]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/hugetlb.c
mm: page_vma_mapped_walk(): prettify PVMW_MIGRATION block
[mirror_ubuntu-focal-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
63489f8e 22#include <linux/mmdebug.h>
174cd4b1 23#include <linux/sched/signal.h>
0fe6e20b 24#include <linux/rmap.h>
c6247f72 25#include <linux/string_helpers.h>
fd6a03ed
NH
26#include <linux/swap.h>
27#include <linux/swapops.h>
8382d914 28#include <linux/jhash.h>
98fa15f3 29#include <linux/numa.h>
ce44b015 30#include <linux/llist.h>
d6606683 31
63551ae0
DG
32#include <asm/page.h>
33#include <asm/pgtable.h>
24669e58 34#include <asm/tlb.h>
63551ae0 35
24669e58 36#include <linux/io.h>
63551ae0 37#include <linux/hugetlb.h>
9dd540e2 38#include <linux/hugetlb_cgroup.h>
9a305230 39#include <linux/node.h>
1a1aad8a 40#include <linux/userfaultfd_k.h>
ab5ac90a 41#include <linux/page_owner.h>
7835e98b 42#include "internal.h"
1da177e4 43
c3f38a38 44int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
45unsigned int default_hstate_idx;
46struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
47/*
48 * Minimum page order among possible hugepage sizes, set to a proper value
49 * at boot time.
50 */
51static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 52
53ba51d2
JT
53__initdata LIST_HEAD(huge_boot_pages);
54
e5ff2159
AK
55/* for command line parsing */
56static struct hstate * __initdata parsed_hstate;
57static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 58static unsigned long __initdata default_hstate_size;
9fee021d 59static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 60
3935baa9 61/*
31caf665
NH
62 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
63 * free_huge_pages, and surplus_huge_pages.
3935baa9 64 */
c3f38a38 65DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 66
8382d914
DB
67/*
68 * Serializes faults on the same logical page. This is used to
69 * prevent spurious OOMs when the hugepage pool is fully utilized.
70 */
71static int num_fault_mutexes;
c672c7f2 72struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 73
c2f2139b
MS
74static inline bool PageHugeFreed(struct page *head)
75{
76 return page_private(head + 4) == -1UL;
77}
78
79static inline void SetPageHugeFreed(struct page *head)
80{
81 set_page_private(head + 4, -1UL);
82}
83
84static inline void ClearPageHugeFreed(struct page *head)
85{
86 set_page_private(head + 4, 0);
87}
88
7ca02d0a
MK
89/* Forward declaration */
90static int hugetlb_acct_memory(struct hstate *h, long delta);
91
90481622
DG
92static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
93{
94 bool free = (spool->count == 0) && (spool->used_hpages == 0);
95
96 spin_unlock(&spool->lock);
97
98 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
99 * remain, give up any reservations mased on minimum size and
100 * free the subpool */
101 if (free) {
102 if (spool->min_hpages != -1)
103 hugetlb_acct_memory(spool->hstate,
104 -spool->min_hpages);
90481622 105 kfree(spool);
7ca02d0a 106 }
90481622
DG
107}
108
7ca02d0a
MK
109struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
110 long min_hpages)
90481622
DG
111{
112 struct hugepage_subpool *spool;
113
c6a91820 114 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
115 if (!spool)
116 return NULL;
117
118 spin_lock_init(&spool->lock);
119 spool->count = 1;
7ca02d0a
MK
120 spool->max_hpages = max_hpages;
121 spool->hstate = h;
122 spool->min_hpages = min_hpages;
123
124 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
125 kfree(spool);
126 return NULL;
127 }
128 spool->rsv_hpages = min_hpages;
90481622
DG
129
130 return spool;
131}
132
133void hugepage_put_subpool(struct hugepage_subpool *spool)
134{
135 spin_lock(&spool->lock);
136 BUG_ON(!spool->count);
137 spool->count--;
138 unlock_or_release_subpool(spool);
139}
140
1c5ecae3
MK
141/*
142 * Subpool accounting for allocating and reserving pages.
143 * Return -ENOMEM if there are not enough resources to satisfy the
144 * the request. Otherwise, return the number of pages by which the
145 * global pools must be adjusted (upward). The returned value may
146 * only be different than the passed value (delta) in the case where
147 * a subpool minimum size must be manitained.
148 */
149static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
150 long delta)
151{
1c5ecae3 152 long ret = delta;
90481622
DG
153
154 if (!spool)
1c5ecae3 155 return ret;
90481622
DG
156
157 spin_lock(&spool->lock);
1c5ecae3
MK
158
159 if (spool->max_hpages != -1) { /* maximum size accounting */
160 if ((spool->used_hpages + delta) <= spool->max_hpages)
161 spool->used_hpages += delta;
162 else {
163 ret = -ENOMEM;
164 goto unlock_ret;
165 }
90481622 166 }
90481622 167
09a95e29
MK
168 /* minimum size accounting */
169 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
170 if (delta > spool->rsv_hpages) {
171 /*
172 * Asking for more reserves than those already taken on
173 * behalf of subpool. Return difference.
174 */
175 ret = delta - spool->rsv_hpages;
176 spool->rsv_hpages = 0;
177 } else {
178 ret = 0; /* reserves already accounted for */
179 spool->rsv_hpages -= delta;
180 }
181 }
182
183unlock_ret:
184 spin_unlock(&spool->lock);
90481622
DG
185 return ret;
186}
187
1c5ecae3
MK
188/*
189 * Subpool accounting for freeing and unreserving pages.
190 * Return the number of global page reservations that must be dropped.
191 * The return value may only be different than the passed value (delta)
192 * in the case where a subpool minimum size must be maintained.
193 */
194static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
195 long delta)
196{
1c5ecae3
MK
197 long ret = delta;
198
90481622 199 if (!spool)
1c5ecae3 200 return delta;
90481622
DG
201
202 spin_lock(&spool->lock);
1c5ecae3
MK
203
204 if (spool->max_hpages != -1) /* maximum size accounting */
205 spool->used_hpages -= delta;
206
09a95e29
MK
207 /* minimum size accounting */
208 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
209 if (spool->rsv_hpages + delta <= spool->min_hpages)
210 ret = 0;
211 else
212 ret = spool->rsv_hpages + delta - spool->min_hpages;
213
214 spool->rsv_hpages += delta;
215 if (spool->rsv_hpages > spool->min_hpages)
216 spool->rsv_hpages = spool->min_hpages;
217 }
218
219 /*
220 * If hugetlbfs_put_super couldn't free spool due to an outstanding
221 * quota reference, free it now.
222 */
90481622 223 unlock_or_release_subpool(spool);
1c5ecae3
MK
224
225 return ret;
90481622
DG
226}
227
228static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
229{
230 return HUGETLBFS_SB(inode->i_sb)->spool;
231}
232
233static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
234{
496ad9aa 235 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
236}
237
96822904
AW
238/*
239 * Region tracking -- allows tracking of reservations and instantiated pages
240 * across the pages in a mapping.
84afd99b 241 *
1dd308a7
MK
242 * The region data structures are embedded into a resv_map and protected
243 * by a resv_map's lock. The set of regions within the resv_map represent
244 * reservations for huge pages, or huge pages that have already been
245 * instantiated within the map. The from and to elements are huge page
246 * indicies into the associated mapping. from indicates the starting index
247 * of the region. to represents the first index past the end of the region.
248 *
249 * For example, a file region structure with from == 0 and to == 4 represents
250 * four huge pages in a mapping. It is important to note that the to element
251 * represents the first element past the end of the region. This is used in
252 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
253 *
254 * Interval notation of the form [from, to) will be used to indicate that
255 * the endpoint from is inclusive and to is exclusive.
96822904
AW
256 */
257struct file_region {
258 struct list_head link;
259 long from;
260 long to;
261};
262
1dd308a7
MK
263/*
264 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
265 * map. In the normal case, existing regions will be expanded
266 * to accommodate the specified range. Sufficient regions should
267 * exist for expansion due to the previous call to region_chg
268 * with the same range. However, it is possible that region_del
269 * could have been called after region_chg and modifed the map
270 * in such a way that no region exists to be expanded. In this
271 * case, pull a region descriptor from the cache associated with
272 * the map and use that for the new range.
cf3ad20b
MK
273 *
274 * Return the number of new huge pages added to the map. This
275 * number is greater than or equal to zero.
1dd308a7 276 */
1406ec9b 277static long region_add(struct resv_map *resv, long f, long t)
96822904 278{
1406ec9b 279 struct list_head *head = &resv->regions;
96822904 280 struct file_region *rg, *nrg, *trg;
cf3ad20b 281 long add = 0;
96822904 282
7b24d861 283 spin_lock(&resv->lock);
96822904
AW
284 /* Locate the region we are either in or before. */
285 list_for_each_entry(rg, head, link)
286 if (f <= rg->to)
287 break;
288
5e911373
MK
289 /*
290 * If no region exists which can be expanded to include the
291 * specified range, the list must have been modified by an
292 * interleving call to region_del(). Pull a region descriptor
293 * from the cache and use it for this range.
294 */
295 if (&rg->link == head || t < rg->from) {
296 VM_BUG_ON(resv->region_cache_count <= 0);
297
298 resv->region_cache_count--;
299 nrg = list_first_entry(&resv->region_cache, struct file_region,
300 link);
301 list_del(&nrg->link);
302
303 nrg->from = f;
304 nrg->to = t;
305 list_add(&nrg->link, rg->link.prev);
306
307 add += t - f;
308 goto out_locked;
309 }
310
96822904
AW
311 /* Round our left edge to the current segment if it encloses us. */
312 if (f > rg->from)
313 f = rg->from;
314
315 /* Check for and consume any regions we now overlap with. */
316 nrg = rg;
317 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
318 if (&rg->link == head)
319 break;
320 if (rg->from > t)
321 break;
322
323 /* If this area reaches higher then extend our area to
324 * include it completely. If this is not the first area
325 * which we intend to reuse, free it. */
326 if (rg->to > t)
327 t = rg->to;
328 if (rg != nrg) {
cf3ad20b
MK
329 /* Decrement return value by the deleted range.
330 * Another range will span this area so that by
331 * end of routine add will be >= zero
332 */
333 add -= (rg->to - rg->from);
96822904
AW
334 list_del(&rg->link);
335 kfree(rg);
336 }
337 }
cf3ad20b
MK
338
339 add += (nrg->from - f); /* Added to beginning of region */
96822904 340 nrg->from = f;
cf3ad20b 341 add += t - nrg->to; /* Added to end of region */
96822904 342 nrg->to = t;
cf3ad20b 343
5e911373
MK
344out_locked:
345 resv->adds_in_progress--;
7b24d861 346 spin_unlock(&resv->lock);
cf3ad20b
MK
347 VM_BUG_ON(add < 0);
348 return add;
96822904
AW
349}
350
1dd308a7
MK
351/*
352 * Examine the existing reserve map and determine how many
353 * huge pages in the specified range [f, t) are NOT currently
354 * represented. This routine is called before a subsequent
355 * call to region_add that will actually modify the reserve
356 * map to add the specified range [f, t). region_chg does
357 * not change the number of huge pages represented by the
358 * map. However, if the existing regions in the map can not
359 * be expanded to represent the new range, a new file_region
360 * structure is added to the map as a placeholder. This is
361 * so that the subsequent region_add call will have all the
362 * regions it needs and will not fail.
363 *
5e911373
MK
364 * Upon entry, region_chg will also examine the cache of region descriptors
365 * associated with the map. If there are not enough descriptors cached, one
366 * will be allocated for the in progress add operation.
367 *
368 * Returns the number of huge pages that need to be added to the existing
369 * reservation map for the range [f, t). This number is greater or equal to
370 * zero. -ENOMEM is returned if a new file_region structure or cache entry
371 * is needed and can not be allocated.
1dd308a7 372 */
1406ec9b 373static long region_chg(struct resv_map *resv, long f, long t)
96822904 374{
1406ec9b 375 struct list_head *head = &resv->regions;
7b24d861 376 struct file_region *rg, *nrg = NULL;
96822904
AW
377 long chg = 0;
378
7b24d861
DB
379retry:
380 spin_lock(&resv->lock);
5e911373
MK
381retry_locked:
382 resv->adds_in_progress++;
383
384 /*
385 * Check for sufficient descriptors in the cache to accommodate
386 * the number of in progress add operations.
387 */
388 if (resv->adds_in_progress > resv->region_cache_count) {
389 struct file_region *trg;
390
391 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
392 /* Must drop lock to allocate a new descriptor. */
393 resv->adds_in_progress--;
394 spin_unlock(&resv->lock);
395
396 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
397 if (!trg) {
398 kfree(nrg);
5e911373 399 return -ENOMEM;
dbe409e4 400 }
5e911373
MK
401
402 spin_lock(&resv->lock);
403 list_add(&trg->link, &resv->region_cache);
404 resv->region_cache_count++;
405 goto retry_locked;
406 }
407
96822904
AW
408 /* Locate the region we are before or in. */
409 list_for_each_entry(rg, head, link)
410 if (f <= rg->to)
411 break;
412
413 /* If we are below the current region then a new region is required.
414 * Subtle, allocate a new region at the position but make it zero
415 * size such that we can guarantee to record the reservation. */
416 if (&rg->link == head || t < rg->from) {
7b24d861 417 if (!nrg) {
5e911373 418 resv->adds_in_progress--;
7b24d861
DB
419 spin_unlock(&resv->lock);
420 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
421 if (!nrg)
422 return -ENOMEM;
423
424 nrg->from = f;
425 nrg->to = f;
426 INIT_LIST_HEAD(&nrg->link);
427 goto retry;
428 }
96822904 429
7b24d861
DB
430 list_add(&nrg->link, rg->link.prev);
431 chg = t - f;
432 goto out_nrg;
96822904
AW
433 }
434
435 /* Round our left edge to the current segment if it encloses us. */
436 if (f > rg->from)
437 f = rg->from;
438 chg = t - f;
439
440 /* Check for and consume any regions we now overlap with. */
441 list_for_each_entry(rg, rg->link.prev, link) {
442 if (&rg->link == head)
443 break;
444 if (rg->from > t)
7b24d861 445 goto out;
96822904 446
25985edc 447 /* We overlap with this area, if it extends further than
96822904
AW
448 * us then we must extend ourselves. Account for its
449 * existing reservation. */
450 if (rg->to > t) {
451 chg += rg->to - t;
452 t = rg->to;
453 }
454 chg -= rg->to - rg->from;
455 }
7b24d861
DB
456
457out:
458 spin_unlock(&resv->lock);
459 /* We already know we raced and no longer need the new region */
460 kfree(nrg);
461 return chg;
462out_nrg:
463 spin_unlock(&resv->lock);
96822904
AW
464 return chg;
465}
466
5e911373
MK
467/*
468 * Abort the in progress add operation. The adds_in_progress field
469 * of the resv_map keeps track of the operations in progress between
470 * calls to region_chg and region_add. Operations are sometimes
471 * aborted after the call to region_chg. In such cases, region_abort
472 * is called to decrement the adds_in_progress counter.
473 *
474 * NOTE: The range arguments [f, t) are not needed or used in this
475 * routine. They are kept to make reading the calling code easier as
476 * arguments will match the associated region_chg call.
477 */
478static void region_abort(struct resv_map *resv, long f, long t)
479{
480 spin_lock(&resv->lock);
481 VM_BUG_ON(!resv->region_cache_count);
482 resv->adds_in_progress--;
483 spin_unlock(&resv->lock);
484}
485
1dd308a7 486/*
feba16e2
MK
487 * Delete the specified range [f, t) from the reserve map. If the
488 * t parameter is LONG_MAX, this indicates that ALL regions after f
489 * should be deleted. Locate the regions which intersect [f, t)
490 * and either trim, delete or split the existing regions.
491 *
492 * Returns the number of huge pages deleted from the reserve map.
493 * In the normal case, the return value is zero or more. In the
494 * case where a region must be split, a new region descriptor must
495 * be allocated. If the allocation fails, -ENOMEM will be returned.
496 * NOTE: If the parameter t == LONG_MAX, then we will never split
497 * a region and possibly return -ENOMEM. Callers specifying
498 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 499 */
feba16e2 500static long region_del(struct resv_map *resv, long f, long t)
96822904 501{
1406ec9b 502 struct list_head *head = &resv->regions;
96822904 503 struct file_region *rg, *trg;
feba16e2
MK
504 struct file_region *nrg = NULL;
505 long del = 0;
96822904 506
feba16e2 507retry:
7b24d861 508 spin_lock(&resv->lock);
feba16e2 509 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
510 /*
511 * Skip regions before the range to be deleted. file_region
512 * ranges are normally of the form [from, to). However, there
513 * may be a "placeholder" entry in the map which is of the form
514 * (from, to) with from == to. Check for placeholder entries
515 * at the beginning of the range to be deleted.
516 */
517 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 518 continue;
dbe409e4 519
feba16e2 520 if (rg->from >= t)
96822904 521 break;
96822904 522
feba16e2
MK
523 if (f > rg->from && t < rg->to) { /* Must split region */
524 /*
525 * Check for an entry in the cache before dropping
526 * lock and attempting allocation.
527 */
528 if (!nrg &&
529 resv->region_cache_count > resv->adds_in_progress) {
530 nrg = list_first_entry(&resv->region_cache,
531 struct file_region,
532 link);
533 list_del(&nrg->link);
534 resv->region_cache_count--;
535 }
96822904 536
feba16e2
MK
537 if (!nrg) {
538 spin_unlock(&resv->lock);
539 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
540 if (!nrg)
541 return -ENOMEM;
542 goto retry;
543 }
544
545 del += t - f;
546
547 /* New entry for end of split region */
548 nrg->from = t;
549 nrg->to = rg->to;
550 INIT_LIST_HEAD(&nrg->link);
551
552 /* Original entry is trimmed */
553 rg->to = f;
554
555 list_add(&nrg->link, &rg->link);
556 nrg = NULL;
96822904 557 break;
feba16e2
MK
558 }
559
560 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
561 del += rg->to - rg->from;
562 list_del(&rg->link);
563 kfree(rg);
564 continue;
565 }
566
567 if (f <= rg->from) { /* Trim beginning of region */
568 del += t - rg->from;
569 rg->from = t;
570 } else { /* Trim end of region */
571 del += rg->to - f;
572 rg->to = f;
573 }
96822904 574 }
7b24d861 575
7b24d861 576 spin_unlock(&resv->lock);
feba16e2
MK
577 kfree(nrg);
578 return del;
96822904
AW
579}
580
b5cec28d
MK
581/*
582 * A rare out of memory error was encountered which prevented removal of
583 * the reserve map region for a page. The huge page itself was free'ed
584 * and removed from the page cache. This routine will adjust the subpool
585 * usage count, and the global reserve count if needed. By incrementing
586 * these counts, the reserve map entry which could not be deleted will
587 * appear as a "reserved" entry instead of simply dangling with incorrect
588 * counts.
589 */
72e2936c 590void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
591{
592 struct hugepage_subpool *spool = subpool_inode(inode);
593 long rsv_adjust;
a4300479 594 bool reserved = false;
b5cec28d
MK
595
596 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
a4300479 597 if (rsv_adjust > 0) {
b5cec28d
MK
598 struct hstate *h = hstate_inode(inode);
599
a4300479
ML
600 if (!hugetlb_acct_memory(h, 1))
601 reserved = true;
602 } else if (!rsv_adjust) {
603 reserved = true;
b5cec28d 604 }
a4300479
ML
605
606 if (!reserved)
607 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
608}
609
1dd308a7
MK
610/*
611 * Count and return the number of huge pages in the reserve map
612 * that intersect with the range [f, t).
613 */
1406ec9b 614static long region_count(struct resv_map *resv, long f, long t)
84afd99b 615{
1406ec9b 616 struct list_head *head = &resv->regions;
84afd99b
AW
617 struct file_region *rg;
618 long chg = 0;
619
7b24d861 620 spin_lock(&resv->lock);
84afd99b
AW
621 /* Locate each segment we overlap with, and count that overlap. */
622 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
623 long seg_from;
624 long seg_to;
84afd99b
AW
625
626 if (rg->to <= f)
627 continue;
628 if (rg->from >= t)
629 break;
630
631 seg_from = max(rg->from, f);
632 seg_to = min(rg->to, t);
633
634 chg += seg_to - seg_from;
635 }
7b24d861 636 spin_unlock(&resv->lock);
84afd99b
AW
637
638 return chg;
639}
640
e7c4b0bf
AW
641/*
642 * Convert the address within this vma to the page offset within
643 * the mapping, in pagecache page units; huge pages here.
644 */
a5516438
AK
645static pgoff_t vma_hugecache_offset(struct hstate *h,
646 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 647{
a5516438
AK
648 return ((address - vma->vm_start) >> huge_page_shift(h)) +
649 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
650}
651
0fe6e20b
NH
652pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
653 unsigned long address)
654{
655 return vma_hugecache_offset(hstate_vma(vma), vma, address);
656}
dee41079 657EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 658
08fba699
MG
659/*
660 * Return the size of the pages allocated when backing a VMA. In the majority
661 * cases this will be same size as used by the page table entries.
662 */
663unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
664{
05ea8860
DW
665 if (vma->vm_ops && vma->vm_ops->pagesize)
666 return vma->vm_ops->pagesize(vma);
667 return PAGE_SIZE;
08fba699 668}
f340ca0f 669EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 670
3340289d
MG
671/*
672 * Return the page size being used by the MMU to back a VMA. In the majority
673 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
674 * architectures where it differs, an architecture-specific 'strong'
675 * version of this symbol is required.
3340289d 676 */
09135cc5 677__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
678{
679 return vma_kernel_pagesize(vma);
680}
3340289d 681
84afd99b
AW
682/*
683 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
684 * bits of the reservation map pointer, which are always clear due to
685 * alignment.
686 */
687#define HPAGE_RESV_OWNER (1UL << 0)
688#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 689#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 690
a1e78772
MG
691/*
692 * These helpers are used to track how many pages are reserved for
693 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
694 * is guaranteed to have their future faults succeed.
695 *
696 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
697 * the reserve counters are updated with the hugetlb_lock held. It is safe
698 * to reset the VMA at fork() time as it is not in use yet and there is no
699 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
700 *
701 * The private mapping reservation is represented in a subtly different
702 * manner to a shared mapping. A shared mapping has a region map associated
703 * with the underlying file, this region map represents the backing file
704 * pages which have ever had a reservation assigned which this persists even
705 * after the page is instantiated. A private mapping has a region map
706 * associated with the original mmap which is attached to all VMAs which
707 * reference it, this region map represents those offsets which have consumed
708 * reservation ie. where pages have been instantiated.
a1e78772 709 */
e7c4b0bf
AW
710static unsigned long get_vma_private_data(struct vm_area_struct *vma)
711{
712 return (unsigned long)vma->vm_private_data;
713}
714
715static void set_vma_private_data(struct vm_area_struct *vma,
716 unsigned long value)
717{
718 vma->vm_private_data = (void *)value;
719}
720
9119a41e 721struct resv_map *resv_map_alloc(void)
84afd99b
AW
722{
723 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
724 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
725
726 if (!resv_map || !rg) {
727 kfree(resv_map);
728 kfree(rg);
84afd99b 729 return NULL;
5e911373 730 }
84afd99b
AW
731
732 kref_init(&resv_map->refs);
7b24d861 733 spin_lock_init(&resv_map->lock);
84afd99b
AW
734 INIT_LIST_HEAD(&resv_map->regions);
735
5e911373
MK
736 resv_map->adds_in_progress = 0;
737
738 INIT_LIST_HEAD(&resv_map->region_cache);
739 list_add(&rg->link, &resv_map->region_cache);
740 resv_map->region_cache_count = 1;
741
84afd99b
AW
742 return resv_map;
743}
744
9119a41e 745void resv_map_release(struct kref *ref)
84afd99b
AW
746{
747 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
748 struct list_head *head = &resv_map->region_cache;
749 struct file_region *rg, *trg;
84afd99b
AW
750
751 /* Clear out any active regions before we release the map. */
feba16e2 752 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
753
754 /* ... and any entries left in the cache */
755 list_for_each_entry_safe(rg, trg, head, link) {
756 list_del(&rg->link);
757 kfree(rg);
758 }
759
760 VM_BUG_ON(resv_map->adds_in_progress);
761
84afd99b
AW
762 kfree(resv_map);
763}
764
4e35f483
JK
765static inline struct resv_map *inode_resv_map(struct inode *inode)
766{
f27a5136
MK
767 /*
768 * At inode evict time, i_mapping may not point to the original
769 * address space within the inode. This original address space
770 * contains the pointer to the resv_map. So, always use the
771 * address space embedded within the inode.
772 * The VERY common case is inode->mapping == &inode->i_data but,
773 * this may not be true for device special inodes.
774 */
775 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
776}
777
84afd99b 778static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 779{
81d1b09c 780 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
781 if (vma->vm_flags & VM_MAYSHARE) {
782 struct address_space *mapping = vma->vm_file->f_mapping;
783 struct inode *inode = mapping->host;
784
785 return inode_resv_map(inode);
786
787 } else {
84afd99b
AW
788 return (struct resv_map *)(get_vma_private_data(vma) &
789 ~HPAGE_RESV_MASK);
4e35f483 790 }
a1e78772
MG
791}
792
84afd99b 793static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 794{
81d1b09c
SL
795 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
796 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 797
84afd99b
AW
798 set_vma_private_data(vma, (get_vma_private_data(vma) &
799 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
800}
801
802static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
803{
81d1b09c
SL
804 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
805 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
806
807 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
808}
809
810static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
811{
81d1b09c 812 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
813
814 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
815}
816
04f2cbe3 817/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
818void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
819{
81d1b09c 820 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 821 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
822 vma->vm_private_data = (void *)0;
823}
824
825/* Returns true if the VMA has associated reserve pages */
559ec2f8 826static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 827{
af0ed73e
JK
828 if (vma->vm_flags & VM_NORESERVE) {
829 /*
830 * This address is already reserved by other process(chg == 0),
831 * so, we should decrement reserved count. Without decrementing,
832 * reserve count remains after releasing inode, because this
833 * allocated page will go into page cache and is regarded as
834 * coming from reserved pool in releasing step. Currently, we
835 * don't have any other solution to deal with this situation
836 * properly, so add work-around here.
837 */
838 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 839 return true;
af0ed73e 840 else
559ec2f8 841 return false;
af0ed73e 842 }
a63884e9
JK
843
844 /* Shared mappings always use reserves */
1fb1b0e9
MK
845 if (vma->vm_flags & VM_MAYSHARE) {
846 /*
847 * We know VM_NORESERVE is not set. Therefore, there SHOULD
848 * be a region map for all pages. The only situation where
849 * there is no region map is if a hole was punched via
850 * fallocate. In this case, there really are no reverves to
851 * use. This situation is indicated if chg != 0.
852 */
853 if (chg)
854 return false;
855 else
856 return true;
857 }
a63884e9
JK
858
859 /*
860 * Only the process that called mmap() has reserves for
861 * private mappings.
862 */
67961f9d
MK
863 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
864 /*
865 * Like the shared case above, a hole punch or truncate
866 * could have been performed on the private mapping.
867 * Examine the value of chg to determine if reserves
868 * actually exist or were previously consumed.
869 * Very Subtle - The value of chg comes from a previous
870 * call to vma_needs_reserves(). The reserve map for
871 * private mappings has different (opposite) semantics
872 * than that of shared mappings. vma_needs_reserves()
873 * has already taken this difference in semantics into
874 * account. Therefore, the meaning of chg is the same
875 * as in the shared case above. Code could easily be
876 * combined, but keeping it separate draws attention to
877 * subtle differences.
878 */
879 if (chg)
880 return false;
881 else
882 return true;
883 }
a63884e9 884
559ec2f8 885 return false;
a1e78772
MG
886}
887
a5516438 888static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
889{
890 int nid = page_to_nid(page);
0edaecfa 891 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
892 h->free_huge_pages++;
893 h->free_huge_pages_node[nid]++;
c2f2139b 894 SetPageHugeFreed(page);
1da177e4
LT
895}
896
94310cbc 897static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
898{
899 struct page *page;
900
c8721bbb 901 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 902 if (!PageHWPoison(page))
c8721bbb
NH
903 break;
904 /*
905 * if 'non-isolated free hugepage' not found on the list,
906 * the allocation fails.
907 */
908 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 909 return NULL;
0edaecfa 910 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 911 set_page_refcounted(page);
c2f2139b 912 ClearPageHugeFreed(page);
bf50bab2
NH
913 h->free_huge_pages--;
914 h->free_huge_pages_node[nid]--;
915 return page;
916}
917
3e59fcb0
MH
918static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
919 nodemask_t *nmask)
94310cbc 920{
3e59fcb0
MH
921 unsigned int cpuset_mems_cookie;
922 struct zonelist *zonelist;
923 struct zone *zone;
924 struct zoneref *z;
98fa15f3 925 int node = NUMA_NO_NODE;
94310cbc 926
3e59fcb0
MH
927 zonelist = node_zonelist(nid, gfp_mask);
928
929retry_cpuset:
930 cpuset_mems_cookie = read_mems_allowed_begin();
931 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
932 struct page *page;
933
934 if (!cpuset_zone_allowed(zone, gfp_mask))
935 continue;
936 /*
937 * no need to ask again on the same node. Pool is node rather than
938 * zone aware
939 */
940 if (zone_to_nid(zone) == node)
941 continue;
942 node = zone_to_nid(zone);
94310cbc 943
94310cbc
AK
944 page = dequeue_huge_page_node_exact(h, node);
945 if (page)
946 return page;
947 }
3e59fcb0
MH
948 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
949 goto retry_cpuset;
950
94310cbc
AK
951 return NULL;
952}
953
86cdb465
NH
954/* Movability of hugepages depends on migration support. */
955static inline gfp_t htlb_alloc_mask(struct hstate *h)
956{
7ed2c31d 957 if (hugepage_movable_supported(h))
86cdb465
NH
958 return GFP_HIGHUSER_MOVABLE;
959 else
960 return GFP_HIGHUSER;
961}
962
a5516438
AK
963static struct page *dequeue_huge_page_vma(struct hstate *h,
964 struct vm_area_struct *vma,
af0ed73e
JK
965 unsigned long address, int avoid_reserve,
966 long chg)
1da177e4 967{
3e59fcb0 968 struct page *page;
480eccf9 969 struct mempolicy *mpol;
04ec6264 970 gfp_t gfp_mask;
3e59fcb0 971 nodemask_t *nodemask;
04ec6264 972 int nid;
1da177e4 973
a1e78772
MG
974 /*
975 * A child process with MAP_PRIVATE mappings created by their parent
976 * have no page reserves. This check ensures that reservations are
977 * not "stolen". The child may still get SIGKILLed
978 */
af0ed73e 979 if (!vma_has_reserves(vma, chg) &&
a5516438 980 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 981 goto err;
a1e78772 982
04f2cbe3 983 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 984 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 985 goto err;
04f2cbe3 986
04ec6264
VB
987 gfp_mask = htlb_alloc_mask(h);
988 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
989 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
990 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
991 SetPagePrivate(page);
992 h->resv_huge_pages--;
1da177e4 993 }
cc9a6c87 994
52cd3b07 995 mpol_cond_put(mpol);
1da177e4 996 return page;
cc9a6c87
MG
997
998err:
cc9a6c87 999 return NULL;
1da177e4
LT
1000}
1001
1cac6f2c
LC
1002/*
1003 * common helper functions for hstate_next_node_to_{alloc|free}.
1004 * We may have allocated or freed a huge page based on a different
1005 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1006 * be outside of *nodes_allowed. Ensure that we use an allowed
1007 * node for alloc or free.
1008 */
1009static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1010{
0edaf86c 1011 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1012 VM_BUG_ON(nid >= MAX_NUMNODES);
1013
1014 return nid;
1015}
1016
1017static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1018{
1019 if (!node_isset(nid, *nodes_allowed))
1020 nid = next_node_allowed(nid, nodes_allowed);
1021 return nid;
1022}
1023
1024/*
1025 * returns the previously saved node ["this node"] from which to
1026 * allocate a persistent huge page for the pool and advance the
1027 * next node from which to allocate, handling wrap at end of node
1028 * mask.
1029 */
1030static int hstate_next_node_to_alloc(struct hstate *h,
1031 nodemask_t *nodes_allowed)
1032{
1033 int nid;
1034
1035 VM_BUG_ON(!nodes_allowed);
1036
1037 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1038 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1039
1040 return nid;
1041}
1042
1043/*
1044 * helper for free_pool_huge_page() - return the previously saved
1045 * node ["this node"] from which to free a huge page. Advance the
1046 * next node id whether or not we find a free huge page to free so
1047 * that the next attempt to free addresses the next node.
1048 */
1049static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1050{
1051 int nid;
1052
1053 VM_BUG_ON(!nodes_allowed);
1054
1055 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1056 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1057
1058 return nid;
1059}
1060
1061#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1062 for (nr_nodes = nodes_weight(*mask); \
1063 nr_nodes > 0 && \
1064 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1065 nr_nodes--)
1066
1067#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1068 for (nr_nodes = nodes_weight(*mask); \
1069 nr_nodes > 0 && \
1070 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1071 nr_nodes--)
1072
e1073d1e 1073#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1074static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1075 unsigned int order)
944d9fec
LC
1076{
1077 int i;
1078 int nr_pages = 1 << order;
1079 struct page *p = page + 1;
1080
c8cc708a 1081 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1082 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1083 clear_compound_head(p);
944d9fec 1084 set_page_refcounted(p);
944d9fec
LC
1085 }
1086
1087 set_compound_order(page, 0);
1088 __ClearPageHead(page);
1089}
1090
d00181b9 1091static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1092{
1093 free_contig_range(page_to_pfn(page), 1 << order);
1094}
1095
4eb0716e 1096#ifdef CONFIG_CONTIG_ALLOC
944d9fec 1097static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1098 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1099{
1100 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1101 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1102 gfp_mask);
944d9fec
LC
1103}
1104
f44b2dda
JK
1105static bool pfn_range_valid_gigantic(struct zone *z,
1106 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1107{
1108 unsigned long i, end_pfn = start_pfn + nr_pages;
1109 struct page *page;
1110
1111 for (i = start_pfn; i < end_pfn; i++) {
f231fe42
DH
1112 page = pfn_to_online_page(i);
1113 if (!page)
944d9fec
LC
1114 return false;
1115
f44b2dda
JK
1116 if (page_zone(page) != z)
1117 return false;
1118
944d9fec
LC
1119 if (PageReserved(page))
1120 return false;
1121
1122 if (page_count(page) > 0)
1123 return false;
1124
1125 if (PageHuge(page))
1126 return false;
1127 }
1128
1129 return true;
1130}
1131
1132static bool zone_spans_last_pfn(const struct zone *zone,
1133 unsigned long start_pfn, unsigned long nr_pages)
1134{
1135 unsigned long last_pfn = start_pfn + nr_pages - 1;
1136 return zone_spans_pfn(zone, last_pfn);
1137}
1138
d9cc948f
MH
1139static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1140 int nid, nodemask_t *nodemask)
944d9fec 1141{
79b63f12 1142 unsigned int order = huge_page_order(h);
944d9fec
LC
1143 unsigned long nr_pages = 1 << order;
1144 unsigned long ret, pfn, flags;
79b63f12
MH
1145 struct zonelist *zonelist;
1146 struct zone *zone;
1147 struct zoneref *z;
944d9fec 1148
79b63f12 1149 zonelist = node_zonelist(nid, gfp_mask);
d9cc948f 1150 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
79b63f12 1151 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1152
79b63f12
MH
1153 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1154 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1155 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1156 /*
1157 * We release the zone lock here because
1158 * alloc_contig_range() will also lock the zone
1159 * at some point. If there's an allocation
1160 * spinning on this lock, it may win the race
1161 * and cause alloc_contig_range() to fail...
1162 */
79b63f12
MH
1163 spin_unlock_irqrestore(&zone->lock, flags);
1164 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1165 if (!ret)
1166 return pfn_to_page(pfn);
79b63f12 1167 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1168 }
1169 pfn += nr_pages;
1170 }
1171
79b63f12 1172 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1173 }
1174
1175 return NULL;
1176}
1177
1178static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1179static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1180#else /* !CONFIG_CONTIG_ALLOC */
1181static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1182 int nid, nodemask_t *nodemask)
1183{
1184 return NULL;
1185}
1186#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1187
e1073d1e 1188#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1189static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1190 int nid, nodemask_t *nodemask)
1191{
1192 return NULL;
1193}
d00181b9 1194static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1195static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1196 unsigned int order) { }
944d9fec
LC
1197#endif
1198
a5516438 1199static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1200{
1201 int i;
fd6126b4 1202 struct page *subpage = page;
a5516438 1203
4eb0716e 1204 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1205 return;
18229df5 1206
a5516438
AK
1207 h->nr_huge_pages--;
1208 h->nr_huge_pages_node[page_to_nid(page)]--;
fd6126b4
MK
1209 for (i = 0; i < pages_per_huge_page(h);
1210 i++, subpage = mem_map_next(subpage, page, i)) {
1211 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1212 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1213 1 << PG_active | 1 << PG_private |
1214 1 << PG_writeback);
6af2acb6 1215 }
309381fe 1216 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1217 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1218 set_page_refcounted(page);
944d9fec
LC
1219 if (hstate_is_gigantic(h)) {
1220 destroy_compound_gigantic_page(page, huge_page_order(h));
1221 free_gigantic_page(page, huge_page_order(h));
1222 } else {
944d9fec
LC
1223 __free_pages(page, huge_page_order(h));
1224 }
6af2acb6
AL
1225}
1226
e5ff2159
AK
1227struct hstate *size_to_hstate(unsigned long size)
1228{
1229 struct hstate *h;
1230
1231 for_each_hstate(h) {
1232 if (huge_page_size(h) == size)
1233 return h;
1234 }
1235 return NULL;
1236}
1237
bcc54222
NH
1238/*
1239 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1240 * to hstate->hugepage_activelist.)
1241 *
1242 * This function can be called for tail pages, but never returns true for them.
1243 */
1244bool page_huge_active(struct page *page)
1245{
08f3c9c1 1246 return PageHeadHuge(page) && PagePrivate(&page[1]);
bcc54222
NH
1247}
1248
1249/* never called for tail page */
55f5a39f 1250void set_page_huge_active(struct page *page)
bcc54222
NH
1251{
1252 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1253 SetPagePrivate(&page[1]);
1254}
1255
1256static void clear_page_huge_active(struct page *page)
1257{
1258 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1259 ClearPagePrivate(&page[1]);
1260}
1261
ab5ac90a
MH
1262/*
1263 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1264 * code
1265 */
1266static inline bool PageHugeTemporary(struct page *page)
1267{
1268 if (!PageHuge(page))
1269 return false;
1270
1271 return (unsigned long)page[2].mapping == -1U;
1272}
1273
1274static inline void SetPageHugeTemporary(struct page *page)
1275{
1276 page[2].mapping = (void *)-1U;
1277}
1278
1279static inline void ClearPageHugeTemporary(struct page *page)
1280{
1281 page[2].mapping = NULL;
1282}
1283
ce44b015 1284static void __free_huge_page(struct page *page)
27a85ef1 1285{
a5516438
AK
1286 /*
1287 * Can't pass hstate in here because it is called from the
1288 * compound page destructor.
1289 */
e5ff2159 1290 struct hstate *h = page_hstate(page);
7893d1d5 1291 int nid = page_to_nid(page);
90481622
DG
1292 struct hugepage_subpool *spool =
1293 (struct hugepage_subpool *)page_private(page);
07443a85 1294 bool restore_reserve;
27a85ef1 1295
b4330afb
MK
1296 VM_BUG_ON_PAGE(page_count(page), page);
1297 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1298
1299 set_page_private(page, 0);
1300 page->mapping = NULL;
07443a85 1301 restore_reserve = PagePrivate(page);
16c794b4 1302 ClearPagePrivate(page);
27a85ef1 1303
1c5ecae3 1304 /*
0919e1b6
MK
1305 * If PagePrivate() was set on page, page allocation consumed a
1306 * reservation. If the page was associated with a subpool, there
1307 * would have been a page reserved in the subpool before allocation
1308 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1309 * reservtion, do not call hugepage_subpool_put_pages() as this will
1310 * remove the reserved page from the subpool.
1c5ecae3 1311 */
0919e1b6
MK
1312 if (!restore_reserve) {
1313 /*
1314 * A return code of zero implies that the subpool will be
1315 * under its minimum size if the reservation is not restored
1316 * after page is free. Therefore, force restore_reserve
1317 * operation.
1318 */
1319 if (hugepage_subpool_put_pages(spool, 1) == 0)
1320 restore_reserve = true;
1321 }
1c5ecae3 1322
27a85ef1 1323 spin_lock(&hugetlb_lock);
bcc54222 1324 clear_page_huge_active(page);
6d76dcf4
AK
1325 hugetlb_cgroup_uncharge_page(hstate_index(h),
1326 pages_per_huge_page(h), page);
07443a85
JK
1327 if (restore_reserve)
1328 h->resv_huge_pages++;
1329
ab5ac90a
MH
1330 if (PageHugeTemporary(page)) {
1331 list_del(&page->lru);
1332 ClearPageHugeTemporary(page);
1333 update_and_free_page(h, page);
1334 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1335 /* remove the page from active list */
1336 list_del(&page->lru);
a5516438
AK
1337 update_and_free_page(h, page);
1338 h->surplus_huge_pages--;
1339 h->surplus_huge_pages_node[nid]--;
7893d1d5 1340 } else {
5d3a551c 1341 arch_clear_hugepage_flags(page);
a5516438 1342 enqueue_huge_page(h, page);
7893d1d5 1343 }
27a85ef1
DG
1344 spin_unlock(&hugetlb_lock);
1345}
1346
ce44b015
WL
1347/*
1348 * As free_huge_page() can be called from a non-task context, we have
1349 * to defer the actual freeing in a workqueue to prevent potential
1350 * hugetlb_lock deadlock.
1351 *
1352 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1353 * be freed and frees them one-by-one. As the page->mapping pointer is
1354 * going to be cleared in __free_huge_page() anyway, it is reused as the
1355 * llist_node structure of a lockless linked list of huge pages to be freed.
1356 */
1357static LLIST_HEAD(hpage_freelist);
1358
1359static void free_hpage_workfn(struct work_struct *work)
1360{
1361 struct llist_node *node;
1362 struct page *page;
1363
1364 node = llist_del_all(&hpage_freelist);
1365
1366 while (node) {
1367 page = container_of((struct address_space **)node,
1368 struct page, mapping);
1369 node = node->next;
1370 __free_huge_page(page);
1371 }
1372}
1373static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1374
1375void free_huge_page(struct page *page)
1376{
1377 /*
1378 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1379 */
1380 if (!in_task()) {
1381 /*
1382 * Only call schedule_work() if hpage_freelist is previously
1383 * empty. Otherwise, schedule_work() had been called but the
1384 * workfn hasn't retrieved the list yet.
1385 */
1386 if (llist_add((struct llist_node *)&page->mapping,
1387 &hpage_freelist))
1388 schedule_work(&free_hpage_work);
1389 return;
1390 }
1391
1392 __free_huge_page(page);
1393}
1394
a5516438 1395static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1396{
0edaecfa 1397 INIT_LIST_HEAD(&page->lru);
f1e61557 1398 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1399 spin_lock(&hugetlb_lock);
9dd540e2 1400 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1401 h->nr_huge_pages++;
1402 h->nr_huge_pages_node[nid]++;
c2f2139b 1403 ClearPageHugeFreed(page);
b7ba30c6 1404 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1405}
1406
d00181b9 1407static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1408{
1409 int i;
1410 int nr_pages = 1 << order;
1411 struct page *p = page + 1;
1412
1413 /* we rely on prep_new_huge_page to set the destructor */
1414 set_compound_order(page, order);
ef5a22be 1415 __ClearPageReserved(page);
de09d31d 1416 __SetPageHead(page);
20a0307c 1417 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1418 /*
1419 * For gigantic hugepages allocated through bootmem at
1420 * boot, it's safer to be consistent with the not-gigantic
1421 * hugepages and clear the PG_reserved bit from all tail pages
1422 * too. Otherwse drivers using get_user_pages() to access tail
1423 * pages may get the reference counting wrong if they see
1424 * PG_reserved set on a tail page (despite the head page not
1425 * having PG_reserved set). Enforcing this consistency between
1426 * head and tail pages allows drivers to optimize away a check
1427 * on the head page when they need know if put_page() is needed
1428 * after get_user_pages().
1429 */
1430 __ClearPageReserved(p);
58a84aa9 1431 set_page_count(p, 0);
1d798ca3 1432 set_compound_head(p, page);
20a0307c 1433 }
b4330afb 1434 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1435}
1436
7795912c
AM
1437/*
1438 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1439 * transparent huge pages. See the PageTransHuge() documentation for more
1440 * details.
1441 */
20a0307c
WF
1442int PageHuge(struct page *page)
1443{
20a0307c
WF
1444 if (!PageCompound(page))
1445 return 0;
1446
1447 page = compound_head(page);
f1e61557 1448 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1449}
43131e14
NH
1450EXPORT_SYMBOL_GPL(PageHuge);
1451
27c73ae7
AA
1452/*
1453 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1454 * normal or transparent huge pages.
1455 */
1456int PageHeadHuge(struct page *page_head)
1457{
27c73ae7
AA
1458 if (!PageHead(page_head))
1459 return 0;
1460
758f66a2 1461 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1462}
27c73ae7 1463
13d60f4b
ZY
1464pgoff_t __basepage_index(struct page *page)
1465{
1466 struct page *page_head = compound_head(page);
1467 pgoff_t index = page_index(page_head);
1468 unsigned long compound_idx;
1469
1470 if (!PageHuge(page_head))
1471 return page_index(page);
1472
1473 if (compound_order(page_head) >= MAX_ORDER)
1474 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1475 else
1476 compound_idx = page - page_head;
1477
1478 return (index << compound_order(page_head)) + compound_idx;
1479}
1480
0c397dae 1481static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1482 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1483 nodemask_t *node_alloc_noretry)
1da177e4 1484{
af0fb9df 1485 int order = huge_page_order(h);
1da177e4 1486 struct page *page;
f60858f9 1487 bool alloc_try_hard = true;
f96efd58 1488
f60858f9
MK
1489 /*
1490 * By default we always try hard to allocate the page with
1491 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1492 * a loop (to adjust global huge page counts) and previous allocation
1493 * failed, do not continue to try hard on the same node. Use the
1494 * node_alloc_noretry bitmap to manage this state information.
1495 */
1496 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1497 alloc_try_hard = false;
1498 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1499 if (alloc_try_hard)
1500 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1501 if (nid == NUMA_NO_NODE)
1502 nid = numa_mem_id();
1503 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1504 if (page)
1505 __count_vm_event(HTLB_BUDDY_PGALLOC);
1506 else
1507 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1508
f60858f9
MK
1509 /*
1510 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1511 * indicates an overall state change. Clear bit so that we resume
1512 * normal 'try hard' allocations.
1513 */
1514 if (node_alloc_noretry && page && !alloc_try_hard)
1515 node_clear(nid, *node_alloc_noretry);
1516
1517 /*
1518 * If we tried hard to get a page but failed, set bit so that
1519 * subsequent attempts will not try as hard until there is an
1520 * overall state change.
1521 */
1522 if (node_alloc_noretry && !page && alloc_try_hard)
1523 node_set(nid, *node_alloc_noretry);
1524
63b4613c
NA
1525 return page;
1526}
1527
0c397dae
MH
1528/*
1529 * Common helper to allocate a fresh hugetlb page. All specific allocators
1530 * should use this function to get new hugetlb pages
1531 */
1532static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1533 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1534 nodemask_t *node_alloc_noretry)
0c397dae
MH
1535{
1536 struct page *page;
1537
1538 if (hstate_is_gigantic(h))
1539 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1540 else
1541 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1542 nid, nmask, node_alloc_noretry);
0c397dae
MH
1543 if (!page)
1544 return NULL;
1545
1546 if (hstate_is_gigantic(h))
1547 prep_compound_gigantic_page(page, huge_page_order(h));
1548 prep_new_huge_page(h, page, page_to_nid(page));
1549
1550 return page;
1551}
1552
af0fb9df
MH
1553/*
1554 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1555 * manner.
1556 */
f60858f9
MK
1557static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1558 nodemask_t *node_alloc_noretry)
b2261026
JK
1559{
1560 struct page *page;
1561 int nr_nodes, node;
af0fb9df 1562 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1563
1564 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1565 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1566 node_alloc_noretry);
af0fb9df 1567 if (page)
b2261026 1568 break;
b2261026
JK
1569 }
1570
af0fb9df
MH
1571 if (!page)
1572 return 0;
b2261026 1573
af0fb9df
MH
1574 put_page(page); /* free it into the hugepage allocator */
1575
1576 return 1;
b2261026
JK
1577}
1578
e8c5c824
LS
1579/*
1580 * Free huge page from pool from next node to free.
1581 * Attempt to keep persistent huge pages more or less
1582 * balanced over allowed nodes.
1583 * Called with hugetlb_lock locked.
1584 */
6ae11b27
LS
1585static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1586 bool acct_surplus)
e8c5c824 1587{
b2261026 1588 int nr_nodes, node;
e8c5c824
LS
1589 int ret = 0;
1590
b2261026 1591 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1592 /*
1593 * If we're returning unused surplus pages, only examine
1594 * nodes with surplus pages.
1595 */
b2261026
JK
1596 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1597 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1598 struct page *page =
b2261026 1599 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1600 struct page, lru);
1601 list_del(&page->lru);
1602 h->free_huge_pages--;
b2261026 1603 h->free_huge_pages_node[node]--;
685f3457
LS
1604 if (acct_surplus) {
1605 h->surplus_huge_pages--;
b2261026 1606 h->surplus_huge_pages_node[node]--;
685f3457 1607 }
e8c5c824
LS
1608 update_and_free_page(h, page);
1609 ret = 1;
9a76db09 1610 break;
e8c5c824 1611 }
b2261026 1612 }
e8c5c824
LS
1613
1614 return ret;
1615}
1616
c8721bbb
NH
1617/*
1618 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1619 * nothing for in-use hugepages and non-hugepages.
1620 * This function returns values like below:
1621 *
1622 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1623 * (allocated or reserved.)
1624 * 0: successfully dissolved free hugepages or the page is not a
1625 * hugepage (considered as already dissolved)
c8721bbb 1626 */
c3114a84 1627int dissolve_free_huge_page(struct page *page)
c8721bbb 1628{
6bc9b564 1629 int rc = -EBUSY;
082d5b6b 1630
c2f2139b 1631retry:
faf53def
NH
1632 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1633 if (!PageHuge(page))
1634 return 0;
1635
c8721bbb 1636 spin_lock(&hugetlb_lock);
faf53def
NH
1637 if (!PageHuge(page)) {
1638 rc = 0;
1639 goto out;
1640 }
1641
1642 if (!page_count(page)) {
2247bb33
GS
1643 struct page *head = compound_head(page);
1644 struct hstate *h = page_hstate(head);
1645 int nid = page_to_nid(head);
6bc9b564 1646 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1647 goto out;
c2f2139b
MS
1648
1649 /*
1650 * We should make sure that the page is already on the free list
1651 * when it is dissolved.
1652 */
1653 if (unlikely(!PageHugeFreed(head))) {
1654 spin_unlock(&hugetlb_lock);
1655 cond_resched();
1656
1657 /*
1658 * Theoretically, we should return -EBUSY when we
1659 * encounter this race. In fact, we have a chance
1660 * to successfully dissolve the page if we do a
1661 * retry. Because the race window is quite small.
1662 * If we seize this opportunity, it is an optimization
1663 * for increasing the success rate of dissolving page.
1664 */
1665 goto retry;
1666 }
1667
c3114a84
AK
1668 /*
1669 * Move PageHWPoison flag from head page to the raw error page,
1670 * which makes any subpages rather than the error page reusable.
1671 */
1672 if (PageHWPoison(head) && page != head) {
1673 SetPageHWPoison(page);
1674 ClearPageHWPoison(head);
1675 }
2247bb33 1676 list_del(&head->lru);
c8721bbb
NH
1677 h->free_huge_pages--;
1678 h->free_huge_pages_node[nid]--;
c1470b33 1679 h->max_huge_pages--;
2247bb33 1680 update_and_free_page(h, head);
6bc9b564 1681 rc = 0;
c8721bbb 1682 }
082d5b6b 1683out:
c8721bbb 1684 spin_unlock(&hugetlb_lock);
082d5b6b 1685 return rc;
c8721bbb
NH
1686}
1687
1688/*
1689 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1690 * make specified memory blocks removable from the system.
2247bb33
GS
1691 * Note that this will dissolve a free gigantic hugepage completely, if any
1692 * part of it lies within the given range.
082d5b6b
GS
1693 * Also note that if dissolve_free_huge_page() returns with an error, all
1694 * free hugepages that were dissolved before that error are lost.
c8721bbb 1695 */
082d5b6b 1696int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1697{
c8721bbb 1698 unsigned long pfn;
eb03aa00 1699 struct page *page;
082d5b6b 1700 int rc = 0;
c8721bbb 1701
d0177639 1702 if (!hugepages_supported())
082d5b6b 1703 return rc;
d0177639 1704
eb03aa00
GS
1705 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1706 page = pfn_to_page(pfn);
faf53def
NH
1707 rc = dissolve_free_huge_page(page);
1708 if (rc)
1709 break;
eb03aa00 1710 }
082d5b6b
GS
1711
1712 return rc;
c8721bbb
NH
1713}
1714
ab5ac90a
MH
1715/*
1716 * Allocates a fresh surplus page from the page allocator.
1717 */
0c397dae 1718static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1719 int nid, nodemask_t *nmask)
7893d1d5 1720{
9980d744 1721 struct page *page = NULL;
7893d1d5 1722
bae7f4ae 1723 if (hstate_is_gigantic(h))
aa888a74
AK
1724 return NULL;
1725
d1c3fb1f 1726 spin_lock(&hugetlb_lock);
9980d744
MH
1727 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1728 goto out_unlock;
d1c3fb1f
NA
1729 spin_unlock(&hugetlb_lock);
1730
f60858f9 1731 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1732 if (!page)
0c397dae 1733 return NULL;
d1c3fb1f
NA
1734
1735 spin_lock(&hugetlb_lock);
9980d744
MH
1736 /*
1737 * We could have raced with the pool size change.
1738 * Double check that and simply deallocate the new page
1739 * if we would end up overcommiting the surpluses. Abuse
1740 * temporary page to workaround the nasty free_huge_page
1741 * codeflow
1742 */
1743 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1744 SetPageHugeTemporary(page);
2bf753e6 1745 spin_unlock(&hugetlb_lock);
9980d744 1746 put_page(page);
2bf753e6 1747 return NULL;
9980d744 1748 } else {
9980d744 1749 h->surplus_huge_pages++;
4704dea3 1750 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1751 }
9980d744
MH
1752
1753out_unlock:
d1c3fb1f 1754 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1755
1756 return page;
1757}
1758
9a4e9f3b
AK
1759struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1760 int nid, nodemask_t *nmask)
ab5ac90a
MH
1761{
1762 struct page *page;
1763
1764 if (hstate_is_gigantic(h))
1765 return NULL;
1766
f60858f9 1767 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1768 if (!page)
1769 return NULL;
1770
1771 /*
1772 * We do not account these pages as surplus because they are only
1773 * temporary and will be released properly on the last reference
1774 */
ab5ac90a
MH
1775 SetPageHugeTemporary(page);
1776
1777 return page;
1778}
1779
099730d6
DH
1780/*
1781 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1782 */
e0ec90ee 1783static
0c397dae 1784struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1785 struct vm_area_struct *vma, unsigned long addr)
1786{
aaf14e40
MH
1787 struct page *page;
1788 struct mempolicy *mpol;
1789 gfp_t gfp_mask = htlb_alloc_mask(h);
1790 int nid;
1791 nodemask_t *nodemask;
1792
1793 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1794 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1795 mpol_cond_put(mpol);
1796
1797 return page;
099730d6
DH
1798}
1799
ab5ac90a 1800/* page migration callback function */
bf50bab2
NH
1801struct page *alloc_huge_page_node(struct hstate *h, int nid)
1802{
aaf14e40 1803 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1804 struct page *page = NULL;
bf50bab2 1805
aaf14e40
MH
1806 if (nid != NUMA_NO_NODE)
1807 gfp_mask |= __GFP_THISNODE;
1808
bf50bab2 1809 spin_lock(&hugetlb_lock);
4ef91848 1810 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1811 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1812 spin_unlock(&hugetlb_lock);
1813
94ae8ba7 1814 if (!page)
0c397dae 1815 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1816
1817 return page;
1818}
1819
ab5ac90a 1820/* page migration callback function */
3e59fcb0
MH
1821struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1822 nodemask_t *nmask)
4db9b2ef 1823{
aaf14e40 1824 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1825
1826 spin_lock(&hugetlb_lock);
1827 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1828 struct page *page;
1829
1830 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1831 if (page) {
1832 spin_unlock(&hugetlb_lock);
1833 return page;
4db9b2ef
MH
1834 }
1835 }
1836 spin_unlock(&hugetlb_lock);
4db9b2ef 1837
0c397dae 1838 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1839}
1840
ebd63723 1841/* mempolicy aware migration callback */
389c8178
MH
1842struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1843 unsigned long address)
ebd63723
MH
1844{
1845 struct mempolicy *mpol;
1846 nodemask_t *nodemask;
1847 struct page *page;
ebd63723
MH
1848 gfp_t gfp_mask;
1849 int node;
1850
ebd63723
MH
1851 gfp_mask = htlb_alloc_mask(h);
1852 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1853 page = alloc_huge_page_nodemask(h, node, nodemask);
1854 mpol_cond_put(mpol);
1855
1856 return page;
1857}
1858
e4e574b7 1859/*
25985edc 1860 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1861 * of size 'delta'.
1862 */
a5516438 1863static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1864{
1865 struct list_head surplus_list;
1866 struct page *page, *tmp;
1867 int ret, i;
1868 int needed, allocated;
28073b02 1869 bool alloc_ok = true;
e4e574b7 1870
a5516438 1871 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1872 if (needed <= 0) {
a5516438 1873 h->resv_huge_pages += delta;
e4e574b7 1874 return 0;
ac09b3a1 1875 }
e4e574b7
AL
1876
1877 allocated = 0;
1878 INIT_LIST_HEAD(&surplus_list);
1879
1880 ret = -ENOMEM;
1881retry:
1882 spin_unlock(&hugetlb_lock);
1883 for (i = 0; i < needed; i++) {
0c397dae 1884 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1885 NUMA_NO_NODE, NULL);
28073b02
HD
1886 if (!page) {
1887 alloc_ok = false;
1888 break;
1889 }
e4e574b7 1890 list_add(&page->lru, &surplus_list);
69ed779a 1891 cond_resched();
e4e574b7 1892 }
28073b02 1893 allocated += i;
e4e574b7
AL
1894
1895 /*
1896 * After retaking hugetlb_lock, we need to recalculate 'needed'
1897 * because either resv_huge_pages or free_huge_pages may have changed.
1898 */
1899 spin_lock(&hugetlb_lock);
a5516438
AK
1900 needed = (h->resv_huge_pages + delta) -
1901 (h->free_huge_pages + allocated);
28073b02
HD
1902 if (needed > 0) {
1903 if (alloc_ok)
1904 goto retry;
1905 /*
1906 * We were not able to allocate enough pages to
1907 * satisfy the entire reservation so we free what
1908 * we've allocated so far.
1909 */
1910 goto free;
1911 }
e4e574b7
AL
1912 /*
1913 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1914 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1915 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1916 * allocator. Commit the entire reservation here to prevent another
1917 * process from stealing the pages as they are added to the pool but
1918 * before they are reserved.
e4e574b7
AL
1919 */
1920 needed += allocated;
a5516438 1921 h->resv_huge_pages += delta;
e4e574b7 1922 ret = 0;
a9869b83 1923
19fc3f0a 1924 /* Free the needed pages to the hugetlb pool */
e4e574b7 1925 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1926 if ((--needed) < 0)
1927 break;
a9869b83
NH
1928 /*
1929 * This page is now managed by the hugetlb allocator and has
1930 * no users -- drop the buddy allocator's reference.
1931 */
1932 put_page_testzero(page);
309381fe 1933 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1934 enqueue_huge_page(h, page);
19fc3f0a 1935 }
28073b02 1936free:
b0365c8d 1937 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1938
1939 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1940 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1941 put_page(page);
a9869b83 1942 spin_lock(&hugetlb_lock);
e4e574b7
AL
1943
1944 return ret;
1945}
1946
1947/*
e5bbc8a6
MK
1948 * This routine has two main purposes:
1949 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1950 * in unused_resv_pages. This corresponds to the prior adjustments made
1951 * to the associated reservation map.
1952 * 2) Free any unused surplus pages that may have been allocated to satisfy
1953 * the reservation. As many as unused_resv_pages may be freed.
1954 *
1955 * Called with hugetlb_lock held. However, the lock could be dropped (and
1956 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1957 * we must make sure nobody else can claim pages we are in the process of
1958 * freeing. Do this by ensuring resv_huge_page always is greater than the
1959 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1960 */
a5516438
AK
1961static void return_unused_surplus_pages(struct hstate *h,
1962 unsigned long unused_resv_pages)
e4e574b7 1963{
e4e574b7
AL
1964 unsigned long nr_pages;
1965
aa888a74 1966 /* Cannot return gigantic pages currently */
bae7f4ae 1967 if (hstate_is_gigantic(h))
e5bbc8a6 1968 goto out;
aa888a74 1969
e5bbc8a6
MK
1970 /*
1971 * Part (or even all) of the reservation could have been backed
1972 * by pre-allocated pages. Only free surplus pages.
1973 */
a5516438 1974 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1975
685f3457
LS
1976 /*
1977 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1978 * evenly across all nodes with memory. Iterate across these nodes
1979 * until we can no longer free unreserved surplus pages. This occurs
1980 * when the nodes with surplus pages have no free pages.
1981 * free_pool_huge_page() will balance the the freed pages across the
1982 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1983 *
1984 * Note that we decrement resv_huge_pages as we free the pages. If
1985 * we drop the lock, resv_huge_pages will still be sufficiently large
1986 * to cover subsequent pages we may free.
685f3457
LS
1987 */
1988 while (nr_pages--) {
e5bbc8a6
MK
1989 h->resv_huge_pages--;
1990 unused_resv_pages--;
8cebfcd0 1991 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1992 goto out;
7848a4bf 1993 cond_resched_lock(&hugetlb_lock);
e4e574b7 1994 }
e5bbc8a6
MK
1995
1996out:
1997 /* Fully uncommit the reservation */
1998 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1999}
2000
5e911373 2001
c37f9fb1 2002/*
feba16e2 2003 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2004 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2005 *
2006 * vma_needs_reservation is called to determine if the huge page at addr
2007 * within the vma has an associated reservation. If a reservation is
2008 * needed, the value 1 is returned. The caller is then responsible for
2009 * managing the global reservation and subpool usage counts. After
2010 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2011 * to add the page to the reservation map. If the page allocation fails,
2012 * the reservation must be ended instead of committed. vma_end_reservation
2013 * is called in such cases.
cf3ad20b
MK
2014 *
2015 * In the normal case, vma_commit_reservation returns the same value
2016 * as the preceding vma_needs_reservation call. The only time this
2017 * is not the case is if a reserve map was changed between calls. It
2018 * is the responsibility of the caller to notice the difference and
2019 * take appropriate action.
96b96a96
MK
2020 *
2021 * vma_add_reservation is used in error paths where a reservation must
2022 * be restored when a newly allocated huge page must be freed. It is
2023 * to be called after calling vma_needs_reservation to determine if a
2024 * reservation exists.
c37f9fb1 2025 */
5e911373
MK
2026enum vma_resv_mode {
2027 VMA_NEEDS_RESV,
2028 VMA_COMMIT_RESV,
feba16e2 2029 VMA_END_RESV,
96b96a96 2030 VMA_ADD_RESV,
5e911373 2031};
cf3ad20b
MK
2032static long __vma_reservation_common(struct hstate *h,
2033 struct vm_area_struct *vma, unsigned long addr,
5e911373 2034 enum vma_resv_mode mode)
c37f9fb1 2035{
4e35f483
JK
2036 struct resv_map *resv;
2037 pgoff_t idx;
cf3ad20b 2038 long ret;
c37f9fb1 2039
4e35f483
JK
2040 resv = vma_resv_map(vma);
2041 if (!resv)
84afd99b 2042 return 1;
c37f9fb1 2043
4e35f483 2044 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2045 switch (mode) {
2046 case VMA_NEEDS_RESV:
cf3ad20b 2047 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
2048 break;
2049 case VMA_COMMIT_RESV:
2050 ret = region_add(resv, idx, idx + 1);
2051 break;
feba16e2 2052 case VMA_END_RESV:
5e911373
MK
2053 region_abort(resv, idx, idx + 1);
2054 ret = 0;
2055 break;
96b96a96
MK
2056 case VMA_ADD_RESV:
2057 if (vma->vm_flags & VM_MAYSHARE)
2058 ret = region_add(resv, idx, idx + 1);
2059 else {
2060 region_abort(resv, idx, idx + 1);
2061 ret = region_del(resv, idx, idx + 1);
2062 }
2063 break;
5e911373
MK
2064 default:
2065 BUG();
2066 }
84afd99b 2067
4e35f483 2068 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2069 return ret;
67961f9d
MK
2070 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2071 /*
2072 * In most cases, reserves always exist for private mappings.
2073 * However, a file associated with mapping could have been
2074 * hole punched or truncated after reserves were consumed.
2075 * As subsequent fault on such a range will not use reserves.
2076 * Subtle - The reserve map for private mappings has the
2077 * opposite meaning than that of shared mappings. If NO
2078 * entry is in the reserve map, it means a reservation exists.
2079 * If an entry exists in the reserve map, it means the
2080 * reservation has already been consumed. As a result, the
2081 * return value of this routine is the opposite of the
2082 * value returned from reserve map manipulation routines above.
2083 */
2084 if (ret)
2085 return 0;
2086 else
2087 return 1;
2088 }
4e35f483 2089 else
cf3ad20b 2090 return ret < 0 ? ret : 0;
c37f9fb1 2091}
cf3ad20b
MK
2092
2093static long vma_needs_reservation(struct hstate *h,
a5516438 2094 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2095{
5e911373 2096 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2097}
84afd99b 2098
cf3ad20b
MK
2099static long vma_commit_reservation(struct hstate *h,
2100 struct vm_area_struct *vma, unsigned long addr)
2101{
5e911373
MK
2102 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2103}
2104
feba16e2 2105static void vma_end_reservation(struct hstate *h,
5e911373
MK
2106 struct vm_area_struct *vma, unsigned long addr)
2107{
feba16e2 2108 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2109}
2110
96b96a96
MK
2111static long vma_add_reservation(struct hstate *h,
2112 struct vm_area_struct *vma, unsigned long addr)
2113{
2114 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2115}
2116
2117/*
2118 * This routine is called to restore a reservation on error paths. In the
2119 * specific error paths, a huge page was allocated (via alloc_huge_page)
2120 * and is about to be freed. If a reservation for the page existed,
2121 * alloc_huge_page would have consumed the reservation and set PagePrivate
2122 * in the newly allocated page. When the page is freed via free_huge_page,
2123 * the global reservation count will be incremented if PagePrivate is set.
2124 * However, free_huge_page can not adjust the reserve map. Adjust the
2125 * reserve map here to be consistent with global reserve count adjustments
2126 * to be made by free_huge_page.
2127 */
2128static void restore_reserve_on_error(struct hstate *h,
2129 struct vm_area_struct *vma, unsigned long address,
2130 struct page *page)
2131{
2132 if (unlikely(PagePrivate(page))) {
2133 long rc = vma_needs_reservation(h, vma, address);
2134
2135 if (unlikely(rc < 0)) {
2136 /*
2137 * Rare out of memory condition in reserve map
2138 * manipulation. Clear PagePrivate so that
2139 * global reserve count will not be incremented
2140 * by free_huge_page. This will make it appear
2141 * as though the reservation for this page was
2142 * consumed. This may prevent the task from
2143 * faulting in the page at a later time. This
2144 * is better than inconsistent global huge page
2145 * accounting of reserve counts.
2146 */
2147 ClearPagePrivate(page);
2148 } else if (rc) {
2149 rc = vma_add_reservation(h, vma, address);
2150 if (unlikely(rc < 0))
2151 /*
2152 * See above comment about rare out of
2153 * memory condition.
2154 */
2155 ClearPagePrivate(page);
2156 } else
2157 vma_end_reservation(h, vma, address);
2158 }
2159}
2160
70c3547e 2161struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2162 unsigned long addr, int avoid_reserve)
1da177e4 2163{
90481622 2164 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2165 struct hstate *h = hstate_vma(vma);
348ea204 2166 struct page *page;
d85f69b0
MK
2167 long map_chg, map_commit;
2168 long gbl_chg;
6d76dcf4
AK
2169 int ret, idx;
2170 struct hugetlb_cgroup *h_cg;
a1e78772 2171
6d76dcf4 2172 idx = hstate_index(h);
a1e78772 2173 /*
d85f69b0
MK
2174 * Examine the region/reserve map to determine if the process
2175 * has a reservation for the page to be allocated. A return
2176 * code of zero indicates a reservation exists (no change).
a1e78772 2177 */
d85f69b0
MK
2178 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2179 if (map_chg < 0)
76dcee75 2180 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2181
2182 /*
2183 * Processes that did not create the mapping will have no
2184 * reserves as indicated by the region/reserve map. Check
2185 * that the allocation will not exceed the subpool limit.
2186 * Allocations for MAP_NORESERVE mappings also need to be
2187 * checked against any subpool limit.
2188 */
2189 if (map_chg || avoid_reserve) {
2190 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2191 if (gbl_chg < 0) {
feba16e2 2192 vma_end_reservation(h, vma, addr);
76dcee75 2193 return ERR_PTR(-ENOSPC);
5e911373 2194 }
1da177e4 2195
d85f69b0
MK
2196 /*
2197 * Even though there was no reservation in the region/reserve
2198 * map, there could be reservations associated with the
2199 * subpool that can be used. This would be indicated if the
2200 * return value of hugepage_subpool_get_pages() is zero.
2201 * However, if avoid_reserve is specified we still avoid even
2202 * the subpool reservations.
2203 */
2204 if (avoid_reserve)
2205 gbl_chg = 1;
2206 }
2207
6d76dcf4 2208 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2209 if (ret)
2210 goto out_subpool_put;
2211
1da177e4 2212 spin_lock(&hugetlb_lock);
d85f69b0
MK
2213 /*
2214 * glb_chg is passed to indicate whether or not a page must be taken
2215 * from the global free pool (global change). gbl_chg == 0 indicates
2216 * a reservation exists for the allocation.
2217 */
2218 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2219 if (!page) {
94ae8ba7 2220 spin_unlock(&hugetlb_lock);
0c397dae 2221 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2222 if (!page)
2223 goto out_uncharge_cgroup;
a88c7695
NH
2224 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2225 SetPagePrivate(page);
2226 h->resv_huge_pages--;
2227 }
79dbb236
AK
2228 spin_lock(&hugetlb_lock);
2229 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2230 /* Fall through */
68842c9b 2231 }
81a6fcae
JK
2232 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2233 spin_unlock(&hugetlb_lock);
348ea204 2234
90481622 2235 set_page_private(page, (unsigned long)spool);
90d8b7e6 2236
d85f69b0
MK
2237 map_commit = vma_commit_reservation(h, vma, addr);
2238 if (unlikely(map_chg > map_commit)) {
33039678
MK
2239 /*
2240 * The page was added to the reservation map between
2241 * vma_needs_reservation and vma_commit_reservation.
2242 * This indicates a race with hugetlb_reserve_pages.
2243 * Adjust for the subpool count incremented above AND
2244 * in hugetlb_reserve_pages for the same page. Also,
2245 * the reservation count added in hugetlb_reserve_pages
2246 * no longer applies.
2247 */
2248 long rsv_adjust;
2249
2250 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2251 hugetlb_acct_memory(h, -rsv_adjust);
2252 }
90d8b7e6 2253 return page;
8f34af6f
JZ
2254
2255out_uncharge_cgroup:
2256 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2257out_subpool_put:
d85f69b0 2258 if (map_chg || avoid_reserve)
8f34af6f 2259 hugepage_subpool_put_pages(spool, 1);
feba16e2 2260 vma_end_reservation(h, vma, addr);
8f34af6f 2261 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2262}
2263
e24a1307
AK
2264int alloc_bootmem_huge_page(struct hstate *h)
2265 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2266int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2267{
2268 struct huge_bootmem_page *m;
b2261026 2269 int nr_nodes, node;
aa888a74 2270
b2261026 2271 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2272 void *addr;
2273
eb31d559 2274 addr = memblock_alloc_try_nid_raw(
8b89a116 2275 huge_page_size(h), huge_page_size(h),
97ad1087 2276 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2277 if (addr) {
2278 /*
2279 * Use the beginning of the huge page to store the
2280 * huge_bootmem_page struct (until gather_bootmem
2281 * puts them into the mem_map).
2282 */
2283 m = addr;
91f47662 2284 goto found;
aa888a74 2285 }
aa888a74
AK
2286 }
2287 return 0;
2288
2289found:
df994ead 2290 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2291 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2292 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2293 list_add(&m->list, &huge_boot_pages);
2294 m->hstate = h;
2295 return 1;
2296}
2297
d00181b9
KS
2298static void __init prep_compound_huge_page(struct page *page,
2299 unsigned int order)
18229df5
AW
2300{
2301 if (unlikely(order > (MAX_ORDER - 1)))
2302 prep_compound_gigantic_page(page, order);
2303 else
2304 prep_compound_page(page, order);
2305}
2306
aa888a74
AK
2307/* Put bootmem huge pages into the standard lists after mem_map is up */
2308static void __init gather_bootmem_prealloc(void)
2309{
2310 struct huge_bootmem_page *m;
2311
2312 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2313 struct page *page = virt_to_page(m);
aa888a74 2314 struct hstate *h = m->hstate;
ee8f248d 2315
aa888a74 2316 WARN_ON(page_count(page) != 1);
18229df5 2317 prep_compound_huge_page(page, h->order);
ef5a22be 2318 WARN_ON(PageReserved(page));
aa888a74 2319 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2320 put_page(page); /* free it into the hugepage allocator */
2321
b0320c7b
RA
2322 /*
2323 * If we had gigantic hugepages allocated at boot time, we need
2324 * to restore the 'stolen' pages to totalram_pages in order to
2325 * fix confusing memory reports from free(1) and another
2326 * side-effects, like CommitLimit going negative.
2327 */
bae7f4ae 2328 if (hstate_is_gigantic(h))
3dcc0571 2329 adjust_managed_page_count(page, 1 << h->order);
520495fe 2330 cond_resched();
aa888a74
AK
2331 }
2332}
2333
8faa8b07 2334static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2335{
2336 unsigned long i;
f60858f9
MK
2337 nodemask_t *node_alloc_noretry;
2338
2339 if (!hstate_is_gigantic(h)) {
2340 /*
2341 * Bit mask controlling how hard we retry per-node allocations.
2342 * Ignore errors as lower level routines can deal with
2343 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2344 * time, we are likely in bigger trouble.
2345 */
2346 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2347 GFP_KERNEL);
2348 } else {
2349 /* allocations done at boot time */
2350 node_alloc_noretry = NULL;
2351 }
2352
2353 /* bit mask controlling how hard we retry per-node allocations */
2354 if (node_alloc_noretry)
2355 nodes_clear(*node_alloc_noretry);
a5516438 2356
e5ff2159 2357 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2358 if (hstate_is_gigantic(h)) {
aa888a74
AK
2359 if (!alloc_bootmem_huge_page(h))
2360 break;
0c397dae 2361 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2362 &node_states[N_MEMORY],
2363 node_alloc_noretry))
1da177e4 2364 break;
69ed779a 2365 cond_resched();
1da177e4 2366 }
d715cf80
LH
2367 if (i < h->max_huge_pages) {
2368 char buf[32];
2369
c6247f72 2370 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2371 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2372 h->max_huge_pages, buf, i);
2373 h->max_huge_pages = i;
2374 }
f60858f9
MK
2375
2376 kfree(node_alloc_noretry);
e5ff2159
AK
2377}
2378
2379static void __init hugetlb_init_hstates(void)
2380{
2381 struct hstate *h;
2382
2383 for_each_hstate(h) {
641844f5
NH
2384 if (minimum_order > huge_page_order(h))
2385 minimum_order = huge_page_order(h);
2386
8faa8b07 2387 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2388 if (!hstate_is_gigantic(h))
8faa8b07 2389 hugetlb_hstate_alloc_pages(h);
e5ff2159 2390 }
641844f5 2391 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2392}
2393
2394static void __init report_hugepages(void)
2395{
2396 struct hstate *h;
2397
2398 for_each_hstate(h) {
4abd32db 2399 char buf[32];
c6247f72
MW
2400
2401 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2402 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2403 buf, h->free_huge_pages);
e5ff2159
AK
2404 }
2405}
2406
1da177e4 2407#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2408static void try_to_free_low(struct hstate *h, unsigned long count,
2409 nodemask_t *nodes_allowed)
1da177e4 2410{
4415cc8d
CL
2411 int i;
2412
bae7f4ae 2413 if (hstate_is_gigantic(h))
aa888a74
AK
2414 return;
2415
6ae11b27 2416 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2417 struct page *page, *next;
a5516438
AK
2418 struct list_head *freel = &h->hugepage_freelists[i];
2419 list_for_each_entry_safe(page, next, freel, lru) {
2420 if (count >= h->nr_huge_pages)
6b0c880d 2421 return;
1da177e4
LT
2422 if (PageHighMem(page))
2423 continue;
2424 list_del(&page->lru);
e5ff2159 2425 update_and_free_page(h, page);
a5516438
AK
2426 h->free_huge_pages--;
2427 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2428 }
2429 }
2430}
2431#else
6ae11b27
LS
2432static inline void try_to_free_low(struct hstate *h, unsigned long count,
2433 nodemask_t *nodes_allowed)
1da177e4
LT
2434{
2435}
2436#endif
2437
20a0307c
WF
2438/*
2439 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2440 * balanced by operating on them in a round-robin fashion.
2441 * Returns 1 if an adjustment was made.
2442 */
6ae11b27
LS
2443static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2444 int delta)
20a0307c 2445{
b2261026 2446 int nr_nodes, node;
20a0307c
WF
2447
2448 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2449
b2261026
JK
2450 if (delta < 0) {
2451 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2452 if (h->surplus_huge_pages_node[node])
2453 goto found;
e8c5c824 2454 }
b2261026
JK
2455 } else {
2456 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2457 if (h->surplus_huge_pages_node[node] <
2458 h->nr_huge_pages_node[node])
2459 goto found;
e8c5c824 2460 }
b2261026
JK
2461 }
2462 return 0;
20a0307c 2463
b2261026
JK
2464found:
2465 h->surplus_huge_pages += delta;
2466 h->surplus_huge_pages_node[node] += delta;
2467 return 1;
20a0307c
WF
2468}
2469
a5516438 2470#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2471static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2472 nodemask_t *nodes_allowed)
1da177e4 2473{
7893d1d5 2474 unsigned long min_count, ret;
f60858f9
MK
2475 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2476
2477 /*
2478 * Bit mask controlling how hard we retry per-node allocations.
2479 * If we can not allocate the bit mask, do not attempt to allocate
2480 * the requested huge pages.
2481 */
2482 if (node_alloc_noretry)
2483 nodes_clear(*node_alloc_noretry);
2484 else
2485 return -ENOMEM;
1da177e4 2486
4eb0716e
AG
2487 spin_lock(&hugetlb_lock);
2488
fd875dca
MK
2489 /*
2490 * Check for a node specific request.
2491 * Changing node specific huge page count may require a corresponding
2492 * change to the global count. In any case, the passed node mask
2493 * (nodes_allowed) will restrict alloc/free to the specified node.
2494 */
2495 if (nid != NUMA_NO_NODE) {
2496 unsigned long old_count = count;
2497
2498 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2499 /*
2500 * User may have specified a large count value which caused the
2501 * above calculation to overflow. In this case, they wanted
2502 * to allocate as many huge pages as possible. Set count to
2503 * largest possible value to align with their intention.
2504 */
2505 if (count < old_count)
2506 count = ULONG_MAX;
2507 }
2508
4eb0716e
AG
2509 /*
2510 * Gigantic pages runtime allocation depend on the capability for large
2511 * page range allocation.
2512 * If the system does not provide this feature, return an error when
2513 * the user tries to allocate gigantic pages but let the user free the
2514 * boottime allocated gigantic pages.
2515 */
2516 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2517 if (count > persistent_huge_pages(h)) {
2518 spin_unlock(&hugetlb_lock);
f60858f9 2519 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2520 return -EINVAL;
2521 }
2522 /* Fall through to decrease pool */
2523 }
aa888a74 2524
7893d1d5
AL
2525 /*
2526 * Increase the pool size
2527 * First take pages out of surplus state. Then make up the
2528 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2529 *
0c397dae 2530 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2531 * to convert a surplus huge page to a normal huge page. That is
2532 * not critical, though, it just means the overall size of the
2533 * pool might be one hugepage larger than it needs to be, but
2534 * within all the constraints specified by the sysctls.
7893d1d5 2535 */
a5516438 2536 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2537 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2538 break;
2539 }
2540
a5516438 2541 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2542 /*
2543 * If this allocation races such that we no longer need the
2544 * page, free_huge_page will handle it by freeing the page
2545 * and reducing the surplus.
2546 */
2547 spin_unlock(&hugetlb_lock);
649920c6
JH
2548
2549 /* yield cpu to avoid soft lockup */
2550 cond_resched();
2551
f60858f9
MK
2552 ret = alloc_pool_huge_page(h, nodes_allowed,
2553 node_alloc_noretry);
7893d1d5
AL
2554 spin_lock(&hugetlb_lock);
2555 if (!ret)
2556 goto out;
2557
536240f2
MG
2558 /* Bail for signals. Probably ctrl-c from user */
2559 if (signal_pending(current))
2560 goto out;
7893d1d5 2561 }
7893d1d5
AL
2562
2563 /*
2564 * Decrease the pool size
2565 * First return free pages to the buddy allocator (being careful
2566 * to keep enough around to satisfy reservations). Then place
2567 * pages into surplus state as needed so the pool will shrink
2568 * to the desired size as pages become free.
d1c3fb1f
NA
2569 *
2570 * By placing pages into the surplus state independent of the
2571 * overcommit value, we are allowing the surplus pool size to
2572 * exceed overcommit. There are few sane options here. Since
0c397dae 2573 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2574 * though, we'll note that we're not allowed to exceed surplus
2575 * and won't grow the pool anywhere else. Not until one of the
2576 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2577 */
a5516438 2578 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2579 min_count = max(count, min_count);
6ae11b27 2580 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2581 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2582 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2583 break;
55f67141 2584 cond_resched_lock(&hugetlb_lock);
1da177e4 2585 }
a5516438 2586 while (count < persistent_huge_pages(h)) {
6ae11b27 2587 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2588 break;
2589 }
2590out:
4eb0716e 2591 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2592 spin_unlock(&hugetlb_lock);
4eb0716e 2593
f60858f9
MK
2594 NODEMASK_FREE(node_alloc_noretry);
2595
4eb0716e 2596 return 0;
1da177e4
LT
2597}
2598
a3437870
NA
2599#define HSTATE_ATTR_RO(_name) \
2600 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2601
2602#define HSTATE_ATTR(_name) \
2603 static struct kobj_attribute _name##_attr = \
2604 __ATTR(_name, 0644, _name##_show, _name##_store)
2605
2606static struct kobject *hugepages_kobj;
2607static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2608
9a305230
LS
2609static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2610
2611static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2612{
2613 int i;
9a305230 2614
a3437870 2615 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2616 if (hstate_kobjs[i] == kobj) {
2617 if (nidp)
2618 *nidp = NUMA_NO_NODE;
a3437870 2619 return &hstates[i];
9a305230
LS
2620 }
2621
2622 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2623}
2624
06808b08 2625static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2626 struct kobj_attribute *attr, char *buf)
2627{
9a305230
LS
2628 struct hstate *h;
2629 unsigned long nr_huge_pages;
2630 int nid;
2631
2632 h = kobj_to_hstate(kobj, &nid);
2633 if (nid == NUMA_NO_NODE)
2634 nr_huge_pages = h->nr_huge_pages;
2635 else
2636 nr_huge_pages = h->nr_huge_pages_node[nid];
2637
2638 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2639}
adbe8726 2640
238d3c13
DR
2641static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2642 struct hstate *h, int nid,
2643 unsigned long count, size_t len)
a3437870
NA
2644{
2645 int err;
2d0adf7e 2646 nodemask_t nodes_allowed, *n_mask;
a3437870 2647
2d0adf7e
OS
2648 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2649 return -EINVAL;
adbe8726 2650
9a305230
LS
2651 if (nid == NUMA_NO_NODE) {
2652 /*
2653 * global hstate attribute
2654 */
2655 if (!(obey_mempolicy &&
2d0adf7e
OS
2656 init_nodemask_of_mempolicy(&nodes_allowed)))
2657 n_mask = &node_states[N_MEMORY];
2658 else
2659 n_mask = &nodes_allowed;
2660 } else {
9a305230 2661 /*
fd875dca
MK
2662 * Node specific request. count adjustment happens in
2663 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2664 */
2d0adf7e
OS
2665 init_nodemask_of_node(&nodes_allowed, nid);
2666 n_mask = &nodes_allowed;
fd875dca 2667 }
9a305230 2668
2d0adf7e 2669 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2670
4eb0716e 2671 return err ? err : len;
06808b08
LS
2672}
2673
238d3c13
DR
2674static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2675 struct kobject *kobj, const char *buf,
2676 size_t len)
2677{
2678 struct hstate *h;
2679 unsigned long count;
2680 int nid;
2681 int err;
2682
2683 err = kstrtoul(buf, 10, &count);
2684 if (err)
2685 return err;
2686
2687 h = kobj_to_hstate(kobj, &nid);
2688 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2689}
2690
06808b08
LS
2691static ssize_t nr_hugepages_show(struct kobject *kobj,
2692 struct kobj_attribute *attr, char *buf)
2693{
2694 return nr_hugepages_show_common(kobj, attr, buf);
2695}
2696
2697static ssize_t nr_hugepages_store(struct kobject *kobj,
2698 struct kobj_attribute *attr, const char *buf, size_t len)
2699{
238d3c13 2700 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2701}
2702HSTATE_ATTR(nr_hugepages);
2703
06808b08
LS
2704#ifdef CONFIG_NUMA
2705
2706/*
2707 * hstate attribute for optionally mempolicy-based constraint on persistent
2708 * huge page alloc/free.
2709 */
2710static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2711 struct kobj_attribute *attr, char *buf)
2712{
2713 return nr_hugepages_show_common(kobj, attr, buf);
2714}
2715
2716static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2717 struct kobj_attribute *attr, const char *buf, size_t len)
2718{
238d3c13 2719 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2720}
2721HSTATE_ATTR(nr_hugepages_mempolicy);
2722#endif
2723
2724
a3437870
NA
2725static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2726 struct kobj_attribute *attr, char *buf)
2727{
9a305230 2728 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2729 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2730}
adbe8726 2731
a3437870
NA
2732static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2733 struct kobj_attribute *attr, const char *buf, size_t count)
2734{
2735 int err;
2736 unsigned long input;
9a305230 2737 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2738
bae7f4ae 2739 if (hstate_is_gigantic(h))
adbe8726
EM
2740 return -EINVAL;
2741
3dbb95f7 2742 err = kstrtoul(buf, 10, &input);
a3437870 2743 if (err)
73ae31e5 2744 return err;
a3437870
NA
2745
2746 spin_lock(&hugetlb_lock);
2747 h->nr_overcommit_huge_pages = input;
2748 spin_unlock(&hugetlb_lock);
2749
2750 return count;
2751}
2752HSTATE_ATTR(nr_overcommit_hugepages);
2753
2754static ssize_t free_hugepages_show(struct kobject *kobj,
2755 struct kobj_attribute *attr, char *buf)
2756{
9a305230
LS
2757 struct hstate *h;
2758 unsigned long free_huge_pages;
2759 int nid;
2760
2761 h = kobj_to_hstate(kobj, &nid);
2762 if (nid == NUMA_NO_NODE)
2763 free_huge_pages = h->free_huge_pages;
2764 else
2765 free_huge_pages = h->free_huge_pages_node[nid];
2766
2767 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2768}
2769HSTATE_ATTR_RO(free_hugepages);
2770
2771static ssize_t resv_hugepages_show(struct kobject *kobj,
2772 struct kobj_attribute *attr, char *buf)
2773{
9a305230 2774 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2775 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2776}
2777HSTATE_ATTR_RO(resv_hugepages);
2778
2779static ssize_t surplus_hugepages_show(struct kobject *kobj,
2780 struct kobj_attribute *attr, char *buf)
2781{
9a305230
LS
2782 struct hstate *h;
2783 unsigned long surplus_huge_pages;
2784 int nid;
2785
2786 h = kobj_to_hstate(kobj, &nid);
2787 if (nid == NUMA_NO_NODE)
2788 surplus_huge_pages = h->surplus_huge_pages;
2789 else
2790 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2791
2792 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2793}
2794HSTATE_ATTR_RO(surplus_hugepages);
2795
2796static struct attribute *hstate_attrs[] = {
2797 &nr_hugepages_attr.attr,
2798 &nr_overcommit_hugepages_attr.attr,
2799 &free_hugepages_attr.attr,
2800 &resv_hugepages_attr.attr,
2801 &surplus_hugepages_attr.attr,
06808b08
LS
2802#ifdef CONFIG_NUMA
2803 &nr_hugepages_mempolicy_attr.attr,
2804#endif
a3437870
NA
2805 NULL,
2806};
2807
67e5ed96 2808static const struct attribute_group hstate_attr_group = {
a3437870
NA
2809 .attrs = hstate_attrs,
2810};
2811
094e9539
JM
2812static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2813 struct kobject **hstate_kobjs,
67e5ed96 2814 const struct attribute_group *hstate_attr_group)
a3437870
NA
2815{
2816 int retval;
972dc4de 2817 int hi = hstate_index(h);
a3437870 2818
9a305230
LS
2819 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2820 if (!hstate_kobjs[hi])
a3437870
NA
2821 return -ENOMEM;
2822
9a305230 2823 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
62fd7270 2824 if (retval) {
9a305230 2825 kobject_put(hstate_kobjs[hi]);
62fd7270
ML
2826 hstate_kobjs[hi] = NULL;
2827 }
a3437870
NA
2828
2829 return retval;
2830}
2831
2832static void __init hugetlb_sysfs_init(void)
2833{
2834 struct hstate *h;
2835 int err;
2836
2837 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2838 if (!hugepages_kobj)
2839 return;
2840
2841 for_each_hstate(h) {
9a305230
LS
2842 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2843 hstate_kobjs, &hstate_attr_group);
a3437870 2844 if (err)
ffb22af5 2845 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2846 }
2847}
2848
9a305230
LS
2849#ifdef CONFIG_NUMA
2850
2851/*
2852 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2853 * with node devices in node_devices[] using a parallel array. The array
2854 * index of a node device or _hstate == node id.
2855 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2856 * the base kernel, on the hugetlb module.
2857 */
2858struct node_hstate {
2859 struct kobject *hugepages_kobj;
2860 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2861};
b4e289a6 2862static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2863
2864/*
10fbcf4c 2865 * A subset of global hstate attributes for node devices
9a305230
LS
2866 */
2867static struct attribute *per_node_hstate_attrs[] = {
2868 &nr_hugepages_attr.attr,
2869 &free_hugepages_attr.attr,
2870 &surplus_hugepages_attr.attr,
2871 NULL,
2872};
2873
67e5ed96 2874static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2875 .attrs = per_node_hstate_attrs,
2876};
2877
2878/*
10fbcf4c 2879 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2880 * Returns node id via non-NULL nidp.
2881 */
2882static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2883{
2884 int nid;
2885
2886 for (nid = 0; nid < nr_node_ids; nid++) {
2887 struct node_hstate *nhs = &node_hstates[nid];
2888 int i;
2889 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2890 if (nhs->hstate_kobjs[i] == kobj) {
2891 if (nidp)
2892 *nidp = nid;
2893 return &hstates[i];
2894 }
2895 }
2896
2897 BUG();
2898 return NULL;
2899}
2900
2901/*
10fbcf4c 2902 * Unregister hstate attributes from a single node device.
9a305230
LS
2903 * No-op if no hstate attributes attached.
2904 */
3cd8b44f 2905static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2906{
2907 struct hstate *h;
10fbcf4c 2908 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2909
2910 if (!nhs->hugepages_kobj)
9b5e5d0f 2911 return; /* no hstate attributes */
9a305230 2912
972dc4de
AK
2913 for_each_hstate(h) {
2914 int idx = hstate_index(h);
2915 if (nhs->hstate_kobjs[idx]) {
2916 kobject_put(nhs->hstate_kobjs[idx]);
2917 nhs->hstate_kobjs[idx] = NULL;
9a305230 2918 }
972dc4de 2919 }
9a305230
LS
2920
2921 kobject_put(nhs->hugepages_kobj);
2922 nhs->hugepages_kobj = NULL;
2923}
2924
9a305230
LS
2925
2926/*
10fbcf4c 2927 * Register hstate attributes for a single node device.
9a305230
LS
2928 * No-op if attributes already registered.
2929 */
3cd8b44f 2930static void hugetlb_register_node(struct node *node)
9a305230
LS
2931{
2932 struct hstate *h;
10fbcf4c 2933 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2934 int err;
2935
2936 if (nhs->hugepages_kobj)
2937 return; /* already allocated */
2938
2939 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2940 &node->dev.kobj);
9a305230
LS
2941 if (!nhs->hugepages_kobj)
2942 return;
2943
2944 for_each_hstate(h) {
2945 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2946 nhs->hstate_kobjs,
2947 &per_node_hstate_attr_group);
2948 if (err) {
ffb22af5
AM
2949 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2950 h->name, node->dev.id);
9a305230
LS
2951 hugetlb_unregister_node(node);
2952 break;
2953 }
2954 }
2955}
2956
2957/*
9b5e5d0f 2958 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2959 * devices of nodes that have memory. All on-line nodes should have
2960 * registered their associated device by this time.
9a305230 2961 */
7d9ca000 2962static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2963{
2964 int nid;
2965
8cebfcd0 2966 for_each_node_state(nid, N_MEMORY) {
8732794b 2967 struct node *node = node_devices[nid];
10fbcf4c 2968 if (node->dev.id == nid)
9a305230
LS
2969 hugetlb_register_node(node);
2970 }
2971
2972 /*
10fbcf4c 2973 * Let the node device driver know we're here so it can
9a305230
LS
2974 * [un]register hstate attributes on node hotplug.
2975 */
2976 register_hugetlbfs_with_node(hugetlb_register_node,
2977 hugetlb_unregister_node);
2978}
2979#else /* !CONFIG_NUMA */
2980
2981static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2982{
2983 BUG();
2984 if (nidp)
2985 *nidp = -1;
2986 return NULL;
2987}
2988
9a305230
LS
2989static void hugetlb_register_all_nodes(void) { }
2990
2991#endif
2992
a3437870
NA
2993static int __init hugetlb_init(void)
2994{
8382d914
DB
2995 int i;
2996
457c1b27 2997 if (!hugepages_supported())
0ef89d25 2998 return 0;
a3437870 2999
e11bfbfc 3000 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
3001 if (default_hstate_size != 0) {
3002 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
3003 default_hstate_size, HPAGE_SIZE);
3004 }
3005
e11bfbfc
NP
3006 default_hstate_size = HPAGE_SIZE;
3007 if (!size_to_hstate(default_hstate_size))
3008 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 3009 }
972dc4de 3010 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
3011 if (default_hstate_max_huge_pages) {
3012 if (!default_hstate.max_huge_pages)
3013 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3014 }
a3437870
NA
3015
3016 hugetlb_init_hstates();
aa888a74 3017 gather_bootmem_prealloc();
a3437870
NA
3018 report_hugepages();
3019
3020 hugetlb_sysfs_init();
9a305230 3021 hugetlb_register_all_nodes();
7179e7bf 3022 hugetlb_cgroup_file_init();
9a305230 3023
8382d914
DB
3024#ifdef CONFIG_SMP
3025 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3026#else
3027 num_fault_mutexes = 1;
3028#endif
c672c7f2 3029 hugetlb_fault_mutex_table =
6da2ec56
KC
3030 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3031 GFP_KERNEL);
c672c7f2 3032 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3033
3034 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3035 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3036 return 0;
3037}
3e89e1c5 3038subsys_initcall(hugetlb_init);
a3437870
NA
3039
3040/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
3041void __init hugetlb_bad_size(void)
3042{
3043 parsed_valid_hugepagesz = false;
3044}
3045
d00181b9 3046void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3047{
3048 struct hstate *h;
8faa8b07
AK
3049 unsigned long i;
3050
a3437870 3051 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 3052 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
3053 return;
3054 }
47d38344 3055 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3056 BUG_ON(order == 0);
47d38344 3057 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
3058 h->order = order;
3059 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
3060 h->nr_huge_pages = 0;
3061 h->free_huge_pages = 0;
3062 for (i = 0; i < MAX_NUMNODES; ++i)
3063 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3064 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3065 h->next_nid_to_alloc = first_memory_node;
3066 h->next_nid_to_free = first_memory_node;
a3437870
NA
3067 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3068 huge_page_size(h)/1024);
8faa8b07 3069
a3437870
NA
3070 parsed_hstate = h;
3071}
3072
e11bfbfc 3073static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
3074{
3075 unsigned long *mhp;
8faa8b07 3076 static unsigned long *last_mhp;
a3437870 3077
9fee021d
VT
3078 if (!parsed_valid_hugepagesz) {
3079 pr_warn("hugepages = %s preceded by "
3080 "an unsupported hugepagesz, ignoring\n", s);
3081 parsed_valid_hugepagesz = true;
3082 return 1;
3083 }
a3437870 3084 /*
47d38344 3085 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
3086 * so this hugepages= parameter goes to the "default hstate".
3087 */
9fee021d 3088 else if (!hugetlb_max_hstate)
a3437870
NA
3089 mhp = &default_hstate_max_huge_pages;
3090 else
3091 mhp = &parsed_hstate->max_huge_pages;
3092
8faa8b07 3093 if (mhp == last_mhp) {
598d8091 3094 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
3095 return 1;
3096 }
3097
a3437870
NA
3098 if (sscanf(s, "%lu", mhp) <= 0)
3099 *mhp = 0;
3100
8faa8b07
AK
3101 /*
3102 * Global state is always initialized later in hugetlb_init.
3103 * But we need to allocate >= MAX_ORDER hstates here early to still
3104 * use the bootmem allocator.
3105 */
47d38344 3106 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
3107 hugetlb_hstate_alloc_pages(parsed_hstate);
3108
3109 last_mhp = mhp;
3110
a3437870
NA
3111 return 1;
3112}
e11bfbfc
NP
3113__setup("hugepages=", hugetlb_nrpages_setup);
3114
3115static int __init hugetlb_default_setup(char *s)
3116{
3117 default_hstate_size = memparse(s, &s);
3118 return 1;
3119}
3120__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 3121
8a213460
NA
3122static unsigned int cpuset_mems_nr(unsigned int *array)
3123{
3124 int node;
3125 unsigned int nr = 0;
3126
3127 for_each_node_mask(node, cpuset_current_mems_allowed)
3128 nr += array[node];
3129
3130 return nr;
3131}
3132
3133#ifdef CONFIG_SYSCTL
5f84359e
MS
3134static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3135 void *buffer, size_t *length,
3136 loff_t *ppos, unsigned long *out)
3137{
3138 struct ctl_table dup_table;
3139
3140 /*
3141 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3142 * can duplicate the @table and alter the duplicate of it.
3143 */
3144 dup_table = *table;
3145 dup_table.data = out;
3146
3147 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3148}
3149
06808b08
LS
3150static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3151 struct ctl_table *table, int write,
3152 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 3153{
e5ff2159 3154 struct hstate *h = &default_hstate;
238d3c13 3155 unsigned long tmp = h->max_huge_pages;
08d4a246 3156 int ret;
e5ff2159 3157
457c1b27 3158 if (!hugepages_supported())
86613628 3159 return -EOPNOTSUPP;
457c1b27 3160
5f84359e
MS
3161 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3162 &tmp);
08d4a246
MH
3163 if (ret)
3164 goto out;
e5ff2159 3165
238d3c13
DR
3166 if (write)
3167 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3168 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3169out:
3170 return ret;
1da177e4 3171}
396faf03 3172
06808b08
LS
3173int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3174 void __user *buffer, size_t *length, loff_t *ppos)
3175{
3176
3177 return hugetlb_sysctl_handler_common(false, table, write,
3178 buffer, length, ppos);
3179}
3180
3181#ifdef CONFIG_NUMA
3182int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3183 void __user *buffer, size_t *length, loff_t *ppos)
3184{
3185 return hugetlb_sysctl_handler_common(true, table, write,
3186 buffer, length, ppos);
3187}
3188#endif /* CONFIG_NUMA */
3189
a3d0c6aa 3190int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 3191 void __user *buffer,
a3d0c6aa
NA
3192 size_t *length, loff_t *ppos)
3193{
a5516438 3194 struct hstate *h = &default_hstate;
e5ff2159 3195 unsigned long tmp;
08d4a246 3196 int ret;
e5ff2159 3197
457c1b27 3198 if (!hugepages_supported())
86613628 3199 return -EOPNOTSUPP;
457c1b27 3200
c033a93c 3201 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3202
bae7f4ae 3203 if (write && hstate_is_gigantic(h))
adbe8726
EM
3204 return -EINVAL;
3205
5f84359e
MS
3206 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3207 &tmp);
08d4a246
MH
3208 if (ret)
3209 goto out;
e5ff2159
AK
3210
3211 if (write) {
3212 spin_lock(&hugetlb_lock);
3213 h->nr_overcommit_huge_pages = tmp;
3214 spin_unlock(&hugetlb_lock);
3215 }
08d4a246
MH
3216out:
3217 return ret;
a3d0c6aa
NA
3218}
3219
1da177e4
LT
3220#endif /* CONFIG_SYSCTL */
3221
e1759c21 3222void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3223{
fcb2b0c5
RG
3224 struct hstate *h;
3225 unsigned long total = 0;
3226
457c1b27
NA
3227 if (!hugepages_supported())
3228 return;
fcb2b0c5
RG
3229
3230 for_each_hstate(h) {
3231 unsigned long count = h->nr_huge_pages;
3232
3233 total += (PAGE_SIZE << huge_page_order(h)) * count;
3234
3235 if (h == &default_hstate)
3236 seq_printf(m,
3237 "HugePages_Total: %5lu\n"
3238 "HugePages_Free: %5lu\n"
3239 "HugePages_Rsvd: %5lu\n"
3240 "HugePages_Surp: %5lu\n"
3241 "Hugepagesize: %8lu kB\n",
3242 count,
3243 h->free_huge_pages,
3244 h->resv_huge_pages,
3245 h->surplus_huge_pages,
3246 (PAGE_SIZE << huge_page_order(h)) / 1024);
3247 }
3248
3249 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3250}
3251
3252int hugetlb_report_node_meminfo(int nid, char *buf)
3253{
a5516438 3254 struct hstate *h = &default_hstate;
457c1b27
NA
3255 if (!hugepages_supported())
3256 return 0;
1da177e4
LT
3257 return sprintf(buf,
3258 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3259 "Node %d HugePages_Free: %5u\n"
3260 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3261 nid, h->nr_huge_pages_node[nid],
3262 nid, h->free_huge_pages_node[nid],
3263 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3264}
3265
949f7ec5
DR
3266void hugetlb_show_meminfo(void)
3267{
3268 struct hstate *h;
3269 int nid;
3270
457c1b27
NA
3271 if (!hugepages_supported())
3272 return;
3273
949f7ec5
DR
3274 for_each_node_state(nid, N_MEMORY)
3275 for_each_hstate(h)
3276 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3277 nid,
3278 h->nr_huge_pages_node[nid],
3279 h->free_huge_pages_node[nid],
3280 h->surplus_huge_pages_node[nid],
3281 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3282}
3283
5d317b2b
NH
3284void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3285{
3286 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3287 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3288}
3289
1da177e4
LT
3290/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3291unsigned long hugetlb_total_pages(void)
3292{
d0028588
WL
3293 struct hstate *h;
3294 unsigned long nr_total_pages = 0;
3295
3296 for_each_hstate(h)
3297 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3298 return nr_total_pages;
1da177e4 3299}
1da177e4 3300
a5516438 3301static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3302{
3303 int ret = -ENOMEM;
3304
3305 spin_lock(&hugetlb_lock);
3306 /*
3307 * When cpuset is configured, it breaks the strict hugetlb page
3308 * reservation as the accounting is done on a global variable. Such
3309 * reservation is completely rubbish in the presence of cpuset because
3310 * the reservation is not checked against page availability for the
3311 * current cpuset. Application can still potentially OOM'ed by kernel
3312 * with lack of free htlb page in cpuset that the task is in.
3313 * Attempt to enforce strict accounting with cpuset is almost
3314 * impossible (or too ugly) because cpuset is too fluid that
3315 * task or memory node can be dynamically moved between cpusets.
3316 *
3317 * The change of semantics for shared hugetlb mapping with cpuset is
3318 * undesirable. However, in order to preserve some of the semantics,
3319 * we fall back to check against current free page availability as
3320 * a best attempt and hopefully to minimize the impact of changing
3321 * semantics that cpuset has.
3322 */
3323 if (delta > 0) {
a5516438 3324 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3325 goto out;
3326
a5516438
AK
3327 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3328 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3329 goto out;
3330 }
3331 }
3332
3333 ret = 0;
3334 if (delta < 0)
a5516438 3335 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3336
3337out:
3338 spin_unlock(&hugetlb_lock);
3339 return ret;
3340}
3341
84afd99b
AW
3342static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3343{
f522c3ac 3344 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3345
3346 /*
3347 * This new VMA should share its siblings reservation map if present.
3348 * The VMA will only ever have a valid reservation map pointer where
3349 * it is being copied for another still existing VMA. As that VMA
25985edc 3350 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3351 * after this open call completes. It is therefore safe to take a
3352 * new reference here without additional locking.
3353 */
4e35f483 3354 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3355 kref_get(&resv->refs);
84afd99b
AW
3356}
3357
a1e78772
MG
3358static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3359{
a5516438 3360 struct hstate *h = hstate_vma(vma);
f522c3ac 3361 struct resv_map *resv = vma_resv_map(vma);
90481622 3362 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3363 unsigned long reserve, start, end;
1c5ecae3 3364 long gbl_reserve;
84afd99b 3365
4e35f483
JK
3366 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3367 return;
84afd99b 3368
4e35f483
JK
3369 start = vma_hugecache_offset(h, vma, vma->vm_start);
3370 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3371
4e35f483 3372 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3373
4e35f483
JK
3374 kref_put(&resv->refs, resv_map_release);
3375
3376 if (reserve) {
1c5ecae3
MK
3377 /*
3378 * Decrement reserve counts. The global reserve count may be
3379 * adjusted if the subpool has a minimum size.
3380 */
3381 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3382 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3383 }
a1e78772
MG
3384}
3385
31383c68
DW
3386static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3387{
3388 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3389 return -EINVAL;
3390 return 0;
3391}
3392
05ea8860
DW
3393static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3394{
3395 struct hstate *hstate = hstate_vma(vma);
3396
3397 return 1UL << huge_page_shift(hstate);
3398}
3399
1da177e4
LT
3400/*
3401 * We cannot handle pagefaults against hugetlb pages at all. They cause
3402 * handle_mm_fault() to try to instantiate regular-sized pages in the
3403 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3404 * this far.
3405 */
b3ec9f33 3406static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3407{
3408 BUG();
d0217ac0 3409 return 0;
1da177e4
LT
3410}
3411
eec3636a
JC
3412/*
3413 * When a new function is introduced to vm_operations_struct and added
3414 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3415 * This is because under System V memory model, mappings created via
3416 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3417 * their original vm_ops are overwritten with shm_vm_ops.
3418 */
f0f37e2f 3419const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3420 .fault = hugetlb_vm_op_fault,
84afd99b 3421 .open = hugetlb_vm_op_open,
a1e78772 3422 .close = hugetlb_vm_op_close,
31383c68 3423 .split = hugetlb_vm_op_split,
05ea8860 3424 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3425};
3426
1e8f889b
DG
3427static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3428 int writable)
63551ae0
DG
3429{
3430 pte_t entry;
3431
1e8f889b 3432 if (writable) {
106c992a
GS
3433 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3434 vma->vm_page_prot)));
63551ae0 3435 } else {
106c992a
GS
3436 entry = huge_pte_wrprotect(mk_huge_pte(page,
3437 vma->vm_page_prot));
63551ae0
DG
3438 }
3439 entry = pte_mkyoung(entry);
3440 entry = pte_mkhuge(entry);
d9ed9faa 3441 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3442
3443 return entry;
3444}
3445
1e8f889b
DG
3446static void set_huge_ptep_writable(struct vm_area_struct *vma,
3447 unsigned long address, pte_t *ptep)
3448{
3449 pte_t entry;
3450
106c992a 3451 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3452 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3453 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3454}
3455
d5ed7444 3456bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3457{
3458 swp_entry_t swp;
3459
3460 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3461 return false;
4a705fef
NH
3462 swp = pte_to_swp_entry(pte);
3463 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3464 return true;
4a705fef 3465 else
d5ed7444 3466 return false;
4a705fef
NH
3467}
3468
3469static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3470{
3471 swp_entry_t swp;
3472
3473 if (huge_pte_none(pte) || pte_present(pte))
3474 return 0;
3475 swp = pte_to_swp_entry(pte);
3476 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3477 return 1;
3478 else
3479 return 0;
3480}
1e8f889b 3481
63551ae0
DG
3482int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3483 struct vm_area_struct *vma)
3484{
5e41540c 3485 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3486 struct page *ptepage;
1c59827d 3487 unsigned long addr;
1e8f889b 3488 int cow;
a5516438
AK
3489 struct hstate *h = hstate_vma(vma);
3490 unsigned long sz = huge_page_size(h);
ac46d4f3 3491 struct mmu_notifier_range range;
e8569dd2 3492 int ret = 0;
1e8f889b
DG
3493
3494 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3495
ac46d4f3 3496 if (cow) {
7269f999 3497 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3498 vma->vm_start,
ac46d4f3
JG
3499 vma->vm_end);
3500 mmu_notifier_invalidate_range_start(&range);
3501 }
e8569dd2 3502
a5516438 3503 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3504 spinlock_t *src_ptl, *dst_ptl;
7868a208 3505 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3506 if (!src_pte)
3507 continue;
a5516438 3508 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3509 if (!dst_pte) {
3510 ret = -ENOMEM;
3511 break;
3512 }
c5c99429 3513
5e41540c
MK
3514 /*
3515 * If the pagetables are shared don't copy or take references.
3516 * dst_pte == src_pte is the common case of src/dest sharing.
3517 *
3518 * However, src could have 'unshared' and dst shares with
3519 * another vma. If dst_pte !none, this implies sharing.
3520 * Check here before taking page table lock, and once again
3521 * after taking the lock below.
3522 */
3523 dst_entry = huge_ptep_get(dst_pte);
3524 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3525 continue;
3526
cb900f41
KS
3527 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3528 src_ptl = huge_pte_lockptr(h, src, src_pte);
3529 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3530 entry = huge_ptep_get(src_pte);
5e41540c
MK
3531 dst_entry = huge_ptep_get(dst_pte);
3532 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3533 /*
3534 * Skip if src entry none. Also, skip in the
3535 * unlikely case dst entry !none as this implies
3536 * sharing with another vma.
3537 */
4a705fef
NH
3538 ;
3539 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3540 is_hugetlb_entry_hwpoisoned(entry))) {
3541 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3542
3543 if (is_write_migration_entry(swp_entry) && cow) {
3544 /*
3545 * COW mappings require pages in both
3546 * parent and child to be set to read.
3547 */
3548 make_migration_entry_read(&swp_entry);
3549 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3550 set_huge_swap_pte_at(src, addr, src_pte,
3551 entry, sz);
4a705fef 3552 }
e5251fd4 3553 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3554 } else {
34ee645e 3555 if (cow) {
0f10851e
JG
3556 /*
3557 * No need to notify as we are downgrading page
3558 * table protection not changing it to point
3559 * to a new page.
3560 *
ad56b738 3561 * See Documentation/vm/mmu_notifier.rst
0f10851e 3562 */
7f2e9525 3563 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3564 }
0253d634 3565 entry = huge_ptep_get(src_pte);
1c59827d
HD
3566 ptepage = pte_page(entry);
3567 get_page(ptepage);
53f9263b 3568 page_dup_rmap(ptepage, true);
1c59827d 3569 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3570 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3571 }
cb900f41
KS
3572 spin_unlock(src_ptl);
3573 spin_unlock(dst_ptl);
63551ae0 3574 }
63551ae0 3575
e8569dd2 3576 if (cow)
ac46d4f3 3577 mmu_notifier_invalidate_range_end(&range);
e8569dd2
AS
3578
3579 return ret;
63551ae0
DG
3580}
3581
24669e58
AK
3582void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3583 unsigned long start, unsigned long end,
3584 struct page *ref_page)
63551ae0
DG
3585{
3586 struct mm_struct *mm = vma->vm_mm;
3587 unsigned long address;
c7546f8f 3588 pte_t *ptep;
63551ae0 3589 pte_t pte;
cb900f41 3590 spinlock_t *ptl;
63551ae0 3591 struct page *page;
a5516438
AK
3592 struct hstate *h = hstate_vma(vma);
3593 unsigned long sz = huge_page_size(h);
ac46d4f3 3594 struct mmu_notifier_range range;
a5516438 3595
63551ae0 3596 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3597 BUG_ON(start & ~huge_page_mask(h));
3598 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3599
07e32661
AK
3600 /*
3601 * This is a hugetlb vma, all the pte entries should point
3602 * to huge page.
3603 */
ed6a7935 3604 tlb_change_page_size(tlb, sz);
24669e58 3605 tlb_start_vma(tlb, vma);
dff11abe
MK
3606
3607 /*
3608 * If sharing possible, alert mmu notifiers of worst case.
3609 */
6f4f13e8
JG
3610 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3611 end);
ac46d4f3
JG
3612 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3613 mmu_notifier_invalidate_range_start(&range);
569f48b8 3614 address = start;
569f48b8 3615 for (; address < end; address += sz) {
7868a208 3616 ptep = huge_pte_offset(mm, address, sz);
4c887265 3617 if (!ptep)
c7546f8f
DG
3618 continue;
3619
cb900f41 3620 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3621 if (huge_pmd_unshare(mm, &address, ptep)) {
3622 spin_unlock(ptl);
dff11abe
MK
3623 /*
3624 * We just unmapped a page of PMDs by clearing a PUD.
3625 * The caller's TLB flush range should cover this area.
3626 */
31d49da5
AK
3627 continue;
3628 }
39dde65c 3629
6629326b 3630 pte = huge_ptep_get(ptep);
31d49da5
AK
3631 if (huge_pte_none(pte)) {
3632 spin_unlock(ptl);
3633 continue;
3634 }
6629326b
HD
3635
3636 /*
9fbc1f63
NH
3637 * Migrating hugepage or HWPoisoned hugepage is already
3638 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3639 */
9fbc1f63 3640 if (unlikely(!pte_present(pte))) {
9386fac3 3641 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3642 spin_unlock(ptl);
3643 continue;
8c4894c6 3644 }
6629326b
HD
3645
3646 page = pte_page(pte);
04f2cbe3
MG
3647 /*
3648 * If a reference page is supplied, it is because a specific
3649 * page is being unmapped, not a range. Ensure the page we
3650 * are about to unmap is the actual page of interest.
3651 */
3652 if (ref_page) {
31d49da5
AK
3653 if (page != ref_page) {
3654 spin_unlock(ptl);
3655 continue;
3656 }
04f2cbe3
MG
3657 /*
3658 * Mark the VMA as having unmapped its page so that
3659 * future faults in this VMA will fail rather than
3660 * looking like data was lost
3661 */
3662 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3663 }
3664
c7546f8f 3665 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3666 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3667 if (huge_pte_dirty(pte))
6649a386 3668 set_page_dirty(page);
9e81130b 3669
5d317b2b 3670 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3671 page_remove_rmap(page, true);
31d49da5 3672
cb900f41 3673 spin_unlock(ptl);
e77b0852 3674 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3675 /*
3676 * Bail out after unmapping reference page if supplied
3677 */
3678 if (ref_page)
3679 break;
fe1668ae 3680 }
ac46d4f3 3681 mmu_notifier_invalidate_range_end(&range);
24669e58 3682 tlb_end_vma(tlb, vma);
1da177e4 3683}
63551ae0 3684
d833352a
MG
3685void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3686 struct vm_area_struct *vma, unsigned long start,
3687 unsigned long end, struct page *ref_page)
3688{
3689 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3690
3691 /*
3692 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3693 * test will fail on a vma being torn down, and not grab a page table
3694 * on its way out. We're lucky that the flag has such an appropriate
3695 * name, and can in fact be safely cleared here. We could clear it
3696 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3697 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3698 * because in the context this is called, the VMA is about to be
c8c06efa 3699 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3700 */
3701 vma->vm_flags &= ~VM_MAYSHARE;
3702}
3703
502717f4 3704void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3705 unsigned long end, struct page *ref_page)
502717f4 3706{
24669e58
AK
3707 struct mm_struct *mm;
3708 struct mmu_gather tlb;
dff11abe
MK
3709 unsigned long tlb_start = start;
3710 unsigned long tlb_end = end;
3711
3712 /*
3713 * If shared PMDs were possibly used within this vma range, adjust
3714 * start/end for worst case tlb flushing.
3715 * Note that we can not be sure if PMDs are shared until we try to
3716 * unmap pages. However, we want to make sure TLB flushing covers
3717 * the largest possible range.
3718 */
3719 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
3720
3721 mm = vma->vm_mm;
3722
dff11abe 3723 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 3724 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 3725 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
KC
3726}
3727
04f2cbe3
MG
3728/*
3729 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3730 * mappping it owns the reserve page for. The intention is to unmap the page
3731 * from other VMAs and let the children be SIGKILLed if they are faulting the
3732 * same region.
3733 */
2f4612af
DB
3734static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3735 struct page *page, unsigned long address)
04f2cbe3 3736{
7526674d 3737 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3738 struct vm_area_struct *iter_vma;
3739 struct address_space *mapping;
04f2cbe3
MG
3740 pgoff_t pgoff;
3741
3742 /*
3743 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3744 * from page cache lookup which is in HPAGE_SIZE units.
3745 */
7526674d 3746 address = address & huge_page_mask(h);
36e4f20a
MH
3747 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3748 vma->vm_pgoff;
93c76a3d 3749 mapping = vma->vm_file->f_mapping;
04f2cbe3 3750
4eb2b1dc
MG
3751 /*
3752 * Take the mapping lock for the duration of the table walk. As
3753 * this mapping should be shared between all the VMAs,
3754 * __unmap_hugepage_range() is called as the lock is already held
3755 */
83cde9e8 3756 i_mmap_lock_write(mapping);
6b2dbba8 3757 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3758 /* Do not unmap the current VMA */
3759 if (iter_vma == vma)
3760 continue;
3761
2f84a899
MG
3762 /*
3763 * Shared VMAs have their own reserves and do not affect
3764 * MAP_PRIVATE accounting but it is possible that a shared
3765 * VMA is using the same page so check and skip such VMAs.
3766 */
3767 if (iter_vma->vm_flags & VM_MAYSHARE)
3768 continue;
3769
04f2cbe3
MG
3770 /*
3771 * Unmap the page from other VMAs without their own reserves.
3772 * They get marked to be SIGKILLed if they fault in these
3773 * areas. This is because a future no-page fault on this VMA
3774 * could insert a zeroed page instead of the data existing
3775 * from the time of fork. This would look like data corruption
3776 */
3777 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3778 unmap_hugepage_range(iter_vma, address,
3779 address + huge_page_size(h), page);
04f2cbe3 3780 }
83cde9e8 3781 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3782}
3783
0fe6e20b
NH
3784/*
3785 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3786 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3787 * cannot race with other handlers or page migration.
3788 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3789 */
2b740303 3790static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3791 unsigned long address, pte_t *ptep,
3999f52e 3792 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3793{
3999f52e 3794 pte_t pte;
a5516438 3795 struct hstate *h = hstate_vma(vma);
1e8f889b 3796 struct page *old_page, *new_page;
2b740303
SJ
3797 int outside_reserve = 0;
3798 vm_fault_t ret = 0;
974e6d66 3799 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 3800 struct mmu_notifier_range range;
1e8f889b 3801
3999f52e 3802 pte = huge_ptep_get(ptep);
1e8f889b
DG
3803 old_page = pte_page(pte);
3804
04f2cbe3 3805retry_avoidcopy:
1e8f889b
DG
3806 /* If no-one else is actually using this page, avoid the copy
3807 * and just make the page writable */
37a2140d 3808 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3809 page_move_anon_rmap(old_page, vma);
5b7a1d40 3810 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3811 return 0;
1e8f889b
DG
3812 }
3813
04f2cbe3
MG
3814 /*
3815 * If the process that created a MAP_PRIVATE mapping is about to
3816 * perform a COW due to a shared page count, attempt to satisfy
3817 * the allocation without using the existing reserves. The pagecache
3818 * page is used to determine if the reserve at this address was
3819 * consumed or not. If reserves were used, a partial faulted mapping
3820 * at the time of fork() could consume its reserves on COW instead
3821 * of the full address range.
3822 */
5944d011 3823 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3824 old_page != pagecache_page)
3825 outside_reserve = 1;
3826
09cbfeaf 3827 get_page(old_page);
b76c8cfb 3828
ad4404a2
DB
3829 /*
3830 * Drop page table lock as buddy allocator may be called. It will
3831 * be acquired again before returning to the caller, as expected.
3832 */
cb900f41 3833 spin_unlock(ptl);
5b7a1d40 3834 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 3835
2fc39cec 3836 if (IS_ERR(new_page)) {
04f2cbe3
MG
3837 /*
3838 * If a process owning a MAP_PRIVATE mapping fails to COW,
3839 * it is due to references held by a child and an insufficient
3840 * huge page pool. To guarantee the original mappers
3841 * reliability, unmap the page from child processes. The child
3842 * may get SIGKILLed if it later faults.
3843 */
3844 if (outside_reserve) {
09cbfeaf 3845 put_page(old_page);
04f2cbe3 3846 BUG_ON(huge_pte_none(pte));
5b7a1d40 3847 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
3848 BUG_ON(huge_pte_none(pte));
3849 spin_lock(ptl);
5b7a1d40 3850 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
3851 if (likely(ptep &&
3852 pte_same(huge_ptep_get(ptep), pte)))
3853 goto retry_avoidcopy;
3854 /*
3855 * race occurs while re-acquiring page table
3856 * lock, and our job is done.
3857 */
3858 return 0;
04f2cbe3
MG
3859 }
3860
2b740303 3861 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 3862 goto out_release_old;
1e8f889b
DG
3863 }
3864
0fe6e20b
NH
3865 /*
3866 * When the original hugepage is shared one, it does not have
3867 * anon_vma prepared.
3868 */
44e2aa93 3869 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3870 ret = VM_FAULT_OOM;
3871 goto out_release_all;
44e2aa93 3872 }
0fe6e20b 3873
974e6d66 3874 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 3875 pages_per_huge_page(h));
0ed361de 3876 __SetPageUptodate(new_page);
1e8f889b 3877
7269f999 3878 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 3879 haddr + huge_page_size(h));
ac46d4f3 3880 mmu_notifier_invalidate_range_start(&range);
ad4404a2 3881
b76c8cfb 3882 /*
cb900f41 3883 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3884 * before the page tables are altered
3885 */
cb900f41 3886 spin_lock(ptl);
5b7a1d40 3887 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 3888 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3889 ClearPagePrivate(new_page);
3890
1e8f889b 3891 /* Break COW */
5b7a1d40 3892 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 3893 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 3894 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 3895 make_huge_pte(vma, new_page, 1));
d281ee61 3896 page_remove_rmap(old_page, true);
5b7a1d40 3897 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 3898 set_page_huge_active(new_page);
1e8f889b
DG
3899 /* Make the old page be freed below */
3900 new_page = old_page;
3901 }
cb900f41 3902 spin_unlock(ptl);
ac46d4f3 3903 mmu_notifier_invalidate_range_end(&range);
ad4404a2 3904out_release_all:
5b7a1d40 3905 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 3906 put_page(new_page);
ad4404a2 3907out_release_old:
09cbfeaf 3908 put_page(old_page);
8312034f 3909
ad4404a2
DB
3910 spin_lock(ptl); /* Caller expects lock to be held */
3911 return ret;
1e8f889b
DG
3912}
3913
04f2cbe3 3914/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3915static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3916 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3917{
3918 struct address_space *mapping;
e7c4b0bf 3919 pgoff_t idx;
04f2cbe3
MG
3920
3921 mapping = vma->vm_file->f_mapping;
a5516438 3922 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3923
3924 return find_lock_page(mapping, idx);
3925}
3926
3ae77f43
HD
3927/*
3928 * Return whether there is a pagecache page to back given address within VMA.
3929 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3930 */
3931static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3932 struct vm_area_struct *vma, unsigned long address)
3933{
3934 struct address_space *mapping;
3935 pgoff_t idx;
3936 struct page *page;
3937
3938 mapping = vma->vm_file->f_mapping;
3939 idx = vma_hugecache_offset(h, vma, address);
3940
3941 page = find_get_page(mapping, idx);
3942 if (page)
3943 put_page(page);
3944 return page != NULL;
3945}
3946
ab76ad54
MK
3947int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3948 pgoff_t idx)
3949{
3950 struct inode *inode = mapping->host;
3951 struct hstate *h = hstate_inode(inode);
3952 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3953
3954 if (err)
3955 return err;
3956 ClearPagePrivate(page);
3957
22146c3c
MK
3958 /*
3959 * set page dirty so that it will not be removed from cache/file
3960 * by non-hugetlbfs specific code paths.
3961 */
3962 set_page_dirty(page);
3963
ab76ad54
MK
3964 spin_lock(&inode->i_lock);
3965 inode->i_blocks += blocks_per_huge_page(h);
3966 spin_unlock(&inode->i_lock);
3967 return 0;
3968}
3969
2b740303
SJ
3970static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3971 struct vm_area_struct *vma,
3972 struct address_space *mapping, pgoff_t idx,
3973 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3974{
a5516438 3975 struct hstate *h = hstate_vma(vma);
2b740303 3976 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 3977 int anon_rmap = 0;
4c887265 3978 unsigned long size;
4c887265 3979 struct page *page;
1e8f889b 3980 pte_t new_pte;
cb900f41 3981 spinlock_t *ptl;
285b8dca 3982 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 3983 bool new_page = false;
4c887265 3984
04f2cbe3
MG
3985 /*
3986 * Currently, we are forced to kill the process in the event the
3987 * original mapper has unmapped pages from the child due to a failed
25985edc 3988 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3989 */
3990 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3991 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3992 current->pid);
04f2cbe3
MG
3993 return ret;
3994 }
3995
4c887265 3996 /*
e7c58097
MK
3997 * Use page lock to guard against racing truncation
3998 * before we get page_table_lock.
4c887265 3999 */
6bda666a
CL
4000retry:
4001 page = find_lock_page(mapping, idx);
4002 if (!page) {
e7c58097
MK
4003 size = i_size_read(mapping->host) >> huge_page_shift(h);
4004 if (idx >= size)
4005 goto out;
4006
1a1aad8a
MK
4007 /*
4008 * Check for page in userfault range
4009 */
4010 if (userfaultfd_missing(vma)) {
4011 u32 hash;
4012 struct vm_fault vmf = {
4013 .vma = vma,
285b8dca 4014 .address = haddr,
1a1aad8a
MK
4015 .flags = flags,
4016 /*
4017 * Hard to debug if it ends up being
4018 * used by a callee that assumes
4019 * something about the other
4020 * uninitialized fields... same as in
4021 * memory.c
4022 */
4023 };
4024
4025 /*
ddeaab32
MK
4026 * hugetlb_fault_mutex must be dropped before
4027 * handling userfault. Reacquire after handling
4028 * fault to make calling code simpler.
1a1aad8a 4029 */
5e3cb663 4030 hash = hugetlb_fault_mutex_hash(h, mapping, idx);
1a1aad8a
MK
4031 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4032 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4033 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4034 goto out;
4035 }
4036
285b8dca 4037 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4038 if (IS_ERR(page)) {
4643d67e
MK
4039 /*
4040 * Returning error will result in faulting task being
4041 * sent SIGBUS. The hugetlb fault mutex prevents two
4042 * tasks from racing to fault in the same page which
4043 * could result in false unable to allocate errors.
4044 * Page migration does not take the fault mutex, but
4045 * does a clear then write of pte's under page table
4046 * lock. Page fault code could race with migration,
4047 * notice the clear pte and try to allocate a page
4048 * here. Before returning error, get ptl and make
4049 * sure there really is no pte entry.
4050 */
4051 ptl = huge_pte_lock(h, mm, ptep);
4052 if (!huge_pte_none(huge_ptep_get(ptep))) {
4053 ret = 0;
4054 spin_unlock(ptl);
4055 goto out;
4056 }
4057 spin_unlock(ptl);
2b740303 4058 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
4059 goto out;
4060 }
47ad8475 4061 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4062 __SetPageUptodate(page);
cb6acd01 4063 new_page = true;
ac9b9c66 4064
f83a275d 4065 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4066 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4067 if (err) {
4068 put_page(page);
6bda666a
CL
4069 if (err == -EEXIST)
4070 goto retry;
4071 goto out;
4072 }
23be7468 4073 } else {
6bda666a 4074 lock_page(page);
0fe6e20b
NH
4075 if (unlikely(anon_vma_prepare(vma))) {
4076 ret = VM_FAULT_OOM;
4077 goto backout_unlocked;
4078 }
409eb8c2 4079 anon_rmap = 1;
23be7468 4080 }
0fe6e20b 4081 } else {
998b4382
NH
4082 /*
4083 * If memory error occurs between mmap() and fault, some process
4084 * don't have hwpoisoned swap entry for errored virtual address.
4085 * So we need to block hugepage fault by PG_hwpoison bit check.
4086 */
4087 if (unlikely(PageHWPoison(page))) {
61edc516 4088 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4089 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4090 goto backout_unlocked;
4091 }
6bda666a 4092 }
1e8f889b 4093
57303d80
AW
4094 /*
4095 * If we are going to COW a private mapping later, we examine the
4096 * pending reservations for this page now. This will ensure that
4097 * any allocations necessary to record that reservation occur outside
4098 * the spinlock.
4099 */
5e911373 4100 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4101 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4102 ret = VM_FAULT_OOM;
4103 goto backout_unlocked;
4104 }
5e911373 4105 /* Just decrements count, does not deallocate */
285b8dca 4106 vma_end_reservation(h, vma, haddr);
5e911373 4107 }
57303d80 4108
8bea8052 4109 ptl = huge_pte_lock(h, mm, ptep);
e7c58097
MK
4110 size = i_size_read(mapping->host) >> huge_page_shift(h);
4111 if (idx >= size)
4112 goto backout;
4c887265 4113
83c54070 4114 ret = 0;
7f2e9525 4115 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4116 goto backout;
4117
07443a85
JK
4118 if (anon_rmap) {
4119 ClearPagePrivate(page);
285b8dca 4120 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4121 } else
53f9263b 4122 page_dup_rmap(page, true);
1e8f889b
DG
4123 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4124 && (vma->vm_flags & VM_SHARED)));
285b8dca 4125 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4126
5d317b2b 4127 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4128 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4129 /* Optimization, do the COW without a second fault */
974e6d66 4130 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4131 }
4132
cb900f41 4133 spin_unlock(ptl);
cb6acd01
MK
4134
4135 /*
4136 * Only make newly allocated pages active. Existing pages found
4137 * in the pagecache could be !page_huge_active() if they have been
4138 * isolated for migration.
4139 */
4140 if (new_page)
4141 set_page_huge_active(page);
4142
4c887265
AL
4143 unlock_page(page);
4144out:
ac9b9c66 4145 return ret;
4c887265
AL
4146
4147backout:
cb900f41 4148 spin_unlock(ptl);
2b26736c 4149backout_unlocked:
4c887265 4150 unlock_page(page);
285b8dca 4151 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4152 put_page(page);
4153 goto out;
ac9b9c66
HD
4154}
4155
8382d914 4156#ifdef CONFIG_SMP
1b426bac 4157u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
5e3cb663 4158 pgoff_t idx)
8382d914
DB
4159{
4160 unsigned long key[2];
4161 u32 hash;
4162
1b426bac
MK
4163 key[0] = (unsigned long) mapping;
4164 key[1] = idx;
8382d914 4165
5e3cb663 4166 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4167
4168 return hash & (num_fault_mutexes - 1);
4169}
4170#else
4171/*
4172 * For uniprocesor systems we always use a single mutex, so just
4173 * return 0 and avoid the hashing overhead.
4174 */
1b426bac 4175u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
5e3cb663 4176 pgoff_t idx)
8382d914
DB
4177{
4178 return 0;
4179}
4180#endif
4181
2b740303 4182vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4183 unsigned long address, unsigned int flags)
86e5216f 4184{
8382d914 4185 pte_t *ptep, entry;
cb900f41 4186 spinlock_t *ptl;
2b740303 4187 vm_fault_t ret;
8382d914
DB
4188 u32 hash;
4189 pgoff_t idx;
0fe6e20b 4190 struct page *page = NULL;
57303d80 4191 struct page *pagecache_page = NULL;
a5516438 4192 struct hstate *h = hstate_vma(vma);
8382d914 4193 struct address_space *mapping;
0f792cf9 4194 int need_wait_lock = 0;
285b8dca 4195 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4196
285b8dca 4197 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed
NH
4198 if (ptep) {
4199 entry = huge_ptep_get(ptep);
290408d4 4200 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4201 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4202 return 0;
4203 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4204 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4205 VM_FAULT_SET_HINDEX(hstate_index(h));
ddeaab32
MK
4206 } else {
4207 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4208 if (!ptep)
4209 return VM_FAULT_OOM;
fd6a03ed
NH
4210 }
4211
8382d914 4212 mapping = vma->vm_file->f_mapping;
ddeaab32 4213 idx = vma_hugecache_offset(h, vma, haddr);
8382d914 4214
3935baa9
DG
4215 /*
4216 * Serialize hugepage allocation and instantiation, so that we don't
4217 * get spurious allocation failures if two CPUs race to instantiate
4218 * the same page in the page cache.
4219 */
5e3cb663 4220 hash = hugetlb_fault_mutex_hash(h, mapping, idx);
c672c7f2 4221 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4222
7f2e9525
GS
4223 entry = huge_ptep_get(ptep);
4224 if (huge_pte_none(entry)) {
8382d914 4225 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4226 goto out_mutex;
3935baa9 4227 }
86e5216f 4228
83c54070 4229 ret = 0;
1e8f889b 4230
0f792cf9
NH
4231 /*
4232 * entry could be a migration/hwpoison entry at this point, so this
4233 * check prevents the kernel from going below assuming that we have
4234 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4235 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4236 * handle it.
4237 */
4238 if (!pte_present(entry))
4239 goto out_mutex;
4240
57303d80
AW
4241 /*
4242 * If we are going to COW the mapping later, we examine the pending
4243 * reservations for this page now. This will ensure that any
4244 * allocations necessary to record that reservation occur outside the
4245 * spinlock. For private mappings, we also lookup the pagecache
4246 * page now as it is used to determine if a reservation has been
4247 * consumed.
4248 */
106c992a 4249 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4250 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4251 ret = VM_FAULT_OOM;
b4d1d99f 4252 goto out_mutex;
2b26736c 4253 }
5e911373 4254 /* Just decrements count, does not deallocate */
285b8dca 4255 vma_end_reservation(h, vma, haddr);
57303d80 4256
f83a275d 4257 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4258 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4259 vma, haddr);
57303d80
AW
4260 }
4261
0f792cf9
NH
4262 ptl = huge_pte_lock(h, mm, ptep);
4263
4264 /* Check for a racing update before calling hugetlb_cow */
4265 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4266 goto out_ptl;
4267
56c9cfb1
NH
4268 /*
4269 * hugetlb_cow() requires page locks of pte_page(entry) and
4270 * pagecache_page, so here we need take the former one
4271 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4272 */
4273 page = pte_page(entry);
4274 if (page != pagecache_page)
0f792cf9
NH
4275 if (!trylock_page(page)) {
4276 need_wait_lock = 1;
4277 goto out_ptl;
4278 }
b4d1d99f 4279
0f792cf9 4280 get_page(page);
b4d1d99f 4281
788c7df4 4282 if (flags & FAULT_FLAG_WRITE) {
106c992a 4283 if (!huge_pte_write(entry)) {
974e6d66 4284 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4285 pagecache_page, ptl);
0f792cf9 4286 goto out_put_page;
b4d1d99f 4287 }
106c992a 4288 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4289 }
4290 entry = pte_mkyoung(entry);
285b8dca 4291 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4292 flags & FAULT_FLAG_WRITE))
285b8dca 4293 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4294out_put_page:
4295 if (page != pagecache_page)
4296 unlock_page(page);
4297 put_page(page);
cb900f41
KS
4298out_ptl:
4299 spin_unlock(ptl);
57303d80
AW
4300
4301 if (pagecache_page) {
4302 unlock_page(pagecache_page);
4303 put_page(pagecache_page);
4304 }
b4d1d99f 4305out_mutex:
c672c7f2 4306 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4307 /*
4308 * Generally it's safe to hold refcount during waiting page lock. But
4309 * here we just wait to defer the next page fault to avoid busy loop and
4310 * the page is not used after unlocked before returning from the current
4311 * page fault. So we are safe from accessing freed page, even if we wait
4312 * here without taking refcount.
4313 */
4314 if (need_wait_lock)
4315 wait_on_page_locked(page);
1e8f889b 4316 return ret;
86e5216f
AL
4317}
4318
8fb5debc
MK
4319/*
4320 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4321 * modifications for huge pages.
4322 */
4323int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4324 pte_t *dst_pte,
4325 struct vm_area_struct *dst_vma,
4326 unsigned long dst_addr,
4327 unsigned long src_addr,
4328 struct page **pagep)
4329{
1e392147
AA
4330 struct address_space *mapping;
4331 pgoff_t idx;
4332 unsigned long size;
1c9e8def 4333 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4334 struct hstate *h = hstate_vma(dst_vma);
4335 pte_t _dst_pte;
4336 spinlock_t *ptl;
4337 int ret;
4338 struct page *page;
4339
4340 if (!*pagep) {
2925a98f
MA
4341 /* If a page already exists, then it's UFFDIO_COPY for
4342 * a non-missing case. Return -EEXIST.
4343 */
4344 if (vm_shared &&
4345 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4346 ret = -EEXIST;
4347 goto out;
4348 }
4349
8fb5debc 4350 page = alloc_huge_page(dst_vma, dst_addr, 0);
2925a98f
MA
4351 if (IS_ERR(page)) {
4352 ret = -ENOMEM;
8fb5debc 4353 goto out;
2925a98f 4354 }
8fb5debc
MK
4355
4356 ret = copy_huge_page_from_user(page,
4357 (const void __user *) src_addr,
810a56b9 4358 pages_per_huge_page(h), false);
8fb5debc
MK
4359
4360 /* fallback to copy_from_user outside mmap_sem */
4361 if (unlikely(ret)) {
9e368259 4362 ret = -ENOENT;
8fb5debc
MK
4363 *pagep = page;
4364 /* don't free the page */
4365 goto out;
4366 }
4367 } else {
4368 page = *pagep;
4369 *pagep = NULL;
4370 }
4371
4372 /*
4373 * The memory barrier inside __SetPageUptodate makes sure that
4374 * preceding stores to the page contents become visible before
4375 * the set_pte_at() write.
4376 */
4377 __SetPageUptodate(page);
8fb5debc 4378
1e392147
AA
4379 mapping = dst_vma->vm_file->f_mapping;
4380 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4381
1c9e8def
MK
4382 /*
4383 * If shared, add to page cache
4384 */
4385 if (vm_shared) {
1e392147
AA
4386 size = i_size_read(mapping->host) >> huge_page_shift(h);
4387 ret = -EFAULT;
4388 if (idx >= size)
4389 goto out_release_nounlock;
1c9e8def 4390
1e392147
AA
4391 /*
4392 * Serialization between remove_inode_hugepages() and
4393 * huge_add_to_page_cache() below happens through the
4394 * hugetlb_fault_mutex_table that here must be hold by
4395 * the caller.
4396 */
1c9e8def
MK
4397 ret = huge_add_to_page_cache(page, mapping, idx);
4398 if (ret)
4399 goto out_release_nounlock;
4400 }
4401
8fb5debc
MK
4402 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4403 spin_lock(ptl);
4404
1e392147
AA
4405 /*
4406 * Recheck the i_size after holding PT lock to make sure not
4407 * to leave any page mapped (as page_mapped()) beyond the end
4408 * of the i_size (remove_inode_hugepages() is strict about
4409 * enforcing that). If we bail out here, we'll also leave a
4410 * page in the radix tree in the vm_shared case beyond the end
4411 * of the i_size, but remove_inode_hugepages() will take care
4412 * of it as soon as we drop the hugetlb_fault_mutex_table.
4413 */
4414 size = i_size_read(mapping->host) >> huge_page_shift(h);
4415 ret = -EFAULT;
4416 if (idx >= size)
4417 goto out_release_unlock;
4418
8fb5debc
MK
4419 ret = -EEXIST;
4420 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4421 goto out_release_unlock;
4422
1c9e8def
MK
4423 if (vm_shared) {
4424 page_dup_rmap(page, true);
4425 } else {
4426 ClearPagePrivate(page);
4427 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4428 }
8fb5debc
MK
4429
4430 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4431 if (dst_vma->vm_flags & VM_WRITE)
4432 _dst_pte = huge_pte_mkdirty(_dst_pte);
4433 _dst_pte = pte_mkyoung(_dst_pte);
4434
4435 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4436
4437 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4438 dst_vma->vm_flags & VM_WRITE);
4439 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4440
4441 /* No need to invalidate - it was non-present before */
4442 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4443
4444 spin_unlock(ptl);
cb6acd01 4445 set_page_huge_active(page);
1c9e8def
MK
4446 if (vm_shared)
4447 unlock_page(page);
8fb5debc
MK
4448 ret = 0;
4449out:
4450 return ret;
4451out_release_unlock:
4452 spin_unlock(ptl);
1c9e8def
MK
4453 if (vm_shared)
4454 unlock_page(page);
5af10dfd 4455out_release_nounlock:
8fb5debc
MK
4456 put_page(page);
4457 goto out;
4458}
4459
28a35716
ML
4460long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4461 struct page **pages, struct vm_area_struct **vmas,
4462 unsigned long *position, unsigned long *nr_pages,
87ffc118 4463 long i, unsigned int flags, int *nonblocking)
63551ae0 4464{
d5d4b0aa
KC
4465 unsigned long pfn_offset;
4466 unsigned long vaddr = *position;
28a35716 4467 unsigned long remainder = *nr_pages;
a5516438 4468 struct hstate *h = hstate_vma(vma);
2be7cfed 4469 int err = -EFAULT;
63551ae0 4470
63551ae0 4471 while (vaddr < vma->vm_end && remainder) {
4c887265 4472 pte_t *pte;
cb900f41 4473 spinlock_t *ptl = NULL;
2a15efc9 4474 int absent;
4c887265 4475 struct page *page;
63551ae0 4476
02057967
DR
4477 /*
4478 * If we have a pending SIGKILL, don't keep faulting pages and
4479 * potentially allocating memory.
4480 */
fa45f116 4481 if (fatal_signal_pending(current)) {
02057967
DR
4482 remainder = 0;
4483 break;
4484 }
4485
4c887265
AL
4486 /*
4487 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4488 * each hugepage. We have to make sure we get the
4c887265 4489 * first, for the page indexing below to work.
cb900f41
KS
4490 *
4491 * Note that page table lock is not held when pte is null.
4c887265 4492 */
7868a208
PA
4493 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4494 huge_page_size(h));
cb900f41
KS
4495 if (pte)
4496 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4497 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4498
4499 /*
4500 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4501 * an error where there's an empty slot with no huge pagecache
4502 * to back it. This way, we avoid allocating a hugepage, and
4503 * the sparse dumpfile avoids allocating disk blocks, but its
4504 * huge holes still show up with zeroes where they need to be.
2a15efc9 4505 */
3ae77f43
HD
4506 if (absent && (flags & FOLL_DUMP) &&
4507 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4508 if (pte)
4509 spin_unlock(ptl);
2a15efc9
HD
4510 remainder = 0;
4511 break;
4512 }
63551ae0 4513
9cc3a5bd
NH
4514 /*
4515 * We need call hugetlb_fault for both hugepages under migration
4516 * (in which case hugetlb_fault waits for the migration,) and
4517 * hwpoisoned hugepages (in which case we need to prevent the
4518 * caller from accessing to them.) In order to do this, we use
4519 * here is_swap_pte instead of is_hugetlb_entry_migration and
4520 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4521 * both cases, and because we can't follow correct pages
4522 * directly from any kind of swap entries.
4523 */
4524 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4525 ((flags & FOLL_WRITE) &&
4526 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4527 vm_fault_t ret;
87ffc118 4528 unsigned int fault_flags = 0;
63551ae0 4529
cb900f41
KS
4530 if (pte)
4531 spin_unlock(ptl);
87ffc118
AA
4532 if (flags & FOLL_WRITE)
4533 fault_flags |= FAULT_FLAG_WRITE;
4534 if (nonblocking)
4535 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4536 if (flags & FOLL_NOWAIT)
4537 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4538 FAULT_FLAG_RETRY_NOWAIT;
4539 if (flags & FOLL_TRIED) {
4540 VM_WARN_ON_ONCE(fault_flags &
4541 FAULT_FLAG_ALLOW_RETRY);
4542 fault_flags |= FAULT_FLAG_TRIED;
4543 }
4544 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4545 if (ret & VM_FAULT_ERROR) {
2be7cfed 4546 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4547 remainder = 0;
4548 break;
4549 }
4550 if (ret & VM_FAULT_RETRY) {
1ac25013
AA
4551 if (nonblocking &&
4552 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
87ffc118
AA
4553 *nonblocking = 0;
4554 *nr_pages = 0;
4555 /*
4556 * VM_FAULT_RETRY must not return an
4557 * error, it will return zero
4558 * instead.
4559 *
4560 * No need to update "position" as the
4561 * caller will not check it after
4562 * *nr_pages is set to 0.
4563 */
4564 return i;
4565 }
4566 continue;
4c887265
AL
4567 }
4568
a5516438 4569 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4570 page = pte_page(huge_ptep_get(pte));
8fde12ca
LT
4571
4572 /*
4573 * Instead of doing 'try_get_page()' below in the same_page
4574 * loop, just check the count once here.
4575 */
4576 if (unlikely(page_count(page) <= 0)) {
4577 if (pages) {
4578 spin_unlock(ptl);
4579 remainder = 0;
4580 err = -ENOMEM;
4581 break;
4582 }
4583 }
d5d4b0aa 4584same_page:
d6692183 4585 if (pages) {
2a15efc9 4586 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4587 get_page(pages[i]);
d6692183 4588 }
63551ae0
DG
4589
4590 if (vmas)
4591 vmas[i] = vma;
4592
4593 vaddr += PAGE_SIZE;
d5d4b0aa 4594 ++pfn_offset;
63551ae0
DG
4595 --remainder;
4596 ++i;
d5d4b0aa 4597 if (vaddr < vma->vm_end && remainder &&
a5516438 4598 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4599 /*
4600 * We use pfn_offset to avoid touching the pageframes
4601 * of this compound page.
4602 */
4603 goto same_page;
4604 }
cb900f41 4605 spin_unlock(ptl);
63551ae0 4606 }
28a35716 4607 *nr_pages = remainder;
87ffc118
AA
4608 /*
4609 * setting position is actually required only if remainder is
4610 * not zero but it's faster not to add a "if (remainder)"
4611 * branch.
4612 */
63551ae0
DG
4613 *position = vaddr;
4614
2be7cfed 4615 return i ? i : err;
63551ae0 4616}
8f860591 4617
5491ae7b
AK
4618#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4619/*
4620 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4621 * implement this.
4622 */
4623#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4624#endif
4625
7da4d641 4626unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4627 unsigned long address, unsigned long end, pgprot_t newprot)
4628{
4629 struct mm_struct *mm = vma->vm_mm;
4630 unsigned long start = address;
4631 pte_t *ptep;
4632 pte_t pte;
a5516438 4633 struct hstate *h = hstate_vma(vma);
7da4d641 4634 unsigned long pages = 0;
dff11abe 4635 bool shared_pmd = false;
ac46d4f3 4636 struct mmu_notifier_range range;
dff11abe
MK
4637
4638 /*
4639 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4640 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
4641 * range if PMD sharing is possible.
4642 */
7269f999
JG
4643 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4644 0, vma, mm, start, end);
ac46d4f3 4645 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
4646
4647 BUG_ON(address >= end);
ac46d4f3 4648 flush_cache_range(vma, range.start, range.end);
8f860591 4649
ac46d4f3 4650 mmu_notifier_invalidate_range_start(&range);
83cde9e8 4651 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4652 for (; address < end; address += huge_page_size(h)) {
cb900f41 4653 spinlock_t *ptl;
7868a208 4654 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4655 if (!ptep)
4656 continue;
cb900f41 4657 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4658 if (huge_pmd_unshare(mm, &address, ptep)) {
4659 pages++;
cb900f41 4660 spin_unlock(ptl);
dff11abe 4661 shared_pmd = true;
39dde65c 4662 continue;
7da4d641 4663 }
a8bda28d
NH
4664 pte = huge_ptep_get(ptep);
4665 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4666 spin_unlock(ptl);
4667 continue;
4668 }
4669 if (unlikely(is_hugetlb_entry_migration(pte))) {
4670 swp_entry_t entry = pte_to_swp_entry(pte);
4671
4672 if (is_write_migration_entry(entry)) {
4673 pte_t newpte;
4674
4675 make_migration_entry_read(&entry);
4676 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4677 set_huge_swap_pte_at(mm, address, ptep,
4678 newpte, huge_page_size(h));
a8bda28d
NH
4679 pages++;
4680 }
4681 spin_unlock(ptl);
4682 continue;
4683 }
4684 if (!huge_pte_none(pte)) {
023bdd00
AK
4685 pte_t old_pte;
4686
4687 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4688 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 4689 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 4690 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 4691 pages++;
8f860591 4692 }
cb900f41 4693 spin_unlock(ptl);
8f860591 4694 }
d833352a 4695 /*
c8c06efa 4696 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4697 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4698 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
4699 * and that page table be reused and filled with junk. If we actually
4700 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 4701 */
dff11abe 4702 if (shared_pmd)
ac46d4f3 4703 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
4704 else
4705 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4706 /*
4707 * No need to call mmu_notifier_invalidate_range() we are downgrading
4708 * page table protection not changing it to point to a new page.
4709 *
ad56b738 4710 * See Documentation/vm/mmu_notifier.rst
0f10851e 4711 */
83cde9e8 4712 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 4713 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
4714
4715 return pages << h->order;
8f860591
ZY
4716}
4717
a1e78772
MG
4718int hugetlb_reserve_pages(struct inode *inode,
4719 long from, long to,
5a6fe125 4720 struct vm_area_struct *vma,
ca16d140 4721 vm_flags_t vm_flags)
e4e574b7 4722{
17c9d12e 4723 long ret, chg;
a5516438 4724 struct hstate *h = hstate_inode(inode);
90481622 4725 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4726 struct resv_map *resv_map;
1c5ecae3 4727 long gbl_reserve;
e4e574b7 4728
63489f8e
MK
4729 /* This should never happen */
4730 if (from > to) {
4731 VM_WARN(1, "%s called with a negative range\n", __func__);
4732 return -EINVAL;
4733 }
4734
17c9d12e
MG
4735 /*
4736 * Only apply hugepage reservation if asked. At fault time, an
4737 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4738 * without using reserves
17c9d12e 4739 */
ca16d140 4740 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4741 return 0;
4742
a1e78772
MG
4743 /*
4744 * Shared mappings base their reservation on the number of pages that
4745 * are already allocated on behalf of the file. Private mappings need
4746 * to reserve the full area even if read-only as mprotect() may be
4747 * called to make the mapping read-write. Assume !vma is a shm mapping
4748 */
9119a41e 4749 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
4750 /*
4751 * resv_map can not be NULL as hugetlb_reserve_pages is only
4752 * called for inodes for which resv_maps were created (see
4753 * hugetlbfs_get_inode).
4754 */
4e35f483 4755 resv_map = inode_resv_map(inode);
9119a41e 4756
1406ec9b 4757 chg = region_chg(resv_map, from, to);
9119a41e
JK
4758
4759 } else {
4760 resv_map = resv_map_alloc();
17c9d12e
MG
4761 if (!resv_map)
4762 return -ENOMEM;
4763
a1e78772 4764 chg = to - from;
84afd99b 4765
17c9d12e
MG
4766 set_vma_resv_map(vma, resv_map);
4767 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4768 }
4769
c50ac050
DH
4770 if (chg < 0) {
4771 ret = chg;
4772 goto out_err;
4773 }
8a630112 4774
1c5ecae3
MK
4775 /*
4776 * There must be enough pages in the subpool for the mapping. If
4777 * the subpool has a minimum size, there may be some global
4778 * reservations already in place (gbl_reserve).
4779 */
4780 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4781 if (gbl_reserve < 0) {
c50ac050
DH
4782 ret = -ENOSPC;
4783 goto out_err;
4784 }
5a6fe125
MG
4785
4786 /*
17c9d12e 4787 * Check enough hugepages are available for the reservation.
90481622 4788 * Hand the pages back to the subpool if there are not
5a6fe125 4789 */
1c5ecae3 4790 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4791 if (ret < 0) {
1c5ecae3
MK
4792 /* put back original number of pages, chg */
4793 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4794 goto out_err;
68842c9b 4795 }
17c9d12e
MG
4796
4797 /*
4798 * Account for the reservations made. Shared mappings record regions
4799 * that have reservations as they are shared by multiple VMAs.
4800 * When the last VMA disappears, the region map says how much
4801 * the reservation was and the page cache tells how much of
4802 * the reservation was consumed. Private mappings are per-VMA and
4803 * only the consumed reservations are tracked. When the VMA
4804 * disappears, the original reservation is the VMA size and the
4805 * consumed reservations are stored in the map. Hence, nothing
4806 * else has to be done for private mappings here
4807 */
33039678
MK
4808 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4809 long add = region_add(resv_map, from, to);
4810
4811 if (unlikely(chg > add)) {
4812 /*
4813 * pages in this range were added to the reserve
4814 * map between region_chg and region_add. This
4815 * indicates a race with alloc_huge_page. Adjust
4816 * the subpool and reserve counts modified above
4817 * based on the difference.
4818 */
4819 long rsv_adjust;
4820
4821 rsv_adjust = hugepage_subpool_put_pages(spool,
4822 chg - add);
4823 hugetlb_acct_memory(h, -rsv_adjust);
4824 }
4825 }
a43a8c39 4826 return 0;
c50ac050 4827out_err:
5e911373 4828 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4829 /* Don't call region_abort if region_chg failed */
4830 if (chg >= 0)
4831 region_abort(resv_map, from, to);
f031dd27
JK
4832 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4833 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4834 return ret;
a43a8c39
KC
4835}
4836
b5cec28d
MK
4837long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4838 long freed)
a43a8c39 4839{
a5516438 4840 struct hstate *h = hstate_inode(inode);
4e35f483 4841 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4842 long chg = 0;
90481622 4843 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4844 long gbl_reserve;
45c682a6 4845
f27a5136
MK
4846 /*
4847 * Since this routine can be called in the evict inode path for all
4848 * hugetlbfs inodes, resv_map could be NULL.
4849 */
b5cec28d
MK
4850 if (resv_map) {
4851 chg = region_del(resv_map, start, end);
4852 /*
4853 * region_del() can fail in the rare case where a region
4854 * must be split and another region descriptor can not be
4855 * allocated. If end == LONG_MAX, it will not fail.
4856 */
4857 if (chg < 0)
4858 return chg;
4859 }
4860
45c682a6 4861 spin_lock(&inode->i_lock);
e4c6f8be 4862 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4863 spin_unlock(&inode->i_lock);
4864
1c5ecae3
MK
4865 /*
4866 * If the subpool has a minimum size, the number of global
4867 * reservations to be released may be adjusted.
4868 */
4869 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4870 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4871
4872 return 0;
a43a8c39 4873}
93f70f90 4874
3212b535
SC
4875#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4876static unsigned long page_table_shareable(struct vm_area_struct *svma,
4877 struct vm_area_struct *vma,
4878 unsigned long addr, pgoff_t idx)
4879{
4880 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4881 svma->vm_start;
4882 unsigned long sbase = saddr & PUD_MASK;
4883 unsigned long s_end = sbase + PUD_SIZE;
4884
4885 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4886 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4887 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4888
4889 /*
4890 * match the virtual addresses, permission and the alignment of the
4891 * page table page.
4892 */
4893 if (pmd_index(addr) != pmd_index(saddr) ||
4894 vm_flags != svm_flags ||
4895 sbase < svma->vm_start || svma->vm_end < s_end)
4896 return 0;
4897
4898 return saddr;
4899}
4900
31aafb45 4901static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4902{
4903 unsigned long base = addr & PUD_MASK;
4904 unsigned long end = base + PUD_SIZE;
4905
4906 /*
4907 * check on proper vm_flags and page table alignment
4908 */
017b1660 4909 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
4910 return true;
4911 return false;
3212b535
SC
4912}
4913
017b1660
MK
4914/*
4915 * Determine if start,end range within vma could be mapped by shared pmd.
4916 * If yes, adjust start and end to cover range associated with possible
4917 * shared pmd mappings.
4918 */
4919void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4920 unsigned long *start, unsigned long *end)
4921{
ce202e4b
LX
4922 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
4923 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 4924
ce202e4b
LX
4925 /*
4926 * vma need span at least one aligned PUD size and the start,end range
4927 * must at least partialy within it.
4928 */
4929 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
4930 (*end <= v_start) || (*start >= v_end))
017b1660
MK
4931 return;
4932
6727dc93 4933 /* Extend the range to be PUD aligned for a worst case scenario */
ce202e4b
LX
4934 if (*start > v_start)
4935 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 4936
ce202e4b
LX
4937 if (*end < v_end)
4938 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
4939}
4940
3212b535
SC
4941/*
4942 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4943 * and returns the corresponding pte. While this is not necessary for the
4944 * !shared pmd case because we can allocate the pmd later as well, it makes the
ddeaab32
MK
4945 * code much cleaner. pmd allocation is essential for the shared case because
4946 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4947 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4948 * bad pmd for sharing.
3212b535
SC
4949 */
4950pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4951{
4952 struct vm_area_struct *vma = find_vma(mm, addr);
4953 struct address_space *mapping = vma->vm_file->f_mapping;
4954 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4955 vma->vm_pgoff;
4956 struct vm_area_struct *svma;
4957 unsigned long saddr;
4958 pte_t *spte = NULL;
4959 pte_t *pte;
cb900f41 4960 spinlock_t *ptl;
3212b535
SC
4961
4962 if (!vma_shareable(vma, addr))
4963 return (pte_t *)pmd_alloc(mm, pud, addr);
4964
6f21bb93 4965 i_mmap_lock_read(mapping);
3212b535
SC
4966 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4967 if (svma == vma)
4968 continue;
4969
4970 saddr = page_table_shareable(svma, vma, addr, idx);
4971 if (saddr) {
7868a208
PA
4972 spte = huge_pte_offset(svma->vm_mm, saddr,
4973 vma_mmu_pagesize(svma));
3212b535
SC
4974 if (spte) {
4975 get_page(virt_to_page(spte));
4976 break;
4977 }
4978 }
4979 }
4980
4981 if (!spte)
4982 goto out;
4983
8bea8052 4984 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4985 if (pud_none(*pud)) {
3212b535
SC
4986 pud_populate(mm, pud,
4987 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4988 mm_inc_nr_pmds(mm);
dc6c9a35 4989 } else {
3212b535 4990 put_page(virt_to_page(spte));
dc6c9a35 4991 }
cb900f41 4992 spin_unlock(ptl);
3212b535
SC
4993out:
4994 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6f21bb93 4995 i_mmap_unlock_read(mapping);
3212b535
SC
4996 return pte;
4997}
4998
4999/*
5000 * unmap huge page backed by shared pte.
5001 *
5002 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5003 * indicated by page_count > 1, unmap is achieved by clearing pud and
5004 * decrementing the ref count. If count == 1, the pte page is not shared.
5005 *
ddeaab32 5006 * called with page table lock held.
3212b535
SC
5007 *
5008 * returns: 1 successfully unmapped a shared pte page
5009 * 0 the underlying pte page is not shared, or it is the last user
5010 */
5011int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5012{
5013 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5014 p4d_t *p4d = p4d_offset(pgd, *addr);
5015 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
5016
5017 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5018 if (page_count(virt_to_page(ptep)) == 1)
5019 return 0;
5020
5021 pud_clear(pud);
5022 put_page(virt_to_page(ptep));
dc6c9a35 5023 mm_dec_nr_pmds(mm);
3212b535
SC
5024 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5025 return 1;
5026}
9e5fc74c
SC
5027#define want_pmd_share() (1)
5028#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5029pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5030{
5031 return NULL;
5032}
e81f2d22
ZZ
5033
5034int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5035{
5036 return 0;
5037}
017b1660
MK
5038
5039void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5040 unsigned long *start, unsigned long *end)
5041{
5042}
9e5fc74c 5043#define want_pmd_share() (0)
3212b535
SC
5044#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5045
9e5fc74c
SC
5046#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5047pte_t *huge_pte_alloc(struct mm_struct *mm,
5048 unsigned long addr, unsigned long sz)
5049{
5050 pgd_t *pgd;
c2febafc 5051 p4d_t *p4d;
9e5fc74c
SC
5052 pud_t *pud;
5053 pte_t *pte = NULL;
5054
5055 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5056 p4d = p4d_alloc(mm, pgd, addr);
5057 if (!p4d)
5058 return NULL;
c2febafc 5059 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5060 if (pud) {
5061 if (sz == PUD_SIZE) {
5062 pte = (pte_t *)pud;
5063 } else {
5064 BUG_ON(sz != PMD_SIZE);
5065 if (want_pmd_share() && pud_none(*pud))
5066 pte = huge_pmd_share(mm, addr, pud);
5067 else
5068 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5069 }
5070 }
4e666314 5071 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5072
5073 return pte;
5074}
5075
9b19df29
PA
5076/*
5077 * huge_pte_offset() - Walk the page table to resolve the hugepage
5078 * entry at address @addr
5079 *
5080 * Return: Pointer to page table or swap entry (PUD or PMD) for
5081 * address @addr, or NULL if a p*d_none() entry is encountered and the
5082 * size @sz doesn't match the hugepage size at this level of the page
5083 * table.
5084 */
7868a208
PA
5085pte_t *huge_pte_offset(struct mm_struct *mm,
5086 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5087{
5088 pgd_t *pgd;
c2febafc 5089 p4d_t *p4d;
37a6e55e
L
5090 pud_t *pud, pud_entry;
5091 pmd_t *pmd, pmd_entry;
9e5fc74c
SC
5092
5093 pgd = pgd_offset(mm, addr);
c2febafc
KS
5094 if (!pgd_present(*pgd))
5095 return NULL;
5096 p4d = p4d_offset(pgd, addr);
5097 if (!p4d_present(*p4d))
5098 return NULL;
9b19df29 5099
c2febafc 5100 pud = pud_offset(p4d, addr);
37a6e55e
L
5101 pud_entry = READ_ONCE(*pud);
5102 if (sz != PUD_SIZE && pud_none(pud_entry))
c2febafc 5103 return NULL;
9b19df29 5104 /* hugepage or swap? */
37a6e55e 5105 if (pud_huge(pud_entry) || !pud_present(pud_entry))
c2febafc 5106 return (pte_t *)pud;
9b19df29 5107
c2febafc 5108 pmd = pmd_offset(pud, addr);
37a6e55e
L
5109 pmd_entry = READ_ONCE(*pmd);
5110 if (sz != PMD_SIZE && pmd_none(pmd_entry))
9b19df29
PA
5111 return NULL;
5112 /* hugepage or swap? */
37a6e55e 5113 if (pmd_huge(pmd_entry) || !pmd_present(pmd_entry))
9b19df29
PA
5114 return (pte_t *)pmd;
5115
5116 return NULL;
9e5fc74c
SC
5117}
5118
61f77eda
NH
5119#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5120
5121/*
5122 * These functions are overwritable if your architecture needs its own
5123 * behavior.
5124 */
5125struct page * __weak
5126follow_huge_addr(struct mm_struct *mm, unsigned long address,
5127 int write)
5128{
5129 return ERR_PTR(-EINVAL);
5130}
5131
4dc71451
AK
5132struct page * __weak
5133follow_huge_pd(struct vm_area_struct *vma,
5134 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5135{
5136 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5137 return NULL;
5138}
5139
61f77eda 5140struct page * __weak
9e5fc74c 5141follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5142 pmd_t *pmd, int flags)
9e5fc74c 5143{
e66f17ff
NH
5144 struct page *page = NULL;
5145 spinlock_t *ptl;
c9d398fa 5146 pte_t pte;
e66f17ff
NH
5147retry:
5148 ptl = pmd_lockptr(mm, pmd);
5149 spin_lock(ptl);
5150 /*
5151 * make sure that the address range covered by this pmd is not
5152 * unmapped from other threads.
5153 */
5154 if (!pmd_huge(*pmd))
5155 goto out;
c9d398fa
NH
5156 pte = huge_ptep_get((pte_t *)pmd);
5157 if (pte_present(pte)) {
97534127 5158 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
5159 if (flags & FOLL_GET)
5160 get_page(page);
5161 } else {
c9d398fa 5162 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5163 spin_unlock(ptl);
5164 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5165 goto retry;
5166 }
5167 /*
5168 * hwpoisoned entry is treated as no_page_table in
5169 * follow_page_mask().
5170 */
5171 }
5172out:
5173 spin_unlock(ptl);
9e5fc74c
SC
5174 return page;
5175}
5176
61f77eda 5177struct page * __weak
9e5fc74c 5178follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5179 pud_t *pud, int flags)
9e5fc74c 5180{
e66f17ff
NH
5181 if (flags & FOLL_GET)
5182 return NULL;
9e5fc74c 5183
e66f17ff 5184 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5185}
5186
faaa5b62
AK
5187struct page * __weak
5188follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5189{
5190 if (flags & FOLL_GET)
5191 return NULL;
5192
5193 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5194}
5195
31caf665
NH
5196bool isolate_huge_page(struct page *page, struct list_head *list)
5197{
bcc54222
NH
5198 bool ret = true;
5199
31caf665 5200 spin_lock(&hugetlb_lock);
9b7a670c
MS
5201 if (!PageHeadHuge(page) || !page_huge_active(page) ||
5202 !get_page_unless_zero(page)) {
bcc54222
NH
5203 ret = false;
5204 goto unlock;
5205 }
5206 clear_page_huge_active(page);
31caf665 5207 list_move_tail(&page->lru, list);
bcc54222 5208unlock:
31caf665 5209 spin_unlock(&hugetlb_lock);
bcc54222 5210 return ret;
31caf665
NH
5211}
5212
5213void putback_active_hugepage(struct page *page)
5214{
309381fe 5215 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5216 spin_lock(&hugetlb_lock);
bcc54222 5217 set_page_huge_active(page);
31caf665
NH
5218 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5219 spin_unlock(&hugetlb_lock);
5220 put_page(page);
5221}
ab5ac90a
MH
5222
5223void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5224{
5225 struct hstate *h = page_hstate(oldpage);
5226
5227 hugetlb_cgroup_migrate(oldpage, newpage);
5228 set_page_owner_migrate_reason(newpage, reason);
5229
5230 /*
5231 * transfer temporary state of the new huge page. This is
5232 * reverse to other transitions because the newpage is going to
5233 * be final while the old one will be freed so it takes over
5234 * the temporary status.
5235 *
5236 * Also note that we have to transfer the per-node surplus state
5237 * here as well otherwise the global surplus count will not match
5238 * the per-node's.
5239 */
5240 if (PageHugeTemporary(newpage)) {
5241 int old_nid = page_to_nid(oldpage);
5242 int new_nid = page_to_nid(newpage);
5243
5244 SetPageHugeTemporary(oldpage);
5245 ClearPageHugeTemporary(newpage);
5246
5247 spin_lock(&hugetlb_lock);
5248 if (h->surplus_huge_pages_node[old_nid]) {
5249 h->surplus_huge_pages_node[old_nid]--;
5250 h->surplus_huge_pages_node[new_nid]++;
5251 }
5252 spin_unlock(&hugetlb_lock);
5253 }
5254}