]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/hugetlb.c
bpf: Wrap aux data inside bpf_sanitize_info container
[mirror_ubuntu-hirsute-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
1a1aad8a 42#include <linux/userfaultfd_k.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
1da177e4 45
c3f38a38 46int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 49
dbda8fea 50#ifdef CONFIG_CMA
cf11e85f 51static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
52#endif
53static unsigned long hugetlb_cma_size __initdata;
cf11e85f 54
641844f5
NH
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 60
53ba51d2
JT
61__initdata LIST_HEAD(huge_boot_pages);
62
e5ff2159
AK
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 66static bool __initdata parsed_valid_hugepagesz = true;
282f4214 67static bool __initdata parsed_default_hugepagesz;
e5ff2159 68
3935baa9 69/*
31caf665
NH
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
3935baa9 72 */
c3f38a38 73DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 74
8382d914
DB
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
c672c7f2 80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 81
7ffddd49
MS
82static inline bool PageHugeFreed(struct page *head)
83{
84 return page_private(head + 4) == -1UL;
85}
86
87static inline void SetPageHugeFreed(struct page *head)
88{
89 set_page_private(head + 4, -1UL);
90}
91
92static inline void ClearPageHugeFreed(struct page *head)
93{
94 set_page_private(head + 4, 0);
95}
96
7ca02d0a
MK
97/* Forward declaration */
98static int hugetlb_acct_memory(struct hstate *h, long delta);
99
90481622
DG
100static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
101{
102 bool free = (spool->count == 0) && (spool->used_hpages == 0);
103
104 spin_unlock(&spool->lock);
105
106 /* If no pages are used, and no other handles to the subpool
7c8de358 107 * remain, give up any reservations based on minimum size and
7ca02d0a
MK
108 * free the subpool */
109 if (free) {
110 if (spool->min_hpages != -1)
111 hugetlb_acct_memory(spool->hstate,
112 -spool->min_hpages);
90481622 113 kfree(spool);
7ca02d0a 114 }
90481622
DG
115}
116
7ca02d0a
MK
117struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
118 long min_hpages)
90481622
DG
119{
120 struct hugepage_subpool *spool;
121
c6a91820 122 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
123 if (!spool)
124 return NULL;
125
126 spin_lock_init(&spool->lock);
127 spool->count = 1;
7ca02d0a
MK
128 spool->max_hpages = max_hpages;
129 spool->hstate = h;
130 spool->min_hpages = min_hpages;
131
132 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133 kfree(spool);
134 return NULL;
135 }
136 spool->rsv_hpages = min_hpages;
90481622
DG
137
138 return spool;
139}
140
141void hugepage_put_subpool(struct hugepage_subpool *spool)
142{
143 spin_lock(&spool->lock);
144 BUG_ON(!spool->count);
145 spool->count--;
146 unlock_or_release_subpool(spool);
147}
148
1c5ecae3
MK
149/*
150 * Subpool accounting for allocating and reserving pages.
151 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 152 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
153 * global pools must be adjusted (upward). The returned value may
154 * only be different than the passed value (delta) in the case where
7c8de358 155 * a subpool minimum size must be maintained.
1c5ecae3
MK
156 */
157static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
158 long delta)
159{
1c5ecae3 160 long ret = delta;
90481622
DG
161
162 if (!spool)
1c5ecae3 163 return ret;
90481622
DG
164
165 spin_lock(&spool->lock);
1c5ecae3
MK
166
167 if (spool->max_hpages != -1) { /* maximum size accounting */
168 if ((spool->used_hpages + delta) <= spool->max_hpages)
169 spool->used_hpages += delta;
170 else {
171 ret = -ENOMEM;
172 goto unlock_ret;
173 }
90481622 174 }
90481622 175
09a95e29
MK
176 /* minimum size accounting */
177 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
178 if (delta > spool->rsv_hpages) {
179 /*
180 * Asking for more reserves than those already taken on
181 * behalf of subpool. Return difference.
182 */
183 ret = delta - spool->rsv_hpages;
184 spool->rsv_hpages = 0;
185 } else {
186 ret = 0; /* reserves already accounted for */
187 spool->rsv_hpages -= delta;
188 }
189 }
190
191unlock_ret:
192 spin_unlock(&spool->lock);
90481622
DG
193 return ret;
194}
195
1c5ecae3
MK
196/*
197 * Subpool accounting for freeing and unreserving pages.
198 * Return the number of global page reservations that must be dropped.
199 * The return value may only be different than the passed value (delta)
200 * in the case where a subpool minimum size must be maintained.
201 */
202static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
203 long delta)
204{
1c5ecae3
MK
205 long ret = delta;
206
90481622 207 if (!spool)
1c5ecae3 208 return delta;
90481622
DG
209
210 spin_lock(&spool->lock);
1c5ecae3
MK
211
212 if (spool->max_hpages != -1) /* maximum size accounting */
213 spool->used_hpages -= delta;
214
09a95e29
MK
215 /* minimum size accounting */
216 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
217 if (spool->rsv_hpages + delta <= spool->min_hpages)
218 ret = 0;
219 else
220 ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222 spool->rsv_hpages += delta;
223 if (spool->rsv_hpages > spool->min_hpages)
224 spool->rsv_hpages = spool->min_hpages;
225 }
226
227 /*
228 * If hugetlbfs_put_super couldn't free spool due to an outstanding
229 * quota reference, free it now.
230 */
90481622 231 unlock_or_release_subpool(spool);
1c5ecae3
MK
232
233 return ret;
90481622
DG
234}
235
236static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237{
238 return HUGETLBFS_SB(inode->i_sb)->spool;
239}
240
241static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242{
496ad9aa 243 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
244}
245
0db9d74e
MA
246/* Helper that removes a struct file_region from the resv_map cache and returns
247 * it for use.
248 */
249static struct file_region *
250get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251{
252 struct file_region *nrg = NULL;
253
254 VM_BUG_ON(resv->region_cache_count <= 0);
255
256 resv->region_cache_count--;
257 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
258 list_del(&nrg->link);
259
260 nrg->from = from;
261 nrg->to = to;
262
263 return nrg;
264}
265
075a61d0
MA
266static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267 struct file_region *rg)
268{
269#ifdef CONFIG_CGROUP_HUGETLB
270 nrg->reservation_counter = rg->reservation_counter;
271 nrg->css = rg->css;
272 if (rg->css)
273 css_get(rg->css);
274#endif
275}
276
277/* Helper that records hugetlb_cgroup uncharge info. */
278static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279 struct hstate *h,
280 struct resv_map *resv,
281 struct file_region *nrg)
282{
283#ifdef CONFIG_CGROUP_HUGETLB
284 if (h_cg) {
285 nrg->reservation_counter =
286 &h_cg->rsvd_hugepage[hstate_index(h)];
287 nrg->css = &h_cg->css;
0dd70e6b
ML
288 /*
289 * The caller will hold exactly one h_cg->css reference for the
290 * whole contiguous reservation region. But this area might be
291 * scattered when there are already some file_regions reside in
292 * it. As a result, many file_regions may share only one css
293 * reference. In order to ensure that one file_region must hold
294 * exactly one h_cg->css reference, we should do css_get for
295 * each file_region and leave the reference held by caller
296 * untouched.
297 */
298 css_get(&h_cg->css);
075a61d0
MA
299 if (!resv->pages_per_hpage)
300 resv->pages_per_hpage = pages_per_huge_page(h);
301 /* pages_per_hpage should be the same for all entries in
302 * a resv_map.
303 */
304 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305 } else {
306 nrg->reservation_counter = NULL;
307 nrg->css = NULL;
308 }
309#endif
310}
311
0dd70e6b
ML
312static void put_uncharge_info(struct file_region *rg)
313{
314#ifdef CONFIG_CGROUP_HUGETLB
315 if (rg->css)
316 css_put(rg->css);
317#endif
318}
319
a9b3f867
MA
320static bool has_same_uncharge_info(struct file_region *rg,
321 struct file_region *org)
322{
323#ifdef CONFIG_CGROUP_HUGETLB
324 return rg && org &&
325 rg->reservation_counter == org->reservation_counter &&
326 rg->css == org->css;
327
328#else
329 return true;
330#endif
331}
332
333static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334{
335 struct file_region *nrg = NULL, *prg = NULL;
336
337 prg = list_prev_entry(rg, link);
338 if (&prg->link != &resv->regions && prg->to == rg->from &&
339 has_same_uncharge_info(prg, rg)) {
340 prg->to = rg->to;
341
342 list_del(&rg->link);
0dd70e6b 343 put_uncharge_info(rg);
a9b3f867
MA
344 kfree(rg);
345
7db5e7b6 346 rg = prg;
a9b3f867
MA
347 }
348
349 nrg = list_next_entry(rg, link);
350 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351 has_same_uncharge_info(nrg, rg)) {
352 nrg->from = rg->from;
353
354 list_del(&rg->link);
0dd70e6b 355 put_uncharge_info(rg);
a9b3f867 356 kfree(rg);
a9b3f867
MA
357 }
358}
359
972a3da3
WY
360/*
361 * Must be called with resv->lock held.
362 *
363 * Calling this with regions_needed != NULL will count the number of pages
364 * to be added but will not modify the linked list. And regions_needed will
365 * indicate the number of file_regions needed in the cache to carry out to add
366 * the regions for this range.
d75c6af9
MA
367 */
368static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 369 struct hugetlb_cgroup *h_cg,
972a3da3 370 struct hstate *h, long *regions_needed)
d75c6af9 371{
0db9d74e 372 long add = 0;
d75c6af9 373 struct list_head *head = &resv->regions;
0db9d74e 374 long last_accounted_offset = f;
d75c6af9
MA
375 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
376
0db9d74e
MA
377 if (regions_needed)
378 *regions_needed = 0;
d75c6af9 379
0db9d74e
MA
380 /* In this loop, we essentially handle an entry for the range
381 * [last_accounted_offset, rg->from), at every iteration, with some
382 * bounds checking.
383 */
384 list_for_each_entry_safe(rg, trg, head, link) {
385 /* Skip irrelevant regions that start before our range. */
386 if (rg->from < f) {
387 /* If this region ends after the last accounted offset,
388 * then we need to update last_accounted_offset.
389 */
390 if (rg->to > last_accounted_offset)
391 last_accounted_offset = rg->to;
392 continue;
393 }
d75c6af9 394
0db9d74e
MA
395 /* When we find a region that starts beyond our range, we've
396 * finished.
397 */
d75c6af9
MA
398 if (rg->from > t)
399 break;
400
0db9d74e
MA
401 /* Add an entry for last_accounted_offset -> rg->from, and
402 * update last_accounted_offset.
403 */
404 if (rg->from > last_accounted_offset) {
405 add += rg->from - last_accounted_offset;
972a3da3 406 if (!regions_needed) {
0db9d74e
MA
407 nrg = get_file_region_entry_from_cache(
408 resv, last_accounted_offset, rg->from);
075a61d0
MA
409 record_hugetlb_cgroup_uncharge_info(h_cg, h,
410 resv, nrg);
0db9d74e 411 list_add(&nrg->link, rg->link.prev);
a9b3f867 412 coalesce_file_region(resv, nrg);
972a3da3 413 } else
0db9d74e
MA
414 *regions_needed += 1;
415 }
416
417 last_accounted_offset = rg->to;
418 }
419
420 /* Handle the case where our range extends beyond
421 * last_accounted_offset.
422 */
423 if (last_accounted_offset < t) {
424 add += t - last_accounted_offset;
972a3da3 425 if (!regions_needed) {
0db9d74e
MA
426 nrg = get_file_region_entry_from_cache(
427 resv, last_accounted_offset, t);
075a61d0 428 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
0db9d74e 429 list_add(&nrg->link, rg->link.prev);
a9b3f867 430 coalesce_file_region(resv, nrg);
972a3da3 431 } else
0db9d74e
MA
432 *regions_needed += 1;
433 }
434
435 VM_BUG_ON(add < 0);
436 return add;
437}
438
439/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
440 */
441static int allocate_file_region_entries(struct resv_map *resv,
442 int regions_needed)
443 __must_hold(&resv->lock)
444{
445 struct list_head allocated_regions;
446 int to_allocate = 0, i = 0;
447 struct file_region *trg = NULL, *rg = NULL;
448
449 VM_BUG_ON(regions_needed < 0);
450
451 INIT_LIST_HEAD(&allocated_regions);
452
453 /*
454 * Check for sufficient descriptors in the cache to accommodate
455 * the number of in progress add operations plus regions_needed.
456 *
457 * This is a while loop because when we drop the lock, some other call
458 * to region_add or region_del may have consumed some region_entries,
459 * so we keep looping here until we finally have enough entries for
460 * (adds_in_progress + regions_needed).
461 */
462 while (resv->region_cache_count <
463 (resv->adds_in_progress + regions_needed)) {
464 to_allocate = resv->adds_in_progress + regions_needed -
465 resv->region_cache_count;
466
467 /* At this point, we should have enough entries in the cache
468 * for all the existings adds_in_progress. We should only be
469 * needing to allocate for regions_needed.
d75c6af9 470 */
0db9d74e
MA
471 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
472
473 spin_unlock(&resv->lock);
474 for (i = 0; i < to_allocate; i++) {
475 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
476 if (!trg)
477 goto out_of_memory;
478 list_add(&trg->link, &allocated_regions);
d75c6af9 479 }
d75c6af9 480
0db9d74e
MA
481 spin_lock(&resv->lock);
482
d3ec7b6e
WY
483 list_splice(&allocated_regions, &resv->region_cache);
484 resv->region_cache_count += to_allocate;
d75c6af9
MA
485 }
486
0db9d74e 487 return 0;
d75c6af9 488
0db9d74e
MA
489out_of_memory:
490 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
491 list_del(&rg->link);
492 kfree(rg);
493 }
494 return -ENOMEM;
d75c6af9
MA
495}
496
1dd308a7
MK
497/*
498 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
499 * map. Regions will be taken from the cache to fill in this range.
500 * Sufficient regions should exist in the cache due to the previous
501 * call to region_chg with the same range, but in some cases the cache will not
502 * have sufficient entries due to races with other code doing region_add or
503 * region_del. The extra needed entries will be allocated.
cf3ad20b 504 *
0db9d74e
MA
505 * regions_needed is the out value provided by a previous call to region_chg.
506 *
507 * Return the number of new huge pages added to the map. This number is greater
508 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 509 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
510 * region_add of regions of length 1 never allocate file_regions and cannot
511 * fail; region_chg will always allocate at least 1 entry and a region_add for
512 * 1 page will only require at most 1 entry.
1dd308a7 513 */
0db9d74e 514static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
515 long in_regions_needed, struct hstate *h,
516 struct hugetlb_cgroup *h_cg)
96822904 517{
0db9d74e 518 long add = 0, actual_regions_needed = 0;
96822904 519
7b24d861 520 spin_lock(&resv->lock);
0db9d74e
MA
521retry:
522
523 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
524 add_reservation_in_range(resv, f, t, NULL, NULL,
525 &actual_regions_needed);
96822904 526
5e911373 527 /*
0db9d74e
MA
528 * Check for sufficient descriptors in the cache to accommodate
529 * this add operation. Note that actual_regions_needed may be greater
530 * than in_regions_needed, as the resv_map may have been modified since
531 * the region_chg call. In this case, we need to make sure that we
532 * allocate extra entries, such that we have enough for all the
533 * existing adds_in_progress, plus the excess needed for this
534 * operation.
5e911373 535 */
0db9d74e
MA
536 if (actual_regions_needed > in_regions_needed &&
537 resv->region_cache_count <
538 resv->adds_in_progress +
539 (actual_regions_needed - in_regions_needed)) {
540 /* region_add operation of range 1 should never need to
541 * allocate file_region entries.
542 */
543 VM_BUG_ON(t - f <= 1);
5e911373 544
0db9d74e
MA
545 if (allocate_file_region_entries(
546 resv, actual_regions_needed - in_regions_needed)) {
547 return -ENOMEM;
548 }
5e911373 549
0db9d74e 550 goto retry;
5e911373
MK
551 }
552
972a3da3 553 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
554
555 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 556
7b24d861 557 spin_unlock(&resv->lock);
cf3ad20b
MK
558 VM_BUG_ON(add < 0);
559 return add;
96822904
AW
560}
561
1dd308a7
MK
562/*
563 * Examine the existing reserve map and determine how many
564 * huge pages in the specified range [f, t) are NOT currently
565 * represented. This routine is called before a subsequent
566 * call to region_add that will actually modify the reserve
567 * map to add the specified range [f, t). region_chg does
568 * not change the number of huge pages represented by the
0db9d74e
MA
569 * map. A number of new file_region structures is added to the cache as a
570 * placeholder, for the subsequent region_add call to use. At least 1
571 * file_region structure is added.
572 *
573 * out_regions_needed is the number of regions added to the
574 * resv->adds_in_progress. This value needs to be provided to a follow up call
575 * to region_add or region_abort for proper accounting.
5e911373
MK
576 *
577 * Returns the number of huge pages that need to be added to the existing
578 * reservation map for the range [f, t). This number is greater or equal to
579 * zero. -ENOMEM is returned if a new file_region structure or cache entry
580 * is needed and can not be allocated.
1dd308a7 581 */
0db9d74e
MA
582static long region_chg(struct resv_map *resv, long f, long t,
583 long *out_regions_needed)
96822904 584{
96822904
AW
585 long chg = 0;
586
7b24d861 587 spin_lock(&resv->lock);
5e911373 588
972a3da3 589 /* Count how many hugepages in this range are NOT represented. */
075a61d0 590 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 591 out_regions_needed);
5e911373 592
0db9d74e
MA
593 if (*out_regions_needed == 0)
594 *out_regions_needed = 1;
5e911373 595
0db9d74e
MA
596 if (allocate_file_region_entries(resv, *out_regions_needed))
597 return -ENOMEM;
5e911373 598
0db9d74e 599 resv->adds_in_progress += *out_regions_needed;
7b24d861 600
7b24d861 601 spin_unlock(&resv->lock);
96822904
AW
602 return chg;
603}
604
5e911373
MK
605/*
606 * Abort the in progress add operation. The adds_in_progress field
607 * of the resv_map keeps track of the operations in progress between
608 * calls to region_chg and region_add. Operations are sometimes
609 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
610 * is called to decrement the adds_in_progress counter. regions_needed
611 * is the value returned by the region_chg call, it is used to decrement
612 * the adds_in_progress counter.
5e911373
MK
613 *
614 * NOTE: The range arguments [f, t) are not needed or used in this
615 * routine. They are kept to make reading the calling code easier as
616 * arguments will match the associated region_chg call.
617 */
0db9d74e
MA
618static void region_abort(struct resv_map *resv, long f, long t,
619 long regions_needed)
5e911373
MK
620{
621 spin_lock(&resv->lock);
622 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 623 resv->adds_in_progress -= regions_needed;
5e911373
MK
624 spin_unlock(&resv->lock);
625}
626
1dd308a7 627/*
feba16e2
MK
628 * Delete the specified range [f, t) from the reserve map. If the
629 * t parameter is LONG_MAX, this indicates that ALL regions after f
630 * should be deleted. Locate the regions which intersect [f, t)
631 * and either trim, delete or split the existing regions.
632 *
633 * Returns the number of huge pages deleted from the reserve map.
634 * In the normal case, the return value is zero or more. In the
635 * case where a region must be split, a new region descriptor must
636 * be allocated. If the allocation fails, -ENOMEM will be returned.
637 * NOTE: If the parameter t == LONG_MAX, then we will never split
638 * a region and possibly return -ENOMEM. Callers specifying
639 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 640 */
feba16e2 641static long region_del(struct resv_map *resv, long f, long t)
96822904 642{
1406ec9b 643 struct list_head *head = &resv->regions;
96822904 644 struct file_region *rg, *trg;
feba16e2
MK
645 struct file_region *nrg = NULL;
646 long del = 0;
96822904 647
feba16e2 648retry:
7b24d861 649 spin_lock(&resv->lock);
feba16e2 650 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
651 /*
652 * Skip regions before the range to be deleted. file_region
653 * ranges are normally of the form [from, to). However, there
654 * may be a "placeholder" entry in the map which is of the form
655 * (from, to) with from == to. Check for placeholder entries
656 * at the beginning of the range to be deleted.
657 */
658 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 659 continue;
dbe409e4 660
feba16e2 661 if (rg->from >= t)
96822904 662 break;
96822904 663
feba16e2
MK
664 if (f > rg->from && t < rg->to) { /* Must split region */
665 /*
666 * Check for an entry in the cache before dropping
667 * lock and attempting allocation.
668 */
669 if (!nrg &&
670 resv->region_cache_count > resv->adds_in_progress) {
671 nrg = list_first_entry(&resv->region_cache,
672 struct file_region,
673 link);
674 list_del(&nrg->link);
675 resv->region_cache_count--;
676 }
96822904 677
feba16e2
MK
678 if (!nrg) {
679 spin_unlock(&resv->lock);
680 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681 if (!nrg)
682 return -ENOMEM;
683 goto retry;
684 }
685
686 del += t - f;
79aa925b 687 hugetlb_cgroup_uncharge_file_region(
0dd70e6b 688 resv, rg, t - f, false);
feba16e2
MK
689
690 /* New entry for end of split region */
691 nrg->from = t;
692 nrg->to = rg->to;
075a61d0
MA
693
694 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695
feba16e2
MK
696 INIT_LIST_HEAD(&nrg->link);
697
698 /* Original entry is trimmed */
699 rg->to = f;
700
701 list_add(&nrg->link, &rg->link);
702 nrg = NULL;
96822904 703 break;
feba16e2
MK
704 }
705
706 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707 del += rg->to - rg->from;
075a61d0 708 hugetlb_cgroup_uncharge_file_region(resv, rg,
0dd70e6b 709 rg->to - rg->from, true);
feba16e2
MK
710 list_del(&rg->link);
711 kfree(rg);
712 continue;
713 }
714
715 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 716 hugetlb_cgroup_uncharge_file_region(resv, rg,
0dd70e6b 717 t - rg->from, false);
075a61d0 718
79aa925b
MK
719 del += t - rg->from;
720 rg->from = t;
721 } else { /* Trim end of region */
075a61d0 722 hugetlb_cgroup_uncharge_file_region(resv, rg,
0dd70e6b 723 rg->to - f, false);
79aa925b
MK
724
725 del += rg->to - f;
726 rg->to = f;
feba16e2 727 }
96822904 728 }
7b24d861 729
7b24d861 730 spin_unlock(&resv->lock);
feba16e2
MK
731 kfree(nrg);
732 return del;
96822904
AW
733}
734
b5cec28d
MK
735/*
736 * A rare out of memory error was encountered which prevented removal of
737 * the reserve map region for a page. The huge page itself was free'ed
738 * and removed from the page cache. This routine will adjust the subpool
739 * usage count, and the global reserve count if needed. By incrementing
740 * these counts, the reserve map entry which could not be deleted will
741 * appear as a "reserved" entry instead of simply dangling with incorrect
742 * counts.
743 */
72e2936c 744void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
745{
746 struct hugepage_subpool *spool = subpool_inode(inode);
747 long rsv_adjust;
748
749 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 750 if (rsv_adjust) {
b5cec28d
MK
751 struct hstate *h = hstate_inode(inode);
752
753 hugetlb_acct_memory(h, 1);
754 }
755}
756
1dd308a7
MK
757/*
758 * Count and return the number of huge pages in the reserve map
759 * that intersect with the range [f, t).
760 */
1406ec9b 761static long region_count(struct resv_map *resv, long f, long t)
84afd99b 762{
1406ec9b 763 struct list_head *head = &resv->regions;
84afd99b
AW
764 struct file_region *rg;
765 long chg = 0;
766
7b24d861 767 spin_lock(&resv->lock);
84afd99b
AW
768 /* Locate each segment we overlap with, and count that overlap. */
769 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
770 long seg_from;
771 long seg_to;
84afd99b
AW
772
773 if (rg->to <= f)
774 continue;
775 if (rg->from >= t)
776 break;
777
778 seg_from = max(rg->from, f);
779 seg_to = min(rg->to, t);
780
781 chg += seg_to - seg_from;
782 }
7b24d861 783 spin_unlock(&resv->lock);
84afd99b
AW
784
785 return chg;
786}
787
e7c4b0bf
AW
788/*
789 * Convert the address within this vma to the page offset within
790 * the mapping, in pagecache page units; huge pages here.
791 */
a5516438
AK
792static pgoff_t vma_hugecache_offset(struct hstate *h,
793 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 794{
a5516438
AK
795 return ((address - vma->vm_start) >> huge_page_shift(h)) +
796 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
797}
798
0fe6e20b
NH
799pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
800 unsigned long address)
801{
802 return vma_hugecache_offset(hstate_vma(vma), vma, address);
803}
dee41079 804EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 805
08fba699
MG
806/*
807 * Return the size of the pages allocated when backing a VMA. In the majority
808 * cases this will be same size as used by the page table entries.
809 */
810unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
811{
05ea8860
DW
812 if (vma->vm_ops && vma->vm_ops->pagesize)
813 return vma->vm_ops->pagesize(vma);
814 return PAGE_SIZE;
08fba699 815}
f340ca0f 816EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 817
3340289d
MG
818/*
819 * Return the page size being used by the MMU to back a VMA. In the majority
820 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
821 * architectures where it differs, an architecture-specific 'strong'
822 * version of this symbol is required.
3340289d 823 */
09135cc5 824__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
825{
826 return vma_kernel_pagesize(vma);
827}
3340289d 828
84afd99b
AW
829/*
830 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
831 * bits of the reservation map pointer, which are always clear due to
832 * alignment.
833 */
834#define HPAGE_RESV_OWNER (1UL << 0)
835#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 836#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 837
a1e78772
MG
838/*
839 * These helpers are used to track how many pages are reserved for
840 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
841 * is guaranteed to have their future faults succeed.
842 *
843 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
844 * the reserve counters are updated with the hugetlb_lock held. It is safe
845 * to reset the VMA at fork() time as it is not in use yet and there is no
846 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
847 *
848 * The private mapping reservation is represented in a subtly different
849 * manner to a shared mapping. A shared mapping has a region map associated
850 * with the underlying file, this region map represents the backing file
851 * pages which have ever had a reservation assigned which this persists even
852 * after the page is instantiated. A private mapping has a region map
853 * associated with the original mmap which is attached to all VMAs which
854 * reference it, this region map represents those offsets which have consumed
855 * reservation ie. where pages have been instantiated.
a1e78772 856 */
e7c4b0bf
AW
857static unsigned long get_vma_private_data(struct vm_area_struct *vma)
858{
859 return (unsigned long)vma->vm_private_data;
860}
861
862static void set_vma_private_data(struct vm_area_struct *vma,
863 unsigned long value)
864{
865 vma->vm_private_data = (void *)value;
866}
867
e9fe92ae
MA
868static void
869resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
870 struct hugetlb_cgroup *h_cg,
871 struct hstate *h)
872{
873#ifdef CONFIG_CGROUP_HUGETLB
874 if (!h_cg || !h) {
875 resv_map->reservation_counter = NULL;
876 resv_map->pages_per_hpage = 0;
877 resv_map->css = NULL;
878 } else {
879 resv_map->reservation_counter =
880 &h_cg->rsvd_hugepage[hstate_index(h)];
881 resv_map->pages_per_hpage = pages_per_huge_page(h);
882 resv_map->css = &h_cg->css;
883 }
884#endif
885}
886
9119a41e 887struct resv_map *resv_map_alloc(void)
84afd99b
AW
888{
889 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
890 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
891
892 if (!resv_map || !rg) {
893 kfree(resv_map);
894 kfree(rg);
84afd99b 895 return NULL;
5e911373 896 }
84afd99b
AW
897
898 kref_init(&resv_map->refs);
7b24d861 899 spin_lock_init(&resv_map->lock);
84afd99b
AW
900 INIT_LIST_HEAD(&resv_map->regions);
901
5e911373 902 resv_map->adds_in_progress = 0;
e9fe92ae
MA
903 /*
904 * Initialize these to 0. On shared mappings, 0's here indicate these
905 * fields don't do cgroup accounting. On private mappings, these will be
906 * re-initialized to the proper values, to indicate that hugetlb cgroup
907 * reservations are to be un-charged from here.
908 */
909 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
910
911 INIT_LIST_HEAD(&resv_map->region_cache);
912 list_add(&rg->link, &resv_map->region_cache);
913 resv_map->region_cache_count = 1;
914
84afd99b
AW
915 return resv_map;
916}
917
9119a41e 918void resv_map_release(struct kref *ref)
84afd99b
AW
919{
920 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
921 struct list_head *head = &resv_map->region_cache;
922 struct file_region *rg, *trg;
84afd99b
AW
923
924 /* Clear out any active regions before we release the map. */
feba16e2 925 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
926
927 /* ... and any entries left in the cache */
928 list_for_each_entry_safe(rg, trg, head, link) {
929 list_del(&rg->link);
930 kfree(rg);
931 }
932
933 VM_BUG_ON(resv_map->adds_in_progress);
934
84afd99b
AW
935 kfree(resv_map);
936}
937
4e35f483
JK
938static inline struct resv_map *inode_resv_map(struct inode *inode)
939{
f27a5136
MK
940 /*
941 * At inode evict time, i_mapping may not point to the original
942 * address space within the inode. This original address space
943 * contains the pointer to the resv_map. So, always use the
944 * address space embedded within the inode.
945 * The VERY common case is inode->mapping == &inode->i_data but,
946 * this may not be true for device special inodes.
947 */
948 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
949}
950
84afd99b 951static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 952{
81d1b09c 953 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
954 if (vma->vm_flags & VM_MAYSHARE) {
955 struct address_space *mapping = vma->vm_file->f_mapping;
956 struct inode *inode = mapping->host;
957
958 return inode_resv_map(inode);
959
960 } else {
84afd99b
AW
961 return (struct resv_map *)(get_vma_private_data(vma) &
962 ~HPAGE_RESV_MASK);
4e35f483 963 }
a1e78772
MG
964}
965
84afd99b 966static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 967{
81d1b09c
SL
968 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
969 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 970
84afd99b
AW
971 set_vma_private_data(vma, (get_vma_private_data(vma) &
972 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
973}
974
975static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
976{
81d1b09c
SL
977 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
978 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
979
980 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
981}
982
983static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
984{
81d1b09c 985 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
986
987 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
988}
989
04f2cbe3 990/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
991void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
992{
81d1b09c 993 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 994 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
995 vma->vm_private_data = (void *)0;
996}
997
998/* Returns true if the VMA has associated reserve pages */
559ec2f8 999static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1000{
af0ed73e
JK
1001 if (vma->vm_flags & VM_NORESERVE) {
1002 /*
1003 * This address is already reserved by other process(chg == 0),
1004 * so, we should decrement reserved count. Without decrementing,
1005 * reserve count remains after releasing inode, because this
1006 * allocated page will go into page cache and is regarded as
1007 * coming from reserved pool in releasing step. Currently, we
1008 * don't have any other solution to deal with this situation
1009 * properly, so add work-around here.
1010 */
1011 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1012 return true;
af0ed73e 1013 else
559ec2f8 1014 return false;
af0ed73e 1015 }
a63884e9
JK
1016
1017 /* Shared mappings always use reserves */
1fb1b0e9
MK
1018 if (vma->vm_flags & VM_MAYSHARE) {
1019 /*
1020 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1021 * be a region map for all pages. The only situation where
1022 * there is no region map is if a hole was punched via
7c8de358 1023 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1024 * use. This situation is indicated if chg != 0.
1025 */
1026 if (chg)
1027 return false;
1028 else
1029 return true;
1030 }
a63884e9
JK
1031
1032 /*
1033 * Only the process that called mmap() has reserves for
1034 * private mappings.
1035 */
67961f9d
MK
1036 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1037 /*
1038 * Like the shared case above, a hole punch or truncate
1039 * could have been performed on the private mapping.
1040 * Examine the value of chg to determine if reserves
1041 * actually exist or were previously consumed.
1042 * Very Subtle - The value of chg comes from a previous
1043 * call to vma_needs_reserves(). The reserve map for
1044 * private mappings has different (opposite) semantics
1045 * than that of shared mappings. vma_needs_reserves()
1046 * has already taken this difference in semantics into
1047 * account. Therefore, the meaning of chg is the same
1048 * as in the shared case above. Code could easily be
1049 * combined, but keeping it separate draws attention to
1050 * subtle differences.
1051 */
1052 if (chg)
1053 return false;
1054 else
1055 return true;
1056 }
a63884e9 1057
559ec2f8 1058 return false;
a1e78772
MG
1059}
1060
a5516438 1061static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1062{
1063 int nid = page_to_nid(page);
0edaecfa 1064 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1065 h->free_huge_pages++;
1066 h->free_huge_pages_node[nid]++;
7ffddd49 1067 SetPageHugeFreed(page);
1da177e4
LT
1068}
1069
94310cbc 1070static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1071{
1072 struct page *page;
bbe88753
JK
1073 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1074
1075 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1076 if (nocma && is_migrate_cma_page(page))
1077 continue;
bf50bab2 1078
6664bfc8
WY
1079 if (PageHWPoison(page))
1080 continue;
1081
1082 list_move(&page->lru, &h->hugepage_activelist);
1083 set_page_refcounted(page);
7ffddd49 1084 ClearPageHugeFreed(page);
6664bfc8
WY
1085 h->free_huge_pages--;
1086 h->free_huge_pages_node[nid]--;
1087 return page;
bbe88753
JK
1088 }
1089
6664bfc8 1090 return NULL;
bf50bab2
NH
1091}
1092
3e59fcb0
MH
1093static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1094 nodemask_t *nmask)
94310cbc 1095{
3e59fcb0
MH
1096 unsigned int cpuset_mems_cookie;
1097 struct zonelist *zonelist;
1098 struct zone *zone;
1099 struct zoneref *z;
98fa15f3 1100 int node = NUMA_NO_NODE;
94310cbc 1101
3e59fcb0
MH
1102 zonelist = node_zonelist(nid, gfp_mask);
1103
1104retry_cpuset:
1105 cpuset_mems_cookie = read_mems_allowed_begin();
1106 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1107 struct page *page;
1108
1109 if (!cpuset_zone_allowed(zone, gfp_mask))
1110 continue;
1111 /*
1112 * no need to ask again on the same node. Pool is node rather than
1113 * zone aware
1114 */
1115 if (zone_to_nid(zone) == node)
1116 continue;
1117 node = zone_to_nid(zone);
94310cbc 1118
94310cbc
AK
1119 page = dequeue_huge_page_node_exact(h, node);
1120 if (page)
1121 return page;
1122 }
3e59fcb0
MH
1123 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1124 goto retry_cpuset;
1125
94310cbc
AK
1126 return NULL;
1127}
1128
a5516438
AK
1129static struct page *dequeue_huge_page_vma(struct hstate *h,
1130 struct vm_area_struct *vma,
af0ed73e
JK
1131 unsigned long address, int avoid_reserve,
1132 long chg)
1da177e4 1133{
3e59fcb0 1134 struct page *page;
480eccf9 1135 struct mempolicy *mpol;
04ec6264 1136 gfp_t gfp_mask;
3e59fcb0 1137 nodemask_t *nodemask;
04ec6264 1138 int nid;
1da177e4 1139
a1e78772
MG
1140 /*
1141 * A child process with MAP_PRIVATE mappings created by their parent
1142 * have no page reserves. This check ensures that reservations are
1143 * not "stolen". The child may still get SIGKILLed
1144 */
af0ed73e 1145 if (!vma_has_reserves(vma, chg) &&
a5516438 1146 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1147 goto err;
a1e78772 1148
04f2cbe3 1149 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1150 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1151 goto err;
04f2cbe3 1152
04ec6264
VB
1153 gfp_mask = htlb_alloc_mask(h);
1154 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1155 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1156 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1157 SetPagePrivate(page);
1158 h->resv_huge_pages--;
1da177e4 1159 }
cc9a6c87 1160
52cd3b07 1161 mpol_cond_put(mpol);
1da177e4 1162 return page;
cc9a6c87
MG
1163
1164err:
cc9a6c87 1165 return NULL;
1da177e4
LT
1166}
1167
1cac6f2c
LC
1168/*
1169 * common helper functions for hstate_next_node_to_{alloc|free}.
1170 * We may have allocated or freed a huge page based on a different
1171 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1172 * be outside of *nodes_allowed. Ensure that we use an allowed
1173 * node for alloc or free.
1174 */
1175static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1176{
0edaf86c 1177 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1178 VM_BUG_ON(nid >= MAX_NUMNODES);
1179
1180 return nid;
1181}
1182
1183static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1184{
1185 if (!node_isset(nid, *nodes_allowed))
1186 nid = next_node_allowed(nid, nodes_allowed);
1187 return nid;
1188}
1189
1190/*
1191 * returns the previously saved node ["this node"] from which to
1192 * allocate a persistent huge page for the pool and advance the
1193 * next node from which to allocate, handling wrap at end of node
1194 * mask.
1195 */
1196static int hstate_next_node_to_alloc(struct hstate *h,
1197 nodemask_t *nodes_allowed)
1198{
1199 int nid;
1200
1201 VM_BUG_ON(!nodes_allowed);
1202
1203 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1204 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1205
1206 return nid;
1207}
1208
1209/*
1210 * helper for free_pool_huge_page() - return the previously saved
1211 * node ["this node"] from which to free a huge page. Advance the
1212 * next node id whether or not we find a free huge page to free so
1213 * that the next attempt to free addresses the next node.
1214 */
1215static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1216{
1217 int nid;
1218
1219 VM_BUG_ON(!nodes_allowed);
1220
1221 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1222 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1223
1224 return nid;
1225}
1226
1227#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1228 for (nr_nodes = nodes_weight(*mask); \
1229 nr_nodes > 0 && \
1230 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1231 nr_nodes--)
1232
1233#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1234 for (nr_nodes = nodes_weight(*mask); \
1235 nr_nodes > 0 && \
1236 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1237 nr_nodes--)
1238
e1073d1e 1239#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1240static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1241 unsigned int order)
944d9fec
LC
1242{
1243 int i;
1244 int nr_pages = 1 << order;
1245 struct page *p = page + 1;
1246
c8cc708a 1247 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1248 if (hpage_pincount_available(page))
1249 atomic_set(compound_pincount_ptr(page), 0);
1250
944d9fec 1251 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1252 clear_compound_head(p);
944d9fec 1253 set_page_refcounted(p);
944d9fec
LC
1254 }
1255
1256 set_compound_order(page, 0);
ba9c1201 1257 page[1].compound_nr = 0;
944d9fec
LC
1258 __ClearPageHead(page);
1259}
1260
d00181b9 1261static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1262{
cf11e85f
RG
1263 /*
1264 * If the page isn't allocated using the cma allocator,
1265 * cma_release() returns false.
1266 */
dbda8fea
BS
1267#ifdef CONFIG_CMA
1268 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1269 return;
dbda8fea 1270#endif
cf11e85f 1271
944d9fec
LC
1272 free_contig_range(page_to_pfn(page), 1 << order);
1273}
1274
4eb0716e 1275#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1276static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1277 int nid, nodemask_t *nodemask)
944d9fec 1278{
5e27a2df 1279 unsigned long nr_pages = 1UL << huge_page_order(h);
953f064a
LX
1280 if (nid == NUMA_NO_NODE)
1281 nid = numa_mem_id();
944d9fec 1282
dbda8fea
BS
1283#ifdef CONFIG_CMA
1284 {
cf11e85f
RG
1285 struct page *page;
1286 int node;
1287
953f064a
LX
1288 if (hugetlb_cma[nid]) {
1289 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1290 huge_page_order(h), true);
cf11e85f
RG
1291 if (page)
1292 return page;
1293 }
953f064a
LX
1294
1295 if (!(gfp_mask & __GFP_THISNODE)) {
1296 for_each_node_mask(node, *nodemask) {
1297 if (node == nid || !hugetlb_cma[node])
1298 continue;
1299
1300 page = cma_alloc(hugetlb_cma[node], nr_pages,
1301 huge_page_order(h), true);
1302 if (page)
1303 return page;
1304 }
1305 }
cf11e85f 1306 }
dbda8fea 1307#endif
cf11e85f 1308
5e27a2df 1309 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1310}
1311
1312static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1313static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1314#else /* !CONFIG_CONTIG_ALLOC */
1315static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1316 int nid, nodemask_t *nodemask)
1317{
1318 return NULL;
1319}
1320#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1321
e1073d1e 1322#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1323static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1324 int nid, nodemask_t *nodemask)
1325{
1326 return NULL;
1327}
d00181b9 1328static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1329static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1330 unsigned int order) { }
944d9fec
LC
1331#endif
1332
a5516438 1333static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1334{
1335 int i;
526c1d39 1336 struct page *subpage = page;
a5516438 1337
4eb0716e 1338 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1339 return;
18229df5 1340
a5516438
AK
1341 h->nr_huge_pages--;
1342 h->nr_huge_pages_node[page_to_nid(page)]--;
526c1d39
MK
1343 for (i = 0; i < pages_per_huge_page(h);
1344 i++, subpage = mem_map_next(subpage, page, i)) {
1345 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1346 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1347 1 << PG_active | 1 << PG_private |
1348 1 << PG_writeback);
6af2acb6 1349 }
309381fe 1350 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1adc4d41 1351 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
f1e61557 1352 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1353 set_page_refcounted(page);
944d9fec 1354 if (hstate_is_gigantic(h)) {
cf11e85f
RG
1355 /*
1356 * Temporarily drop the hugetlb_lock, because
1357 * we might block in free_gigantic_page().
1358 */
1359 spin_unlock(&hugetlb_lock);
944d9fec
LC
1360 destroy_compound_gigantic_page(page, huge_page_order(h));
1361 free_gigantic_page(page, huge_page_order(h));
cf11e85f 1362 spin_lock(&hugetlb_lock);
944d9fec 1363 } else {
944d9fec
LC
1364 __free_pages(page, huge_page_order(h));
1365 }
6af2acb6
AL
1366}
1367
e5ff2159
AK
1368struct hstate *size_to_hstate(unsigned long size)
1369{
1370 struct hstate *h;
1371
1372 for_each_hstate(h) {
1373 if (huge_page_size(h) == size)
1374 return h;
1375 }
1376 return NULL;
1377}
1378
bcc54222
NH
1379/*
1380 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1381 * to hstate->hugepage_activelist.)
1382 *
1383 * This function can be called for tail pages, but never returns true for them.
1384 */
1385bool page_huge_active(struct page *page)
1386{
ecbf4724 1387 return PageHeadHuge(page) && PagePrivate(&page[1]);
bcc54222
NH
1388}
1389
1390/* never called for tail page */
585fc0d2 1391void set_page_huge_active(struct page *page)
bcc54222
NH
1392{
1393 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1394 SetPagePrivate(&page[1]);
1395}
1396
1397static void clear_page_huge_active(struct page *page)
1398{
1399 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1400 ClearPagePrivate(&page[1]);
1401}
1402
ab5ac90a
MH
1403/*
1404 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1405 * code
1406 */
1407static inline bool PageHugeTemporary(struct page *page)
1408{
1409 if (!PageHuge(page))
1410 return false;
1411
1412 return (unsigned long)page[2].mapping == -1U;
1413}
1414
1415static inline void SetPageHugeTemporary(struct page *page)
1416{
1417 page[2].mapping = (void *)-1U;
1418}
1419
1420static inline void ClearPageHugeTemporary(struct page *page)
1421{
1422 page[2].mapping = NULL;
1423}
1424
c77c0a8a 1425static void __free_huge_page(struct page *page)
27a85ef1 1426{
a5516438
AK
1427 /*
1428 * Can't pass hstate in here because it is called from the
1429 * compound page destructor.
1430 */
e5ff2159 1431 struct hstate *h = page_hstate(page);
7893d1d5 1432 int nid = page_to_nid(page);
90481622
DG
1433 struct hugepage_subpool *spool =
1434 (struct hugepage_subpool *)page_private(page);
07443a85 1435 bool restore_reserve;
27a85ef1 1436
b4330afb
MK
1437 VM_BUG_ON_PAGE(page_count(page), page);
1438 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1439
1440 set_page_private(page, 0);
1441 page->mapping = NULL;
07443a85 1442 restore_reserve = PagePrivate(page);
16c794b4 1443 ClearPagePrivate(page);
27a85ef1 1444
1c5ecae3 1445 /*
0919e1b6
MK
1446 * If PagePrivate() was set on page, page allocation consumed a
1447 * reservation. If the page was associated with a subpool, there
1448 * would have been a page reserved in the subpool before allocation
1449 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1450 * reservtion, do not call hugepage_subpool_put_pages() as this will
1451 * remove the reserved page from the subpool.
1c5ecae3 1452 */
0919e1b6
MK
1453 if (!restore_reserve) {
1454 /*
1455 * A return code of zero implies that the subpool will be
1456 * under its minimum size if the reservation is not restored
1457 * after page is free. Therefore, force restore_reserve
1458 * operation.
1459 */
1460 if (hugepage_subpool_put_pages(spool, 1) == 0)
1461 restore_reserve = true;
1462 }
1c5ecae3 1463
27a85ef1 1464 spin_lock(&hugetlb_lock);
bcc54222 1465 clear_page_huge_active(page);
6d76dcf4
AK
1466 hugetlb_cgroup_uncharge_page(hstate_index(h),
1467 pages_per_huge_page(h), page);
08cf9faf
MA
1468 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1469 pages_per_huge_page(h), page);
07443a85
JK
1470 if (restore_reserve)
1471 h->resv_huge_pages++;
1472
ab5ac90a
MH
1473 if (PageHugeTemporary(page)) {
1474 list_del(&page->lru);
1475 ClearPageHugeTemporary(page);
1476 update_and_free_page(h, page);
1477 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1478 /* remove the page from active list */
1479 list_del(&page->lru);
a5516438
AK
1480 update_and_free_page(h, page);
1481 h->surplus_huge_pages--;
1482 h->surplus_huge_pages_node[nid]--;
7893d1d5 1483 } else {
5d3a551c 1484 arch_clear_hugepage_flags(page);
a5516438 1485 enqueue_huge_page(h, page);
7893d1d5 1486 }
27a85ef1
DG
1487 spin_unlock(&hugetlb_lock);
1488}
1489
c77c0a8a
WL
1490/*
1491 * As free_huge_page() can be called from a non-task context, we have
1492 * to defer the actual freeing in a workqueue to prevent potential
1493 * hugetlb_lock deadlock.
1494 *
1495 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1496 * be freed and frees them one-by-one. As the page->mapping pointer is
1497 * going to be cleared in __free_huge_page() anyway, it is reused as the
1498 * llist_node structure of a lockless linked list of huge pages to be freed.
1499 */
1500static LLIST_HEAD(hpage_freelist);
1501
1502static void free_hpage_workfn(struct work_struct *work)
1503{
1504 struct llist_node *node;
1505 struct page *page;
1506
1507 node = llist_del_all(&hpage_freelist);
1508
1509 while (node) {
1510 page = container_of((struct address_space **)node,
1511 struct page, mapping);
1512 node = node->next;
1513 __free_huge_page(page);
1514 }
1515}
1516static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1517
1518void free_huge_page(struct page *page)
1519{
1520 /*
1521 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1522 */
1523 if (!in_task()) {
1524 /*
1525 * Only call schedule_work() if hpage_freelist is previously
1526 * empty. Otherwise, schedule_work() had been called but the
1527 * workfn hasn't retrieved the list yet.
1528 */
1529 if (llist_add((struct llist_node *)&page->mapping,
1530 &hpage_freelist))
1531 schedule_work(&free_hpage_work);
1532 return;
1533 }
1534
1535 __free_huge_page(page);
1536}
1537
a5516438 1538static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1539{
0edaecfa 1540 INIT_LIST_HEAD(&page->lru);
f1e61557 1541 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1542 set_hugetlb_cgroup(page, NULL);
1adc4d41 1543 set_hugetlb_cgroup_rsvd(page, NULL);
2f37511c 1544 spin_lock(&hugetlb_lock);
a5516438
AK
1545 h->nr_huge_pages++;
1546 h->nr_huge_pages_node[nid]++;
7ffddd49 1547 ClearPageHugeFreed(page);
b7ba30c6 1548 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1549}
1550
d00181b9 1551static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1552{
1553 int i;
1554 int nr_pages = 1 << order;
1555 struct page *p = page + 1;
1556
1557 /* we rely on prep_new_huge_page to set the destructor */
1558 set_compound_order(page, order);
ef5a22be 1559 __ClearPageReserved(page);
de09d31d 1560 __SetPageHead(page);
20a0307c 1561 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1562 /*
1563 * For gigantic hugepages allocated through bootmem at
1564 * boot, it's safer to be consistent with the not-gigantic
1565 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1566 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1567 * pages may get the reference counting wrong if they see
1568 * PG_reserved set on a tail page (despite the head page not
1569 * having PG_reserved set). Enforcing this consistency between
1570 * head and tail pages allows drivers to optimize away a check
1571 * on the head page when they need know if put_page() is needed
1572 * after get_user_pages().
1573 */
1574 __ClearPageReserved(p);
58a84aa9 1575 set_page_count(p, 0);
1d798ca3 1576 set_compound_head(p, page);
20a0307c 1577 }
b4330afb 1578 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
1579
1580 if (hpage_pincount_available(page))
1581 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1582}
1583
7795912c
AM
1584/*
1585 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1586 * transparent huge pages. See the PageTransHuge() documentation for more
1587 * details.
1588 */
20a0307c
WF
1589int PageHuge(struct page *page)
1590{
20a0307c
WF
1591 if (!PageCompound(page))
1592 return 0;
1593
1594 page = compound_head(page);
f1e61557 1595 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1596}
43131e14
NH
1597EXPORT_SYMBOL_GPL(PageHuge);
1598
27c73ae7
AA
1599/*
1600 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1601 * normal or transparent huge pages.
1602 */
1603int PageHeadHuge(struct page *page_head)
1604{
27c73ae7
AA
1605 if (!PageHead(page_head))
1606 return 0;
1607
d4af73e3 1608 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1609}
27c73ae7 1610
c0d0381a
MK
1611/*
1612 * Find and lock address space (mapping) in write mode.
1613 *
336bf30e
MK
1614 * Upon entry, the page is locked which means that page_mapping() is
1615 * stable. Due to locking order, we can only trylock_write. If we can
1616 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1617 */
1618struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1619{
336bf30e 1620 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1621
c0d0381a
MK
1622 if (!mapping)
1623 return mapping;
1624
c0d0381a
MK
1625 if (i_mmap_trylock_write(mapping))
1626 return mapping;
1627
336bf30e 1628 return NULL;
c0d0381a
MK
1629}
1630
13d60f4b
ZY
1631pgoff_t __basepage_index(struct page *page)
1632{
1633 struct page *page_head = compound_head(page);
1634 pgoff_t index = page_index(page_head);
1635 unsigned long compound_idx;
1636
1637 if (!PageHuge(page_head))
1638 return page_index(page);
1639
1640 if (compound_order(page_head) >= MAX_ORDER)
1641 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1642 else
1643 compound_idx = page - page_head;
1644
1645 return (index << compound_order(page_head)) + compound_idx;
1646}
1647
0c397dae 1648static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1649 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1650 nodemask_t *node_alloc_noretry)
1da177e4 1651{
af0fb9df 1652 int order = huge_page_order(h);
1da177e4 1653 struct page *page;
f60858f9 1654 bool alloc_try_hard = true;
f96efd58 1655
f60858f9
MK
1656 /*
1657 * By default we always try hard to allocate the page with
1658 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1659 * a loop (to adjust global huge page counts) and previous allocation
1660 * failed, do not continue to try hard on the same node. Use the
1661 * node_alloc_noretry bitmap to manage this state information.
1662 */
1663 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1664 alloc_try_hard = false;
1665 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1666 if (alloc_try_hard)
1667 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1668 if (nid == NUMA_NO_NODE)
1669 nid = numa_mem_id();
1670 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1671 if (page)
1672 __count_vm_event(HTLB_BUDDY_PGALLOC);
1673 else
1674 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1675
f60858f9
MK
1676 /*
1677 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1678 * indicates an overall state change. Clear bit so that we resume
1679 * normal 'try hard' allocations.
1680 */
1681 if (node_alloc_noretry && page && !alloc_try_hard)
1682 node_clear(nid, *node_alloc_noretry);
1683
1684 /*
1685 * If we tried hard to get a page but failed, set bit so that
1686 * subsequent attempts will not try as hard until there is an
1687 * overall state change.
1688 */
1689 if (node_alloc_noretry && !page && alloc_try_hard)
1690 node_set(nid, *node_alloc_noretry);
1691
63b4613c
NA
1692 return page;
1693}
1694
0c397dae
MH
1695/*
1696 * Common helper to allocate a fresh hugetlb page. All specific allocators
1697 * should use this function to get new hugetlb pages
1698 */
1699static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1700 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1701 nodemask_t *node_alloc_noretry)
0c397dae
MH
1702{
1703 struct page *page;
1704
1705 if (hstate_is_gigantic(h))
1706 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1707 else
1708 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1709 nid, nmask, node_alloc_noretry);
0c397dae
MH
1710 if (!page)
1711 return NULL;
1712
1713 if (hstate_is_gigantic(h))
1714 prep_compound_gigantic_page(page, huge_page_order(h));
1715 prep_new_huge_page(h, page, page_to_nid(page));
1716
1717 return page;
1718}
1719
af0fb9df
MH
1720/*
1721 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1722 * manner.
1723 */
f60858f9
MK
1724static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1725 nodemask_t *node_alloc_noretry)
b2261026
JK
1726{
1727 struct page *page;
1728 int nr_nodes, node;
af0fb9df 1729 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1730
1731 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1732 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1733 node_alloc_noretry);
af0fb9df 1734 if (page)
b2261026 1735 break;
b2261026
JK
1736 }
1737
af0fb9df
MH
1738 if (!page)
1739 return 0;
b2261026 1740
af0fb9df
MH
1741 put_page(page); /* free it into the hugepage allocator */
1742
1743 return 1;
b2261026
JK
1744}
1745
e8c5c824
LS
1746/*
1747 * Free huge page from pool from next node to free.
1748 * Attempt to keep persistent huge pages more or less
1749 * balanced over allowed nodes.
1750 * Called with hugetlb_lock locked.
1751 */
6ae11b27
LS
1752static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1753 bool acct_surplus)
e8c5c824 1754{
b2261026 1755 int nr_nodes, node;
e8c5c824
LS
1756 int ret = 0;
1757
b2261026 1758 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1759 /*
1760 * If we're returning unused surplus pages, only examine
1761 * nodes with surplus pages.
1762 */
b2261026
JK
1763 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1764 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1765 struct page *page =
b2261026 1766 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1767 struct page, lru);
1768 list_del(&page->lru);
1769 h->free_huge_pages--;
b2261026 1770 h->free_huge_pages_node[node]--;
685f3457
LS
1771 if (acct_surplus) {
1772 h->surplus_huge_pages--;
b2261026 1773 h->surplus_huge_pages_node[node]--;
685f3457 1774 }
e8c5c824
LS
1775 update_and_free_page(h, page);
1776 ret = 1;
9a76db09 1777 break;
e8c5c824 1778 }
b2261026 1779 }
e8c5c824
LS
1780
1781 return ret;
1782}
1783
c8721bbb
NH
1784/*
1785 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1786 * nothing for in-use hugepages and non-hugepages.
1787 * This function returns values like below:
1788 *
1789 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1790 * (allocated or reserved.)
1791 * 0: successfully dissolved free hugepages or the page is not a
1792 * hugepage (considered as already dissolved)
c8721bbb 1793 */
c3114a84 1794int dissolve_free_huge_page(struct page *page)
c8721bbb 1795{
6bc9b564 1796 int rc = -EBUSY;
082d5b6b 1797
7ffddd49 1798retry:
faf53def
NH
1799 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1800 if (!PageHuge(page))
1801 return 0;
1802
c8721bbb 1803 spin_lock(&hugetlb_lock);
faf53def
NH
1804 if (!PageHuge(page)) {
1805 rc = 0;
1806 goto out;
1807 }
1808
1809 if (!page_count(page)) {
2247bb33
GS
1810 struct page *head = compound_head(page);
1811 struct hstate *h = page_hstate(head);
1812 int nid = page_to_nid(head);
6bc9b564 1813 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1814 goto out;
7ffddd49
MS
1815
1816 /*
1817 * We should make sure that the page is already on the free list
1818 * when it is dissolved.
1819 */
1820 if (unlikely(!PageHugeFreed(head))) {
1821 spin_unlock(&hugetlb_lock);
1822 cond_resched();
1823
1824 /*
1825 * Theoretically, we should return -EBUSY when we
1826 * encounter this race. In fact, we have a chance
1827 * to successfully dissolve the page if we do a
1828 * retry. Because the race window is quite small.
1829 * If we seize this opportunity, it is an optimization
1830 * for increasing the success rate of dissolving page.
1831 */
1832 goto retry;
1833 }
1834
c3114a84
AK
1835 /*
1836 * Move PageHWPoison flag from head page to the raw error page,
1837 * which makes any subpages rather than the error page reusable.
1838 */
1839 if (PageHWPoison(head) && page != head) {
1840 SetPageHWPoison(page);
1841 ClearPageHWPoison(head);
1842 }
2247bb33 1843 list_del(&head->lru);
c8721bbb
NH
1844 h->free_huge_pages--;
1845 h->free_huge_pages_node[nid]--;
c1470b33 1846 h->max_huge_pages--;
2247bb33 1847 update_and_free_page(h, head);
6bc9b564 1848 rc = 0;
c8721bbb 1849 }
082d5b6b 1850out:
c8721bbb 1851 spin_unlock(&hugetlb_lock);
082d5b6b 1852 return rc;
c8721bbb
NH
1853}
1854
1855/*
1856 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1857 * make specified memory blocks removable from the system.
2247bb33
GS
1858 * Note that this will dissolve a free gigantic hugepage completely, if any
1859 * part of it lies within the given range.
082d5b6b
GS
1860 * Also note that if dissolve_free_huge_page() returns with an error, all
1861 * free hugepages that were dissolved before that error are lost.
c8721bbb 1862 */
082d5b6b 1863int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1864{
c8721bbb 1865 unsigned long pfn;
eb03aa00 1866 struct page *page;
082d5b6b 1867 int rc = 0;
c8721bbb 1868
d0177639 1869 if (!hugepages_supported())
082d5b6b 1870 return rc;
d0177639 1871
eb03aa00
GS
1872 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1873 page = pfn_to_page(pfn);
faf53def
NH
1874 rc = dissolve_free_huge_page(page);
1875 if (rc)
1876 break;
eb03aa00 1877 }
082d5b6b
GS
1878
1879 return rc;
c8721bbb
NH
1880}
1881
ab5ac90a
MH
1882/*
1883 * Allocates a fresh surplus page from the page allocator.
1884 */
0c397dae 1885static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1886 int nid, nodemask_t *nmask)
7893d1d5 1887{
9980d744 1888 struct page *page = NULL;
7893d1d5 1889
bae7f4ae 1890 if (hstate_is_gigantic(h))
aa888a74
AK
1891 return NULL;
1892
d1c3fb1f 1893 spin_lock(&hugetlb_lock);
9980d744
MH
1894 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1895 goto out_unlock;
d1c3fb1f
NA
1896 spin_unlock(&hugetlb_lock);
1897
f60858f9 1898 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1899 if (!page)
0c397dae 1900 return NULL;
d1c3fb1f
NA
1901
1902 spin_lock(&hugetlb_lock);
9980d744
MH
1903 /*
1904 * We could have raced with the pool size change.
1905 * Double check that and simply deallocate the new page
1906 * if we would end up overcommiting the surpluses. Abuse
1907 * temporary page to workaround the nasty free_huge_page
1908 * codeflow
1909 */
1910 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1911 SetPageHugeTemporary(page);
2bf753e6 1912 spin_unlock(&hugetlb_lock);
9980d744 1913 put_page(page);
2bf753e6 1914 return NULL;
9980d744 1915 } else {
9980d744 1916 h->surplus_huge_pages++;
4704dea3 1917 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1918 }
9980d744
MH
1919
1920out_unlock:
d1c3fb1f 1921 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1922
1923 return page;
1924}
1925
bbe88753 1926static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1927 int nid, nodemask_t *nmask)
ab5ac90a
MH
1928{
1929 struct page *page;
1930
1931 if (hstate_is_gigantic(h))
1932 return NULL;
1933
f60858f9 1934 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1935 if (!page)
1936 return NULL;
1937
1938 /*
1939 * We do not account these pages as surplus because they are only
1940 * temporary and will be released properly on the last reference
1941 */
ab5ac90a
MH
1942 SetPageHugeTemporary(page);
1943
1944 return page;
1945}
1946
099730d6
DH
1947/*
1948 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1949 */
e0ec90ee 1950static
0c397dae 1951struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1952 struct vm_area_struct *vma, unsigned long addr)
1953{
aaf14e40
MH
1954 struct page *page;
1955 struct mempolicy *mpol;
1956 gfp_t gfp_mask = htlb_alloc_mask(h);
1957 int nid;
1958 nodemask_t *nodemask;
1959
1960 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1961 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1962 mpol_cond_put(mpol);
1963
1964 return page;
099730d6
DH
1965}
1966
ab5ac90a 1967/* page migration callback function */
3e59fcb0 1968struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1969 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1970{
4db9b2ef
MH
1971 spin_lock(&hugetlb_lock);
1972 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1973 struct page *page;
1974
1975 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1976 if (page) {
1977 spin_unlock(&hugetlb_lock);
1978 return page;
4db9b2ef
MH
1979 }
1980 }
1981 spin_unlock(&hugetlb_lock);
4db9b2ef 1982
0c397dae 1983 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1984}
1985
ebd63723 1986/* mempolicy aware migration callback */
389c8178
MH
1987struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1988 unsigned long address)
ebd63723
MH
1989{
1990 struct mempolicy *mpol;
1991 nodemask_t *nodemask;
1992 struct page *page;
ebd63723
MH
1993 gfp_t gfp_mask;
1994 int node;
1995
ebd63723
MH
1996 gfp_mask = htlb_alloc_mask(h);
1997 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 1998 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
1999 mpol_cond_put(mpol);
2000
2001 return page;
2002}
2003
e4e574b7 2004/*
25985edc 2005 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2006 * of size 'delta'.
2007 */
0a4f3d1b 2008static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 2009 __must_hold(&hugetlb_lock)
e4e574b7
AL
2010{
2011 struct list_head surplus_list;
2012 struct page *page, *tmp;
0a4f3d1b
LX
2013 int ret;
2014 long i;
2015 long needed, allocated;
28073b02 2016 bool alloc_ok = true;
e4e574b7 2017
a5516438 2018 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2019 if (needed <= 0) {
a5516438 2020 h->resv_huge_pages += delta;
e4e574b7 2021 return 0;
ac09b3a1 2022 }
e4e574b7
AL
2023
2024 allocated = 0;
2025 INIT_LIST_HEAD(&surplus_list);
2026
2027 ret = -ENOMEM;
2028retry:
2029 spin_unlock(&hugetlb_lock);
2030 for (i = 0; i < needed; i++) {
0c397dae 2031 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 2032 NUMA_NO_NODE, NULL);
28073b02
HD
2033 if (!page) {
2034 alloc_ok = false;
2035 break;
2036 }
e4e574b7 2037 list_add(&page->lru, &surplus_list);
69ed779a 2038 cond_resched();
e4e574b7 2039 }
28073b02 2040 allocated += i;
e4e574b7
AL
2041
2042 /*
2043 * After retaking hugetlb_lock, we need to recalculate 'needed'
2044 * because either resv_huge_pages or free_huge_pages may have changed.
2045 */
2046 spin_lock(&hugetlb_lock);
a5516438
AK
2047 needed = (h->resv_huge_pages + delta) -
2048 (h->free_huge_pages + allocated);
28073b02
HD
2049 if (needed > 0) {
2050 if (alloc_ok)
2051 goto retry;
2052 /*
2053 * We were not able to allocate enough pages to
2054 * satisfy the entire reservation so we free what
2055 * we've allocated so far.
2056 */
2057 goto free;
2058 }
e4e574b7
AL
2059 /*
2060 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2061 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2062 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2063 * allocator. Commit the entire reservation here to prevent another
2064 * process from stealing the pages as they are added to the pool but
2065 * before they are reserved.
e4e574b7
AL
2066 */
2067 needed += allocated;
a5516438 2068 h->resv_huge_pages += delta;
e4e574b7 2069 ret = 0;
a9869b83 2070
19fc3f0a 2071 /* Free the needed pages to the hugetlb pool */
e4e574b7 2072 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
e558464b
MS
2073 int zeroed;
2074
19fc3f0a
AL
2075 if ((--needed) < 0)
2076 break;
a9869b83
NH
2077 /*
2078 * This page is now managed by the hugetlb allocator and has
2079 * no users -- drop the buddy allocator's reference.
2080 */
e558464b
MS
2081 zeroed = put_page_testzero(page);
2082 VM_BUG_ON_PAGE(!zeroed, page);
a5516438 2083 enqueue_huge_page(h, page);
19fc3f0a 2084 }
28073b02 2085free:
b0365c8d 2086 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
2087
2088 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2089 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2090 put_page(page);
a9869b83 2091 spin_lock(&hugetlb_lock);
e4e574b7
AL
2092
2093 return ret;
2094}
2095
2096/*
e5bbc8a6
MK
2097 * This routine has two main purposes:
2098 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2099 * in unused_resv_pages. This corresponds to the prior adjustments made
2100 * to the associated reservation map.
2101 * 2) Free any unused surplus pages that may have been allocated to satisfy
2102 * the reservation. As many as unused_resv_pages may be freed.
2103 *
2104 * Called with hugetlb_lock held. However, the lock could be dropped (and
2105 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2106 * we must make sure nobody else can claim pages we are in the process of
2107 * freeing. Do this by ensuring resv_huge_page always is greater than the
2108 * number of huge pages we plan to free when dropping the lock.
e4e574b7 2109 */
a5516438
AK
2110static void return_unused_surplus_pages(struct hstate *h,
2111 unsigned long unused_resv_pages)
e4e574b7 2112{
e4e574b7
AL
2113 unsigned long nr_pages;
2114
aa888a74 2115 /* Cannot return gigantic pages currently */
bae7f4ae 2116 if (hstate_is_gigantic(h))
e5bbc8a6 2117 goto out;
aa888a74 2118
e5bbc8a6
MK
2119 /*
2120 * Part (or even all) of the reservation could have been backed
2121 * by pre-allocated pages. Only free surplus pages.
2122 */
a5516438 2123 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2124
685f3457
LS
2125 /*
2126 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2127 * evenly across all nodes with memory. Iterate across these nodes
2128 * until we can no longer free unreserved surplus pages. This occurs
2129 * when the nodes with surplus pages have no free pages.
9e7ee400 2130 * free_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2131 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
2132 *
2133 * Note that we decrement resv_huge_pages as we free the pages. If
2134 * we drop the lock, resv_huge_pages will still be sufficiently large
2135 * to cover subsequent pages we may free.
685f3457
LS
2136 */
2137 while (nr_pages--) {
e5bbc8a6
MK
2138 h->resv_huge_pages--;
2139 unused_resv_pages--;
8cebfcd0 2140 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 2141 goto out;
7848a4bf 2142 cond_resched_lock(&hugetlb_lock);
e4e574b7 2143 }
e5bbc8a6
MK
2144
2145out:
2146 /* Fully uncommit the reservation */
2147 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
2148}
2149
5e911373 2150
c37f9fb1 2151/*
feba16e2 2152 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2153 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2154 *
2155 * vma_needs_reservation is called to determine if the huge page at addr
2156 * within the vma has an associated reservation. If a reservation is
2157 * needed, the value 1 is returned. The caller is then responsible for
2158 * managing the global reservation and subpool usage counts. After
2159 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2160 * to add the page to the reservation map. If the page allocation fails,
2161 * the reservation must be ended instead of committed. vma_end_reservation
2162 * is called in such cases.
cf3ad20b
MK
2163 *
2164 * In the normal case, vma_commit_reservation returns the same value
2165 * as the preceding vma_needs_reservation call. The only time this
2166 * is not the case is if a reserve map was changed between calls. It
2167 * is the responsibility of the caller to notice the difference and
2168 * take appropriate action.
96b96a96
MK
2169 *
2170 * vma_add_reservation is used in error paths where a reservation must
2171 * be restored when a newly allocated huge page must be freed. It is
2172 * to be called after calling vma_needs_reservation to determine if a
2173 * reservation exists.
c37f9fb1 2174 */
5e911373
MK
2175enum vma_resv_mode {
2176 VMA_NEEDS_RESV,
2177 VMA_COMMIT_RESV,
feba16e2 2178 VMA_END_RESV,
96b96a96 2179 VMA_ADD_RESV,
5e911373 2180};
cf3ad20b
MK
2181static long __vma_reservation_common(struct hstate *h,
2182 struct vm_area_struct *vma, unsigned long addr,
5e911373 2183 enum vma_resv_mode mode)
c37f9fb1 2184{
4e35f483
JK
2185 struct resv_map *resv;
2186 pgoff_t idx;
cf3ad20b 2187 long ret;
0db9d74e 2188 long dummy_out_regions_needed;
c37f9fb1 2189
4e35f483
JK
2190 resv = vma_resv_map(vma);
2191 if (!resv)
84afd99b 2192 return 1;
c37f9fb1 2193
4e35f483 2194 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2195 switch (mode) {
2196 case VMA_NEEDS_RESV:
0db9d74e
MA
2197 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2198 /* We assume that vma_reservation_* routines always operate on
2199 * 1 page, and that adding to resv map a 1 page entry can only
2200 * ever require 1 region.
2201 */
2202 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2203 break;
2204 case VMA_COMMIT_RESV:
075a61d0 2205 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2206 /* region_add calls of range 1 should never fail. */
2207 VM_BUG_ON(ret < 0);
5e911373 2208 break;
feba16e2 2209 case VMA_END_RESV:
0db9d74e 2210 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2211 ret = 0;
2212 break;
96b96a96 2213 case VMA_ADD_RESV:
0db9d74e 2214 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2215 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2216 /* region_add calls of range 1 should never fail. */
2217 VM_BUG_ON(ret < 0);
2218 } else {
2219 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2220 ret = region_del(resv, idx, idx + 1);
2221 }
2222 break;
5e911373
MK
2223 default:
2224 BUG();
2225 }
84afd99b 2226
4e35f483 2227 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2228 return ret;
67961f9d
MK
2229 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2230 /*
2231 * In most cases, reserves always exist for private mappings.
2232 * However, a file associated with mapping could have been
2233 * hole punched or truncated after reserves were consumed.
2234 * As subsequent fault on such a range will not use reserves.
2235 * Subtle - The reserve map for private mappings has the
2236 * opposite meaning than that of shared mappings. If NO
2237 * entry is in the reserve map, it means a reservation exists.
2238 * If an entry exists in the reserve map, it means the
2239 * reservation has already been consumed. As a result, the
2240 * return value of this routine is the opposite of the
2241 * value returned from reserve map manipulation routines above.
2242 */
2243 if (ret)
2244 return 0;
2245 else
2246 return 1;
2247 }
4e35f483 2248 else
cf3ad20b 2249 return ret < 0 ? ret : 0;
c37f9fb1 2250}
cf3ad20b
MK
2251
2252static long vma_needs_reservation(struct hstate *h,
a5516438 2253 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2254{
5e911373 2255 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2256}
84afd99b 2257
cf3ad20b
MK
2258static long vma_commit_reservation(struct hstate *h,
2259 struct vm_area_struct *vma, unsigned long addr)
2260{
5e911373
MK
2261 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2262}
2263
feba16e2 2264static void vma_end_reservation(struct hstate *h,
5e911373
MK
2265 struct vm_area_struct *vma, unsigned long addr)
2266{
feba16e2 2267 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2268}
2269
96b96a96
MK
2270static long vma_add_reservation(struct hstate *h,
2271 struct vm_area_struct *vma, unsigned long addr)
2272{
2273 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2274}
2275
2276/*
2277 * This routine is called to restore a reservation on error paths. In the
2278 * specific error paths, a huge page was allocated (via alloc_huge_page)
2279 * and is about to be freed. If a reservation for the page existed,
2280 * alloc_huge_page would have consumed the reservation and set PagePrivate
2281 * in the newly allocated page. When the page is freed via free_huge_page,
2282 * the global reservation count will be incremented if PagePrivate is set.
2283 * However, free_huge_page can not adjust the reserve map. Adjust the
2284 * reserve map here to be consistent with global reserve count adjustments
2285 * to be made by free_huge_page.
2286 */
2287static void restore_reserve_on_error(struct hstate *h,
2288 struct vm_area_struct *vma, unsigned long address,
2289 struct page *page)
2290{
2291 if (unlikely(PagePrivate(page))) {
2292 long rc = vma_needs_reservation(h, vma, address);
2293
2294 if (unlikely(rc < 0)) {
2295 /*
2296 * Rare out of memory condition in reserve map
2297 * manipulation. Clear PagePrivate so that
2298 * global reserve count will not be incremented
2299 * by free_huge_page. This will make it appear
2300 * as though the reservation for this page was
2301 * consumed. This may prevent the task from
2302 * faulting in the page at a later time. This
2303 * is better than inconsistent global huge page
2304 * accounting of reserve counts.
2305 */
2306 ClearPagePrivate(page);
2307 } else if (rc) {
2308 rc = vma_add_reservation(h, vma, address);
2309 if (unlikely(rc < 0))
2310 /*
2311 * See above comment about rare out of
2312 * memory condition.
2313 */
2314 ClearPagePrivate(page);
2315 } else
2316 vma_end_reservation(h, vma, address);
2317 }
2318}
2319
70c3547e 2320struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2321 unsigned long addr, int avoid_reserve)
1da177e4 2322{
90481622 2323 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2324 struct hstate *h = hstate_vma(vma);
348ea204 2325 struct page *page;
d85f69b0
MK
2326 long map_chg, map_commit;
2327 long gbl_chg;
6d76dcf4
AK
2328 int ret, idx;
2329 struct hugetlb_cgroup *h_cg;
08cf9faf 2330 bool deferred_reserve;
a1e78772 2331
6d76dcf4 2332 idx = hstate_index(h);
a1e78772 2333 /*
d85f69b0
MK
2334 * Examine the region/reserve map to determine if the process
2335 * has a reservation for the page to be allocated. A return
2336 * code of zero indicates a reservation exists (no change).
a1e78772 2337 */
d85f69b0
MK
2338 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2339 if (map_chg < 0)
76dcee75 2340 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2341
2342 /*
2343 * Processes that did not create the mapping will have no
2344 * reserves as indicated by the region/reserve map. Check
2345 * that the allocation will not exceed the subpool limit.
2346 * Allocations for MAP_NORESERVE mappings also need to be
2347 * checked against any subpool limit.
2348 */
2349 if (map_chg || avoid_reserve) {
2350 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2351 if (gbl_chg < 0) {
feba16e2 2352 vma_end_reservation(h, vma, addr);
76dcee75 2353 return ERR_PTR(-ENOSPC);
5e911373 2354 }
1da177e4 2355
d85f69b0
MK
2356 /*
2357 * Even though there was no reservation in the region/reserve
2358 * map, there could be reservations associated with the
2359 * subpool that can be used. This would be indicated if the
2360 * return value of hugepage_subpool_get_pages() is zero.
2361 * However, if avoid_reserve is specified we still avoid even
2362 * the subpool reservations.
2363 */
2364 if (avoid_reserve)
2365 gbl_chg = 1;
2366 }
2367
08cf9faf
MA
2368 /* If this allocation is not consuming a reservation, charge it now.
2369 */
2370 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2371 if (deferred_reserve) {
2372 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2373 idx, pages_per_huge_page(h), &h_cg);
2374 if (ret)
2375 goto out_subpool_put;
2376 }
2377
6d76dcf4 2378 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2379 if (ret)
08cf9faf 2380 goto out_uncharge_cgroup_reservation;
8f34af6f 2381
1da177e4 2382 spin_lock(&hugetlb_lock);
d85f69b0
MK
2383 /*
2384 * glb_chg is passed to indicate whether or not a page must be taken
2385 * from the global free pool (global change). gbl_chg == 0 indicates
2386 * a reservation exists for the allocation.
2387 */
2388 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2389 if (!page) {
94ae8ba7 2390 spin_unlock(&hugetlb_lock);
0c397dae 2391 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2392 if (!page)
2393 goto out_uncharge_cgroup;
a88c7695
NH
2394 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2395 SetPagePrivate(page);
2396 h->resv_huge_pages--;
2397 }
79dbb236 2398 spin_lock(&hugetlb_lock);
15a8d68e 2399 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2400 /* Fall through */
68842c9b 2401 }
81a6fcae 2402 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2403 /* If allocation is not consuming a reservation, also store the
2404 * hugetlb_cgroup pointer on the page.
2405 */
2406 if (deferred_reserve) {
2407 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2408 h_cg, page);
2409 }
2410
81a6fcae 2411 spin_unlock(&hugetlb_lock);
348ea204 2412
90481622 2413 set_page_private(page, (unsigned long)spool);
90d8b7e6 2414
d85f69b0
MK
2415 map_commit = vma_commit_reservation(h, vma, addr);
2416 if (unlikely(map_chg > map_commit)) {
33039678
MK
2417 /*
2418 * The page was added to the reservation map between
2419 * vma_needs_reservation and vma_commit_reservation.
2420 * This indicates a race with hugetlb_reserve_pages.
2421 * Adjust for the subpool count incremented above AND
2422 * in hugetlb_reserve_pages for the same page. Also,
2423 * the reservation count added in hugetlb_reserve_pages
2424 * no longer applies.
2425 */
2426 long rsv_adjust;
2427
2428 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2429 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2430 if (deferred_reserve)
2431 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2432 pages_per_huge_page(h), page);
33039678 2433 }
90d8b7e6 2434 return page;
8f34af6f
JZ
2435
2436out_uncharge_cgroup:
2437 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2438out_uncharge_cgroup_reservation:
2439 if (deferred_reserve)
2440 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2441 h_cg);
8f34af6f 2442out_subpool_put:
d85f69b0 2443 if (map_chg || avoid_reserve)
8f34af6f 2444 hugepage_subpool_put_pages(spool, 1);
feba16e2 2445 vma_end_reservation(h, vma, addr);
8f34af6f 2446 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2447}
2448
e24a1307
AK
2449int alloc_bootmem_huge_page(struct hstate *h)
2450 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2451int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2452{
2453 struct huge_bootmem_page *m;
b2261026 2454 int nr_nodes, node;
aa888a74 2455
b2261026 2456 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2457 void *addr;
2458
eb31d559 2459 addr = memblock_alloc_try_nid_raw(
8b89a116 2460 huge_page_size(h), huge_page_size(h),
97ad1087 2461 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2462 if (addr) {
2463 /*
2464 * Use the beginning of the huge page to store the
2465 * huge_bootmem_page struct (until gather_bootmem
2466 * puts them into the mem_map).
2467 */
2468 m = addr;
91f47662 2469 goto found;
aa888a74 2470 }
aa888a74
AK
2471 }
2472 return 0;
2473
2474found:
df994ead 2475 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2476 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2477 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2478 list_add(&m->list, &huge_boot_pages);
2479 m->hstate = h;
2480 return 1;
2481}
2482
d00181b9
KS
2483static void __init prep_compound_huge_page(struct page *page,
2484 unsigned int order)
18229df5
AW
2485{
2486 if (unlikely(order > (MAX_ORDER - 1)))
2487 prep_compound_gigantic_page(page, order);
2488 else
2489 prep_compound_page(page, order);
2490}
2491
aa888a74
AK
2492/* Put bootmem huge pages into the standard lists after mem_map is up */
2493static void __init gather_bootmem_prealloc(void)
2494{
2495 struct huge_bootmem_page *m;
2496
2497 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2498 struct page *page = virt_to_page(m);
aa888a74 2499 struct hstate *h = m->hstate;
ee8f248d 2500
aa888a74 2501 WARN_ON(page_count(page) != 1);
18229df5 2502 prep_compound_huge_page(page, h->order);
ef5a22be 2503 WARN_ON(PageReserved(page));
aa888a74 2504 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2505 put_page(page); /* free it into the hugepage allocator */
2506
b0320c7b
RA
2507 /*
2508 * If we had gigantic hugepages allocated at boot time, we need
2509 * to restore the 'stolen' pages to totalram_pages in order to
2510 * fix confusing memory reports from free(1) and another
2511 * side-effects, like CommitLimit going negative.
2512 */
bae7f4ae 2513 if (hstate_is_gigantic(h))
3dcc0571 2514 adjust_managed_page_count(page, 1 << h->order);
520495fe 2515 cond_resched();
aa888a74
AK
2516 }
2517}
2518
8faa8b07 2519static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2520{
2521 unsigned long i;
f60858f9
MK
2522 nodemask_t *node_alloc_noretry;
2523
2524 if (!hstate_is_gigantic(h)) {
2525 /*
2526 * Bit mask controlling how hard we retry per-node allocations.
2527 * Ignore errors as lower level routines can deal with
2528 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2529 * time, we are likely in bigger trouble.
2530 */
2531 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2532 GFP_KERNEL);
2533 } else {
2534 /* allocations done at boot time */
2535 node_alloc_noretry = NULL;
2536 }
2537
2538 /* bit mask controlling how hard we retry per-node allocations */
2539 if (node_alloc_noretry)
2540 nodes_clear(*node_alloc_noretry);
a5516438 2541
e5ff2159 2542 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2543 if (hstate_is_gigantic(h)) {
dbda8fea 2544 if (hugetlb_cma_size) {
cf11e85f 2545 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
1ed11ee2 2546 goto free;
cf11e85f 2547 }
aa888a74
AK
2548 if (!alloc_bootmem_huge_page(h))
2549 break;
0c397dae 2550 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2551 &node_states[N_MEMORY],
2552 node_alloc_noretry))
1da177e4 2553 break;
69ed779a 2554 cond_resched();
1da177e4 2555 }
d715cf80
LH
2556 if (i < h->max_huge_pages) {
2557 char buf[32];
2558
c6247f72 2559 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2560 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2561 h->max_huge_pages, buf, i);
2562 h->max_huge_pages = i;
2563 }
1ed11ee2 2564free:
f60858f9 2565 kfree(node_alloc_noretry);
e5ff2159
AK
2566}
2567
2568static void __init hugetlb_init_hstates(void)
2569{
2570 struct hstate *h;
2571
2572 for_each_hstate(h) {
641844f5
NH
2573 if (minimum_order > huge_page_order(h))
2574 minimum_order = huge_page_order(h);
2575
8faa8b07 2576 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2577 if (!hstate_is_gigantic(h))
8faa8b07 2578 hugetlb_hstate_alloc_pages(h);
e5ff2159 2579 }
641844f5 2580 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2581}
2582
2583static void __init report_hugepages(void)
2584{
2585 struct hstate *h;
2586
2587 for_each_hstate(h) {
4abd32db 2588 char buf[32];
c6247f72
MW
2589
2590 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2591 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2592 buf, h->free_huge_pages);
e5ff2159
AK
2593 }
2594}
2595
1da177e4 2596#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2597static void try_to_free_low(struct hstate *h, unsigned long count,
2598 nodemask_t *nodes_allowed)
1da177e4 2599{
4415cc8d
CL
2600 int i;
2601
bae7f4ae 2602 if (hstate_is_gigantic(h))
aa888a74
AK
2603 return;
2604
6ae11b27 2605 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2606 struct page *page, *next;
a5516438
AK
2607 struct list_head *freel = &h->hugepage_freelists[i];
2608 list_for_each_entry_safe(page, next, freel, lru) {
2609 if (count >= h->nr_huge_pages)
6b0c880d 2610 return;
1da177e4
LT
2611 if (PageHighMem(page))
2612 continue;
2613 list_del(&page->lru);
e5ff2159 2614 update_and_free_page(h, page);
a5516438
AK
2615 h->free_huge_pages--;
2616 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2617 }
2618 }
2619}
2620#else
6ae11b27
LS
2621static inline void try_to_free_low(struct hstate *h, unsigned long count,
2622 nodemask_t *nodes_allowed)
1da177e4
LT
2623{
2624}
2625#endif
2626
20a0307c
WF
2627/*
2628 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2629 * balanced by operating on them in a round-robin fashion.
2630 * Returns 1 if an adjustment was made.
2631 */
6ae11b27
LS
2632static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2633 int delta)
20a0307c 2634{
b2261026 2635 int nr_nodes, node;
20a0307c
WF
2636
2637 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2638
b2261026
JK
2639 if (delta < 0) {
2640 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2641 if (h->surplus_huge_pages_node[node])
2642 goto found;
e8c5c824 2643 }
b2261026
JK
2644 } else {
2645 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2646 if (h->surplus_huge_pages_node[node] <
2647 h->nr_huge_pages_node[node])
2648 goto found;
e8c5c824 2649 }
b2261026
JK
2650 }
2651 return 0;
20a0307c 2652
b2261026
JK
2653found:
2654 h->surplus_huge_pages += delta;
2655 h->surplus_huge_pages_node[node] += delta;
2656 return 1;
20a0307c
WF
2657}
2658
a5516438 2659#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2660static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2661 nodemask_t *nodes_allowed)
1da177e4 2662{
7893d1d5 2663 unsigned long min_count, ret;
f60858f9
MK
2664 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2665
2666 /*
2667 * Bit mask controlling how hard we retry per-node allocations.
2668 * If we can not allocate the bit mask, do not attempt to allocate
2669 * the requested huge pages.
2670 */
2671 if (node_alloc_noretry)
2672 nodes_clear(*node_alloc_noretry);
2673 else
2674 return -ENOMEM;
1da177e4 2675
4eb0716e
AG
2676 spin_lock(&hugetlb_lock);
2677
fd875dca
MK
2678 /*
2679 * Check for a node specific request.
2680 * Changing node specific huge page count may require a corresponding
2681 * change to the global count. In any case, the passed node mask
2682 * (nodes_allowed) will restrict alloc/free to the specified node.
2683 */
2684 if (nid != NUMA_NO_NODE) {
2685 unsigned long old_count = count;
2686
2687 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2688 /*
2689 * User may have specified a large count value which caused the
2690 * above calculation to overflow. In this case, they wanted
2691 * to allocate as many huge pages as possible. Set count to
2692 * largest possible value to align with their intention.
2693 */
2694 if (count < old_count)
2695 count = ULONG_MAX;
2696 }
2697
4eb0716e
AG
2698 /*
2699 * Gigantic pages runtime allocation depend on the capability for large
2700 * page range allocation.
2701 * If the system does not provide this feature, return an error when
2702 * the user tries to allocate gigantic pages but let the user free the
2703 * boottime allocated gigantic pages.
2704 */
2705 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2706 if (count > persistent_huge_pages(h)) {
2707 spin_unlock(&hugetlb_lock);
f60858f9 2708 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2709 return -EINVAL;
2710 }
2711 /* Fall through to decrease pool */
2712 }
aa888a74 2713
7893d1d5
AL
2714 /*
2715 * Increase the pool size
2716 * First take pages out of surplus state. Then make up the
2717 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2718 *
0c397dae 2719 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2720 * to convert a surplus huge page to a normal huge page. That is
2721 * not critical, though, it just means the overall size of the
2722 * pool might be one hugepage larger than it needs to be, but
2723 * within all the constraints specified by the sysctls.
7893d1d5 2724 */
a5516438 2725 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2726 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2727 break;
2728 }
2729
a5516438 2730 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2731 /*
2732 * If this allocation races such that we no longer need the
2733 * page, free_huge_page will handle it by freeing the page
2734 * and reducing the surplus.
2735 */
2736 spin_unlock(&hugetlb_lock);
649920c6
JH
2737
2738 /* yield cpu to avoid soft lockup */
2739 cond_resched();
2740
f60858f9
MK
2741 ret = alloc_pool_huge_page(h, nodes_allowed,
2742 node_alloc_noretry);
7893d1d5
AL
2743 spin_lock(&hugetlb_lock);
2744 if (!ret)
2745 goto out;
2746
536240f2
MG
2747 /* Bail for signals. Probably ctrl-c from user */
2748 if (signal_pending(current))
2749 goto out;
7893d1d5 2750 }
7893d1d5
AL
2751
2752 /*
2753 * Decrease the pool size
2754 * First return free pages to the buddy allocator (being careful
2755 * to keep enough around to satisfy reservations). Then place
2756 * pages into surplus state as needed so the pool will shrink
2757 * to the desired size as pages become free.
d1c3fb1f
NA
2758 *
2759 * By placing pages into the surplus state independent of the
2760 * overcommit value, we are allowing the surplus pool size to
2761 * exceed overcommit. There are few sane options here. Since
0c397dae 2762 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2763 * though, we'll note that we're not allowed to exceed surplus
2764 * and won't grow the pool anywhere else. Not until one of the
2765 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2766 */
a5516438 2767 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2768 min_count = max(count, min_count);
6ae11b27 2769 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2770 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2771 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2772 break;
55f67141 2773 cond_resched_lock(&hugetlb_lock);
1da177e4 2774 }
a5516438 2775 while (count < persistent_huge_pages(h)) {
6ae11b27 2776 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2777 break;
2778 }
2779out:
4eb0716e 2780 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2781 spin_unlock(&hugetlb_lock);
4eb0716e 2782
f60858f9
MK
2783 NODEMASK_FREE(node_alloc_noretry);
2784
4eb0716e 2785 return 0;
1da177e4
LT
2786}
2787
a3437870
NA
2788#define HSTATE_ATTR_RO(_name) \
2789 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2790
2791#define HSTATE_ATTR(_name) \
2792 static struct kobj_attribute _name##_attr = \
2793 __ATTR(_name, 0644, _name##_show, _name##_store)
2794
2795static struct kobject *hugepages_kobj;
2796static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2797
9a305230
LS
2798static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2799
2800static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2801{
2802 int i;
9a305230 2803
a3437870 2804 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2805 if (hstate_kobjs[i] == kobj) {
2806 if (nidp)
2807 *nidp = NUMA_NO_NODE;
a3437870 2808 return &hstates[i];
9a305230
LS
2809 }
2810
2811 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2812}
2813
06808b08 2814static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2815 struct kobj_attribute *attr, char *buf)
2816{
9a305230
LS
2817 struct hstate *h;
2818 unsigned long nr_huge_pages;
2819 int nid;
2820
2821 h = kobj_to_hstate(kobj, &nid);
2822 if (nid == NUMA_NO_NODE)
2823 nr_huge_pages = h->nr_huge_pages;
2824 else
2825 nr_huge_pages = h->nr_huge_pages_node[nid];
2826
ae7a927d 2827 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 2828}
adbe8726 2829
238d3c13
DR
2830static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2831 struct hstate *h, int nid,
2832 unsigned long count, size_t len)
a3437870
NA
2833{
2834 int err;
2d0adf7e 2835 nodemask_t nodes_allowed, *n_mask;
a3437870 2836
2d0adf7e
OS
2837 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2838 return -EINVAL;
adbe8726 2839
9a305230
LS
2840 if (nid == NUMA_NO_NODE) {
2841 /*
2842 * global hstate attribute
2843 */
2844 if (!(obey_mempolicy &&
2d0adf7e
OS
2845 init_nodemask_of_mempolicy(&nodes_allowed)))
2846 n_mask = &node_states[N_MEMORY];
2847 else
2848 n_mask = &nodes_allowed;
2849 } else {
9a305230 2850 /*
fd875dca
MK
2851 * Node specific request. count adjustment happens in
2852 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2853 */
2d0adf7e
OS
2854 init_nodemask_of_node(&nodes_allowed, nid);
2855 n_mask = &nodes_allowed;
fd875dca 2856 }
9a305230 2857
2d0adf7e 2858 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2859
4eb0716e 2860 return err ? err : len;
06808b08
LS
2861}
2862
238d3c13
DR
2863static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2864 struct kobject *kobj, const char *buf,
2865 size_t len)
2866{
2867 struct hstate *h;
2868 unsigned long count;
2869 int nid;
2870 int err;
2871
2872 err = kstrtoul(buf, 10, &count);
2873 if (err)
2874 return err;
2875
2876 h = kobj_to_hstate(kobj, &nid);
2877 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2878}
2879
06808b08
LS
2880static ssize_t nr_hugepages_show(struct kobject *kobj,
2881 struct kobj_attribute *attr, char *buf)
2882{
2883 return nr_hugepages_show_common(kobj, attr, buf);
2884}
2885
2886static ssize_t nr_hugepages_store(struct kobject *kobj,
2887 struct kobj_attribute *attr, const char *buf, size_t len)
2888{
238d3c13 2889 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2890}
2891HSTATE_ATTR(nr_hugepages);
2892
06808b08
LS
2893#ifdef CONFIG_NUMA
2894
2895/*
2896 * hstate attribute for optionally mempolicy-based constraint on persistent
2897 * huge page alloc/free.
2898 */
2899static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
2900 struct kobj_attribute *attr,
2901 char *buf)
06808b08
LS
2902{
2903 return nr_hugepages_show_common(kobj, attr, buf);
2904}
2905
2906static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2907 struct kobj_attribute *attr, const char *buf, size_t len)
2908{
238d3c13 2909 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2910}
2911HSTATE_ATTR(nr_hugepages_mempolicy);
2912#endif
2913
2914
a3437870
NA
2915static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2916 struct kobj_attribute *attr, char *buf)
2917{
9a305230 2918 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2919 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 2920}
adbe8726 2921
a3437870
NA
2922static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2923 struct kobj_attribute *attr, const char *buf, size_t count)
2924{
2925 int err;
2926 unsigned long input;
9a305230 2927 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2928
bae7f4ae 2929 if (hstate_is_gigantic(h))
adbe8726
EM
2930 return -EINVAL;
2931
3dbb95f7 2932 err = kstrtoul(buf, 10, &input);
a3437870 2933 if (err)
73ae31e5 2934 return err;
a3437870
NA
2935
2936 spin_lock(&hugetlb_lock);
2937 h->nr_overcommit_huge_pages = input;
2938 spin_unlock(&hugetlb_lock);
2939
2940 return count;
2941}
2942HSTATE_ATTR(nr_overcommit_hugepages);
2943
2944static ssize_t free_hugepages_show(struct kobject *kobj,
2945 struct kobj_attribute *attr, char *buf)
2946{
9a305230
LS
2947 struct hstate *h;
2948 unsigned long free_huge_pages;
2949 int nid;
2950
2951 h = kobj_to_hstate(kobj, &nid);
2952 if (nid == NUMA_NO_NODE)
2953 free_huge_pages = h->free_huge_pages;
2954 else
2955 free_huge_pages = h->free_huge_pages_node[nid];
2956
ae7a927d 2957 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
2958}
2959HSTATE_ATTR_RO(free_hugepages);
2960
2961static ssize_t resv_hugepages_show(struct kobject *kobj,
2962 struct kobj_attribute *attr, char *buf)
2963{
9a305230 2964 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2965 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
2966}
2967HSTATE_ATTR_RO(resv_hugepages);
2968
2969static ssize_t surplus_hugepages_show(struct kobject *kobj,
2970 struct kobj_attribute *attr, char *buf)
2971{
9a305230
LS
2972 struct hstate *h;
2973 unsigned long surplus_huge_pages;
2974 int nid;
2975
2976 h = kobj_to_hstate(kobj, &nid);
2977 if (nid == NUMA_NO_NODE)
2978 surplus_huge_pages = h->surplus_huge_pages;
2979 else
2980 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2981
ae7a927d 2982 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2983}
2984HSTATE_ATTR_RO(surplus_hugepages);
2985
2986static struct attribute *hstate_attrs[] = {
2987 &nr_hugepages_attr.attr,
2988 &nr_overcommit_hugepages_attr.attr,
2989 &free_hugepages_attr.attr,
2990 &resv_hugepages_attr.attr,
2991 &surplus_hugepages_attr.attr,
06808b08
LS
2992#ifdef CONFIG_NUMA
2993 &nr_hugepages_mempolicy_attr.attr,
2994#endif
a3437870
NA
2995 NULL,
2996};
2997
67e5ed96 2998static const struct attribute_group hstate_attr_group = {
a3437870
NA
2999 .attrs = hstate_attrs,
3000};
3001
094e9539
JM
3002static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3003 struct kobject **hstate_kobjs,
67e5ed96 3004 const struct attribute_group *hstate_attr_group)
a3437870
NA
3005{
3006 int retval;
972dc4de 3007 int hi = hstate_index(h);
a3437870 3008
9a305230
LS
3009 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3010 if (!hstate_kobjs[hi])
a3437870
NA
3011 return -ENOMEM;
3012
9a305230 3013 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2710104c 3014 if (retval) {
9a305230 3015 kobject_put(hstate_kobjs[hi]);
2710104c
ML
3016 hstate_kobjs[hi] = NULL;
3017 }
a3437870
NA
3018
3019 return retval;
3020}
3021
3022static void __init hugetlb_sysfs_init(void)
3023{
3024 struct hstate *h;
3025 int err;
3026
3027 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3028 if (!hugepages_kobj)
3029 return;
3030
3031 for_each_hstate(h) {
9a305230
LS
3032 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3033 hstate_kobjs, &hstate_attr_group);
a3437870 3034 if (err)
282f4214 3035 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3036 }
3037}
3038
9a305230
LS
3039#ifdef CONFIG_NUMA
3040
3041/*
3042 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3043 * with node devices in node_devices[] using a parallel array. The array
3044 * index of a node device or _hstate == node id.
3045 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3046 * the base kernel, on the hugetlb module.
3047 */
3048struct node_hstate {
3049 struct kobject *hugepages_kobj;
3050 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3051};
b4e289a6 3052static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3053
3054/*
10fbcf4c 3055 * A subset of global hstate attributes for node devices
9a305230
LS
3056 */
3057static struct attribute *per_node_hstate_attrs[] = {
3058 &nr_hugepages_attr.attr,
3059 &free_hugepages_attr.attr,
3060 &surplus_hugepages_attr.attr,
3061 NULL,
3062};
3063
67e5ed96 3064static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3065 .attrs = per_node_hstate_attrs,
3066};
3067
3068/*
10fbcf4c 3069 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3070 * Returns node id via non-NULL nidp.
3071 */
3072static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3073{
3074 int nid;
3075
3076 for (nid = 0; nid < nr_node_ids; nid++) {
3077 struct node_hstate *nhs = &node_hstates[nid];
3078 int i;
3079 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3080 if (nhs->hstate_kobjs[i] == kobj) {
3081 if (nidp)
3082 *nidp = nid;
3083 return &hstates[i];
3084 }
3085 }
3086
3087 BUG();
3088 return NULL;
3089}
3090
3091/*
10fbcf4c 3092 * Unregister hstate attributes from a single node device.
9a305230
LS
3093 * No-op if no hstate attributes attached.
3094 */
3cd8b44f 3095static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3096{
3097 struct hstate *h;
10fbcf4c 3098 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3099
3100 if (!nhs->hugepages_kobj)
9b5e5d0f 3101 return; /* no hstate attributes */
9a305230 3102
972dc4de
AK
3103 for_each_hstate(h) {
3104 int idx = hstate_index(h);
3105 if (nhs->hstate_kobjs[idx]) {
3106 kobject_put(nhs->hstate_kobjs[idx]);
3107 nhs->hstate_kobjs[idx] = NULL;
9a305230 3108 }
972dc4de 3109 }
9a305230
LS
3110
3111 kobject_put(nhs->hugepages_kobj);
3112 nhs->hugepages_kobj = NULL;
3113}
3114
9a305230
LS
3115
3116/*
10fbcf4c 3117 * Register hstate attributes for a single node device.
9a305230
LS
3118 * No-op if attributes already registered.
3119 */
3cd8b44f 3120static void hugetlb_register_node(struct node *node)
9a305230
LS
3121{
3122 struct hstate *h;
10fbcf4c 3123 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3124 int err;
3125
3126 if (nhs->hugepages_kobj)
3127 return; /* already allocated */
3128
3129 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3130 &node->dev.kobj);
9a305230
LS
3131 if (!nhs->hugepages_kobj)
3132 return;
3133
3134 for_each_hstate(h) {
3135 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3136 nhs->hstate_kobjs,
3137 &per_node_hstate_attr_group);
3138 if (err) {
282f4214 3139 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3140 h->name, node->dev.id);
9a305230
LS
3141 hugetlb_unregister_node(node);
3142 break;
3143 }
3144 }
3145}
3146
3147/*
9b5e5d0f 3148 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3149 * devices of nodes that have memory. All on-line nodes should have
3150 * registered their associated device by this time.
9a305230 3151 */
7d9ca000 3152static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3153{
3154 int nid;
3155
8cebfcd0 3156 for_each_node_state(nid, N_MEMORY) {
8732794b 3157 struct node *node = node_devices[nid];
10fbcf4c 3158 if (node->dev.id == nid)
9a305230
LS
3159 hugetlb_register_node(node);
3160 }
3161
3162 /*
10fbcf4c 3163 * Let the node device driver know we're here so it can
9a305230
LS
3164 * [un]register hstate attributes on node hotplug.
3165 */
3166 register_hugetlbfs_with_node(hugetlb_register_node,
3167 hugetlb_unregister_node);
3168}
3169#else /* !CONFIG_NUMA */
3170
3171static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3172{
3173 BUG();
3174 if (nidp)
3175 *nidp = -1;
3176 return NULL;
3177}
3178
9a305230
LS
3179static void hugetlb_register_all_nodes(void) { }
3180
3181#endif
3182
a3437870
NA
3183static int __init hugetlb_init(void)
3184{
8382d914
DB
3185 int i;
3186
c2833a5b
MK
3187 if (!hugepages_supported()) {
3188 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3189 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3190 return 0;
c2833a5b 3191 }
a3437870 3192
282f4214
MK
3193 /*
3194 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3195 * architectures depend on setup being done here.
3196 */
3197 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3198 if (!parsed_default_hugepagesz) {
3199 /*
3200 * If we did not parse a default huge page size, set
3201 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3202 * number of huge pages for this default size was implicitly
3203 * specified, set that here as well.
3204 * Note that the implicit setting will overwrite an explicit
3205 * setting. A warning will be printed in this case.
3206 */
3207 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3208 if (default_hstate_max_huge_pages) {
3209 if (default_hstate.max_huge_pages) {
3210 char buf[32];
3211
3212 string_get_size(huge_page_size(&default_hstate),
3213 1, STRING_UNITS_2, buf, 32);
3214 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3215 default_hstate.max_huge_pages, buf);
3216 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3217 default_hstate_max_huge_pages);
3218 }
3219 default_hstate.max_huge_pages =
3220 default_hstate_max_huge_pages;
d715cf80 3221 }
f8b74815 3222 }
a3437870 3223
cf11e85f 3224 hugetlb_cma_check();
a3437870 3225 hugetlb_init_hstates();
aa888a74 3226 gather_bootmem_prealloc();
a3437870
NA
3227 report_hugepages();
3228
3229 hugetlb_sysfs_init();
9a305230 3230 hugetlb_register_all_nodes();
7179e7bf 3231 hugetlb_cgroup_file_init();
9a305230 3232
8382d914
DB
3233#ifdef CONFIG_SMP
3234 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3235#else
3236 num_fault_mutexes = 1;
3237#endif
c672c7f2 3238 hugetlb_fault_mutex_table =
6da2ec56
KC
3239 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3240 GFP_KERNEL);
c672c7f2 3241 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3242
3243 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3244 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3245 return 0;
3246}
3e89e1c5 3247subsys_initcall(hugetlb_init);
a3437870 3248
ae94da89
MK
3249/* Overwritten by architectures with more huge page sizes */
3250bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3251{
ae94da89 3252 return size == HPAGE_SIZE;
9fee021d
VT
3253}
3254
d00181b9 3255void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3256{
3257 struct hstate *h;
8faa8b07
AK
3258 unsigned long i;
3259
a3437870 3260 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3261 return;
3262 }
47d38344 3263 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3264 BUG_ON(order == 0);
47d38344 3265 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
3266 h->order = order;
3267 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
3268 for (i = 0; i < MAX_NUMNODES; ++i)
3269 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3270 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3271 h->next_nid_to_alloc = first_memory_node;
3272 h->next_nid_to_free = first_memory_node;
a3437870
NA
3273 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3274 huge_page_size(h)/1024);
8faa8b07 3275
a3437870
NA
3276 parsed_hstate = h;
3277}
3278
282f4214
MK
3279/*
3280 * hugepages command line processing
3281 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3282 * specification. If not, ignore the hugepages value. hugepages can also
3283 * be the first huge page command line option in which case it implicitly
3284 * specifies the number of huge pages for the default size.
3285 */
3286static int __init hugepages_setup(char *s)
a3437870
NA
3287{
3288 unsigned long *mhp;
8faa8b07 3289 static unsigned long *last_mhp;
a3437870 3290
9fee021d 3291 if (!parsed_valid_hugepagesz) {
282f4214 3292 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3293 parsed_valid_hugepagesz = true;
282f4214 3294 return 0;
9fee021d 3295 }
282f4214 3296
a3437870 3297 /*
282f4214
MK
3298 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3299 * yet, so this hugepages= parameter goes to the "default hstate".
3300 * Otherwise, it goes with the previously parsed hugepagesz or
3301 * default_hugepagesz.
a3437870 3302 */
9fee021d 3303 else if (!hugetlb_max_hstate)
a3437870
NA
3304 mhp = &default_hstate_max_huge_pages;
3305 else
3306 mhp = &parsed_hstate->max_huge_pages;
3307
8faa8b07 3308 if (mhp == last_mhp) {
282f4214
MK
3309 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3310 return 0;
8faa8b07
AK
3311 }
3312
a3437870
NA
3313 if (sscanf(s, "%lu", mhp) <= 0)
3314 *mhp = 0;
3315
8faa8b07
AK
3316 /*
3317 * Global state is always initialized later in hugetlb_init.
3318 * But we need to allocate >= MAX_ORDER hstates here early to still
3319 * use the bootmem allocator.
3320 */
47d38344 3321 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
3322 hugetlb_hstate_alloc_pages(parsed_hstate);
3323
3324 last_mhp = mhp;
3325
a3437870
NA
3326 return 1;
3327}
282f4214 3328__setup("hugepages=", hugepages_setup);
e11bfbfc 3329
282f4214
MK
3330/*
3331 * hugepagesz command line processing
3332 * A specific huge page size can only be specified once with hugepagesz.
3333 * hugepagesz is followed by hugepages on the command line. The global
3334 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3335 * hugepagesz argument was valid.
3336 */
359f2544 3337static int __init hugepagesz_setup(char *s)
e11bfbfc 3338{
359f2544 3339 unsigned long size;
282f4214
MK
3340 struct hstate *h;
3341
3342 parsed_valid_hugepagesz = false;
359f2544
MK
3343 size = (unsigned long)memparse(s, NULL);
3344
3345 if (!arch_hugetlb_valid_size(size)) {
282f4214 3346 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3347 return 0;
3348 }
3349
282f4214
MK
3350 h = size_to_hstate(size);
3351 if (h) {
3352 /*
3353 * hstate for this size already exists. This is normally
3354 * an error, but is allowed if the existing hstate is the
3355 * default hstate. More specifically, it is only allowed if
3356 * the number of huge pages for the default hstate was not
3357 * previously specified.
3358 */
3359 if (!parsed_default_hugepagesz || h != &default_hstate ||
3360 default_hstate.max_huge_pages) {
3361 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3362 return 0;
3363 }
3364
3365 /*
3366 * No need to call hugetlb_add_hstate() as hstate already
3367 * exists. But, do set parsed_hstate so that a following
3368 * hugepages= parameter will be applied to this hstate.
3369 */
3370 parsed_hstate = h;
3371 parsed_valid_hugepagesz = true;
3372 return 1;
38237830
MK
3373 }
3374
359f2544 3375 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3376 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3377 return 1;
3378}
359f2544
MK
3379__setup("hugepagesz=", hugepagesz_setup);
3380
282f4214
MK
3381/*
3382 * default_hugepagesz command line input
3383 * Only one instance of default_hugepagesz allowed on command line.
3384 */
ae94da89 3385static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3386{
ae94da89
MK
3387 unsigned long size;
3388
282f4214 3389 parsed_valid_hugepagesz = false;
282f4214
MK
3390 if (parsed_default_hugepagesz) {
3391 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3392 return 0;
3393 }
3394
ae94da89
MK
3395 size = (unsigned long)memparse(s, NULL);
3396
3397 if (!arch_hugetlb_valid_size(size)) {
282f4214 3398 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3399 return 0;
3400 }
3401
282f4214
MK
3402 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3403 parsed_valid_hugepagesz = true;
3404 parsed_default_hugepagesz = true;
3405 default_hstate_idx = hstate_index(size_to_hstate(size));
3406
3407 /*
3408 * The number of default huge pages (for this size) could have been
3409 * specified as the first hugetlb parameter: hugepages=X. If so,
3410 * then default_hstate_max_huge_pages is set. If the default huge
3411 * page size is gigantic (>= MAX_ORDER), then the pages must be
3412 * allocated here from bootmem allocator.
3413 */
3414 if (default_hstate_max_huge_pages) {
3415 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3416 if (hstate_is_gigantic(&default_hstate))
3417 hugetlb_hstate_alloc_pages(&default_hstate);
3418 default_hstate_max_huge_pages = 0;
3419 }
3420
e11bfbfc
NP
3421 return 1;
3422}
ae94da89 3423__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3424
8ca39e68 3425static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3426{
3427 int node;
3428 unsigned int nr = 0;
8ca39e68
MS
3429 nodemask_t *mpol_allowed;
3430 unsigned int *array = h->free_huge_pages_node;
3431 gfp_t gfp_mask = htlb_alloc_mask(h);
3432
3433 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3434
8ca39e68
MS
3435 for_each_node_mask(node, cpuset_current_mems_allowed) {
3436 if (!mpol_allowed ||
3437 (mpol_allowed && node_isset(node, *mpol_allowed)))
3438 nr += array[node];
3439 }
8a213460
NA
3440
3441 return nr;
3442}
3443
3444#ifdef CONFIG_SYSCTL
17743798
MS
3445static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3446 void *buffer, size_t *length,
3447 loff_t *ppos, unsigned long *out)
3448{
3449 struct ctl_table dup_table;
3450
3451 /*
3452 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3453 * can duplicate the @table and alter the duplicate of it.
3454 */
3455 dup_table = *table;
3456 dup_table.data = out;
3457
3458 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3459}
3460
06808b08
LS
3461static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3462 struct ctl_table *table, int write,
32927393 3463 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3464{
e5ff2159 3465 struct hstate *h = &default_hstate;
238d3c13 3466 unsigned long tmp = h->max_huge_pages;
08d4a246 3467 int ret;
e5ff2159 3468
457c1b27 3469 if (!hugepages_supported())
86613628 3470 return -EOPNOTSUPP;
457c1b27 3471
17743798
MS
3472 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3473 &tmp);
08d4a246
MH
3474 if (ret)
3475 goto out;
e5ff2159 3476
238d3c13
DR
3477 if (write)
3478 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3479 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3480out:
3481 return ret;
1da177e4 3482}
396faf03 3483
06808b08 3484int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3485 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3486{
3487
3488 return hugetlb_sysctl_handler_common(false, table, write,
3489 buffer, length, ppos);
3490}
3491
3492#ifdef CONFIG_NUMA
3493int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3494 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3495{
3496 return hugetlb_sysctl_handler_common(true, table, write,
3497 buffer, length, ppos);
3498}
3499#endif /* CONFIG_NUMA */
3500
a3d0c6aa 3501int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3502 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3503{
a5516438 3504 struct hstate *h = &default_hstate;
e5ff2159 3505 unsigned long tmp;
08d4a246 3506 int ret;
e5ff2159 3507
457c1b27 3508 if (!hugepages_supported())
86613628 3509 return -EOPNOTSUPP;
457c1b27 3510
c033a93c 3511 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3512
bae7f4ae 3513 if (write && hstate_is_gigantic(h))
adbe8726
EM
3514 return -EINVAL;
3515
17743798
MS
3516 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3517 &tmp);
08d4a246
MH
3518 if (ret)
3519 goto out;
e5ff2159
AK
3520
3521 if (write) {
3522 spin_lock(&hugetlb_lock);
3523 h->nr_overcommit_huge_pages = tmp;
3524 spin_unlock(&hugetlb_lock);
3525 }
08d4a246
MH
3526out:
3527 return ret;
a3d0c6aa
NA
3528}
3529
1da177e4
LT
3530#endif /* CONFIG_SYSCTL */
3531
e1759c21 3532void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3533{
fcb2b0c5
RG
3534 struct hstate *h;
3535 unsigned long total = 0;
3536
457c1b27
NA
3537 if (!hugepages_supported())
3538 return;
fcb2b0c5
RG
3539
3540 for_each_hstate(h) {
3541 unsigned long count = h->nr_huge_pages;
3542
3543 total += (PAGE_SIZE << huge_page_order(h)) * count;
3544
3545 if (h == &default_hstate)
3546 seq_printf(m,
3547 "HugePages_Total: %5lu\n"
3548 "HugePages_Free: %5lu\n"
3549 "HugePages_Rsvd: %5lu\n"
3550 "HugePages_Surp: %5lu\n"
3551 "Hugepagesize: %8lu kB\n",
3552 count,
3553 h->free_huge_pages,
3554 h->resv_huge_pages,
3555 h->surplus_huge_pages,
3556 (PAGE_SIZE << huge_page_order(h)) / 1024);
3557 }
3558
3559 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3560}
3561
7981593b 3562int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3563{
a5516438 3564 struct hstate *h = &default_hstate;
7981593b 3565
457c1b27
NA
3566 if (!hugepages_supported())
3567 return 0;
7981593b
JP
3568
3569 return sysfs_emit_at(buf, len,
3570 "Node %d HugePages_Total: %5u\n"
3571 "Node %d HugePages_Free: %5u\n"
3572 "Node %d HugePages_Surp: %5u\n",
3573 nid, h->nr_huge_pages_node[nid],
3574 nid, h->free_huge_pages_node[nid],
3575 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3576}
3577
949f7ec5
DR
3578void hugetlb_show_meminfo(void)
3579{
3580 struct hstate *h;
3581 int nid;
3582
457c1b27
NA
3583 if (!hugepages_supported())
3584 return;
3585
949f7ec5
DR
3586 for_each_node_state(nid, N_MEMORY)
3587 for_each_hstate(h)
3588 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3589 nid,
3590 h->nr_huge_pages_node[nid],
3591 h->free_huge_pages_node[nid],
3592 h->surplus_huge_pages_node[nid],
3593 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3594}
3595
5d317b2b
NH
3596void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3597{
3598 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3599 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3600}
3601
1da177e4
LT
3602/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3603unsigned long hugetlb_total_pages(void)
3604{
d0028588
WL
3605 struct hstate *h;
3606 unsigned long nr_total_pages = 0;
3607
3608 for_each_hstate(h)
3609 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3610 return nr_total_pages;
1da177e4 3611}
1da177e4 3612
a5516438 3613static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3614{
3615 int ret = -ENOMEM;
3616
3617 spin_lock(&hugetlb_lock);
3618 /*
3619 * When cpuset is configured, it breaks the strict hugetlb page
3620 * reservation as the accounting is done on a global variable. Such
3621 * reservation is completely rubbish in the presence of cpuset because
3622 * the reservation is not checked against page availability for the
3623 * current cpuset. Application can still potentially OOM'ed by kernel
3624 * with lack of free htlb page in cpuset that the task is in.
3625 * Attempt to enforce strict accounting with cpuset is almost
3626 * impossible (or too ugly) because cpuset is too fluid that
3627 * task or memory node can be dynamically moved between cpusets.
3628 *
3629 * The change of semantics for shared hugetlb mapping with cpuset is
3630 * undesirable. However, in order to preserve some of the semantics,
3631 * we fall back to check against current free page availability as
3632 * a best attempt and hopefully to minimize the impact of changing
3633 * semantics that cpuset has.
8ca39e68
MS
3634 *
3635 * Apart from cpuset, we also have memory policy mechanism that
3636 * also determines from which node the kernel will allocate memory
3637 * in a NUMA system. So similar to cpuset, we also should consider
3638 * the memory policy of the current task. Similar to the description
3639 * above.
fc1b8a73
MG
3640 */
3641 if (delta > 0) {
a5516438 3642 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3643 goto out;
3644
8ca39e68 3645 if (delta > allowed_mems_nr(h)) {
a5516438 3646 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3647 goto out;
3648 }
3649 }
3650
3651 ret = 0;
3652 if (delta < 0)
a5516438 3653 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3654
3655out:
3656 spin_unlock(&hugetlb_lock);
3657 return ret;
3658}
3659
84afd99b
AW
3660static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3661{
f522c3ac 3662 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3663
3664 /*
3665 * This new VMA should share its siblings reservation map if present.
3666 * The VMA will only ever have a valid reservation map pointer where
3667 * it is being copied for another still existing VMA. As that VMA
25985edc 3668 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3669 * after this open call completes. It is therefore safe to take a
3670 * new reference here without additional locking.
3671 */
4e35f483 3672 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3673 kref_get(&resv->refs);
84afd99b
AW
3674}
3675
a1e78772
MG
3676static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3677{
a5516438 3678 struct hstate *h = hstate_vma(vma);
f522c3ac 3679 struct resv_map *resv = vma_resv_map(vma);
90481622 3680 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3681 unsigned long reserve, start, end;
1c5ecae3 3682 long gbl_reserve;
84afd99b 3683
4e35f483
JK
3684 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3685 return;
84afd99b 3686
4e35f483
JK
3687 start = vma_hugecache_offset(h, vma, vma->vm_start);
3688 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3689
4e35f483 3690 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3691 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3692 if (reserve) {
1c5ecae3
MK
3693 /*
3694 * Decrement reserve counts. The global reserve count may be
3695 * adjusted if the subpool has a minimum size.
3696 */
3697 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3698 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3699 }
e9fe92ae
MA
3700
3701 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3702}
3703
31383c68
DW
3704static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3705{
3706 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3707 return -EINVAL;
3708 return 0;
3709}
3710
05ea8860
DW
3711static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3712{
3713 struct hstate *hstate = hstate_vma(vma);
3714
3715 return 1UL << huge_page_shift(hstate);
3716}
3717
1da177e4
LT
3718/*
3719 * We cannot handle pagefaults against hugetlb pages at all. They cause
3720 * handle_mm_fault() to try to instantiate regular-sized pages in the
3721 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3722 * this far.
3723 */
b3ec9f33 3724static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3725{
3726 BUG();
d0217ac0 3727 return 0;
1da177e4
LT
3728}
3729
eec3636a
JC
3730/*
3731 * When a new function is introduced to vm_operations_struct and added
3732 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3733 * This is because under System V memory model, mappings created via
3734 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3735 * their original vm_ops are overwritten with shm_vm_ops.
3736 */
f0f37e2f 3737const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3738 .fault = hugetlb_vm_op_fault,
84afd99b 3739 .open = hugetlb_vm_op_open,
a1e78772 3740 .close = hugetlb_vm_op_close,
dd3b614f 3741 .may_split = hugetlb_vm_op_split,
05ea8860 3742 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3743};
3744
1e8f889b
DG
3745static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3746 int writable)
63551ae0
DG
3747{
3748 pte_t entry;
3749
1e8f889b 3750 if (writable) {
106c992a
GS
3751 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3752 vma->vm_page_prot)));
63551ae0 3753 } else {
106c992a
GS
3754 entry = huge_pte_wrprotect(mk_huge_pte(page,
3755 vma->vm_page_prot));
63551ae0
DG
3756 }
3757 entry = pte_mkyoung(entry);
3758 entry = pte_mkhuge(entry);
d9ed9faa 3759 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3760
3761 return entry;
3762}
3763
1e8f889b
DG
3764static void set_huge_ptep_writable(struct vm_area_struct *vma,
3765 unsigned long address, pte_t *ptep)
3766{
3767 pte_t entry;
3768
106c992a 3769 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3770 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3771 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3772}
3773
d5ed7444 3774bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3775{
3776 swp_entry_t swp;
3777
3778 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3779 return false;
4a705fef 3780 swp = pte_to_swp_entry(pte);
d79d176a 3781 if (is_migration_entry(swp))
d5ed7444 3782 return true;
4a705fef 3783 else
d5ed7444 3784 return false;
4a705fef
NH
3785}
3786
3e5c3600 3787static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
3788{
3789 swp_entry_t swp;
3790
3791 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 3792 return false;
4a705fef 3793 swp = pte_to_swp_entry(pte);
d79d176a 3794 if (is_hwpoison_entry(swp))
3e5c3600 3795 return true;
4a705fef 3796 else
3e5c3600 3797 return false;
4a705fef 3798}
1e8f889b 3799
63551ae0
DG
3800int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3801 struct vm_area_struct *vma)
3802{
5e41540c 3803 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3804 struct page *ptepage;
1c59827d 3805 unsigned long addr;
1e8f889b 3806 int cow;
a5516438
AK
3807 struct hstate *h = hstate_vma(vma);
3808 unsigned long sz = huge_page_size(h);
c0d0381a 3809 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3810 struct mmu_notifier_range range;
e8569dd2 3811 int ret = 0;
1e8f889b
DG
3812
3813 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3814
ac46d4f3 3815 if (cow) {
7269f999 3816 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3817 vma->vm_start,
ac46d4f3
JG
3818 vma->vm_end);
3819 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3820 } else {
3821 /*
3822 * For shared mappings i_mmap_rwsem must be held to call
3823 * huge_pte_alloc, otherwise the returned ptep could go
3824 * away if part of a shared pmd and another thread calls
3825 * huge_pmd_unshare.
3826 */
3827 i_mmap_lock_read(mapping);
ac46d4f3 3828 }
e8569dd2 3829
a5516438 3830 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3831 spinlock_t *src_ptl, *dst_ptl;
7868a208 3832 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3833 if (!src_pte)
3834 continue;
a5516438 3835 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3836 if (!dst_pte) {
3837 ret = -ENOMEM;
3838 break;
3839 }
c5c99429 3840
5e41540c
MK
3841 /*
3842 * If the pagetables are shared don't copy or take references.
3843 * dst_pte == src_pte is the common case of src/dest sharing.
3844 *
3845 * However, src could have 'unshared' and dst shares with
3846 * another vma. If dst_pte !none, this implies sharing.
3847 * Check here before taking page table lock, and once again
3848 * after taking the lock below.
3849 */
3850 dst_entry = huge_ptep_get(dst_pte);
3851 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3852 continue;
3853
cb900f41
KS
3854 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3855 src_ptl = huge_pte_lockptr(h, src, src_pte);
3856 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3857 entry = huge_ptep_get(src_pte);
5e41540c
MK
3858 dst_entry = huge_ptep_get(dst_pte);
3859 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3860 /*
3861 * Skip if src entry none. Also, skip in the
3862 * unlikely case dst entry !none as this implies
3863 * sharing with another vma.
3864 */
4a705fef
NH
3865 ;
3866 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3867 is_hugetlb_entry_hwpoisoned(entry))) {
3868 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3869
3870 if (is_write_migration_entry(swp_entry) && cow) {
3871 /*
3872 * COW mappings require pages in both
3873 * parent and child to be set to read.
3874 */
3875 make_migration_entry_read(&swp_entry);
3876 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3877 set_huge_swap_pte_at(src, addr, src_pte,
3878 entry, sz);
4a705fef 3879 }
e5251fd4 3880 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3881 } else {
34ee645e 3882 if (cow) {
0f10851e
JG
3883 /*
3884 * No need to notify as we are downgrading page
3885 * table protection not changing it to point
3886 * to a new page.
3887 *
ad56b738 3888 * See Documentation/vm/mmu_notifier.rst
0f10851e 3889 */
7f2e9525 3890 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3891 }
0253d634 3892 entry = huge_ptep_get(src_pte);
1c59827d
HD
3893 ptepage = pte_page(entry);
3894 get_page(ptepage);
53f9263b 3895 page_dup_rmap(ptepage, true);
1c59827d 3896 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3897 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3898 }
cb900f41
KS
3899 spin_unlock(src_ptl);
3900 spin_unlock(dst_ptl);
63551ae0 3901 }
63551ae0 3902
e8569dd2 3903 if (cow)
ac46d4f3 3904 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3905 else
3906 i_mmap_unlock_read(mapping);
e8569dd2
AS
3907
3908 return ret;
63551ae0
DG
3909}
3910
24669e58
AK
3911void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3912 unsigned long start, unsigned long end,
3913 struct page *ref_page)
63551ae0
DG
3914{
3915 struct mm_struct *mm = vma->vm_mm;
3916 unsigned long address;
c7546f8f 3917 pte_t *ptep;
63551ae0 3918 pte_t pte;
cb900f41 3919 spinlock_t *ptl;
63551ae0 3920 struct page *page;
a5516438
AK
3921 struct hstate *h = hstate_vma(vma);
3922 unsigned long sz = huge_page_size(h);
ac46d4f3 3923 struct mmu_notifier_range range;
a5516438 3924
63551ae0 3925 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3926 BUG_ON(start & ~huge_page_mask(h));
3927 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3928
07e32661
AK
3929 /*
3930 * This is a hugetlb vma, all the pte entries should point
3931 * to huge page.
3932 */
ed6a7935 3933 tlb_change_page_size(tlb, sz);
24669e58 3934 tlb_start_vma(tlb, vma);
dff11abe
MK
3935
3936 /*
3937 * If sharing possible, alert mmu notifiers of worst case.
3938 */
6f4f13e8
JG
3939 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3940 end);
ac46d4f3
JG
3941 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3942 mmu_notifier_invalidate_range_start(&range);
569f48b8 3943 address = start;
569f48b8 3944 for (; address < end; address += sz) {
7868a208 3945 ptep = huge_pte_offset(mm, address, sz);
4c887265 3946 if (!ptep)
c7546f8f
DG
3947 continue;
3948
cb900f41 3949 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 3950 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 3951 spin_unlock(ptl);
dff11abe
MK
3952 /*
3953 * We just unmapped a page of PMDs by clearing a PUD.
3954 * The caller's TLB flush range should cover this area.
3955 */
31d49da5
AK
3956 continue;
3957 }
39dde65c 3958
6629326b 3959 pte = huge_ptep_get(ptep);
31d49da5
AK
3960 if (huge_pte_none(pte)) {
3961 spin_unlock(ptl);
3962 continue;
3963 }
6629326b
HD
3964
3965 /*
9fbc1f63
NH
3966 * Migrating hugepage or HWPoisoned hugepage is already
3967 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3968 */
9fbc1f63 3969 if (unlikely(!pte_present(pte))) {
9386fac3 3970 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3971 spin_unlock(ptl);
3972 continue;
8c4894c6 3973 }
6629326b
HD
3974
3975 page = pte_page(pte);
04f2cbe3
MG
3976 /*
3977 * If a reference page is supplied, it is because a specific
3978 * page is being unmapped, not a range. Ensure the page we
3979 * are about to unmap is the actual page of interest.
3980 */
3981 if (ref_page) {
31d49da5
AK
3982 if (page != ref_page) {
3983 spin_unlock(ptl);
3984 continue;
3985 }
04f2cbe3
MG
3986 /*
3987 * Mark the VMA as having unmapped its page so that
3988 * future faults in this VMA will fail rather than
3989 * looking like data was lost
3990 */
3991 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3992 }
3993
c7546f8f 3994 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3995 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3996 if (huge_pte_dirty(pte))
6649a386 3997 set_page_dirty(page);
9e81130b 3998
5d317b2b 3999 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4000 page_remove_rmap(page, true);
31d49da5 4001
cb900f41 4002 spin_unlock(ptl);
e77b0852 4003 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4004 /*
4005 * Bail out after unmapping reference page if supplied
4006 */
4007 if (ref_page)
4008 break;
fe1668ae 4009 }
ac46d4f3 4010 mmu_notifier_invalidate_range_end(&range);
24669e58 4011 tlb_end_vma(tlb, vma);
1da177e4 4012}
63551ae0 4013
d833352a
MG
4014void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4015 struct vm_area_struct *vma, unsigned long start,
4016 unsigned long end, struct page *ref_page)
4017{
4018 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4019
4020 /*
4021 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4022 * test will fail on a vma being torn down, and not grab a page table
4023 * on its way out. We're lucky that the flag has such an appropriate
4024 * name, and can in fact be safely cleared here. We could clear it
4025 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4026 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4027 * because in the context this is called, the VMA is about to be
c8c06efa 4028 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4029 */
4030 vma->vm_flags &= ~VM_MAYSHARE;
4031}
4032
502717f4 4033void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4034 unsigned long end, struct page *ref_page)
502717f4 4035{
24669e58
AK
4036 struct mm_struct *mm;
4037 struct mmu_gather tlb;
dff11abe
MK
4038 unsigned long tlb_start = start;
4039 unsigned long tlb_end = end;
4040
4041 /*
4042 * If shared PMDs were possibly used within this vma range, adjust
4043 * start/end for worst case tlb flushing.
4044 * Note that we can not be sure if PMDs are shared until we try to
4045 * unmap pages. However, we want to make sure TLB flushing covers
4046 * the largest possible range.
4047 */
4048 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
4049
4050 mm = vma->vm_mm;
4051
dff11abe 4052 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 4053 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 4054 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
KC
4055}
4056
04f2cbe3
MG
4057/*
4058 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4059 * mappping it owns the reserve page for. The intention is to unmap the page
4060 * from other VMAs and let the children be SIGKILLed if they are faulting the
4061 * same region.
4062 */
2f4612af
DB
4063static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4064 struct page *page, unsigned long address)
04f2cbe3 4065{
7526674d 4066 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4067 struct vm_area_struct *iter_vma;
4068 struct address_space *mapping;
04f2cbe3
MG
4069 pgoff_t pgoff;
4070
4071 /*
4072 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4073 * from page cache lookup which is in HPAGE_SIZE units.
4074 */
7526674d 4075 address = address & huge_page_mask(h);
36e4f20a
MH
4076 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4077 vma->vm_pgoff;
93c76a3d 4078 mapping = vma->vm_file->f_mapping;
04f2cbe3 4079
4eb2b1dc
MG
4080 /*
4081 * Take the mapping lock for the duration of the table walk. As
4082 * this mapping should be shared between all the VMAs,
4083 * __unmap_hugepage_range() is called as the lock is already held
4084 */
83cde9e8 4085 i_mmap_lock_write(mapping);
6b2dbba8 4086 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4087 /* Do not unmap the current VMA */
4088 if (iter_vma == vma)
4089 continue;
4090
2f84a899
MG
4091 /*
4092 * Shared VMAs have their own reserves and do not affect
4093 * MAP_PRIVATE accounting but it is possible that a shared
4094 * VMA is using the same page so check and skip such VMAs.
4095 */
4096 if (iter_vma->vm_flags & VM_MAYSHARE)
4097 continue;
4098
04f2cbe3
MG
4099 /*
4100 * Unmap the page from other VMAs without their own reserves.
4101 * They get marked to be SIGKILLed if they fault in these
4102 * areas. This is because a future no-page fault on this VMA
4103 * could insert a zeroed page instead of the data existing
4104 * from the time of fork. This would look like data corruption
4105 */
4106 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4107 unmap_hugepage_range(iter_vma, address,
4108 address + huge_page_size(h), page);
04f2cbe3 4109 }
83cde9e8 4110 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4111}
4112
0fe6e20b
NH
4113/*
4114 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4115 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4116 * cannot race with other handlers or page migration.
4117 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4118 */
2b740303 4119static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4120 unsigned long address, pte_t *ptep,
3999f52e 4121 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4122{
3999f52e 4123 pte_t pte;
a5516438 4124 struct hstate *h = hstate_vma(vma);
1e8f889b 4125 struct page *old_page, *new_page;
2b740303
SJ
4126 int outside_reserve = 0;
4127 vm_fault_t ret = 0;
974e6d66 4128 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4129 struct mmu_notifier_range range;
1e8f889b 4130
3999f52e 4131 pte = huge_ptep_get(ptep);
1e8f889b
DG
4132 old_page = pte_page(pte);
4133
04f2cbe3 4134retry_avoidcopy:
1e8f889b
DG
4135 /* If no-one else is actually using this page, avoid the copy
4136 * and just make the page writable */
37a2140d 4137 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4138 page_move_anon_rmap(old_page, vma);
5b7a1d40 4139 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4140 return 0;
1e8f889b
DG
4141 }
4142
04f2cbe3
MG
4143 /*
4144 * If the process that created a MAP_PRIVATE mapping is about to
4145 * perform a COW due to a shared page count, attempt to satisfy
4146 * the allocation without using the existing reserves. The pagecache
4147 * page is used to determine if the reserve at this address was
4148 * consumed or not. If reserves were used, a partial faulted mapping
4149 * at the time of fork() could consume its reserves on COW instead
4150 * of the full address range.
4151 */
5944d011 4152 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4153 old_page != pagecache_page)
4154 outside_reserve = 1;
4155
09cbfeaf 4156 get_page(old_page);
b76c8cfb 4157
ad4404a2
DB
4158 /*
4159 * Drop page table lock as buddy allocator may be called. It will
4160 * be acquired again before returning to the caller, as expected.
4161 */
cb900f41 4162 spin_unlock(ptl);
5b7a1d40 4163 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4164
2fc39cec 4165 if (IS_ERR(new_page)) {
04f2cbe3
MG
4166 /*
4167 * If a process owning a MAP_PRIVATE mapping fails to COW,
4168 * it is due to references held by a child and an insufficient
4169 * huge page pool. To guarantee the original mappers
4170 * reliability, unmap the page from child processes. The child
4171 * may get SIGKILLed if it later faults.
4172 */
4173 if (outside_reserve) {
e7dd91c4
MK
4174 struct address_space *mapping = vma->vm_file->f_mapping;
4175 pgoff_t idx;
4176 u32 hash;
4177
09cbfeaf 4178 put_page(old_page);
04f2cbe3 4179 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4180 /*
4181 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4182 * unmapping. unmapping needs to hold i_mmap_rwsem
4183 * in write mode. Dropping i_mmap_rwsem in read mode
4184 * here is OK as COW mappings do not interact with
4185 * PMD sharing.
4186 *
4187 * Reacquire both after unmap operation.
4188 */
4189 idx = vma_hugecache_offset(h, vma, haddr);
4190 hash = hugetlb_fault_mutex_hash(mapping, idx);
4191 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4192 i_mmap_unlock_read(mapping);
4193
5b7a1d40 4194 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4195
4196 i_mmap_lock_read(mapping);
4197 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4198 spin_lock(ptl);
5b7a1d40 4199 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4200 if (likely(ptep &&
4201 pte_same(huge_ptep_get(ptep), pte)))
4202 goto retry_avoidcopy;
4203 /*
4204 * race occurs while re-acquiring page table
4205 * lock, and our job is done.
4206 */
4207 return 0;
04f2cbe3
MG
4208 }
4209
2b740303 4210 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4211 goto out_release_old;
1e8f889b
DG
4212 }
4213
0fe6e20b
NH
4214 /*
4215 * When the original hugepage is shared one, it does not have
4216 * anon_vma prepared.
4217 */
44e2aa93 4218 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4219 ret = VM_FAULT_OOM;
4220 goto out_release_all;
44e2aa93 4221 }
0fe6e20b 4222
974e6d66 4223 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4224 pages_per_huge_page(h));
0ed361de 4225 __SetPageUptodate(new_page);
1e8f889b 4226
7269f999 4227 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4228 haddr + huge_page_size(h));
ac46d4f3 4229 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4230
b76c8cfb 4231 /*
cb900f41 4232 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4233 * before the page tables are altered
4234 */
cb900f41 4235 spin_lock(ptl);
5b7a1d40 4236 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4237 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
4238 ClearPagePrivate(new_page);
4239
1e8f889b 4240 /* Break COW */
5b7a1d40 4241 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4242 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4243 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4244 make_huge_pte(vma, new_page, 1));
d281ee61 4245 page_remove_rmap(old_page, true);
5b7a1d40 4246 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 4247 set_page_huge_active(new_page);
1e8f889b
DG
4248 /* Make the old page be freed below */
4249 new_page = old_page;
4250 }
cb900f41 4251 spin_unlock(ptl);
ac46d4f3 4252 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4253out_release_all:
5b7a1d40 4254 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4255 put_page(new_page);
ad4404a2 4256out_release_old:
09cbfeaf 4257 put_page(old_page);
8312034f 4258
ad4404a2
DB
4259 spin_lock(ptl); /* Caller expects lock to be held */
4260 return ret;
1e8f889b
DG
4261}
4262
04f2cbe3 4263/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4264static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4265 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4266{
4267 struct address_space *mapping;
e7c4b0bf 4268 pgoff_t idx;
04f2cbe3
MG
4269
4270 mapping = vma->vm_file->f_mapping;
a5516438 4271 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4272
4273 return find_lock_page(mapping, idx);
4274}
4275
3ae77f43
HD
4276/*
4277 * Return whether there is a pagecache page to back given address within VMA.
4278 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4279 */
4280static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4281 struct vm_area_struct *vma, unsigned long address)
4282{
4283 struct address_space *mapping;
4284 pgoff_t idx;
4285 struct page *page;
4286
4287 mapping = vma->vm_file->f_mapping;
4288 idx = vma_hugecache_offset(h, vma, address);
4289
4290 page = find_get_page(mapping, idx);
4291 if (page)
4292 put_page(page);
4293 return page != NULL;
4294}
4295
ab76ad54
MK
4296int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4297 pgoff_t idx)
4298{
4299 struct inode *inode = mapping->host;
4300 struct hstate *h = hstate_inode(inode);
4301 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4302
4303 if (err)
4304 return err;
4305 ClearPagePrivate(page);
4306
22146c3c
MK
4307 /*
4308 * set page dirty so that it will not be removed from cache/file
4309 * by non-hugetlbfs specific code paths.
4310 */
4311 set_page_dirty(page);
4312
ab76ad54
MK
4313 spin_lock(&inode->i_lock);
4314 inode->i_blocks += blocks_per_huge_page(h);
4315 spin_unlock(&inode->i_lock);
4316 return 0;
4317}
4318
2b740303
SJ
4319static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4320 struct vm_area_struct *vma,
4321 struct address_space *mapping, pgoff_t idx,
4322 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4323{
a5516438 4324 struct hstate *h = hstate_vma(vma);
2b740303 4325 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4326 int anon_rmap = 0;
4c887265 4327 unsigned long size;
4c887265 4328 struct page *page;
1e8f889b 4329 pte_t new_pte;
cb900f41 4330 spinlock_t *ptl;
285b8dca 4331 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4332 bool new_page = false;
4c887265 4333
04f2cbe3
MG
4334 /*
4335 * Currently, we are forced to kill the process in the event the
4336 * original mapper has unmapped pages from the child due to a failed
25985edc 4337 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4338 */
4339 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4340 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4341 current->pid);
04f2cbe3
MG
4342 return ret;
4343 }
4344
4c887265 4345 /*
87bf91d3
MK
4346 * We can not race with truncation due to holding i_mmap_rwsem.
4347 * i_size is modified when holding i_mmap_rwsem, so check here
4348 * once for faults beyond end of file.
4c887265 4349 */
87bf91d3
MK
4350 size = i_size_read(mapping->host) >> huge_page_shift(h);
4351 if (idx >= size)
4352 goto out;
4353
6bda666a
CL
4354retry:
4355 page = find_lock_page(mapping, idx);
4356 if (!page) {
1a1aad8a
MK
4357 /*
4358 * Check for page in userfault range
4359 */
4360 if (userfaultfd_missing(vma)) {
4361 u32 hash;
4362 struct vm_fault vmf = {
4363 .vma = vma,
285b8dca 4364 .address = haddr,
1a1aad8a
MK
4365 .flags = flags,
4366 /*
4367 * Hard to debug if it ends up being
4368 * used by a callee that assumes
4369 * something about the other
4370 * uninitialized fields... same as in
4371 * memory.c
4372 */
4373 };
4374
4375 /*
c0d0381a
MK
4376 * hugetlb_fault_mutex and i_mmap_rwsem must be
4377 * dropped before handling userfault. Reacquire
4378 * after handling fault to make calling code simpler.
1a1aad8a 4379 */
188b04a7 4380 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 4381 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4382 i_mmap_unlock_read(mapping);
1a1aad8a 4383 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 4384 i_mmap_lock_read(mapping);
1a1aad8a
MK
4385 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4386 goto out;
4387 }
4388
285b8dca 4389 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4390 if (IS_ERR(page)) {
4643d67e
MK
4391 /*
4392 * Returning error will result in faulting task being
4393 * sent SIGBUS. The hugetlb fault mutex prevents two
4394 * tasks from racing to fault in the same page which
4395 * could result in false unable to allocate errors.
4396 * Page migration does not take the fault mutex, but
4397 * does a clear then write of pte's under page table
4398 * lock. Page fault code could race with migration,
4399 * notice the clear pte and try to allocate a page
4400 * here. Before returning error, get ptl and make
4401 * sure there really is no pte entry.
4402 */
4403 ptl = huge_pte_lock(h, mm, ptep);
4404 if (!huge_pte_none(huge_ptep_get(ptep))) {
4405 ret = 0;
4406 spin_unlock(ptl);
4407 goto out;
4408 }
4409 spin_unlock(ptl);
2b740303 4410 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
4411 goto out;
4412 }
47ad8475 4413 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4414 __SetPageUptodate(page);
cb6acd01 4415 new_page = true;
ac9b9c66 4416
f83a275d 4417 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4418 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4419 if (err) {
4420 put_page(page);
6bda666a
CL
4421 if (err == -EEXIST)
4422 goto retry;
4423 goto out;
4424 }
23be7468 4425 } else {
6bda666a 4426 lock_page(page);
0fe6e20b
NH
4427 if (unlikely(anon_vma_prepare(vma))) {
4428 ret = VM_FAULT_OOM;
4429 goto backout_unlocked;
4430 }
409eb8c2 4431 anon_rmap = 1;
23be7468 4432 }
0fe6e20b 4433 } else {
998b4382
NH
4434 /*
4435 * If memory error occurs between mmap() and fault, some process
4436 * don't have hwpoisoned swap entry for errored virtual address.
4437 * So we need to block hugepage fault by PG_hwpoison bit check.
4438 */
4439 if (unlikely(PageHWPoison(page))) {
0eb98f15 4440 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4441 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4442 goto backout_unlocked;
4443 }
6bda666a 4444 }
1e8f889b 4445
57303d80
AW
4446 /*
4447 * If we are going to COW a private mapping later, we examine the
4448 * pending reservations for this page now. This will ensure that
4449 * any allocations necessary to record that reservation occur outside
4450 * the spinlock.
4451 */
5e911373 4452 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4453 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4454 ret = VM_FAULT_OOM;
4455 goto backout_unlocked;
4456 }
5e911373 4457 /* Just decrements count, does not deallocate */
285b8dca 4458 vma_end_reservation(h, vma, haddr);
5e911373 4459 }
57303d80 4460
8bea8052 4461 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4462 ret = 0;
7f2e9525 4463 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4464 goto backout;
4465
07443a85
JK
4466 if (anon_rmap) {
4467 ClearPagePrivate(page);
285b8dca 4468 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4469 } else
53f9263b 4470 page_dup_rmap(page, true);
1e8f889b
DG
4471 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4472 && (vma->vm_flags & VM_SHARED)));
285b8dca 4473 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4474
5d317b2b 4475 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4476 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4477 /* Optimization, do the COW without a second fault */
974e6d66 4478 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4479 }
4480
cb900f41 4481 spin_unlock(ptl);
cb6acd01
MK
4482
4483 /*
4484 * Only make newly allocated pages active. Existing pages found
4485 * in the pagecache could be !page_huge_active() if they have been
4486 * isolated for migration.
4487 */
4488 if (new_page)
4489 set_page_huge_active(page);
4490
4c887265
AL
4491 unlock_page(page);
4492out:
ac9b9c66 4493 return ret;
4c887265
AL
4494
4495backout:
cb900f41 4496 spin_unlock(ptl);
2b26736c 4497backout_unlocked:
4c887265 4498 unlock_page(page);
285b8dca 4499 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4500 put_page(page);
4501 goto out;
ac9b9c66
HD
4502}
4503
8382d914 4504#ifdef CONFIG_SMP
188b04a7 4505u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4506{
4507 unsigned long key[2];
4508 u32 hash;
4509
1b426bac
MK
4510 key[0] = (unsigned long) mapping;
4511 key[1] = idx;
8382d914 4512
55254636 4513 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4514
4515 return hash & (num_fault_mutexes - 1);
4516}
4517#else
4518/*
4519 * For uniprocesor systems we always use a single mutex, so just
4520 * return 0 and avoid the hashing overhead.
4521 */
188b04a7 4522u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4523{
4524 return 0;
4525}
4526#endif
4527
2b740303 4528vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4529 unsigned long address, unsigned int flags)
86e5216f 4530{
8382d914 4531 pte_t *ptep, entry;
cb900f41 4532 spinlock_t *ptl;
2b740303 4533 vm_fault_t ret;
8382d914
DB
4534 u32 hash;
4535 pgoff_t idx;
0fe6e20b 4536 struct page *page = NULL;
57303d80 4537 struct page *pagecache_page = NULL;
a5516438 4538 struct hstate *h = hstate_vma(vma);
8382d914 4539 struct address_space *mapping;
0f792cf9 4540 int need_wait_lock = 0;
285b8dca 4541 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4542
285b8dca 4543 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4544 if (ptep) {
c0d0381a
MK
4545 /*
4546 * Since we hold no locks, ptep could be stale. That is
4547 * OK as we are only making decisions based on content and
4548 * not actually modifying content here.
4549 */
fd6a03ed 4550 entry = huge_ptep_get(ptep);
290408d4 4551 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4552 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4553 return 0;
4554 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4555 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4556 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4557 }
4558
c0d0381a
MK
4559 /*
4560 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4561 * until finished with ptep. This serves two purposes:
4562 * 1) It prevents huge_pmd_unshare from being called elsewhere
4563 * and making the ptep no longer valid.
4564 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4565 *
4566 * ptep could have already be assigned via huge_pte_offset. That
4567 * is OK, as huge_pte_alloc will return the same value unless
4568 * something has changed.
4569 */
8382d914 4570 mapping = vma->vm_file->f_mapping;
c0d0381a
MK
4571 i_mmap_lock_read(mapping);
4572 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4573 if (!ptep) {
4574 i_mmap_unlock_read(mapping);
4575 return VM_FAULT_OOM;
4576 }
8382d914 4577
3935baa9
DG
4578 /*
4579 * Serialize hugepage allocation and instantiation, so that we don't
4580 * get spurious allocation failures if two CPUs race to instantiate
4581 * the same page in the page cache.
4582 */
c0d0381a 4583 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4584 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4585 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4586
7f2e9525
GS
4587 entry = huge_ptep_get(ptep);
4588 if (huge_pte_none(entry)) {
8382d914 4589 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4590 goto out_mutex;
3935baa9 4591 }
86e5216f 4592
83c54070 4593 ret = 0;
1e8f889b 4594
0f792cf9
NH
4595 /*
4596 * entry could be a migration/hwpoison entry at this point, so this
4597 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4598 * an active hugepage in pagecache. This goto expects the 2nd page
4599 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4600 * properly handle it.
0f792cf9
NH
4601 */
4602 if (!pte_present(entry))
4603 goto out_mutex;
4604
57303d80
AW
4605 /*
4606 * If we are going to COW the mapping later, we examine the pending
4607 * reservations for this page now. This will ensure that any
4608 * allocations necessary to record that reservation occur outside the
4609 * spinlock. For private mappings, we also lookup the pagecache
4610 * page now as it is used to determine if a reservation has been
4611 * consumed.
4612 */
106c992a 4613 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4614 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4615 ret = VM_FAULT_OOM;
b4d1d99f 4616 goto out_mutex;
2b26736c 4617 }
5e911373 4618 /* Just decrements count, does not deallocate */
285b8dca 4619 vma_end_reservation(h, vma, haddr);
57303d80 4620
f83a275d 4621 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4622 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4623 vma, haddr);
57303d80
AW
4624 }
4625
0f792cf9
NH
4626 ptl = huge_pte_lock(h, mm, ptep);
4627
4628 /* Check for a racing update before calling hugetlb_cow */
4629 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4630 goto out_ptl;
4631
56c9cfb1
NH
4632 /*
4633 * hugetlb_cow() requires page locks of pte_page(entry) and
4634 * pagecache_page, so here we need take the former one
4635 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4636 */
4637 page = pte_page(entry);
4638 if (page != pagecache_page)
0f792cf9
NH
4639 if (!trylock_page(page)) {
4640 need_wait_lock = 1;
4641 goto out_ptl;
4642 }
b4d1d99f 4643
0f792cf9 4644 get_page(page);
b4d1d99f 4645
788c7df4 4646 if (flags & FAULT_FLAG_WRITE) {
106c992a 4647 if (!huge_pte_write(entry)) {
974e6d66 4648 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4649 pagecache_page, ptl);
0f792cf9 4650 goto out_put_page;
b4d1d99f 4651 }
106c992a 4652 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4653 }
4654 entry = pte_mkyoung(entry);
285b8dca 4655 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4656 flags & FAULT_FLAG_WRITE))
285b8dca 4657 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4658out_put_page:
4659 if (page != pagecache_page)
4660 unlock_page(page);
4661 put_page(page);
cb900f41
KS
4662out_ptl:
4663 spin_unlock(ptl);
57303d80
AW
4664
4665 if (pagecache_page) {
4666 unlock_page(pagecache_page);
4667 put_page(pagecache_page);
4668 }
b4d1d99f 4669out_mutex:
c672c7f2 4670 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4671 i_mmap_unlock_read(mapping);
0f792cf9
NH
4672 /*
4673 * Generally it's safe to hold refcount during waiting page lock. But
4674 * here we just wait to defer the next page fault to avoid busy loop and
4675 * the page is not used after unlocked before returning from the current
4676 * page fault. So we are safe from accessing freed page, even if we wait
4677 * here without taking refcount.
4678 */
4679 if (need_wait_lock)
4680 wait_on_page_locked(page);
1e8f889b 4681 return ret;
86e5216f
AL
4682}
4683
8fb5debc
MK
4684/*
4685 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4686 * modifications for huge pages.
4687 */
4688int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4689 pte_t *dst_pte,
4690 struct vm_area_struct *dst_vma,
4691 unsigned long dst_addr,
4692 unsigned long src_addr,
4693 struct page **pagep)
4694{
1e392147
AA
4695 struct address_space *mapping;
4696 pgoff_t idx;
4697 unsigned long size;
1c9e8def 4698 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4699 struct hstate *h = hstate_vma(dst_vma);
4700 pte_t _dst_pte;
4701 spinlock_t *ptl;
4702 int ret;
4703 struct page *page;
4704
4705 if (!*pagep) {
4706 ret = -ENOMEM;
4707 page = alloc_huge_page(dst_vma, dst_addr, 0);
4708 if (IS_ERR(page))
4709 goto out;
4710
4711 ret = copy_huge_page_from_user(page,
4712 (const void __user *) src_addr,
810a56b9 4713 pages_per_huge_page(h), false);
8fb5debc 4714
c1e8d7c6 4715 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 4716 if (unlikely(ret)) {
9e368259 4717 ret = -ENOENT;
8fb5debc
MK
4718 *pagep = page;
4719 /* don't free the page */
4720 goto out;
4721 }
4722 } else {
4723 page = *pagep;
4724 *pagep = NULL;
4725 }
4726
4727 /*
4728 * The memory barrier inside __SetPageUptodate makes sure that
4729 * preceding stores to the page contents become visible before
4730 * the set_pte_at() write.
4731 */
4732 __SetPageUptodate(page);
8fb5debc 4733
1e392147
AA
4734 mapping = dst_vma->vm_file->f_mapping;
4735 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4736
1c9e8def
MK
4737 /*
4738 * If shared, add to page cache
4739 */
4740 if (vm_shared) {
1e392147
AA
4741 size = i_size_read(mapping->host) >> huge_page_shift(h);
4742 ret = -EFAULT;
4743 if (idx >= size)
4744 goto out_release_nounlock;
1c9e8def 4745
1e392147
AA
4746 /*
4747 * Serialization between remove_inode_hugepages() and
4748 * huge_add_to_page_cache() below happens through the
4749 * hugetlb_fault_mutex_table that here must be hold by
4750 * the caller.
4751 */
1c9e8def
MK
4752 ret = huge_add_to_page_cache(page, mapping, idx);
4753 if (ret)
4754 goto out_release_nounlock;
4755 }
4756
8fb5debc
MK
4757 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4758 spin_lock(ptl);
4759
1e392147
AA
4760 /*
4761 * Recheck the i_size after holding PT lock to make sure not
4762 * to leave any page mapped (as page_mapped()) beyond the end
4763 * of the i_size (remove_inode_hugepages() is strict about
4764 * enforcing that). If we bail out here, we'll also leave a
4765 * page in the radix tree in the vm_shared case beyond the end
4766 * of the i_size, but remove_inode_hugepages() will take care
4767 * of it as soon as we drop the hugetlb_fault_mutex_table.
4768 */
4769 size = i_size_read(mapping->host) >> huge_page_shift(h);
4770 ret = -EFAULT;
4771 if (idx >= size)
4772 goto out_release_unlock;
4773
8fb5debc
MK
4774 ret = -EEXIST;
4775 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4776 goto out_release_unlock;
4777
1c9e8def
MK
4778 if (vm_shared) {
4779 page_dup_rmap(page, true);
4780 } else {
4781 ClearPagePrivate(page);
4782 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4783 }
8fb5debc
MK
4784
4785 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4786 if (dst_vma->vm_flags & VM_WRITE)
4787 _dst_pte = huge_pte_mkdirty(_dst_pte);
4788 _dst_pte = pte_mkyoung(_dst_pte);
4789
4790 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4791
4792 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4793 dst_vma->vm_flags & VM_WRITE);
4794 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4795
4796 /* No need to invalidate - it was non-present before */
4797 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4798
4799 spin_unlock(ptl);
cb6acd01 4800 set_page_huge_active(page);
1c9e8def
MK
4801 if (vm_shared)
4802 unlock_page(page);
8fb5debc
MK
4803 ret = 0;
4804out:
4805 return ret;
4806out_release_unlock:
4807 spin_unlock(ptl);
1c9e8def
MK
4808 if (vm_shared)
4809 unlock_page(page);
5af10dfd 4810out_release_nounlock:
8fb5debc
MK
4811 put_page(page);
4812 goto out;
4813}
4814
28a35716
ML
4815long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4816 struct page **pages, struct vm_area_struct **vmas,
4817 unsigned long *position, unsigned long *nr_pages,
4f6da934 4818 long i, unsigned int flags, int *locked)
63551ae0 4819{
d5d4b0aa
KC
4820 unsigned long pfn_offset;
4821 unsigned long vaddr = *position;
28a35716 4822 unsigned long remainder = *nr_pages;
a5516438 4823 struct hstate *h = hstate_vma(vma);
2be7cfed 4824 int err = -EFAULT;
63551ae0 4825
63551ae0 4826 while (vaddr < vma->vm_end && remainder) {
4c887265 4827 pte_t *pte;
cb900f41 4828 spinlock_t *ptl = NULL;
2a15efc9 4829 int absent;
4c887265 4830 struct page *page;
63551ae0 4831
02057967
DR
4832 /*
4833 * If we have a pending SIGKILL, don't keep faulting pages and
4834 * potentially allocating memory.
4835 */
fa45f116 4836 if (fatal_signal_pending(current)) {
02057967
DR
4837 remainder = 0;
4838 break;
4839 }
4840
4c887265
AL
4841 /*
4842 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4843 * each hugepage. We have to make sure we get the
4c887265 4844 * first, for the page indexing below to work.
cb900f41
KS
4845 *
4846 * Note that page table lock is not held when pte is null.
4c887265 4847 */
7868a208
PA
4848 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4849 huge_page_size(h));
cb900f41
KS
4850 if (pte)
4851 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4852 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4853
4854 /*
4855 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4856 * an error where there's an empty slot with no huge pagecache
4857 * to back it. This way, we avoid allocating a hugepage, and
4858 * the sparse dumpfile avoids allocating disk blocks, but its
4859 * huge holes still show up with zeroes where they need to be.
2a15efc9 4860 */
3ae77f43
HD
4861 if (absent && (flags & FOLL_DUMP) &&
4862 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4863 if (pte)
4864 spin_unlock(ptl);
2a15efc9
HD
4865 remainder = 0;
4866 break;
4867 }
63551ae0 4868
9cc3a5bd
NH
4869 /*
4870 * We need call hugetlb_fault for both hugepages under migration
4871 * (in which case hugetlb_fault waits for the migration,) and
4872 * hwpoisoned hugepages (in which case we need to prevent the
4873 * caller from accessing to them.) In order to do this, we use
4874 * here is_swap_pte instead of is_hugetlb_entry_migration and
4875 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4876 * both cases, and because we can't follow correct pages
4877 * directly from any kind of swap entries.
4878 */
4879 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4880 ((flags & FOLL_WRITE) &&
4881 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4882 vm_fault_t ret;
87ffc118 4883 unsigned int fault_flags = 0;
63551ae0 4884
cb900f41
KS
4885 if (pte)
4886 spin_unlock(ptl);
87ffc118
AA
4887 if (flags & FOLL_WRITE)
4888 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4889 if (locked)
71335f37
PX
4890 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4891 FAULT_FLAG_KILLABLE;
87ffc118
AA
4892 if (flags & FOLL_NOWAIT)
4893 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4894 FAULT_FLAG_RETRY_NOWAIT;
4895 if (flags & FOLL_TRIED) {
4426e945
PX
4896 /*
4897 * Note: FAULT_FLAG_ALLOW_RETRY and
4898 * FAULT_FLAG_TRIED can co-exist
4899 */
87ffc118
AA
4900 fault_flags |= FAULT_FLAG_TRIED;
4901 }
4902 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4903 if (ret & VM_FAULT_ERROR) {
2be7cfed 4904 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4905 remainder = 0;
4906 break;
4907 }
4908 if (ret & VM_FAULT_RETRY) {
4f6da934 4909 if (locked &&
1ac25013 4910 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4911 *locked = 0;
87ffc118
AA
4912 *nr_pages = 0;
4913 /*
4914 * VM_FAULT_RETRY must not return an
4915 * error, it will return zero
4916 * instead.
4917 *
4918 * No need to update "position" as the
4919 * caller will not check it after
4920 * *nr_pages is set to 0.
4921 */
4922 return i;
4923 }
4924 continue;
4c887265
AL
4925 }
4926
a5516438 4927 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4928 page = pte_page(huge_ptep_get(pte));
8fde12ca 4929
acbfb087
ZL
4930 /*
4931 * If subpage information not requested, update counters
4932 * and skip the same_page loop below.
4933 */
4934 if (!pages && !vmas && !pfn_offset &&
4935 (vaddr + huge_page_size(h) < vma->vm_end) &&
4936 (remainder >= pages_per_huge_page(h))) {
4937 vaddr += huge_page_size(h);
4938 remainder -= pages_per_huge_page(h);
4939 i += pages_per_huge_page(h);
4940 spin_unlock(ptl);
4941 continue;
4942 }
4943
d5d4b0aa 4944same_page:
d6692183 4945 if (pages) {
2a15efc9 4946 pages[i] = mem_map_offset(page, pfn_offset);
3faa52c0
JH
4947 /*
4948 * try_grab_page() should always succeed here, because:
4949 * a) we hold the ptl lock, and b) we've just checked
4950 * that the huge page is present in the page tables. If
4951 * the huge page is present, then the tail pages must
4952 * also be present. The ptl prevents the head page and
4953 * tail pages from being rearranged in any way. So this
4954 * page must be available at this point, unless the page
4955 * refcount overflowed:
4956 */
4957 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4958 spin_unlock(ptl);
4959 remainder = 0;
4960 err = -ENOMEM;
4961 break;
4962 }
d6692183 4963 }
63551ae0
DG
4964
4965 if (vmas)
4966 vmas[i] = vma;
4967
4968 vaddr += PAGE_SIZE;
d5d4b0aa 4969 ++pfn_offset;
63551ae0
DG
4970 --remainder;
4971 ++i;
d5d4b0aa 4972 if (vaddr < vma->vm_end && remainder &&
a5516438 4973 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4974 /*
4975 * We use pfn_offset to avoid touching the pageframes
4976 * of this compound page.
4977 */
4978 goto same_page;
4979 }
cb900f41 4980 spin_unlock(ptl);
63551ae0 4981 }
28a35716 4982 *nr_pages = remainder;
87ffc118
AA
4983 /*
4984 * setting position is actually required only if remainder is
4985 * not zero but it's faster not to add a "if (remainder)"
4986 * branch.
4987 */
63551ae0
DG
4988 *position = vaddr;
4989
2be7cfed 4990 return i ? i : err;
63551ae0 4991}
8f860591 4992
5491ae7b
AK
4993#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4994/*
4995 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4996 * implement this.
4997 */
4998#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4999#endif
5000
7da4d641 5001unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
5002 unsigned long address, unsigned long end, pgprot_t newprot)
5003{
5004 struct mm_struct *mm = vma->vm_mm;
5005 unsigned long start = address;
5006 pte_t *ptep;
5007 pte_t pte;
a5516438 5008 struct hstate *h = hstate_vma(vma);
7da4d641 5009 unsigned long pages = 0;
dff11abe 5010 bool shared_pmd = false;
ac46d4f3 5011 struct mmu_notifier_range range;
dff11abe
MK
5012
5013 /*
5014 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5015 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5016 * range if PMD sharing is possible.
5017 */
7269f999
JG
5018 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5019 0, vma, mm, start, end);
ac46d4f3 5020 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5021
5022 BUG_ON(address >= end);
ac46d4f3 5023 flush_cache_range(vma, range.start, range.end);
8f860591 5024
ac46d4f3 5025 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5026 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5027 for (; address < end; address += huge_page_size(h)) {
cb900f41 5028 spinlock_t *ptl;
7868a208 5029 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5030 if (!ptep)
5031 continue;
cb900f41 5032 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5033 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5034 pages++;
cb900f41 5035 spin_unlock(ptl);
dff11abe 5036 shared_pmd = true;
39dde65c 5037 continue;
7da4d641 5038 }
a8bda28d
NH
5039 pte = huge_ptep_get(ptep);
5040 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5041 spin_unlock(ptl);
5042 continue;
5043 }
5044 if (unlikely(is_hugetlb_entry_migration(pte))) {
5045 swp_entry_t entry = pte_to_swp_entry(pte);
5046
5047 if (is_write_migration_entry(entry)) {
5048 pte_t newpte;
5049
5050 make_migration_entry_read(&entry);
5051 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5052 set_huge_swap_pte_at(mm, address, ptep,
5053 newpte, huge_page_size(h));
a8bda28d
NH
5054 pages++;
5055 }
5056 spin_unlock(ptl);
5057 continue;
5058 }
5059 if (!huge_pte_none(pte)) {
023bdd00
AK
5060 pte_t old_pte;
5061
5062 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5063 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5064 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5065 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5066 pages++;
8f860591 5067 }
cb900f41 5068 spin_unlock(ptl);
8f860591 5069 }
d833352a 5070 /*
c8c06efa 5071 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5072 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5073 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5074 * and that page table be reused and filled with junk. If we actually
5075 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5076 */
dff11abe 5077 if (shared_pmd)
ac46d4f3 5078 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5079 else
5080 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5081 /*
5082 * No need to call mmu_notifier_invalidate_range() we are downgrading
5083 * page table protection not changing it to point to a new page.
5084 *
ad56b738 5085 * See Documentation/vm/mmu_notifier.rst
0f10851e 5086 */
83cde9e8 5087 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5088 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5089
5090 return pages << h->order;
8f860591
ZY
5091}
5092
a1e78772
MG
5093int hugetlb_reserve_pages(struct inode *inode,
5094 long from, long to,
5a6fe125 5095 struct vm_area_struct *vma,
ca16d140 5096 vm_flags_t vm_flags)
e4e574b7 5097{
0db9d74e 5098 long ret, chg, add = -1;
a5516438 5099 struct hstate *h = hstate_inode(inode);
90481622 5100 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5101 struct resv_map *resv_map;
075a61d0 5102 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5103 long gbl_reserve, regions_needed = 0;
e4e574b7 5104
63489f8e
MK
5105 /* This should never happen */
5106 if (from > to) {
5107 VM_WARN(1, "%s called with a negative range\n", __func__);
5108 return -EINVAL;
5109 }
5110
17c9d12e
MG
5111 /*
5112 * Only apply hugepage reservation if asked. At fault time, an
5113 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5114 * without using reserves
17c9d12e 5115 */
ca16d140 5116 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
5117 return 0;
5118
a1e78772
MG
5119 /*
5120 * Shared mappings base their reservation on the number of pages that
5121 * are already allocated on behalf of the file. Private mappings need
5122 * to reserve the full area even if read-only as mprotect() may be
5123 * called to make the mapping read-write. Assume !vma is a shm mapping
5124 */
9119a41e 5125 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5126 /*
5127 * resv_map can not be NULL as hugetlb_reserve_pages is only
5128 * called for inodes for which resv_maps were created (see
5129 * hugetlbfs_get_inode).
5130 */
4e35f483 5131 resv_map = inode_resv_map(inode);
9119a41e 5132
0db9d74e 5133 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5134
5135 } else {
e9fe92ae 5136 /* Private mapping. */
9119a41e 5137 resv_map = resv_map_alloc();
17c9d12e
MG
5138 if (!resv_map)
5139 return -ENOMEM;
5140
a1e78772 5141 chg = to - from;
84afd99b 5142
17c9d12e
MG
5143 set_vma_resv_map(vma, resv_map);
5144 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5145 }
5146
c50ac050
DH
5147 if (chg < 0) {
5148 ret = chg;
5149 goto out_err;
5150 }
8a630112 5151
075a61d0
MA
5152 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5153 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5154
5155 if (ret < 0) {
5156 ret = -ENOMEM;
5157 goto out_err;
5158 }
5159
5160 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5161 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5162 * of the resv_map.
5163 */
5164 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5165 }
5166
1c5ecae3
MK
5167 /*
5168 * There must be enough pages in the subpool for the mapping. If
5169 * the subpool has a minimum size, there may be some global
5170 * reservations already in place (gbl_reserve).
5171 */
5172 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5173 if (gbl_reserve < 0) {
c50ac050 5174 ret = -ENOSPC;
075a61d0 5175 goto out_uncharge_cgroup;
c50ac050 5176 }
5a6fe125
MG
5177
5178 /*
17c9d12e 5179 * Check enough hugepages are available for the reservation.
90481622 5180 * Hand the pages back to the subpool if there are not
5a6fe125 5181 */
1c5ecae3 5182 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 5183 if (ret < 0) {
075a61d0 5184 goto out_put_pages;
68842c9b 5185 }
17c9d12e
MG
5186
5187 /*
5188 * Account for the reservations made. Shared mappings record regions
5189 * that have reservations as they are shared by multiple VMAs.
5190 * When the last VMA disappears, the region map says how much
5191 * the reservation was and the page cache tells how much of
5192 * the reservation was consumed. Private mappings are per-VMA and
5193 * only the consumed reservations are tracked. When the VMA
5194 * disappears, the original reservation is the VMA size and the
5195 * consumed reservations are stored in the map. Hence, nothing
5196 * else has to be done for private mappings here
5197 */
33039678 5198 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5199 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5200
5201 if (unlikely(add < 0)) {
5202 hugetlb_acct_memory(h, -gbl_reserve);
7fc2513a 5203 ret = add;
075a61d0 5204 goto out_put_pages;
0db9d74e 5205 } else if (unlikely(chg > add)) {
33039678
MK
5206 /*
5207 * pages in this range were added to the reserve
5208 * map between region_chg and region_add. This
5209 * indicates a race with alloc_huge_page. Adjust
5210 * the subpool and reserve counts modified above
5211 * based on the difference.
5212 */
5213 long rsv_adjust;
5214
0dd70e6b
ML
5215 /*
5216 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5217 * reference to h_cg->css. See comment below for detail.
5218 */
075a61d0
MA
5219 hugetlb_cgroup_uncharge_cgroup_rsvd(
5220 hstate_index(h),
5221 (chg - add) * pages_per_huge_page(h), h_cg);
5222
33039678
MK
5223 rsv_adjust = hugepage_subpool_put_pages(spool,
5224 chg - add);
5225 hugetlb_acct_memory(h, -rsv_adjust);
0dd70e6b
ML
5226 } else if (h_cg) {
5227 /*
5228 * The file_regions will hold their own reference to
5229 * h_cg->css. So we should release the reference held
5230 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5231 * done.
5232 */
5233 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
5234 }
5235 }
a43a8c39 5236 return 0;
075a61d0
MA
5237out_put_pages:
5238 /* put back original number of pages, chg */
5239 (void)hugepage_subpool_put_pages(spool, chg);
5240out_uncharge_cgroup:
5241 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5242 chg * pages_per_huge_page(h), h_cg);
c50ac050 5243out_err:
5e911373 5244 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5245 /* Only call region_abort if the region_chg succeeded but the
5246 * region_add failed or didn't run.
5247 */
5248 if (chg >= 0 && add < 0)
5249 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5250 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5251 kref_put(&resv_map->refs, resv_map_release);
c50ac050 5252 return ret;
a43a8c39
KC
5253}
5254
b5cec28d
MK
5255long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5256 long freed)
a43a8c39 5257{
a5516438 5258 struct hstate *h = hstate_inode(inode);
4e35f483 5259 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5260 long chg = 0;
90481622 5261 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5262 long gbl_reserve;
45c682a6 5263
f27a5136
MK
5264 /*
5265 * Since this routine can be called in the evict inode path for all
5266 * hugetlbfs inodes, resv_map could be NULL.
5267 */
b5cec28d
MK
5268 if (resv_map) {
5269 chg = region_del(resv_map, start, end);
5270 /*
5271 * region_del() can fail in the rare case where a region
5272 * must be split and another region descriptor can not be
5273 * allocated. If end == LONG_MAX, it will not fail.
5274 */
5275 if (chg < 0)
5276 return chg;
5277 }
5278
45c682a6 5279 spin_lock(&inode->i_lock);
e4c6f8be 5280 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5281 spin_unlock(&inode->i_lock);
5282
1c5ecae3
MK
5283 /*
5284 * If the subpool has a minimum size, the number of global
5285 * reservations to be released may be adjusted.
5286 */
5287 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5288 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5289
5290 return 0;
a43a8c39 5291}
93f70f90 5292
3212b535
SC
5293#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5294static unsigned long page_table_shareable(struct vm_area_struct *svma,
5295 struct vm_area_struct *vma,
5296 unsigned long addr, pgoff_t idx)
5297{
5298 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5299 svma->vm_start;
5300 unsigned long sbase = saddr & PUD_MASK;
5301 unsigned long s_end = sbase + PUD_SIZE;
5302
5303 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5304 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5305 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5306
5307 /*
5308 * match the virtual addresses, permission and the alignment of the
5309 * page table page.
5310 */
5311 if (pmd_index(addr) != pmd_index(saddr) ||
5312 vm_flags != svm_flags ||
5313 sbase < svma->vm_start || svma->vm_end < s_end)
5314 return 0;
5315
5316 return saddr;
5317}
5318
31aafb45 5319static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5320{
5321 unsigned long base = addr & PUD_MASK;
5322 unsigned long end = base + PUD_SIZE;
5323
5324 /*
5325 * check on proper vm_flags and page table alignment
5326 */
017b1660 5327 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5328 return true;
5329 return false;
3212b535
SC
5330}
5331
017b1660
MK
5332/*
5333 * Determine if start,end range within vma could be mapped by shared pmd.
5334 * If yes, adjust start and end to cover range associated with possible
5335 * shared pmd mappings.
5336 */
5337void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5338 unsigned long *start, unsigned long *end)
5339{
6d6c2964
LX
5340 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5341 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5342
6d6c2964
LX
5343 /*
5344 * vma need span at least one aligned PUD size and the start,end range
5345 * must at least partialy within it.
5346 */
5347 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5348 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5349 return;
5350
75802ca6 5351 /* Extend the range to be PUD aligned for a worst case scenario */
6d6c2964
LX
5352 if (*start > v_start)
5353 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5354
6d6c2964
LX
5355 if (*end < v_end)
5356 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5357}
5358
3212b535
SC
5359/*
5360 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5361 * and returns the corresponding pte. While this is not necessary for the
5362 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5363 * code much cleaner.
5364 *
0bf7b64e
MK
5365 * This routine must be called with i_mmap_rwsem held in at least read mode if
5366 * sharing is possible. For hugetlbfs, this prevents removal of any page
5367 * table entries associated with the address space. This is important as we
5368 * are setting up sharing based on existing page table entries (mappings).
5369 *
5370 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5371 * huge_pte_alloc know that sharing is not possible and do not take
5372 * i_mmap_rwsem as a performance optimization. This is handled by the
5373 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5374 * only required for subsequent processing.
3212b535
SC
5375 */
5376pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5377{
5378 struct vm_area_struct *vma = find_vma(mm, addr);
5379 struct address_space *mapping = vma->vm_file->f_mapping;
5380 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5381 vma->vm_pgoff;
5382 struct vm_area_struct *svma;
5383 unsigned long saddr;
5384 pte_t *spte = NULL;
5385 pte_t *pte;
cb900f41 5386 spinlock_t *ptl;
3212b535
SC
5387
5388 if (!vma_shareable(vma, addr))
5389 return (pte_t *)pmd_alloc(mm, pud, addr);
5390
0bf7b64e 5391 i_mmap_assert_locked(mapping);
3212b535
SC
5392 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5393 if (svma == vma)
5394 continue;
5395
5396 saddr = page_table_shareable(svma, vma, addr, idx);
5397 if (saddr) {
7868a208
PA
5398 spte = huge_pte_offset(svma->vm_mm, saddr,
5399 vma_mmu_pagesize(svma));
3212b535
SC
5400 if (spte) {
5401 get_page(virt_to_page(spte));
5402 break;
5403 }
5404 }
5405 }
5406
5407 if (!spte)
5408 goto out;
5409
8bea8052 5410 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5411 if (pud_none(*pud)) {
3212b535
SC
5412 pud_populate(mm, pud,
5413 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5414 mm_inc_nr_pmds(mm);
dc6c9a35 5415 } else {
3212b535 5416 put_page(virt_to_page(spte));
dc6c9a35 5417 }
cb900f41 5418 spin_unlock(ptl);
3212b535
SC
5419out:
5420 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5421 return pte;
5422}
5423
5424/*
5425 * unmap huge page backed by shared pte.
5426 *
5427 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5428 * indicated by page_count > 1, unmap is achieved by clearing pud and
5429 * decrementing the ref count. If count == 1, the pte page is not shared.
5430 *
c0d0381a 5431 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5432 *
5433 * returns: 1 successfully unmapped a shared pte page
5434 * 0 the underlying pte page is not shared, or it is the last user
5435 */
34ae204f
MK
5436int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5437 unsigned long *addr, pte_t *ptep)
3212b535
SC
5438{
5439 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5440 p4d_t *p4d = p4d_offset(pgd, *addr);
5441 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5442
34ae204f 5443 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5444 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5445 if (page_count(virt_to_page(ptep)) == 1)
5446 return 0;
5447
5448 pud_clear(pud);
5449 put_page(virt_to_page(ptep));
dc6c9a35 5450 mm_dec_nr_pmds(mm);
3212b535
SC
5451 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5452 return 1;
5453}
9e5fc74c
SC
5454#define want_pmd_share() (1)
5455#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5456pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5457{
5458 return NULL;
5459}
e81f2d22 5460
34ae204f
MK
5461int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5462 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5463{
5464 return 0;
5465}
017b1660
MK
5466
5467void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5468 unsigned long *start, unsigned long *end)
5469{
5470}
9e5fc74c 5471#define want_pmd_share() (0)
3212b535
SC
5472#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5473
9e5fc74c
SC
5474#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5475pte_t *huge_pte_alloc(struct mm_struct *mm,
5476 unsigned long addr, unsigned long sz)
5477{
5478 pgd_t *pgd;
c2febafc 5479 p4d_t *p4d;
9e5fc74c
SC
5480 pud_t *pud;
5481 pte_t *pte = NULL;
5482
5483 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5484 p4d = p4d_alloc(mm, pgd, addr);
5485 if (!p4d)
5486 return NULL;
c2febafc 5487 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5488 if (pud) {
5489 if (sz == PUD_SIZE) {
5490 pte = (pte_t *)pud;
5491 } else {
5492 BUG_ON(sz != PMD_SIZE);
5493 if (want_pmd_share() && pud_none(*pud))
5494 pte = huge_pmd_share(mm, addr, pud);
5495 else
5496 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5497 }
5498 }
4e666314 5499 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5500
5501 return pte;
5502}
5503
9b19df29
PA
5504/*
5505 * huge_pte_offset() - Walk the page table to resolve the hugepage
5506 * entry at address @addr
5507 *
8ac0b81a
LX
5508 * Return: Pointer to page table entry (PUD or PMD) for
5509 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5510 * size @sz doesn't match the hugepage size at this level of the page
5511 * table.
5512 */
7868a208
PA
5513pte_t *huge_pte_offset(struct mm_struct *mm,
5514 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5515{
5516 pgd_t *pgd;
c2febafc 5517 p4d_t *p4d;
8ac0b81a
LX
5518 pud_t *pud;
5519 pmd_t *pmd;
9e5fc74c
SC
5520
5521 pgd = pgd_offset(mm, addr);
c2febafc
KS
5522 if (!pgd_present(*pgd))
5523 return NULL;
5524 p4d = p4d_offset(pgd, addr);
5525 if (!p4d_present(*p4d))
5526 return NULL;
9b19df29 5527
c2febafc 5528 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5529 if (sz == PUD_SIZE)
5530 /* must be pud huge, non-present or none */
c2febafc 5531 return (pte_t *)pud;
8ac0b81a 5532 if (!pud_present(*pud))
9b19df29 5533 return NULL;
8ac0b81a 5534 /* must have a valid entry and size to go further */
9b19df29 5535
8ac0b81a
LX
5536 pmd = pmd_offset(pud, addr);
5537 /* must be pmd huge, non-present or none */
5538 return (pte_t *)pmd;
9e5fc74c
SC
5539}
5540
61f77eda
NH
5541#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5542
5543/*
5544 * These functions are overwritable if your architecture needs its own
5545 * behavior.
5546 */
5547struct page * __weak
5548follow_huge_addr(struct mm_struct *mm, unsigned long address,
5549 int write)
5550{
5551 return ERR_PTR(-EINVAL);
5552}
5553
4dc71451
AK
5554struct page * __weak
5555follow_huge_pd(struct vm_area_struct *vma,
5556 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5557{
5558 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5559 return NULL;
5560}
5561
61f77eda 5562struct page * __weak
9e5fc74c 5563follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5564 pmd_t *pmd, int flags)
9e5fc74c 5565{
e66f17ff
NH
5566 struct page *page = NULL;
5567 spinlock_t *ptl;
c9d398fa 5568 pte_t pte;
3faa52c0
JH
5569
5570 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5571 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5572 (FOLL_PIN | FOLL_GET)))
5573 return NULL;
5574
e66f17ff
NH
5575retry:
5576 ptl = pmd_lockptr(mm, pmd);
5577 spin_lock(ptl);
5578 /*
5579 * make sure that the address range covered by this pmd is not
5580 * unmapped from other threads.
5581 */
5582 if (!pmd_huge(*pmd))
5583 goto out;
c9d398fa
NH
5584 pte = huge_ptep_get((pte_t *)pmd);
5585 if (pte_present(pte)) {
97534127 5586 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5587 /*
5588 * try_grab_page() should always succeed here, because: a) we
5589 * hold the pmd (ptl) lock, and b) we've just checked that the
5590 * huge pmd (head) page is present in the page tables. The ptl
5591 * prevents the head page and tail pages from being rearranged
5592 * in any way. So this page must be available at this point,
5593 * unless the page refcount overflowed:
5594 */
5595 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5596 page = NULL;
5597 goto out;
5598 }
e66f17ff 5599 } else {
c9d398fa 5600 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5601 spin_unlock(ptl);
5602 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5603 goto retry;
5604 }
5605 /*
5606 * hwpoisoned entry is treated as no_page_table in
5607 * follow_page_mask().
5608 */
5609 }
5610out:
5611 spin_unlock(ptl);
9e5fc74c
SC
5612 return page;
5613}
5614
61f77eda 5615struct page * __weak
9e5fc74c 5616follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5617 pud_t *pud, int flags)
9e5fc74c 5618{
3faa52c0 5619 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5620 return NULL;
9e5fc74c 5621
e66f17ff 5622 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5623}
5624
faaa5b62
AK
5625struct page * __weak
5626follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5627{
3faa52c0 5628 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5629 return NULL;
5630
5631 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5632}
5633
31caf665
NH
5634bool isolate_huge_page(struct page *page, struct list_head *list)
5635{
bcc54222
NH
5636 bool ret = true;
5637
31caf665 5638 spin_lock(&hugetlb_lock);
0eb2df2b
MS
5639 if (!PageHeadHuge(page) || !page_huge_active(page) ||
5640 !get_page_unless_zero(page)) {
bcc54222
NH
5641 ret = false;
5642 goto unlock;
5643 }
5644 clear_page_huge_active(page);
31caf665 5645 list_move_tail(&page->lru, list);
bcc54222 5646unlock:
31caf665 5647 spin_unlock(&hugetlb_lock);
bcc54222 5648 return ret;
31caf665
NH
5649}
5650
5651void putback_active_hugepage(struct page *page)
5652{
309381fe 5653 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5654 spin_lock(&hugetlb_lock);
bcc54222 5655 set_page_huge_active(page);
31caf665
NH
5656 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5657 spin_unlock(&hugetlb_lock);
5658 put_page(page);
5659}
ab5ac90a
MH
5660
5661void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5662{
5663 struct hstate *h = page_hstate(oldpage);
5664
5665 hugetlb_cgroup_migrate(oldpage, newpage);
5666 set_page_owner_migrate_reason(newpage, reason);
5667
5668 /*
5669 * transfer temporary state of the new huge page. This is
5670 * reverse to other transitions because the newpage is going to
5671 * be final while the old one will be freed so it takes over
5672 * the temporary status.
5673 *
5674 * Also note that we have to transfer the per-node surplus state
5675 * here as well otherwise the global surplus count will not match
5676 * the per-node's.
5677 */
5678 if (PageHugeTemporary(newpage)) {
5679 int old_nid = page_to_nid(oldpage);
5680 int new_nid = page_to_nid(newpage);
5681
5682 SetPageHugeTemporary(oldpage);
5683 ClearPageHugeTemporary(newpage);
5684
5685 spin_lock(&hugetlb_lock);
5686 if (h->surplus_huge_pages_node[old_nid]) {
5687 h->surplus_huge_pages_node[old_nid]--;
5688 h->surplus_huge_pages_node[new_nid]++;
5689 }
5690 spin_unlock(&hugetlb_lock);
5691 }
5692}
cf11e85f
RG
5693
5694#ifdef CONFIG_CMA
cf11e85f
RG
5695static bool cma_reserve_called __initdata;
5696
5697static int __init cmdline_parse_hugetlb_cma(char *p)
5698{
5699 hugetlb_cma_size = memparse(p, &p);
5700 return 0;
5701}
5702
5703early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5704
5705void __init hugetlb_cma_reserve(int order)
5706{
5707 unsigned long size, reserved, per_node;
5708 int nid;
5709
5710 cma_reserve_called = true;
5711
5712 if (!hugetlb_cma_size)
5713 return;
5714
5715 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5716 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5717 (PAGE_SIZE << order) / SZ_1M);
5718 return;
5719 }
5720
5721 /*
5722 * If 3 GB area is requested on a machine with 4 numa nodes,
5723 * let's allocate 1 GB on first three nodes and ignore the last one.
5724 */
5725 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5726 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5727 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5728
5729 reserved = 0;
5730 for_each_node_state(nid, N_ONLINE) {
5731 int res;
2281f797 5732 char name[CMA_MAX_NAME];
cf11e85f
RG
5733
5734 size = min(per_node, hugetlb_cma_size - reserved);
5735 size = round_up(size, PAGE_SIZE << order);
5736
2281f797 5737 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 5738 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 5739 0, false, name,
cf11e85f
RG
5740 &hugetlb_cma[nid], nid);
5741 if (res) {
5742 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5743 res, nid);
5744 continue;
5745 }
5746
5747 reserved += size;
5748 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5749 size / SZ_1M, nid);
5750
5751 if (reserved >= hugetlb_cma_size)
5752 break;
5753 }
5754}
5755
5756void __init hugetlb_cma_check(void)
5757{
5758 if (!hugetlb_cma_size || cma_reserve_called)
5759 return;
5760
5761 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5762}
5763
5764#endif /* CONFIG_CMA */