1737retry:
1738 spin_unlock(&hugetlb_lock);
1739 for (i = 0; i < needed; i++) {
099730d6 1740 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
28073b02
HD
1741 if (!page) {
1742 alloc_ok = false;
1743 break;
1744 }
e4e574b7
AL
1745 list_add(&page->lru, &surplus_list);
1746 }
28073b02 1747 allocated += i;
e4e574b7
AL
1748
1749 /*
1750 * After retaking hugetlb_lock, we need to recalculate 'needed'
1751 * because either resv_huge_pages or free_huge_pages may have changed.
1752 */
1753 spin_lock(&hugetlb_lock);
a5516438
AK
1754 needed = (h->resv_huge_pages + delta) -
1755 (h->free_huge_pages + allocated);
28073b02
HD
1756 if (needed > 0) {
1757 if (alloc_ok)
1758 goto retry;
1759 /*
1760 * We were not able to allocate enough pages to
1761 * satisfy the entire reservation so we free what
1762 * we've allocated so far.
1763 */
1764 goto free;
1765 }
e4e574b7
AL
1766 /*
1767 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1768 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1769 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1770 * allocator. Commit the entire reservation here to prevent another
1771 * process from stealing the pages as they are added to the pool but
1772 * before they are reserved.
e4e574b7
AL
1773 */
1774 needed += allocated;
a5516438 1775 h->resv_huge_pages += delta;
e4e574b7 1776 ret = 0;
a9869b83 1777
19fc3f0a 1778 /* Free the needed pages to the hugetlb pool */
e4e574b7 1779 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1780 if ((--needed) < 0)
1781 break;
a9869b83
NH
1782 /*
1783 * This page is now managed by the hugetlb allocator and has
1784 * no users -- drop the buddy allocator's reference.
1785 */
1786 put_page_testzero(page);
309381fe 1787 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1788 enqueue_huge_page(h, page);
19fc3f0a 1789 }
28073b02 1790free:
b0365c8d 1791 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1792
1793 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1794 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1795 put_page(page);
a9869b83 1796 spin_lock(&hugetlb_lock);
e4e574b7
AL
1797
1798 return ret;
1799}
1800
1801/*
e5bbc8a6
MK
1802 * This routine has two main purposes:
1803 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1804 * in unused_resv_pages. This corresponds to the prior adjustments made
1805 * to the associated reservation map.
1806 * 2) Free any unused surplus pages that may have been allocated to satisfy
1807 * the reservation. As many as unused_resv_pages may be freed.
1808 *
1809 * Called with hugetlb_lock held. However, the lock could be dropped (and
1810 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1811 * we must make sure nobody else can claim pages we are in the process of
1812 * freeing. Do this by ensuring resv_huge_page always is greater than the
1813 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1814 */
a5516438
AK
1815static void return_unused_surplus_pages(struct hstate *h,
1816 unsigned long unused_resv_pages)
e4e574b7 1817{
e4e574b7
AL
1818 unsigned long nr_pages;
1819
aa888a74 1820 /* Cannot return gigantic pages currently */
bae7f4ae 1821 if (hstate_is_gigantic(h))
e5bbc8a6 1822 goto out;
aa888a74 1823
e5bbc8a6
MK
1824 /*
1825 * Part (or even all) of the reservation could have been backed
1826 * by pre-allocated pages. Only free surplus pages.
1827 */
a5516438 1828 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1829
685f3457
LS
1830 /*
1831 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1832 * evenly across all nodes with memory. Iterate across these nodes
1833 * until we can no longer free unreserved surplus pages. This occurs
1834 * when the nodes with surplus pages have no free pages.
1835 * free_pool_huge_page() will balance the the freed pages across the
1836 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1837 *
1838 * Note that we decrement resv_huge_pages as we free the pages. If
1839 * we drop the lock, resv_huge_pages will still be sufficiently large
1840 * to cover subsequent pages we may free.
685f3457
LS
1841 */
1842 while (nr_pages--) {
e5bbc8a6
MK
1843 h->resv_huge_pages--;
1844 unused_resv_pages--;
8cebfcd0 1845 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1846 goto out;
7848a4bf 1847 cond_resched_lock(&hugetlb_lock);
e4e574b7 1848 }
e5bbc8a6
MK
1849
1850out:
1851 /* Fully uncommit the reservation */
1852 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1853}
1854
5e911373 1855
c37f9fb1 1856/*
feba16e2 1857 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1858 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1859 *
1860 * vma_needs_reservation is called to determine if the huge page at addr
1861 * within the vma has an associated reservation. If a reservation is
1862 * needed, the value 1 is returned. The caller is then responsible for
1863 * managing the global reservation and subpool usage counts. After
1864 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1865 * to add the page to the reservation map. If the page allocation fails,
1866 * the reservation must be ended instead of committed. vma_end_reservation
1867 * is called in such cases.
cf3ad20b
MK
1868 *
1869 * In the normal case, vma_commit_reservation returns the same value
1870 * as the preceding vma_needs_reservation call. The only time this
1871 * is not the case is if a reserve map was changed between calls. It
1872 * is the responsibility of the caller to notice the difference and
1873 * take appropriate action.
96b96a96
MK
1874 *
1875 * vma_add_reservation is used in error paths where a reservation must
1876 * be restored when a newly allocated huge page must be freed. It is
1877 * to be called after calling vma_needs_reservation to determine if a
1878 * reservation exists.
c37f9fb1 1879 */
5e911373
MK
1880enum vma_resv_mode {
1881 VMA_NEEDS_RESV,
1882 VMA_COMMIT_RESV,
feba16e2 1883 VMA_END_RESV,
96b96a96 1884 VMA_ADD_RESV,
5e911373 1885};
cf3ad20b
MK
1886static long __vma_reservation_common(struct hstate *h,
1887 struct vm_area_struct *vma, unsigned long addr,
5e911373 1888 enum vma_resv_mode mode)
c37f9fb1 1889{
4e35f483
JK
1890 struct resv_map *resv;
1891 pgoff_t idx;
cf3ad20b 1892 long ret;
c37f9fb1 1893
4e35f483
JK
1894 resv = vma_resv_map(vma);
1895 if (!resv)
84afd99b 1896 return 1;
c37f9fb1 1897
4e35f483 1898 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1899 switch (mode) {
1900 case VMA_NEEDS_RESV:
cf3ad20b 1901 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1902 break;
1903 case VMA_COMMIT_RESV:
1904 ret = region_add(resv, idx, idx + 1);
1905 break;
feba16e2 1906 case VMA_END_RESV:
5e911373
MK
1907 region_abort(resv, idx, idx + 1);
1908 ret = 0;
1909 break;
96b96a96
MK
1910 case VMA_ADD_RESV:
1911 if (vma->vm_flags & VM_MAYSHARE)
1912 ret = region_add(resv, idx, idx + 1);
1913 else {
1914 region_abort(resv, idx, idx + 1);
1915 ret = region_del(resv, idx, idx + 1);
1916 }
1917 break;
5e911373
MK
1918 default:
1919 BUG();
1920 }
84afd99b 1921
4e35f483 1922 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1923 return ret;
67961f9d
MK
1924 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1925 /*
1926 * In most cases, reserves always exist for private mappings.
1927 * However, a file associated with mapping could have been
1928 * hole punched or truncated after reserves were consumed.
1929 * As subsequent fault on such a range will not use reserves.
1930 * Subtle - The reserve map for private mappings has the
1931 * opposite meaning than that of shared mappings. If NO
1932 * entry is in the reserve map, it means a reservation exists.
1933 * If an entry exists in the reserve map, it means the
1934 * reservation has already been consumed. As a result, the
1935 * return value of this routine is the opposite of the
1936 * value returned from reserve map manipulation routines above.
1937 */
1938 if (ret)
1939 return 0;
1940 else
1941 return 1;
1942 }
4e35f483 1943 else
cf3ad20b 1944 return ret < 0 ? ret : 0;
c37f9fb1 1945}
cf3ad20b
MK
1946
1947static long vma_needs_reservation(struct hstate *h,
a5516438 1948 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1949{
5e911373 1950 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1951}
84afd99b 1952
cf3ad20b
MK
1953static long vma_commit_reservation(struct hstate *h,
1954 struct vm_area_struct *vma, unsigned long addr)
1955{
5e911373
MK
1956 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1957}
1958
feba16e2 1959static void vma_end_reservation(struct hstate *h,
5e911373
MK
1960 struct vm_area_struct *vma, unsigned long addr)
1961{
feba16e2 1962 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1963}
1964
96b96a96
MK
1965static long vma_add_reservation(struct hstate *h,
1966 struct vm_area_struct *vma, unsigned long addr)
1967{
1968 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1969}
1970
1971/*
1972 * This routine is called to restore a reservation on error paths. In the
1973 * specific error paths, a huge page was allocated (via alloc_huge_page)
1974 * and is about to be freed. If a reservation for the page existed,
1975 * alloc_huge_page would have consumed the reservation and set PagePrivate
1976 * in the newly allocated page. When the page is freed via free_huge_page,
1977 * the global reservation count will be incremented if PagePrivate is set.
1978 * However, free_huge_page can not adjust the reserve map. Adjust the
1979 * reserve map here to be consistent with global reserve count adjustments
1980 * to be made by free_huge_page.
1981 */
1982static void restore_reserve_on_error(struct hstate *h,
1983 struct vm_area_struct *vma, unsigned long address,
1984 struct page *page)
1985{
1986 if (unlikely(PagePrivate(page))) {
1987 long rc = vma_needs_reservation(h, vma, address);
1988
1989 if (unlikely(rc < 0)) {
1990 /*
1991 * Rare out of memory condition in reserve map
1992 * manipulation. Clear PagePrivate so that
1993 * global reserve count will not be incremented
1994 * by free_huge_page. This will make it appear
1995 * as though the reservation for this page was
1996 * consumed. This may prevent the task from
1997 * faulting in the page at a later time. This
1998 * is better than inconsistent global huge page
1999 * accounting of reserve counts.
2000 */
2001 ClearPagePrivate(page);
2002 } else if (rc) {
2003 rc = vma_add_reservation(h, vma, address);
2004 if (unlikely(rc < 0))
2005 /*
2006 * See above comment about rare out of
2007 * memory condition.
2008 */
2009 ClearPagePrivate(page);
2010 } else
2011 vma_end_reservation(h, vma, address);
2012 }
2013}
2014
70c3547e 2015struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2016 unsigned long addr, int avoid_reserve)
1da177e4 2017{
90481622 2018 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2019 struct hstate *h = hstate_vma(vma);
348ea204 2020 struct page *page;
d85f69b0
MK
2021 long map_chg, map_commit;
2022 long gbl_chg;
6d76dcf4
AK
2023 int ret, idx;
2024 struct hugetlb_cgroup *h_cg;
a1e78772 2025
6d76dcf4 2026 idx = hstate_index(h);
a1e78772 2027 /*
d85f69b0
MK
2028 * Examine the region/reserve map to determine if the process
2029 * has a reservation for the page to be allocated. A return
2030 * code of zero indicates a reservation exists (no change).
a1e78772 2031 */
d85f69b0
MK
2032 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2033 if (map_chg < 0)
76dcee75 2034 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2035
2036 /*
2037 * Processes that did not create the mapping will have no
2038 * reserves as indicated by the region/reserve map. Check
2039 * that the allocation will not exceed the subpool limit.
2040 * Allocations for MAP_NORESERVE mappings also need to be
2041 * checked against any subpool limit.
2042 */
2043 if (map_chg || avoid_reserve) {
2044 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2045 if (gbl_chg < 0) {
feba16e2 2046 vma_end_reservation(h, vma, addr);
76dcee75 2047 return ERR_PTR(-ENOSPC);
5e911373 2048 }
1da177e4 2049
d85f69b0
MK
2050 /*
2051 * Even though there was no reservation in the region/reserve
2052 * map, there could be reservations associated with the
2053 * subpool that can be used. This would be indicated if the
2054 * return value of hugepage_subpool_get_pages() is zero.
2055 * However, if avoid_reserve is specified we still avoid even
2056 * the subpool reservations.
2057 */
2058 if (avoid_reserve)
2059 gbl_chg = 1;
2060 }
2061
6d76dcf4 2062 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2063 if (ret)
2064 goto out_subpool_put;
2065
1da177e4 2066 spin_lock(&hugetlb_lock);
d85f69b0
MK
2067 /*
2068 * glb_chg is passed to indicate whether or not a page must be taken
2069 * from the global free pool (global change). gbl_chg == 0 indicates
2070 * a reservation exists for the allocation.
2071 */
2072 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2073 if (!page) {
94ae8ba7 2074 spin_unlock(&hugetlb_lock);
099730d6 2075 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2076 if (!page)
2077 goto out_uncharge_cgroup;
a88c7695
NH
2078 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2079 SetPagePrivate(page);
2080 h->resv_huge_pages--;
2081 }
79dbb236
AK
2082 spin_lock(&hugetlb_lock);
2083 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2084 /* Fall through */
68842c9b 2085 }
81a6fcae
JK
2086 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2087 spin_unlock(&hugetlb_lock);
348ea204 2088
90481622 2089 set_page_private(page, (unsigned long)spool);
90d8b7e6 2090
d85f69b0
MK
2091 map_commit = vma_commit_reservation(h, vma, addr);
2092 if (unlikely(map_chg > map_commit)) {
33039678
MK
2093 /*
2094 * The page was added to the reservation map between
2095 * vma_needs_reservation and vma_commit_reservation.
2096 * This indicates a race with hugetlb_reserve_pages.
2097 * Adjust for the subpool count incremented above AND
2098 * in hugetlb_reserve_pages for the same page. Also,
2099 * the reservation count added in hugetlb_reserve_pages
2100 * no longer applies.
2101 */
2102 long rsv_adjust;
2103
2104 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2105 hugetlb_acct_memory(h, -rsv_adjust);
2106 }
90d8b7e6 2107 return page;
8f34af6f
JZ
2108
2109out_uncharge_cgroup:
2110 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2111out_subpool_put:
d85f69b0 2112 if (map_chg || avoid_reserve)
8f34af6f 2113 hugepage_subpool_put_pages(spool, 1);
feba16e2 2114 vma_end_reservation(h, vma, addr);
8f34af6f 2115 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2116}
2117
74060e4d
NH
2118/*
2119 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2120 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2121 * where no ERR_VALUE is expected to be returned.
2122 */
2123struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2124 unsigned long addr, int avoid_reserve)
2125{
2126 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2127 if (IS_ERR(page))
2128 page = NULL;
2129 return page;
2130}
2131
91f47662 2132int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2133{
2134 struct huge_bootmem_page *m;
b2261026 2135 int nr_nodes, node;
aa888a74 2136
b2261026 2137 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2138 void *addr;
2139
8b89a116
GS
2140 addr = memblock_virt_alloc_try_nid_nopanic(
2141 huge_page_size(h), huge_page_size(h),
2142 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2143 if (addr) {
2144 /*
2145 * Use the beginning of the huge page to store the
2146 * huge_bootmem_page struct (until gather_bootmem
2147 * puts them into the mem_map).
2148 */
2149 m = addr;
91f47662 2150 goto found;
aa888a74 2151 }
aa888a74
AK
2152 }
2153 return 0;
2154
2155found:
df994ead 2156 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2157 /* Put them into a private list first because mem_map is not up yet */
2158 list_add(&m->list, &huge_boot_pages);
2159 m->hstate = h;
2160 return 1;
2161}
2162
d00181b9
KS
2163static void __init prep_compound_huge_page(struct page *page,
2164 unsigned int order)
18229df5
AW
2165{
2166 if (unlikely(order > (MAX_ORDER - 1)))
2167 prep_compound_gigantic_page(page, order);
2168 else
2169 prep_compound_page(page, order);
2170}
2171
aa888a74
AK
2172/* Put bootmem huge pages into the standard lists after mem_map is up */
2173static void __init gather_bootmem_prealloc(void)
2174{
2175 struct huge_bootmem_page *m;
2176
2177 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2178 struct hstate *h = m->hstate;
ee8f248d
BB
2179 struct page *page;
2180
2181#ifdef CONFIG_HIGHMEM
2182 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2183 memblock_free_late(__pa(m),
2184 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2185#else
2186 page = virt_to_page(m);
2187#endif
aa888a74 2188 WARN_ON(page_count(page) != 1);
18229df5 2189 prep_compound_huge_page(page, h->order);
ef5a22be 2190 WARN_ON(PageReserved(page));
aa888a74 2191 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2192 /*
2193 * If we had gigantic hugepages allocated at boot time, we need
2194 * to restore the 'stolen' pages to totalram_pages in order to
2195 * fix confusing memory reports from free(1) and another
2196 * side-effects, like CommitLimit going negative.
2197 */
bae7f4ae 2198 if (hstate_is_gigantic(h))
3dcc0571 2199 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2200 }
2201}
2202
8faa8b07 2203static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2204{
2205 unsigned long i;
a5516438 2206
e5ff2159 2207 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2208 if (hstate_is_gigantic(h)) {
aa888a74
AK
2209 if (!alloc_bootmem_huge_page(h))
2210 break;
9b5e5d0f 2211 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2212 &node_states[N_MEMORY]))
1da177e4 2213 break;
1da177e4 2214 }
8faa8b07 2215 h->max_huge_pages = i;
e5ff2159
AK
2216}
2217
2218static void __init hugetlb_init_hstates(void)
2219{
2220 struct hstate *h;
2221
2222 for_each_hstate(h) {
641844f5
NH
2223 if (minimum_order > huge_page_order(h))
2224 minimum_order = huge_page_order(h);
2225
8faa8b07 2226 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2227 if (!hstate_is_gigantic(h))
8faa8b07 2228 hugetlb_hstate_alloc_pages(h);
e5ff2159 2229 }
641844f5 2230 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2231}
2232
4abd32db
AK
2233static char * __init memfmt(char *buf, unsigned long n)
2234{
2235 if (n >= (1UL << 30))
2236 sprintf(buf, "%lu GB", n >> 30);
2237 else if (n >= (1UL << 20))
2238 sprintf(buf, "%lu MB", n >> 20);
2239 else
2240 sprintf(buf, "%lu KB", n >> 10);
2241 return buf;
2242}
2243
e5ff2159
AK
2244static void __init report_hugepages(void)
2245{
2246 struct hstate *h;
2247
2248 for_each_hstate(h) {
4abd32db 2249 char buf[32];
ffb22af5 2250 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
2251 memfmt(buf, huge_page_size(h)),
2252 h->free_huge_pages);
e5ff2159
AK
2253 }
2254}
2255
1da177e4 2256#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2257static void try_to_free_low(struct hstate *h, unsigned long count,
2258 nodemask_t *nodes_allowed)
1da177e4 2259{
4415cc8d
CL
2260 int i;
2261
bae7f4ae 2262 if (hstate_is_gigantic(h))
aa888a74
AK
2263 return;
2264
6ae11b27 2265 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2266 struct page *page, *next;
a5516438
AK
2267 struct list_head *freel = &h->hugepage_freelists[i];
2268 list_for_each_entry_safe(page, next, freel, lru) {
2269 if (count >= h->nr_huge_pages)
6b0c880d 2270 return;
1da177e4
LT
2271 if (PageHighMem(page))
2272 continue;
2273 list_del(&page->lru);
e5ff2159 2274 update_and_free_page(h, page);
a5516438
AK
2275 h->free_huge_pages--;
2276 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2277 }
2278 }
2279}
2280#else
6ae11b27
LS
2281static inline void try_to_free_low(struct hstate *h, unsigned long count,
2282 nodemask_t *nodes_allowed)
1da177e4
LT
2283{
2284}
2285#endif
2286
20a0307c
WF
2287/*
2288 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2289 * balanced by operating on them in a round-robin fashion.
2290 * Returns 1 if an adjustment was made.
2291 */
6ae11b27
LS
2292static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2293 int delta)
20a0307c 2294{
b2261026 2295 int nr_nodes, node;
20a0307c
WF
2296
2297 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2298
b2261026
JK
2299 if (delta < 0) {
2300 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2301 if (h->surplus_huge_pages_node[node])
2302 goto found;
e8c5c824 2303 }
b2261026
JK
2304 } else {
2305 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2306 if (h->surplus_huge_pages_node[node] <
2307 h->nr_huge_pages_node[node])
2308 goto found;
e8c5c824 2309 }
b2261026
JK
2310 }
2311 return 0;
20a0307c 2312
b2261026
JK
2313found:
2314 h->surplus_huge_pages += delta;
2315 h->surplus_huge_pages_node[node] += delta;
2316 return 1;
20a0307c
WF
2317}
2318
a5516438 2319#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2320static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2321 nodemask_t *nodes_allowed)
1da177e4 2322{
7893d1d5 2323 unsigned long min_count, ret;
1da177e4 2324
944d9fec 2325 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2326 return h->max_huge_pages;
2327
7893d1d5
AL
2328 /*
2329 * Increase the pool size
2330 * First take pages out of surplus state. Then make up the
2331 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2332 *
d15c7c09 2333 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2334 * to convert a surplus huge page to a normal huge page. That is
2335 * not critical, though, it just means the overall size of the
2336 * pool might be one hugepage larger than it needs to be, but
2337 * within all the constraints specified by the sysctls.
7893d1d5 2338 */
1da177e4 2339 spin_lock(&hugetlb_lock);
a5516438 2340 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2341 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2342 break;
2343 }
2344
a5516438 2345 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2346 /*
2347 * If this allocation races such that we no longer need the
2348 * page, free_huge_page will handle it by freeing the page
2349 * and reducing the surplus.
2350 */
2351 spin_unlock(&hugetlb_lock);
649920c6
JH
2352
2353 /* yield cpu to avoid soft lockup */
2354 cond_resched();
2355
944d9fec
LC
2356 if (hstate_is_gigantic(h))
2357 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2358 else
2359 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2360 spin_lock(&hugetlb_lock);
2361 if (!ret)
2362 goto out;
2363
536240f2
MG
2364 /* Bail for signals. Probably ctrl-c from user */
2365 if (signal_pending(current))
2366 goto out;
7893d1d5 2367 }
7893d1d5
AL
2368
2369 /*
2370 * Decrease the pool size
2371 * First return free pages to the buddy allocator (being careful
2372 * to keep enough around to satisfy reservations). Then place
2373 * pages into surplus state as needed so the pool will shrink
2374 * to the desired size as pages become free.
d1c3fb1f
NA
2375 *
2376 * By placing pages into the surplus state independent of the
2377 * overcommit value, we are allowing the surplus pool size to
2378 * exceed overcommit. There are few sane options here. Since
d15c7c09 2379 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2380 * though, we'll note that we're not allowed to exceed surplus
2381 * and won't grow the pool anywhere else. Not until one of the
2382 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2383 */
a5516438 2384 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2385 min_count = max(count, min_count);
6ae11b27 2386 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2387 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2388 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2389 break;
55f67141 2390 cond_resched_lock(&hugetlb_lock);
1da177e4 2391 }
a5516438 2392 while (count < persistent_huge_pages(h)) {
6ae11b27 2393 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2394 break;
2395 }
2396out:
a5516438 2397 ret = persistent_huge_pages(h);
1da177e4 2398 spin_unlock(&hugetlb_lock);
7893d1d5 2399 return ret;
1da177e4
LT
2400}
2401
a3437870
NA
2402#define HSTATE_ATTR_RO(_name) \
2403 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2404
2405#define HSTATE_ATTR(_name) \
2406 static struct kobj_attribute _name##_attr = \
2407 __ATTR(_name, 0644, _name##_show, _name##_store)
2408
2409static struct kobject *hugepages_kobj;
2410static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2411
9a305230
LS
2412static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2413
2414static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2415{
2416 int i;
9a305230 2417
a3437870 2418 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2419 if (hstate_kobjs[i] == kobj) {
2420 if (nidp)
2421 *nidp = NUMA_NO_NODE;
a3437870 2422 return &hstates[i];
9a305230
LS
2423 }
2424
2425 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2426}
2427
06808b08 2428static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2429 struct kobj_attribute *attr, char *buf)
2430{
9a305230
LS
2431 struct hstate *h;
2432 unsigned long nr_huge_pages;
2433 int nid;
2434
2435 h = kobj_to_hstate(kobj, &nid);
2436 if (nid == NUMA_NO_NODE)
2437 nr_huge_pages = h->nr_huge_pages;
2438 else
2439 nr_huge_pages = h->nr_huge_pages_node[nid];
2440
2441 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2442}
adbe8726 2443
238d3c13
DR
2444static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2445 struct hstate *h, int nid,
2446 unsigned long count, size_t len)
a3437870
NA
2447{
2448 int err;
bad44b5b 2449 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2450
944d9fec 2451 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2452 err = -EINVAL;
2453 goto out;
2454 }
2455
9a305230
LS
2456 if (nid == NUMA_NO_NODE) {
2457 /*
2458 * global hstate attribute
2459 */
2460 if (!(obey_mempolicy &&
2461 init_nodemask_of_mempolicy(nodes_allowed))) {
2462 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2463 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2464 }
2465 } else if (nodes_allowed) {
2466 /*
2467 * per node hstate attribute: adjust count to global,
2468 * but restrict alloc/free to the specified node.
2469 */
2470 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2471 init_nodemask_of_node(nodes_allowed, nid);
2472 } else
8cebfcd0 2473 nodes_allowed = &node_states[N_MEMORY];
9a305230 2474
06808b08 2475 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2476
8cebfcd0 2477 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2478 NODEMASK_FREE(nodes_allowed);
2479
2480 return len;
adbe8726
EM
2481out:
2482 NODEMASK_FREE(nodes_allowed);
2483 return err;
06808b08
LS
2484}
2485
238d3c13
DR
2486static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2487 struct kobject *kobj, const char *buf,
2488 size_t len)
2489{
2490 struct hstate *h;
2491 unsigned long count;
2492 int nid;
2493 int err;
2494
2495 err = kstrtoul(buf, 10, &count);
2496 if (err)
2497 return err;
2498
2499 h = kobj_to_hstate(kobj, &nid);
2500 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2501}
2502
06808b08
LS
2503static ssize_t nr_hugepages_show(struct kobject *kobj,
2504 struct kobj_attribute *attr, char *buf)
2505{
2506 return nr_hugepages_show_common(kobj, attr, buf);
2507}
2508
2509static ssize_t nr_hugepages_store(struct kobject *kobj,
2510 struct kobj_attribute *attr, const char *buf, size_t len)
2511{
238d3c13 2512 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2513}
2514HSTATE_ATTR(nr_hugepages);
2515
06808b08
LS
2516#ifdef CONFIG_NUMA
2517
2518/*
2519 * hstate attribute for optionally mempolicy-based constraint on persistent
2520 * huge page alloc/free.
2521 */
2522static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2523 struct kobj_attribute *attr, char *buf)
2524{
2525 return nr_hugepages_show_common(kobj, attr, buf);
2526}
2527
2528static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2529 struct kobj_attribute *attr, const char *buf, size_t len)
2530{
238d3c13 2531 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2532}
2533HSTATE_ATTR(nr_hugepages_mempolicy);
2534#endif
2535
2536
a3437870
NA
2537static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2538 struct kobj_attribute *attr, char *buf)
2539{
9a305230 2540 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2541 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2542}
adbe8726 2543
a3437870
NA
2544static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2545 struct kobj_attribute *attr, const char *buf, size_t count)
2546{
2547 int err;
2548 unsigned long input;
9a305230 2549 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2550
bae7f4ae 2551 if (hstate_is_gigantic(h))
adbe8726
EM
2552 return -EINVAL;
2553
3dbb95f7 2554 err = kstrtoul(buf, 10, &input);
a3437870 2555 if (err)
73ae31e5 2556 return err;
a3437870
NA
2557
2558 spin_lock(&hugetlb_lock);
2559 h->nr_overcommit_huge_pages = input;
2560 spin_unlock(&hugetlb_lock);
2561
2562 return count;
2563}
2564HSTATE_ATTR(nr_overcommit_hugepages);
2565
2566static ssize_t free_hugepages_show(struct kobject *kobj,
2567 struct kobj_attribute *attr, char *buf)
2568{
9a305230
LS
2569 struct hstate *h;
2570 unsigned long free_huge_pages;
2571 int nid;
2572
2573 h = kobj_to_hstate(kobj, &nid);
2574 if (nid == NUMA_NO_NODE)
2575 free_huge_pages = h->free_huge_pages;
2576 else
2577 free_huge_pages = h->free_huge_pages_node[nid];
2578
2579 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2580}
2581HSTATE_ATTR_RO(free_hugepages);
2582
2583static ssize_t resv_hugepages_show(struct kobject *kobj,
2584 struct kobj_attribute *attr, char *buf)
2585{
9a305230 2586 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2587 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2588}
2589HSTATE_ATTR_RO(resv_hugepages);
2590
2591static ssize_t surplus_hugepages_show(struct kobject *kobj,
2592 struct kobj_attribute *attr, char *buf)
2593{
9a305230
LS
2594 struct hstate *h;
2595 unsigned long surplus_huge_pages;
2596 int nid;
2597
2598 h = kobj_to_hstate(kobj, &nid);
2599 if (nid == NUMA_NO_NODE)
2600 surplus_huge_pages = h->surplus_huge_pages;
2601 else
2602 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2603
2604 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2605}
2606HSTATE_ATTR_RO(surplus_hugepages);
2607
2608static struct attribute *hstate_attrs[] = {
2609 &nr_hugepages_attr.attr,
2610 &nr_overcommit_hugepages_attr.attr,
2611 &free_hugepages_attr.attr,
2612 &resv_hugepages_attr.attr,
2613 &surplus_hugepages_attr.attr,
06808b08
LS
2614#ifdef CONFIG_NUMA
2615 &nr_hugepages_mempolicy_attr.attr,
2616#endif
a3437870
NA
2617 NULL,
2618};
2619
2620static struct attribute_group hstate_attr_group = {
2621 .attrs = hstate_attrs,
2622};
2623
094e9539
JM
2624static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2625 struct kobject **hstate_kobjs,
2626 struct attribute_group *hstate_attr_group)
a3437870
NA
2627{
2628 int retval;
972dc4de 2629 int hi = hstate_index(h);
a3437870 2630
9a305230
LS
2631 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2632 if (!hstate_kobjs[hi])
a3437870
NA
2633 return -ENOMEM;
2634
9a305230 2635 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2636 if (retval)
9a305230 2637 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2638
2639 return retval;
2640}
2641
2642static void __init hugetlb_sysfs_init(void)
2643{
2644 struct hstate *h;
2645 int err;
2646
2647 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2648 if (!hugepages_kobj)
2649 return;
2650
2651 for_each_hstate(h) {
9a305230
LS
2652 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2653 hstate_kobjs, &hstate_attr_group);
a3437870 2654 if (err)
ffb22af5 2655 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2656 }
2657}
2658
9a305230
LS
2659#ifdef CONFIG_NUMA
2660
2661/*
2662 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2663 * with node devices in node_devices[] using a parallel array. The array
2664 * index of a node device or _hstate == node id.
2665 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2666 * the base kernel, on the hugetlb module.
2667 */
2668struct node_hstate {
2669 struct kobject *hugepages_kobj;
2670 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2671};
b4e289a6 2672static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2673
2674/*
10fbcf4c 2675 * A subset of global hstate attributes for node devices
9a305230
LS
2676 */
2677static struct attribute *per_node_hstate_attrs[] = {
2678 &nr_hugepages_attr.attr,
2679 &free_hugepages_attr.attr,
2680 &surplus_hugepages_attr.attr,
2681 NULL,
2682};
2683
2684static struct attribute_group per_node_hstate_attr_group = {
2685 .attrs = per_node_hstate_attrs,
2686};
2687
2688/*
10fbcf4c 2689 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2690 * Returns node id via non-NULL nidp.
2691 */
2692static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2693{
2694 int nid;
2695
2696 for (nid = 0; nid < nr_node_ids; nid++) {
2697 struct node_hstate *nhs = &node_hstates[nid];
2698 int i;
2699 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2700 if (nhs->hstate_kobjs[i] == kobj) {
2701 if (nidp)
2702 *nidp = nid;
2703 return &hstates[i];
2704 }
2705 }
2706
2707 BUG();
2708 return NULL;
2709}
2710
2711/*
10fbcf4c 2712 * Unregister hstate attributes from a single node device.
9a305230
LS
2713 * No-op if no hstate attributes attached.
2714 */
3cd8b44f 2715static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2716{
2717 struct hstate *h;
10fbcf4c 2718 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2719
2720 if (!nhs->hugepages_kobj)
9b5e5d0f 2721 return; /* no hstate attributes */
9a305230 2722
972dc4de
AK
2723 for_each_hstate(h) {
2724 int idx = hstate_index(h);
2725 if (nhs->hstate_kobjs[idx]) {
2726 kobject_put(nhs->hstate_kobjs[idx]);
2727 nhs->hstate_kobjs[idx] = NULL;
9a305230 2728 }
972dc4de 2729 }
9a305230
LS
2730
2731 kobject_put(nhs->hugepages_kobj);
2732 nhs->hugepages_kobj = NULL;
2733}
2734
9a305230
LS
2735
2736/*
10fbcf4c 2737 * Register hstate attributes for a single node device.
9a305230
LS
2738 * No-op if attributes already registered.
2739 */
3cd8b44f 2740static void hugetlb_register_node(struct node *node)
9a305230
LS
2741{
2742 struct hstate *h;
10fbcf4c 2743 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2744 int err;
2745
2746 if (nhs->hugepages_kobj)
2747 return; /* already allocated */
2748
2749 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2750 &node->dev.kobj);
9a305230
LS
2751 if (!nhs->hugepages_kobj)
2752 return;
2753
2754 for_each_hstate(h) {
2755 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2756 nhs->hstate_kobjs,
2757 &per_node_hstate_attr_group);
2758 if (err) {
ffb22af5
AM
2759 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2760 h->name, node->dev.id);
9a305230
LS
2761 hugetlb_unregister_node(node);
2762 break;
2763 }
2764 }
2765}
2766
2767/*
9b5e5d0f 2768 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2769 * devices of nodes that have memory. All on-line nodes should have
2770 * registered their associated device by this time.
9a305230 2771 */
7d9ca000 2772static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2773{
2774 int nid;
2775
8cebfcd0 2776 for_each_node_state(nid, N_MEMORY) {
8732794b 2777 struct node *node = node_devices[nid];
10fbcf4c 2778 if (node->dev.id == nid)
9a305230
LS
2779 hugetlb_register_node(node);
2780 }
2781
2782 /*
10fbcf4c 2783 * Let the node device driver know we're here so it can
9a305230
LS
2784 * [un]register hstate attributes on node hotplug.
2785 */
2786 register_hugetlbfs_with_node(hugetlb_register_node,
2787 hugetlb_unregister_node);
2788}
2789#else /* !CONFIG_NUMA */
2790
2791static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2792{
2793 BUG();
2794 if (nidp)
2795 *nidp = -1;
2796 return NULL;
2797}
2798
9a305230
LS
2799static void hugetlb_register_all_nodes(void) { }
2800
2801#endif
2802
a3437870
NA
2803static int __init hugetlb_init(void)
2804{
8382d914
DB
2805 int i;
2806
457c1b27 2807 if (!hugepages_supported())
0ef89d25 2808 return 0;
a3437870 2809
e11bfbfc
NP
2810 if (!size_to_hstate(default_hstate_size)) {
2811 default_hstate_size = HPAGE_SIZE;
2812 if (!size_to_hstate(default_hstate_size))
2813 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2814 }
972dc4de 2815 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2816 if (default_hstate_max_huge_pages) {
2817 if (!default_hstate.max_huge_pages)
2818 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2819 }
a3437870
NA
2820
2821 hugetlb_init_hstates();
aa888a74 2822 gather_bootmem_prealloc();
a3437870
NA
2823 report_hugepages();
2824
2825 hugetlb_sysfs_init();
9a305230 2826 hugetlb_register_all_nodes();
7179e7bf 2827 hugetlb_cgroup_file_init();
9a305230 2828
8382d914
DB
2829#ifdef CONFIG_SMP
2830 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2831#else
2832 num_fault_mutexes = 1;
2833#endif
c672c7f2 2834 hugetlb_fault_mutex_table =
8382d914 2835 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2836 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2837
2838 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2839 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2840 return 0;
2841}
3e89e1c5 2842subsys_initcall(hugetlb_init);
a3437870
NA
2843
2844/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2845void __init hugetlb_bad_size(void)
2846{
2847 parsed_valid_hugepagesz = false;
2848}
2849
d00181b9 2850void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2851{
2852 struct hstate *h;
8faa8b07
AK
2853 unsigned long i;
2854
a3437870 2855 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2856 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2857 return;
2858 }
47d38344 2859 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2860 BUG_ON(order == 0);
47d38344 2861 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2862 h->order = order;
2863 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2864 h->nr_huge_pages = 0;
2865 h->free_huge_pages = 0;
2866 for (i = 0; i < MAX_NUMNODES; ++i)
2867 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2868 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2869 h->next_nid_to_alloc = first_memory_node;
2870 h->next_nid_to_free = first_memory_node;
a3437870
NA
2871 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2872 huge_page_size(h)/1024);
8faa8b07 2873
a3437870
NA
2874 parsed_hstate = h;
2875}
2876
e11bfbfc 2877static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2878{
2879 unsigned long *mhp;
8faa8b07 2880 static unsigned long *last_mhp;
a3437870 2881
9fee021d
VT
2882 if (!parsed_valid_hugepagesz) {
2883 pr_warn("hugepages = %s preceded by "
2884 "an unsupported hugepagesz, ignoring\n", s);
2885 parsed_valid_hugepagesz = true;
2886 return 1;
2887 }
a3437870 2888 /*
47d38344 2889 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2890 * so this hugepages= parameter goes to the "default hstate".
2891 */
9fee021d 2892 else if (!hugetlb_max_hstate)
a3437870
NA
2893 mhp = &default_hstate_max_huge_pages;
2894 else
2895 mhp = &parsed_hstate->max_huge_pages;
2896
8faa8b07 2897 if (mhp == last_mhp) {
598d8091 2898 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2899 return 1;
2900 }
2901
a3437870
NA
2902 if (sscanf(s, "%lu", mhp) <= 0)
2903 *mhp = 0;
2904
8faa8b07
AK
2905 /*
2906 * Global state is always initialized later in hugetlb_init.
2907 * But we need to allocate >= MAX_ORDER hstates here early to still
2908 * use the bootmem allocator.
2909 */
47d38344 2910 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2911 hugetlb_hstate_alloc_pages(parsed_hstate);
2912
2913 last_mhp = mhp;
2914
a3437870
NA
2915 return 1;
2916}
e11bfbfc
NP
2917__setup("hugepages=", hugetlb_nrpages_setup);
2918
2919static int __init hugetlb_default_setup(char *s)
2920{
2921 default_hstate_size = memparse(s, &s);
2922 return 1;
2923}
2924__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2925
8a213460
NA
2926static unsigned int cpuset_mems_nr(unsigned int *array)
2927{
2928 int node;
2929 unsigned int nr = 0;
2930
2931 for_each_node_mask(node, cpuset_current_mems_allowed)
2932 nr += array[node];
2933
2934 return nr;
2935}
2936
2937#ifdef CONFIG_SYSCTL
06808b08
LS
2938static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2939 struct ctl_table *table, int write,
2940 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2941{
e5ff2159 2942 struct hstate *h = &default_hstate;
238d3c13 2943 unsigned long tmp = h->max_huge_pages;
08d4a246 2944 int ret;
e5ff2159 2945
457c1b27 2946 if (!hugepages_supported())
86613628 2947 return -EOPNOTSUPP;
457c1b27 2948
e5ff2159
AK
2949 table->data = &tmp;
2950 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2951 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2952 if (ret)
2953 goto out;
e5ff2159 2954
238d3c13
DR
2955 if (write)
2956 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2957 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2958out:
2959 return ret;
1da177e4 2960}
396faf03 2961
06808b08
LS
2962int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2963 void __user *buffer, size_t *length, loff_t *ppos)
2964{
2965
2966 return hugetlb_sysctl_handler_common(false, table, write,
2967 buffer, length, ppos);
2968}
2969
2970#ifdef CONFIG_NUMA
2971int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2972 void __user *buffer, size_t *length, loff_t *ppos)
2973{
2974 return hugetlb_sysctl_handler_common(true, table, write,
2975 buffer, length, ppos);
2976}
2977#endif /* CONFIG_NUMA */
2978
a3d0c6aa 2979int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2980 void __user *buffer,
a3d0c6aa
NA
2981 size_t *length, loff_t *ppos)
2982{
a5516438 2983 struct hstate *h = &default_hstate;
e5ff2159 2984 unsigned long tmp;
08d4a246 2985 int ret;
e5ff2159 2986
457c1b27 2987 if (!hugepages_supported())
86613628 2988 return -EOPNOTSUPP;
457c1b27 2989
c033a93c 2990 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2991
bae7f4ae 2992 if (write && hstate_is_gigantic(h))
adbe8726
EM
2993 return -EINVAL;
2994
e5ff2159
AK
2995 table->data = &tmp;
2996 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2997 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2998 if (ret)
2999 goto out;
e5ff2159
AK
3000
3001 if (write) {
3002 spin_lock(&hugetlb_lock);
3003 h->nr_overcommit_huge_pages = tmp;
3004 spin_unlock(&hugetlb_lock);
3005 }
08d4a246
MH
3006out:
3007 return ret;
a3d0c6aa
NA
3008}
3009
1da177e4
LT
3010#endif /* CONFIG_SYSCTL */
3011
e1759c21 3012void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3013{
a5516438 3014 struct hstate *h = &default_hstate;
457c1b27
NA
3015 if (!hugepages_supported())
3016 return;
e1759c21 3017 seq_printf(m,
4f98a2fe
RR
3018 "HugePages_Total: %5lu\n"
3019 "HugePages_Free: %5lu\n"
3020 "HugePages_Rsvd: %5lu\n"
3021 "HugePages_Surp: %5lu\n"
3022 "Hugepagesize: %8lu kB\n",
a5516438
AK
3023 h->nr_huge_pages,
3024 h->free_huge_pages,
3025 h->resv_huge_pages,
3026 h->surplus_huge_pages,
3027 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
3028}
3029
3030int hugetlb_report_node_meminfo(int nid, char *buf)
3031{
a5516438 3032 struct hstate *h = &default_hstate;
457c1b27
NA
3033 if (!hugepages_supported())
3034 return 0;
1da177e4
LT
3035 return sprintf(buf,
3036 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3037 "Node %d HugePages_Free: %5u\n"
3038 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3039 nid, h->nr_huge_pages_node[nid],
3040 nid, h->free_huge_pages_node[nid],
3041 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3042}
3043
949f7ec5
DR
3044void hugetlb_show_meminfo(void)
3045{
3046 struct hstate *h;
3047 int nid;
3048
457c1b27
NA
3049 if (!hugepages_supported())
3050 return;
3051
949f7ec5
DR
3052 for_each_node_state(nid, N_MEMORY)
3053 for_each_hstate(h)
3054 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3055 nid,
3056 h->nr_huge_pages_node[nid],
3057 h->free_huge_pages_node[nid],
3058 h->surplus_huge_pages_node[nid],
3059 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3060}
3061
5d317b2b
NH
3062void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3063{
3064 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3065 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3066}
3067
1da177e4
LT
3068/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3069unsigned long hugetlb_total_pages(void)
3070{
d0028588
WL
3071 struct hstate *h;
3072 unsigned long nr_total_pages = 0;
3073
3074 for_each_hstate(h)
3075 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3076 return nr_total_pages;
1da177e4 3077}
1da177e4 3078
a5516438 3079static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3080{
3081 int ret = -ENOMEM;
3082
3083 spin_lock(&hugetlb_lock);
3084 /*
3085 * When cpuset is configured, it breaks the strict hugetlb page
3086 * reservation as the accounting is done on a global variable. Such
3087 * reservation is completely rubbish in the presence of cpuset because
3088 * the reservation is not checked against page availability for the
3089 * current cpuset. Application can still potentially OOM'ed by kernel
3090 * with lack of free htlb page in cpuset that the task is in.
3091 * Attempt to enforce strict accounting with cpuset is almost
3092 * impossible (or too ugly) because cpuset is too fluid that
3093 * task or memory node can be dynamically moved between cpusets.
3094 *
3095 * The change of semantics for shared hugetlb mapping with cpuset is
3096 * undesirable. However, in order to preserve some of the semantics,
3097 * we fall back to check against current free page availability as
3098 * a best attempt and hopefully to minimize the impact of changing
3099 * semantics that cpuset has.
3100 */
3101 if (delta > 0) {
a5516438 3102 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3103 goto out;
3104
a5516438
AK
3105 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3106 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3107 goto out;
3108 }
3109 }
3110
3111 ret = 0;
3112 if (delta < 0)
a5516438 3113 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3114
3115out:
3116 spin_unlock(&hugetlb_lock);
3117 return ret;
3118}
3119
84afd99b
AW
3120static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3121{
f522c3ac 3122 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3123
3124 /*
3125 * This new VMA should share its siblings reservation map if present.
3126 * The VMA will only ever have a valid reservation map pointer where
3127 * it is being copied for another still existing VMA. As that VMA
25985edc 3128 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3129 * after this open call completes. It is therefore safe to take a
3130 * new reference here without additional locking.
3131 */
4e35f483 3132 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3133 kref_get(&resv->refs);
84afd99b
AW
3134}
3135
a1e78772
MG
3136static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3137{
a5516438 3138 struct hstate *h = hstate_vma(vma);
f522c3ac 3139 struct resv_map *resv = vma_resv_map(vma);
90481622 3140 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3141 unsigned long reserve, start, end;
1c5ecae3 3142 long gbl_reserve;
84afd99b 3143
4e35f483
JK
3144 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3145 return;
84afd99b 3146
4e35f483
JK
3147 start = vma_hugecache_offset(h, vma, vma->vm_start);
3148 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3149
4e35f483 3150 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3151
4e35f483
JK
3152 kref_put(&resv->refs, resv_map_release);
3153
3154 if (reserve) {
1c5ecae3
MK
3155 /*
3156 * Decrement reserve counts. The global reserve count may be
3157 * adjusted if the subpool has a minimum size.
3158 */
3159 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3160 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3161 }
a1e78772
MG
3162}
3163
1da177e4
LT
3164/*
3165 * We cannot handle pagefaults against hugetlb pages at all. They cause
3166 * handle_mm_fault() to try to instantiate regular-sized pages in the
3167 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3168 * this far.
3169 */
11bac800 3170static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3171{
3172 BUG();
d0217ac0 3173 return 0;
1da177e4
LT
3174}
3175
f0f37e2f 3176const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3177 .fault = hugetlb_vm_op_fault,
84afd99b 3178 .open = hugetlb_vm_op_open,
a1e78772 3179 .close = hugetlb_vm_op_close,
1da177e4
LT
3180};
3181
1e8f889b
DG
3182static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3183 int writable)
63551ae0
DG
3184{
3185 pte_t entry;
3186
1e8f889b 3187 if (writable) {
106c992a
GS
3188 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3189 vma->vm_page_prot)));
63551ae0 3190 } else {
106c992a
GS
3191 entry = huge_pte_wrprotect(mk_huge_pte(page,
3192 vma->vm_page_prot));
63551ae0
DG
3193 }
3194 entry = pte_mkyoung(entry);
3195 entry = pte_mkhuge(entry);
d9ed9faa 3196 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3197
3198 return entry;
3199}
3200
1e8f889b
DG
3201static void set_huge_ptep_writable(struct vm_area_struct *vma,
3202 unsigned long address, pte_t *ptep)
3203{
3204 pte_t entry;
3205
106c992a 3206 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3207 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3208 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3209}
3210
d5ed7444 3211bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3212{
3213 swp_entry_t swp;
3214
3215 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3216 return false;
4a705fef
NH
3217 swp = pte_to_swp_entry(pte);
3218 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3219 return true;
4a705fef 3220 else
d5ed7444 3221 return false;
4a705fef
NH
3222}
3223
3224static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3225{
3226 swp_entry_t swp;
3227
3228 if (huge_pte_none(pte) || pte_present(pte))
3229 return 0;
3230 swp = pte_to_swp_entry(pte);
3231 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3232 return 1;
3233 else
3234 return 0;
3235}
1e8f889b 3236
63551ae0
DG
3237int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3238 struct vm_area_struct *vma)
3239{
3240 pte_t *src_pte, *dst_pte, entry;
3241 struct page *ptepage;
1c59827d 3242 unsigned long addr;
1e8f889b 3243 int cow;
a5516438
AK
3244 struct hstate *h = hstate_vma(vma);
3245 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3246 unsigned long mmun_start; /* For mmu_notifiers */
3247 unsigned long mmun_end; /* For mmu_notifiers */
3248 int ret = 0;
1e8f889b
DG
3249
3250 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3251
e8569dd2
AS
3252 mmun_start = vma->vm_start;
3253 mmun_end = vma->vm_end;
3254 if (cow)
3255 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3256
a5516438 3257 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3258 spinlock_t *src_ptl, *dst_ptl;
7868a208 3259 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3260 if (!src_pte)
3261 continue;
a5516438 3262 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3263 if (!dst_pte) {
3264 ret = -ENOMEM;
3265 break;
3266 }
c5c99429
LW
3267
3268 /* If the pagetables are shared don't copy or take references */
3269 if (dst_pte == src_pte)
3270 continue;
3271
cb900f41
KS
3272 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3273 src_ptl = huge_pte_lockptr(h, src, src_pte);
3274 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3275 entry = huge_ptep_get(src_pte);
3276 if (huge_pte_none(entry)) { /* skip none entry */
3277 ;
3278 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3279 is_hugetlb_entry_hwpoisoned(entry))) {
3280 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3281
3282 if (is_write_migration_entry(swp_entry) && cow) {
3283 /*
3284 * COW mappings require pages in both
3285 * parent and child to be set to read.
3286 */
3287 make_migration_entry_read(&swp_entry);
3288 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3289 set_huge_swap_pte_at(src, addr, src_pte,
3290 entry, sz);
4a705fef 3291 }
e5251fd4 3292 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3293 } else {
34ee645e 3294 if (cow) {
7f2e9525 3295 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3296 mmu_notifier_invalidate_range(src, mmun_start,
3297 mmun_end);
3298 }
0253d634 3299 entry = huge_ptep_get(src_pte);
1c59827d
HD
3300 ptepage = pte_page(entry);
3301 get_page(ptepage);
53f9263b 3302 page_dup_rmap(ptepage, true);
1c59827d 3303 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3304 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3305 }
cb900f41
KS
3306 spin_unlock(src_ptl);
3307 spin_unlock(dst_ptl);
63551ae0 3308 }
63551ae0 3309
e8569dd2
AS
3310 if (cow)
3311 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3312
3313 return ret;
63551ae0
DG
3314}
3315
24669e58
AK
3316void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3317 unsigned long start, unsigned long end,
3318 struct page *ref_page)
63551ae0
DG
3319{
3320 struct mm_struct *mm = vma->vm_mm;
3321 unsigned long address;
c7546f8f 3322 pte_t *ptep;
63551ae0 3323 pte_t pte;
cb900f41 3324 spinlock_t *ptl;
63551ae0 3325 struct page *page;
a5516438
AK
3326 struct hstate *h = hstate_vma(vma);
3327 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3328 const unsigned long mmun_start = start; /* For mmu_notifiers */
3329 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3330
63551ae0 3331 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3332 BUG_ON(start & ~huge_page_mask(h));
3333 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3334
07e32661
AK
3335 /*
3336 * This is a hugetlb vma, all the pte entries should point
3337 * to huge page.
3338 */
3339 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3340 tlb_start_vma(tlb, vma);
2ec74c3e 3341 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3342 address = start;
569f48b8 3343 for (; address < end; address += sz) {
7868a208 3344 ptep = huge_pte_offset(mm, address, sz);
4c887265 3345 if (!ptep)
c7546f8f
DG
3346 continue;
3347
cb900f41 3348 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3349 if (huge_pmd_unshare(mm, &address, ptep)) {
3350 spin_unlock(ptl);
3351 continue;
3352 }
39dde65c 3353
6629326b 3354 pte = huge_ptep_get(ptep);
31d49da5
AK
3355 if (huge_pte_none(pte)) {
3356 spin_unlock(ptl);
3357 continue;
3358 }
6629326b
HD
3359
3360 /*
9fbc1f63
NH
3361 * Migrating hugepage or HWPoisoned hugepage is already
3362 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3363 */
9fbc1f63 3364 if (unlikely(!pte_present(pte))) {
9386fac3 3365 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3366 spin_unlock(ptl);
3367 continue;
8c4894c6 3368 }
6629326b
HD
3369
3370 page = pte_page(pte);
04f2cbe3
MG
3371 /*
3372 * If a reference page is supplied, it is because a specific
3373 * page is being unmapped, not a range. Ensure the page we
3374 * are about to unmap is the actual page of interest.
3375 */
3376 if (ref_page) {
31d49da5
AK
3377 if (page != ref_page) {
3378 spin_unlock(ptl);
3379 continue;
3380 }
04f2cbe3
MG
3381 /*
3382 * Mark the VMA as having unmapped its page so that
3383 * future faults in this VMA will fail rather than
3384 * looking like data was lost
3385 */
3386 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3387 }
3388
c7546f8f 3389 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3390 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3391 if (huge_pte_dirty(pte))
6649a386 3392 set_page_dirty(page);
9e81130b 3393
5d317b2b 3394 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3395 page_remove_rmap(page, true);
31d49da5 3396
cb900f41 3397 spin_unlock(ptl);
e77b0852 3398 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3399 /*
3400 * Bail out after unmapping reference page if supplied
3401 */
3402 if (ref_page)
3403 break;
fe1668ae 3404 }
2ec74c3e 3405 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3406 tlb_end_vma(tlb, vma);
1da177e4 3407}
63551ae0 3408
d833352a
MG
3409void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3410 struct vm_area_struct *vma, unsigned long start,
3411 unsigned long end, struct page *ref_page)
3412{
3413 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3414
3415 /*
3416 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3417 * test will fail on a vma being torn down, and not grab a page table
3418 * on its way out. We're lucky that the flag has such an appropriate
3419 * name, and can in fact be safely cleared here. We could clear it
3420 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3421 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3422 * because in the context this is called, the VMA is about to be
c8c06efa 3423 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3424 */
3425 vma->vm_flags &= ~VM_MAYSHARE;
3426}
3427
502717f4 3428void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3429 unsigned long end, struct page *ref_page)
502717f4 3430{
24669e58
AK
3431 struct mm_struct *mm;
3432 struct mmu_gather tlb;
3433
3434 mm = vma->vm_mm;
3435
2b047252 3436 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3437 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3438 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3439}
3440
04f2cbe3
MG
3441/*
3442 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3443 * mappping it owns the reserve page for. The intention is to unmap the page
3444 * from other VMAs and let the children be SIGKILLed if they are faulting the
3445 * same region.
3446 */
2f4612af
DB
3447static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3448 struct page *page, unsigned long address)
04f2cbe3 3449{
7526674d 3450 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3451 struct vm_area_struct *iter_vma;
3452 struct address_space *mapping;
04f2cbe3
MG
3453 pgoff_t pgoff;
3454
3455 /*
3456 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3457 * from page cache lookup which is in HPAGE_SIZE units.
3458 */
7526674d 3459 address = address & huge_page_mask(h);
36e4f20a
MH
3460 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3461 vma->vm_pgoff;
93c76a3d 3462 mapping = vma->vm_file->f_mapping;
04f2cbe3 3463
4eb2b1dc
MG
3464 /*
3465 * Take the mapping lock for the duration of the table walk. As
3466 * this mapping should be shared between all the VMAs,
3467 * __unmap_hugepage_range() is called as the lock is already held
3468 */
83cde9e8 3469 i_mmap_lock_write(mapping);
6b2dbba8 3470 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3471 /* Do not unmap the current VMA */
3472 if (iter_vma == vma)
3473 continue;
3474
2f84a899
MG
3475 /*
3476 * Shared VMAs have their own reserves and do not affect
3477 * MAP_PRIVATE accounting but it is possible that a shared
3478 * VMA is using the same page so check and skip such VMAs.
3479 */
3480 if (iter_vma->vm_flags & VM_MAYSHARE)
3481 continue;
3482
04f2cbe3
MG
3483 /*
3484 * Unmap the page from other VMAs without their own reserves.
3485 * They get marked to be SIGKILLed if they fault in these
3486 * areas. This is because a future no-page fault on this VMA
3487 * could insert a zeroed page instead of the data existing
3488 * from the time of fork. This would look like data corruption
3489 */
3490 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3491 unmap_hugepage_range(iter_vma, address,
3492 address + huge_page_size(h), page);
04f2cbe3 3493 }
83cde9e8 3494 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3495}
3496
0fe6e20b
NH
3497/*
3498 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3499 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3500 * cannot race with other handlers or page migration.
3501 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3502 */
1e8f889b 3503static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3504 unsigned long address, pte_t *ptep,
3505 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3506{
3999f52e 3507 pte_t pte;
a5516438 3508 struct hstate *h = hstate_vma(vma);
1e8f889b 3509 struct page *old_page, *new_page;
ad4404a2 3510 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3511 unsigned long mmun_start; /* For mmu_notifiers */
3512 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3513
3999f52e 3514 pte = huge_ptep_get(ptep);
1e8f889b
DG
3515 old_page = pte_page(pte);
3516
04f2cbe3 3517retry_avoidcopy:
1e8f889b
DG
3518 /* If no-one else is actually using this page, avoid the copy
3519 * and just make the page writable */
37a2140d 3520 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3521 page_move_anon_rmap(old_page, vma);
1e8f889b 3522 set_huge_ptep_writable(vma, address, ptep);
83c54070 3523 return 0;
1e8f889b
DG
3524 }
3525
04f2cbe3
MG
3526 /*
3527 * If the process that created a MAP_PRIVATE mapping is about to
3528 * perform a COW due to a shared page count, attempt to satisfy
3529 * the allocation without using the existing reserves. The pagecache
3530 * page is used to determine if the reserve at this address was
3531 * consumed or not. If reserves were used, a partial faulted mapping
3532 * at the time of fork() could consume its reserves on COW instead
3533 * of the full address range.
3534 */
5944d011 3535 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3536 old_page != pagecache_page)
3537 outside_reserve = 1;
3538
09cbfeaf 3539 get_page(old_page);
b76c8cfb 3540
ad4404a2
DB
3541 /*
3542 * Drop page table lock as buddy allocator may be called. It will
3543 * be acquired again before returning to the caller, as expected.
3544 */
cb900f41 3545 spin_unlock(ptl);
04f2cbe3 3546 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3547
2fc39cec 3548 if (IS_ERR(new_page)) {
04f2cbe3
MG
3549 /*
3550 * If a process owning a MAP_PRIVATE mapping fails to COW,
3551 * it is due to references held by a child and an insufficient
3552 * huge page pool. To guarantee the original mappers
3553 * reliability, unmap the page from child processes. The child
3554 * may get SIGKILLed if it later faults.
3555 */
3556 if (outside_reserve) {
09cbfeaf 3557 put_page(old_page);
04f2cbe3 3558 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3559 unmap_ref_private(mm, vma, old_page, address);
3560 BUG_ON(huge_pte_none(pte));
3561 spin_lock(ptl);
7868a208
PA
3562 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3563 huge_page_size(h));
2f4612af
DB
3564 if (likely(ptep &&
3565 pte_same(huge_ptep_get(ptep), pte)))
3566 goto retry_avoidcopy;
3567 /*
3568 * race occurs while re-acquiring page table
3569 * lock, and our job is done.
3570 */
3571 return 0;
04f2cbe3
MG
3572 }
3573
ad4404a2
DB
3574 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3575 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3576 goto out_release_old;
1e8f889b
DG
3577 }
3578
0fe6e20b
NH
3579 /*
3580 * When the original hugepage is shared one, it does not have
3581 * anon_vma prepared.
3582 */
44e2aa93 3583 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3584 ret = VM_FAULT_OOM;
3585 goto out_release_all;
44e2aa93 3586 }
0fe6e20b 3587
47ad8475
AA
3588 copy_user_huge_page(new_page, old_page, address, vma,
3589 pages_per_huge_page(h));
0ed361de 3590 __SetPageUptodate(new_page);
bcc54222 3591 set_page_huge_active(new_page);
1e8f889b 3592
2ec74c3e
SG
3593 mmun_start = address & huge_page_mask(h);
3594 mmun_end = mmun_start + huge_page_size(h);
3595 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3596
b76c8cfb 3597 /*
cb900f41 3598 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3599 * before the page tables are altered
3600 */
cb900f41 3601 spin_lock(ptl);
7868a208
PA
3602 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3603 huge_page_size(h));
a9af0c5d 3604 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3605 ClearPagePrivate(new_page);
3606
1e8f889b 3607 /* Break COW */
8fe627ec 3608 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3609 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3610 set_huge_pte_at(mm, address, ptep,
3611 make_huge_pte(vma, new_page, 1));
d281ee61 3612 page_remove_rmap(old_page, true);
cd67f0d2 3613 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3614 /* Make the old page be freed below */
3615 new_page = old_page;
3616 }
cb900f41 3617 spin_unlock(ptl);
2ec74c3e 3618 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3619out_release_all:
96b96a96 3620 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3621 put_page(new_page);
ad4404a2 3622out_release_old:
09cbfeaf 3623 put_page(old_page);
8312034f 3624
ad4404a2
DB
3625 spin_lock(ptl); /* Caller expects lock to be held */
3626 return ret;
1e8f889b
DG
3627}
3628
04f2cbe3 3629/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3630static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3631 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3632{
3633 struct address_space *mapping;
e7c4b0bf 3634 pgoff_t idx;
04f2cbe3
MG
3635
3636 mapping = vma->vm_file->f_mapping;
a5516438 3637 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3638
3639 return find_lock_page(mapping, idx);
3640}
3641
3ae77f43
HD
3642/*
3643 * Return whether there is a pagecache page to back given address within VMA.
3644 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3645 */
3646static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3647 struct vm_area_struct *vma, unsigned long address)
3648{
3649 struct address_space *mapping;
3650 pgoff_t idx;
3651 struct page *page;
3652
3653 mapping = vma->vm_file->f_mapping;
3654 idx = vma_hugecache_offset(h, vma, address);
3655
3656 page = find_get_page(mapping, idx);
3657 if (page)
3658 put_page(page);
3659 return page != NULL;
3660}
3661
ab76ad54
MK
3662int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3663 pgoff_t idx)
3664{
3665 struct inode *inode = mapping->host;
3666 struct hstate *h = hstate_inode(inode);
3667 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3668
3669 if (err)
3670 return err;
3671 ClearPagePrivate(page);
3672
3673 spin_lock(&inode->i_lock);
3674 inode->i_blocks += blocks_per_huge_page(h);
3675 spin_unlock(&inode->i_lock);
3676 return 0;
3677}
3678
a1ed3dda 3679static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3680 struct address_space *mapping, pgoff_t idx,
3681 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3682{
a5516438 3683 struct hstate *h = hstate_vma(vma);
ac9b9c66 3684 int ret = VM_FAULT_SIGBUS;
409eb8c2 3685 int anon_rmap = 0;
4c887265 3686 unsigned long size;
4c887265 3687 struct page *page;
1e8f889b 3688 pte_t new_pte;
cb900f41 3689 spinlock_t *ptl;
4c887265 3690
04f2cbe3
MG
3691 /*
3692 * Currently, we are forced to kill the process in the event the
3693 * original mapper has unmapped pages from the child due to a failed
25985edc 3694 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3695 */
3696 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3697 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3698 current->pid);
04f2cbe3
MG
3699 return ret;
3700 }
3701
4c887265
AL
3702 /*
3703 * Use page lock to guard against racing truncation
3704 * before we get page_table_lock.
3705 */
6bda666a
CL
3706retry:
3707 page = find_lock_page(mapping, idx);
3708 if (!page) {
a5516438 3709 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3710 if (idx >= size)
3711 goto out;
1a1aad8a
MK
3712
3713 /*
3714 * Check for page in userfault range
3715 */
3716 if (userfaultfd_missing(vma)) {
3717 u32 hash;
3718 struct vm_fault vmf = {
3719 .vma = vma,
3720 .address = address,
3721 .flags = flags,
3722 /*
3723 * Hard to debug if it ends up being
3724 * used by a callee that assumes
3725 * something about the other
3726 * uninitialized fields... same as in
3727 * memory.c
3728 */
3729 };
3730
3731 /*
3732 * hugetlb_fault_mutex must be dropped before
3733 * handling userfault. Reacquire after handling
3734 * fault to make calling code simpler.
3735 */
3736 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3737 idx, address);
3738 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3739 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3740 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3741 goto out;
3742 }
3743
04f2cbe3 3744 page = alloc_huge_page(vma, address, 0);
2fc39cec 3745 if (IS_ERR(page)) {
76dcee75
AK
3746 ret = PTR_ERR(page);
3747 if (ret == -ENOMEM)
3748 ret = VM_FAULT_OOM;
3749 else
3750 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3751 goto out;
3752 }
47ad8475 3753 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3754 __SetPageUptodate(page);
bcc54222 3755 set_page_huge_active(page);
ac9b9c66 3756
f83a275d 3757 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3758 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3759 if (err) {
3760 put_page(page);
6bda666a
CL
3761 if (err == -EEXIST)
3762 goto retry;
3763 goto out;
3764 }
23be7468 3765 } else {
6bda666a 3766 lock_page(page);
0fe6e20b
NH
3767 if (unlikely(anon_vma_prepare(vma))) {
3768 ret = VM_FAULT_OOM;
3769 goto backout_unlocked;
3770 }
409eb8c2 3771 anon_rmap = 1;
23be7468 3772 }
0fe6e20b 3773 } else {
998b4382
NH
3774 /*
3775 * If memory error occurs between mmap() and fault, some process
3776 * don't have hwpoisoned swap entry for errored virtual address.
3777 * So we need to block hugepage fault by PG_hwpoison bit check.
3778 */
3779 if (unlikely(PageHWPoison(page))) {
32f84528 3780 ret = VM_FAULT_HWPOISON |
972dc4de 3781 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3782 goto backout_unlocked;
3783 }
6bda666a 3784 }
1e8f889b 3785
57303d80
AW
3786 /*
3787 * If we are going to COW a private mapping later, we examine the
3788 * pending reservations for this page now. This will ensure that
3789 * any allocations necessary to record that reservation occur outside
3790 * the spinlock.
3791 */
5e911373 3792 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3793 if (vma_needs_reservation(h, vma, address) < 0) {
3794 ret = VM_FAULT_OOM;
3795 goto backout_unlocked;
3796 }
5e911373 3797 /* Just decrements count, does not deallocate */
feba16e2 3798 vma_end_reservation(h, vma, address);
5e911373 3799 }
57303d80 3800
8bea8052 3801 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3802 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3803 if (idx >= size)
3804 goto backout;
3805
83c54070 3806 ret = 0;
7f2e9525 3807 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3808 goto backout;
3809
07443a85
JK
3810 if (anon_rmap) {
3811 ClearPagePrivate(page);
409eb8c2 3812 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3813 } else
53f9263b 3814 page_dup_rmap(page, true);
1e8f889b
DG
3815 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3816 && (vma->vm_flags & VM_SHARED)));
3817 set_huge_pte_at(mm, address, ptep, new_pte);
3818
5d317b2b 3819 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3820 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3821 /* Optimization, do the COW without a second fault */
3999f52e 3822 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3823 }
3824
cb900f41 3825 spin_unlock(ptl);
4c887265
AL
3826 unlock_page(page);
3827out:
ac9b9c66 3828 return ret;
4c887265
AL
3829
3830backout:
cb900f41 3831 spin_unlock(ptl);
2b26736c 3832backout_unlocked:
4c887265 3833 unlock_page(page);
96b96a96 3834 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3835 put_page(page);
3836 goto out;
ac9b9c66
HD
3837}
3838
8382d914 3839#ifdef CONFIG_SMP
c672c7f2 3840u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3841 struct vm_area_struct *vma,
3842 struct address_space *mapping,
3843 pgoff_t idx, unsigned long address)
3844{
3845 unsigned long key[2];
3846 u32 hash;
3847
3848 if (vma->vm_flags & VM_SHARED) {
3849 key[0] = (unsigned long) mapping;
3850 key[1] = idx;
3851 } else {
3852 key[0] = (unsigned long) mm;
3853 key[1] = address >> huge_page_shift(h);
3854 }
3855
3856 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3857
3858 return hash & (num_fault_mutexes - 1);
3859}
3860#else
3861/*
3862 * For uniprocesor systems we always use a single mutex, so just
3863 * return 0 and avoid the hashing overhead.
3864 */
c672c7f2 3865u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3866 struct vm_area_struct *vma,
3867 struct address_space *mapping,
3868 pgoff_t idx, unsigned long address)
3869{
3870 return 0;
3871}
3872#endif
3873
86e5216f 3874int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3875 unsigned long address, unsigned int flags)
86e5216f 3876{
8382d914 3877 pte_t *ptep, entry;
cb900f41 3878 spinlock_t *ptl;
1e8f889b 3879 int ret;
8382d914
DB
3880 u32 hash;
3881 pgoff_t idx;
0fe6e20b 3882 struct page *page = NULL;
57303d80 3883 struct page *pagecache_page = NULL;
a5516438 3884 struct hstate *h = hstate_vma(vma);
8382d914 3885 struct address_space *mapping;
0f792cf9 3886 int need_wait_lock = 0;
86e5216f 3887
1e16a539
KH
3888 address &= huge_page_mask(h);
3889
7868a208 3890 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3891 if (ptep) {
3892 entry = huge_ptep_get(ptep);
290408d4 3893 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3894 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3895 return 0;
3896 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3897 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3898 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3899 } else {
3900 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3901 if (!ptep)
3902 return VM_FAULT_OOM;
fd6a03ed
NH
3903 }
3904
8382d914
DB
3905 mapping = vma->vm_file->f_mapping;
3906 idx = vma_hugecache_offset(h, vma, address);
3907
3935baa9
DG
3908 /*
3909 * Serialize hugepage allocation and instantiation, so that we don't
3910 * get spurious allocation failures if two CPUs race to instantiate
3911 * the same page in the page cache.
3912 */
c672c7f2
MK
3913 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3914 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3915
7f2e9525
GS
3916 entry = huge_ptep_get(ptep);
3917 if (huge_pte_none(entry)) {
8382d914 3918 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3919 goto out_mutex;
3935baa9 3920 }
86e5216f 3921
83c54070 3922 ret = 0;
1e8f889b 3923
0f792cf9
NH
3924 /*
3925 * entry could be a migration/hwpoison entry at this point, so this
3926 * check prevents the kernel from going below assuming that we have
3927 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3928 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3929 * handle it.
3930 */
3931 if (!pte_present(entry))
3932 goto out_mutex;
3933
57303d80
AW
3934 /*
3935 * If we are going to COW the mapping later, we examine the pending
3936 * reservations for this page now. This will ensure that any
3937 * allocations necessary to record that reservation occur outside the
3938 * spinlock. For private mappings, we also lookup the pagecache
3939 * page now as it is used to determine if a reservation has been
3940 * consumed.
3941 */
106c992a 3942 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3943 if (vma_needs_reservation(h, vma, address) < 0) {
3944 ret = VM_FAULT_OOM;
b4d1d99f 3945 goto out_mutex;
2b26736c 3946 }
5e911373 3947 /* Just decrements count, does not deallocate */
feba16e2 3948 vma_end_reservation(h, vma, address);
57303d80 3949
f83a275d 3950 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3951 pagecache_page = hugetlbfs_pagecache_page(h,
3952 vma, address);
3953 }
3954
0f792cf9
NH
3955 ptl = huge_pte_lock(h, mm, ptep);
3956
3957 /* Check for a racing update before calling hugetlb_cow */
3958 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3959 goto out_ptl;
3960
56c9cfb1
NH
3961 /*
3962 * hugetlb_cow() requires page locks of pte_page(entry) and
3963 * pagecache_page, so here we need take the former one
3964 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3965 */
3966 page = pte_page(entry);
3967 if (page != pagecache_page)
0f792cf9
NH
3968 if (!trylock_page(page)) {
3969 need_wait_lock = 1;
3970 goto out_ptl;
3971 }
b4d1d99f 3972
0f792cf9 3973 get_page(page);
b4d1d99f 3974
788c7df4 3975 if (flags & FAULT_FLAG_WRITE) {
106c992a 3976 if (!huge_pte_write(entry)) {
3999f52e
AK
3977 ret = hugetlb_cow(mm, vma, address, ptep,
3978 pagecache_page, ptl);
0f792cf9 3979 goto out_put_page;
b4d1d99f 3980 }
106c992a 3981 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3982 }
3983 entry = pte_mkyoung(entry);
788c7df4
HD
3984 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3985 flags & FAULT_FLAG_WRITE))
4b3073e1 3986 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3987out_put_page:
3988 if (page != pagecache_page)
3989 unlock_page(page);
3990 put_page(page);
cb900f41
KS
3991out_ptl:
3992 spin_unlock(ptl);
57303d80
AW
3993
3994 if (pagecache_page) {
3995 unlock_page(pagecache_page);
3996 put_page(pagecache_page);
3997 }
b4d1d99f 3998out_mutex:
c672c7f2 3999 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4000 /*
4001 * Generally it's safe to hold refcount during waiting page lock. But
4002 * here we just wait to defer the next page fault to avoid busy loop and
4003 * the page is not used after unlocked before returning from the current
4004 * page fault. So we are safe from accessing freed page, even if we wait
4005 * here without taking refcount.
4006 */
4007 if (need_wait_lock)
4008 wait_on_page_locked(page);
1e8f889b 4009 return ret;
86e5216f
AL
4010}
4011
8fb5debc
MK
4012/*
4013 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4014 * modifications for huge pages.
4015 */
4016int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4017 pte_t *dst_pte,
4018 struct vm_area_struct *dst_vma,
4019 unsigned long dst_addr,
4020 unsigned long src_addr,
4021 struct page **pagep)
4022{
1c9e8def 4023 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4024 struct hstate *h = hstate_vma(dst_vma);
4025 pte_t _dst_pte;
4026 spinlock_t *ptl;
4027 int ret;
4028 struct page *page;
4029
4030 if (!*pagep) {
4031 ret = -ENOMEM;
4032 page = alloc_huge_page(dst_vma, dst_addr, 0);
4033 if (IS_ERR(page))
4034 goto out;
4035
4036 ret = copy_huge_page_from_user(page,
4037 (const void __user *) src_addr,
810a56b9 4038 pages_per_huge_page(h), false);
8fb5debc
MK
4039
4040 /* fallback to copy_from_user outside mmap_sem */
4041 if (unlikely(ret)) {
4042 ret = -EFAULT;
4043 *pagep = page;
4044 /* don't free the page */
4045 goto out;
4046 }
4047 } else {
4048 page = *pagep;
4049 *pagep = NULL;
4050 }
4051
4052 /*
4053 * The memory barrier inside __SetPageUptodate makes sure that
4054 * preceding stores to the page contents become visible before
4055 * the set_pte_at() write.
4056 */
4057 __SetPageUptodate(page);
4058 set_page_huge_active(page);
4059
1c9e8def
MK
4060 /*
4061 * If shared, add to page cache
4062 */
4063 if (vm_shared) {
4064 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4065 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4066
4067 ret = huge_add_to_page_cache(page, mapping, idx);
4068 if (ret)
4069 goto out_release_nounlock;
4070 }
4071
8fb5debc
MK
4072 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4073 spin_lock(ptl);
4074
4075 ret = -EEXIST;
4076 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4077 goto out_release_unlock;
4078
1c9e8def
MK
4079 if (vm_shared) {
4080 page_dup_rmap(page, true);
4081 } else {
4082 ClearPagePrivate(page);
4083 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4084 }
8fb5debc
MK
4085
4086 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4087 if (dst_vma->vm_flags & VM_WRITE)
4088 _dst_pte = huge_pte_mkdirty(_dst_pte);
4089 _dst_pte = pte_mkyoung(_dst_pte);
4090
4091 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4092
4093 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4094 dst_vma->vm_flags & VM_WRITE);
4095 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4096
4097 /* No need to invalidate - it was non-present before */
4098 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4099
4100 spin_unlock(ptl);
1c9e8def
MK
4101 if (vm_shared)
4102 unlock_page(page);
8fb5debc
MK
4103 ret = 0;
4104out:
4105 return ret;
4106out_release_unlock:
4107 spin_unlock(ptl);
1c9e8def
MK
4108out_release_nounlock:
4109 if (vm_shared)
4110 unlock_page(page);
8fb5debc
MK
4111 put_page(page);
4112 goto out;
4113}
4114
28a35716
ML
4115long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4116 struct page **pages, struct vm_area_struct **vmas,
4117 unsigned long *position, unsigned long *nr_pages,
87ffc118 4118 long i, unsigned int flags, int *nonblocking)
63551ae0 4119{
d5d4b0aa
KC
4120 unsigned long pfn_offset;
4121 unsigned long vaddr = *position;
28a35716 4122 unsigned long remainder = *nr_pages;
a5516438 4123 struct hstate *h = hstate_vma(vma);
63551ae0 4124
63551ae0 4125 while (vaddr < vma->vm_end && remainder) {
4c887265 4126 pte_t *pte;
cb900f41 4127 spinlock_t *ptl = NULL;
2a15efc9 4128 int absent;
4c887265 4129 struct page *page;
63551ae0 4130
02057967
DR
4131 /*
4132 * If we have a pending SIGKILL, don't keep faulting pages and
4133 * potentially allocating memory.
4134 */
4135 if (unlikely(fatal_signal_pending(current))) {
4136 remainder = 0;
4137 break;
4138 }
4139
4c887265
AL
4140 /*
4141 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4142 * each hugepage. We have to make sure we get the
4c887265 4143 * first, for the page indexing below to work.
cb900f41
KS
4144 *
4145 * Note that page table lock is not held when pte is null.
4c887265 4146 */
7868a208
PA
4147 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4148 huge_page_size(h));
cb900f41
KS
4149 if (pte)
4150 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4151 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4152
4153 /*
4154 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4155 * an error where there's an empty slot with no huge pagecache
4156 * to back it. This way, we avoid allocating a hugepage, and
4157 * the sparse dumpfile avoids allocating disk blocks, but its
4158 * huge holes still show up with zeroes where they need to be.
2a15efc9 4159 */
3ae77f43
HD
4160 if (absent && (flags & FOLL_DUMP) &&
4161 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4162 if (pte)
4163 spin_unlock(ptl);
2a15efc9
HD
4164 remainder = 0;
4165 break;
4166 }
63551ae0 4167
9cc3a5bd
NH
4168 /*
4169 * We need call hugetlb_fault for both hugepages under migration
4170 * (in which case hugetlb_fault waits for the migration,) and
4171 * hwpoisoned hugepages (in which case we need to prevent the
4172 * caller from accessing to them.) In order to do this, we use
4173 * here is_swap_pte instead of is_hugetlb_entry_migration and
4174 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4175 * both cases, and because we can't follow correct pages
4176 * directly from any kind of swap entries.
4177 */
4178 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4179 ((flags & FOLL_WRITE) &&
4180 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4181 int ret;
87ffc118 4182 unsigned int fault_flags = 0;
63551ae0 4183
cb900f41
KS
4184 if (pte)
4185 spin_unlock(ptl);
87ffc118
AA
4186 if (flags & FOLL_WRITE)
4187 fault_flags |= FAULT_FLAG_WRITE;
4188 if (nonblocking)
4189 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4190 if (flags & FOLL_NOWAIT)
4191 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4192 FAULT_FLAG_RETRY_NOWAIT;
4193 if (flags & FOLL_TRIED) {
4194 VM_WARN_ON_ONCE(fault_flags &
4195 FAULT_FLAG_ALLOW_RETRY);
4196 fault_flags |= FAULT_FLAG_TRIED;
4197 }
4198 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4199 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
4200 int err = vm_fault_to_errno(ret, flags);
4201
4202 if (err)
4203 return err;
4204
87ffc118
AA
4205 remainder = 0;
4206 break;
4207 }
4208 if (ret & VM_FAULT_RETRY) {
4209 if (nonblocking)
4210 *nonblocking = 0;
4211 *nr_pages = 0;
4212 /*
4213 * VM_FAULT_RETRY must not return an
4214 * error, it will return zero
4215 * instead.
4216 *
4217 * No need to update "position" as the
4218 * caller will not check it after
4219 * *nr_pages is set to 0.
4220 */
4221 return i;
4222 }
4223 continue;
4c887265
AL
4224 }
4225
a5516438 4226 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4227 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4228same_page:
d6692183 4229 if (pages) {
2a15efc9 4230 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4231 get_page(pages[i]);
d6692183 4232 }
63551ae0
DG
4233
4234 if (vmas)
4235 vmas[i] = vma;
4236
4237 vaddr += PAGE_SIZE;
d5d4b0aa 4238 ++pfn_offset;
63551ae0
DG
4239 --remainder;
4240 ++i;
d5d4b0aa 4241 if (vaddr < vma->vm_end && remainder &&
a5516438 4242 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4243 /*
4244 * We use pfn_offset to avoid touching the pageframes
4245 * of this compound page.
4246 */
4247 goto same_page;
4248 }
cb900f41 4249 spin_unlock(ptl);
63551ae0 4250 }
28a35716 4251 *nr_pages = remainder;
87ffc118
AA
4252 /*
4253 * setting position is actually required only if remainder is
4254 * not zero but it's faster not to add a "if (remainder)"
4255 * branch.
4256 */
63551ae0
DG
4257 *position = vaddr;
4258
2a15efc9 4259 return i ? i : -EFAULT;
63551ae0 4260}
8f860591 4261
5491ae7b
AK
4262#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4263/*
4264 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4265 * implement this.
4266 */
4267#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4268#endif
4269
7da4d641 4270unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4271 unsigned long address, unsigned long end, pgprot_t newprot)
4272{
4273 struct mm_struct *mm = vma->vm_mm;
4274 unsigned long start = address;
4275 pte_t *ptep;
4276 pte_t pte;
a5516438 4277 struct hstate *h = hstate_vma(vma);
7da4d641 4278 unsigned long pages = 0;
8f860591
ZY
4279
4280 BUG_ON(address >= end);
4281 flush_cache_range(vma, address, end);
4282
a5338093 4283 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4284 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4285 for (; address < end; address += huge_page_size(h)) {
cb900f41 4286 spinlock_t *ptl;
7868a208 4287 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4288 if (!ptep)
4289 continue;
cb900f41 4290 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4291 if (huge_pmd_unshare(mm, &address, ptep)) {
4292 pages++;
cb900f41 4293 spin_unlock(ptl);
39dde65c 4294 continue;
7da4d641 4295 }
a8bda28d
NH
4296 pte = huge_ptep_get(ptep);
4297 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4298 spin_unlock(ptl);
4299 continue;
4300 }
4301 if (unlikely(is_hugetlb_entry_migration(pte))) {
4302 swp_entry_t entry = pte_to_swp_entry(pte);
4303
4304 if (is_write_migration_entry(entry)) {
4305 pte_t newpte;
4306
4307 make_migration_entry_read(&entry);
4308 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4309 set_huge_swap_pte_at(mm, address, ptep,
4310 newpte, huge_page_size(h));
a8bda28d
NH
4311 pages++;
4312 }
4313 spin_unlock(ptl);
4314 continue;
4315 }
4316 if (!huge_pte_none(pte)) {
8f860591 4317 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4318 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4319 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4320 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4321 pages++;
8f860591 4322 }
cb900f41 4323 spin_unlock(ptl);
8f860591 4324 }
d833352a 4325 /*
c8c06efa 4326 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4327 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4328 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4329 * and that page table be reused and filled with junk.
4330 */
5491ae7b 4331 flush_hugetlb_tlb_range(vma, start, end);
34ee645e 4332 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 4333 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4334 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4335
4336 return pages << h->order;
8f860591
ZY
4337}
4338
a1e78772
MG
4339int hugetlb_reserve_pages(struct inode *inode,
4340 long from, long to,
5a6fe125 4341 struct vm_area_struct *vma,
ca16d140 4342 vm_flags_t vm_flags)
e4e574b7 4343{
17c9d12e 4344 long ret, chg;
a5516438 4345 struct hstate *h = hstate_inode(inode);
90481622 4346 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4347 struct resv_map *resv_map;
1c5ecae3 4348 long gbl_reserve;
e4e574b7 4349
17c9d12e
MG
4350 /*
4351 * Only apply hugepage reservation if asked. At fault time, an
4352 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4353 * without using reserves
17c9d12e 4354 */
ca16d140 4355 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4356 return 0;
4357
a1e78772
MG
4358 /*
4359 * Shared mappings base their reservation on the number of pages that
4360 * are already allocated on behalf of the file. Private mappings need
4361 * to reserve the full area even if read-only as mprotect() may be
4362 * called to make the mapping read-write. Assume !vma is a shm mapping
4363 */
9119a41e 4364 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4365 resv_map = inode_resv_map(inode);
9119a41e 4366
1406ec9b 4367 chg = region_chg(resv_map, from, to);
9119a41e
JK
4368
4369 } else {
4370 resv_map = resv_map_alloc();
17c9d12e
MG
4371 if (!resv_map)
4372 return -ENOMEM;
4373
a1e78772 4374 chg = to - from;
84afd99b 4375
17c9d12e
MG
4376 set_vma_resv_map(vma, resv_map);
4377 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4378 }
4379
c50ac050
DH
4380 if (chg < 0) {
4381 ret = chg;
4382 goto out_err;
4383 }
8a630112 4384
1c5ecae3
MK
4385 /*
4386 * There must be enough pages in the subpool for the mapping. If
4387 * the subpool has a minimum size, there may be some global
4388 * reservations already in place (gbl_reserve).
4389 */
4390 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4391 if (gbl_reserve < 0) {
c50ac050
DH
4392 ret = -ENOSPC;
4393 goto out_err;
4394 }
5a6fe125
MG
4395
4396 /*
17c9d12e 4397 * Check enough hugepages are available for the reservation.
90481622 4398 * Hand the pages back to the subpool if there are not
5a6fe125 4399 */
1c5ecae3 4400 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4401 if (ret < 0) {
1c5ecae3
MK
4402 /* put back original number of pages, chg */
4403 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4404 goto out_err;
68842c9b 4405 }
17c9d12e
MG
4406
4407 /*
4408 * Account for the reservations made. Shared mappings record regions
4409 * that have reservations as they are shared by multiple VMAs.
4410 * When the last VMA disappears, the region map says how much
4411 * the reservation was and the page cache tells how much of
4412 * the reservation was consumed. Private mappings are per-VMA and
4413 * only the consumed reservations are tracked. When the VMA
4414 * disappears, the original reservation is the VMA size and the
4415 * consumed reservations are stored in the map. Hence, nothing
4416 * else has to be done for private mappings here
4417 */
33039678
MK
4418 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4419 long add = region_add(resv_map, from, to);
4420
4421 if (unlikely(chg > add)) {
4422 /*
4423 * pages in this range were added to the reserve
4424 * map between region_chg and region_add. This
4425 * indicates a race with alloc_huge_page. Adjust
4426 * the subpool and reserve counts modified above
4427 * based on the difference.
4428 */
4429 long rsv_adjust;
4430
4431 rsv_adjust = hugepage_subpool_put_pages(spool,
4432 chg - add);
4433 hugetlb_acct_memory(h, -rsv_adjust);
4434 }
4435 }
a43a8c39 4436 return 0;
c50ac050 4437out_err:
5e911373 4438 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4439 /* Don't call region_abort if region_chg failed */
4440 if (chg >= 0)
4441 region_abort(resv_map, from, to);
f031dd27
JK
4442 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4443 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4444 return ret;
a43a8c39
KC
4445}
4446
b5cec28d
MK
4447long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4448 long freed)
a43a8c39 4449{
a5516438 4450 struct hstate *h = hstate_inode(inode);
4e35f483 4451 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4452 long chg = 0;
90481622 4453 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4454 long gbl_reserve;
45c682a6 4455
b5cec28d
MK
4456 if (resv_map) {
4457 chg = region_del(resv_map, start, end);
4458 /*
4459 * region_del() can fail in the rare case where a region
4460 * must be split and another region descriptor can not be
4461 * allocated. If end == LONG_MAX, it will not fail.
4462 */
4463 if (chg < 0)
4464 return chg;
4465 }
4466
45c682a6 4467 spin_lock(&inode->i_lock);
e4c6f8be 4468 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4469 spin_unlock(&inode->i_lock);
4470
1c5ecae3
MK
4471 /*
4472 * If the subpool has a minimum size, the number of global
4473 * reservations to be released may be adjusted.
4474 */
4475 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4476 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4477
4478 return 0;
a43a8c39 4479}
93f70f90 4480
3212b535
SC
4481#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4482static unsigned long page_table_shareable(struct vm_area_struct *svma,
4483 struct vm_area_struct *vma,
4484 unsigned long addr, pgoff_t idx)
4485{
4486 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4487 svma->vm_start;
4488 unsigned long sbase = saddr & PUD_MASK;
4489 unsigned long s_end = sbase + PUD_SIZE;
4490
4491 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4492 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4493 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4494
4495 /*
4496 * match the virtual addresses, permission and the alignment of the
4497 * page table page.
4498 */
4499 if (pmd_index(addr) != pmd_index(saddr) ||
4500 vm_flags != svm_flags ||
4501 sbase < svma->vm_start || svma->vm_end < s_end)
4502 return 0;
4503
4504 return saddr;
4505}
4506
31aafb45 4507static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4508{
4509 unsigned long base = addr & PUD_MASK;
4510 unsigned long end = base + PUD_SIZE;
4511
4512 /*
4513 * check on proper vm_flags and page table alignment
4514 */
4515 if (vma->vm_flags & VM_MAYSHARE &&
4516 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4517 return true;
4518 return false;
3212b535
SC
4519}
4520
4521/*
4522 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4523 * and returns the corresponding pte. While this is not necessary for the
4524 * !shared pmd case because we can allocate the pmd later as well, it makes the
4525 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4526 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4527 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4528 * bad pmd for sharing.
4529 */
4530pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4531{
4532 struct vm_area_struct *vma = find_vma(mm, addr);
4533 struct address_space *mapping = vma->vm_file->f_mapping;
4534 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4535 vma->vm_pgoff;
4536 struct vm_area_struct *svma;
4537 unsigned long saddr;
4538 pte_t *spte = NULL;
4539 pte_t *pte;
cb900f41 4540 spinlock_t *ptl;
3212b535
SC
4541
4542 if (!vma_shareable(vma, addr))
4543 return (pte_t *)pmd_alloc(mm, pud, addr);
4544
83cde9e8 4545 i_mmap_lock_write(mapping);
3212b535
SC
4546 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4547 if (svma == vma)
4548 continue;
4549
4550 saddr = page_table_shareable(svma, vma, addr, idx);
4551 if (saddr) {
7868a208
PA
4552 spte = huge_pte_offset(svma->vm_mm, saddr,
4553 vma_mmu_pagesize(svma));
3212b535
SC
4554 if (spte) {
4555 get_page(virt_to_page(spte));
4556 break;
4557 }
4558 }
4559 }
4560
4561 if (!spte)
4562 goto out;
4563
8bea8052 4564 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4565 if (pud_none(*pud)) {
3212b535
SC
4566 pud_populate(mm, pud,
4567 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4568 mm_inc_nr_pmds(mm);
dc6c9a35 4569 } else {
3212b535 4570 put_page(virt_to_page(spte));
dc6c9a35 4571 }
cb900f41 4572 spin_unlock(ptl);
3212b535
SC
4573out:
4574 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4575 i_mmap_unlock_write(mapping);
3212b535
SC
4576 return pte;
4577}
4578
4579/*
4580 * unmap huge page backed by shared pte.
4581 *
4582 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4583 * indicated by page_count > 1, unmap is achieved by clearing pud and
4584 * decrementing the ref count. If count == 1, the pte page is not shared.
4585 *
cb900f41 4586 * called with page table lock held.
3212b535
SC
4587 *
4588 * returns: 1 successfully unmapped a shared pte page
4589 * 0 the underlying pte page is not shared, or it is the last user
4590 */
4591int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4592{
4593 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4594 p4d_t *p4d = p4d_offset(pgd, *addr);
4595 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4596
4597 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4598 if (page_count(virt_to_page(ptep)) == 1)
4599 return 0;
4600
4601 pud_clear(pud);
4602 put_page(virt_to_page(ptep));
dc6c9a35 4603 mm_dec_nr_pmds(mm);
3212b535
SC
4604 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4605 return 1;
4606}
9e5fc74c
SC
4607#define want_pmd_share() (1)
4608#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4609pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4610{
4611 return NULL;
4612}
e81f2d22
ZZ
4613
4614int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4615{
4616 return 0;
4617}
9e5fc74c 4618#define want_pmd_share() (0)
3212b535
SC
4619#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4620
9e5fc74c
SC
4621#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4622pte_t *huge_pte_alloc(struct mm_struct *mm,
4623 unsigned long addr, unsigned long sz)
4624{
4625 pgd_t *pgd;
c2febafc 4626 p4d_t *p4d;
9e5fc74c
SC
4627 pud_t *pud;
4628 pte_t *pte = NULL;
4629
4630 pgd = pgd_offset(mm, addr);
c2febafc
KS
4631 p4d = p4d_offset(pgd, addr);
4632 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4633 if (pud) {
4634 if (sz == PUD_SIZE) {
4635 pte = (pte_t *)pud;
4636 } else {
4637 BUG_ON(sz != PMD_SIZE);
4638 if (want_pmd_share() && pud_none(*pud))
4639 pte = huge_pmd_share(mm, addr, pud);
4640 else
4641 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4642 }
4643 }
4e666314 4644 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4645
4646 return pte;
4647}
4648
7868a208
PA
4649pte_t *huge_pte_offset(struct mm_struct *mm,
4650 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4651{
4652 pgd_t *pgd;
c2febafc 4653 p4d_t *p4d;
9e5fc74c 4654 pud_t *pud;
c2febafc 4655 pmd_t *pmd;
9e5fc74c
SC
4656
4657 pgd = pgd_offset(mm, addr);
c2febafc
KS
4658 if (!pgd_present(*pgd))
4659 return NULL;
4660 p4d = p4d_offset(pgd, addr);
4661 if (!p4d_present(*p4d))
4662 return NULL;
4663 pud = pud_offset(p4d, addr);
4664 if (!pud_present(*pud))
4665 return NULL;
4666 if (pud_huge(*pud))
4667 return (pte_t *)pud;
4668 pmd = pmd_offset(pud, addr);
9e5fc74c
SC
4669 return (pte_t *) pmd;
4670}
4671
61f77eda
NH
4672#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4673
4674/*
4675 * These functions are overwritable if your architecture needs its own
4676 * behavior.
4677 */
4678struct page * __weak
4679follow_huge_addr(struct mm_struct *mm, unsigned long address,
4680 int write)
4681{
4682 return ERR_PTR(-EINVAL);
4683}
4684
4dc71451
AK
4685struct page * __weak
4686follow_huge_pd(struct vm_area_struct *vma,
4687 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4688{
4689 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4690 return NULL;
4691}
4692
61f77eda 4693struct page * __weak
9e5fc74c 4694follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4695 pmd_t *pmd, int flags)
9e5fc74c 4696{
e66f17ff
NH
4697 struct page *page = NULL;
4698 spinlock_t *ptl;
c9d398fa 4699 pte_t pte;
e66f17ff
NH
4700retry:
4701 ptl = pmd_lockptr(mm, pmd);
4702 spin_lock(ptl);
4703 /*
4704 * make sure that the address range covered by this pmd is not
4705 * unmapped from other threads.
4706 */
4707 if (!pmd_huge(*pmd))
4708 goto out;
c9d398fa
NH
4709 pte = huge_ptep_get((pte_t *)pmd);
4710 if (pte_present(pte)) {
97534127 4711 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4712 if (flags & FOLL_GET)
4713 get_page(page);
4714 } else {
c9d398fa 4715 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4716 spin_unlock(ptl);
4717 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4718 goto retry;
4719 }
4720 /*
4721 * hwpoisoned entry is treated as no_page_table in
4722 * follow_page_mask().
4723 */
4724 }
4725out:
4726 spin_unlock(ptl);
9e5fc74c
SC
4727 return page;
4728}
4729
61f77eda 4730struct page * __weak
9e5fc74c 4731follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4732 pud_t *pud, int flags)
9e5fc74c 4733{
e66f17ff
NH
4734 if (flags & FOLL_GET)
4735 return NULL;
9e5fc74c 4736
e66f17ff 4737 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4738}
4739
faaa5b62
AK
4740struct page * __weak
4741follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4742{
4743 if (flags & FOLL_GET)
4744 return NULL;
4745
4746 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4747}
4748
31caf665
NH
4749bool isolate_huge_page(struct page *page, struct list_head *list)
4750{
bcc54222
NH
4751 bool ret = true;
4752
309381fe 4753 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4754 spin_lock(&hugetlb_lock);
bcc54222
NH
4755 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4756 ret = false;
4757 goto unlock;
4758 }
4759 clear_page_huge_active(page);
31caf665 4760 list_move_tail(&page->lru, list);
bcc54222 4761unlock:
31caf665 4762 spin_unlock(&hugetlb_lock);
bcc54222 4763 return ret;
31caf665
NH
4764}
4765
4766void putback_active_hugepage(struct page *page)
4767{
309381fe 4768 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4769 spin_lock(&hugetlb_lock);
bcc54222 4770 set_page_huge_active(page);
31caf665
NH
4771 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4772 spin_unlock(&hugetlb_lock);
4773 put_page(page);
4774}