]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
btrfs: handle btrfs_record_root_in_trans failure in btrfs_rename_exchange
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
1a1aad8a 42#include <linux/userfaultfd_k.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
1da177e4 45
c3f38a38 46int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 49
dbda8fea 50#ifdef CONFIG_CMA
cf11e85f 51static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
52#endif
53static unsigned long hugetlb_cma_size __initdata;
cf11e85f 54
641844f5
NH
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 60
53ba51d2
JT
61__initdata LIST_HEAD(huge_boot_pages);
62
e5ff2159
AK
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 66static bool __initdata parsed_valid_hugepagesz = true;
282f4214 67static bool __initdata parsed_default_hugepagesz;
e5ff2159 68
3935baa9 69/*
31caf665
NH
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
3935baa9 72 */
c3f38a38 73DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 74
8382d914
DB
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
c672c7f2 80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 81
7ca02d0a
MK
82/* Forward declaration */
83static int hugetlb_acct_memory(struct hstate *h, long delta);
84
1d88433b 85static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 86{
1d88433b
ML
87 if (spool->count)
88 return false;
89 if (spool->max_hpages != -1)
90 return spool->used_hpages == 0;
91 if (spool->min_hpages != -1)
92 return spool->rsv_hpages == spool->min_hpages;
93
94 return true;
95}
90481622 96
1d88433b
ML
97static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98{
90481622
DG
99 spin_unlock(&spool->lock);
100
101 /* If no pages are used, and no other handles to the subpool
7c8de358 102 * remain, give up any reservations based on minimum size and
7ca02d0a 103 * free the subpool */
1d88433b 104 if (subpool_is_free(spool)) {
7ca02d0a
MK
105 if (spool->min_hpages != -1)
106 hugetlb_acct_memory(spool->hstate,
107 -spool->min_hpages);
90481622 108 kfree(spool);
7ca02d0a 109 }
90481622
DG
110}
111
7ca02d0a
MK
112struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113 long min_hpages)
90481622
DG
114{
115 struct hugepage_subpool *spool;
116
c6a91820 117 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
118 if (!spool)
119 return NULL;
120
121 spin_lock_init(&spool->lock);
122 spool->count = 1;
7ca02d0a
MK
123 spool->max_hpages = max_hpages;
124 spool->hstate = h;
125 spool->min_hpages = min_hpages;
126
127 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128 kfree(spool);
129 return NULL;
130 }
131 spool->rsv_hpages = min_hpages;
90481622
DG
132
133 return spool;
134}
135
136void hugepage_put_subpool(struct hugepage_subpool *spool)
137{
138 spin_lock(&spool->lock);
139 BUG_ON(!spool->count);
140 spool->count--;
141 unlock_or_release_subpool(spool);
142}
143
1c5ecae3
MK
144/*
145 * Subpool accounting for allocating and reserving pages.
146 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 147 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
148 * global pools must be adjusted (upward). The returned value may
149 * only be different than the passed value (delta) in the case where
7c8de358 150 * a subpool minimum size must be maintained.
1c5ecae3
MK
151 */
152static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
153 long delta)
154{
1c5ecae3 155 long ret = delta;
90481622
DG
156
157 if (!spool)
1c5ecae3 158 return ret;
90481622
DG
159
160 spin_lock(&spool->lock);
1c5ecae3
MK
161
162 if (spool->max_hpages != -1) { /* maximum size accounting */
163 if ((spool->used_hpages + delta) <= spool->max_hpages)
164 spool->used_hpages += delta;
165 else {
166 ret = -ENOMEM;
167 goto unlock_ret;
168 }
90481622 169 }
90481622 170
09a95e29
MK
171 /* minimum size accounting */
172 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
173 if (delta > spool->rsv_hpages) {
174 /*
175 * Asking for more reserves than those already taken on
176 * behalf of subpool. Return difference.
177 */
178 ret = delta - spool->rsv_hpages;
179 spool->rsv_hpages = 0;
180 } else {
181 ret = 0; /* reserves already accounted for */
182 spool->rsv_hpages -= delta;
183 }
184 }
185
186unlock_ret:
187 spin_unlock(&spool->lock);
90481622
DG
188 return ret;
189}
190
1c5ecae3
MK
191/*
192 * Subpool accounting for freeing and unreserving pages.
193 * Return the number of global page reservations that must be dropped.
194 * The return value may only be different than the passed value (delta)
195 * in the case where a subpool minimum size must be maintained.
196 */
197static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
198 long delta)
199{
1c5ecae3
MK
200 long ret = delta;
201
90481622 202 if (!spool)
1c5ecae3 203 return delta;
90481622
DG
204
205 spin_lock(&spool->lock);
1c5ecae3
MK
206
207 if (spool->max_hpages != -1) /* maximum size accounting */
208 spool->used_hpages -= delta;
209
09a95e29
MK
210 /* minimum size accounting */
211 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
212 if (spool->rsv_hpages + delta <= spool->min_hpages)
213 ret = 0;
214 else
215 ret = spool->rsv_hpages + delta - spool->min_hpages;
216
217 spool->rsv_hpages += delta;
218 if (spool->rsv_hpages > spool->min_hpages)
219 spool->rsv_hpages = spool->min_hpages;
220 }
221
222 /*
223 * If hugetlbfs_put_super couldn't free spool due to an outstanding
224 * quota reference, free it now.
225 */
90481622 226 unlock_or_release_subpool(spool);
1c5ecae3
MK
227
228 return ret;
90481622
DG
229}
230
231static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232{
233 return HUGETLBFS_SB(inode->i_sb)->spool;
234}
235
236static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237{
496ad9aa 238 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
239}
240
0db9d74e
MA
241/* Helper that removes a struct file_region from the resv_map cache and returns
242 * it for use.
243 */
244static struct file_region *
245get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246{
247 struct file_region *nrg = NULL;
248
249 VM_BUG_ON(resv->region_cache_count <= 0);
250
251 resv->region_cache_count--;
252 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
253 list_del(&nrg->link);
254
255 nrg->from = from;
256 nrg->to = to;
257
258 return nrg;
259}
260
075a61d0
MA
261static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262 struct file_region *rg)
263{
264#ifdef CONFIG_CGROUP_HUGETLB
265 nrg->reservation_counter = rg->reservation_counter;
266 nrg->css = rg->css;
267 if (rg->css)
268 css_get(rg->css);
269#endif
270}
271
272/* Helper that records hugetlb_cgroup uncharge info. */
273static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274 struct hstate *h,
275 struct resv_map *resv,
276 struct file_region *nrg)
277{
278#ifdef CONFIG_CGROUP_HUGETLB
279 if (h_cg) {
280 nrg->reservation_counter =
281 &h_cg->rsvd_hugepage[hstate_index(h)];
282 nrg->css = &h_cg->css;
d85aecf2
ML
283 /*
284 * The caller will hold exactly one h_cg->css reference for the
285 * whole contiguous reservation region. But this area might be
286 * scattered when there are already some file_regions reside in
287 * it. As a result, many file_regions may share only one css
288 * reference. In order to ensure that one file_region must hold
289 * exactly one h_cg->css reference, we should do css_get for
290 * each file_region and leave the reference held by caller
291 * untouched.
292 */
293 css_get(&h_cg->css);
075a61d0
MA
294 if (!resv->pages_per_hpage)
295 resv->pages_per_hpage = pages_per_huge_page(h);
296 /* pages_per_hpage should be the same for all entries in
297 * a resv_map.
298 */
299 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
300 } else {
301 nrg->reservation_counter = NULL;
302 nrg->css = NULL;
303 }
304#endif
305}
306
d85aecf2
ML
307static void put_uncharge_info(struct file_region *rg)
308{
309#ifdef CONFIG_CGROUP_HUGETLB
310 if (rg->css)
311 css_put(rg->css);
312#endif
313}
314
a9b3f867
MA
315static bool has_same_uncharge_info(struct file_region *rg,
316 struct file_region *org)
317{
318#ifdef CONFIG_CGROUP_HUGETLB
319 return rg && org &&
320 rg->reservation_counter == org->reservation_counter &&
321 rg->css == org->css;
322
323#else
324 return true;
325#endif
326}
327
328static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
329{
330 struct file_region *nrg = NULL, *prg = NULL;
331
332 prg = list_prev_entry(rg, link);
333 if (&prg->link != &resv->regions && prg->to == rg->from &&
334 has_same_uncharge_info(prg, rg)) {
335 prg->to = rg->to;
336
337 list_del(&rg->link);
d85aecf2 338 put_uncharge_info(rg);
a9b3f867
MA
339 kfree(rg);
340
7db5e7b6 341 rg = prg;
a9b3f867
MA
342 }
343
344 nrg = list_next_entry(rg, link);
345 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
346 has_same_uncharge_info(nrg, rg)) {
347 nrg->from = rg->from;
348
349 list_del(&rg->link);
d85aecf2 350 put_uncharge_info(rg);
a9b3f867 351 kfree(rg);
a9b3f867
MA
352 }
353}
354
2103cf9c
PX
355static inline long
356hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
357 long to, struct hstate *h, struct hugetlb_cgroup *cg,
358 long *regions_needed)
359{
360 struct file_region *nrg;
361
362 if (!regions_needed) {
363 nrg = get_file_region_entry_from_cache(map, from, to);
364 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
365 list_add(&nrg->link, rg->link.prev);
366 coalesce_file_region(map, nrg);
367 } else
368 *regions_needed += 1;
369
370 return to - from;
371}
372
972a3da3
WY
373/*
374 * Must be called with resv->lock held.
375 *
376 * Calling this with regions_needed != NULL will count the number of pages
377 * to be added but will not modify the linked list. And regions_needed will
378 * indicate the number of file_regions needed in the cache to carry out to add
379 * the regions for this range.
d75c6af9
MA
380 */
381static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 382 struct hugetlb_cgroup *h_cg,
972a3da3 383 struct hstate *h, long *regions_needed)
d75c6af9 384{
0db9d74e 385 long add = 0;
d75c6af9 386 struct list_head *head = &resv->regions;
0db9d74e 387 long last_accounted_offset = f;
2103cf9c 388 struct file_region *rg = NULL, *trg = NULL;
d75c6af9 389
0db9d74e
MA
390 if (regions_needed)
391 *regions_needed = 0;
d75c6af9 392
0db9d74e
MA
393 /* In this loop, we essentially handle an entry for the range
394 * [last_accounted_offset, rg->from), at every iteration, with some
395 * bounds checking.
396 */
397 list_for_each_entry_safe(rg, trg, head, link) {
398 /* Skip irrelevant regions that start before our range. */
399 if (rg->from < f) {
400 /* If this region ends after the last accounted offset,
401 * then we need to update last_accounted_offset.
402 */
403 if (rg->to > last_accounted_offset)
404 last_accounted_offset = rg->to;
405 continue;
406 }
d75c6af9 407
0db9d74e
MA
408 /* When we find a region that starts beyond our range, we've
409 * finished.
410 */
ca7e0457 411 if (rg->from >= t)
d75c6af9
MA
412 break;
413
0db9d74e
MA
414 /* Add an entry for last_accounted_offset -> rg->from, and
415 * update last_accounted_offset.
416 */
2103cf9c
PX
417 if (rg->from > last_accounted_offset)
418 add += hugetlb_resv_map_add(resv, rg,
419 last_accounted_offset,
420 rg->from, h, h_cg,
421 regions_needed);
0db9d74e
MA
422
423 last_accounted_offset = rg->to;
424 }
425
426 /* Handle the case where our range extends beyond
427 * last_accounted_offset.
428 */
2103cf9c
PX
429 if (last_accounted_offset < t)
430 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
431 t, h, h_cg, regions_needed);
0db9d74e
MA
432
433 VM_BUG_ON(add < 0);
434 return add;
435}
436
437/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
438 */
439static int allocate_file_region_entries(struct resv_map *resv,
440 int regions_needed)
441 __must_hold(&resv->lock)
442{
443 struct list_head allocated_regions;
444 int to_allocate = 0, i = 0;
445 struct file_region *trg = NULL, *rg = NULL;
446
447 VM_BUG_ON(regions_needed < 0);
448
449 INIT_LIST_HEAD(&allocated_regions);
450
451 /*
452 * Check for sufficient descriptors in the cache to accommodate
453 * the number of in progress add operations plus regions_needed.
454 *
455 * This is a while loop because when we drop the lock, some other call
456 * to region_add or region_del may have consumed some region_entries,
457 * so we keep looping here until we finally have enough entries for
458 * (adds_in_progress + regions_needed).
459 */
460 while (resv->region_cache_count <
461 (resv->adds_in_progress + regions_needed)) {
462 to_allocate = resv->adds_in_progress + regions_needed -
463 resv->region_cache_count;
464
465 /* At this point, we should have enough entries in the cache
466 * for all the existings adds_in_progress. We should only be
467 * needing to allocate for regions_needed.
d75c6af9 468 */
0db9d74e
MA
469 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
470
471 spin_unlock(&resv->lock);
472 for (i = 0; i < to_allocate; i++) {
473 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
474 if (!trg)
475 goto out_of_memory;
476 list_add(&trg->link, &allocated_regions);
d75c6af9 477 }
d75c6af9 478
0db9d74e
MA
479 spin_lock(&resv->lock);
480
d3ec7b6e
WY
481 list_splice(&allocated_regions, &resv->region_cache);
482 resv->region_cache_count += to_allocate;
d75c6af9
MA
483 }
484
0db9d74e 485 return 0;
d75c6af9 486
0db9d74e
MA
487out_of_memory:
488 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
489 list_del(&rg->link);
490 kfree(rg);
491 }
492 return -ENOMEM;
d75c6af9
MA
493}
494
1dd308a7
MK
495/*
496 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
497 * map. Regions will be taken from the cache to fill in this range.
498 * Sufficient regions should exist in the cache due to the previous
499 * call to region_chg with the same range, but in some cases the cache will not
500 * have sufficient entries due to races with other code doing region_add or
501 * region_del. The extra needed entries will be allocated.
cf3ad20b 502 *
0db9d74e
MA
503 * regions_needed is the out value provided by a previous call to region_chg.
504 *
505 * Return the number of new huge pages added to the map. This number is greater
506 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 507 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
508 * region_add of regions of length 1 never allocate file_regions and cannot
509 * fail; region_chg will always allocate at least 1 entry and a region_add for
510 * 1 page will only require at most 1 entry.
1dd308a7 511 */
0db9d74e 512static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
513 long in_regions_needed, struct hstate *h,
514 struct hugetlb_cgroup *h_cg)
96822904 515{
0db9d74e 516 long add = 0, actual_regions_needed = 0;
96822904 517
7b24d861 518 spin_lock(&resv->lock);
0db9d74e
MA
519retry:
520
521 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
522 add_reservation_in_range(resv, f, t, NULL, NULL,
523 &actual_regions_needed);
96822904 524
5e911373 525 /*
0db9d74e
MA
526 * Check for sufficient descriptors in the cache to accommodate
527 * this add operation. Note that actual_regions_needed may be greater
528 * than in_regions_needed, as the resv_map may have been modified since
529 * the region_chg call. In this case, we need to make sure that we
530 * allocate extra entries, such that we have enough for all the
531 * existing adds_in_progress, plus the excess needed for this
532 * operation.
5e911373 533 */
0db9d74e
MA
534 if (actual_regions_needed > in_regions_needed &&
535 resv->region_cache_count <
536 resv->adds_in_progress +
537 (actual_regions_needed - in_regions_needed)) {
538 /* region_add operation of range 1 should never need to
539 * allocate file_region entries.
540 */
541 VM_BUG_ON(t - f <= 1);
5e911373 542
0db9d74e
MA
543 if (allocate_file_region_entries(
544 resv, actual_regions_needed - in_regions_needed)) {
545 return -ENOMEM;
546 }
5e911373 547
0db9d74e 548 goto retry;
5e911373
MK
549 }
550
972a3da3 551 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
552
553 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 554
7b24d861 555 spin_unlock(&resv->lock);
cf3ad20b
MK
556 VM_BUG_ON(add < 0);
557 return add;
96822904
AW
558}
559
1dd308a7
MK
560/*
561 * Examine the existing reserve map and determine how many
562 * huge pages in the specified range [f, t) are NOT currently
563 * represented. This routine is called before a subsequent
564 * call to region_add that will actually modify the reserve
565 * map to add the specified range [f, t). region_chg does
566 * not change the number of huge pages represented by the
0db9d74e
MA
567 * map. A number of new file_region structures is added to the cache as a
568 * placeholder, for the subsequent region_add call to use. At least 1
569 * file_region structure is added.
570 *
571 * out_regions_needed is the number of regions added to the
572 * resv->adds_in_progress. This value needs to be provided to a follow up call
573 * to region_add or region_abort for proper accounting.
5e911373
MK
574 *
575 * Returns the number of huge pages that need to be added to the existing
576 * reservation map for the range [f, t). This number is greater or equal to
577 * zero. -ENOMEM is returned if a new file_region structure or cache entry
578 * is needed and can not be allocated.
1dd308a7 579 */
0db9d74e
MA
580static long region_chg(struct resv_map *resv, long f, long t,
581 long *out_regions_needed)
96822904 582{
96822904
AW
583 long chg = 0;
584
7b24d861 585 spin_lock(&resv->lock);
5e911373 586
972a3da3 587 /* Count how many hugepages in this range are NOT represented. */
075a61d0 588 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 589 out_regions_needed);
5e911373 590
0db9d74e
MA
591 if (*out_regions_needed == 0)
592 *out_regions_needed = 1;
5e911373 593
0db9d74e
MA
594 if (allocate_file_region_entries(resv, *out_regions_needed))
595 return -ENOMEM;
5e911373 596
0db9d74e 597 resv->adds_in_progress += *out_regions_needed;
7b24d861 598
7b24d861 599 spin_unlock(&resv->lock);
96822904
AW
600 return chg;
601}
602
5e911373
MK
603/*
604 * Abort the in progress add operation. The adds_in_progress field
605 * of the resv_map keeps track of the operations in progress between
606 * calls to region_chg and region_add. Operations are sometimes
607 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
608 * is called to decrement the adds_in_progress counter. regions_needed
609 * is the value returned by the region_chg call, it is used to decrement
610 * the adds_in_progress counter.
5e911373
MK
611 *
612 * NOTE: The range arguments [f, t) are not needed or used in this
613 * routine. They are kept to make reading the calling code easier as
614 * arguments will match the associated region_chg call.
615 */
0db9d74e
MA
616static void region_abort(struct resv_map *resv, long f, long t,
617 long regions_needed)
5e911373
MK
618{
619 spin_lock(&resv->lock);
620 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 621 resv->adds_in_progress -= regions_needed;
5e911373
MK
622 spin_unlock(&resv->lock);
623}
624
1dd308a7 625/*
feba16e2
MK
626 * Delete the specified range [f, t) from the reserve map. If the
627 * t parameter is LONG_MAX, this indicates that ALL regions after f
628 * should be deleted. Locate the regions which intersect [f, t)
629 * and either trim, delete or split the existing regions.
630 *
631 * Returns the number of huge pages deleted from the reserve map.
632 * In the normal case, the return value is zero or more. In the
633 * case where a region must be split, a new region descriptor must
634 * be allocated. If the allocation fails, -ENOMEM will be returned.
635 * NOTE: If the parameter t == LONG_MAX, then we will never split
636 * a region and possibly return -ENOMEM. Callers specifying
637 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 638 */
feba16e2 639static long region_del(struct resv_map *resv, long f, long t)
96822904 640{
1406ec9b 641 struct list_head *head = &resv->regions;
96822904 642 struct file_region *rg, *trg;
feba16e2
MK
643 struct file_region *nrg = NULL;
644 long del = 0;
96822904 645
feba16e2 646retry:
7b24d861 647 spin_lock(&resv->lock);
feba16e2 648 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
649 /*
650 * Skip regions before the range to be deleted. file_region
651 * ranges are normally of the form [from, to). However, there
652 * may be a "placeholder" entry in the map which is of the form
653 * (from, to) with from == to. Check for placeholder entries
654 * at the beginning of the range to be deleted.
655 */
656 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 657 continue;
dbe409e4 658
feba16e2 659 if (rg->from >= t)
96822904 660 break;
96822904 661
feba16e2
MK
662 if (f > rg->from && t < rg->to) { /* Must split region */
663 /*
664 * Check for an entry in the cache before dropping
665 * lock and attempting allocation.
666 */
667 if (!nrg &&
668 resv->region_cache_count > resv->adds_in_progress) {
669 nrg = list_first_entry(&resv->region_cache,
670 struct file_region,
671 link);
672 list_del(&nrg->link);
673 resv->region_cache_count--;
674 }
96822904 675
feba16e2
MK
676 if (!nrg) {
677 spin_unlock(&resv->lock);
678 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
679 if (!nrg)
680 return -ENOMEM;
681 goto retry;
682 }
683
684 del += t - f;
79aa925b 685 hugetlb_cgroup_uncharge_file_region(
d85aecf2 686 resv, rg, t - f, false);
feba16e2
MK
687
688 /* New entry for end of split region */
689 nrg->from = t;
690 nrg->to = rg->to;
075a61d0
MA
691
692 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
693
feba16e2
MK
694 INIT_LIST_HEAD(&nrg->link);
695
696 /* Original entry is trimmed */
697 rg->to = f;
698
699 list_add(&nrg->link, &rg->link);
700 nrg = NULL;
96822904 701 break;
feba16e2
MK
702 }
703
704 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
705 del += rg->to - rg->from;
075a61d0 706 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 707 rg->to - rg->from, true);
feba16e2
MK
708 list_del(&rg->link);
709 kfree(rg);
710 continue;
711 }
712
713 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 714 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 715 t - rg->from, false);
075a61d0 716
79aa925b
MK
717 del += t - rg->from;
718 rg->from = t;
719 } else { /* Trim end of region */
075a61d0 720 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 721 rg->to - f, false);
79aa925b
MK
722
723 del += rg->to - f;
724 rg->to = f;
feba16e2 725 }
96822904 726 }
7b24d861 727
7b24d861 728 spin_unlock(&resv->lock);
feba16e2
MK
729 kfree(nrg);
730 return del;
96822904
AW
731}
732
b5cec28d
MK
733/*
734 * A rare out of memory error was encountered which prevented removal of
735 * the reserve map region for a page. The huge page itself was free'ed
736 * and removed from the page cache. This routine will adjust the subpool
737 * usage count, and the global reserve count if needed. By incrementing
738 * these counts, the reserve map entry which could not be deleted will
739 * appear as a "reserved" entry instead of simply dangling with incorrect
740 * counts.
741 */
72e2936c 742void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
743{
744 struct hugepage_subpool *spool = subpool_inode(inode);
745 long rsv_adjust;
746
747 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 748 if (rsv_adjust) {
b5cec28d
MK
749 struct hstate *h = hstate_inode(inode);
750
751 hugetlb_acct_memory(h, 1);
752 }
753}
754
1dd308a7
MK
755/*
756 * Count and return the number of huge pages in the reserve map
757 * that intersect with the range [f, t).
758 */
1406ec9b 759static long region_count(struct resv_map *resv, long f, long t)
84afd99b 760{
1406ec9b 761 struct list_head *head = &resv->regions;
84afd99b
AW
762 struct file_region *rg;
763 long chg = 0;
764
7b24d861 765 spin_lock(&resv->lock);
84afd99b
AW
766 /* Locate each segment we overlap with, and count that overlap. */
767 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
768 long seg_from;
769 long seg_to;
84afd99b
AW
770
771 if (rg->to <= f)
772 continue;
773 if (rg->from >= t)
774 break;
775
776 seg_from = max(rg->from, f);
777 seg_to = min(rg->to, t);
778
779 chg += seg_to - seg_from;
780 }
7b24d861 781 spin_unlock(&resv->lock);
84afd99b
AW
782
783 return chg;
784}
785
e7c4b0bf
AW
786/*
787 * Convert the address within this vma to the page offset within
788 * the mapping, in pagecache page units; huge pages here.
789 */
a5516438
AK
790static pgoff_t vma_hugecache_offset(struct hstate *h,
791 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 792{
a5516438
AK
793 return ((address - vma->vm_start) >> huge_page_shift(h)) +
794 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
795}
796
0fe6e20b
NH
797pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
798 unsigned long address)
799{
800 return vma_hugecache_offset(hstate_vma(vma), vma, address);
801}
dee41079 802EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 803
08fba699
MG
804/*
805 * Return the size of the pages allocated when backing a VMA. In the majority
806 * cases this will be same size as used by the page table entries.
807 */
808unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
809{
05ea8860
DW
810 if (vma->vm_ops && vma->vm_ops->pagesize)
811 return vma->vm_ops->pagesize(vma);
812 return PAGE_SIZE;
08fba699 813}
f340ca0f 814EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 815
3340289d
MG
816/*
817 * Return the page size being used by the MMU to back a VMA. In the majority
818 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
819 * architectures where it differs, an architecture-specific 'strong'
820 * version of this symbol is required.
3340289d 821 */
09135cc5 822__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
823{
824 return vma_kernel_pagesize(vma);
825}
3340289d 826
84afd99b
AW
827/*
828 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
829 * bits of the reservation map pointer, which are always clear due to
830 * alignment.
831 */
832#define HPAGE_RESV_OWNER (1UL << 0)
833#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 834#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 835
a1e78772
MG
836/*
837 * These helpers are used to track how many pages are reserved for
838 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
839 * is guaranteed to have their future faults succeed.
840 *
841 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
842 * the reserve counters are updated with the hugetlb_lock held. It is safe
843 * to reset the VMA at fork() time as it is not in use yet and there is no
844 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
845 *
846 * The private mapping reservation is represented in a subtly different
847 * manner to a shared mapping. A shared mapping has a region map associated
848 * with the underlying file, this region map represents the backing file
849 * pages which have ever had a reservation assigned which this persists even
850 * after the page is instantiated. A private mapping has a region map
851 * associated with the original mmap which is attached to all VMAs which
852 * reference it, this region map represents those offsets which have consumed
853 * reservation ie. where pages have been instantiated.
a1e78772 854 */
e7c4b0bf
AW
855static unsigned long get_vma_private_data(struct vm_area_struct *vma)
856{
857 return (unsigned long)vma->vm_private_data;
858}
859
860static void set_vma_private_data(struct vm_area_struct *vma,
861 unsigned long value)
862{
863 vma->vm_private_data = (void *)value;
864}
865
e9fe92ae
MA
866static void
867resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
868 struct hugetlb_cgroup *h_cg,
869 struct hstate *h)
870{
871#ifdef CONFIG_CGROUP_HUGETLB
872 if (!h_cg || !h) {
873 resv_map->reservation_counter = NULL;
874 resv_map->pages_per_hpage = 0;
875 resv_map->css = NULL;
876 } else {
877 resv_map->reservation_counter =
878 &h_cg->rsvd_hugepage[hstate_index(h)];
879 resv_map->pages_per_hpage = pages_per_huge_page(h);
880 resv_map->css = &h_cg->css;
881 }
882#endif
883}
884
9119a41e 885struct resv_map *resv_map_alloc(void)
84afd99b
AW
886{
887 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
888 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
889
890 if (!resv_map || !rg) {
891 kfree(resv_map);
892 kfree(rg);
84afd99b 893 return NULL;
5e911373 894 }
84afd99b
AW
895
896 kref_init(&resv_map->refs);
7b24d861 897 spin_lock_init(&resv_map->lock);
84afd99b
AW
898 INIT_LIST_HEAD(&resv_map->regions);
899
5e911373 900 resv_map->adds_in_progress = 0;
e9fe92ae
MA
901 /*
902 * Initialize these to 0. On shared mappings, 0's here indicate these
903 * fields don't do cgroup accounting. On private mappings, these will be
904 * re-initialized to the proper values, to indicate that hugetlb cgroup
905 * reservations are to be un-charged from here.
906 */
907 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
908
909 INIT_LIST_HEAD(&resv_map->region_cache);
910 list_add(&rg->link, &resv_map->region_cache);
911 resv_map->region_cache_count = 1;
912
84afd99b
AW
913 return resv_map;
914}
915
9119a41e 916void resv_map_release(struct kref *ref)
84afd99b
AW
917{
918 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
919 struct list_head *head = &resv_map->region_cache;
920 struct file_region *rg, *trg;
84afd99b
AW
921
922 /* Clear out any active regions before we release the map. */
feba16e2 923 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
924
925 /* ... and any entries left in the cache */
926 list_for_each_entry_safe(rg, trg, head, link) {
927 list_del(&rg->link);
928 kfree(rg);
929 }
930
931 VM_BUG_ON(resv_map->adds_in_progress);
932
84afd99b
AW
933 kfree(resv_map);
934}
935
4e35f483
JK
936static inline struct resv_map *inode_resv_map(struct inode *inode)
937{
f27a5136
MK
938 /*
939 * At inode evict time, i_mapping may not point to the original
940 * address space within the inode. This original address space
941 * contains the pointer to the resv_map. So, always use the
942 * address space embedded within the inode.
943 * The VERY common case is inode->mapping == &inode->i_data but,
944 * this may not be true for device special inodes.
945 */
946 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
947}
948
84afd99b 949static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 950{
81d1b09c 951 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
952 if (vma->vm_flags & VM_MAYSHARE) {
953 struct address_space *mapping = vma->vm_file->f_mapping;
954 struct inode *inode = mapping->host;
955
956 return inode_resv_map(inode);
957
958 } else {
84afd99b
AW
959 return (struct resv_map *)(get_vma_private_data(vma) &
960 ~HPAGE_RESV_MASK);
4e35f483 961 }
a1e78772
MG
962}
963
84afd99b 964static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 965{
81d1b09c
SL
966 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
967 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 968
84afd99b
AW
969 set_vma_private_data(vma, (get_vma_private_data(vma) &
970 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
971}
972
973static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
974{
81d1b09c
SL
975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
977
978 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
979}
980
981static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
982{
81d1b09c 983 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
984
985 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
986}
987
04f2cbe3 988/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
989void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
990{
81d1b09c 991 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 992 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
993 vma->vm_private_data = (void *)0;
994}
995
996/* Returns true if the VMA has associated reserve pages */
559ec2f8 997static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 998{
af0ed73e
JK
999 if (vma->vm_flags & VM_NORESERVE) {
1000 /*
1001 * This address is already reserved by other process(chg == 0),
1002 * so, we should decrement reserved count. Without decrementing,
1003 * reserve count remains after releasing inode, because this
1004 * allocated page will go into page cache and is regarded as
1005 * coming from reserved pool in releasing step. Currently, we
1006 * don't have any other solution to deal with this situation
1007 * properly, so add work-around here.
1008 */
1009 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1010 return true;
af0ed73e 1011 else
559ec2f8 1012 return false;
af0ed73e 1013 }
a63884e9
JK
1014
1015 /* Shared mappings always use reserves */
1fb1b0e9
MK
1016 if (vma->vm_flags & VM_MAYSHARE) {
1017 /*
1018 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1019 * be a region map for all pages. The only situation where
1020 * there is no region map is if a hole was punched via
7c8de358 1021 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1022 * use. This situation is indicated if chg != 0.
1023 */
1024 if (chg)
1025 return false;
1026 else
1027 return true;
1028 }
a63884e9
JK
1029
1030 /*
1031 * Only the process that called mmap() has reserves for
1032 * private mappings.
1033 */
67961f9d
MK
1034 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1035 /*
1036 * Like the shared case above, a hole punch or truncate
1037 * could have been performed on the private mapping.
1038 * Examine the value of chg to determine if reserves
1039 * actually exist or were previously consumed.
1040 * Very Subtle - The value of chg comes from a previous
1041 * call to vma_needs_reserves(). The reserve map for
1042 * private mappings has different (opposite) semantics
1043 * than that of shared mappings. vma_needs_reserves()
1044 * has already taken this difference in semantics into
1045 * account. Therefore, the meaning of chg is the same
1046 * as in the shared case above. Code could easily be
1047 * combined, but keeping it separate draws attention to
1048 * subtle differences.
1049 */
1050 if (chg)
1051 return false;
1052 else
1053 return true;
1054 }
a63884e9 1055
559ec2f8 1056 return false;
a1e78772
MG
1057}
1058
a5516438 1059static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1060{
1061 int nid = page_to_nid(page);
0edaecfa 1062 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1063 h->free_huge_pages++;
1064 h->free_huge_pages_node[nid]++;
6c037149 1065 SetHPageFreed(page);
1da177e4
LT
1066}
1067
94310cbc 1068static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1069{
1070 struct page *page;
bbe88753
JK
1071 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1072
1073 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1074 if (nocma && is_migrate_cma_page(page))
1075 continue;
bf50bab2 1076
6664bfc8
WY
1077 if (PageHWPoison(page))
1078 continue;
1079
1080 list_move(&page->lru, &h->hugepage_activelist);
1081 set_page_refcounted(page);
6c037149 1082 ClearHPageFreed(page);
6664bfc8
WY
1083 h->free_huge_pages--;
1084 h->free_huge_pages_node[nid]--;
1085 return page;
bbe88753
JK
1086 }
1087
6664bfc8 1088 return NULL;
bf50bab2
NH
1089}
1090
3e59fcb0
MH
1091static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1092 nodemask_t *nmask)
94310cbc 1093{
3e59fcb0
MH
1094 unsigned int cpuset_mems_cookie;
1095 struct zonelist *zonelist;
1096 struct zone *zone;
1097 struct zoneref *z;
98fa15f3 1098 int node = NUMA_NO_NODE;
94310cbc 1099
3e59fcb0
MH
1100 zonelist = node_zonelist(nid, gfp_mask);
1101
1102retry_cpuset:
1103 cpuset_mems_cookie = read_mems_allowed_begin();
1104 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1105 struct page *page;
1106
1107 if (!cpuset_zone_allowed(zone, gfp_mask))
1108 continue;
1109 /*
1110 * no need to ask again on the same node. Pool is node rather than
1111 * zone aware
1112 */
1113 if (zone_to_nid(zone) == node)
1114 continue;
1115 node = zone_to_nid(zone);
94310cbc 1116
94310cbc
AK
1117 page = dequeue_huge_page_node_exact(h, node);
1118 if (page)
1119 return page;
1120 }
3e59fcb0
MH
1121 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1122 goto retry_cpuset;
1123
94310cbc
AK
1124 return NULL;
1125}
1126
a5516438
AK
1127static struct page *dequeue_huge_page_vma(struct hstate *h,
1128 struct vm_area_struct *vma,
af0ed73e
JK
1129 unsigned long address, int avoid_reserve,
1130 long chg)
1da177e4 1131{
3e59fcb0 1132 struct page *page;
480eccf9 1133 struct mempolicy *mpol;
04ec6264 1134 gfp_t gfp_mask;
3e59fcb0 1135 nodemask_t *nodemask;
04ec6264 1136 int nid;
1da177e4 1137
a1e78772
MG
1138 /*
1139 * A child process with MAP_PRIVATE mappings created by their parent
1140 * have no page reserves. This check ensures that reservations are
1141 * not "stolen". The child may still get SIGKILLed
1142 */
af0ed73e 1143 if (!vma_has_reserves(vma, chg) &&
a5516438 1144 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1145 goto err;
a1e78772 1146
04f2cbe3 1147 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1148 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1149 goto err;
04f2cbe3 1150
04ec6264
VB
1151 gfp_mask = htlb_alloc_mask(h);
1152 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1153 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1154 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1155 SetHPageRestoreReserve(page);
3e59fcb0 1156 h->resv_huge_pages--;
1da177e4 1157 }
cc9a6c87 1158
52cd3b07 1159 mpol_cond_put(mpol);
1da177e4 1160 return page;
cc9a6c87
MG
1161
1162err:
cc9a6c87 1163 return NULL;
1da177e4
LT
1164}
1165
1cac6f2c
LC
1166/*
1167 * common helper functions for hstate_next_node_to_{alloc|free}.
1168 * We may have allocated or freed a huge page based on a different
1169 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1170 * be outside of *nodes_allowed. Ensure that we use an allowed
1171 * node for alloc or free.
1172 */
1173static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1174{
0edaf86c 1175 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1176 VM_BUG_ON(nid >= MAX_NUMNODES);
1177
1178 return nid;
1179}
1180
1181static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1182{
1183 if (!node_isset(nid, *nodes_allowed))
1184 nid = next_node_allowed(nid, nodes_allowed);
1185 return nid;
1186}
1187
1188/*
1189 * returns the previously saved node ["this node"] from which to
1190 * allocate a persistent huge page for the pool and advance the
1191 * next node from which to allocate, handling wrap at end of node
1192 * mask.
1193 */
1194static int hstate_next_node_to_alloc(struct hstate *h,
1195 nodemask_t *nodes_allowed)
1196{
1197 int nid;
1198
1199 VM_BUG_ON(!nodes_allowed);
1200
1201 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1202 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1203
1204 return nid;
1205}
1206
1207/*
1208 * helper for free_pool_huge_page() - return the previously saved
1209 * node ["this node"] from which to free a huge page. Advance the
1210 * next node id whether or not we find a free huge page to free so
1211 * that the next attempt to free addresses the next node.
1212 */
1213static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1214{
1215 int nid;
1216
1217 VM_BUG_ON(!nodes_allowed);
1218
1219 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1220 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1221
1222 return nid;
1223}
1224
1225#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1226 for (nr_nodes = nodes_weight(*mask); \
1227 nr_nodes > 0 && \
1228 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1229 nr_nodes--)
1230
1231#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1232 for (nr_nodes = nodes_weight(*mask); \
1233 nr_nodes > 0 && \
1234 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1235 nr_nodes--)
1236
e1073d1e 1237#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1238static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1239 unsigned int order)
944d9fec
LC
1240{
1241 int i;
1242 int nr_pages = 1 << order;
1243 struct page *p = page + 1;
1244
c8cc708a 1245 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1246 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1247
944d9fec 1248 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1249 clear_compound_head(p);
944d9fec 1250 set_page_refcounted(p);
944d9fec
LC
1251 }
1252
1253 set_compound_order(page, 0);
ba9c1201 1254 page[1].compound_nr = 0;
944d9fec
LC
1255 __ClearPageHead(page);
1256}
1257
d00181b9 1258static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1259{
cf11e85f
RG
1260 /*
1261 * If the page isn't allocated using the cma allocator,
1262 * cma_release() returns false.
1263 */
dbda8fea
BS
1264#ifdef CONFIG_CMA
1265 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1266 return;
dbda8fea 1267#endif
cf11e85f 1268
944d9fec
LC
1269 free_contig_range(page_to_pfn(page), 1 << order);
1270}
1271
4eb0716e 1272#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1273static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1274 int nid, nodemask_t *nodemask)
944d9fec 1275{
5e27a2df 1276 unsigned long nr_pages = 1UL << huge_page_order(h);
953f064a
LX
1277 if (nid == NUMA_NO_NODE)
1278 nid = numa_mem_id();
944d9fec 1279
dbda8fea
BS
1280#ifdef CONFIG_CMA
1281 {
cf11e85f
RG
1282 struct page *page;
1283 int node;
1284
953f064a
LX
1285 if (hugetlb_cma[nid]) {
1286 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1287 huge_page_order(h), true);
cf11e85f
RG
1288 if (page)
1289 return page;
1290 }
953f064a
LX
1291
1292 if (!(gfp_mask & __GFP_THISNODE)) {
1293 for_each_node_mask(node, *nodemask) {
1294 if (node == nid || !hugetlb_cma[node])
1295 continue;
1296
1297 page = cma_alloc(hugetlb_cma[node], nr_pages,
1298 huge_page_order(h), true);
1299 if (page)
1300 return page;
1301 }
1302 }
cf11e85f 1303 }
dbda8fea 1304#endif
cf11e85f 1305
5e27a2df 1306 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1307}
1308
1309static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1310static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1311#else /* !CONFIG_CONTIG_ALLOC */
1312static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1313 int nid, nodemask_t *nodemask)
1314{
1315 return NULL;
1316}
1317#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1318
e1073d1e 1319#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1320static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1321 int nid, nodemask_t *nodemask)
1322{
1323 return NULL;
1324}
d00181b9 1325static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1326static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1327 unsigned int order) { }
944d9fec
LC
1328#endif
1329
a5516438 1330static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1331{
1332 int i;
dbfee5ae 1333 struct page *subpage = page;
a5516438 1334
4eb0716e 1335 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1336 return;
18229df5 1337
a5516438
AK
1338 h->nr_huge_pages--;
1339 h->nr_huge_pages_node[page_to_nid(page)]--;
dbfee5ae
MK
1340 for (i = 0; i < pages_per_huge_page(h);
1341 i++, subpage = mem_map_next(subpage, page, i)) {
1342 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1343 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1344 1 << PG_active | 1 << PG_private |
1345 1 << PG_writeback);
6af2acb6 1346 }
309381fe 1347 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1adc4d41 1348 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
f1e61557 1349 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1350 set_page_refcounted(page);
944d9fec 1351 if (hstate_is_gigantic(h)) {
cf11e85f
RG
1352 /*
1353 * Temporarily drop the hugetlb_lock, because
1354 * we might block in free_gigantic_page().
1355 */
1356 spin_unlock(&hugetlb_lock);
944d9fec
LC
1357 destroy_compound_gigantic_page(page, huge_page_order(h));
1358 free_gigantic_page(page, huge_page_order(h));
cf11e85f 1359 spin_lock(&hugetlb_lock);
944d9fec 1360 } else {
944d9fec
LC
1361 __free_pages(page, huge_page_order(h));
1362 }
6af2acb6
AL
1363}
1364
e5ff2159
AK
1365struct hstate *size_to_hstate(unsigned long size)
1366{
1367 struct hstate *h;
1368
1369 for_each_hstate(h) {
1370 if (huge_page_size(h) == size)
1371 return h;
1372 }
1373 return NULL;
1374}
1375
c77c0a8a 1376static void __free_huge_page(struct page *page)
27a85ef1 1377{
a5516438
AK
1378 /*
1379 * Can't pass hstate in here because it is called from the
1380 * compound page destructor.
1381 */
e5ff2159 1382 struct hstate *h = page_hstate(page);
7893d1d5 1383 int nid = page_to_nid(page);
d6995da3 1384 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1385 bool restore_reserve;
27a85ef1 1386
b4330afb
MK
1387 VM_BUG_ON_PAGE(page_count(page), page);
1388 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1389
d6995da3 1390 hugetlb_set_page_subpool(page, NULL);
8ace22bc 1391 page->mapping = NULL;
d6995da3
MK
1392 restore_reserve = HPageRestoreReserve(page);
1393 ClearHPageRestoreReserve(page);
27a85ef1 1394
1c5ecae3 1395 /*
d6995da3 1396 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1397 * reservation. If the page was associated with a subpool, there
1398 * would have been a page reserved in the subpool before allocation
1399 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1400 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1401 * remove the reserved page from the subpool.
1c5ecae3 1402 */
0919e1b6
MK
1403 if (!restore_reserve) {
1404 /*
1405 * A return code of zero implies that the subpool will be
1406 * under its minimum size if the reservation is not restored
1407 * after page is free. Therefore, force restore_reserve
1408 * operation.
1409 */
1410 if (hugepage_subpool_put_pages(spool, 1) == 0)
1411 restore_reserve = true;
1412 }
1c5ecae3 1413
27a85ef1 1414 spin_lock(&hugetlb_lock);
8f251a3d 1415 ClearHPageMigratable(page);
6d76dcf4
AK
1416 hugetlb_cgroup_uncharge_page(hstate_index(h),
1417 pages_per_huge_page(h), page);
08cf9faf
MA
1418 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1419 pages_per_huge_page(h), page);
07443a85
JK
1420 if (restore_reserve)
1421 h->resv_huge_pages++;
1422
9157c311 1423 if (HPageTemporary(page)) {
ab5ac90a 1424 list_del(&page->lru);
9157c311 1425 ClearHPageTemporary(page);
ab5ac90a
MH
1426 update_and_free_page(h, page);
1427 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1428 /* remove the page from active list */
1429 list_del(&page->lru);
a5516438
AK
1430 update_and_free_page(h, page);
1431 h->surplus_huge_pages--;
1432 h->surplus_huge_pages_node[nid]--;
7893d1d5 1433 } else {
5d3a551c 1434 arch_clear_hugepage_flags(page);
a5516438 1435 enqueue_huge_page(h, page);
7893d1d5 1436 }
27a85ef1
DG
1437 spin_unlock(&hugetlb_lock);
1438}
1439
c77c0a8a
WL
1440/*
1441 * As free_huge_page() can be called from a non-task context, we have
1442 * to defer the actual freeing in a workqueue to prevent potential
1443 * hugetlb_lock deadlock.
1444 *
1445 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1446 * be freed and frees them one-by-one. As the page->mapping pointer is
1447 * going to be cleared in __free_huge_page() anyway, it is reused as the
1448 * llist_node structure of a lockless linked list of huge pages to be freed.
1449 */
1450static LLIST_HEAD(hpage_freelist);
1451
1452static void free_hpage_workfn(struct work_struct *work)
1453{
1454 struct llist_node *node;
1455 struct page *page;
1456
1457 node = llist_del_all(&hpage_freelist);
1458
1459 while (node) {
1460 page = container_of((struct address_space **)node,
1461 struct page, mapping);
1462 node = node->next;
1463 __free_huge_page(page);
1464 }
1465}
1466static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1467
1468void free_huge_page(struct page *page)
1469{
1470 /*
1471 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1472 */
1473 if (!in_task()) {
1474 /*
1475 * Only call schedule_work() if hpage_freelist is previously
1476 * empty. Otherwise, schedule_work() had been called but the
1477 * workfn hasn't retrieved the list yet.
1478 */
1479 if (llist_add((struct llist_node *)&page->mapping,
1480 &hpage_freelist))
1481 schedule_work(&free_hpage_work);
1482 return;
1483 }
1484
1485 __free_huge_page(page);
1486}
1487
a5516438 1488static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1489{
0edaecfa 1490 INIT_LIST_HEAD(&page->lru);
f1e61557 1491 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1492 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1493 set_hugetlb_cgroup(page, NULL);
1adc4d41 1494 set_hugetlb_cgroup_rsvd(page, NULL);
2f37511c 1495 spin_lock(&hugetlb_lock);
a5516438
AK
1496 h->nr_huge_pages++;
1497 h->nr_huge_pages_node[nid]++;
6c037149 1498 ClearHPageFreed(page);
b7ba30c6 1499 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1500}
1501
d00181b9 1502static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1503{
1504 int i;
1505 int nr_pages = 1 << order;
1506 struct page *p = page + 1;
1507
1508 /* we rely on prep_new_huge_page to set the destructor */
1509 set_compound_order(page, order);
ef5a22be 1510 __ClearPageReserved(page);
de09d31d 1511 __SetPageHead(page);
20a0307c 1512 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1513 /*
1514 * For gigantic hugepages allocated through bootmem at
1515 * boot, it's safer to be consistent with the not-gigantic
1516 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1517 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1518 * pages may get the reference counting wrong if they see
1519 * PG_reserved set on a tail page (despite the head page not
1520 * having PG_reserved set). Enforcing this consistency between
1521 * head and tail pages allows drivers to optimize away a check
1522 * on the head page when they need know if put_page() is needed
1523 * after get_user_pages().
1524 */
1525 __ClearPageReserved(p);
58a84aa9 1526 set_page_count(p, 0);
1d798ca3 1527 set_compound_head(p, page);
20a0307c 1528 }
b4330afb 1529 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1530 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1531}
1532
7795912c
AM
1533/*
1534 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1535 * transparent huge pages. See the PageTransHuge() documentation for more
1536 * details.
1537 */
20a0307c
WF
1538int PageHuge(struct page *page)
1539{
20a0307c
WF
1540 if (!PageCompound(page))
1541 return 0;
1542
1543 page = compound_head(page);
f1e61557 1544 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1545}
43131e14
NH
1546EXPORT_SYMBOL_GPL(PageHuge);
1547
27c73ae7
AA
1548/*
1549 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1550 * normal or transparent huge pages.
1551 */
1552int PageHeadHuge(struct page *page_head)
1553{
27c73ae7
AA
1554 if (!PageHead(page_head))
1555 return 0;
1556
d4af73e3 1557 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1558}
27c73ae7 1559
c0d0381a
MK
1560/*
1561 * Find and lock address space (mapping) in write mode.
1562 *
336bf30e
MK
1563 * Upon entry, the page is locked which means that page_mapping() is
1564 * stable. Due to locking order, we can only trylock_write. If we can
1565 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1566 */
1567struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1568{
336bf30e 1569 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1570
c0d0381a
MK
1571 if (!mapping)
1572 return mapping;
1573
c0d0381a
MK
1574 if (i_mmap_trylock_write(mapping))
1575 return mapping;
1576
336bf30e 1577 return NULL;
c0d0381a
MK
1578}
1579
13d60f4b
ZY
1580pgoff_t __basepage_index(struct page *page)
1581{
1582 struct page *page_head = compound_head(page);
1583 pgoff_t index = page_index(page_head);
1584 unsigned long compound_idx;
1585
1586 if (!PageHuge(page_head))
1587 return page_index(page);
1588
1589 if (compound_order(page_head) >= MAX_ORDER)
1590 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1591 else
1592 compound_idx = page - page_head;
1593
1594 return (index << compound_order(page_head)) + compound_idx;
1595}
1596
0c397dae 1597static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1598 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1599 nodemask_t *node_alloc_noretry)
1da177e4 1600{
af0fb9df 1601 int order = huge_page_order(h);
1da177e4 1602 struct page *page;
f60858f9 1603 bool alloc_try_hard = true;
f96efd58 1604
f60858f9
MK
1605 /*
1606 * By default we always try hard to allocate the page with
1607 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1608 * a loop (to adjust global huge page counts) and previous allocation
1609 * failed, do not continue to try hard on the same node. Use the
1610 * node_alloc_noretry bitmap to manage this state information.
1611 */
1612 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1613 alloc_try_hard = false;
1614 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1615 if (alloc_try_hard)
1616 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1617 if (nid == NUMA_NO_NODE)
1618 nid = numa_mem_id();
1619 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1620 if (page)
1621 __count_vm_event(HTLB_BUDDY_PGALLOC);
1622 else
1623 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1624
f60858f9
MK
1625 /*
1626 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1627 * indicates an overall state change. Clear bit so that we resume
1628 * normal 'try hard' allocations.
1629 */
1630 if (node_alloc_noretry && page && !alloc_try_hard)
1631 node_clear(nid, *node_alloc_noretry);
1632
1633 /*
1634 * If we tried hard to get a page but failed, set bit so that
1635 * subsequent attempts will not try as hard until there is an
1636 * overall state change.
1637 */
1638 if (node_alloc_noretry && !page && alloc_try_hard)
1639 node_set(nid, *node_alloc_noretry);
1640
63b4613c
NA
1641 return page;
1642}
1643
0c397dae
MH
1644/*
1645 * Common helper to allocate a fresh hugetlb page. All specific allocators
1646 * should use this function to get new hugetlb pages
1647 */
1648static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1649 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1650 nodemask_t *node_alloc_noretry)
0c397dae
MH
1651{
1652 struct page *page;
1653
1654 if (hstate_is_gigantic(h))
1655 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1656 else
1657 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1658 nid, nmask, node_alloc_noretry);
0c397dae
MH
1659 if (!page)
1660 return NULL;
1661
1662 if (hstate_is_gigantic(h))
1663 prep_compound_gigantic_page(page, huge_page_order(h));
1664 prep_new_huge_page(h, page, page_to_nid(page));
1665
1666 return page;
1667}
1668
af0fb9df
MH
1669/*
1670 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1671 * manner.
1672 */
f60858f9
MK
1673static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1674 nodemask_t *node_alloc_noretry)
b2261026
JK
1675{
1676 struct page *page;
1677 int nr_nodes, node;
af0fb9df 1678 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1679
1680 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1681 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1682 node_alloc_noretry);
af0fb9df 1683 if (page)
b2261026 1684 break;
b2261026
JK
1685 }
1686
af0fb9df
MH
1687 if (!page)
1688 return 0;
b2261026 1689
af0fb9df
MH
1690 put_page(page); /* free it into the hugepage allocator */
1691
1692 return 1;
b2261026
JK
1693}
1694
e8c5c824
LS
1695/*
1696 * Free huge page from pool from next node to free.
1697 * Attempt to keep persistent huge pages more or less
1698 * balanced over allowed nodes.
1699 * Called with hugetlb_lock locked.
1700 */
6ae11b27
LS
1701static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1702 bool acct_surplus)
e8c5c824 1703{
b2261026 1704 int nr_nodes, node;
e8c5c824
LS
1705 int ret = 0;
1706
b2261026 1707 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1708 /*
1709 * If we're returning unused surplus pages, only examine
1710 * nodes with surplus pages.
1711 */
b2261026
JK
1712 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1713 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1714 struct page *page =
b2261026 1715 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1716 struct page, lru);
1717 list_del(&page->lru);
1718 h->free_huge_pages--;
b2261026 1719 h->free_huge_pages_node[node]--;
685f3457
LS
1720 if (acct_surplus) {
1721 h->surplus_huge_pages--;
b2261026 1722 h->surplus_huge_pages_node[node]--;
685f3457 1723 }
e8c5c824
LS
1724 update_and_free_page(h, page);
1725 ret = 1;
9a76db09 1726 break;
e8c5c824 1727 }
b2261026 1728 }
e8c5c824
LS
1729
1730 return ret;
1731}
1732
c8721bbb
NH
1733/*
1734 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1735 * nothing for in-use hugepages and non-hugepages.
1736 * This function returns values like below:
1737 *
1738 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1739 * (allocated or reserved.)
1740 * 0: successfully dissolved free hugepages or the page is not a
1741 * hugepage (considered as already dissolved)
c8721bbb 1742 */
c3114a84 1743int dissolve_free_huge_page(struct page *page)
c8721bbb 1744{
6bc9b564 1745 int rc = -EBUSY;
082d5b6b 1746
7ffddd49 1747retry:
faf53def
NH
1748 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1749 if (!PageHuge(page))
1750 return 0;
1751
c8721bbb 1752 spin_lock(&hugetlb_lock);
faf53def
NH
1753 if (!PageHuge(page)) {
1754 rc = 0;
1755 goto out;
1756 }
1757
1758 if (!page_count(page)) {
2247bb33
GS
1759 struct page *head = compound_head(page);
1760 struct hstate *h = page_hstate(head);
1761 int nid = page_to_nid(head);
6bc9b564 1762 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1763 goto out;
7ffddd49
MS
1764
1765 /*
1766 * We should make sure that the page is already on the free list
1767 * when it is dissolved.
1768 */
6c037149 1769 if (unlikely(!HPageFreed(head))) {
7ffddd49
MS
1770 spin_unlock(&hugetlb_lock);
1771 cond_resched();
1772
1773 /*
1774 * Theoretically, we should return -EBUSY when we
1775 * encounter this race. In fact, we have a chance
1776 * to successfully dissolve the page if we do a
1777 * retry. Because the race window is quite small.
1778 * If we seize this opportunity, it is an optimization
1779 * for increasing the success rate of dissolving page.
1780 */
1781 goto retry;
1782 }
1783
c3114a84
AK
1784 /*
1785 * Move PageHWPoison flag from head page to the raw error page,
1786 * which makes any subpages rather than the error page reusable.
1787 */
1788 if (PageHWPoison(head) && page != head) {
1789 SetPageHWPoison(page);
1790 ClearPageHWPoison(head);
1791 }
2247bb33 1792 list_del(&head->lru);
c8721bbb
NH
1793 h->free_huge_pages--;
1794 h->free_huge_pages_node[nid]--;
c1470b33 1795 h->max_huge_pages--;
2247bb33 1796 update_and_free_page(h, head);
6bc9b564 1797 rc = 0;
c8721bbb 1798 }
082d5b6b 1799out:
c8721bbb 1800 spin_unlock(&hugetlb_lock);
082d5b6b 1801 return rc;
c8721bbb
NH
1802}
1803
1804/*
1805 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1806 * make specified memory blocks removable from the system.
2247bb33
GS
1807 * Note that this will dissolve a free gigantic hugepage completely, if any
1808 * part of it lies within the given range.
082d5b6b
GS
1809 * Also note that if dissolve_free_huge_page() returns with an error, all
1810 * free hugepages that were dissolved before that error are lost.
c8721bbb 1811 */
082d5b6b 1812int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1813{
c8721bbb 1814 unsigned long pfn;
eb03aa00 1815 struct page *page;
082d5b6b 1816 int rc = 0;
c8721bbb 1817
d0177639 1818 if (!hugepages_supported())
082d5b6b 1819 return rc;
d0177639 1820
eb03aa00
GS
1821 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1822 page = pfn_to_page(pfn);
faf53def
NH
1823 rc = dissolve_free_huge_page(page);
1824 if (rc)
1825 break;
eb03aa00 1826 }
082d5b6b
GS
1827
1828 return rc;
c8721bbb
NH
1829}
1830
ab5ac90a
MH
1831/*
1832 * Allocates a fresh surplus page from the page allocator.
1833 */
0c397dae 1834static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1835 int nid, nodemask_t *nmask)
7893d1d5 1836{
9980d744 1837 struct page *page = NULL;
7893d1d5 1838
bae7f4ae 1839 if (hstate_is_gigantic(h))
aa888a74
AK
1840 return NULL;
1841
d1c3fb1f 1842 spin_lock(&hugetlb_lock);
9980d744
MH
1843 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1844 goto out_unlock;
d1c3fb1f
NA
1845 spin_unlock(&hugetlb_lock);
1846
f60858f9 1847 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1848 if (!page)
0c397dae 1849 return NULL;
d1c3fb1f
NA
1850
1851 spin_lock(&hugetlb_lock);
9980d744
MH
1852 /*
1853 * We could have raced with the pool size change.
1854 * Double check that and simply deallocate the new page
1855 * if we would end up overcommiting the surpluses. Abuse
1856 * temporary page to workaround the nasty free_huge_page
1857 * codeflow
1858 */
1859 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 1860 SetHPageTemporary(page);
2bf753e6 1861 spin_unlock(&hugetlb_lock);
9980d744 1862 put_page(page);
2bf753e6 1863 return NULL;
9980d744 1864 } else {
9980d744 1865 h->surplus_huge_pages++;
4704dea3 1866 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1867 }
9980d744
MH
1868
1869out_unlock:
d1c3fb1f 1870 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1871
1872 return page;
1873}
1874
bbe88753 1875static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1876 int nid, nodemask_t *nmask)
ab5ac90a
MH
1877{
1878 struct page *page;
1879
1880 if (hstate_is_gigantic(h))
1881 return NULL;
1882
f60858f9 1883 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1884 if (!page)
1885 return NULL;
1886
1887 /*
1888 * We do not account these pages as surplus because they are only
1889 * temporary and will be released properly on the last reference
1890 */
9157c311 1891 SetHPageTemporary(page);
ab5ac90a
MH
1892
1893 return page;
1894}
1895
099730d6
DH
1896/*
1897 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1898 */
e0ec90ee 1899static
0c397dae 1900struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1901 struct vm_area_struct *vma, unsigned long addr)
1902{
aaf14e40
MH
1903 struct page *page;
1904 struct mempolicy *mpol;
1905 gfp_t gfp_mask = htlb_alloc_mask(h);
1906 int nid;
1907 nodemask_t *nodemask;
1908
1909 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1910 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1911 mpol_cond_put(mpol);
1912
1913 return page;
099730d6
DH
1914}
1915
ab5ac90a 1916/* page migration callback function */
3e59fcb0 1917struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1918 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1919{
4db9b2ef
MH
1920 spin_lock(&hugetlb_lock);
1921 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1922 struct page *page;
1923
1924 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1925 if (page) {
1926 spin_unlock(&hugetlb_lock);
1927 return page;
4db9b2ef
MH
1928 }
1929 }
1930 spin_unlock(&hugetlb_lock);
4db9b2ef 1931
0c397dae 1932 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1933}
1934
ebd63723 1935/* mempolicy aware migration callback */
389c8178
MH
1936struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1937 unsigned long address)
ebd63723
MH
1938{
1939 struct mempolicy *mpol;
1940 nodemask_t *nodemask;
1941 struct page *page;
ebd63723
MH
1942 gfp_t gfp_mask;
1943 int node;
1944
ebd63723
MH
1945 gfp_mask = htlb_alloc_mask(h);
1946 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 1947 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
1948 mpol_cond_put(mpol);
1949
1950 return page;
1951}
1952
e4e574b7 1953/*
25985edc 1954 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1955 * of size 'delta'.
1956 */
0a4f3d1b 1957static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 1958 __must_hold(&hugetlb_lock)
e4e574b7
AL
1959{
1960 struct list_head surplus_list;
1961 struct page *page, *tmp;
0a4f3d1b
LX
1962 int ret;
1963 long i;
1964 long needed, allocated;
28073b02 1965 bool alloc_ok = true;
e4e574b7 1966
a5516438 1967 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1968 if (needed <= 0) {
a5516438 1969 h->resv_huge_pages += delta;
e4e574b7 1970 return 0;
ac09b3a1 1971 }
e4e574b7
AL
1972
1973 allocated = 0;
1974 INIT_LIST_HEAD(&surplus_list);
1975
1976 ret = -ENOMEM;
1977retry:
1978 spin_unlock(&hugetlb_lock);
1979 for (i = 0; i < needed; i++) {
0c397dae 1980 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1981 NUMA_NO_NODE, NULL);
28073b02
HD
1982 if (!page) {
1983 alloc_ok = false;
1984 break;
1985 }
e4e574b7 1986 list_add(&page->lru, &surplus_list);
69ed779a 1987 cond_resched();
e4e574b7 1988 }
28073b02 1989 allocated += i;
e4e574b7
AL
1990
1991 /*
1992 * After retaking hugetlb_lock, we need to recalculate 'needed'
1993 * because either resv_huge_pages or free_huge_pages may have changed.
1994 */
1995 spin_lock(&hugetlb_lock);
a5516438
AK
1996 needed = (h->resv_huge_pages + delta) -
1997 (h->free_huge_pages + allocated);
28073b02
HD
1998 if (needed > 0) {
1999 if (alloc_ok)
2000 goto retry;
2001 /*
2002 * We were not able to allocate enough pages to
2003 * satisfy the entire reservation so we free what
2004 * we've allocated so far.
2005 */
2006 goto free;
2007 }
e4e574b7
AL
2008 /*
2009 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2010 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2011 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2012 * allocator. Commit the entire reservation here to prevent another
2013 * process from stealing the pages as they are added to the pool but
2014 * before they are reserved.
e4e574b7
AL
2015 */
2016 needed += allocated;
a5516438 2017 h->resv_huge_pages += delta;
e4e574b7 2018 ret = 0;
a9869b83 2019
19fc3f0a 2020 /* Free the needed pages to the hugetlb pool */
e4e574b7 2021 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
e558464b
MS
2022 int zeroed;
2023
19fc3f0a
AL
2024 if ((--needed) < 0)
2025 break;
a9869b83
NH
2026 /*
2027 * This page is now managed by the hugetlb allocator and has
2028 * no users -- drop the buddy allocator's reference.
2029 */
e558464b
MS
2030 zeroed = put_page_testzero(page);
2031 VM_BUG_ON_PAGE(!zeroed, page);
a5516438 2032 enqueue_huge_page(h, page);
19fc3f0a 2033 }
28073b02 2034free:
b0365c8d 2035 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
2036
2037 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2038 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2039 put_page(page);
a9869b83 2040 spin_lock(&hugetlb_lock);
e4e574b7
AL
2041
2042 return ret;
2043}
2044
2045/*
e5bbc8a6
MK
2046 * This routine has two main purposes:
2047 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2048 * in unused_resv_pages. This corresponds to the prior adjustments made
2049 * to the associated reservation map.
2050 * 2) Free any unused surplus pages that may have been allocated to satisfy
2051 * the reservation. As many as unused_resv_pages may be freed.
2052 *
2053 * Called with hugetlb_lock held. However, the lock could be dropped (and
2054 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2055 * we must make sure nobody else can claim pages we are in the process of
2056 * freeing. Do this by ensuring resv_huge_page always is greater than the
2057 * number of huge pages we plan to free when dropping the lock.
e4e574b7 2058 */
a5516438
AK
2059static void return_unused_surplus_pages(struct hstate *h,
2060 unsigned long unused_resv_pages)
e4e574b7 2061{
e4e574b7
AL
2062 unsigned long nr_pages;
2063
aa888a74 2064 /* Cannot return gigantic pages currently */
bae7f4ae 2065 if (hstate_is_gigantic(h))
e5bbc8a6 2066 goto out;
aa888a74 2067
e5bbc8a6
MK
2068 /*
2069 * Part (or even all) of the reservation could have been backed
2070 * by pre-allocated pages. Only free surplus pages.
2071 */
a5516438 2072 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2073
685f3457
LS
2074 /*
2075 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2076 * evenly across all nodes with memory. Iterate across these nodes
2077 * until we can no longer free unreserved surplus pages. This occurs
2078 * when the nodes with surplus pages have no free pages.
9e7ee400 2079 * free_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2080 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
2081 *
2082 * Note that we decrement resv_huge_pages as we free the pages. If
2083 * we drop the lock, resv_huge_pages will still be sufficiently large
2084 * to cover subsequent pages we may free.
685f3457
LS
2085 */
2086 while (nr_pages--) {
e5bbc8a6
MK
2087 h->resv_huge_pages--;
2088 unused_resv_pages--;
8cebfcd0 2089 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 2090 goto out;
7848a4bf 2091 cond_resched_lock(&hugetlb_lock);
e4e574b7 2092 }
e5bbc8a6
MK
2093
2094out:
2095 /* Fully uncommit the reservation */
2096 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
2097}
2098
5e911373 2099
c37f9fb1 2100/*
feba16e2 2101 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2102 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2103 *
2104 * vma_needs_reservation is called to determine if the huge page at addr
2105 * within the vma has an associated reservation. If a reservation is
2106 * needed, the value 1 is returned. The caller is then responsible for
2107 * managing the global reservation and subpool usage counts. After
2108 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2109 * to add the page to the reservation map. If the page allocation fails,
2110 * the reservation must be ended instead of committed. vma_end_reservation
2111 * is called in such cases.
cf3ad20b
MK
2112 *
2113 * In the normal case, vma_commit_reservation returns the same value
2114 * as the preceding vma_needs_reservation call. The only time this
2115 * is not the case is if a reserve map was changed between calls. It
2116 * is the responsibility of the caller to notice the difference and
2117 * take appropriate action.
96b96a96
MK
2118 *
2119 * vma_add_reservation is used in error paths where a reservation must
2120 * be restored when a newly allocated huge page must be freed. It is
2121 * to be called after calling vma_needs_reservation to determine if a
2122 * reservation exists.
c37f9fb1 2123 */
5e911373
MK
2124enum vma_resv_mode {
2125 VMA_NEEDS_RESV,
2126 VMA_COMMIT_RESV,
feba16e2 2127 VMA_END_RESV,
96b96a96 2128 VMA_ADD_RESV,
5e911373 2129};
cf3ad20b
MK
2130static long __vma_reservation_common(struct hstate *h,
2131 struct vm_area_struct *vma, unsigned long addr,
5e911373 2132 enum vma_resv_mode mode)
c37f9fb1 2133{
4e35f483
JK
2134 struct resv_map *resv;
2135 pgoff_t idx;
cf3ad20b 2136 long ret;
0db9d74e 2137 long dummy_out_regions_needed;
c37f9fb1 2138
4e35f483
JK
2139 resv = vma_resv_map(vma);
2140 if (!resv)
84afd99b 2141 return 1;
c37f9fb1 2142
4e35f483 2143 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2144 switch (mode) {
2145 case VMA_NEEDS_RESV:
0db9d74e
MA
2146 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2147 /* We assume that vma_reservation_* routines always operate on
2148 * 1 page, and that adding to resv map a 1 page entry can only
2149 * ever require 1 region.
2150 */
2151 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2152 break;
2153 case VMA_COMMIT_RESV:
075a61d0 2154 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2155 /* region_add calls of range 1 should never fail. */
2156 VM_BUG_ON(ret < 0);
5e911373 2157 break;
feba16e2 2158 case VMA_END_RESV:
0db9d74e 2159 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2160 ret = 0;
2161 break;
96b96a96 2162 case VMA_ADD_RESV:
0db9d74e 2163 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2164 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2165 /* region_add calls of range 1 should never fail. */
2166 VM_BUG_ON(ret < 0);
2167 } else {
2168 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2169 ret = region_del(resv, idx, idx + 1);
2170 }
2171 break;
5e911373
MK
2172 default:
2173 BUG();
2174 }
84afd99b 2175
4e35f483 2176 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2177 return ret;
67961f9d
MK
2178 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2179 /*
2180 * In most cases, reserves always exist for private mappings.
2181 * However, a file associated with mapping could have been
2182 * hole punched or truncated after reserves were consumed.
2183 * As subsequent fault on such a range will not use reserves.
2184 * Subtle - The reserve map for private mappings has the
2185 * opposite meaning than that of shared mappings. If NO
2186 * entry is in the reserve map, it means a reservation exists.
2187 * If an entry exists in the reserve map, it means the
2188 * reservation has already been consumed. As a result, the
2189 * return value of this routine is the opposite of the
2190 * value returned from reserve map manipulation routines above.
2191 */
2192 if (ret)
2193 return 0;
2194 else
2195 return 1;
2196 }
4e35f483 2197 else
cf3ad20b 2198 return ret < 0 ? ret : 0;
c37f9fb1 2199}
cf3ad20b
MK
2200
2201static long vma_needs_reservation(struct hstate *h,
a5516438 2202 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2203{
5e911373 2204 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2205}
84afd99b 2206
cf3ad20b
MK
2207static long vma_commit_reservation(struct hstate *h,
2208 struct vm_area_struct *vma, unsigned long addr)
2209{
5e911373
MK
2210 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2211}
2212
feba16e2 2213static void vma_end_reservation(struct hstate *h,
5e911373
MK
2214 struct vm_area_struct *vma, unsigned long addr)
2215{
feba16e2 2216 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2217}
2218
96b96a96
MK
2219static long vma_add_reservation(struct hstate *h,
2220 struct vm_area_struct *vma, unsigned long addr)
2221{
2222 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2223}
2224
2225/*
2226 * This routine is called to restore a reservation on error paths. In the
2227 * specific error paths, a huge page was allocated (via alloc_huge_page)
2228 * and is about to be freed. If a reservation for the page existed,
d6995da3
MK
2229 * alloc_huge_page would have consumed the reservation and set
2230 * HPageRestoreReserve in the newly allocated page. When the page is freed
2231 * via free_huge_page, the global reservation count will be incremented if
2232 * HPageRestoreReserve is set. However, free_huge_page can not adjust the
2233 * reserve map. Adjust the reserve map here to be consistent with global
2234 * reserve count adjustments to be made by free_huge_page.
96b96a96
MK
2235 */
2236static void restore_reserve_on_error(struct hstate *h,
2237 struct vm_area_struct *vma, unsigned long address,
2238 struct page *page)
2239{
d6995da3 2240 if (unlikely(HPageRestoreReserve(page))) {
96b96a96
MK
2241 long rc = vma_needs_reservation(h, vma, address);
2242
2243 if (unlikely(rc < 0)) {
2244 /*
2245 * Rare out of memory condition in reserve map
d6995da3 2246 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2247 * global reserve count will not be incremented
2248 * by free_huge_page. This will make it appear
2249 * as though the reservation for this page was
2250 * consumed. This may prevent the task from
2251 * faulting in the page at a later time. This
2252 * is better than inconsistent global huge page
2253 * accounting of reserve counts.
2254 */
d6995da3 2255 ClearHPageRestoreReserve(page);
96b96a96
MK
2256 } else if (rc) {
2257 rc = vma_add_reservation(h, vma, address);
2258 if (unlikely(rc < 0))
2259 /*
2260 * See above comment about rare out of
2261 * memory condition.
2262 */
d6995da3 2263 ClearHPageRestoreReserve(page);
96b96a96
MK
2264 } else
2265 vma_end_reservation(h, vma, address);
2266 }
2267}
2268
70c3547e 2269struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2270 unsigned long addr, int avoid_reserve)
1da177e4 2271{
90481622 2272 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2273 struct hstate *h = hstate_vma(vma);
348ea204 2274 struct page *page;
d85f69b0
MK
2275 long map_chg, map_commit;
2276 long gbl_chg;
6d76dcf4
AK
2277 int ret, idx;
2278 struct hugetlb_cgroup *h_cg;
08cf9faf 2279 bool deferred_reserve;
a1e78772 2280
6d76dcf4 2281 idx = hstate_index(h);
a1e78772 2282 /*
d85f69b0
MK
2283 * Examine the region/reserve map to determine if the process
2284 * has a reservation for the page to be allocated. A return
2285 * code of zero indicates a reservation exists (no change).
a1e78772 2286 */
d85f69b0
MK
2287 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2288 if (map_chg < 0)
76dcee75 2289 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2290
2291 /*
2292 * Processes that did not create the mapping will have no
2293 * reserves as indicated by the region/reserve map. Check
2294 * that the allocation will not exceed the subpool limit.
2295 * Allocations for MAP_NORESERVE mappings also need to be
2296 * checked against any subpool limit.
2297 */
2298 if (map_chg || avoid_reserve) {
2299 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2300 if (gbl_chg < 0) {
feba16e2 2301 vma_end_reservation(h, vma, addr);
76dcee75 2302 return ERR_PTR(-ENOSPC);
5e911373 2303 }
1da177e4 2304
d85f69b0
MK
2305 /*
2306 * Even though there was no reservation in the region/reserve
2307 * map, there could be reservations associated with the
2308 * subpool that can be used. This would be indicated if the
2309 * return value of hugepage_subpool_get_pages() is zero.
2310 * However, if avoid_reserve is specified we still avoid even
2311 * the subpool reservations.
2312 */
2313 if (avoid_reserve)
2314 gbl_chg = 1;
2315 }
2316
08cf9faf
MA
2317 /* If this allocation is not consuming a reservation, charge it now.
2318 */
2319 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2320 if (deferred_reserve) {
2321 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2322 idx, pages_per_huge_page(h), &h_cg);
2323 if (ret)
2324 goto out_subpool_put;
2325 }
2326
6d76dcf4 2327 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2328 if (ret)
08cf9faf 2329 goto out_uncharge_cgroup_reservation;
8f34af6f 2330
1da177e4 2331 spin_lock(&hugetlb_lock);
d85f69b0
MK
2332 /*
2333 * glb_chg is passed to indicate whether or not a page must be taken
2334 * from the global free pool (global change). gbl_chg == 0 indicates
2335 * a reservation exists for the allocation.
2336 */
2337 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2338 if (!page) {
94ae8ba7 2339 spin_unlock(&hugetlb_lock);
0c397dae 2340 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2341 if (!page)
2342 goto out_uncharge_cgroup;
a88c7695 2343 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2344 SetHPageRestoreReserve(page);
a88c7695
NH
2345 h->resv_huge_pages--;
2346 }
79dbb236 2347 spin_lock(&hugetlb_lock);
15a8d68e 2348 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2349 /* Fall through */
68842c9b 2350 }
81a6fcae 2351 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2352 /* If allocation is not consuming a reservation, also store the
2353 * hugetlb_cgroup pointer on the page.
2354 */
2355 if (deferred_reserve) {
2356 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2357 h_cg, page);
2358 }
2359
81a6fcae 2360 spin_unlock(&hugetlb_lock);
348ea204 2361
d6995da3 2362 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2363
d85f69b0
MK
2364 map_commit = vma_commit_reservation(h, vma, addr);
2365 if (unlikely(map_chg > map_commit)) {
33039678
MK
2366 /*
2367 * The page was added to the reservation map between
2368 * vma_needs_reservation and vma_commit_reservation.
2369 * This indicates a race with hugetlb_reserve_pages.
2370 * Adjust for the subpool count incremented above AND
2371 * in hugetlb_reserve_pages for the same page. Also,
2372 * the reservation count added in hugetlb_reserve_pages
2373 * no longer applies.
2374 */
2375 long rsv_adjust;
2376
2377 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2378 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2379 if (deferred_reserve)
2380 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2381 pages_per_huge_page(h), page);
33039678 2382 }
90d8b7e6 2383 return page;
8f34af6f
JZ
2384
2385out_uncharge_cgroup:
2386 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2387out_uncharge_cgroup_reservation:
2388 if (deferred_reserve)
2389 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2390 h_cg);
8f34af6f 2391out_subpool_put:
d85f69b0 2392 if (map_chg || avoid_reserve)
8f34af6f 2393 hugepage_subpool_put_pages(spool, 1);
feba16e2 2394 vma_end_reservation(h, vma, addr);
8f34af6f 2395 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2396}
2397
e24a1307
AK
2398int alloc_bootmem_huge_page(struct hstate *h)
2399 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2400int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2401{
2402 struct huge_bootmem_page *m;
b2261026 2403 int nr_nodes, node;
aa888a74 2404
b2261026 2405 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2406 void *addr;
2407
eb31d559 2408 addr = memblock_alloc_try_nid_raw(
8b89a116 2409 huge_page_size(h), huge_page_size(h),
97ad1087 2410 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2411 if (addr) {
2412 /*
2413 * Use the beginning of the huge page to store the
2414 * huge_bootmem_page struct (until gather_bootmem
2415 * puts them into the mem_map).
2416 */
2417 m = addr;
91f47662 2418 goto found;
aa888a74 2419 }
aa888a74
AK
2420 }
2421 return 0;
2422
2423found:
df994ead 2424 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2425 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2426 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2427 list_add(&m->list, &huge_boot_pages);
2428 m->hstate = h;
2429 return 1;
2430}
2431
d00181b9
KS
2432static void __init prep_compound_huge_page(struct page *page,
2433 unsigned int order)
18229df5
AW
2434{
2435 if (unlikely(order > (MAX_ORDER - 1)))
2436 prep_compound_gigantic_page(page, order);
2437 else
2438 prep_compound_page(page, order);
2439}
2440
aa888a74
AK
2441/* Put bootmem huge pages into the standard lists after mem_map is up */
2442static void __init gather_bootmem_prealloc(void)
2443{
2444 struct huge_bootmem_page *m;
2445
2446 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2447 struct page *page = virt_to_page(m);
aa888a74 2448 struct hstate *h = m->hstate;
ee8f248d 2449
aa888a74 2450 WARN_ON(page_count(page) != 1);
c78a7f36 2451 prep_compound_huge_page(page, huge_page_order(h));
ef5a22be 2452 WARN_ON(PageReserved(page));
aa888a74 2453 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2454 put_page(page); /* free it into the hugepage allocator */
2455
b0320c7b
RA
2456 /*
2457 * If we had gigantic hugepages allocated at boot time, we need
2458 * to restore the 'stolen' pages to totalram_pages in order to
2459 * fix confusing memory reports from free(1) and another
2460 * side-effects, like CommitLimit going negative.
2461 */
bae7f4ae 2462 if (hstate_is_gigantic(h))
c78a7f36 2463 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 2464 cond_resched();
aa888a74
AK
2465 }
2466}
2467
8faa8b07 2468static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2469{
2470 unsigned long i;
f60858f9
MK
2471 nodemask_t *node_alloc_noretry;
2472
2473 if (!hstate_is_gigantic(h)) {
2474 /*
2475 * Bit mask controlling how hard we retry per-node allocations.
2476 * Ignore errors as lower level routines can deal with
2477 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2478 * time, we are likely in bigger trouble.
2479 */
2480 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2481 GFP_KERNEL);
2482 } else {
2483 /* allocations done at boot time */
2484 node_alloc_noretry = NULL;
2485 }
2486
2487 /* bit mask controlling how hard we retry per-node allocations */
2488 if (node_alloc_noretry)
2489 nodes_clear(*node_alloc_noretry);
a5516438 2490
e5ff2159 2491 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2492 if (hstate_is_gigantic(h)) {
dbda8fea 2493 if (hugetlb_cma_size) {
cf11e85f 2494 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
7ecc9565 2495 goto free;
cf11e85f 2496 }
aa888a74
AK
2497 if (!alloc_bootmem_huge_page(h))
2498 break;
0c397dae 2499 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2500 &node_states[N_MEMORY],
2501 node_alloc_noretry))
1da177e4 2502 break;
69ed779a 2503 cond_resched();
1da177e4 2504 }
d715cf80
LH
2505 if (i < h->max_huge_pages) {
2506 char buf[32];
2507
c6247f72 2508 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2509 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2510 h->max_huge_pages, buf, i);
2511 h->max_huge_pages = i;
2512 }
7ecc9565 2513free:
f60858f9 2514 kfree(node_alloc_noretry);
e5ff2159
AK
2515}
2516
2517static void __init hugetlb_init_hstates(void)
2518{
2519 struct hstate *h;
2520
2521 for_each_hstate(h) {
641844f5
NH
2522 if (minimum_order > huge_page_order(h))
2523 minimum_order = huge_page_order(h);
2524
8faa8b07 2525 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2526 if (!hstate_is_gigantic(h))
8faa8b07 2527 hugetlb_hstate_alloc_pages(h);
e5ff2159 2528 }
641844f5 2529 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2530}
2531
2532static void __init report_hugepages(void)
2533{
2534 struct hstate *h;
2535
2536 for_each_hstate(h) {
4abd32db 2537 char buf[32];
c6247f72
MW
2538
2539 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2540 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2541 buf, h->free_huge_pages);
e5ff2159
AK
2542 }
2543}
2544
1da177e4 2545#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2546static void try_to_free_low(struct hstate *h, unsigned long count,
2547 nodemask_t *nodes_allowed)
1da177e4 2548{
4415cc8d
CL
2549 int i;
2550
bae7f4ae 2551 if (hstate_is_gigantic(h))
aa888a74
AK
2552 return;
2553
6ae11b27 2554 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2555 struct page *page, *next;
a5516438
AK
2556 struct list_head *freel = &h->hugepage_freelists[i];
2557 list_for_each_entry_safe(page, next, freel, lru) {
2558 if (count >= h->nr_huge_pages)
6b0c880d 2559 return;
1da177e4
LT
2560 if (PageHighMem(page))
2561 continue;
2562 list_del(&page->lru);
e5ff2159 2563 update_and_free_page(h, page);
a5516438
AK
2564 h->free_huge_pages--;
2565 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2566 }
2567 }
2568}
2569#else
6ae11b27
LS
2570static inline void try_to_free_low(struct hstate *h, unsigned long count,
2571 nodemask_t *nodes_allowed)
1da177e4
LT
2572{
2573}
2574#endif
2575
20a0307c
WF
2576/*
2577 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2578 * balanced by operating on them in a round-robin fashion.
2579 * Returns 1 if an adjustment was made.
2580 */
6ae11b27
LS
2581static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2582 int delta)
20a0307c 2583{
b2261026 2584 int nr_nodes, node;
20a0307c
WF
2585
2586 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2587
b2261026
JK
2588 if (delta < 0) {
2589 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2590 if (h->surplus_huge_pages_node[node])
2591 goto found;
e8c5c824 2592 }
b2261026
JK
2593 } else {
2594 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2595 if (h->surplus_huge_pages_node[node] <
2596 h->nr_huge_pages_node[node])
2597 goto found;
e8c5c824 2598 }
b2261026
JK
2599 }
2600 return 0;
20a0307c 2601
b2261026
JK
2602found:
2603 h->surplus_huge_pages += delta;
2604 h->surplus_huge_pages_node[node] += delta;
2605 return 1;
20a0307c
WF
2606}
2607
a5516438 2608#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2609static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2610 nodemask_t *nodes_allowed)
1da177e4 2611{
7893d1d5 2612 unsigned long min_count, ret;
f60858f9
MK
2613 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2614
2615 /*
2616 * Bit mask controlling how hard we retry per-node allocations.
2617 * If we can not allocate the bit mask, do not attempt to allocate
2618 * the requested huge pages.
2619 */
2620 if (node_alloc_noretry)
2621 nodes_clear(*node_alloc_noretry);
2622 else
2623 return -ENOMEM;
1da177e4 2624
4eb0716e
AG
2625 spin_lock(&hugetlb_lock);
2626
fd875dca
MK
2627 /*
2628 * Check for a node specific request.
2629 * Changing node specific huge page count may require a corresponding
2630 * change to the global count. In any case, the passed node mask
2631 * (nodes_allowed) will restrict alloc/free to the specified node.
2632 */
2633 if (nid != NUMA_NO_NODE) {
2634 unsigned long old_count = count;
2635
2636 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2637 /*
2638 * User may have specified a large count value which caused the
2639 * above calculation to overflow. In this case, they wanted
2640 * to allocate as many huge pages as possible. Set count to
2641 * largest possible value to align with their intention.
2642 */
2643 if (count < old_count)
2644 count = ULONG_MAX;
2645 }
2646
4eb0716e
AG
2647 /*
2648 * Gigantic pages runtime allocation depend on the capability for large
2649 * page range allocation.
2650 * If the system does not provide this feature, return an error when
2651 * the user tries to allocate gigantic pages but let the user free the
2652 * boottime allocated gigantic pages.
2653 */
2654 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2655 if (count > persistent_huge_pages(h)) {
2656 spin_unlock(&hugetlb_lock);
f60858f9 2657 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2658 return -EINVAL;
2659 }
2660 /* Fall through to decrease pool */
2661 }
aa888a74 2662
7893d1d5
AL
2663 /*
2664 * Increase the pool size
2665 * First take pages out of surplus state. Then make up the
2666 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2667 *
0c397dae 2668 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2669 * to convert a surplus huge page to a normal huge page. That is
2670 * not critical, though, it just means the overall size of the
2671 * pool might be one hugepage larger than it needs to be, but
2672 * within all the constraints specified by the sysctls.
7893d1d5 2673 */
a5516438 2674 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2675 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2676 break;
2677 }
2678
a5516438 2679 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2680 /*
2681 * If this allocation races such that we no longer need the
2682 * page, free_huge_page will handle it by freeing the page
2683 * and reducing the surplus.
2684 */
2685 spin_unlock(&hugetlb_lock);
649920c6
JH
2686
2687 /* yield cpu to avoid soft lockup */
2688 cond_resched();
2689
f60858f9
MK
2690 ret = alloc_pool_huge_page(h, nodes_allowed,
2691 node_alloc_noretry);
7893d1d5
AL
2692 spin_lock(&hugetlb_lock);
2693 if (!ret)
2694 goto out;
2695
536240f2
MG
2696 /* Bail for signals. Probably ctrl-c from user */
2697 if (signal_pending(current))
2698 goto out;
7893d1d5 2699 }
7893d1d5
AL
2700
2701 /*
2702 * Decrease the pool size
2703 * First return free pages to the buddy allocator (being careful
2704 * to keep enough around to satisfy reservations). Then place
2705 * pages into surplus state as needed so the pool will shrink
2706 * to the desired size as pages become free.
d1c3fb1f
NA
2707 *
2708 * By placing pages into the surplus state independent of the
2709 * overcommit value, we are allowing the surplus pool size to
2710 * exceed overcommit. There are few sane options here. Since
0c397dae 2711 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2712 * though, we'll note that we're not allowed to exceed surplus
2713 * and won't grow the pool anywhere else. Not until one of the
2714 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2715 */
a5516438 2716 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2717 min_count = max(count, min_count);
6ae11b27 2718 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2719 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2720 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2721 break;
55f67141 2722 cond_resched_lock(&hugetlb_lock);
1da177e4 2723 }
a5516438 2724 while (count < persistent_huge_pages(h)) {
6ae11b27 2725 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2726 break;
2727 }
2728out:
4eb0716e 2729 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2730 spin_unlock(&hugetlb_lock);
4eb0716e 2731
f60858f9
MK
2732 NODEMASK_FREE(node_alloc_noretry);
2733
4eb0716e 2734 return 0;
1da177e4
LT
2735}
2736
a3437870
NA
2737#define HSTATE_ATTR_RO(_name) \
2738 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2739
2740#define HSTATE_ATTR(_name) \
2741 static struct kobj_attribute _name##_attr = \
2742 __ATTR(_name, 0644, _name##_show, _name##_store)
2743
2744static struct kobject *hugepages_kobj;
2745static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2746
9a305230
LS
2747static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2748
2749static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2750{
2751 int i;
9a305230 2752
a3437870 2753 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2754 if (hstate_kobjs[i] == kobj) {
2755 if (nidp)
2756 *nidp = NUMA_NO_NODE;
a3437870 2757 return &hstates[i];
9a305230
LS
2758 }
2759
2760 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2761}
2762
06808b08 2763static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2764 struct kobj_attribute *attr, char *buf)
2765{
9a305230
LS
2766 struct hstate *h;
2767 unsigned long nr_huge_pages;
2768 int nid;
2769
2770 h = kobj_to_hstate(kobj, &nid);
2771 if (nid == NUMA_NO_NODE)
2772 nr_huge_pages = h->nr_huge_pages;
2773 else
2774 nr_huge_pages = h->nr_huge_pages_node[nid];
2775
ae7a927d 2776 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 2777}
adbe8726 2778
238d3c13
DR
2779static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2780 struct hstate *h, int nid,
2781 unsigned long count, size_t len)
a3437870
NA
2782{
2783 int err;
2d0adf7e 2784 nodemask_t nodes_allowed, *n_mask;
a3437870 2785
2d0adf7e
OS
2786 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2787 return -EINVAL;
adbe8726 2788
9a305230
LS
2789 if (nid == NUMA_NO_NODE) {
2790 /*
2791 * global hstate attribute
2792 */
2793 if (!(obey_mempolicy &&
2d0adf7e
OS
2794 init_nodemask_of_mempolicy(&nodes_allowed)))
2795 n_mask = &node_states[N_MEMORY];
2796 else
2797 n_mask = &nodes_allowed;
2798 } else {
9a305230 2799 /*
fd875dca
MK
2800 * Node specific request. count adjustment happens in
2801 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2802 */
2d0adf7e
OS
2803 init_nodemask_of_node(&nodes_allowed, nid);
2804 n_mask = &nodes_allowed;
fd875dca 2805 }
9a305230 2806
2d0adf7e 2807 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2808
4eb0716e 2809 return err ? err : len;
06808b08
LS
2810}
2811
238d3c13
DR
2812static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2813 struct kobject *kobj, const char *buf,
2814 size_t len)
2815{
2816 struct hstate *h;
2817 unsigned long count;
2818 int nid;
2819 int err;
2820
2821 err = kstrtoul(buf, 10, &count);
2822 if (err)
2823 return err;
2824
2825 h = kobj_to_hstate(kobj, &nid);
2826 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2827}
2828
06808b08
LS
2829static ssize_t nr_hugepages_show(struct kobject *kobj,
2830 struct kobj_attribute *attr, char *buf)
2831{
2832 return nr_hugepages_show_common(kobj, attr, buf);
2833}
2834
2835static ssize_t nr_hugepages_store(struct kobject *kobj,
2836 struct kobj_attribute *attr, const char *buf, size_t len)
2837{
238d3c13 2838 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2839}
2840HSTATE_ATTR(nr_hugepages);
2841
06808b08
LS
2842#ifdef CONFIG_NUMA
2843
2844/*
2845 * hstate attribute for optionally mempolicy-based constraint on persistent
2846 * huge page alloc/free.
2847 */
2848static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
2849 struct kobj_attribute *attr,
2850 char *buf)
06808b08
LS
2851{
2852 return nr_hugepages_show_common(kobj, attr, buf);
2853}
2854
2855static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2856 struct kobj_attribute *attr, const char *buf, size_t len)
2857{
238d3c13 2858 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2859}
2860HSTATE_ATTR(nr_hugepages_mempolicy);
2861#endif
2862
2863
a3437870
NA
2864static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2865 struct kobj_attribute *attr, char *buf)
2866{
9a305230 2867 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2868 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 2869}
adbe8726 2870
a3437870
NA
2871static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2872 struct kobj_attribute *attr, const char *buf, size_t count)
2873{
2874 int err;
2875 unsigned long input;
9a305230 2876 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2877
bae7f4ae 2878 if (hstate_is_gigantic(h))
adbe8726
EM
2879 return -EINVAL;
2880
3dbb95f7 2881 err = kstrtoul(buf, 10, &input);
a3437870 2882 if (err)
73ae31e5 2883 return err;
a3437870
NA
2884
2885 spin_lock(&hugetlb_lock);
2886 h->nr_overcommit_huge_pages = input;
2887 spin_unlock(&hugetlb_lock);
2888
2889 return count;
2890}
2891HSTATE_ATTR(nr_overcommit_hugepages);
2892
2893static ssize_t free_hugepages_show(struct kobject *kobj,
2894 struct kobj_attribute *attr, char *buf)
2895{
9a305230
LS
2896 struct hstate *h;
2897 unsigned long free_huge_pages;
2898 int nid;
2899
2900 h = kobj_to_hstate(kobj, &nid);
2901 if (nid == NUMA_NO_NODE)
2902 free_huge_pages = h->free_huge_pages;
2903 else
2904 free_huge_pages = h->free_huge_pages_node[nid];
2905
ae7a927d 2906 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
2907}
2908HSTATE_ATTR_RO(free_hugepages);
2909
2910static ssize_t resv_hugepages_show(struct kobject *kobj,
2911 struct kobj_attribute *attr, char *buf)
2912{
9a305230 2913 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2914 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
2915}
2916HSTATE_ATTR_RO(resv_hugepages);
2917
2918static ssize_t surplus_hugepages_show(struct kobject *kobj,
2919 struct kobj_attribute *attr, char *buf)
2920{
9a305230
LS
2921 struct hstate *h;
2922 unsigned long surplus_huge_pages;
2923 int nid;
2924
2925 h = kobj_to_hstate(kobj, &nid);
2926 if (nid == NUMA_NO_NODE)
2927 surplus_huge_pages = h->surplus_huge_pages;
2928 else
2929 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2930
ae7a927d 2931 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2932}
2933HSTATE_ATTR_RO(surplus_hugepages);
2934
2935static struct attribute *hstate_attrs[] = {
2936 &nr_hugepages_attr.attr,
2937 &nr_overcommit_hugepages_attr.attr,
2938 &free_hugepages_attr.attr,
2939 &resv_hugepages_attr.attr,
2940 &surplus_hugepages_attr.attr,
06808b08
LS
2941#ifdef CONFIG_NUMA
2942 &nr_hugepages_mempolicy_attr.attr,
2943#endif
a3437870
NA
2944 NULL,
2945};
2946
67e5ed96 2947static const struct attribute_group hstate_attr_group = {
a3437870
NA
2948 .attrs = hstate_attrs,
2949};
2950
094e9539
JM
2951static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2952 struct kobject **hstate_kobjs,
67e5ed96 2953 const struct attribute_group *hstate_attr_group)
a3437870
NA
2954{
2955 int retval;
972dc4de 2956 int hi = hstate_index(h);
a3437870 2957
9a305230
LS
2958 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2959 if (!hstate_kobjs[hi])
a3437870
NA
2960 return -ENOMEM;
2961
9a305230 2962 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 2963 if (retval) {
9a305230 2964 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
2965 hstate_kobjs[hi] = NULL;
2966 }
a3437870
NA
2967
2968 return retval;
2969}
2970
2971static void __init hugetlb_sysfs_init(void)
2972{
2973 struct hstate *h;
2974 int err;
2975
2976 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2977 if (!hugepages_kobj)
2978 return;
2979
2980 for_each_hstate(h) {
9a305230
LS
2981 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2982 hstate_kobjs, &hstate_attr_group);
a3437870 2983 if (err)
282f4214 2984 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
2985 }
2986}
2987
9a305230
LS
2988#ifdef CONFIG_NUMA
2989
2990/*
2991 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2992 * with node devices in node_devices[] using a parallel array. The array
2993 * index of a node device or _hstate == node id.
2994 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2995 * the base kernel, on the hugetlb module.
2996 */
2997struct node_hstate {
2998 struct kobject *hugepages_kobj;
2999 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3000};
b4e289a6 3001static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3002
3003/*
10fbcf4c 3004 * A subset of global hstate attributes for node devices
9a305230
LS
3005 */
3006static struct attribute *per_node_hstate_attrs[] = {
3007 &nr_hugepages_attr.attr,
3008 &free_hugepages_attr.attr,
3009 &surplus_hugepages_attr.attr,
3010 NULL,
3011};
3012
67e5ed96 3013static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3014 .attrs = per_node_hstate_attrs,
3015};
3016
3017/*
10fbcf4c 3018 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3019 * Returns node id via non-NULL nidp.
3020 */
3021static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3022{
3023 int nid;
3024
3025 for (nid = 0; nid < nr_node_ids; nid++) {
3026 struct node_hstate *nhs = &node_hstates[nid];
3027 int i;
3028 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3029 if (nhs->hstate_kobjs[i] == kobj) {
3030 if (nidp)
3031 *nidp = nid;
3032 return &hstates[i];
3033 }
3034 }
3035
3036 BUG();
3037 return NULL;
3038}
3039
3040/*
10fbcf4c 3041 * Unregister hstate attributes from a single node device.
9a305230
LS
3042 * No-op if no hstate attributes attached.
3043 */
3cd8b44f 3044static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3045{
3046 struct hstate *h;
10fbcf4c 3047 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3048
3049 if (!nhs->hugepages_kobj)
9b5e5d0f 3050 return; /* no hstate attributes */
9a305230 3051
972dc4de
AK
3052 for_each_hstate(h) {
3053 int idx = hstate_index(h);
3054 if (nhs->hstate_kobjs[idx]) {
3055 kobject_put(nhs->hstate_kobjs[idx]);
3056 nhs->hstate_kobjs[idx] = NULL;
9a305230 3057 }
972dc4de 3058 }
9a305230
LS
3059
3060 kobject_put(nhs->hugepages_kobj);
3061 nhs->hugepages_kobj = NULL;
3062}
3063
9a305230
LS
3064
3065/*
10fbcf4c 3066 * Register hstate attributes for a single node device.
9a305230
LS
3067 * No-op if attributes already registered.
3068 */
3cd8b44f 3069static void hugetlb_register_node(struct node *node)
9a305230
LS
3070{
3071 struct hstate *h;
10fbcf4c 3072 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3073 int err;
3074
3075 if (nhs->hugepages_kobj)
3076 return; /* already allocated */
3077
3078 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3079 &node->dev.kobj);
9a305230
LS
3080 if (!nhs->hugepages_kobj)
3081 return;
3082
3083 for_each_hstate(h) {
3084 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3085 nhs->hstate_kobjs,
3086 &per_node_hstate_attr_group);
3087 if (err) {
282f4214 3088 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3089 h->name, node->dev.id);
9a305230
LS
3090 hugetlb_unregister_node(node);
3091 break;
3092 }
3093 }
3094}
3095
3096/*
9b5e5d0f 3097 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3098 * devices of nodes that have memory. All on-line nodes should have
3099 * registered their associated device by this time.
9a305230 3100 */
7d9ca000 3101static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3102{
3103 int nid;
3104
8cebfcd0 3105 for_each_node_state(nid, N_MEMORY) {
8732794b 3106 struct node *node = node_devices[nid];
10fbcf4c 3107 if (node->dev.id == nid)
9a305230
LS
3108 hugetlb_register_node(node);
3109 }
3110
3111 /*
10fbcf4c 3112 * Let the node device driver know we're here so it can
9a305230
LS
3113 * [un]register hstate attributes on node hotplug.
3114 */
3115 register_hugetlbfs_with_node(hugetlb_register_node,
3116 hugetlb_unregister_node);
3117}
3118#else /* !CONFIG_NUMA */
3119
3120static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3121{
3122 BUG();
3123 if (nidp)
3124 *nidp = -1;
3125 return NULL;
3126}
3127
9a305230
LS
3128static void hugetlb_register_all_nodes(void) { }
3129
3130#endif
3131
a3437870
NA
3132static int __init hugetlb_init(void)
3133{
8382d914
DB
3134 int i;
3135
d6995da3
MK
3136 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3137 __NR_HPAGEFLAGS);
3138
c2833a5b
MK
3139 if (!hugepages_supported()) {
3140 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3141 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3142 return 0;
c2833a5b 3143 }
a3437870 3144
282f4214
MK
3145 /*
3146 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3147 * architectures depend on setup being done here.
3148 */
3149 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3150 if (!parsed_default_hugepagesz) {
3151 /*
3152 * If we did not parse a default huge page size, set
3153 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3154 * number of huge pages for this default size was implicitly
3155 * specified, set that here as well.
3156 * Note that the implicit setting will overwrite an explicit
3157 * setting. A warning will be printed in this case.
3158 */
3159 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3160 if (default_hstate_max_huge_pages) {
3161 if (default_hstate.max_huge_pages) {
3162 char buf[32];
3163
3164 string_get_size(huge_page_size(&default_hstate),
3165 1, STRING_UNITS_2, buf, 32);
3166 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3167 default_hstate.max_huge_pages, buf);
3168 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3169 default_hstate_max_huge_pages);
3170 }
3171 default_hstate.max_huge_pages =
3172 default_hstate_max_huge_pages;
d715cf80 3173 }
f8b74815 3174 }
a3437870 3175
cf11e85f 3176 hugetlb_cma_check();
a3437870 3177 hugetlb_init_hstates();
aa888a74 3178 gather_bootmem_prealloc();
a3437870
NA
3179 report_hugepages();
3180
3181 hugetlb_sysfs_init();
9a305230 3182 hugetlb_register_all_nodes();
7179e7bf 3183 hugetlb_cgroup_file_init();
9a305230 3184
8382d914
DB
3185#ifdef CONFIG_SMP
3186 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3187#else
3188 num_fault_mutexes = 1;
3189#endif
c672c7f2 3190 hugetlb_fault_mutex_table =
6da2ec56
KC
3191 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3192 GFP_KERNEL);
c672c7f2 3193 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3194
3195 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3196 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3197 return 0;
3198}
3e89e1c5 3199subsys_initcall(hugetlb_init);
a3437870 3200
ae94da89
MK
3201/* Overwritten by architectures with more huge page sizes */
3202bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3203{
ae94da89 3204 return size == HPAGE_SIZE;
9fee021d
VT
3205}
3206
d00181b9 3207void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3208{
3209 struct hstate *h;
8faa8b07
AK
3210 unsigned long i;
3211
a3437870 3212 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3213 return;
3214 }
47d38344 3215 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3216 BUG_ON(order == 0);
47d38344 3217 h = &hstates[hugetlb_max_hstate++];
a3437870 3218 h->order = order;
aca78307 3219 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
3220 for (i = 0; i < MAX_NUMNODES; ++i)
3221 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3222 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3223 h->next_nid_to_alloc = first_memory_node;
3224 h->next_nid_to_free = first_memory_node;
a3437870
NA
3225 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3226 huge_page_size(h)/1024);
8faa8b07 3227
a3437870
NA
3228 parsed_hstate = h;
3229}
3230
282f4214
MK
3231/*
3232 * hugepages command line processing
3233 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3234 * specification. If not, ignore the hugepages value. hugepages can also
3235 * be the first huge page command line option in which case it implicitly
3236 * specifies the number of huge pages for the default size.
3237 */
3238static int __init hugepages_setup(char *s)
a3437870
NA
3239{
3240 unsigned long *mhp;
8faa8b07 3241 static unsigned long *last_mhp;
a3437870 3242
9fee021d 3243 if (!parsed_valid_hugepagesz) {
282f4214 3244 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3245 parsed_valid_hugepagesz = true;
282f4214 3246 return 0;
9fee021d 3247 }
282f4214 3248
a3437870 3249 /*
282f4214
MK
3250 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3251 * yet, so this hugepages= parameter goes to the "default hstate".
3252 * Otherwise, it goes with the previously parsed hugepagesz or
3253 * default_hugepagesz.
a3437870 3254 */
9fee021d 3255 else if (!hugetlb_max_hstate)
a3437870
NA
3256 mhp = &default_hstate_max_huge_pages;
3257 else
3258 mhp = &parsed_hstate->max_huge_pages;
3259
8faa8b07 3260 if (mhp == last_mhp) {
282f4214
MK
3261 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3262 return 0;
8faa8b07
AK
3263 }
3264
a3437870
NA
3265 if (sscanf(s, "%lu", mhp) <= 0)
3266 *mhp = 0;
3267
8faa8b07
AK
3268 /*
3269 * Global state is always initialized later in hugetlb_init.
3270 * But we need to allocate >= MAX_ORDER hstates here early to still
3271 * use the bootmem allocator.
3272 */
47d38344 3273 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
3274 hugetlb_hstate_alloc_pages(parsed_hstate);
3275
3276 last_mhp = mhp;
3277
a3437870
NA
3278 return 1;
3279}
282f4214 3280__setup("hugepages=", hugepages_setup);
e11bfbfc 3281
282f4214
MK
3282/*
3283 * hugepagesz command line processing
3284 * A specific huge page size can only be specified once with hugepagesz.
3285 * hugepagesz is followed by hugepages on the command line. The global
3286 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3287 * hugepagesz argument was valid.
3288 */
359f2544 3289static int __init hugepagesz_setup(char *s)
e11bfbfc 3290{
359f2544 3291 unsigned long size;
282f4214
MK
3292 struct hstate *h;
3293
3294 parsed_valid_hugepagesz = false;
359f2544
MK
3295 size = (unsigned long)memparse(s, NULL);
3296
3297 if (!arch_hugetlb_valid_size(size)) {
282f4214 3298 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3299 return 0;
3300 }
3301
282f4214
MK
3302 h = size_to_hstate(size);
3303 if (h) {
3304 /*
3305 * hstate for this size already exists. This is normally
3306 * an error, but is allowed if the existing hstate is the
3307 * default hstate. More specifically, it is only allowed if
3308 * the number of huge pages for the default hstate was not
3309 * previously specified.
3310 */
3311 if (!parsed_default_hugepagesz || h != &default_hstate ||
3312 default_hstate.max_huge_pages) {
3313 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3314 return 0;
3315 }
3316
3317 /*
3318 * No need to call hugetlb_add_hstate() as hstate already
3319 * exists. But, do set parsed_hstate so that a following
3320 * hugepages= parameter will be applied to this hstate.
3321 */
3322 parsed_hstate = h;
3323 parsed_valid_hugepagesz = true;
3324 return 1;
38237830
MK
3325 }
3326
359f2544 3327 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3328 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3329 return 1;
3330}
359f2544
MK
3331__setup("hugepagesz=", hugepagesz_setup);
3332
282f4214
MK
3333/*
3334 * default_hugepagesz command line input
3335 * Only one instance of default_hugepagesz allowed on command line.
3336 */
ae94da89 3337static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3338{
ae94da89
MK
3339 unsigned long size;
3340
282f4214 3341 parsed_valid_hugepagesz = false;
282f4214
MK
3342 if (parsed_default_hugepagesz) {
3343 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3344 return 0;
3345 }
3346
ae94da89
MK
3347 size = (unsigned long)memparse(s, NULL);
3348
3349 if (!arch_hugetlb_valid_size(size)) {
282f4214 3350 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3351 return 0;
3352 }
3353
282f4214
MK
3354 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3355 parsed_valid_hugepagesz = true;
3356 parsed_default_hugepagesz = true;
3357 default_hstate_idx = hstate_index(size_to_hstate(size));
3358
3359 /*
3360 * The number of default huge pages (for this size) could have been
3361 * specified as the first hugetlb parameter: hugepages=X. If so,
3362 * then default_hstate_max_huge_pages is set. If the default huge
3363 * page size is gigantic (>= MAX_ORDER), then the pages must be
3364 * allocated here from bootmem allocator.
3365 */
3366 if (default_hstate_max_huge_pages) {
3367 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3368 if (hstate_is_gigantic(&default_hstate))
3369 hugetlb_hstate_alloc_pages(&default_hstate);
3370 default_hstate_max_huge_pages = 0;
3371 }
3372
e11bfbfc
NP
3373 return 1;
3374}
ae94da89 3375__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3376
8ca39e68 3377static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3378{
3379 int node;
3380 unsigned int nr = 0;
8ca39e68
MS
3381 nodemask_t *mpol_allowed;
3382 unsigned int *array = h->free_huge_pages_node;
3383 gfp_t gfp_mask = htlb_alloc_mask(h);
3384
3385 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3386
8ca39e68 3387 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 3388 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
3389 nr += array[node];
3390 }
8a213460
NA
3391
3392 return nr;
3393}
3394
3395#ifdef CONFIG_SYSCTL
17743798
MS
3396static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3397 void *buffer, size_t *length,
3398 loff_t *ppos, unsigned long *out)
3399{
3400 struct ctl_table dup_table;
3401
3402 /*
3403 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3404 * can duplicate the @table and alter the duplicate of it.
3405 */
3406 dup_table = *table;
3407 dup_table.data = out;
3408
3409 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3410}
3411
06808b08
LS
3412static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3413 struct ctl_table *table, int write,
32927393 3414 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3415{
e5ff2159 3416 struct hstate *h = &default_hstate;
238d3c13 3417 unsigned long tmp = h->max_huge_pages;
08d4a246 3418 int ret;
e5ff2159 3419
457c1b27 3420 if (!hugepages_supported())
86613628 3421 return -EOPNOTSUPP;
457c1b27 3422
17743798
MS
3423 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3424 &tmp);
08d4a246
MH
3425 if (ret)
3426 goto out;
e5ff2159 3427
238d3c13
DR
3428 if (write)
3429 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3430 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3431out:
3432 return ret;
1da177e4 3433}
396faf03 3434
06808b08 3435int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3436 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3437{
3438
3439 return hugetlb_sysctl_handler_common(false, table, write,
3440 buffer, length, ppos);
3441}
3442
3443#ifdef CONFIG_NUMA
3444int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3445 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3446{
3447 return hugetlb_sysctl_handler_common(true, table, write,
3448 buffer, length, ppos);
3449}
3450#endif /* CONFIG_NUMA */
3451
a3d0c6aa 3452int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3453 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3454{
a5516438 3455 struct hstate *h = &default_hstate;
e5ff2159 3456 unsigned long tmp;
08d4a246 3457 int ret;
e5ff2159 3458
457c1b27 3459 if (!hugepages_supported())
86613628 3460 return -EOPNOTSUPP;
457c1b27 3461
c033a93c 3462 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3463
bae7f4ae 3464 if (write && hstate_is_gigantic(h))
adbe8726
EM
3465 return -EINVAL;
3466
17743798
MS
3467 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3468 &tmp);
08d4a246
MH
3469 if (ret)
3470 goto out;
e5ff2159
AK
3471
3472 if (write) {
3473 spin_lock(&hugetlb_lock);
3474 h->nr_overcommit_huge_pages = tmp;
3475 spin_unlock(&hugetlb_lock);
3476 }
08d4a246
MH
3477out:
3478 return ret;
a3d0c6aa
NA
3479}
3480
1da177e4
LT
3481#endif /* CONFIG_SYSCTL */
3482
e1759c21 3483void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3484{
fcb2b0c5
RG
3485 struct hstate *h;
3486 unsigned long total = 0;
3487
457c1b27
NA
3488 if (!hugepages_supported())
3489 return;
fcb2b0c5
RG
3490
3491 for_each_hstate(h) {
3492 unsigned long count = h->nr_huge_pages;
3493
aca78307 3494 total += huge_page_size(h) * count;
fcb2b0c5
RG
3495
3496 if (h == &default_hstate)
3497 seq_printf(m,
3498 "HugePages_Total: %5lu\n"
3499 "HugePages_Free: %5lu\n"
3500 "HugePages_Rsvd: %5lu\n"
3501 "HugePages_Surp: %5lu\n"
3502 "Hugepagesize: %8lu kB\n",
3503 count,
3504 h->free_huge_pages,
3505 h->resv_huge_pages,
3506 h->surplus_huge_pages,
aca78307 3507 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
3508 }
3509
aca78307 3510 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
3511}
3512
7981593b 3513int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3514{
a5516438 3515 struct hstate *h = &default_hstate;
7981593b 3516
457c1b27
NA
3517 if (!hugepages_supported())
3518 return 0;
7981593b
JP
3519
3520 return sysfs_emit_at(buf, len,
3521 "Node %d HugePages_Total: %5u\n"
3522 "Node %d HugePages_Free: %5u\n"
3523 "Node %d HugePages_Surp: %5u\n",
3524 nid, h->nr_huge_pages_node[nid],
3525 nid, h->free_huge_pages_node[nid],
3526 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3527}
3528
949f7ec5
DR
3529void hugetlb_show_meminfo(void)
3530{
3531 struct hstate *h;
3532 int nid;
3533
457c1b27
NA
3534 if (!hugepages_supported())
3535 return;
3536
949f7ec5
DR
3537 for_each_node_state(nid, N_MEMORY)
3538 for_each_hstate(h)
3539 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3540 nid,
3541 h->nr_huge_pages_node[nid],
3542 h->free_huge_pages_node[nid],
3543 h->surplus_huge_pages_node[nid],
aca78307 3544 huge_page_size(h) / SZ_1K);
949f7ec5
DR
3545}
3546
5d317b2b
NH
3547void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3548{
3549 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3550 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3551}
3552
1da177e4
LT
3553/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3554unsigned long hugetlb_total_pages(void)
3555{
d0028588
WL
3556 struct hstate *h;
3557 unsigned long nr_total_pages = 0;
3558
3559 for_each_hstate(h)
3560 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3561 return nr_total_pages;
1da177e4 3562}
1da177e4 3563
a5516438 3564static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3565{
3566 int ret = -ENOMEM;
3567
0aa7f354
ML
3568 if (!delta)
3569 return 0;
3570
fc1b8a73
MG
3571 spin_lock(&hugetlb_lock);
3572 /*
3573 * When cpuset is configured, it breaks the strict hugetlb page
3574 * reservation as the accounting is done on a global variable. Such
3575 * reservation is completely rubbish in the presence of cpuset because
3576 * the reservation is not checked against page availability for the
3577 * current cpuset. Application can still potentially OOM'ed by kernel
3578 * with lack of free htlb page in cpuset that the task is in.
3579 * Attempt to enforce strict accounting with cpuset is almost
3580 * impossible (or too ugly) because cpuset is too fluid that
3581 * task or memory node can be dynamically moved between cpusets.
3582 *
3583 * The change of semantics for shared hugetlb mapping with cpuset is
3584 * undesirable. However, in order to preserve some of the semantics,
3585 * we fall back to check against current free page availability as
3586 * a best attempt and hopefully to minimize the impact of changing
3587 * semantics that cpuset has.
8ca39e68
MS
3588 *
3589 * Apart from cpuset, we also have memory policy mechanism that
3590 * also determines from which node the kernel will allocate memory
3591 * in a NUMA system. So similar to cpuset, we also should consider
3592 * the memory policy of the current task. Similar to the description
3593 * above.
fc1b8a73
MG
3594 */
3595 if (delta > 0) {
a5516438 3596 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3597 goto out;
3598
8ca39e68 3599 if (delta > allowed_mems_nr(h)) {
a5516438 3600 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3601 goto out;
3602 }
3603 }
3604
3605 ret = 0;
3606 if (delta < 0)
a5516438 3607 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3608
3609out:
3610 spin_unlock(&hugetlb_lock);
3611 return ret;
3612}
3613
84afd99b
AW
3614static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3615{
f522c3ac 3616 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3617
3618 /*
3619 * This new VMA should share its siblings reservation map if present.
3620 * The VMA will only ever have a valid reservation map pointer where
3621 * it is being copied for another still existing VMA. As that VMA
25985edc 3622 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3623 * after this open call completes. It is therefore safe to take a
3624 * new reference here without additional locking.
3625 */
4e35f483 3626 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3627 kref_get(&resv->refs);
84afd99b
AW
3628}
3629
a1e78772
MG
3630static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3631{
a5516438 3632 struct hstate *h = hstate_vma(vma);
f522c3ac 3633 struct resv_map *resv = vma_resv_map(vma);
90481622 3634 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3635 unsigned long reserve, start, end;
1c5ecae3 3636 long gbl_reserve;
84afd99b 3637
4e35f483
JK
3638 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3639 return;
84afd99b 3640
4e35f483
JK
3641 start = vma_hugecache_offset(h, vma, vma->vm_start);
3642 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3643
4e35f483 3644 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3645 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3646 if (reserve) {
1c5ecae3
MK
3647 /*
3648 * Decrement reserve counts. The global reserve count may be
3649 * adjusted if the subpool has a minimum size.
3650 */
3651 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3652 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3653 }
e9fe92ae
MA
3654
3655 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3656}
3657
31383c68
DW
3658static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3659{
3660 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3661 return -EINVAL;
3662 return 0;
3663}
3664
05ea8860
DW
3665static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3666{
aca78307 3667 return huge_page_size(hstate_vma(vma));
05ea8860
DW
3668}
3669
1da177e4
LT
3670/*
3671 * We cannot handle pagefaults against hugetlb pages at all. They cause
3672 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 3673 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
3674 * this far.
3675 */
b3ec9f33 3676static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3677{
3678 BUG();
d0217ac0 3679 return 0;
1da177e4
LT
3680}
3681
eec3636a
JC
3682/*
3683 * When a new function is introduced to vm_operations_struct and added
3684 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3685 * This is because under System V memory model, mappings created via
3686 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3687 * their original vm_ops are overwritten with shm_vm_ops.
3688 */
f0f37e2f 3689const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3690 .fault = hugetlb_vm_op_fault,
84afd99b 3691 .open = hugetlb_vm_op_open,
a1e78772 3692 .close = hugetlb_vm_op_close,
dd3b614f 3693 .may_split = hugetlb_vm_op_split,
05ea8860 3694 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3695};
3696
1e8f889b
DG
3697static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3698 int writable)
63551ae0
DG
3699{
3700 pte_t entry;
3701
1e8f889b 3702 if (writable) {
106c992a
GS
3703 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3704 vma->vm_page_prot)));
63551ae0 3705 } else {
106c992a
GS
3706 entry = huge_pte_wrprotect(mk_huge_pte(page,
3707 vma->vm_page_prot));
63551ae0
DG
3708 }
3709 entry = pte_mkyoung(entry);
3710 entry = pte_mkhuge(entry);
d9ed9faa 3711 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3712
3713 return entry;
3714}
3715
1e8f889b
DG
3716static void set_huge_ptep_writable(struct vm_area_struct *vma,
3717 unsigned long address, pte_t *ptep)
3718{
3719 pte_t entry;
3720
106c992a 3721 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3722 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3723 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3724}
3725
d5ed7444 3726bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3727{
3728 swp_entry_t swp;
3729
3730 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3731 return false;
4a705fef 3732 swp = pte_to_swp_entry(pte);
d79d176a 3733 if (is_migration_entry(swp))
d5ed7444 3734 return true;
4a705fef 3735 else
d5ed7444 3736 return false;
4a705fef
NH
3737}
3738
3e5c3600 3739static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
3740{
3741 swp_entry_t swp;
3742
3743 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 3744 return false;
4a705fef 3745 swp = pte_to_swp_entry(pte);
d79d176a 3746 if (is_hwpoison_entry(swp))
3e5c3600 3747 return true;
4a705fef 3748 else
3e5c3600 3749 return false;
4a705fef 3750}
1e8f889b 3751
4eae4efa
PX
3752static void
3753hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3754 struct page *new_page)
3755{
3756 __SetPageUptodate(new_page);
3757 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3758 hugepage_add_new_anon_rmap(new_page, vma, addr);
3759 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3760 ClearHPageRestoreReserve(new_page);
3761 SetHPageMigratable(new_page);
3762}
3763
63551ae0
DG
3764int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3765 struct vm_area_struct *vma)
3766{
5e41540c 3767 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3768 struct page *ptepage;
1c59827d 3769 unsigned long addr;
ca6eb14d 3770 bool cow = is_cow_mapping(vma->vm_flags);
a5516438
AK
3771 struct hstate *h = hstate_vma(vma);
3772 unsigned long sz = huge_page_size(h);
4eae4efa 3773 unsigned long npages = pages_per_huge_page(h);
c0d0381a 3774 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3775 struct mmu_notifier_range range;
e8569dd2 3776 int ret = 0;
1e8f889b 3777
ac46d4f3 3778 if (cow) {
7269f999 3779 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3780 vma->vm_start,
ac46d4f3
JG
3781 vma->vm_end);
3782 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3783 } else {
3784 /*
3785 * For shared mappings i_mmap_rwsem must be held to call
3786 * huge_pte_alloc, otherwise the returned ptep could go
3787 * away if part of a shared pmd and another thread calls
3788 * huge_pmd_unshare.
3789 */
3790 i_mmap_lock_read(mapping);
ac46d4f3 3791 }
e8569dd2 3792
a5516438 3793 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3794 spinlock_t *src_ptl, *dst_ptl;
7868a208 3795 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3796 if (!src_pte)
3797 continue;
a5516438 3798 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3799 if (!dst_pte) {
3800 ret = -ENOMEM;
3801 break;
3802 }
c5c99429 3803
5e41540c
MK
3804 /*
3805 * If the pagetables are shared don't copy or take references.
3806 * dst_pte == src_pte is the common case of src/dest sharing.
3807 *
3808 * However, src could have 'unshared' and dst shares with
3809 * another vma. If dst_pte !none, this implies sharing.
3810 * Check here before taking page table lock, and once again
3811 * after taking the lock below.
3812 */
3813 dst_entry = huge_ptep_get(dst_pte);
3814 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3815 continue;
3816
cb900f41
KS
3817 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3818 src_ptl = huge_pte_lockptr(h, src, src_pte);
3819 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3820 entry = huge_ptep_get(src_pte);
5e41540c 3821 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 3822again:
5e41540c
MK
3823 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3824 /*
3825 * Skip if src entry none. Also, skip in the
3826 * unlikely case dst entry !none as this implies
3827 * sharing with another vma.
3828 */
4a705fef
NH
3829 ;
3830 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3831 is_hugetlb_entry_hwpoisoned(entry))) {
3832 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3833
3834 if (is_write_migration_entry(swp_entry) && cow) {
3835 /*
3836 * COW mappings require pages in both
3837 * parent and child to be set to read.
3838 */
3839 make_migration_entry_read(&swp_entry);
3840 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3841 set_huge_swap_pte_at(src, addr, src_pte,
3842 entry, sz);
4a705fef 3843 }
e5251fd4 3844 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3845 } else {
4eae4efa
PX
3846 entry = huge_ptep_get(src_pte);
3847 ptepage = pte_page(entry);
3848 get_page(ptepage);
3849
3850 /*
3851 * This is a rare case where we see pinned hugetlb
3852 * pages while they're prone to COW. We need to do the
3853 * COW earlier during fork.
3854 *
3855 * When pre-allocating the page or copying data, we
3856 * need to be without the pgtable locks since we could
3857 * sleep during the process.
3858 */
3859 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3860 pte_t src_pte_old = entry;
3861 struct page *new;
3862
3863 spin_unlock(src_ptl);
3864 spin_unlock(dst_ptl);
3865 /* Do not use reserve as it's private owned */
3866 new = alloc_huge_page(vma, addr, 1);
3867 if (IS_ERR(new)) {
3868 put_page(ptepage);
3869 ret = PTR_ERR(new);
3870 break;
3871 }
3872 copy_user_huge_page(new, ptepage, addr, vma,
3873 npages);
3874 put_page(ptepage);
3875
3876 /* Install the new huge page if src pte stable */
3877 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3878 src_ptl = huge_pte_lockptr(h, src, src_pte);
3879 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3880 entry = huge_ptep_get(src_pte);
3881 if (!pte_same(src_pte_old, entry)) {
3882 put_page(new);
3883 /* dst_entry won't change as in child */
3884 goto again;
3885 }
3886 hugetlb_install_page(vma, dst_pte, addr, new);
3887 spin_unlock(src_ptl);
3888 spin_unlock(dst_ptl);
3889 continue;
3890 }
3891
34ee645e 3892 if (cow) {
0f10851e
JG
3893 /*
3894 * No need to notify as we are downgrading page
3895 * table protection not changing it to point
3896 * to a new page.
3897 *
ad56b738 3898 * See Documentation/vm/mmu_notifier.rst
0f10851e 3899 */
7f2e9525 3900 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3901 }
4eae4efa 3902
53f9263b 3903 page_dup_rmap(ptepage, true);
1c59827d 3904 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 3905 hugetlb_count_add(npages, dst);
1c59827d 3906 }
cb900f41
KS
3907 spin_unlock(src_ptl);
3908 spin_unlock(dst_ptl);
63551ae0 3909 }
63551ae0 3910
e8569dd2 3911 if (cow)
ac46d4f3 3912 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3913 else
3914 i_mmap_unlock_read(mapping);
e8569dd2
AS
3915
3916 return ret;
63551ae0
DG
3917}
3918
24669e58
AK
3919void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3920 unsigned long start, unsigned long end,
3921 struct page *ref_page)
63551ae0
DG
3922{
3923 struct mm_struct *mm = vma->vm_mm;
3924 unsigned long address;
c7546f8f 3925 pte_t *ptep;
63551ae0 3926 pte_t pte;
cb900f41 3927 spinlock_t *ptl;
63551ae0 3928 struct page *page;
a5516438
AK
3929 struct hstate *h = hstate_vma(vma);
3930 unsigned long sz = huge_page_size(h);
ac46d4f3 3931 struct mmu_notifier_range range;
a5516438 3932
63551ae0 3933 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3934 BUG_ON(start & ~huge_page_mask(h));
3935 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3936
07e32661
AK
3937 /*
3938 * This is a hugetlb vma, all the pte entries should point
3939 * to huge page.
3940 */
ed6a7935 3941 tlb_change_page_size(tlb, sz);
24669e58 3942 tlb_start_vma(tlb, vma);
dff11abe
MK
3943
3944 /*
3945 * If sharing possible, alert mmu notifiers of worst case.
3946 */
6f4f13e8
JG
3947 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3948 end);
ac46d4f3
JG
3949 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3950 mmu_notifier_invalidate_range_start(&range);
569f48b8 3951 address = start;
569f48b8 3952 for (; address < end; address += sz) {
7868a208 3953 ptep = huge_pte_offset(mm, address, sz);
4c887265 3954 if (!ptep)
c7546f8f
DG
3955 continue;
3956
cb900f41 3957 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 3958 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 3959 spin_unlock(ptl);
dff11abe
MK
3960 /*
3961 * We just unmapped a page of PMDs by clearing a PUD.
3962 * The caller's TLB flush range should cover this area.
3963 */
31d49da5
AK
3964 continue;
3965 }
39dde65c 3966
6629326b 3967 pte = huge_ptep_get(ptep);
31d49da5
AK
3968 if (huge_pte_none(pte)) {
3969 spin_unlock(ptl);
3970 continue;
3971 }
6629326b
HD
3972
3973 /*
9fbc1f63
NH
3974 * Migrating hugepage or HWPoisoned hugepage is already
3975 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3976 */
9fbc1f63 3977 if (unlikely(!pte_present(pte))) {
9386fac3 3978 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3979 spin_unlock(ptl);
3980 continue;
8c4894c6 3981 }
6629326b
HD
3982
3983 page = pte_page(pte);
04f2cbe3
MG
3984 /*
3985 * If a reference page is supplied, it is because a specific
3986 * page is being unmapped, not a range. Ensure the page we
3987 * are about to unmap is the actual page of interest.
3988 */
3989 if (ref_page) {
31d49da5
AK
3990 if (page != ref_page) {
3991 spin_unlock(ptl);
3992 continue;
3993 }
04f2cbe3
MG
3994 /*
3995 * Mark the VMA as having unmapped its page so that
3996 * future faults in this VMA will fail rather than
3997 * looking like data was lost
3998 */
3999 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4000 }
4001
c7546f8f 4002 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 4003 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 4004 if (huge_pte_dirty(pte))
6649a386 4005 set_page_dirty(page);
9e81130b 4006
5d317b2b 4007 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4008 page_remove_rmap(page, true);
31d49da5 4009
cb900f41 4010 spin_unlock(ptl);
e77b0852 4011 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4012 /*
4013 * Bail out after unmapping reference page if supplied
4014 */
4015 if (ref_page)
4016 break;
fe1668ae 4017 }
ac46d4f3 4018 mmu_notifier_invalidate_range_end(&range);
24669e58 4019 tlb_end_vma(tlb, vma);
1da177e4 4020}
63551ae0 4021
d833352a
MG
4022void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4023 struct vm_area_struct *vma, unsigned long start,
4024 unsigned long end, struct page *ref_page)
4025{
4026 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4027
4028 /*
4029 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4030 * test will fail on a vma being torn down, and not grab a page table
4031 * on its way out. We're lucky that the flag has such an appropriate
4032 * name, and can in fact be safely cleared here. We could clear it
4033 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4034 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4035 * because in the context this is called, the VMA is about to be
c8c06efa 4036 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4037 */
4038 vma->vm_flags &= ~VM_MAYSHARE;
4039}
4040
502717f4 4041void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4042 unsigned long end, struct page *ref_page)
502717f4 4043{
24669e58 4044 struct mmu_gather tlb;
dff11abe 4045
a72afd87 4046 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 4047 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 4048 tlb_finish_mmu(&tlb);
502717f4
KC
4049}
4050
04f2cbe3
MG
4051/*
4052 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 4053 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
4054 * from other VMAs and let the children be SIGKILLed if they are faulting the
4055 * same region.
4056 */
2f4612af
DB
4057static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4058 struct page *page, unsigned long address)
04f2cbe3 4059{
7526674d 4060 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4061 struct vm_area_struct *iter_vma;
4062 struct address_space *mapping;
04f2cbe3
MG
4063 pgoff_t pgoff;
4064
4065 /*
4066 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4067 * from page cache lookup which is in HPAGE_SIZE units.
4068 */
7526674d 4069 address = address & huge_page_mask(h);
36e4f20a
MH
4070 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4071 vma->vm_pgoff;
93c76a3d 4072 mapping = vma->vm_file->f_mapping;
04f2cbe3 4073
4eb2b1dc
MG
4074 /*
4075 * Take the mapping lock for the duration of the table walk. As
4076 * this mapping should be shared between all the VMAs,
4077 * __unmap_hugepage_range() is called as the lock is already held
4078 */
83cde9e8 4079 i_mmap_lock_write(mapping);
6b2dbba8 4080 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4081 /* Do not unmap the current VMA */
4082 if (iter_vma == vma)
4083 continue;
4084
2f84a899
MG
4085 /*
4086 * Shared VMAs have their own reserves and do not affect
4087 * MAP_PRIVATE accounting but it is possible that a shared
4088 * VMA is using the same page so check and skip such VMAs.
4089 */
4090 if (iter_vma->vm_flags & VM_MAYSHARE)
4091 continue;
4092
04f2cbe3
MG
4093 /*
4094 * Unmap the page from other VMAs without their own reserves.
4095 * They get marked to be SIGKILLed if they fault in these
4096 * areas. This is because a future no-page fault on this VMA
4097 * could insert a zeroed page instead of the data existing
4098 * from the time of fork. This would look like data corruption
4099 */
4100 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4101 unmap_hugepage_range(iter_vma, address,
4102 address + huge_page_size(h), page);
04f2cbe3 4103 }
83cde9e8 4104 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4105}
4106
0fe6e20b
NH
4107/*
4108 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4109 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4110 * cannot race with other handlers or page migration.
4111 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4112 */
2b740303 4113static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4114 unsigned long address, pte_t *ptep,
3999f52e 4115 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4116{
3999f52e 4117 pte_t pte;
a5516438 4118 struct hstate *h = hstate_vma(vma);
1e8f889b 4119 struct page *old_page, *new_page;
2b740303
SJ
4120 int outside_reserve = 0;
4121 vm_fault_t ret = 0;
974e6d66 4122 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4123 struct mmu_notifier_range range;
1e8f889b 4124
3999f52e 4125 pte = huge_ptep_get(ptep);
1e8f889b
DG
4126 old_page = pte_page(pte);
4127
04f2cbe3 4128retry_avoidcopy:
1e8f889b
DG
4129 /* If no-one else is actually using this page, avoid the copy
4130 * and just make the page writable */
37a2140d 4131 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4132 page_move_anon_rmap(old_page, vma);
5b7a1d40 4133 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4134 return 0;
1e8f889b
DG
4135 }
4136
04f2cbe3
MG
4137 /*
4138 * If the process that created a MAP_PRIVATE mapping is about to
4139 * perform a COW due to a shared page count, attempt to satisfy
4140 * the allocation without using the existing reserves. The pagecache
4141 * page is used to determine if the reserve at this address was
4142 * consumed or not. If reserves were used, a partial faulted mapping
4143 * at the time of fork() could consume its reserves on COW instead
4144 * of the full address range.
4145 */
5944d011 4146 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4147 old_page != pagecache_page)
4148 outside_reserve = 1;
4149
09cbfeaf 4150 get_page(old_page);
b76c8cfb 4151
ad4404a2
DB
4152 /*
4153 * Drop page table lock as buddy allocator may be called. It will
4154 * be acquired again before returning to the caller, as expected.
4155 */
cb900f41 4156 spin_unlock(ptl);
5b7a1d40 4157 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4158
2fc39cec 4159 if (IS_ERR(new_page)) {
04f2cbe3
MG
4160 /*
4161 * If a process owning a MAP_PRIVATE mapping fails to COW,
4162 * it is due to references held by a child and an insufficient
4163 * huge page pool. To guarantee the original mappers
4164 * reliability, unmap the page from child processes. The child
4165 * may get SIGKILLed if it later faults.
4166 */
4167 if (outside_reserve) {
e7dd91c4
MK
4168 struct address_space *mapping = vma->vm_file->f_mapping;
4169 pgoff_t idx;
4170 u32 hash;
4171
09cbfeaf 4172 put_page(old_page);
04f2cbe3 4173 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4174 /*
4175 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4176 * unmapping. unmapping needs to hold i_mmap_rwsem
4177 * in write mode. Dropping i_mmap_rwsem in read mode
4178 * here is OK as COW mappings do not interact with
4179 * PMD sharing.
4180 *
4181 * Reacquire both after unmap operation.
4182 */
4183 idx = vma_hugecache_offset(h, vma, haddr);
4184 hash = hugetlb_fault_mutex_hash(mapping, idx);
4185 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4186 i_mmap_unlock_read(mapping);
4187
5b7a1d40 4188 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4189
4190 i_mmap_lock_read(mapping);
4191 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4192 spin_lock(ptl);
5b7a1d40 4193 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4194 if (likely(ptep &&
4195 pte_same(huge_ptep_get(ptep), pte)))
4196 goto retry_avoidcopy;
4197 /*
4198 * race occurs while re-acquiring page table
4199 * lock, and our job is done.
4200 */
4201 return 0;
04f2cbe3
MG
4202 }
4203
2b740303 4204 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4205 goto out_release_old;
1e8f889b
DG
4206 }
4207
0fe6e20b
NH
4208 /*
4209 * When the original hugepage is shared one, it does not have
4210 * anon_vma prepared.
4211 */
44e2aa93 4212 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4213 ret = VM_FAULT_OOM;
4214 goto out_release_all;
44e2aa93 4215 }
0fe6e20b 4216
974e6d66 4217 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4218 pages_per_huge_page(h));
0ed361de 4219 __SetPageUptodate(new_page);
1e8f889b 4220
7269f999 4221 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4222 haddr + huge_page_size(h));
ac46d4f3 4223 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4224
b76c8cfb 4225 /*
cb900f41 4226 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4227 * before the page tables are altered
4228 */
cb900f41 4229 spin_lock(ptl);
5b7a1d40 4230 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4231 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 4232 ClearHPageRestoreReserve(new_page);
07443a85 4233
1e8f889b 4234 /* Break COW */
5b7a1d40 4235 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4236 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4237 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4238 make_huge_pte(vma, new_page, 1));
d281ee61 4239 page_remove_rmap(old_page, true);
5b7a1d40 4240 hugepage_add_new_anon_rmap(new_page, vma, haddr);
8f251a3d 4241 SetHPageMigratable(new_page);
1e8f889b
DG
4242 /* Make the old page be freed below */
4243 new_page = old_page;
4244 }
cb900f41 4245 spin_unlock(ptl);
ac46d4f3 4246 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4247out_release_all:
5b7a1d40 4248 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4249 put_page(new_page);
ad4404a2 4250out_release_old:
09cbfeaf 4251 put_page(old_page);
8312034f 4252
ad4404a2
DB
4253 spin_lock(ptl); /* Caller expects lock to be held */
4254 return ret;
1e8f889b
DG
4255}
4256
04f2cbe3 4257/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4258static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4259 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4260{
4261 struct address_space *mapping;
e7c4b0bf 4262 pgoff_t idx;
04f2cbe3
MG
4263
4264 mapping = vma->vm_file->f_mapping;
a5516438 4265 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4266
4267 return find_lock_page(mapping, idx);
4268}
4269
3ae77f43
HD
4270/*
4271 * Return whether there is a pagecache page to back given address within VMA.
4272 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4273 */
4274static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4275 struct vm_area_struct *vma, unsigned long address)
4276{
4277 struct address_space *mapping;
4278 pgoff_t idx;
4279 struct page *page;
4280
4281 mapping = vma->vm_file->f_mapping;
4282 idx = vma_hugecache_offset(h, vma, address);
4283
4284 page = find_get_page(mapping, idx);
4285 if (page)
4286 put_page(page);
4287 return page != NULL;
4288}
4289
ab76ad54
MK
4290int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4291 pgoff_t idx)
4292{
4293 struct inode *inode = mapping->host;
4294 struct hstate *h = hstate_inode(inode);
4295 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4296
4297 if (err)
4298 return err;
d6995da3 4299 ClearHPageRestoreReserve(page);
ab76ad54 4300
22146c3c
MK
4301 /*
4302 * set page dirty so that it will not be removed from cache/file
4303 * by non-hugetlbfs specific code paths.
4304 */
4305 set_page_dirty(page);
4306
ab76ad54
MK
4307 spin_lock(&inode->i_lock);
4308 inode->i_blocks += blocks_per_huge_page(h);
4309 spin_unlock(&inode->i_lock);
4310 return 0;
4311}
4312
2b740303
SJ
4313static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4314 struct vm_area_struct *vma,
4315 struct address_space *mapping, pgoff_t idx,
4316 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4317{
a5516438 4318 struct hstate *h = hstate_vma(vma);
2b740303 4319 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4320 int anon_rmap = 0;
4c887265 4321 unsigned long size;
4c887265 4322 struct page *page;
1e8f889b 4323 pte_t new_pte;
cb900f41 4324 spinlock_t *ptl;
285b8dca 4325 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4326 bool new_page = false;
4c887265 4327
04f2cbe3
MG
4328 /*
4329 * Currently, we are forced to kill the process in the event the
4330 * original mapper has unmapped pages from the child due to a failed
25985edc 4331 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4332 */
4333 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4334 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4335 current->pid);
04f2cbe3
MG
4336 return ret;
4337 }
4338
4c887265 4339 /*
87bf91d3
MK
4340 * We can not race with truncation due to holding i_mmap_rwsem.
4341 * i_size is modified when holding i_mmap_rwsem, so check here
4342 * once for faults beyond end of file.
4c887265 4343 */
87bf91d3
MK
4344 size = i_size_read(mapping->host) >> huge_page_shift(h);
4345 if (idx >= size)
4346 goto out;
4347
6bda666a
CL
4348retry:
4349 page = find_lock_page(mapping, idx);
4350 if (!page) {
1a1aad8a
MK
4351 /*
4352 * Check for page in userfault range
4353 */
4354 if (userfaultfd_missing(vma)) {
4355 u32 hash;
4356 struct vm_fault vmf = {
4357 .vma = vma,
285b8dca 4358 .address = haddr,
1a1aad8a
MK
4359 .flags = flags,
4360 /*
4361 * Hard to debug if it ends up being
4362 * used by a callee that assumes
4363 * something about the other
4364 * uninitialized fields... same as in
4365 * memory.c
4366 */
4367 };
4368
4369 /*
c0d0381a
MK
4370 * hugetlb_fault_mutex and i_mmap_rwsem must be
4371 * dropped before handling userfault. Reacquire
4372 * after handling fault to make calling code simpler.
1a1aad8a 4373 */
188b04a7 4374 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 4375 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4376 i_mmap_unlock_read(mapping);
1a1aad8a 4377 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 4378 i_mmap_lock_read(mapping);
1a1aad8a
MK
4379 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4380 goto out;
4381 }
4382
285b8dca 4383 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4384 if (IS_ERR(page)) {
4643d67e
MK
4385 /*
4386 * Returning error will result in faulting task being
4387 * sent SIGBUS. The hugetlb fault mutex prevents two
4388 * tasks from racing to fault in the same page which
4389 * could result in false unable to allocate errors.
4390 * Page migration does not take the fault mutex, but
4391 * does a clear then write of pte's under page table
4392 * lock. Page fault code could race with migration,
4393 * notice the clear pte and try to allocate a page
4394 * here. Before returning error, get ptl and make
4395 * sure there really is no pte entry.
4396 */
4397 ptl = huge_pte_lock(h, mm, ptep);
4398 if (!huge_pte_none(huge_ptep_get(ptep))) {
4399 ret = 0;
4400 spin_unlock(ptl);
4401 goto out;
4402 }
4403 spin_unlock(ptl);
2b740303 4404 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
4405 goto out;
4406 }
47ad8475 4407 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4408 __SetPageUptodate(page);
cb6acd01 4409 new_page = true;
ac9b9c66 4410
f83a275d 4411 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4412 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4413 if (err) {
4414 put_page(page);
6bda666a
CL
4415 if (err == -EEXIST)
4416 goto retry;
4417 goto out;
4418 }
23be7468 4419 } else {
6bda666a 4420 lock_page(page);
0fe6e20b
NH
4421 if (unlikely(anon_vma_prepare(vma))) {
4422 ret = VM_FAULT_OOM;
4423 goto backout_unlocked;
4424 }
409eb8c2 4425 anon_rmap = 1;
23be7468 4426 }
0fe6e20b 4427 } else {
998b4382
NH
4428 /*
4429 * If memory error occurs between mmap() and fault, some process
4430 * don't have hwpoisoned swap entry for errored virtual address.
4431 * So we need to block hugepage fault by PG_hwpoison bit check.
4432 */
4433 if (unlikely(PageHWPoison(page))) {
0eb98f15 4434 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4435 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4436 goto backout_unlocked;
4437 }
6bda666a 4438 }
1e8f889b 4439
57303d80
AW
4440 /*
4441 * If we are going to COW a private mapping later, we examine the
4442 * pending reservations for this page now. This will ensure that
4443 * any allocations necessary to record that reservation occur outside
4444 * the spinlock.
4445 */
5e911373 4446 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4447 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4448 ret = VM_FAULT_OOM;
4449 goto backout_unlocked;
4450 }
5e911373 4451 /* Just decrements count, does not deallocate */
285b8dca 4452 vma_end_reservation(h, vma, haddr);
5e911373 4453 }
57303d80 4454
8bea8052 4455 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4456 ret = 0;
7f2e9525 4457 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4458 goto backout;
4459
07443a85 4460 if (anon_rmap) {
d6995da3 4461 ClearHPageRestoreReserve(page);
285b8dca 4462 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4463 } else
53f9263b 4464 page_dup_rmap(page, true);
1e8f889b
DG
4465 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4466 && (vma->vm_flags & VM_SHARED)));
285b8dca 4467 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4468
5d317b2b 4469 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4470 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4471 /* Optimization, do the COW without a second fault */
974e6d66 4472 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4473 }
4474
cb900f41 4475 spin_unlock(ptl);
cb6acd01
MK
4476
4477 /*
8f251a3d
MK
4478 * Only set HPageMigratable in newly allocated pages. Existing pages
4479 * found in the pagecache may not have HPageMigratableset if they have
4480 * been isolated for migration.
cb6acd01
MK
4481 */
4482 if (new_page)
8f251a3d 4483 SetHPageMigratable(page);
cb6acd01 4484
4c887265
AL
4485 unlock_page(page);
4486out:
ac9b9c66 4487 return ret;
4c887265
AL
4488
4489backout:
cb900f41 4490 spin_unlock(ptl);
2b26736c 4491backout_unlocked:
4c887265 4492 unlock_page(page);
285b8dca 4493 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4494 put_page(page);
4495 goto out;
ac9b9c66
HD
4496}
4497
8382d914 4498#ifdef CONFIG_SMP
188b04a7 4499u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4500{
4501 unsigned long key[2];
4502 u32 hash;
4503
1b426bac
MK
4504 key[0] = (unsigned long) mapping;
4505 key[1] = idx;
8382d914 4506
55254636 4507 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4508
4509 return hash & (num_fault_mutexes - 1);
4510}
4511#else
4512/*
6c26d310 4513 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
4514 * return 0 and avoid the hashing overhead.
4515 */
188b04a7 4516u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4517{
4518 return 0;
4519}
4520#endif
4521
2b740303 4522vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4523 unsigned long address, unsigned int flags)
86e5216f 4524{
8382d914 4525 pte_t *ptep, entry;
cb900f41 4526 spinlock_t *ptl;
2b740303 4527 vm_fault_t ret;
8382d914
DB
4528 u32 hash;
4529 pgoff_t idx;
0fe6e20b 4530 struct page *page = NULL;
57303d80 4531 struct page *pagecache_page = NULL;
a5516438 4532 struct hstate *h = hstate_vma(vma);
8382d914 4533 struct address_space *mapping;
0f792cf9 4534 int need_wait_lock = 0;
285b8dca 4535 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4536
285b8dca 4537 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4538 if (ptep) {
c0d0381a
MK
4539 /*
4540 * Since we hold no locks, ptep could be stale. That is
4541 * OK as we are only making decisions based on content and
4542 * not actually modifying content here.
4543 */
fd6a03ed 4544 entry = huge_ptep_get(ptep);
290408d4 4545 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4546 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4547 return 0;
4548 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4549 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4550 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4551 }
4552
c0d0381a
MK
4553 /*
4554 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4555 * until finished with ptep. This serves two purposes:
4556 * 1) It prevents huge_pmd_unshare from being called elsewhere
4557 * and making the ptep no longer valid.
4558 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4559 *
4560 * ptep could have already be assigned via huge_pte_offset. That
4561 * is OK, as huge_pte_alloc will return the same value unless
4562 * something has changed.
4563 */
8382d914 4564 mapping = vma->vm_file->f_mapping;
c0d0381a
MK
4565 i_mmap_lock_read(mapping);
4566 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4567 if (!ptep) {
4568 i_mmap_unlock_read(mapping);
4569 return VM_FAULT_OOM;
4570 }
8382d914 4571
3935baa9
DG
4572 /*
4573 * Serialize hugepage allocation and instantiation, so that we don't
4574 * get spurious allocation failures if two CPUs race to instantiate
4575 * the same page in the page cache.
4576 */
c0d0381a 4577 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4578 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4579 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4580
7f2e9525
GS
4581 entry = huge_ptep_get(ptep);
4582 if (huge_pte_none(entry)) {
8382d914 4583 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4584 goto out_mutex;
3935baa9 4585 }
86e5216f 4586
83c54070 4587 ret = 0;
1e8f889b 4588
0f792cf9
NH
4589 /*
4590 * entry could be a migration/hwpoison entry at this point, so this
4591 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4592 * an active hugepage in pagecache. This goto expects the 2nd page
4593 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4594 * properly handle it.
0f792cf9
NH
4595 */
4596 if (!pte_present(entry))
4597 goto out_mutex;
4598
57303d80
AW
4599 /*
4600 * If we are going to COW the mapping later, we examine the pending
4601 * reservations for this page now. This will ensure that any
4602 * allocations necessary to record that reservation occur outside the
4603 * spinlock. For private mappings, we also lookup the pagecache
4604 * page now as it is used to determine if a reservation has been
4605 * consumed.
4606 */
106c992a 4607 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4608 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4609 ret = VM_FAULT_OOM;
b4d1d99f 4610 goto out_mutex;
2b26736c 4611 }
5e911373 4612 /* Just decrements count, does not deallocate */
285b8dca 4613 vma_end_reservation(h, vma, haddr);
57303d80 4614
f83a275d 4615 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4616 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4617 vma, haddr);
57303d80
AW
4618 }
4619
0f792cf9
NH
4620 ptl = huge_pte_lock(h, mm, ptep);
4621
4622 /* Check for a racing update before calling hugetlb_cow */
4623 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4624 goto out_ptl;
4625
56c9cfb1
NH
4626 /*
4627 * hugetlb_cow() requires page locks of pte_page(entry) and
4628 * pagecache_page, so here we need take the former one
4629 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4630 */
4631 page = pte_page(entry);
4632 if (page != pagecache_page)
0f792cf9
NH
4633 if (!trylock_page(page)) {
4634 need_wait_lock = 1;
4635 goto out_ptl;
4636 }
b4d1d99f 4637
0f792cf9 4638 get_page(page);
b4d1d99f 4639
788c7df4 4640 if (flags & FAULT_FLAG_WRITE) {
106c992a 4641 if (!huge_pte_write(entry)) {
974e6d66 4642 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4643 pagecache_page, ptl);
0f792cf9 4644 goto out_put_page;
b4d1d99f 4645 }
106c992a 4646 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4647 }
4648 entry = pte_mkyoung(entry);
285b8dca 4649 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4650 flags & FAULT_FLAG_WRITE))
285b8dca 4651 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4652out_put_page:
4653 if (page != pagecache_page)
4654 unlock_page(page);
4655 put_page(page);
cb900f41
KS
4656out_ptl:
4657 spin_unlock(ptl);
57303d80
AW
4658
4659 if (pagecache_page) {
4660 unlock_page(pagecache_page);
4661 put_page(pagecache_page);
4662 }
b4d1d99f 4663out_mutex:
c672c7f2 4664 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4665 i_mmap_unlock_read(mapping);
0f792cf9
NH
4666 /*
4667 * Generally it's safe to hold refcount during waiting page lock. But
4668 * here we just wait to defer the next page fault to avoid busy loop and
4669 * the page is not used after unlocked before returning from the current
4670 * page fault. So we are safe from accessing freed page, even if we wait
4671 * here without taking refcount.
4672 */
4673 if (need_wait_lock)
4674 wait_on_page_locked(page);
1e8f889b 4675 return ret;
86e5216f
AL
4676}
4677
8fb5debc
MK
4678/*
4679 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4680 * modifications for huge pages.
4681 */
4682int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4683 pte_t *dst_pte,
4684 struct vm_area_struct *dst_vma,
4685 unsigned long dst_addr,
4686 unsigned long src_addr,
4687 struct page **pagep)
4688{
1e392147
AA
4689 struct address_space *mapping;
4690 pgoff_t idx;
4691 unsigned long size;
1c9e8def 4692 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4693 struct hstate *h = hstate_vma(dst_vma);
4694 pte_t _dst_pte;
4695 spinlock_t *ptl;
4696 int ret;
4697 struct page *page;
4698
4699 if (!*pagep) {
4700 ret = -ENOMEM;
4701 page = alloc_huge_page(dst_vma, dst_addr, 0);
4702 if (IS_ERR(page))
4703 goto out;
4704
4705 ret = copy_huge_page_from_user(page,
4706 (const void __user *) src_addr,
810a56b9 4707 pages_per_huge_page(h), false);
8fb5debc 4708
c1e8d7c6 4709 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 4710 if (unlikely(ret)) {
9e368259 4711 ret = -ENOENT;
8fb5debc
MK
4712 *pagep = page;
4713 /* don't free the page */
4714 goto out;
4715 }
4716 } else {
4717 page = *pagep;
4718 *pagep = NULL;
4719 }
4720
4721 /*
4722 * The memory barrier inside __SetPageUptodate makes sure that
4723 * preceding stores to the page contents become visible before
4724 * the set_pte_at() write.
4725 */
4726 __SetPageUptodate(page);
8fb5debc 4727
1e392147
AA
4728 mapping = dst_vma->vm_file->f_mapping;
4729 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4730
1c9e8def
MK
4731 /*
4732 * If shared, add to page cache
4733 */
4734 if (vm_shared) {
1e392147
AA
4735 size = i_size_read(mapping->host) >> huge_page_shift(h);
4736 ret = -EFAULT;
4737 if (idx >= size)
4738 goto out_release_nounlock;
1c9e8def 4739
1e392147
AA
4740 /*
4741 * Serialization between remove_inode_hugepages() and
4742 * huge_add_to_page_cache() below happens through the
4743 * hugetlb_fault_mutex_table that here must be hold by
4744 * the caller.
4745 */
1c9e8def
MK
4746 ret = huge_add_to_page_cache(page, mapping, idx);
4747 if (ret)
4748 goto out_release_nounlock;
4749 }
4750
8fb5debc
MK
4751 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4752 spin_lock(ptl);
4753
1e392147
AA
4754 /*
4755 * Recheck the i_size after holding PT lock to make sure not
4756 * to leave any page mapped (as page_mapped()) beyond the end
4757 * of the i_size (remove_inode_hugepages() is strict about
4758 * enforcing that). If we bail out here, we'll also leave a
4759 * page in the radix tree in the vm_shared case beyond the end
4760 * of the i_size, but remove_inode_hugepages() will take care
4761 * of it as soon as we drop the hugetlb_fault_mutex_table.
4762 */
4763 size = i_size_read(mapping->host) >> huge_page_shift(h);
4764 ret = -EFAULT;
4765 if (idx >= size)
4766 goto out_release_unlock;
4767
8fb5debc
MK
4768 ret = -EEXIST;
4769 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4770 goto out_release_unlock;
4771
1c9e8def
MK
4772 if (vm_shared) {
4773 page_dup_rmap(page, true);
4774 } else {
d6995da3 4775 ClearHPageRestoreReserve(page);
1c9e8def
MK
4776 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4777 }
8fb5debc
MK
4778
4779 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4780 if (dst_vma->vm_flags & VM_WRITE)
4781 _dst_pte = huge_pte_mkdirty(_dst_pte);
4782 _dst_pte = pte_mkyoung(_dst_pte);
4783
4784 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4785
4786 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4787 dst_vma->vm_flags & VM_WRITE);
4788 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4789
4790 /* No need to invalidate - it was non-present before */
4791 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4792
4793 spin_unlock(ptl);
8f251a3d 4794 SetHPageMigratable(page);
1c9e8def
MK
4795 if (vm_shared)
4796 unlock_page(page);
8fb5debc
MK
4797 ret = 0;
4798out:
4799 return ret;
4800out_release_unlock:
4801 spin_unlock(ptl);
1c9e8def
MK
4802 if (vm_shared)
4803 unlock_page(page);
5af10dfd 4804out_release_nounlock:
8fb5debc
MK
4805 put_page(page);
4806 goto out;
4807}
4808
82e5d378
JM
4809static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4810 int refs, struct page **pages,
4811 struct vm_area_struct **vmas)
4812{
4813 int nr;
4814
4815 for (nr = 0; nr < refs; nr++) {
4816 if (likely(pages))
4817 pages[nr] = mem_map_offset(page, nr);
4818 if (vmas)
4819 vmas[nr] = vma;
4820 }
4821}
4822
28a35716
ML
4823long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4824 struct page **pages, struct vm_area_struct **vmas,
4825 unsigned long *position, unsigned long *nr_pages,
4f6da934 4826 long i, unsigned int flags, int *locked)
63551ae0 4827{
d5d4b0aa
KC
4828 unsigned long pfn_offset;
4829 unsigned long vaddr = *position;
28a35716 4830 unsigned long remainder = *nr_pages;
a5516438 4831 struct hstate *h = hstate_vma(vma);
0fa5bc40 4832 int err = -EFAULT, refs;
63551ae0 4833
63551ae0 4834 while (vaddr < vma->vm_end && remainder) {
4c887265 4835 pte_t *pte;
cb900f41 4836 spinlock_t *ptl = NULL;
2a15efc9 4837 int absent;
4c887265 4838 struct page *page;
63551ae0 4839
02057967
DR
4840 /*
4841 * If we have a pending SIGKILL, don't keep faulting pages and
4842 * potentially allocating memory.
4843 */
fa45f116 4844 if (fatal_signal_pending(current)) {
02057967
DR
4845 remainder = 0;
4846 break;
4847 }
4848
4c887265
AL
4849 /*
4850 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4851 * each hugepage. We have to make sure we get the
4c887265 4852 * first, for the page indexing below to work.
cb900f41
KS
4853 *
4854 * Note that page table lock is not held when pte is null.
4c887265 4855 */
7868a208
PA
4856 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4857 huge_page_size(h));
cb900f41
KS
4858 if (pte)
4859 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4860 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4861
4862 /*
4863 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4864 * an error where there's an empty slot with no huge pagecache
4865 * to back it. This way, we avoid allocating a hugepage, and
4866 * the sparse dumpfile avoids allocating disk blocks, but its
4867 * huge holes still show up with zeroes where they need to be.
2a15efc9 4868 */
3ae77f43
HD
4869 if (absent && (flags & FOLL_DUMP) &&
4870 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4871 if (pte)
4872 spin_unlock(ptl);
2a15efc9
HD
4873 remainder = 0;
4874 break;
4875 }
63551ae0 4876
9cc3a5bd
NH
4877 /*
4878 * We need call hugetlb_fault for both hugepages under migration
4879 * (in which case hugetlb_fault waits for the migration,) and
4880 * hwpoisoned hugepages (in which case we need to prevent the
4881 * caller from accessing to them.) In order to do this, we use
4882 * here is_swap_pte instead of is_hugetlb_entry_migration and
4883 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4884 * both cases, and because we can't follow correct pages
4885 * directly from any kind of swap entries.
4886 */
4887 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4888 ((flags & FOLL_WRITE) &&
4889 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4890 vm_fault_t ret;
87ffc118 4891 unsigned int fault_flags = 0;
63551ae0 4892
cb900f41
KS
4893 if (pte)
4894 spin_unlock(ptl);
87ffc118
AA
4895 if (flags & FOLL_WRITE)
4896 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4897 if (locked)
71335f37
PX
4898 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4899 FAULT_FLAG_KILLABLE;
87ffc118
AA
4900 if (flags & FOLL_NOWAIT)
4901 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4902 FAULT_FLAG_RETRY_NOWAIT;
4903 if (flags & FOLL_TRIED) {
4426e945
PX
4904 /*
4905 * Note: FAULT_FLAG_ALLOW_RETRY and
4906 * FAULT_FLAG_TRIED can co-exist
4907 */
87ffc118
AA
4908 fault_flags |= FAULT_FLAG_TRIED;
4909 }
4910 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4911 if (ret & VM_FAULT_ERROR) {
2be7cfed 4912 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4913 remainder = 0;
4914 break;
4915 }
4916 if (ret & VM_FAULT_RETRY) {
4f6da934 4917 if (locked &&
1ac25013 4918 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4919 *locked = 0;
87ffc118
AA
4920 *nr_pages = 0;
4921 /*
4922 * VM_FAULT_RETRY must not return an
4923 * error, it will return zero
4924 * instead.
4925 *
4926 * No need to update "position" as the
4927 * caller will not check it after
4928 * *nr_pages is set to 0.
4929 */
4930 return i;
4931 }
4932 continue;
4c887265
AL
4933 }
4934
a5516438 4935 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4936 page = pte_page(huge_ptep_get(pte));
8fde12ca 4937
acbfb087
ZL
4938 /*
4939 * If subpage information not requested, update counters
4940 * and skip the same_page loop below.
4941 */
4942 if (!pages && !vmas && !pfn_offset &&
4943 (vaddr + huge_page_size(h) < vma->vm_end) &&
4944 (remainder >= pages_per_huge_page(h))) {
4945 vaddr += huge_page_size(h);
4946 remainder -= pages_per_huge_page(h);
4947 i += pages_per_huge_page(h);
4948 spin_unlock(ptl);
4949 continue;
4950 }
4951
82e5d378
JM
4952 refs = min3(pages_per_huge_page(h) - pfn_offset,
4953 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
0fa5bc40 4954
82e5d378
JM
4955 if (pages || vmas)
4956 record_subpages_vmas(mem_map_offset(page, pfn_offset),
4957 vma, refs,
4958 likely(pages) ? pages + i : NULL,
4959 vmas ? vmas + i : NULL);
63551ae0 4960
82e5d378 4961 if (pages) {
0fa5bc40
JM
4962 /*
4963 * try_grab_compound_head() should always succeed here,
4964 * because: a) we hold the ptl lock, and b) we've just
4965 * checked that the huge page is present in the page
4966 * tables. If the huge page is present, then the tail
4967 * pages must also be present. The ptl prevents the
4968 * head page and tail pages from being rearranged in
4969 * any way. So this page must be available at this
4970 * point, unless the page refcount overflowed:
4971 */
82e5d378 4972 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
4973 refs,
4974 flags))) {
4975 spin_unlock(ptl);
4976 remainder = 0;
4977 err = -ENOMEM;
4978 break;
4979 }
d5d4b0aa 4980 }
82e5d378
JM
4981
4982 vaddr += (refs << PAGE_SHIFT);
4983 remainder -= refs;
4984 i += refs;
4985
cb900f41 4986 spin_unlock(ptl);
63551ae0 4987 }
28a35716 4988 *nr_pages = remainder;
87ffc118
AA
4989 /*
4990 * setting position is actually required only if remainder is
4991 * not zero but it's faster not to add a "if (remainder)"
4992 * branch.
4993 */
63551ae0
DG
4994 *position = vaddr;
4995
2be7cfed 4996 return i ? i : err;
63551ae0 4997}
8f860591 4998
5491ae7b
AK
4999#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
5000/*
5001 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
5002 * implement this.
5003 */
5004#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
5005#endif
5006
7da4d641 5007unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
5008 unsigned long address, unsigned long end, pgprot_t newprot)
5009{
5010 struct mm_struct *mm = vma->vm_mm;
5011 unsigned long start = address;
5012 pte_t *ptep;
5013 pte_t pte;
a5516438 5014 struct hstate *h = hstate_vma(vma);
7da4d641 5015 unsigned long pages = 0;
dff11abe 5016 bool shared_pmd = false;
ac46d4f3 5017 struct mmu_notifier_range range;
dff11abe
MK
5018
5019 /*
5020 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5021 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5022 * range if PMD sharing is possible.
5023 */
7269f999
JG
5024 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5025 0, vma, mm, start, end);
ac46d4f3 5026 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5027
5028 BUG_ON(address >= end);
ac46d4f3 5029 flush_cache_range(vma, range.start, range.end);
8f860591 5030
ac46d4f3 5031 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5032 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5033 for (; address < end; address += huge_page_size(h)) {
cb900f41 5034 spinlock_t *ptl;
7868a208 5035 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5036 if (!ptep)
5037 continue;
cb900f41 5038 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5039 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5040 pages++;
cb900f41 5041 spin_unlock(ptl);
dff11abe 5042 shared_pmd = true;
39dde65c 5043 continue;
7da4d641 5044 }
a8bda28d
NH
5045 pte = huge_ptep_get(ptep);
5046 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5047 spin_unlock(ptl);
5048 continue;
5049 }
5050 if (unlikely(is_hugetlb_entry_migration(pte))) {
5051 swp_entry_t entry = pte_to_swp_entry(pte);
5052
5053 if (is_write_migration_entry(entry)) {
5054 pte_t newpte;
5055
5056 make_migration_entry_read(&entry);
5057 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5058 set_huge_swap_pte_at(mm, address, ptep,
5059 newpte, huge_page_size(h));
a8bda28d
NH
5060 pages++;
5061 }
5062 spin_unlock(ptl);
5063 continue;
5064 }
5065 if (!huge_pte_none(pte)) {
023bdd00
AK
5066 pte_t old_pte;
5067
5068 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5069 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5070 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5071 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5072 pages++;
8f860591 5073 }
cb900f41 5074 spin_unlock(ptl);
8f860591 5075 }
d833352a 5076 /*
c8c06efa 5077 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5078 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5079 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5080 * and that page table be reused and filled with junk. If we actually
5081 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5082 */
dff11abe 5083 if (shared_pmd)
ac46d4f3 5084 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5085 else
5086 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5087 /*
5088 * No need to call mmu_notifier_invalidate_range() we are downgrading
5089 * page table protection not changing it to point to a new page.
5090 *
ad56b738 5091 * See Documentation/vm/mmu_notifier.rst
0f10851e 5092 */
83cde9e8 5093 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5094 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5095
5096 return pages << h->order;
8f860591
ZY
5097}
5098
33b8f84a
MK
5099/* Return true if reservation was successful, false otherwise. */
5100bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 5101 long from, long to,
5a6fe125 5102 struct vm_area_struct *vma,
ca16d140 5103 vm_flags_t vm_flags)
e4e574b7 5104{
33b8f84a 5105 long chg, add = -1;
a5516438 5106 struct hstate *h = hstate_inode(inode);
90481622 5107 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5108 struct resv_map *resv_map;
075a61d0 5109 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5110 long gbl_reserve, regions_needed = 0;
e4e574b7 5111
63489f8e
MK
5112 /* This should never happen */
5113 if (from > to) {
5114 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 5115 return false;
63489f8e
MK
5116 }
5117
17c9d12e
MG
5118 /*
5119 * Only apply hugepage reservation if asked. At fault time, an
5120 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5121 * without using reserves
17c9d12e 5122 */
ca16d140 5123 if (vm_flags & VM_NORESERVE)
33b8f84a 5124 return true;
17c9d12e 5125
a1e78772
MG
5126 /*
5127 * Shared mappings base their reservation on the number of pages that
5128 * are already allocated on behalf of the file. Private mappings need
5129 * to reserve the full area even if read-only as mprotect() may be
5130 * called to make the mapping read-write. Assume !vma is a shm mapping
5131 */
9119a41e 5132 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5133 /*
5134 * resv_map can not be NULL as hugetlb_reserve_pages is only
5135 * called for inodes for which resv_maps were created (see
5136 * hugetlbfs_get_inode).
5137 */
4e35f483 5138 resv_map = inode_resv_map(inode);
9119a41e 5139
0db9d74e 5140 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5141
5142 } else {
e9fe92ae 5143 /* Private mapping. */
9119a41e 5144 resv_map = resv_map_alloc();
17c9d12e 5145 if (!resv_map)
33b8f84a 5146 return false;
17c9d12e 5147
a1e78772 5148 chg = to - from;
84afd99b 5149
17c9d12e
MG
5150 set_vma_resv_map(vma, resv_map);
5151 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5152 }
5153
33b8f84a 5154 if (chg < 0)
c50ac050 5155 goto out_err;
8a630112 5156
33b8f84a
MK
5157 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5158 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 5159 goto out_err;
075a61d0
MA
5160
5161 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5162 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5163 * of the resv_map.
5164 */
5165 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5166 }
5167
1c5ecae3
MK
5168 /*
5169 * There must be enough pages in the subpool for the mapping. If
5170 * the subpool has a minimum size, there may be some global
5171 * reservations already in place (gbl_reserve).
5172 */
5173 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 5174 if (gbl_reserve < 0)
075a61d0 5175 goto out_uncharge_cgroup;
5a6fe125
MG
5176
5177 /*
17c9d12e 5178 * Check enough hugepages are available for the reservation.
90481622 5179 * Hand the pages back to the subpool if there are not
5a6fe125 5180 */
33b8f84a 5181 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 5182 goto out_put_pages;
17c9d12e
MG
5183
5184 /*
5185 * Account for the reservations made. Shared mappings record regions
5186 * that have reservations as they are shared by multiple VMAs.
5187 * When the last VMA disappears, the region map says how much
5188 * the reservation was and the page cache tells how much of
5189 * the reservation was consumed. Private mappings are per-VMA and
5190 * only the consumed reservations are tracked. When the VMA
5191 * disappears, the original reservation is the VMA size and the
5192 * consumed reservations are stored in the map. Hence, nothing
5193 * else has to be done for private mappings here
5194 */
33039678 5195 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5196 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5197
5198 if (unlikely(add < 0)) {
5199 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5200 goto out_put_pages;
0db9d74e 5201 } else if (unlikely(chg > add)) {
33039678
MK
5202 /*
5203 * pages in this range were added to the reserve
5204 * map between region_chg and region_add. This
5205 * indicates a race with alloc_huge_page. Adjust
5206 * the subpool and reserve counts modified above
5207 * based on the difference.
5208 */
5209 long rsv_adjust;
5210
d85aecf2
ML
5211 /*
5212 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5213 * reference to h_cg->css. See comment below for detail.
5214 */
075a61d0
MA
5215 hugetlb_cgroup_uncharge_cgroup_rsvd(
5216 hstate_index(h),
5217 (chg - add) * pages_per_huge_page(h), h_cg);
5218
33039678
MK
5219 rsv_adjust = hugepage_subpool_put_pages(spool,
5220 chg - add);
5221 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
5222 } else if (h_cg) {
5223 /*
5224 * The file_regions will hold their own reference to
5225 * h_cg->css. So we should release the reference held
5226 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5227 * done.
5228 */
5229 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
5230 }
5231 }
33b8f84a
MK
5232 return true;
5233
075a61d0
MA
5234out_put_pages:
5235 /* put back original number of pages, chg */
5236 (void)hugepage_subpool_put_pages(spool, chg);
5237out_uncharge_cgroup:
5238 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5239 chg * pages_per_huge_page(h), h_cg);
c50ac050 5240out_err:
5e911373 5241 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5242 /* Only call region_abort if the region_chg succeeded but the
5243 * region_add failed or didn't run.
5244 */
5245 if (chg >= 0 && add < 0)
5246 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5247 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5248 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 5249 return false;
a43a8c39
KC
5250}
5251
b5cec28d
MK
5252long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5253 long freed)
a43a8c39 5254{
a5516438 5255 struct hstate *h = hstate_inode(inode);
4e35f483 5256 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5257 long chg = 0;
90481622 5258 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5259 long gbl_reserve;
45c682a6 5260
f27a5136
MK
5261 /*
5262 * Since this routine can be called in the evict inode path for all
5263 * hugetlbfs inodes, resv_map could be NULL.
5264 */
b5cec28d
MK
5265 if (resv_map) {
5266 chg = region_del(resv_map, start, end);
5267 /*
5268 * region_del() can fail in the rare case where a region
5269 * must be split and another region descriptor can not be
5270 * allocated. If end == LONG_MAX, it will not fail.
5271 */
5272 if (chg < 0)
5273 return chg;
5274 }
5275
45c682a6 5276 spin_lock(&inode->i_lock);
e4c6f8be 5277 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5278 spin_unlock(&inode->i_lock);
5279
1c5ecae3
MK
5280 /*
5281 * If the subpool has a minimum size, the number of global
5282 * reservations to be released may be adjusted.
5283 */
5284 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5285 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5286
5287 return 0;
a43a8c39 5288}
93f70f90 5289
3212b535
SC
5290#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5291static unsigned long page_table_shareable(struct vm_area_struct *svma,
5292 struct vm_area_struct *vma,
5293 unsigned long addr, pgoff_t idx)
5294{
5295 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5296 svma->vm_start;
5297 unsigned long sbase = saddr & PUD_MASK;
5298 unsigned long s_end = sbase + PUD_SIZE;
5299
5300 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5301 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5302 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5303
5304 /*
5305 * match the virtual addresses, permission and the alignment of the
5306 * page table page.
5307 */
5308 if (pmd_index(addr) != pmd_index(saddr) ||
5309 vm_flags != svm_flags ||
07e51edf 5310 !range_in_vma(svma, sbase, s_end))
3212b535
SC
5311 return 0;
5312
5313 return saddr;
5314}
5315
31aafb45 5316static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5317{
5318 unsigned long base = addr & PUD_MASK;
5319 unsigned long end = base + PUD_SIZE;
5320
5321 /*
5322 * check on proper vm_flags and page table alignment
5323 */
017b1660 5324 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5325 return true;
5326 return false;
3212b535
SC
5327}
5328
017b1660
MK
5329/*
5330 * Determine if start,end range within vma could be mapped by shared pmd.
5331 * If yes, adjust start and end to cover range associated with possible
5332 * shared pmd mappings.
5333 */
5334void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5335 unsigned long *start, unsigned long *end)
5336{
a1ba9da8
LX
5337 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5338 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5339
a1ba9da8
LX
5340 /*
5341 * vma need span at least one aligned PUD size and the start,end range
5342 * must at least partialy within it.
5343 */
5344 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5345 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5346 return;
5347
75802ca6 5348 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
5349 if (*start > v_start)
5350 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5351
a1ba9da8
LX
5352 if (*end < v_end)
5353 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5354}
5355
3212b535
SC
5356/*
5357 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5358 * and returns the corresponding pte. While this is not necessary for the
5359 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5360 * code much cleaner.
5361 *
0bf7b64e
MK
5362 * This routine must be called with i_mmap_rwsem held in at least read mode if
5363 * sharing is possible. For hugetlbfs, this prevents removal of any page
5364 * table entries associated with the address space. This is important as we
5365 * are setting up sharing based on existing page table entries (mappings).
5366 *
5367 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5368 * huge_pte_alloc know that sharing is not possible and do not take
5369 * i_mmap_rwsem as a performance optimization. This is handled by the
5370 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5371 * only required for subsequent processing.
3212b535
SC
5372 */
5373pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5374{
5375 struct vm_area_struct *vma = find_vma(mm, addr);
5376 struct address_space *mapping = vma->vm_file->f_mapping;
5377 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5378 vma->vm_pgoff;
5379 struct vm_area_struct *svma;
5380 unsigned long saddr;
5381 pte_t *spte = NULL;
5382 pte_t *pte;
cb900f41 5383 spinlock_t *ptl;
3212b535
SC
5384
5385 if (!vma_shareable(vma, addr))
5386 return (pte_t *)pmd_alloc(mm, pud, addr);
5387
0bf7b64e 5388 i_mmap_assert_locked(mapping);
3212b535
SC
5389 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5390 if (svma == vma)
5391 continue;
5392
5393 saddr = page_table_shareable(svma, vma, addr, idx);
5394 if (saddr) {
7868a208
PA
5395 spte = huge_pte_offset(svma->vm_mm, saddr,
5396 vma_mmu_pagesize(svma));
3212b535
SC
5397 if (spte) {
5398 get_page(virt_to_page(spte));
5399 break;
5400 }
5401 }
5402 }
5403
5404 if (!spte)
5405 goto out;
5406
8bea8052 5407 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5408 if (pud_none(*pud)) {
3212b535
SC
5409 pud_populate(mm, pud,
5410 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5411 mm_inc_nr_pmds(mm);
dc6c9a35 5412 } else {
3212b535 5413 put_page(virt_to_page(spte));
dc6c9a35 5414 }
cb900f41 5415 spin_unlock(ptl);
3212b535
SC
5416out:
5417 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5418 return pte;
5419}
5420
5421/*
5422 * unmap huge page backed by shared pte.
5423 *
5424 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5425 * indicated by page_count > 1, unmap is achieved by clearing pud and
5426 * decrementing the ref count. If count == 1, the pte page is not shared.
5427 *
c0d0381a 5428 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5429 *
5430 * returns: 1 successfully unmapped a shared pte page
5431 * 0 the underlying pte page is not shared, or it is the last user
5432 */
34ae204f
MK
5433int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5434 unsigned long *addr, pte_t *ptep)
3212b535
SC
5435{
5436 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5437 p4d_t *p4d = p4d_offset(pgd, *addr);
5438 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5439
34ae204f 5440 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5441 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5442 if (page_count(virt_to_page(ptep)) == 1)
5443 return 0;
5444
5445 pud_clear(pud);
5446 put_page(virt_to_page(ptep));
dc6c9a35 5447 mm_dec_nr_pmds(mm);
3212b535
SC
5448 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5449 return 1;
5450}
9e5fc74c
SC
5451#define want_pmd_share() (1)
5452#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5453pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5454{
5455 return NULL;
5456}
e81f2d22 5457
34ae204f
MK
5458int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5459 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5460{
5461 return 0;
5462}
017b1660
MK
5463
5464void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5465 unsigned long *start, unsigned long *end)
5466{
5467}
9e5fc74c 5468#define want_pmd_share() (0)
3212b535
SC
5469#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5470
9e5fc74c
SC
5471#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5472pte_t *huge_pte_alloc(struct mm_struct *mm,
5473 unsigned long addr, unsigned long sz)
5474{
5475 pgd_t *pgd;
c2febafc 5476 p4d_t *p4d;
9e5fc74c
SC
5477 pud_t *pud;
5478 pte_t *pte = NULL;
5479
5480 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5481 p4d = p4d_alloc(mm, pgd, addr);
5482 if (!p4d)
5483 return NULL;
c2febafc 5484 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5485 if (pud) {
5486 if (sz == PUD_SIZE) {
5487 pte = (pte_t *)pud;
5488 } else {
5489 BUG_ON(sz != PMD_SIZE);
5490 if (want_pmd_share() && pud_none(*pud))
5491 pte = huge_pmd_share(mm, addr, pud);
5492 else
5493 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5494 }
5495 }
4e666314 5496 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5497
5498 return pte;
5499}
5500
9b19df29
PA
5501/*
5502 * huge_pte_offset() - Walk the page table to resolve the hugepage
5503 * entry at address @addr
5504 *
8ac0b81a
LX
5505 * Return: Pointer to page table entry (PUD or PMD) for
5506 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5507 * size @sz doesn't match the hugepage size at this level of the page
5508 * table.
5509 */
7868a208
PA
5510pte_t *huge_pte_offset(struct mm_struct *mm,
5511 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5512{
5513 pgd_t *pgd;
c2febafc 5514 p4d_t *p4d;
8ac0b81a
LX
5515 pud_t *pud;
5516 pmd_t *pmd;
9e5fc74c
SC
5517
5518 pgd = pgd_offset(mm, addr);
c2febafc
KS
5519 if (!pgd_present(*pgd))
5520 return NULL;
5521 p4d = p4d_offset(pgd, addr);
5522 if (!p4d_present(*p4d))
5523 return NULL;
9b19df29 5524
c2febafc 5525 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5526 if (sz == PUD_SIZE)
5527 /* must be pud huge, non-present or none */
c2febafc 5528 return (pte_t *)pud;
8ac0b81a 5529 if (!pud_present(*pud))
9b19df29 5530 return NULL;
8ac0b81a 5531 /* must have a valid entry and size to go further */
9b19df29 5532
8ac0b81a
LX
5533 pmd = pmd_offset(pud, addr);
5534 /* must be pmd huge, non-present or none */
5535 return (pte_t *)pmd;
9e5fc74c
SC
5536}
5537
61f77eda
NH
5538#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5539
5540/*
5541 * These functions are overwritable if your architecture needs its own
5542 * behavior.
5543 */
5544struct page * __weak
5545follow_huge_addr(struct mm_struct *mm, unsigned long address,
5546 int write)
5547{
5548 return ERR_PTR(-EINVAL);
5549}
5550
4dc71451
AK
5551struct page * __weak
5552follow_huge_pd(struct vm_area_struct *vma,
5553 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5554{
5555 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5556 return NULL;
5557}
5558
61f77eda 5559struct page * __weak
9e5fc74c 5560follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5561 pmd_t *pmd, int flags)
9e5fc74c 5562{
e66f17ff
NH
5563 struct page *page = NULL;
5564 spinlock_t *ptl;
c9d398fa 5565 pte_t pte;
3faa52c0
JH
5566
5567 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5568 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5569 (FOLL_PIN | FOLL_GET)))
5570 return NULL;
5571
e66f17ff
NH
5572retry:
5573 ptl = pmd_lockptr(mm, pmd);
5574 spin_lock(ptl);
5575 /*
5576 * make sure that the address range covered by this pmd is not
5577 * unmapped from other threads.
5578 */
5579 if (!pmd_huge(*pmd))
5580 goto out;
c9d398fa
NH
5581 pte = huge_ptep_get((pte_t *)pmd);
5582 if (pte_present(pte)) {
97534127 5583 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5584 /*
5585 * try_grab_page() should always succeed here, because: a) we
5586 * hold the pmd (ptl) lock, and b) we've just checked that the
5587 * huge pmd (head) page is present in the page tables. The ptl
5588 * prevents the head page and tail pages from being rearranged
5589 * in any way. So this page must be available at this point,
5590 * unless the page refcount overflowed:
5591 */
5592 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5593 page = NULL;
5594 goto out;
5595 }
e66f17ff 5596 } else {
c9d398fa 5597 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5598 spin_unlock(ptl);
5599 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5600 goto retry;
5601 }
5602 /*
5603 * hwpoisoned entry is treated as no_page_table in
5604 * follow_page_mask().
5605 */
5606 }
5607out:
5608 spin_unlock(ptl);
9e5fc74c
SC
5609 return page;
5610}
5611
61f77eda 5612struct page * __weak
9e5fc74c 5613follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5614 pud_t *pud, int flags)
9e5fc74c 5615{
3faa52c0 5616 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5617 return NULL;
9e5fc74c 5618
e66f17ff 5619 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5620}
5621
faaa5b62
AK
5622struct page * __weak
5623follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5624{
3faa52c0 5625 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5626 return NULL;
5627
5628 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5629}
5630
31caf665
NH
5631bool isolate_huge_page(struct page *page, struct list_head *list)
5632{
bcc54222
NH
5633 bool ret = true;
5634
31caf665 5635 spin_lock(&hugetlb_lock);
8f251a3d
MK
5636 if (!PageHeadHuge(page) ||
5637 !HPageMigratable(page) ||
0eb2df2b 5638 !get_page_unless_zero(page)) {
bcc54222
NH
5639 ret = false;
5640 goto unlock;
5641 }
8f251a3d 5642 ClearHPageMigratable(page);
31caf665 5643 list_move_tail(&page->lru, list);
bcc54222 5644unlock:
31caf665 5645 spin_unlock(&hugetlb_lock);
bcc54222 5646 return ret;
31caf665
NH
5647}
5648
5649void putback_active_hugepage(struct page *page)
5650{
31caf665 5651 spin_lock(&hugetlb_lock);
8f251a3d 5652 SetHPageMigratable(page);
31caf665
NH
5653 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5654 spin_unlock(&hugetlb_lock);
5655 put_page(page);
5656}
ab5ac90a
MH
5657
5658void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5659{
5660 struct hstate *h = page_hstate(oldpage);
5661
5662 hugetlb_cgroup_migrate(oldpage, newpage);
5663 set_page_owner_migrate_reason(newpage, reason);
5664
5665 /*
5666 * transfer temporary state of the new huge page. This is
5667 * reverse to other transitions because the newpage is going to
5668 * be final while the old one will be freed so it takes over
5669 * the temporary status.
5670 *
5671 * Also note that we have to transfer the per-node surplus state
5672 * here as well otherwise the global surplus count will not match
5673 * the per-node's.
5674 */
9157c311 5675 if (HPageTemporary(newpage)) {
ab5ac90a
MH
5676 int old_nid = page_to_nid(oldpage);
5677 int new_nid = page_to_nid(newpage);
5678
9157c311
MK
5679 SetHPageTemporary(oldpage);
5680 ClearHPageTemporary(newpage);
ab5ac90a
MH
5681
5682 spin_lock(&hugetlb_lock);
5683 if (h->surplus_huge_pages_node[old_nid]) {
5684 h->surplus_huge_pages_node[old_nid]--;
5685 h->surplus_huge_pages_node[new_nid]++;
5686 }
5687 spin_unlock(&hugetlb_lock);
5688 }
5689}
cf11e85f
RG
5690
5691#ifdef CONFIG_CMA
cf11e85f
RG
5692static bool cma_reserve_called __initdata;
5693
5694static int __init cmdline_parse_hugetlb_cma(char *p)
5695{
5696 hugetlb_cma_size = memparse(p, &p);
5697 return 0;
5698}
5699
5700early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5701
5702void __init hugetlb_cma_reserve(int order)
5703{
5704 unsigned long size, reserved, per_node;
5705 int nid;
5706
5707 cma_reserve_called = true;
5708
5709 if (!hugetlb_cma_size)
5710 return;
5711
5712 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5713 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5714 (PAGE_SIZE << order) / SZ_1M);
5715 return;
5716 }
5717
5718 /*
5719 * If 3 GB area is requested on a machine with 4 numa nodes,
5720 * let's allocate 1 GB on first three nodes and ignore the last one.
5721 */
5722 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5723 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5724 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5725
5726 reserved = 0;
5727 for_each_node_state(nid, N_ONLINE) {
5728 int res;
2281f797 5729 char name[CMA_MAX_NAME];
cf11e85f
RG
5730
5731 size = min(per_node, hugetlb_cma_size - reserved);
5732 size = round_up(size, PAGE_SIZE << order);
5733
2281f797 5734 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 5735 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 5736 0, false, name,
cf11e85f
RG
5737 &hugetlb_cma[nid], nid);
5738 if (res) {
5739 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5740 res, nid);
5741 continue;
5742 }
5743
5744 reserved += size;
5745 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5746 size / SZ_1M, nid);
5747
5748 if (reserved >= hugetlb_cma_size)
5749 break;
5750 }
5751}
5752
5753void __init hugetlb_cma_check(void)
5754{
5755 if (!hugetlb_cma_size || cma_reserve_called)
5756 return;
5757
5758 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5759}
5760
5761#endif /* CONFIG_CMA */