]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/hugetlb.c
mm/vma: make vma_is_accessible() available for general use
[mirror_ubuntu-hirsute-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
63489f8e 22#include <linux/mmdebug.h>
174cd4b1 23#include <linux/sched/signal.h>
0fe6e20b 24#include <linux/rmap.h>
c6247f72 25#include <linux/string_helpers.h>
fd6a03ed
NH
26#include <linux/swap.h>
27#include <linux/swapops.h>
8382d914 28#include <linux/jhash.h>
98fa15f3 29#include <linux/numa.h>
c77c0a8a 30#include <linux/llist.h>
d6606683 31
63551ae0
DG
32#include <asm/page.h>
33#include <asm/pgtable.h>
24669e58 34#include <asm/tlb.h>
63551ae0 35
24669e58 36#include <linux/io.h>
63551ae0 37#include <linux/hugetlb.h>
9dd540e2 38#include <linux/hugetlb_cgroup.h>
9a305230 39#include <linux/node.h>
1a1aad8a 40#include <linux/userfaultfd_k.h>
ab5ac90a 41#include <linux/page_owner.h>
7835e98b 42#include "internal.h"
1da177e4 43
c3f38a38 44int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
45unsigned int default_hstate_idx;
46struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
47/*
48 * Minimum page order among possible hugepage sizes, set to a proper value
49 * at boot time.
50 */
51static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 52
53ba51d2
JT
53__initdata LIST_HEAD(huge_boot_pages);
54
e5ff2159
AK
55/* for command line parsing */
56static struct hstate * __initdata parsed_hstate;
57static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 58static unsigned long __initdata default_hstate_size;
9fee021d 59static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 60
3935baa9 61/*
31caf665
NH
62 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
63 * free_huge_pages, and surplus_huge_pages.
3935baa9 64 */
c3f38a38 65DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 66
8382d914
DB
67/*
68 * Serializes faults on the same logical page. This is used to
69 * prevent spurious OOMs when the hugepage pool is fully utilized.
70 */
71static int num_fault_mutexes;
c672c7f2 72struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 73
7ca02d0a
MK
74/* Forward declaration */
75static int hugetlb_acct_memory(struct hstate *h, long delta);
76
90481622
DG
77static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
78{
79 bool free = (spool->count == 0) && (spool->used_hpages == 0);
80
81 spin_unlock(&spool->lock);
82
83 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
84 * remain, give up any reservations mased on minimum size and
85 * free the subpool */
86 if (free) {
87 if (spool->min_hpages != -1)
88 hugetlb_acct_memory(spool->hstate,
89 -spool->min_hpages);
90481622 90 kfree(spool);
7ca02d0a 91 }
90481622
DG
92}
93
7ca02d0a
MK
94struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
95 long min_hpages)
90481622
DG
96{
97 struct hugepage_subpool *spool;
98
c6a91820 99 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
100 if (!spool)
101 return NULL;
102
103 spin_lock_init(&spool->lock);
104 spool->count = 1;
7ca02d0a
MK
105 spool->max_hpages = max_hpages;
106 spool->hstate = h;
107 spool->min_hpages = min_hpages;
108
109 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
110 kfree(spool);
111 return NULL;
112 }
113 spool->rsv_hpages = min_hpages;
90481622
DG
114
115 return spool;
116}
117
118void hugepage_put_subpool(struct hugepage_subpool *spool)
119{
120 spin_lock(&spool->lock);
121 BUG_ON(!spool->count);
122 spool->count--;
123 unlock_or_release_subpool(spool);
124}
125
1c5ecae3
MK
126/*
127 * Subpool accounting for allocating and reserving pages.
128 * Return -ENOMEM if there are not enough resources to satisfy the
129 * the request. Otherwise, return the number of pages by which the
130 * global pools must be adjusted (upward). The returned value may
131 * only be different than the passed value (delta) in the case where
132 * a subpool minimum size must be manitained.
133 */
134static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
135 long delta)
136{
1c5ecae3 137 long ret = delta;
90481622
DG
138
139 if (!spool)
1c5ecae3 140 return ret;
90481622
DG
141
142 spin_lock(&spool->lock);
1c5ecae3
MK
143
144 if (spool->max_hpages != -1) { /* maximum size accounting */
145 if ((spool->used_hpages + delta) <= spool->max_hpages)
146 spool->used_hpages += delta;
147 else {
148 ret = -ENOMEM;
149 goto unlock_ret;
150 }
90481622 151 }
90481622 152
09a95e29
MK
153 /* minimum size accounting */
154 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
155 if (delta > spool->rsv_hpages) {
156 /*
157 * Asking for more reserves than those already taken on
158 * behalf of subpool. Return difference.
159 */
160 ret = delta - spool->rsv_hpages;
161 spool->rsv_hpages = 0;
162 } else {
163 ret = 0; /* reserves already accounted for */
164 spool->rsv_hpages -= delta;
165 }
166 }
167
168unlock_ret:
169 spin_unlock(&spool->lock);
90481622
DG
170 return ret;
171}
172
1c5ecae3
MK
173/*
174 * Subpool accounting for freeing and unreserving pages.
175 * Return the number of global page reservations that must be dropped.
176 * The return value may only be different than the passed value (delta)
177 * in the case where a subpool minimum size must be maintained.
178 */
179static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
180 long delta)
181{
1c5ecae3
MK
182 long ret = delta;
183
90481622 184 if (!spool)
1c5ecae3 185 return delta;
90481622
DG
186
187 spin_lock(&spool->lock);
1c5ecae3
MK
188
189 if (spool->max_hpages != -1) /* maximum size accounting */
190 spool->used_hpages -= delta;
191
09a95e29
MK
192 /* minimum size accounting */
193 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
194 if (spool->rsv_hpages + delta <= spool->min_hpages)
195 ret = 0;
196 else
197 ret = spool->rsv_hpages + delta - spool->min_hpages;
198
199 spool->rsv_hpages += delta;
200 if (spool->rsv_hpages > spool->min_hpages)
201 spool->rsv_hpages = spool->min_hpages;
202 }
203
204 /*
205 * If hugetlbfs_put_super couldn't free spool due to an outstanding
206 * quota reference, free it now.
207 */
90481622 208 unlock_or_release_subpool(spool);
1c5ecae3
MK
209
210 return ret;
90481622
DG
211}
212
213static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
214{
215 return HUGETLBFS_SB(inode->i_sb)->spool;
216}
217
218static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
219{
496ad9aa 220 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
221}
222
0db9d74e
MA
223/* Helper that removes a struct file_region from the resv_map cache and returns
224 * it for use.
225 */
226static struct file_region *
227get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
228{
229 struct file_region *nrg = NULL;
230
231 VM_BUG_ON(resv->region_cache_count <= 0);
232
233 resv->region_cache_count--;
234 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
235 VM_BUG_ON(!nrg);
236 list_del(&nrg->link);
237
238 nrg->from = from;
239 nrg->to = to;
240
241 return nrg;
242}
243
075a61d0
MA
244static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
245 struct file_region *rg)
246{
247#ifdef CONFIG_CGROUP_HUGETLB
248 nrg->reservation_counter = rg->reservation_counter;
249 nrg->css = rg->css;
250 if (rg->css)
251 css_get(rg->css);
252#endif
253}
254
255/* Helper that records hugetlb_cgroup uncharge info. */
256static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
257 struct hstate *h,
258 struct resv_map *resv,
259 struct file_region *nrg)
260{
261#ifdef CONFIG_CGROUP_HUGETLB
262 if (h_cg) {
263 nrg->reservation_counter =
264 &h_cg->rsvd_hugepage[hstate_index(h)];
265 nrg->css = &h_cg->css;
266 if (!resv->pages_per_hpage)
267 resv->pages_per_hpage = pages_per_huge_page(h);
268 /* pages_per_hpage should be the same for all entries in
269 * a resv_map.
270 */
271 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
272 } else {
273 nrg->reservation_counter = NULL;
274 nrg->css = NULL;
275 }
276#endif
277}
278
a9b3f867
MA
279static bool has_same_uncharge_info(struct file_region *rg,
280 struct file_region *org)
281{
282#ifdef CONFIG_CGROUP_HUGETLB
283 return rg && org &&
284 rg->reservation_counter == org->reservation_counter &&
285 rg->css == org->css;
286
287#else
288 return true;
289#endif
290}
291
292static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
293{
294 struct file_region *nrg = NULL, *prg = NULL;
295
296 prg = list_prev_entry(rg, link);
297 if (&prg->link != &resv->regions && prg->to == rg->from &&
298 has_same_uncharge_info(prg, rg)) {
299 prg->to = rg->to;
300
301 list_del(&rg->link);
302 kfree(rg);
303
304 coalesce_file_region(resv, prg);
305 return;
306 }
307
308 nrg = list_next_entry(rg, link);
309 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
310 has_same_uncharge_info(nrg, rg)) {
311 nrg->from = rg->from;
312
313 list_del(&rg->link);
314 kfree(rg);
315
316 coalesce_file_region(resv, nrg);
317 return;
318 }
319}
320
d75c6af9
MA
321/* Must be called with resv->lock held. Calling this with count_only == true
322 * will count the number of pages to be added but will not modify the linked
0db9d74e
MA
323 * list. If regions_needed != NULL and count_only == true, then regions_needed
324 * will indicate the number of file_regions needed in the cache to carry out to
325 * add the regions for this range.
d75c6af9
MA
326 */
327static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0
MA
328 struct hugetlb_cgroup *h_cg,
329 struct hstate *h, long *regions_needed,
330 bool count_only)
d75c6af9 331{
0db9d74e 332 long add = 0;
d75c6af9 333 struct list_head *head = &resv->regions;
0db9d74e 334 long last_accounted_offset = f;
d75c6af9
MA
335 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
336
0db9d74e
MA
337 if (regions_needed)
338 *regions_needed = 0;
d75c6af9 339
0db9d74e
MA
340 /* In this loop, we essentially handle an entry for the range
341 * [last_accounted_offset, rg->from), at every iteration, with some
342 * bounds checking.
343 */
344 list_for_each_entry_safe(rg, trg, head, link) {
345 /* Skip irrelevant regions that start before our range. */
346 if (rg->from < f) {
347 /* If this region ends after the last accounted offset,
348 * then we need to update last_accounted_offset.
349 */
350 if (rg->to > last_accounted_offset)
351 last_accounted_offset = rg->to;
352 continue;
353 }
d75c6af9 354
0db9d74e
MA
355 /* When we find a region that starts beyond our range, we've
356 * finished.
357 */
d75c6af9
MA
358 if (rg->from > t)
359 break;
360
0db9d74e
MA
361 /* Add an entry for last_accounted_offset -> rg->from, and
362 * update last_accounted_offset.
363 */
364 if (rg->from > last_accounted_offset) {
365 add += rg->from - last_accounted_offset;
366 if (!count_only) {
367 nrg = get_file_region_entry_from_cache(
368 resv, last_accounted_offset, rg->from);
075a61d0
MA
369 record_hugetlb_cgroup_uncharge_info(h_cg, h,
370 resv, nrg);
0db9d74e 371 list_add(&nrg->link, rg->link.prev);
a9b3f867 372 coalesce_file_region(resv, nrg);
0db9d74e
MA
373 } else if (regions_needed)
374 *regions_needed += 1;
375 }
376
377 last_accounted_offset = rg->to;
378 }
379
380 /* Handle the case where our range extends beyond
381 * last_accounted_offset.
382 */
383 if (last_accounted_offset < t) {
384 add += t - last_accounted_offset;
385 if (!count_only) {
386 nrg = get_file_region_entry_from_cache(
387 resv, last_accounted_offset, t);
075a61d0 388 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
0db9d74e 389 list_add(&nrg->link, rg->link.prev);
a9b3f867 390 coalesce_file_region(resv, nrg);
0db9d74e
MA
391 } else if (regions_needed)
392 *regions_needed += 1;
393 }
394
395 VM_BUG_ON(add < 0);
396 return add;
397}
398
399/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
400 */
401static int allocate_file_region_entries(struct resv_map *resv,
402 int regions_needed)
403 __must_hold(&resv->lock)
404{
405 struct list_head allocated_regions;
406 int to_allocate = 0, i = 0;
407 struct file_region *trg = NULL, *rg = NULL;
408
409 VM_BUG_ON(regions_needed < 0);
410
411 INIT_LIST_HEAD(&allocated_regions);
412
413 /*
414 * Check for sufficient descriptors in the cache to accommodate
415 * the number of in progress add operations plus regions_needed.
416 *
417 * This is a while loop because when we drop the lock, some other call
418 * to region_add or region_del may have consumed some region_entries,
419 * so we keep looping here until we finally have enough entries for
420 * (adds_in_progress + regions_needed).
421 */
422 while (resv->region_cache_count <
423 (resv->adds_in_progress + regions_needed)) {
424 to_allocate = resv->adds_in_progress + regions_needed -
425 resv->region_cache_count;
426
427 /* At this point, we should have enough entries in the cache
428 * for all the existings adds_in_progress. We should only be
429 * needing to allocate for regions_needed.
d75c6af9 430 */
0db9d74e
MA
431 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
432
433 spin_unlock(&resv->lock);
434 for (i = 0; i < to_allocate; i++) {
435 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
436 if (!trg)
437 goto out_of_memory;
438 list_add(&trg->link, &allocated_regions);
d75c6af9 439 }
d75c6af9 440
0db9d74e
MA
441 spin_lock(&resv->lock);
442
443 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
d75c6af9 444 list_del(&rg->link);
0db9d74e
MA
445 list_add(&rg->link, &resv->region_cache);
446 resv->region_cache_count++;
d75c6af9
MA
447 }
448 }
449
0db9d74e 450 return 0;
d75c6af9 451
0db9d74e
MA
452out_of_memory:
453 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
454 list_del(&rg->link);
455 kfree(rg);
456 }
457 return -ENOMEM;
d75c6af9
MA
458}
459
1dd308a7
MK
460/*
461 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
462 * map. Regions will be taken from the cache to fill in this range.
463 * Sufficient regions should exist in the cache due to the previous
464 * call to region_chg with the same range, but in some cases the cache will not
465 * have sufficient entries due to races with other code doing region_add or
466 * region_del. The extra needed entries will be allocated.
cf3ad20b 467 *
0db9d74e
MA
468 * regions_needed is the out value provided by a previous call to region_chg.
469 *
470 * Return the number of new huge pages added to the map. This number is greater
471 * than or equal to zero. If file_region entries needed to be allocated for
472 * this operation and we were not able to allocate, it ruturns -ENOMEM.
473 * region_add of regions of length 1 never allocate file_regions and cannot
474 * fail; region_chg will always allocate at least 1 entry and a region_add for
475 * 1 page will only require at most 1 entry.
1dd308a7 476 */
0db9d74e 477static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
478 long in_regions_needed, struct hstate *h,
479 struct hugetlb_cgroup *h_cg)
96822904 480{
0db9d74e 481 long add = 0, actual_regions_needed = 0;
96822904 482
7b24d861 483 spin_lock(&resv->lock);
0db9d74e
MA
484retry:
485
486 /* Count how many regions are actually needed to execute this add. */
075a61d0
MA
487 add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
488 true);
96822904 489
5e911373 490 /*
0db9d74e
MA
491 * Check for sufficient descriptors in the cache to accommodate
492 * this add operation. Note that actual_regions_needed may be greater
493 * than in_regions_needed, as the resv_map may have been modified since
494 * the region_chg call. In this case, we need to make sure that we
495 * allocate extra entries, such that we have enough for all the
496 * existing adds_in_progress, plus the excess needed for this
497 * operation.
5e911373 498 */
0db9d74e
MA
499 if (actual_regions_needed > in_regions_needed &&
500 resv->region_cache_count <
501 resv->adds_in_progress +
502 (actual_regions_needed - in_regions_needed)) {
503 /* region_add operation of range 1 should never need to
504 * allocate file_region entries.
505 */
506 VM_BUG_ON(t - f <= 1);
5e911373 507
0db9d74e
MA
508 if (allocate_file_region_entries(
509 resv, actual_regions_needed - in_regions_needed)) {
510 return -ENOMEM;
511 }
5e911373 512
0db9d74e 513 goto retry;
5e911373
MK
514 }
515
075a61d0 516 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
0db9d74e
MA
517
518 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 519
7b24d861 520 spin_unlock(&resv->lock);
cf3ad20b
MK
521 VM_BUG_ON(add < 0);
522 return add;
96822904
AW
523}
524
1dd308a7
MK
525/*
526 * Examine the existing reserve map and determine how many
527 * huge pages in the specified range [f, t) are NOT currently
528 * represented. This routine is called before a subsequent
529 * call to region_add that will actually modify the reserve
530 * map to add the specified range [f, t). region_chg does
531 * not change the number of huge pages represented by the
0db9d74e
MA
532 * map. A number of new file_region structures is added to the cache as a
533 * placeholder, for the subsequent region_add call to use. At least 1
534 * file_region structure is added.
535 *
536 * out_regions_needed is the number of regions added to the
537 * resv->adds_in_progress. This value needs to be provided to a follow up call
538 * to region_add or region_abort for proper accounting.
5e911373
MK
539 *
540 * Returns the number of huge pages that need to be added to the existing
541 * reservation map for the range [f, t). This number is greater or equal to
542 * zero. -ENOMEM is returned if a new file_region structure or cache entry
543 * is needed and can not be allocated.
1dd308a7 544 */
0db9d74e
MA
545static long region_chg(struct resv_map *resv, long f, long t,
546 long *out_regions_needed)
96822904 547{
96822904
AW
548 long chg = 0;
549
7b24d861 550 spin_lock(&resv->lock);
5e911373 551
0db9d74e 552 /* Count how many hugepages in this range are NOT respresented. */
075a61d0
MA
553 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
554 out_regions_needed, true);
5e911373 555
0db9d74e
MA
556 if (*out_regions_needed == 0)
557 *out_regions_needed = 1;
5e911373 558
0db9d74e
MA
559 if (allocate_file_region_entries(resv, *out_regions_needed))
560 return -ENOMEM;
5e911373 561
0db9d74e 562 resv->adds_in_progress += *out_regions_needed;
7b24d861 563
7b24d861 564 spin_unlock(&resv->lock);
96822904
AW
565 return chg;
566}
567
5e911373
MK
568/*
569 * Abort the in progress add operation. The adds_in_progress field
570 * of the resv_map keeps track of the operations in progress between
571 * calls to region_chg and region_add. Operations are sometimes
572 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
573 * is called to decrement the adds_in_progress counter. regions_needed
574 * is the value returned by the region_chg call, it is used to decrement
575 * the adds_in_progress counter.
5e911373
MK
576 *
577 * NOTE: The range arguments [f, t) are not needed or used in this
578 * routine. They are kept to make reading the calling code easier as
579 * arguments will match the associated region_chg call.
580 */
0db9d74e
MA
581static void region_abort(struct resv_map *resv, long f, long t,
582 long regions_needed)
5e911373
MK
583{
584 spin_lock(&resv->lock);
585 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 586 resv->adds_in_progress -= regions_needed;
5e911373
MK
587 spin_unlock(&resv->lock);
588}
589
1dd308a7 590/*
feba16e2
MK
591 * Delete the specified range [f, t) from the reserve map. If the
592 * t parameter is LONG_MAX, this indicates that ALL regions after f
593 * should be deleted. Locate the regions which intersect [f, t)
594 * and either trim, delete or split the existing regions.
595 *
596 * Returns the number of huge pages deleted from the reserve map.
597 * In the normal case, the return value is zero or more. In the
598 * case where a region must be split, a new region descriptor must
599 * be allocated. If the allocation fails, -ENOMEM will be returned.
600 * NOTE: If the parameter t == LONG_MAX, then we will never split
601 * a region and possibly return -ENOMEM. Callers specifying
602 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 603 */
feba16e2 604static long region_del(struct resv_map *resv, long f, long t)
96822904 605{
1406ec9b 606 struct list_head *head = &resv->regions;
96822904 607 struct file_region *rg, *trg;
feba16e2
MK
608 struct file_region *nrg = NULL;
609 long del = 0;
96822904 610
feba16e2 611retry:
7b24d861 612 spin_lock(&resv->lock);
feba16e2 613 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
614 /*
615 * Skip regions before the range to be deleted. file_region
616 * ranges are normally of the form [from, to). However, there
617 * may be a "placeholder" entry in the map which is of the form
618 * (from, to) with from == to. Check for placeholder entries
619 * at the beginning of the range to be deleted.
620 */
621 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 622 continue;
dbe409e4 623
feba16e2 624 if (rg->from >= t)
96822904 625 break;
96822904 626
feba16e2
MK
627 if (f > rg->from && t < rg->to) { /* Must split region */
628 /*
629 * Check for an entry in the cache before dropping
630 * lock and attempting allocation.
631 */
632 if (!nrg &&
633 resv->region_cache_count > resv->adds_in_progress) {
634 nrg = list_first_entry(&resv->region_cache,
635 struct file_region,
636 link);
637 list_del(&nrg->link);
638 resv->region_cache_count--;
639 }
96822904 640
feba16e2
MK
641 if (!nrg) {
642 spin_unlock(&resv->lock);
643 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
644 if (!nrg)
645 return -ENOMEM;
646 goto retry;
647 }
648
649 del += t - f;
650
651 /* New entry for end of split region */
652 nrg->from = t;
653 nrg->to = rg->to;
075a61d0
MA
654
655 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
656
feba16e2
MK
657 INIT_LIST_HEAD(&nrg->link);
658
659 /* Original entry is trimmed */
660 rg->to = f;
661
075a61d0
MA
662 hugetlb_cgroup_uncharge_file_region(
663 resv, rg, nrg->to - nrg->from);
664
feba16e2
MK
665 list_add(&nrg->link, &rg->link);
666 nrg = NULL;
96822904 667 break;
feba16e2
MK
668 }
669
670 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
671 del += rg->to - rg->from;
075a61d0
MA
672 hugetlb_cgroup_uncharge_file_region(resv, rg,
673 rg->to - rg->from);
feba16e2
MK
674 list_del(&rg->link);
675 kfree(rg);
676 continue;
677 }
678
679 if (f <= rg->from) { /* Trim beginning of region */
680 del += t - rg->from;
681 rg->from = t;
075a61d0
MA
682
683 hugetlb_cgroup_uncharge_file_region(resv, rg,
684 t - rg->from);
feba16e2
MK
685 } else { /* Trim end of region */
686 del += rg->to - f;
687 rg->to = f;
075a61d0
MA
688
689 hugetlb_cgroup_uncharge_file_region(resv, rg,
690 rg->to - f);
feba16e2 691 }
96822904 692 }
7b24d861 693
7b24d861 694 spin_unlock(&resv->lock);
feba16e2
MK
695 kfree(nrg);
696 return del;
96822904
AW
697}
698
b5cec28d
MK
699/*
700 * A rare out of memory error was encountered which prevented removal of
701 * the reserve map region for a page. The huge page itself was free'ed
702 * and removed from the page cache. This routine will adjust the subpool
703 * usage count, and the global reserve count if needed. By incrementing
704 * these counts, the reserve map entry which could not be deleted will
705 * appear as a "reserved" entry instead of simply dangling with incorrect
706 * counts.
707 */
72e2936c 708void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
709{
710 struct hugepage_subpool *spool = subpool_inode(inode);
711 long rsv_adjust;
712
713 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 714 if (rsv_adjust) {
b5cec28d
MK
715 struct hstate *h = hstate_inode(inode);
716
717 hugetlb_acct_memory(h, 1);
718 }
719}
720
1dd308a7
MK
721/*
722 * Count and return the number of huge pages in the reserve map
723 * that intersect with the range [f, t).
724 */
1406ec9b 725static long region_count(struct resv_map *resv, long f, long t)
84afd99b 726{
1406ec9b 727 struct list_head *head = &resv->regions;
84afd99b
AW
728 struct file_region *rg;
729 long chg = 0;
730
7b24d861 731 spin_lock(&resv->lock);
84afd99b
AW
732 /* Locate each segment we overlap with, and count that overlap. */
733 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
734 long seg_from;
735 long seg_to;
84afd99b
AW
736
737 if (rg->to <= f)
738 continue;
739 if (rg->from >= t)
740 break;
741
742 seg_from = max(rg->from, f);
743 seg_to = min(rg->to, t);
744
745 chg += seg_to - seg_from;
746 }
7b24d861 747 spin_unlock(&resv->lock);
84afd99b
AW
748
749 return chg;
750}
751
e7c4b0bf
AW
752/*
753 * Convert the address within this vma to the page offset within
754 * the mapping, in pagecache page units; huge pages here.
755 */
a5516438
AK
756static pgoff_t vma_hugecache_offset(struct hstate *h,
757 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 758{
a5516438
AK
759 return ((address - vma->vm_start) >> huge_page_shift(h)) +
760 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
761}
762
0fe6e20b
NH
763pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
764 unsigned long address)
765{
766 return vma_hugecache_offset(hstate_vma(vma), vma, address);
767}
dee41079 768EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 769
08fba699
MG
770/*
771 * Return the size of the pages allocated when backing a VMA. In the majority
772 * cases this will be same size as used by the page table entries.
773 */
774unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
775{
05ea8860
DW
776 if (vma->vm_ops && vma->vm_ops->pagesize)
777 return vma->vm_ops->pagesize(vma);
778 return PAGE_SIZE;
08fba699 779}
f340ca0f 780EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 781
3340289d
MG
782/*
783 * Return the page size being used by the MMU to back a VMA. In the majority
784 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
785 * architectures where it differs, an architecture-specific 'strong'
786 * version of this symbol is required.
3340289d 787 */
09135cc5 788__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
789{
790 return vma_kernel_pagesize(vma);
791}
3340289d 792
84afd99b
AW
793/*
794 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
795 * bits of the reservation map pointer, which are always clear due to
796 * alignment.
797 */
798#define HPAGE_RESV_OWNER (1UL << 0)
799#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 800#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 801
a1e78772
MG
802/*
803 * These helpers are used to track how many pages are reserved for
804 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
805 * is guaranteed to have their future faults succeed.
806 *
807 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
808 * the reserve counters are updated with the hugetlb_lock held. It is safe
809 * to reset the VMA at fork() time as it is not in use yet and there is no
810 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
811 *
812 * The private mapping reservation is represented in a subtly different
813 * manner to a shared mapping. A shared mapping has a region map associated
814 * with the underlying file, this region map represents the backing file
815 * pages which have ever had a reservation assigned which this persists even
816 * after the page is instantiated. A private mapping has a region map
817 * associated with the original mmap which is attached to all VMAs which
818 * reference it, this region map represents those offsets which have consumed
819 * reservation ie. where pages have been instantiated.
a1e78772 820 */
e7c4b0bf
AW
821static unsigned long get_vma_private_data(struct vm_area_struct *vma)
822{
823 return (unsigned long)vma->vm_private_data;
824}
825
826static void set_vma_private_data(struct vm_area_struct *vma,
827 unsigned long value)
828{
829 vma->vm_private_data = (void *)value;
830}
831
e9fe92ae
MA
832static void
833resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
834 struct hugetlb_cgroup *h_cg,
835 struct hstate *h)
836{
837#ifdef CONFIG_CGROUP_HUGETLB
838 if (!h_cg || !h) {
839 resv_map->reservation_counter = NULL;
840 resv_map->pages_per_hpage = 0;
841 resv_map->css = NULL;
842 } else {
843 resv_map->reservation_counter =
844 &h_cg->rsvd_hugepage[hstate_index(h)];
845 resv_map->pages_per_hpage = pages_per_huge_page(h);
846 resv_map->css = &h_cg->css;
847 }
848#endif
849}
850
9119a41e 851struct resv_map *resv_map_alloc(void)
84afd99b
AW
852{
853 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
854 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
855
856 if (!resv_map || !rg) {
857 kfree(resv_map);
858 kfree(rg);
84afd99b 859 return NULL;
5e911373 860 }
84afd99b
AW
861
862 kref_init(&resv_map->refs);
7b24d861 863 spin_lock_init(&resv_map->lock);
84afd99b
AW
864 INIT_LIST_HEAD(&resv_map->regions);
865
5e911373 866 resv_map->adds_in_progress = 0;
e9fe92ae
MA
867 /*
868 * Initialize these to 0. On shared mappings, 0's here indicate these
869 * fields don't do cgroup accounting. On private mappings, these will be
870 * re-initialized to the proper values, to indicate that hugetlb cgroup
871 * reservations are to be un-charged from here.
872 */
873 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
874
875 INIT_LIST_HEAD(&resv_map->region_cache);
876 list_add(&rg->link, &resv_map->region_cache);
877 resv_map->region_cache_count = 1;
878
84afd99b
AW
879 return resv_map;
880}
881
9119a41e 882void resv_map_release(struct kref *ref)
84afd99b
AW
883{
884 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
885 struct list_head *head = &resv_map->region_cache;
886 struct file_region *rg, *trg;
84afd99b
AW
887
888 /* Clear out any active regions before we release the map. */
feba16e2 889 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
890
891 /* ... and any entries left in the cache */
892 list_for_each_entry_safe(rg, trg, head, link) {
893 list_del(&rg->link);
894 kfree(rg);
895 }
896
897 VM_BUG_ON(resv_map->adds_in_progress);
898
84afd99b
AW
899 kfree(resv_map);
900}
901
4e35f483
JK
902static inline struct resv_map *inode_resv_map(struct inode *inode)
903{
f27a5136
MK
904 /*
905 * At inode evict time, i_mapping may not point to the original
906 * address space within the inode. This original address space
907 * contains the pointer to the resv_map. So, always use the
908 * address space embedded within the inode.
909 * The VERY common case is inode->mapping == &inode->i_data but,
910 * this may not be true for device special inodes.
911 */
912 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
913}
914
84afd99b 915static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 916{
81d1b09c 917 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
918 if (vma->vm_flags & VM_MAYSHARE) {
919 struct address_space *mapping = vma->vm_file->f_mapping;
920 struct inode *inode = mapping->host;
921
922 return inode_resv_map(inode);
923
924 } else {
84afd99b
AW
925 return (struct resv_map *)(get_vma_private_data(vma) &
926 ~HPAGE_RESV_MASK);
4e35f483 927 }
a1e78772
MG
928}
929
84afd99b 930static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 931{
81d1b09c
SL
932 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 934
84afd99b
AW
935 set_vma_private_data(vma, (get_vma_private_data(vma) &
936 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
937}
938
939static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
940{
81d1b09c
SL
941 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
942 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
943
944 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
945}
946
947static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
948{
81d1b09c 949 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
950
951 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
952}
953
04f2cbe3 954/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
955void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
956{
81d1b09c 957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 958 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
959 vma->vm_private_data = (void *)0;
960}
961
962/* Returns true if the VMA has associated reserve pages */
559ec2f8 963static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 964{
af0ed73e
JK
965 if (vma->vm_flags & VM_NORESERVE) {
966 /*
967 * This address is already reserved by other process(chg == 0),
968 * so, we should decrement reserved count. Without decrementing,
969 * reserve count remains after releasing inode, because this
970 * allocated page will go into page cache and is regarded as
971 * coming from reserved pool in releasing step. Currently, we
972 * don't have any other solution to deal with this situation
973 * properly, so add work-around here.
974 */
975 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 976 return true;
af0ed73e 977 else
559ec2f8 978 return false;
af0ed73e 979 }
a63884e9
JK
980
981 /* Shared mappings always use reserves */
1fb1b0e9
MK
982 if (vma->vm_flags & VM_MAYSHARE) {
983 /*
984 * We know VM_NORESERVE is not set. Therefore, there SHOULD
985 * be a region map for all pages. The only situation where
986 * there is no region map is if a hole was punched via
987 * fallocate. In this case, there really are no reverves to
988 * use. This situation is indicated if chg != 0.
989 */
990 if (chg)
991 return false;
992 else
993 return true;
994 }
a63884e9
JK
995
996 /*
997 * Only the process that called mmap() has reserves for
998 * private mappings.
999 */
67961f9d
MK
1000 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1001 /*
1002 * Like the shared case above, a hole punch or truncate
1003 * could have been performed on the private mapping.
1004 * Examine the value of chg to determine if reserves
1005 * actually exist or were previously consumed.
1006 * Very Subtle - The value of chg comes from a previous
1007 * call to vma_needs_reserves(). The reserve map for
1008 * private mappings has different (opposite) semantics
1009 * than that of shared mappings. vma_needs_reserves()
1010 * has already taken this difference in semantics into
1011 * account. Therefore, the meaning of chg is the same
1012 * as in the shared case above. Code could easily be
1013 * combined, but keeping it separate draws attention to
1014 * subtle differences.
1015 */
1016 if (chg)
1017 return false;
1018 else
1019 return true;
1020 }
a63884e9 1021
559ec2f8 1022 return false;
a1e78772
MG
1023}
1024
a5516438 1025static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1026{
1027 int nid = page_to_nid(page);
0edaecfa 1028 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1029 h->free_huge_pages++;
1030 h->free_huge_pages_node[nid]++;
1da177e4
LT
1031}
1032
94310cbc 1033static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1034{
1035 struct page *page;
1036
c8721bbb 1037 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 1038 if (!PageHWPoison(page))
c8721bbb
NH
1039 break;
1040 /*
1041 * if 'non-isolated free hugepage' not found on the list,
1042 * the allocation fails.
1043 */
1044 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 1045 return NULL;
0edaecfa 1046 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 1047 set_page_refcounted(page);
bf50bab2
NH
1048 h->free_huge_pages--;
1049 h->free_huge_pages_node[nid]--;
1050 return page;
1051}
1052
3e59fcb0
MH
1053static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1054 nodemask_t *nmask)
94310cbc 1055{
3e59fcb0
MH
1056 unsigned int cpuset_mems_cookie;
1057 struct zonelist *zonelist;
1058 struct zone *zone;
1059 struct zoneref *z;
98fa15f3 1060 int node = NUMA_NO_NODE;
94310cbc 1061
3e59fcb0
MH
1062 zonelist = node_zonelist(nid, gfp_mask);
1063
1064retry_cpuset:
1065 cpuset_mems_cookie = read_mems_allowed_begin();
1066 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1067 struct page *page;
1068
1069 if (!cpuset_zone_allowed(zone, gfp_mask))
1070 continue;
1071 /*
1072 * no need to ask again on the same node. Pool is node rather than
1073 * zone aware
1074 */
1075 if (zone_to_nid(zone) == node)
1076 continue;
1077 node = zone_to_nid(zone);
94310cbc 1078
94310cbc
AK
1079 page = dequeue_huge_page_node_exact(h, node);
1080 if (page)
1081 return page;
1082 }
3e59fcb0
MH
1083 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1084 goto retry_cpuset;
1085
94310cbc
AK
1086 return NULL;
1087}
1088
86cdb465
NH
1089/* Movability of hugepages depends on migration support. */
1090static inline gfp_t htlb_alloc_mask(struct hstate *h)
1091{
7ed2c31d 1092 if (hugepage_movable_supported(h))
86cdb465
NH
1093 return GFP_HIGHUSER_MOVABLE;
1094 else
1095 return GFP_HIGHUSER;
1096}
1097
a5516438
AK
1098static struct page *dequeue_huge_page_vma(struct hstate *h,
1099 struct vm_area_struct *vma,
af0ed73e
JK
1100 unsigned long address, int avoid_reserve,
1101 long chg)
1da177e4 1102{
3e59fcb0 1103 struct page *page;
480eccf9 1104 struct mempolicy *mpol;
04ec6264 1105 gfp_t gfp_mask;
3e59fcb0 1106 nodemask_t *nodemask;
04ec6264 1107 int nid;
1da177e4 1108
a1e78772
MG
1109 /*
1110 * A child process with MAP_PRIVATE mappings created by their parent
1111 * have no page reserves. This check ensures that reservations are
1112 * not "stolen". The child may still get SIGKILLed
1113 */
af0ed73e 1114 if (!vma_has_reserves(vma, chg) &&
a5516438 1115 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1116 goto err;
a1e78772 1117
04f2cbe3 1118 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1119 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1120 goto err;
04f2cbe3 1121
04ec6264
VB
1122 gfp_mask = htlb_alloc_mask(h);
1123 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1124 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1125 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1126 SetPagePrivate(page);
1127 h->resv_huge_pages--;
1da177e4 1128 }
cc9a6c87 1129
52cd3b07 1130 mpol_cond_put(mpol);
1da177e4 1131 return page;
cc9a6c87
MG
1132
1133err:
cc9a6c87 1134 return NULL;
1da177e4
LT
1135}
1136
1cac6f2c
LC
1137/*
1138 * common helper functions for hstate_next_node_to_{alloc|free}.
1139 * We may have allocated or freed a huge page based on a different
1140 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1141 * be outside of *nodes_allowed. Ensure that we use an allowed
1142 * node for alloc or free.
1143 */
1144static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1145{
0edaf86c 1146 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1147 VM_BUG_ON(nid >= MAX_NUMNODES);
1148
1149 return nid;
1150}
1151
1152static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1153{
1154 if (!node_isset(nid, *nodes_allowed))
1155 nid = next_node_allowed(nid, nodes_allowed);
1156 return nid;
1157}
1158
1159/*
1160 * returns the previously saved node ["this node"] from which to
1161 * allocate a persistent huge page for the pool and advance the
1162 * next node from which to allocate, handling wrap at end of node
1163 * mask.
1164 */
1165static int hstate_next_node_to_alloc(struct hstate *h,
1166 nodemask_t *nodes_allowed)
1167{
1168 int nid;
1169
1170 VM_BUG_ON(!nodes_allowed);
1171
1172 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1173 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1174
1175 return nid;
1176}
1177
1178/*
1179 * helper for free_pool_huge_page() - return the previously saved
1180 * node ["this node"] from which to free a huge page. Advance the
1181 * next node id whether or not we find a free huge page to free so
1182 * that the next attempt to free addresses the next node.
1183 */
1184static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1185{
1186 int nid;
1187
1188 VM_BUG_ON(!nodes_allowed);
1189
1190 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1191 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1192
1193 return nid;
1194}
1195
1196#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1197 for (nr_nodes = nodes_weight(*mask); \
1198 nr_nodes > 0 && \
1199 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1200 nr_nodes--)
1201
1202#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1203 for (nr_nodes = nodes_weight(*mask); \
1204 nr_nodes > 0 && \
1205 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1206 nr_nodes--)
1207
e1073d1e 1208#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1209static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1210 unsigned int order)
944d9fec
LC
1211{
1212 int i;
1213 int nr_pages = 1 << order;
1214 struct page *p = page + 1;
1215
c8cc708a 1216 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1217 if (hpage_pincount_available(page))
1218 atomic_set(compound_pincount_ptr(page), 0);
1219
944d9fec 1220 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1221 clear_compound_head(p);
944d9fec 1222 set_page_refcounted(p);
944d9fec
LC
1223 }
1224
1225 set_compound_order(page, 0);
1226 __ClearPageHead(page);
1227}
1228
d00181b9 1229static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1230{
1231 free_contig_range(page_to_pfn(page), 1 << order);
1232}
1233
4eb0716e 1234#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1235static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1236 int nid, nodemask_t *nodemask)
944d9fec 1237{
5e27a2df 1238 unsigned long nr_pages = 1UL << huge_page_order(h);
944d9fec 1239
5e27a2df 1240 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1241}
1242
1243static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1244static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1245#else /* !CONFIG_CONTIG_ALLOC */
1246static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1247 int nid, nodemask_t *nodemask)
1248{
1249 return NULL;
1250}
1251#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1252
e1073d1e 1253#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1254static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1255 int nid, nodemask_t *nodemask)
1256{
1257 return NULL;
1258}
d00181b9 1259static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1260static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1261 unsigned int order) { }
944d9fec
LC
1262#endif
1263
a5516438 1264static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1265{
1266 int i;
a5516438 1267
4eb0716e 1268 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1269 return;
18229df5 1270
a5516438
AK
1271 h->nr_huge_pages--;
1272 h->nr_huge_pages_node[page_to_nid(page)]--;
1273 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1274 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1275 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1276 1 << PG_active | 1 << PG_private |
1277 1 << PG_writeback);
6af2acb6 1278 }
309381fe 1279 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1adc4d41 1280 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
f1e61557 1281 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1282 set_page_refcounted(page);
944d9fec
LC
1283 if (hstate_is_gigantic(h)) {
1284 destroy_compound_gigantic_page(page, huge_page_order(h));
1285 free_gigantic_page(page, huge_page_order(h));
1286 } else {
944d9fec
LC
1287 __free_pages(page, huge_page_order(h));
1288 }
6af2acb6
AL
1289}
1290
e5ff2159
AK
1291struct hstate *size_to_hstate(unsigned long size)
1292{
1293 struct hstate *h;
1294
1295 for_each_hstate(h) {
1296 if (huge_page_size(h) == size)
1297 return h;
1298 }
1299 return NULL;
1300}
1301
bcc54222
NH
1302/*
1303 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1304 * to hstate->hugepage_activelist.)
1305 *
1306 * This function can be called for tail pages, but never returns true for them.
1307 */
1308bool page_huge_active(struct page *page)
1309{
1310 VM_BUG_ON_PAGE(!PageHuge(page), page);
1311 return PageHead(page) && PagePrivate(&page[1]);
1312}
1313
1314/* never called for tail page */
1315static void set_page_huge_active(struct page *page)
1316{
1317 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1318 SetPagePrivate(&page[1]);
1319}
1320
1321static void clear_page_huge_active(struct page *page)
1322{
1323 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1324 ClearPagePrivate(&page[1]);
1325}
1326
ab5ac90a
MH
1327/*
1328 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1329 * code
1330 */
1331static inline bool PageHugeTemporary(struct page *page)
1332{
1333 if (!PageHuge(page))
1334 return false;
1335
1336 return (unsigned long)page[2].mapping == -1U;
1337}
1338
1339static inline void SetPageHugeTemporary(struct page *page)
1340{
1341 page[2].mapping = (void *)-1U;
1342}
1343
1344static inline void ClearPageHugeTemporary(struct page *page)
1345{
1346 page[2].mapping = NULL;
1347}
1348
c77c0a8a 1349static void __free_huge_page(struct page *page)
27a85ef1 1350{
a5516438
AK
1351 /*
1352 * Can't pass hstate in here because it is called from the
1353 * compound page destructor.
1354 */
e5ff2159 1355 struct hstate *h = page_hstate(page);
7893d1d5 1356 int nid = page_to_nid(page);
90481622
DG
1357 struct hugepage_subpool *spool =
1358 (struct hugepage_subpool *)page_private(page);
07443a85 1359 bool restore_reserve;
27a85ef1 1360
b4330afb
MK
1361 VM_BUG_ON_PAGE(page_count(page), page);
1362 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1363
1364 set_page_private(page, 0);
1365 page->mapping = NULL;
07443a85 1366 restore_reserve = PagePrivate(page);
16c794b4 1367 ClearPagePrivate(page);
27a85ef1 1368
1c5ecae3 1369 /*
0919e1b6
MK
1370 * If PagePrivate() was set on page, page allocation consumed a
1371 * reservation. If the page was associated with a subpool, there
1372 * would have been a page reserved in the subpool before allocation
1373 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1374 * reservtion, do not call hugepage_subpool_put_pages() as this will
1375 * remove the reserved page from the subpool.
1c5ecae3 1376 */
0919e1b6
MK
1377 if (!restore_reserve) {
1378 /*
1379 * A return code of zero implies that the subpool will be
1380 * under its minimum size if the reservation is not restored
1381 * after page is free. Therefore, force restore_reserve
1382 * operation.
1383 */
1384 if (hugepage_subpool_put_pages(spool, 1) == 0)
1385 restore_reserve = true;
1386 }
1c5ecae3 1387
27a85ef1 1388 spin_lock(&hugetlb_lock);
bcc54222 1389 clear_page_huge_active(page);
6d76dcf4
AK
1390 hugetlb_cgroup_uncharge_page(hstate_index(h),
1391 pages_per_huge_page(h), page);
08cf9faf
MA
1392 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1393 pages_per_huge_page(h), page);
07443a85
JK
1394 if (restore_reserve)
1395 h->resv_huge_pages++;
1396
ab5ac90a
MH
1397 if (PageHugeTemporary(page)) {
1398 list_del(&page->lru);
1399 ClearPageHugeTemporary(page);
1400 update_and_free_page(h, page);
1401 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1402 /* remove the page from active list */
1403 list_del(&page->lru);
a5516438
AK
1404 update_and_free_page(h, page);
1405 h->surplus_huge_pages--;
1406 h->surplus_huge_pages_node[nid]--;
7893d1d5 1407 } else {
5d3a551c 1408 arch_clear_hugepage_flags(page);
a5516438 1409 enqueue_huge_page(h, page);
7893d1d5 1410 }
27a85ef1
DG
1411 spin_unlock(&hugetlb_lock);
1412}
1413
c77c0a8a
WL
1414/*
1415 * As free_huge_page() can be called from a non-task context, we have
1416 * to defer the actual freeing in a workqueue to prevent potential
1417 * hugetlb_lock deadlock.
1418 *
1419 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1420 * be freed and frees them one-by-one. As the page->mapping pointer is
1421 * going to be cleared in __free_huge_page() anyway, it is reused as the
1422 * llist_node structure of a lockless linked list of huge pages to be freed.
1423 */
1424static LLIST_HEAD(hpage_freelist);
1425
1426static void free_hpage_workfn(struct work_struct *work)
1427{
1428 struct llist_node *node;
1429 struct page *page;
1430
1431 node = llist_del_all(&hpage_freelist);
1432
1433 while (node) {
1434 page = container_of((struct address_space **)node,
1435 struct page, mapping);
1436 node = node->next;
1437 __free_huge_page(page);
1438 }
1439}
1440static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1441
1442void free_huge_page(struct page *page)
1443{
1444 /*
1445 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1446 */
1447 if (!in_task()) {
1448 /*
1449 * Only call schedule_work() if hpage_freelist is previously
1450 * empty. Otherwise, schedule_work() had been called but the
1451 * workfn hasn't retrieved the list yet.
1452 */
1453 if (llist_add((struct llist_node *)&page->mapping,
1454 &hpage_freelist))
1455 schedule_work(&free_hpage_work);
1456 return;
1457 }
1458
1459 __free_huge_page(page);
1460}
1461
a5516438 1462static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1463{
0edaecfa 1464 INIT_LIST_HEAD(&page->lru);
f1e61557 1465 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1466 spin_lock(&hugetlb_lock);
9dd540e2 1467 set_hugetlb_cgroup(page, NULL);
1adc4d41 1468 set_hugetlb_cgroup_rsvd(page, NULL);
a5516438
AK
1469 h->nr_huge_pages++;
1470 h->nr_huge_pages_node[nid]++;
b7ba30c6 1471 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1472}
1473
d00181b9 1474static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1475{
1476 int i;
1477 int nr_pages = 1 << order;
1478 struct page *p = page + 1;
1479
1480 /* we rely on prep_new_huge_page to set the destructor */
1481 set_compound_order(page, order);
ef5a22be 1482 __ClearPageReserved(page);
de09d31d 1483 __SetPageHead(page);
20a0307c 1484 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1485 /*
1486 * For gigantic hugepages allocated through bootmem at
1487 * boot, it's safer to be consistent with the not-gigantic
1488 * hugepages and clear the PG_reserved bit from all tail pages
1489 * too. Otherwse drivers using get_user_pages() to access tail
1490 * pages may get the reference counting wrong if they see
1491 * PG_reserved set on a tail page (despite the head page not
1492 * having PG_reserved set). Enforcing this consistency between
1493 * head and tail pages allows drivers to optimize away a check
1494 * on the head page when they need know if put_page() is needed
1495 * after get_user_pages().
1496 */
1497 __ClearPageReserved(p);
58a84aa9 1498 set_page_count(p, 0);
1d798ca3 1499 set_compound_head(p, page);
20a0307c 1500 }
b4330afb 1501 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
1502
1503 if (hpage_pincount_available(page))
1504 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1505}
1506
7795912c
AM
1507/*
1508 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1509 * transparent huge pages. See the PageTransHuge() documentation for more
1510 * details.
1511 */
20a0307c
WF
1512int PageHuge(struct page *page)
1513{
20a0307c
WF
1514 if (!PageCompound(page))
1515 return 0;
1516
1517 page = compound_head(page);
f1e61557 1518 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1519}
43131e14
NH
1520EXPORT_SYMBOL_GPL(PageHuge);
1521
27c73ae7
AA
1522/*
1523 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1524 * normal or transparent huge pages.
1525 */
1526int PageHeadHuge(struct page *page_head)
1527{
27c73ae7
AA
1528 if (!PageHead(page_head))
1529 return 0;
1530
d4af73e3 1531 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1532}
27c73ae7 1533
c0d0381a
MK
1534/*
1535 * Find address_space associated with hugetlbfs page.
1536 * Upon entry page is locked and page 'was' mapped although mapped state
1537 * could change. If necessary, use anon_vma to find vma and associated
1538 * address space. The returned mapping may be stale, but it can not be
1539 * invalid as page lock (which is held) is required to destroy mapping.
1540 */
1541static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1542{
1543 struct anon_vma *anon_vma;
1544 pgoff_t pgoff_start, pgoff_end;
1545 struct anon_vma_chain *avc;
1546 struct address_space *mapping = page_mapping(hpage);
1547
1548 /* Simple file based mapping */
1549 if (mapping)
1550 return mapping;
1551
1552 /*
1553 * Even anonymous hugetlbfs mappings are associated with an
1554 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1555 * code). Find a vma associated with the anonymous vma, and
1556 * use the file pointer to get address_space.
1557 */
1558 anon_vma = page_lock_anon_vma_read(hpage);
1559 if (!anon_vma)
1560 return mapping; /* NULL */
1561
1562 /* Use first found vma */
1563 pgoff_start = page_to_pgoff(hpage);
1564 pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
1565 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1566 pgoff_start, pgoff_end) {
1567 struct vm_area_struct *vma = avc->vma;
1568
1569 mapping = vma->vm_file->f_mapping;
1570 break;
1571 }
1572
1573 anon_vma_unlock_read(anon_vma);
1574 return mapping;
1575}
1576
1577/*
1578 * Find and lock address space (mapping) in write mode.
1579 *
1580 * Upon entry, the page is locked which allows us to find the mapping
1581 * even in the case of an anon page. However, locking order dictates
1582 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
1583 * specific. So, we first try to lock the sema while still holding the
1584 * page lock. If this works, great! If not, then we need to drop the
1585 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
1586 * course, need to revalidate state along the way.
1587 */
1588struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1589{
1590 struct address_space *mapping, *mapping2;
1591
1592 mapping = _get_hugetlb_page_mapping(hpage);
1593retry:
1594 if (!mapping)
1595 return mapping;
1596
1597 /*
1598 * If no contention, take lock and return
1599 */
1600 if (i_mmap_trylock_write(mapping))
1601 return mapping;
1602
1603 /*
1604 * Must drop page lock and wait on mapping sema.
1605 * Note: Once page lock is dropped, mapping could become invalid.
1606 * As a hack, increase map count until we lock page again.
1607 */
1608 atomic_inc(&hpage->_mapcount);
1609 unlock_page(hpage);
1610 i_mmap_lock_write(mapping);
1611 lock_page(hpage);
1612 atomic_add_negative(-1, &hpage->_mapcount);
1613
1614 /* verify page is still mapped */
1615 if (!page_mapped(hpage)) {
1616 i_mmap_unlock_write(mapping);
1617 return NULL;
1618 }
1619
1620 /*
1621 * Get address space again and verify it is the same one
1622 * we locked. If not, drop lock and retry.
1623 */
1624 mapping2 = _get_hugetlb_page_mapping(hpage);
1625 if (mapping2 != mapping) {
1626 i_mmap_unlock_write(mapping);
1627 mapping = mapping2;
1628 goto retry;
1629 }
1630
1631 return mapping;
1632}
1633
13d60f4b
ZY
1634pgoff_t __basepage_index(struct page *page)
1635{
1636 struct page *page_head = compound_head(page);
1637 pgoff_t index = page_index(page_head);
1638 unsigned long compound_idx;
1639
1640 if (!PageHuge(page_head))
1641 return page_index(page);
1642
1643 if (compound_order(page_head) >= MAX_ORDER)
1644 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1645 else
1646 compound_idx = page - page_head;
1647
1648 return (index << compound_order(page_head)) + compound_idx;
1649}
1650
0c397dae 1651static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1652 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1653 nodemask_t *node_alloc_noretry)
1da177e4 1654{
af0fb9df 1655 int order = huge_page_order(h);
1da177e4 1656 struct page *page;
f60858f9 1657 bool alloc_try_hard = true;
f96efd58 1658
f60858f9
MK
1659 /*
1660 * By default we always try hard to allocate the page with
1661 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1662 * a loop (to adjust global huge page counts) and previous allocation
1663 * failed, do not continue to try hard on the same node. Use the
1664 * node_alloc_noretry bitmap to manage this state information.
1665 */
1666 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1667 alloc_try_hard = false;
1668 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1669 if (alloc_try_hard)
1670 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1671 if (nid == NUMA_NO_NODE)
1672 nid = numa_mem_id();
1673 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1674 if (page)
1675 __count_vm_event(HTLB_BUDDY_PGALLOC);
1676 else
1677 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1678
f60858f9
MK
1679 /*
1680 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1681 * indicates an overall state change. Clear bit so that we resume
1682 * normal 'try hard' allocations.
1683 */
1684 if (node_alloc_noretry && page && !alloc_try_hard)
1685 node_clear(nid, *node_alloc_noretry);
1686
1687 /*
1688 * If we tried hard to get a page but failed, set bit so that
1689 * subsequent attempts will not try as hard until there is an
1690 * overall state change.
1691 */
1692 if (node_alloc_noretry && !page && alloc_try_hard)
1693 node_set(nid, *node_alloc_noretry);
1694
63b4613c
NA
1695 return page;
1696}
1697
0c397dae
MH
1698/*
1699 * Common helper to allocate a fresh hugetlb page. All specific allocators
1700 * should use this function to get new hugetlb pages
1701 */
1702static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1703 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1704 nodemask_t *node_alloc_noretry)
0c397dae
MH
1705{
1706 struct page *page;
1707
1708 if (hstate_is_gigantic(h))
1709 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1710 else
1711 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1712 nid, nmask, node_alloc_noretry);
0c397dae
MH
1713 if (!page)
1714 return NULL;
1715
1716 if (hstate_is_gigantic(h))
1717 prep_compound_gigantic_page(page, huge_page_order(h));
1718 prep_new_huge_page(h, page, page_to_nid(page));
1719
1720 return page;
1721}
1722
af0fb9df
MH
1723/*
1724 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1725 * manner.
1726 */
f60858f9
MK
1727static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1728 nodemask_t *node_alloc_noretry)
b2261026
JK
1729{
1730 struct page *page;
1731 int nr_nodes, node;
af0fb9df 1732 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1733
1734 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1735 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1736 node_alloc_noretry);
af0fb9df 1737 if (page)
b2261026 1738 break;
b2261026
JK
1739 }
1740
af0fb9df
MH
1741 if (!page)
1742 return 0;
b2261026 1743
af0fb9df
MH
1744 put_page(page); /* free it into the hugepage allocator */
1745
1746 return 1;
b2261026
JK
1747}
1748
e8c5c824
LS
1749/*
1750 * Free huge page from pool from next node to free.
1751 * Attempt to keep persistent huge pages more or less
1752 * balanced over allowed nodes.
1753 * Called with hugetlb_lock locked.
1754 */
6ae11b27
LS
1755static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1756 bool acct_surplus)
e8c5c824 1757{
b2261026 1758 int nr_nodes, node;
e8c5c824
LS
1759 int ret = 0;
1760
b2261026 1761 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1762 /*
1763 * If we're returning unused surplus pages, only examine
1764 * nodes with surplus pages.
1765 */
b2261026
JK
1766 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1767 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1768 struct page *page =
b2261026 1769 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1770 struct page, lru);
1771 list_del(&page->lru);
1772 h->free_huge_pages--;
b2261026 1773 h->free_huge_pages_node[node]--;
685f3457
LS
1774 if (acct_surplus) {
1775 h->surplus_huge_pages--;
b2261026 1776 h->surplus_huge_pages_node[node]--;
685f3457 1777 }
e8c5c824
LS
1778 update_and_free_page(h, page);
1779 ret = 1;
9a76db09 1780 break;
e8c5c824 1781 }
b2261026 1782 }
e8c5c824
LS
1783
1784 return ret;
1785}
1786
c8721bbb
NH
1787/*
1788 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1789 * nothing for in-use hugepages and non-hugepages.
1790 * This function returns values like below:
1791 *
1792 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1793 * (allocated or reserved.)
1794 * 0: successfully dissolved free hugepages or the page is not a
1795 * hugepage (considered as already dissolved)
c8721bbb 1796 */
c3114a84 1797int dissolve_free_huge_page(struct page *page)
c8721bbb 1798{
6bc9b564 1799 int rc = -EBUSY;
082d5b6b 1800
faf53def
NH
1801 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1802 if (!PageHuge(page))
1803 return 0;
1804
c8721bbb 1805 spin_lock(&hugetlb_lock);
faf53def
NH
1806 if (!PageHuge(page)) {
1807 rc = 0;
1808 goto out;
1809 }
1810
1811 if (!page_count(page)) {
2247bb33
GS
1812 struct page *head = compound_head(page);
1813 struct hstate *h = page_hstate(head);
1814 int nid = page_to_nid(head);
6bc9b564 1815 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1816 goto out;
c3114a84
AK
1817 /*
1818 * Move PageHWPoison flag from head page to the raw error page,
1819 * which makes any subpages rather than the error page reusable.
1820 */
1821 if (PageHWPoison(head) && page != head) {
1822 SetPageHWPoison(page);
1823 ClearPageHWPoison(head);
1824 }
2247bb33 1825 list_del(&head->lru);
c8721bbb
NH
1826 h->free_huge_pages--;
1827 h->free_huge_pages_node[nid]--;
c1470b33 1828 h->max_huge_pages--;
2247bb33 1829 update_and_free_page(h, head);
6bc9b564 1830 rc = 0;
c8721bbb 1831 }
082d5b6b 1832out:
c8721bbb 1833 spin_unlock(&hugetlb_lock);
082d5b6b 1834 return rc;
c8721bbb
NH
1835}
1836
1837/*
1838 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1839 * make specified memory blocks removable from the system.
2247bb33
GS
1840 * Note that this will dissolve a free gigantic hugepage completely, if any
1841 * part of it lies within the given range.
082d5b6b
GS
1842 * Also note that if dissolve_free_huge_page() returns with an error, all
1843 * free hugepages that were dissolved before that error are lost.
c8721bbb 1844 */
082d5b6b 1845int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1846{
c8721bbb 1847 unsigned long pfn;
eb03aa00 1848 struct page *page;
082d5b6b 1849 int rc = 0;
c8721bbb 1850
d0177639 1851 if (!hugepages_supported())
082d5b6b 1852 return rc;
d0177639 1853
eb03aa00
GS
1854 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1855 page = pfn_to_page(pfn);
faf53def
NH
1856 rc = dissolve_free_huge_page(page);
1857 if (rc)
1858 break;
eb03aa00 1859 }
082d5b6b
GS
1860
1861 return rc;
c8721bbb
NH
1862}
1863
ab5ac90a
MH
1864/*
1865 * Allocates a fresh surplus page from the page allocator.
1866 */
0c397dae 1867static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1868 int nid, nodemask_t *nmask)
7893d1d5 1869{
9980d744 1870 struct page *page = NULL;
7893d1d5 1871
bae7f4ae 1872 if (hstate_is_gigantic(h))
aa888a74
AK
1873 return NULL;
1874
d1c3fb1f 1875 spin_lock(&hugetlb_lock);
9980d744
MH
1876 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1877 goto out_unlock;
d1c3fb1f
NA
1878 spin_unlock(&hugetlb_lock);
1879
f60858f9 1880 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1881 if (!page)
0c397dae 1882 return NULL;
d1c3fb1f
NA
1883
1884 spin_lock(&hugetlb_lock);
9980d744
MH
1885 /*
1886 * We could have raced with the pool size change.
1887 * Double check that and simply deallocate the new page
1888 * if we would end up overcommiting the surpluses. Abuse
1889 * temporary page to workaround the nasty free_huge_page
1890 * codeflow
1891 */
1892 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1893 SetPageHugeTemporary(page);
2bf753e6 1894 spin_unlock(&hugetlb_lock);
9980d744 1895 put_page(page);
2bf753e6 1896 return NULL;
9980d744 1897 } else {
9980d744 1898 h->surplus_huge_pages++;
4704dea3 1899 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1900 }
9980d744
MH
1901
1902out_unlock:
d1c3fb1f 1903 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1904
1905 return page;
1906}
1907
9a4e9f3b
AK
1908struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1909 int nid, nodemask_t *nmask)
ab5ac90a
MH
1910{
1911 struct page *page;
1912
1913 if (hstate_is_gigantic(h))
1914 return NULL;
1915
f60858f9 1916 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1917 if (!page)
1918 return NULL;
1919
1920 /*
1921 * We do not account these pages as surplus because they are only
1922 * temporary and will be released properly on the last reference
1923 */
ab5ac90a
MH
1924 SetPageHugeTemporary(page);
1925
1926 return page;
1927}
1928
099730d6
DH
1929/*
1930 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1931 */
e0ec90ee 1932static
0c397dae 1933struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1934 struct vm_area_struct *vma, unsigned long addr)
1935{
aaf14e40
MH
1936 struct page *page;
1937 struct mempolicy *mpol;
1938 gfp_t gfp_mask = htlb_alloc_mask(h);
1939 int nid;
1940 nodemask_t *nodemask;
1941
1942 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1943 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1944 mpol_cond_put(mpol);
1945
1946 return page;
099730d6
DH
1947}
1948
ab5ac90a 1949/* page migration callback function */
bf50bab2
NH
1950struct page *alloc_huge_page_node(struct hstate *h, int nid)
1951{
aaf14e40 1952 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1953 struct page *page = NULL;
bf50bab2 1954
aaf14e40
MH
1955 if (nid != NUMA_NO_NODE)
1956 gfp_mask |= __GFP_THISNODE;
1957
bf50bab2 1958 spin_lock(&hugetlb_lock);
4ef91848 1959 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1960 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1961 spin_unlock(&hugetlb_lock);
1962
94ae8ba7 1963 if (!page)
0c397dae 1964 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1965
1966 return page;
1967}
1968
ab5ac90a 1969/* page migration callback function */
3e59fcb0
MH
1970struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1971 nodemask_t *nmask)
4db9b2ef 1972{
aaf14e40 1973 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1974
1975 spin_lock(&hugetlb_lock);
1976 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1977 struct page *page;
1978
1979 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1980 if (page) {
1981 spin_unlock(&hugetlb_lock);
1982 return page;
4db9b2ef
MH
1983 }
1984 }
1985 spin_unlock(&hugetlb_lock);
4db9b2ef 1986
0c397dae 1987 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1988}
1989
ebd63723 1990/* mempolicy aware migration callback */
389c8178
MH
1991struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1992 unsigned long address)
ebd63723
MH
1993{
1994 struct mempolicy *mpol;
1995 nodemask_t *nodemask;
1996 struct page *page;
ebd63723
MH
1997 gfp_t gfp_mask;
1998 int node;
1999
ebd63723
MH
2000 gfp_mask = htlb_alloc_mask(h);
2001 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2002 page = alloc_huge_page_nodemask(h, node, nodemask);
2003 mpol_cond_put(mpol);
2004
2005 return page;
2006}
2007
e4e574b7 2008/*
25985edc 2009 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2010 * of size 'delta'.
2011 */
a5516438 2012static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
2013{
2014 struct list_head surplus_list;
2015 struct page *page, *tmp;
2016 int ret, i;
2017 int needed, allocated;
28073b02 2018 bool alloc_ok = true;
e4e574b7 2019
a5516438 2020 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2021 if (needed <= 0) {
a5516438 2022 h->resv_huge_pages += delta;
e4e574b7 2023 return 0;
ac09b3a1 2024 }
e4e574b7
AL
2025
2026 allocated = 0;
2027 INIT_LIST_HEAD(&surplus_list);
2028
2029 ret = -ENOMEM;
2030retry:
2031 spin_unlock(&hugetlb_lock);
2032 for (i = 0; i < needed; i++) {
0c397dae 2033 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 2034 NUMA_NO_NODE, NULL);
28073b02
HD
2035 if (!page) {
2036 alloc_ok = false;
2037 break;
2038 }
e4e574b7 2039 list_add(&page->lru, &surplus_list);
69ed779a 2040 cond_resched();
e4e574b7 2041 }
28073b02 2042 allocated += i;
e4e574b7
AL
2043
2044 /*
2045 * After retaking hugetlb_lock, we need to recalculate 'needed'
2046 * because either resv_huge_pages or free_huge_pages may have changed.
2047 */
2048 spin_lock(&hugetlb_lock);
a5516438
AK
2049 needed = (h->resv_huge_pages + delta) -
2050 (h->free_huge_pages + allocated);
28073b02
HD
2051 if (needed > 0) {
2052 if (alloc_ok)
2053 goto retry;
2054 /*
2055 * We were not able to allocate enough pages to
2056 * satisfy the entire reservation so we free what
2057 * we've allocated so far.
2058 */
2059 goto free;
2060 }
e4e574b7
AL
2061 /*
2062 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2063 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2064 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2065 * allocator. Commit the entire reservation here to prevent another
2066 * process from stealing the pages as they are added to the pool but
2067 * before they are reserved.
e4e574b7
AL
2068 */
2069 needed += allocated;
a5516438 2070 h->resv_huge_pages += delta;
e4e574b7 2071 ret = 0;
a9869b83 2072
19fc3f0a 2073 /* Free the needed pages to the hugetlb pool */
e4e574b7 2074 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
2075 if ((--needed) < 0)
2076 break;
a9869b83
NH
2077 /*
2078 * This page is now managed by the hugetlb allocator and has
2079 * no users -- drop the buddy allocator's reference.
2080 */
2081 put_page_testzero(page);
309381fe 2082 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 2083 enqueue_huge_page(h, page);
19fc3f0a 2084 }
28073b02 2085free:
b0365c8d 2086 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
2087
2088 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2089 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2090 put_page(page);
a9869b83 2091 spin_lock(&hugetlb_lock);
e4e574b7
AL
2092
2093 return ret;
2094}
2095
2096/*
e5bbc8a6
MK
2097 * This routine has two main purposes:
2098 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2099 * in unused_resv_pages. This corresponds to the prior adjustments made
2100 * to the associated reservation map.
2101 * 2) Free any unused surplus pages that may have been allocated to satisfy
2102 * the reservation. As many as unused_resv_pages may be freed.
2103 *
2104 * Called with hugetlb_lock held. However, the lock could be dropped (and
2105 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2106 * we must make sure nobody else can claim pages we are in the process of
2107 * freeing. Do this by ensuring resv_huge_page always is greater than the
2108 * number of huge pages we plan to free when dropping the lock.
e4e574b7 2109 */
a5516438
AK
2110static void return_unused_surplus_pages(struct hstate *h,
2111 unsigned long unused_resv_pages)
e4e574b7 2112{
e4e574b7
AL
2113 unsigned long nr_pages;
2114
aa888a74 2115 /* Cannot return gigantic pages currently */
bae7f4ae 2116 if (hstate_is_gigantic(h))
e5bbc8a6 2117 goto out;
aa888a74 2118
e5bbc8a6
MK
2119 /*
2120 * Part (or even all) of the reservation could have been backed
2121 * by pre-allocated pages. Only free surplus pages.
2122 */
a5516438 2123 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2124
685f3457
LS
2125 /*
2126 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2127 * evenly across all nodes with memory. Iterate across these nodes
2128 * until we can no longer free unreserved surplus pages. This occurs
2129 * when the nodes with surplus pages have no free pages.
2130 * free_pool_huge_page() will balance the the freed pages across the
2131 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
2132 *
2133 * Note that we decrement resv_huge_pages as we free the pages. If
2134 * we drop the lock, resv_huge_pages will still be sufficiently large
2135 * to cover subsequent pages we may free.
685f3457
LS
2136 */
2137 while (nr_pages--) {
e5bbc8a6
MK
2138 h->resv_huge_pages--;
2139 unused_resv_pages--;
8cebfcd0 2140 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 2141 goto out;
7848a4bf 2142 cond_resched_lock(&hugetlb_lock);
e4e574b7 2143 }
e5bbc8a6
MK
2144
2145out:
2146 /* Fully uncommit the reservation */
2147 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
2148}
2149
5e911373 2150
c37f9fb1 2151/*
feba16e2 2152 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2153 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2154 *
2155 * vma_needs_reservation is called to determine if the huge page at addr
2156 * within the vma has an associated reservation. If a reservation is
2157 * needed, the value 1 is returned. The caller is then responsible for
2158 * managing the global reservation and subpool usage counts. After
2159 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2160 * to add the page to the reservation map. If the page allocation fails,
2161 * the reservation must be ended instead of committed. vma_end_reservation
2162 * is called in such cases.
cf3ad20b
MK
2163 *
2164 * In the normal case, vma_commit_reservation returns the same value
2165 * as the preceding vma_needs_reservation call. The only time this
2166 * is not the case is if a reserve map was changed between calls. It
2167 * is the responsibility of the caller to notice the difference and
2168 * take appropriate action.
96b96a96
MK
2169 *
2170 * vma_add_reservation is used in error paths where a reservation must
2171 * be restored when a newly allocated huge page must be freed. It is
2172 * to be called after calling vma_needs_reservation to determine if a
2173 * reservation exists.
c37f9fb1 2174 */
5e911373
MK
2175enum vma_resv_mode {
2176 VMA_NEEDS_RESV,
2177 VMA_COMMIT_RESV,
feba16e2 2178 VMA_END_RESV,
96b96a96 2179 VMA_ADD_RESV,
5e911373 2180};
cf3ad20b
MK
2181static long __vma_reservation_common(struct hstate *h,
2182 struct vm_area_struct *vma, unsigned long addr,
5e911373 2183 enum vma_resv_mode mode)
c37f9fb1 2184{
4e35f483
JK
2185 struct resv_map *resv;
2186 pgoff_t idx;
cf3ad20b 2187 long ret;
0db9d74e 2188 long dummy_out_regions_needed;
c37f9fb1 2189
4e35f483
JK
2190 resv = vma_resv_map(vma);
2191 if (!resv)
84afd99b 2192 return 1;
c37f9fb1 2193
4e35f483 2194 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2195 switch (mode) {
2196 case VMA_NEEDS_RESV:
0db9d74e
MA
2197 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2198 /* We assume that vma_reservation_* routines always operate on
2199 * 1 page, and that adding to resv map a 1 page entry can only
2200 * ever require 1 region.
2201 */
2202 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2203 break;
2204 case VMA_COMMIT_RESV:
075a61d0 2205 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2206 /* region_add calls of range 1 should never fail. */
2207 VM_BUG_ON(ret < 0);
5e911373 2208 break;
feba16e2 2209 case VMA_END_RESV:
0db9d74e 2210 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2211 ret = 0;
2212 break;
96b96a96 2213 case VMA_ADD_RESV:
0db9d74e 2214 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2215 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2216 /* region_add calls of range 1 should never fail. */
2217 VM_BUG_ON(ret < 0);
2218 } else {
2219 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2220 ret = region_del(resv, idx, idx + 1);
2221 }
2222 break;
5e911373
MK
2223 default:
2224 BUG();
2225 }
84afd99b 2226
4e35f483 2227 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2228 return ret;
67961f9d
MK
2229 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2230 /*
2231 * In most cases, reserves always exist for private mappings.
2232 * However, a file associated with mapping could have been
2233 * hole punched or truncated after reserves were consumed.
2234 * As subsequent fault on such a range will not use reserves.
2235 * Subtle - The reserve map for private mappings has the
2236 * opposite meaning than that of shared mappings. If NO
2237 * entry is in the reserve map, it means a reservation exists.
2238 * If an entry exists in the reserve map, it means the
2239 * reservation has already been consumed. As a result, the
2240 * return value of this routine is the opposite of the
2241 * value returned from reserve map manipulation routines above.
2242 */
2243 if (ret)
2244 return 0;
2245 else
2246 return 1;
2247 }
4e35f483 2248 else
cf3ad20b 2249 return ret < 0 ? ret : 0;
c37f9fb1 2250}
cf3ad20b
MK
2251
2252static long vma_needs_reservation(struct hstate *h,
a5516438 2253 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2254{
5e911373 2255 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2256}
84afd99b 2257
cf3ad20b
MK
2258static long vma_commit_reservation(struct hstate *h,
2259 struct vm_area_struct *vma, unsigned long addr)
2260{
5e911373
MK
2261 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2262}
2263
feba16e2 2264static void vma_end_reservation(struct hstate *h,
5e911373
MK
2265 struct vm_area_struct *vma, unsigned long addr)
2266{
feba16e2 2267 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2268}
2269
96b96a96
MK
2270static long vma_add_reservation(struct hstate *h,
2271 struct vm_area_struct *vma, unsigned long addr)
2272{
2273 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2274}
2275
2276/*
2277 * This routine is called to restore a reservation on error paths. In the
2278 * specific error paths, a huge page was allocated (via alloc_huge_page)
2279 * and is about to be freed. If a reservation for the page existed,
2280 * alloc_huge_page would have consumed the reservation and set PagePrivate
2281 * in the newly allocated page. When the page is freed via free_huge_page,
2282 * the global reservation count will be incremented if PagePrivate is set.
2283 * However, free_huge_page can not adjust the reserve map. Adjust the
2284 * reserve map here to be consistent with global reserve count adjustments
2285 * to be made by free_huge_page.
2286 */
2287static void restore_reserve_on_error(struct hstate *h,
2288 struct vm_area_struct *vma, unsigned long address,
2289 struct page *page)
2290{
2291 if (unlikely(PagePrivate(page))) {
2292 long rc = vma_needs_reservation(h, vma, address);
2293
2294 if (unlikely(rc < 0)) {
2295 /*
2296 * Rare out of memory condition in reserve map
2297 * manipulation. Clear PagePrivate so that
2298 * global reserve count will not be incremented
2299 * by free_huge_page. This will make it appear
2300 * as though the reservation for this page was
2301 * consumed. This may prevent the task from
2302 * faulting in the page at a later time. This
2303 * is better than inconsistent global huge page
2304 * accounting of reserve counts.
2305 */
2306 ClearPagePrivate(page);
2307 } else if (rc) {
2308 rc = vma_add_reservation(h, vma, address);
2309 if (unlikely(rc < 0))
2310 /*
2311 * See above comment about rare out of
2312 * memory condition.
2313 */
2314 ClearPagePrivate(page);
2315 } else
2316 vma_end_reservation(h, vma, address);
2317 }
2318}
2319
70c3547e 2320struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2321 unsigned long addr, int avoid_reserve)
1da177e4 2322{
90481622 2323 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2324 struct hstate *h = hstate_vma(vma);
348ea204 2325 struct page *page;
d85f69b0
MK
2326 long map_chg, map_commit;
2327 long gbl_chg;
6d76dcf4
AK
2328 int ret, idx;
2329 struct hugetlb_cgroup *h_cg;
08cf9faf 2330 bool deferred_reserve;
a1e78772 2331
6d76dcf4 2332 idx = hstate_index(h);
a1e78772 2333 /*
d85f69b0
MK
2334 * Examine the region/reserve map to determine if the process
2335 * has a reservation for the page to be allocated. A return
2336 * code of zero indicates a reservation exists (no change).
a1e78772 2337 */
d85f69b0
MK
2338 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2339 if (map_chg < 0)
76dcee75 2340 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2341
2342 /*
2343 * Processes that did not create the mapping will have no
2344 * reserves as indicated by the region/reserve map. Check
2345 * that the allocation will not exceed the subpool limit.
2346 * Allocations for MAP_NORESERVE mappings also need to be
2347 * checked against any subpool limit.
2348 */
2349 if (map_chg || avoid_reserve) {
2350 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2351 if (gbl_chg < 0) {
feba16e2 2352 vma_end_reservation(h, vma, addr);
76dcee75 2353 return ERR_PTR(-ENOSPC);
5e911373 2354 }
1da177e4 2355
d85f69b0
MK
2356 /*
2357 * Even though there was no reservation in the region/reserve
2358 * map, there could be reservations associated with the
2359 * subpool that can be used. This would be indicated if the
2360 * return value of hugepage_subpool_get_pages() is zero.
2361 * However, if avoid_reserve is specified we still avoid even
2362 * the subpool reservations.
2363 */
2364 if (avoid_reserve)
2365 gbl_chg = 1;
2366 }
2367
08cf9faf
MA
2368 /* If this allocation is not consuming a reservation, charge it now.
2369 */
2370 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2371 if (deferred_reserve) {
2372 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2373 idx, pages_per_huge_page(h), &h_cg);
2374 if (ret)
2375 goto out_subpool_put;
2376 }
2377
6d76dcf4 2378 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2379 if (ret)
08cf9faf 2380 goto out_uncharge_cgroup_reservation;
8f34af6f 2381
1da177e4 2382 spin_lock(&hugetlb_lock);
d85f69b0
MK
2383 /*
2384 * glb_chg is passed to indicate whether or not a page must be taken
2385 * from the global free pool (global change). gbl_chg == 0 indicates
2386 * a reservation exists for the allocation.
2387 */
2388 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2389 if (!page) {
94ae8ba7 2390 spin_unlock(&hugetlb_lock);
0c397dae 2391 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2392 if (!page)
2393 goto out_uncharge_cgroup;
a88c7695
NH
2394 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2395 SetPagePrivate(page);
2396 h->resv_huge_pages--;
2397 }
79dbb236
AK
2398 spin_lock(&hugetlb_lock);
2399 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2400 /* Fall through */
68842c9b 2401 }
81a6fcae 2402 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2403 /* If allocation is not consuming a reservation, also store the
2404 * hugetlb_cgroup pointer on the page.
2405 */
2406 if (deferred_reserve) {
2407 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2408 h_cg, page);
2409 }
2410
81a6fcae 2411 spin_unlock(&hugetlb_lock);
348ea204 2412
90481622 2413 set_page_private(page, (unsigned long)spool);
90d8b7e6 2414
d85f69b0
MK
2415 map_commit = vma_commit_reservation(h, vma, addr);
2416 if (unlikely(map_chg > map_commit)) {
33039678
MK
2417 /*
2418 * The page was added to the reservation map between
2419 * vma_needs_reservation and vma_commit_reservation.
2420 * This indicates a race with hugetlb_reserve_pages.
2421 * Adjust for the subpool count incremented above AND
2422 * in hugetlb_reserve_pages for the same page. Also,
2423 * the reservation count added in hugetlb_reserve_pages
2424 * no longer applies.
2425 */
2426 long rsv_adjust;
2427
2428 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2429 hugetlb_acct_memory(h, -rsv_adjust);
2430 }
90d8b7e6 2431 return page;
8f34af6f
JZ
2432
2433out_uncharge_cgroup:
2434 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2435out_uncharge_cgroup_reservation:
2436 if (deferred_reserve)
2437 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2438 h_cg);
8f34af6f 2439out_subpool_put:
d85f69b0 2440 if (map_chg || avoid_reserve)
8f34af6f 2441 hugepage_subpool_put_pages(spool, 1);
feba16e2 2442 vma_end_reservation(h, vma, addr);
8f34af6f 2443 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2444}
2445
e24a1307
AK
2446int alloc_bootmem_huge_page(struct hstate *h)
2447 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2448int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2449{
2450 struct huge_bootmem_page *m;
b2261026 2451 int nr_nodes, node;
aa888a74 2452
b2261026 2453 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2454 void *addr;
2455
eb31d559 2456 addr = memblock_alloc_try_nid_raw(
8b89a116 2457 huge_page_size(h), huge_page_size(h),
97ad1087 2458 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2459 if (addr) {
2460 /*
2461 * Use the beginning of the huge page to store the
2462 * huge_bootmem_page struct (until gather_bootmem
2463 * puts them into the mem_map).
2464 */
2465 m = addr;
91f47662 2466 goto found;
aa888a74 2467 }
aa888a74
AK
2468 }
2469 return 0;
2470
2471found:
df994ead 2472 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2473 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2474 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2475 list_add(&m->list, &huge_boot_pages);
2476 m->hstate = h;
2477 return 1;
2478}
2479
d00181b9
KS
2480static void __init prep_compound_huge_page(struct page *page,
2481 unsigned int order)
18229df5
AW
2482{
2483 if (unlikely(order > (MAX_ORDER - 1)))
2484 prep_compound_gigantic_page(page, order);
2485 else
2486 prep_compound_page(page, order);
2487}
2488
aa888a74
AK
2489/* Put bootmem huge pages into the standard lists after mem_map is up */
2490static void __init gather_bootmem_prealloc(void)
2491{
2492 struct huge_bootmem_page *m;
2493
2494 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2495 struct page *page = virt_to_page(m);
aa888a74 2496 struct hstate *h = m->hstate;
ee8f248d 2497
aa888a74 2498 WARN_ON(page_count(page) != 1);
18229df5 2499 prep_compound_huge_page(page, h->order);
ef5a22be 2500 WARN_ON(PageReserved(page));
aa888a74 2501 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2502 put_page(page); /* free it into the hugepage allocator */
2503
b0320c7b
RA
2504 /*
2505 * If we had gigantic hugepages allocated at boot time, we need
2506 * to restore the 'stolen' pages to totalram_pages in order to
2507 * fix confusing memory reports from free(1) and another
2508 * side-effects, like CommitLimit going negative.
2509 */
bae7f4ae 2510 if (hstate_is_gigantic(h))
3dcc0571 2511 adjust_managed_page_count(page, 1 << h->order);
520495fe 2512 cond_resched();
aa888a74
AK
2513 }
2514}
2515
8faa8b07 2516static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2517{
2518 unsigned long i;
f60858f9
MK
2519 nodemask_t *node_alloc_noretry;
2520
2521 if (!hstate_is_gigantic(h)) {
2522 /*
2523 * Bit mask controlling how hard we retry per-node allocations.
2524 * Ignore errors as lower level routines can deal with
2525 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2526 * time, we are likely in bigger trouble.
2527 */
2528 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2529 GFP_KERNEL);
2530 } else {
2531 /* allocations done at boot time */
2532 node_alloc_noretry = NULL;
2533 }
2534
2535 /* bit mask controlling how hard we retry per-node allocations */
2536 if (node_alloc_noretry)
2537 nodes_clear(*node_alloc_noretry);
a5516438 2538
e5ff2159 2539 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2540 if (hstate_is_gigantic(h)) {
aa888a74
AK
2541 if (!alloc_bootmem_huge_page(h))
2542 break;
0c397dae 2543 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2544 &node_states[N_MEMORY],
2545 node_alloc_noretry))
1da177e4 2546 break;
69ed779a 2547 cond_resched();
1da177e4 2548 }
d715cf80
LH
2549 if (i < h->max_huge_pages) {
2550 char buf[32];
2551
c6247f72 2552 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2553 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2554 h->max_huge_pages, buf, i);
2555 h->max_huge_pages = i;
2556 }
f60858f9
MK
2557
2558 kfree(node_alloc_noretry);
e5ff2159
AK
2559}
2560
2561static void __init hugetlb_init_hstates(void)
2562{
2563 struct hstate *h;
2564
2565 for_each_hstate(h) {
641844f5
NH
2566 if (minimum_order > huge_page_order(h))
2567 minimum_order = huge_page_order(h);
2568
8faa8b07 2569 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2570 if (!hstate_is_gigantic(h))
8faa8b07 2571 hugetlb_hstate_alloc_pages(h);
e5ff2159 2572 }
641844f5 2573 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2574}
2575
2576static void __init report_hugepages(void)
2577{
2578 struct hstate *h;
2579
2580 for_each_hstate(h) {
4abd32db 2581 char buf[32];
c6247f72
MW
2582
2583 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2584 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2585 buf, h->free_huge_pages);
e5ff2159
AK
2586 }
2587}
2588
1da177e4 2589#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2590static void try_to_free_low(struct hstate *h, unsigned long count,
2591 nodemask_t *nodes_allowed)
1da177e4 2592{
4415cc8d
CL
2593 int i;
2594
bae7f4ae 2595 if (hstate_is_gigantic(h))
aa888a74
AK
2596 return;
2597
6ae11b27 2598 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2599 struct page *page, *next;
a5516438
AK
2600 struct list_head *freel = &h->hugepage_freelists[i];
2601 list_for_each_entry_safe(page, next, freel, lru) {
2602 if (count >= h->nr_huge_pages)
6b0c880d 2603 return;
1da177e4
LT
2604 if (PageHighMem(page))
2605 continue;
2606 list_del(&page->lru);
e5ff2159 2607 update_and_free_page(h, page);
a5516438
AK
2608 h->free_huge_pages--;
2609 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2610 }
2611 }
2612}
2613#else
6ae11b27
LS
2614static inline void try_to_free_low(struct hstate *h, unsigned long count,
2615 nodemask_t *nodes_allowed)
1da177e4
LT
2616{
2617}
2618#endif
2619
20a0307c
WF
2620/*
2621 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2622 * balanced by operating on them in a round-robin fashion.
2623 * Returns 1 if an adjustment was made.
2624 */
6ae11b27
LS
2625static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2626 int delta)
20a0307c 2627{
b2261026 2628 int nr_nodes, node;
20a0307c
WF
2629
2630 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2631
b2261026
JK
2632 if (delta < 0) {
2633 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2634 if (h->surplus_huge_pages_node[node])
2635 goto found;
e8c5c824 2636 }
b2261026
JK
2637 } else {
2638 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2639 if (h->surplus_huge_pages_node[node] <
2640 h->nr_huge_pages_node[node])
2641 goto found;
e8c5c824 2642 }
b2261026
JK
2643 }
2644 return 0;
20a0307c 2645
b2261026
JK
2646found:
2647 h->surplus_huge_pages += delta;
2648 h->surplus_huge_pages_node[node] += delta;
2649 return 1;
20a0307c
WF
2650}
2651
a5516438 2652#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2653static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2654 nodemask_t *nodes_allowed)
1da177e4 2655{
7893d1d5 2656 unsigned long min_count, ret;
f60858f9
MK
2657 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2658
2659 /*
2660 * Bit mask controlling how hard we retry per-node allocations.
2661 * If we can not allocate the bit mask, do not attempt to allocate
2662 * the requested huge pages.
2663 */
2664 if (node_alloc_noretry)
2665 nodes_clear(*node_alloc_noretry);
2666 else
2667 return -ENOMEM;
1da177e4 2668
4eb0716e
AG
2669 spin_lock(&hugetlb_lock);
2670
fd875dca
MK
2671 /*
2672 * Check for a node specific request.
2673 * Changing node specific huge page count may require a corresponding
2674 * change to the global count. In any case, the passed node mask
2675 * (nodes_allowed) will restrict alloc/free to the specified node.
2676 */
2677 if (nid != NUMA_NO_NODE) {
2678 unsigned long old_count = count;
2679
2680 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2681 /*
2682 * User may have specified a large count value which caused the
2683 * above calculation to overflow. In this case, they wanted
2684 * to allocate as many huge pages as possible. Set count to
2685 * largest possible value to align with their intention.
2686 */
2687 if (count < old_count)
2688 count = ULONG_MAX;
2689 }
2690
4eb0716e
AG
2691 /*
2692 * Gigantic pages runtime allocation depend on the capability for large
2693 * page range allocation.
2694 * If the system does not provide this feature, return an error when
2695 * the user tries to allocate gigantic pages but let the user free the
2696 * boottime allocated gigantic pages.
2697 */
2698 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2699 if (count > persistent_huge_pages(h)) {
2700 spin_unlock(&hugetlb_lock);
f60858f9 2701 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2702 return -EINVAL;
2703 }
2704 /* Fall through to decrease pool */
2705 }
aa888a74 2706
7893d1d5
AL
2707 /*
2708 * Increase the pool size
2709 * First take pages out of surplus state. Then make up the
2710 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2711 *
0c397dae 2712 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2713 * to convert a surplus huge page to a normal huge page. That is
2714 * not critical, though, it just means the overall size of the
2715 * pool might be one hugepage larger than it needs to be, but
2716 * within all the constraints specified by the sysctls.
7893d1d5 2717 */
a5516438 2718 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2719 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2720 break;
2721 }
2722
a5516438 2723 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2724 /*
2725 * If this allocation races such that we no longer need the
2726 * page, free_huge_page will handle it by freeing the page
2727 * and reducing the surplus.
2728 */
2729 spin_unlock(&hugetlb_lock);
649920c6
JH
2730
2731 /* yield cpu to avoid soft lockup */
2732 cond_resched();
2733
f60858f9
MK
2734 ret = alloc_pool_huge_page(h, nodes_allowed,
2735 node_alloc_noretry);
7893d1d5
AL
2736 spin_lock(&hugetlb_lock);
2737 if (!ret)
2738 goto out;
2739
536240f2
MG
2740 /* Bail for signals. Probably ctrl-c from user */
2741 if (signal_pending(current))
2742 goto out;
7893d1d5 2743 }
7893d1d5
AL
2744
2745 /*
2746 * Decrease the pool size
2747 * First return free pages to the buddy allocator (being careful
2748 * to keep enough around to satisfy reservations). Then place
2749 * pages into surplus state as needed so the pool will shrink
2750 * to the desired size as pages become free.
d1c3fb1f
NA
2751 *
2752 * By placing pages into the surplus state independent of the
2753 * overcommit value, we are allowing the surplus pool size to
2754 * exceed overcommit. There are few sane options here. Since
0c397dae 2755 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2756 * though, we'll note that we're not allowed to exceed surplus
2757 * and won't grow the pool anywhere else. Not until one of the
2758 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2759 */
a5516438 2760 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2761 min_count = max(count, min_count);
6ae11b27 2762 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2763 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2764 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2765 break;
55f67141 2766 cond_resched_lock(&hugetlb_lock);
1da177e4 2767 }
a5516438 2768 while (count < persistent_huge_pages(h)) {
6ae11b27 2769 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2770 break;
2771 }
2772out:
4eb0716e 2773 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2774 spin_unlock(&hugetlb_lock);
4eb0716e 2775
f60858f9
MK
2776 NODEMASK_FREE(node_alloc_noretry);
2777
4eb0716e 2778 return 0;
1da177e4
LT
2779}
2780
a3437870
NA
2781#define HSTATE_ATTR_RO(_name) \
2782 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2783
2784#define HSTATE_ATTR(_name) \
2785 static struct kobj_attribute _name##_attr = \
2786 __ATTR(_name, 0644, _name##_show, _name##_store)
2787
2788static struct kobject *hugepages_kobj;
2789static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2790
9a305230
LS
2791static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2792
2793static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2794{
2795 int i;
9a305230 2796
a3437870 2797 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2798 if (hstate_kobjs[i] == kobj) {
2799 if (nidp)
2800 *nidp = NUMA_NO_NODE;
a3437870 2801 return &hstates[i];
9a305230
LS
2802 }
2803
2804 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2805}
2806
06808b08 2807static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2808 struct kobj_attribute *attr, char *buf)
2809{
9a305230
LS
2810 struct hstate *h;
2811 unsigned long nr_huge_pages;
2812 int nid;
2813
2814 h = kobj_to_hstate(kobj, &nid);
2815 if (nid == NUMA_NO_NODE)
2816 nr_huge_pages = h->nr_huge_pages;
2817 else
2818 nr_huge_pages = h->nr_huge_pages_node[nid];
2819
2820 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2821}
adbe8726 2822
238d3c13
DR
2823static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2824 struct hstate *h, int nid,
2825 unsigned long count, size_t len)
a3437870
NA
2826{
2827 int err;
2d0adf7e 2828 nodemask_t nodes_allowed, *n_mask;
a3437870 2829
2d0adf7e
OS
2830 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2831 return -EINVAL;
adbe8726 2832
9a305230
LS
2833 if (nid == NUMA_NO_NODE) {
2834 /*
2835 * global hstate attribute
2836 */
2837 if (!(obey_mempolicy &&
2d0adf7e
OS
2838 init_nodemask_of_mempolicy(&nodes_allowed)))
2839 n_mask = &node_states[N_MEMORY];
2840 else
2841 n_mask = &nodes_allowed;
2842 } else {
9a305230 2843 /*
fd875dca
MK
2844 * Node specific request. count adjustment happens in
2845 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2846 */
2d0adf7e
OS
2847 init_nodemask_of_node(&nodes_allowed, nid);
2848 n_mask = &nodes_allowed;
fd875dca 2849 }
9a305230 2850
2d0adf7e 2851 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2852
4eb0716e 2853 return err ? err : len;
06808b08
LS
2854}
2855
238d3c13
DR
2856static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2857 struct kobject *kobj, const char *buf,
2858 size_t len)
2859{
2860 struct hstate *h;
2861 unsigned long count;
2862 int nid;
2863 int err;
2864
2865 err = kstrtoul(buf, 10, &count);
2866 if (err)
2867 return err;
2868
2869 h = kobj_to_hstate(kobj, &nid);
2870 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2871}
2872
06808b08
LS
2873static ssize_t nr_hugepages_show(struct kobject *kobj,
2874 struct kobj_attribute *attr, char *buf)
2875{
2876 return nr_hugepages_show_common(kobj, attr, buf);
2877}
2878
2879static ssize_t nr_hugepages_store(struct kobject *kobj,
2880 struct kobj_attribute *attr, const char *buf, size_t len)
2881{
238d3c13 2882 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2883}
2884HSTATE_ATTR(nr_hugepages);
2885
06808b08
LS
2886#ifdef CONFIG_NUMA
2887
2888/*
2889 * hstate attribute for optionally mempolicy-based constraint on persistent
2890 * huge page alloc/free.
2891 */
2892static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2893 struct kobj_attribute *attr, char *buf)
2894{
2895 return nr_hugepages_show_common(kobj, attr, buf);
2896}
2897
2898static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2899 struct kobj_attribute *attr, const char *buf, size_t len)
2900{
238d3c13 2901 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2902}
2903HSTATE_ATTR(nr_hugepages_mempolicy);
2904#endif
2905
2906
a3437870
NA
2907static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2908 struct kobj_attribute *attr, char *buf)
2909{
9a305230 2910 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2911 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2912}
adbe8726 2913
a3437870
NA
2914static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2915 struct kobj_attribute *attr, const char *buf, size_t count)
2916{
2917 int err;
2918 unsigned long input;
9a305230 2919 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2920
bae7f4ae 2921 if (hstate_is_gigantic(h))
adbe8726
EM
2922 return -EINVAL;
2923
3dbb95f7 2924 err = kstrtoul(buf, 10, &input);
a3437870 2925 if (err)
73ae31e5 2926 return err;
a3437870
NA
2927
2928 spin_lock(&hugetlb_lock);
2929 h->nr_overcommit_huge_pages = input;
2930 spin_unlock(&hugetlb_lock);
2931
2932 return count;
2933}
2934HSTATE_ATTR(nr_overcommit_hugepages);
2935
2936static ssize_t free_hugepages_show(struct kobject *kobj,
2937 struct kobj_attribute *attr, char *buf)
2938{
9a305230
LS
2939 struct hstate *h;
2940 unsigned long free_huge_pages;
2941 int nid;
2942
2943 h = kobj_to_hstate(kobj, &nid);
2944 if (nid == NUMA_NO_NODE)
2945 free_huge_pages = h->free_huge_pages;
2946 else
2947 free_huge_pages = h->free_huge_pages_node[nid];
2948
2949 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2950}
2951HSTATE_ATTR_RO(free_hugepages);
2952
2953static ssize_t resv_hugepages_show(struct kobject *kobj,
2954 struct kobj_attribute *attr, char *buf)
2955{
9a305230 2956 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2957 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2958}
2959HSTATE_ATTR_RO(resv_hugepages);
2960
2961static ssize_t surplus_hugepages_show(struct kobject *kobj,
2962 struct kobj_attribute *attr, char *buf)
2963{
9a305230
LS
2964 struct hstate *h;
2965 unsigned long surplus_huge_pages;
2966 int nid;
2967
2968 h = kobj_to_hstate(kobj, &nid);
2969 if (nid == NUMA_NO_NODE)
2970 surplus_huge_pages = h->surplus_huge_pages;
2971 else
2972 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2973
2974 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2975}
2976HSTATE_ATTR_RO(surplus_hugepages);
2977
2978static struct attribute *hstate_attrs[] = {
2979 &nr_hugepages_attr.attr,
2980 &nr_overcommit_hugepages_attr.attr,
2981 &free_hugepages_attr.attr,
2982 &resv_hugepages_attr.attr,
2983 &surplus_hugepages_attr.attr,
06808b08
LS
2984#ifdef CONFIG_NUMA
2985 &nr_hugepages_mempolicy_attr.attr,
2986#endif
a3437870
NA
2987 NULL,
2988};
2989
67e5ed96 2990static const struct attribute_group hstate_attr_group = {
a3437870
NA
2991 .attrs = hstate_attrs,
2992};
2993
094e9539
JM
2994static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2995 struct kobject **hstate_kobjs,
67e5ed96 2996 const struct attribute_group *hstate_attr_group)
a3437870
NA
2997{
2998 int retval;
972dc4de 2999 int hi = hstate_index(h);
a3437870 3000
9a305230
LS
3001 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3002 if (!hstate_kobjs[hi])
a3437870
NA
3003 return -ENOMEM;
3004
9a305230 3005 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 3006 if (retval)
9a305230 3007 kobject_put(hstate_kobjs[hi]);
a3437870
NA
3008
3009 return retval;
3010}
3011
3012static void __init hugetlb_sysfs_init(void)
3013{
3014 struct hstate *h;
3015 int err;
3016
3017 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3018 if (!hugepages_kobj)
3019 return;
3020
3021 for_each_hstate(h) {
9a305230
LS
3022 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3023 hstate_kobjs, &hstate_attr_group);
a3437870 3024 if (err)
ffb22af5 3025 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
3026 }
3027}
3028
9a305230
LS
3029#ifdef CONFIG_NUMA
3030
3031/*
3032 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3033 * with node devices in node_devices[] using a parallel array. The array
3034 * index of a node device or _hstate == node id.
3035 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3036 * the base kernel, on the hugetlb module.
3037 */
3038struct node_hstate {
3039 struct kobject *hugepages_kobj;
3040 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3041};
b4e289a6 3042static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3043
3044/*
10fbcf4c 3045 * A subset of global hstate attributes for node devices
9a305230
LS
3046 */
3047static struct attribute *per_node_hstate_attrs[] = {
3048 &nr_hugepages_attr.attr,
3049 &free_hugepages_attr.attr,
3050 &surplus_hugepages_attr.attr,
3051 NULL,
3052};
3053
67e5ed96 3054static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3055 .attrs = per_node_hstate_attrs,
3056};
3057
3058/*
10fbcf4c 3059 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3060 * Returns node id via non-NULL nidp.
3061 */
3062static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3063{
3064 int nid;
3065
3066 for (nid = 0; nid < nr_node_ids; nid++) {
3067 struct node_hstate *nhs = &node_hstates[nid];
3068 int i;
3069 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3070 if (nhs->hstate_kobjs[i] == kobj) {
3071 if (nidp)
3072 *nidp = nid;
3073 return &hstates[i];
3074 }
3075 }
3076
3077 BUG();
3078 return NULL;
3079}
3080
3081/*
10fbcf4c 3082 * Unregister hstate attributes from a single node device.
9a305230
LS
3083 * No-op if no hstate attributes attached.
3084 */
3cd8b44f 3085static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3086{
3087 struct hstate *h;
10fbcf4c 3088 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3089
3090 if (!nhs->hugepages_kobj)
9b5e5d0f 3091 return; /* no hstate attributes */
9a305230 3092
972dc4de
AK
3093 for_each_hstate(h) {
3094 int idx = hstate_index(h);
3095 if (nhs->hstate_kobjs[idx]) {
3096 kobject_put(nhs->hstate_kobjs[idx]);
3097 nhs->hstate_kobjs[idx] = NULL;
9a305230 3098 }
972dc4de 3099 }
9a305230
LS
3100
3101 kobject_put(nhs->hugepages_kobj);
3102 nhs->hugepages_kobj = NULL;
3103}
3104
9a305230
LS
3105
3106/*
10fbcf4c 3107 * Register hstate attributes for a single node device.
9a305230
LS
3108 * No-op if attributes already registered.
3109 */
3cd8b44f 3110static void hugetlb_register_node(struct node *node)
9a305230
LS
3111{
3112 struct hstate *h;
10fbcf4c 3113 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3114 int err;
3115
3116 if (nhs->hugepages_kobj)
3117 return; /* already allocated */
3118
3119 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3120 &node->dev.kobj);
9a305230
LS
3121 if (!nhs->hugepages_kobj)
3122 return;
3123
3124 for_each_hstate(h) {
3125 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3126 nhs->hstate_kobjs,
3127 &per_node_hstate_attr_group);
3128 if (err) {
ffb22af5
AM
3129 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
3130 h->name, node->dev.id);
9a305230
LS
3131 hugetlb_unregister_node(node);
3132 break;
3133 }
3134 }
3135}
3136
3137/*
9b5e5d0f 3138 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3139 * devices of nodes that have memory. All on-line nodes should have
3140 * registered their associated device by this time.
9a305230 3141 */
7d9ca000 3142static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3143{
3144 int nid;
3145
8cebfcd0 3146 for_each_node_state(nid, N_MEMORY) {
8732794b 3147 struct node *node = node_devices[nid];
10fbcf4c 3148 if (node->dev.id == nid)
9a305230
LS
3149 hugetlb_register_node(node);
3150 }
3151
3152 /*
10fbcf4c 3153 * Let the node device driver know we're here so it can
9a305230
LS
3154 * [un]register hstate attributes on node hotplug.
3155 */
3156 register_hugetlbfs_with_node(hugetlb_register_node,
3157 hugetlb_unregister_node);
3158}
3159#else /* !CONFIG_NUMA */
3160
3161static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3162{
3163 BUG();
3164 if (nidp)
3165 *nidp = -1;
3166 return NULL;
3167}
3168
9a305230
LS
3169static void hugetlb_register_all_nodes(void) { }
3170
3171#endif
3172
a3437870
NA
3173static int __init hugetlb_init(void)
3174{
8382d914
DB
3175 int i;
3176
457c1b27 3177 if (!hugepages_supported())
0ef89d25 3178 return 0;
a3437870 3179
e11bfbfc 3180 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
3181 if (default_hstate_size != 0) {
3182 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
3183 default_hstate_size, HPAGE_SIZE);
3184 }
3185
e11bfbfc
NP
3186 default_hstate_size = HPAGE_SIZE;
3187 if (!size_to_hstate(default_hstate_size))
3188 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 3189 }
972dc4de 3190 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
3191 if (default_hstate_max_huge_pages) {
3192 if (!default_hstate.max_huge_pages)
3193 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3194 }
a3437870
NA
3195
3196 hugetlb_init_hstates();
aa888a74 3197 gather_bootmem_prealloc();
a3437870
NA
3198 report_hugepages();
3199
3200 hugetlb_sysfs_init();
9a305230 3201 hugetlb_register_all_nodes();
7179e7bf 3202 hugetlb_cgroup_file_init();
9a305230 3203
8382d914
DB
3204#ifdef CONFIG_SMP
3205 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3206#else
3207 num_fault_mutexes = 1;
3208#endif
c672c7f2 3209 hugetlb_fault_mutex_table =
6da2ec56
KC
3210 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3211 GFP_KERNEL);
c672c7f2 3212 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3213
3214 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3215 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3216 return 0;
3217}
3e89e1c5 3218subsys_initcall(hugetlb_init);
a3437870
NA
3219
3220/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
3221void __init hugetlb_bad_size(void)
3222{
3223 parsed_valid_hugepagesz = false;
3224}
3225
d00181b9 3226void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3227{
3228 struct hstate *h;
8faa8b07
AK
3229 unsigned long i;
3230
a3437870 3231 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 3232 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
3233 return;
3234 }
47d38344 3235 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3236 BUG_ON(order == 0);
47d38344 3237 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
3238 h->order = order;
3239 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
3240 h->nr_huge_pages = 0;
3241 h->free_huge_pages = 0;
3242 for (i = 0; i < MAX_NUMNODES; ++i)
3243 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3244 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3245 h->next_nid_to_alloc = first_memory_node;
3246 h->next_nid_to_free = first_memory_node;
a3437870
NA
3247 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3248 huge_page_size(h)/1024);
8faa8b07 3249
a3437870
NA
3250 parsed_hstate = h;
3251}
3252
e11bfbfc 3253static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
3254{
3255 unsigned long *mhp;
8faa8b07 3256 static unsigned long *last_mhp;
a3437870 3257
9fee021d
VT
3258 if (!parsed_valid_hugepagesz) {
3259 pr_warn("hugepages = %s preceded by "
3260 "an unsupported hugepagesz, ignoring\n", s);
3261 parsed_valid_hugepagesz = true;
3262 return 1;
3263 }
a3437870 3264 /*
47d38344 3265 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
3266 * so this hugepages= parameter goes to the "default hstate".
3267 */
9fee021d 3268 else if (!hugetlb_max_hstate)
a3437870
NA
3269 mhp = &default_hstate_max_huge_pages;
3270 else
3271 mhp = &parsed_hstate->max_huge_pages;
3272
8faa8b07 3273 if (mhp == last_mhp) {
598d8091 3274 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
3275 return 1;
3276 }
3277
a3437870
NA
3278 if (sscanf(s, "%lu", mhp) <= 0)
3279 *mhp = 0;
3280
8faa8b07
AK
3281 /*
3282 * Global state is always initialized later in hugetlb_init.
3283 * But we need to allocate >= MAX_ORDER hstates here early to still
3284 * use the bootmem allocator.
3285 */
47d38344 3286 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
3287 hugetlb_hstate_alloc_pages(parsed_hstate);
3288
3289 last_mhp = mhp;
3290
a3437870
NA
3291 return 1;
3292}
e11bfbfc
NP
3293__setup("hugepages=", hugetlb_nrpages_setup);
3294
3295static int __init hugetlb_default_setup(char *s)
3296{
3297 default_hstate_size = memparse(s, &s);
3298 return 1;
3299}
3300__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 3301
8a213460
NA
3302static unsigned int cpuset_mems_nr(unsigned int *array)
3303{
3304 int node;
3305 unsigned int nr = 0;
3306
3307 for_each_node_mask(node, cpuset_current_mems_allowed)
3308 nr += array[node];
3309
3310 return nr;
3311}
3312
3313#ifdef CONFIG_SYSCTL
06808b08
LS
3314static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3315 struct ctl_table *table, int write,
3316 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 3317{
e5ff2159 3318 struct hstate *h = &default_hstate;
238d3c13 3319 unsigned long tmp = h->max_huge_pages;
08d4a246 3320 int ret;
e5ff2159 3321
457c1b27 3322 if (!hugepages_supported())
86613628 3323 return -EOPNOTSUPP;
457c1b27 3324
e5ff2159
AK
3325 table->data = &tmp;
3326 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3327 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3328 if (ret)
3329 goto out;
e5ff2159 3330
238d3c13
DR
3331 if (write)
3332 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3333 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3334out:
3335 return ret;
1da177e4 3336}
396faf03 3337
06808b08
LS
3338int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3339 void __user *buffer, size_t *length, loff_t *ppos)
3340{
3341
3342 return hugetlb_sysctl_handler_common(false, table, write,
3343 buffer, length, ppos);
3344}
3345
3346#ifdef CONFIG_NUMA
3347int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3348 void __user *buffer, size_t *length, loff_t *ppos)
3349{
3350 return hugetlb_sysctl_handler_common(true, table, write,
3351 buffer, length, ppos);
3352}
3353#endif /* CONFIG_NUMA */
3354
a3d0c6aa 3355int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 3356 void __user *buffer,
a3d0c6aa
NA
3357 size_t *length, loff_t *ppos)
3358{
a5516438 3359 struct hstate *h = &default_hstate;
e5ff2159 3360 unsigned long tmp;
08d4a246 3361 int ret;
e5ff2159 3362
457c1b27 3363 if (!hugepages_supported())
86613628 3364 return -EOPNOTSUPP;
457c1b27 3365
c033a93c 3366 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3367
bae7f4ae 3368 if (write && hstate_is_gigantic(h))
adbe8726
EM
3369 return -EINVAL;
3370
e5ff2159
AK
3371 table->data = &tmp;
3372 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3373 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3374 if (ret)
3375 goto out;
e5ff2159
AK
3376
3377 if (write) {
3378 spin_lock(&hugetlb_lock);
3379 h->nr_overcommit_huge_pages = tmp;
3380 spin_unlock(&hugetlb_lock);
3381 }
08d4a246
MH
3382out:
3383 return ret;
a3d0c6aa
NA
3384}
3385
1da177e4
LT
3386#endif /* CONFIG_SYSCTL */
3387
e1759c21 3388void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3389{
fcb2b0c5
RG
3390 struct hstate *h;
3391 unsigned long total = 0;
3392
457c1b27
NA
3393 if (!hugepages_supported())
3394 return;
fcb2b0c5
RG
3395
3396 for_each_hstate(h) {
3397 unsigned long count = h->nr_huge_pages;
3398
3399 total += (PAGE_SIZE << huge_page_order(h)) * count;
3400
3401 if (h == &default_hstate)
3402 seq_printf(m,
3403 "HugePages_Total: %5lu\n"
3404 "HugePages_Free: %5lu\n"
3405 "HugePages_Rsvd: %5lu\n"
3406 "HugePages_Surp: %5lu\n"
3407 "Hugepagesize: %8lu kB\n",
3408 count,
3409 h->free_huge_pages,
3410 h->resv_huge_pages,
3411 h->surplus_huge_pages,
3412 (PAGE_SIZE << huge_page_order(h)) / 1024);
3413 }
3414
3415 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3416}
3417
3418int hugetlb_report_node_meminfo(int nid, char *buf)
3419{
a5516438 3420 struct hstate *h = &default_hstate;
457c1b27
NA
3421 if (!hugepages_supported())
3422 return 0;
1da177e4
LT
3423 return sprintf(buf,
3424 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3425 "Node %d HugePages_Free: %5u\n"
3426 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3427 nid, h->nr_huge_pages_node[nid],
3428 nid, h->free_huge_pages_node[nid],
3429 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3430}
3431
949f7ec5
DR
3432void hugetlb_show_meminfo(void)
3433{
3434 struct hstate *h;
3435 int nid;
3436
457c1b27
NA
3437 if (!hugepages_supported())
3438 return;
3439
949f7ec5
DR
3440 for_each_node_state(nid, N_MEMORY)
3441 for_each_hstate(h)
3442 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3443 nid,
3444 h->nr_huge_pages_node[nid],
3445 h->free_huge_pages_node[nid],
3446 h->surplus_huge_pages_node[nid],
3447 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3448}
3449
5d317b2b
NH
3450void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3451{
3452 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3453 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3454}
3455
1da177e4
LT
3456/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3457unsigned long hugetlb_total_pages(void)
3458{
d0028588
WL
3459 struct hstate *h;
3460 unsigned long nr_total_pages = 0;
3461
3462 for_each_hstate(h)
3463 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3464 return nr_total_pages;
1da177e4 3465}
1da177e4 3466
a5516438 3467static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3468{
3469 int ret = -ENOMEM;
3470
3471 spin_lock(&hugetlb_lock);
3472 /*
3473 * When cpuset is configured, it breaks the strict hugetlb page
3474 * reservation as the accounting is done on a global variable. Such
3475 * reservation is completely rubbish in the presence of cpuset because
3476 * the reservation is not checked against page availability for the
3477 * current cpuset. Application can still potentially OOM'ed by kernel
3478 * with lack of free htlb page in cpuset that the task is in.
3479 * Attempt to enforce strict accounting with cpuset is almost
3480 * impossible (or too ugly) because cpuset is too fluid that
3481 * task or memory node can be dynamically moved between cpusets.
3482 *
3483 * The change of semantics for shared hugetlb mapping with cpuset is
3484 * undesirable. However, in order to preserve some of the semantics,
3485 * we fall back to check against current free page availability as
3486 * a best attempt and hopefully to minimize the impact of changing
3487 * semantics that cpuset has.
3488 */
3489 if (delta > 0) {
a5516438 3490 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3491 goto out;
3492
a5516438
AK
3493 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3494 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3495 goto out;
3496 }
3497 }
3498
3499 ret = 0;
3500 if (delta < 0)
a5516438 3501 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3502
3503out:
3504 spin_unlock(&hugetlb_lock);
3505 return ret;
3506}
3507
84afd99b
AW
3508static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3509{
f522c3ac 3510 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3511
3512 /*
3513 * This new VMA should share its siblings reservation map if present.
3514 * The VMA will only ever have a valid reservation map pointer where
3515 * it is being copied for another still existing VMA. As that VMA
25985edc 3516 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3517 * after this open call completes. It is therefore safe to take a
3518 * new reference here without additional locking.
3519 */
4e35f483 3520 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3521 kref_get(&resv->refs);
84afd99b
AW
3522}
3523
a1e78772
MG
3524static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3525{
a5516438 3526 struct hstate *h = hstate_vma(vma);
f522c3ac 3527 struct resv_map *resv = vma_resv_map(vma);
90481622 3528 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3529 unsigned long reserve, start, end;
1c5ecae3 3530 long gbl_reserve;
84afd99b 3531
4e35f483
JK
3532 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3533 return;
84afd99b 3534
4e35f483
JK
3535 start = vma_hugecache_offset(h, vma, vma->vm_start);
3536 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3537
4e35f483 3538 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3539 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3540 if (reserve) {
1c5ecae3
MK
3541 /*
3542 * Decrement reserve counts. The global reserve count may be
3543 * adjusted if the subpool has a minimum size.
3544 */
3545 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3546 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3547 }
e9fe92ae
MA
3548
3549 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3550}
3551
31383c68
DW
3552static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3553{
3554 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3555 return -EINVAL;
3556 return 0;
3557}
3558
05ea8860
DW
3559static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3560{
3561 struct hstate *hstate = hstate_vma(vma);
3562
3563 return 1UL << huge_page_shift(hstate);
3564}
3565
1da177e4
LT
3566/*
3567 * We cannot handle pagefaults against hugetlb pages at all. They cause
3568 * handle_mm_fault() to try to instantiate regular-sized pages in the
3569 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3570 * this far.
3571 */
b3ec9f33 3572static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3573{
3574 BUG();
d0217ac0 3575 return 0;
1da177e4
LT
3576}
3577
eec3636a
JC
3578/*
3579 * When a new function is introduced to vm_operations_struct and added
3580 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3581 * This is because under System V memory model, mappings created via
3582 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3583 * their original vm_ops are overwritten with shm_vm_ops.
3584 */
f0f37e2f 3585const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3586 .fault = hugetlb_vm_op_fault,
84afd99b 3587 .open = hugetlb_vm_op_open,
a1e78772 3588 .close = hugetlb_vm_op_close,
31383c68 3589 .split = hugetlb_vm_op_split,
05ea8860 3590 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3591};
3592
1e8f889b
DG
3593static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3594 int writable)
63551ae0
DG
3595{
3596 pte_t entry;
3597
1e8f889b 3598 if (writable) {
106c992a
GS
3599 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3600 vma->vm_page_prot)));
63551ae0 3601 } else {
106c992a
GS
3602 entry = huge_pte_wrprotect(mk_huge_pte(page,
3603 vma->vm_page_prot));
63551ae0
DG
3604 }
3605 entry = pte_mkyoung(entry);
3606 entry = pte_mkhuge(entry);
d9ed9faa 3607 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3608
3609 return entry;
3610}
3611
1e8f889b
DG
3612static void set_huge_ptep_writable(struct vm_area_struct *vma,
3613 unsigned long address, pte_t *ptep)
3614{
3615 pte_t entry;
3616
106c992a 3617 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3618 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3619 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3620}
3621
d5ed7444 3622bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3623{
3624 swp_entry_t swp;
3625
3626 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3627 return false;
4a705fef
NH
3628 swp = pte_to_swp_entry(pte);
3629 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3630 return true;
4a705fef 3631 else
d5ed7444 3632 return false;
4a705fef
NH
3633}
3634
3635static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3636{
3637 swp_entry_t swp;
3638
3639 if (huge_pte_none(pte) || pte_present(pte))
3640 return 0;
3641 swp = pte_to_swp_entry(pte);
3642 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3643 return 1;
3644 else
3645 return 0;
3646}
1e8f889b 3647
63551ae0
DG
3648int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3649 struct vm_area_struct *vma)
3650{
5e41540c 3651 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3652 struct page *ptepage;
1c59827d 3653 unsigned long addr;
1e8f889b 3654 int cow;
a5516438
AK
3655 struct hstate *h = hstate_vma(vma);
3656 unsigned long sz = huge_page_size(h);
c0d0381a 3657 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3658 struct mmu_notifier_range range;
e8569dd2 3659 int ret = 0;
1e8f889b
DG
3660
3661 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3662
ac46d4f3 3663 if (cow) {
7269f999 3664 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3665 vma->vm_start,
ac46d4f3
JG
3666 vma->vm_end);
3667 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3668 } else {
3669 /*
3670 * For shared mappings i_mmap_rwsem must be held to call
3671 * huge_pte_alloc, otherwise the returned ptep could go
3672 * away if part of a shared pmd and another thread calls
3673 * huge_pmd_unshare.
3674 */
3675 i_mmap_lock_read(mapping);
ac46d4f3 3676 }
e8569dd2 3677
a5516438 3678 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3679 spinlock_t *src_ptl, *dst_ptl;
7868a208 3680 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3681 if (!src_pte)
3682 continue;
a5516438 3683 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3684 if (!dst_pte) {
3685 ret = -ENOMEM;
3686 break;
3687 }
c5c99429 3688
5e41540c
MK
3689 /*
3690 * If the pagetables are shared don't copy or take references.
3691 * dst_pte == src_pte is the common case of src/dest sharing.
3692 *
3693 * However, src could have 'unshared' and dst shares with
3694 * another vma. If dst_pte !none, this implies sharing.
3695 * Check here before taking page table lock, and once again
3696 * after taking the lock below.
3697 */
3698 dst_entry = huge_ptep_get(dst_pte);
3699 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3700 continue;
3701
cb900f41
KS
3702 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3703 src_ptl = huge_pte_lockptr(h, src, src_pte);
3704 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3705 entry = huge_ptep_get(src_pte);
5e41540c
MK
3706 dst_entry = huge_ptep_get(dst_pte);
3707 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3708 /*
3709 * Skip if src entry none. Also, skip in the
3710 * unlikely case dst entry !none as this implies
3711 * sharing with another vma.
3712 */
4a705fef
NH
3713 ;
3714 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3715 is_hugetlb_entry_hwpoisoned(entry))) {
3716 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3717
3718 if (is_write_migration_entry(swp_entry) && cow) {
3719 /*
3720 * COW mappings require pages in both
3721 * parent and child to be set to read.
3722 */
3723 make_migration_entry_read(&swp_entry);
3724 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3725 set_huge_swap_pte_at(src, addr, src_pte,
3726 entry, sz);
4a705fef 3727 }
e5251fd4 3728 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3729 } else {
34ee645e 3730 if (cow) {
0f10851e
JG
3731 /*
3732 * No need to notify as we are downgrading page
3733 * table protection not changing it to point
3734 * to a new page.
3735 *
ad56b738 3736 * See Documentation/vm/mmu_notifier.rst
0f10851e 3737 */
7f2e9525 3738 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3739 }
0253d634 3740 entry = huge_ptep_get(src_pte);
1c59827d
HD
3741 ptepage = pte_page(entry);
3742 get_page(ptepage);
53f9263b 3743 page_dup_rmap(ptepage, true);
1c59827d 3744 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3745 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3746 }
cb900f41
KS
3747 spin_unlock(src_ptl);
3748 spin_unlock(dst_ptl);
63551ae0 3749 }
63551ae0 3750
e8569dd2 3751 if (cow)
ac46d4f3 3752 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3753 else
3754 i_mmap_unlock_read(mapping);
e8569dd2
AS
3755
3756 return ret;
63551ae0
DG
3757}
3758
24669e58
AK
3759void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3760 unsigned long start, unsigned long end,
3761 struct page *ref_page)
63551ae0
DG
3762{
3763 struct mm_struct *mm = vma->vm_mm;
3764 unsigned long address;
c7546f8f 3765 pte_t *ptep;
63551ae0 3766 pte_t pte;
cb900f41 3767 spinlock_t *ptl;
63551ae0 3768 struct page *page;
a5516438
AK
3769 struct hstate *h = hstate_vma(vma);
3770 unsigned long sz = huge_page_size(h);
ac46d4f3 3771 struct mmu_notifier_range range;
a5516438 3772
63551ae0 3773 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3774 BUG_ON(start & ~huge_page_mask(h));
3775 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3776
07e32661
AK
3777 /*
3778 * This is a hugetlb vma, all the pte entries should point
3779 * to huge page.
3780 */
ed6a7935 3781 tlb_change_page_size(tlb, sz);
24669e58 3782 tlb_start_vma(tlb, vma);
dff11abe
MK
3783
3784 /*
3785 * If sharing possible, alert mmu notifiers of worst case.
3786 */
6f4f13e8
JG
3787 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3788 end);
ac46d4f3
JG
3789 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3790 mmu_notifier_invalidate_range_start(&range);
569f48b8 3791 address = start;
569f48b8 3792 for (; address < end; address += sz) {
7868a208 3793 ptep = huge_pte_offset(mm, address, sz);
4c887265 3794 if (!ptep)
c7546f8f
DG
3795 continue;
3796
cb900f41 3797 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3798 if (huge_pmd_unshare(mm, &address, ptep)) {
3799 spin_unlock(ptl);
dff11abe
MK
3800 /*
3801 * We just unmapped a page of PMDs by clearing a PUD.
3802 * The caller's TLB flush range should cover this area.
3803 */
31d49da5
AK
3804 continue;
3805 }
39dde65c 3806
6629326b 3807 pte = huge_ptep_get(ptep);
31d49da5
AK
3808 if (huge_pte_none(pte)) {
3809 spin_unlock(ptl);
3810 continue;
3811 }
6629326b
HD
3812
3813 /*
9fbc1f63
NH
3814 * Migrating hugepage or HWPoisoned hugepage is already
3815 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3816 */
9fbc1f63 3817 if (unlikely(!pte_present(pte))) {
9386fac3 3818 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3819 spin_unlock(ptl);
3820 continue;
8c4894c6 3821 }
6629326b
HD
3822
3823 page = pte_page(pte);
04f2cbe3
MG
3824 /*
3825 * If a reference page is supplied, it is because a specific
3826 * page is being unmapped, not a range. Ensure the page we
3827 * are about to unmap is the actual page of interest.
3828 */
3829 if (ref_page) {
31d49da5
AK
3830 if (page != ref_page) {
3831 spin_unlock(ptl);
3832 continue;
3833 }
04f2cbe3
MG
3834 /*
3835 * Mark the VMA as having unmapped its page so that
3836 * future faults in this VMA will fail rather than
3837 * looking like data was lost
3838 */
3839 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3840 }
3841
c7546f8f 3842 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3843 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3844 if (huge_pte_dirty(pte))
6649a386 3845 set_page_dirty(page);
9e81130b 3846
5d317b2b 3847 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3848 page_remove_rmap(page, true);
31d49da5 3849
cb900f41 3850 spin_unlock(ptl);
e77b0852 3851 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3852 /*
3853 * Bail out after unmapping reference page if supplied
3854 */
3855 if (ref_page)
3856 break;
fe1668ae 3857 }
ac46d4f3 3858 mmu_notifier_invalidate_range_end(&range);
24669e58 3859 tlb_end_vma(tlb, vma);
1da177e4 3860}
63551ae0 3861
d833352a
MG
3862void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3863 struct vm_area_struct *vma, unsigned long start,
3864 unsigned long end, struct page *ref_page)
3865{
3866 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3867
3868 /*
3869 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3870 * test will fail on a vma being torn down, and not grab a page table
3871 * on its way out. We're lucky that the flag has such an appropriate
3872 * name, and can in fact be safely cleared here. We could clear it
3873 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3874 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3875 * because in the context this is called, the VMA is about to be
c8c06efa 3876 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3877 */
3878 vma->vm_flags &= ~VM_MAYSHARE;
3879}
3880
502717f4 3881void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3882 unsigned long end, struct page *ref_page)
502717f4 3883{
24669e58
AK
3884 struct mm_struct *mm;
3885 struct mmu_gather tlb;
dff11abe
MK
3886 unsigned long tlb_start = start;
3887 unsigned long tlb_end = end;
3888
3889 /*
3890 * If shared PMDs were possibly used within this vma range, adjust
3891 * start/end for worst case tlb flushing.
3892 * Note that we can not be sure if PMDs are shared until we try to
3893 * unmap pages. However, we want to make sure TLB flushing covers
3894 * the largest possible range.
3895 */
3896 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
3897
3898 mm = vma->vm_mm;
3899
dff11abe 3900 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 3901 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 3902 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
KC
3903}
3904
04f2cbe3
MG
3905/*
3906 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3907 * mappping it owns the reserve page for. The intention is to unmap the page
3908 * from other VMAs and let the children be SIGKILLed if they are faulting the
3909 * same region.
3910 */
2f4612af
DB
3911static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3912 struct page *page, unsigned long address)
04f2cbe3 3913{
7526674d 3914 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3915 struct vm_area_struct *iter_vma;
3916 struct address_space *mapping;
04f2cbe3
MG
3917 pgoff_t pgoff;
3918
3919 /*
3920 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3921 * from page cache lookup which is in HPAGE_SIZE units.
3922 */
7526674d 3923 address = address & huge_page_mask(h);
36e4f20a
MH
3924 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3925 vma->vm_pgoff;
93c76a3d 3926 mapping = vma->vm_file->f_mapping;
04f2cbe3 3927
4eb2b1dc
MG
3928 /*
3929 * Take the mapping lock for the duration of the table walk. As
3930 * this mapping should be shared between all the VMAs,
3931 * __unmap_hugepage_range() is called as the lock is already held
3932 */
83cde9e8 3933 i_mmap_lock_write(mapping);
6b2dbba8 3934 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3935 /* Do not unmap the current VMA */
3936 if (iter_vma == vma)
3937 continue;
3938
2f84a899
MG
3939 /*
3940 * Shared VMAs have their own reserves and do not affect
3941 * MAP_PRIVATE accounting but it is possible that a shared
3942 * VMA is using the same page so check and skip such VMAs.
3943 */
3944 if (iter_vma->vm_flags & VM_MAYSHARE)
3945 continue;
3946
04f2cbe3
MG
3947 /*
3948 * Unmap the page from other VMAs without their own reserves.
3949 * They get marked to be SIGKILLed if they fault in these
3950 * areas. This is because a future no-page fault on this VMA
3951 * could insert a zeroed page instead of the data existing
3952 * from the time of fork. This would look like data corruption
3953 */
3954 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3955 unmap_hugepage_range(iter_vma, address,
3956 address + huge_page_size(h), page);
04f2cbe3 3957 }
83cde9e8 3958 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3959}
3960
0fe6e20b
NH
3961/*
3962 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3963 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3964 * cannot race with other handlers or page migration.
3965 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3966 */
2b740303 3967static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3968 unsigned long address, pte_t *ptep,
3999f52e 3969 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3970{
3999f52e 3971 pte_t pte;
a5516438 3972 struct hstate *h = hstate_vma(vma);
1e8f889b 3973 struct page *old_page, *new_page;
2b740303
SJ
3974 int outside_reserve = 0;
3975 vm_fault_t ret = 0;
974e6d66 3976 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 3977 struct mmu_notifier_range range;
1e8f889b 3978
3999f52e 3979 pte = huge_ptep_get(ptep);
1e8f889b
DG
3980 old_page = pte_page(pte);
3981
04f2cbe3 3982retry_avoidcopy:
1e8f889b
DG
3983 /* If no-one else is actually using this page, avoid the copy
3984 * and just make the page writable */
37a2140d 3985 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3986 page_move_anon_rmap(old_page, vma);
5b7a1d40 3987 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3988 return 0;
1e8f889b
DG
3989 }
3990
04f2cbe3
MG
3991 /*
3992 * If the process that created a MAP_PRIVATE mapping is about to
3993 * perform a COW due to a shared page count, attempt to satisfy
3994 * the allocation without using the existing reserves. The pagecache
3995 * page is used to determine if the reserve at this address was
3996 * consumed or not. If reserves were used, a partial faulted mapping
3997 * at the time of fork() could consume its reserves on COW instead
3998 * of the full address range.
3999 */
5944d011 4000 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4001 old_page != pagecache_page)
4002 outside_reserve = 1;
4003
09cbfeaf 4004 get_page(old_page);
b76c8cfb 4005
ad4404a2
DB
4006 /*
4007 * Drop page table lock as buddy allocator may be called. It will
4008 * be acquired again before returning to the caller, as expected.
4009 */
cb900f41 4010 spin_unlock(ptl);
5b7a1d40 4011 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4012
2fc39cec 4013 if (IS_ERR(new_page)) {
04f2cbe3
MG
4014 /*
4015 * If a process owning a MAP_PRIVATE mapping fails to COW,
4016 * it is due to references held by a child and an insufficient
4017 * huge page pool. To guarantee the original mappers
4018 * reliability, unmap the page from child processes. The child
4019 * may get SIGKILLed if it later faults.
4020 */
4021 if (outside_reserve) {
09cbfeaf 4022 put_page(old_page);
04f2cbe3 4023 BUG_ON(huge_pte_none(pte));
5b7a1d40 4024 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
4025 BUG_ON(huge_pte_none(pte));
4026 spin_lock(ptl);
5b7a1d40 4027 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4028 if (likely(ptep &&
4029 pte_same(huge_ptep_get(ptep), pte)))
4030 goto retry_avoidcopy;
4031 /*
4032 * race occurs while re-acquiring page table
4033 * lock, and our job is done.
4034 */
4035 return 0;
04f2cbe3
MG
4036 }
4037
2b740303 4038 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4039 goto out_release_old;
1e8f889b
DG
4040 }
4041
0fe6e20b
NH
4042 /*
4043 * When the original hugepage is shared one, it does not have
4044 * anon_vma prepared.
4045 */
44e2aa93 4046 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4047 ret = VM_FAULT_OOM;
4048 goto out_release_all;
44e2aa93 4049 }
0fe6e20b 4050
974e6d66 4051 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4052 pages_per_huge_page(h));
0ed361de 4053 __SetPageUptodate(new_page);
1e8f889b 4054
7269f999 4055 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4056 haddr + huge_page_size(h));
ac46d4f3 4057 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4058
b76c8cfb 4059 /*
cb900f41 4060 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4061 * before the page tables are altered
4062 */
cb900f41 4063 spin_lock(ptl);
5b7a1d40 4064 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4065 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
4066 ClearPagePrivate(new_page);
4067
1e8f889b 4068 /* Break COW */
5b7a1d40 4069 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4070 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4071 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4072 make_huge_pte(vma, new_page, 1));
d281ee61 4073 page_remove_rmap(old_page, true);
5b7a1d40 4074 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 4075 set_page_huge_active(new_page);
1e8f889b
DG
4076 /* Make the old page be freed below */
4077 new_page = old_page;
4078 }
cb900f41 4079 spin_unlock(ptl);
ac46d4f3 4080 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4081out_release_all:
5b7a1d40 4082 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4083 put_page(new_page);
ad4404a2 4084out_release_old:
09cbfeaf 4085 put_page(old_page);
8312034f 4086
ad4404a2
DB
4087 spin_lock(ptl); /* Caller expects lock to be held */
4088 return ret;
1e8f889b
DG
4089}
4090
04f2cbe3 4091/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4092static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4093 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4094{
4095 struct address_space *mapping;
e7c4b0bf 4096 pgoff_t idx;
04f2cbe3
MG
4097
4098 mapping = vma->vm_file->f_mapping;
a5516438 4099 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4100
4101 return find_lock_page(mapping, idx);
4102}
4103
3ae77f43
HD
4104/*
4105 * Return whether there is a pagecache page to back given address within VMA.
4106 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4107 */
4108static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4109 struct vm_area_struct *vma, unsigned long address)
4110{
4111 struct address_space *mapping;
4112 pgoff_t idx;
4113 struct page *page;
4114
4115 mapping = vma->vm_file->f_mapping;
4116 idx = vma_hugecache_offset(h, vma, address);
4117
4118 page = find_get_page(mapping, idx);
4119 if (page)
4120 put_page(page);
4121 return page != NULL;
4122}
4123
ab76ad54
MK
4124int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4125 pgoff_t idx)
4126{
4127 struct inode *inode = mapping->host;
4128 struct hstate *h = hstate_inode(inode);
4129 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4130
4131 if (err)
4132 return err;
4133 ClearPagePrivate(page);
4134
22146c3c
MK
4135 /*
4136 * set page dirty so that it will not be removed from cache/file
4137 * by non-hugetlbfs specific code paths.
4138 */
4139 set_page_dirty(page);
4140
ab76ad54
MK
4141 spin_lock(&inode->i_lock);
4142 inode->i_blocks += blocks_per_huge_page(h);
4143 spin_unlock(&inode->i_lock);
4144 return 0;
4145}
4146
2b740303
SJ
4147static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4148 struct vm_area_struct *vma,
4149 struct address_space *mapping, pgoff_t idx,
4150 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4151{
a5516438 4152 struct hstate *h = hstate_vma(vma);
2b740303 4153 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4154 int anon_rmap = 0;
4c887265 4155 unsigned long size;
4c887265 4156 struct page *page;
1e8f889b 4157 pte_t new_pte;
cb900f41 4158 spinlock_t *ptl;
285b8dca 4159 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4160 bool new_page = false;
4c887265 4161
04f2cbe3
MG
4162 /*
4163 * Currently, we are forced to kill the process in the event the
4164 * original mapper has unmapped pages from the child due to a failed
25985edc 4165 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4166 */
4167 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4168 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4169 current->pid);
04f2cbe3
MG
4170 return ret;
4171 }
4172
4c887265 4173 /*
87bf91d3
MK
4174 * We can not race with truncation due to holding i_mmap_rwsem.
4175 * i_size is modified when holding i_mmap_rwsem, so check here
4176 * once for faults beyond end of file.
4c887265 4177 */
87bf91d3
MK
4178 size = i_size_read(mapping->host) >> huge_page_shift(h);
4179 if (idx >= size)
4180 goto out;
4181
6bda666a
CL
4182retry:
4183 page = find_lock_page(mapping, idx);
4184 if (!page) {
1a1aad8a
MK
4185 /*
4186 * Check for page in userfault range
4187 */
4188 if (userfaultfd_missing(vma)) {
4189 u32 hash;
4190 struct vm_fault vmf = {
4191 .vma = vma,
285b8dca 4192 .address = haddr,
1a1aad8a
MK
4193 .flags = flags,
4194 /*
4195 * Hard to debug if it ends up being
4196 * used by a callee that assumes
4197 * something about the other
4198 * uninitialized fields... same as in
4199 * memory.c
4200 */
4201 };
4202
4203 /*
c0d0381a
MK
4204 * hugetlb_fault_mutex and i_mmap_rwsem must be
4205 * dropped before handling userfault. Reacquire
4206 * after handling fault to make calling code simpler.
1a1aad8a 4207 */
188b04a7 4208 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 4209 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4210 i_mmap_unlock_read(mapping);
1a1aad8a 4211 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 4212 i_mmap_lock_read(mapping);
1a1aad8a
MK
4213 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4214 goto out;
4215 }
4216
285b8dca 4217 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4218 if (IS_ERR(page)) {
4643d67e
MK
4219 /*
4220 * Returning error will result in faulting task being
4221 * sent SIGBUS. The hugetlb fault mutex prevents two
4222 * tasks from racing to fault in the same page which
4223 * could result in false unable to allocate errors.
4224 * Page migration does not take the fault mutex, but
4225 * does a clear then write of pte's under page table
4226 * lock. Page fault code could race with migration,
4227 * notice the clear pte and try to allocate a page
4228 * here. Before returning error, get ptl and make
4229 * sure there really is no pte entry.
4230 */
4231 ptl = huge_pte_lock(h, mm, ptep);
4232 if (!huge_pte_none(huge_ptep_get(ptep))) {
4233 ret = 0;
4234 spin_unlock(ptl);
4235 goto out;
4236 }
4237 spin_unlock(ptl);
2b740303 4238 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
4239 goto out;
4240 }
47ad8475 4241 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4242 __SetPageUptodate(page);
cb6acd01 4243 new_page = true;
ac9b9c66 4244
f83a275d 4245 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4246 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4247 if (err) {
4248 put_page(page);
6bda666a
CL
4249 if (err == -EEXIST)
4250 goto retry;
4251 goto out;
4252 }
23be7468 4253 } else {
6bda666a 4254 lock_page(page);
0fe6e20b
NH
4255 if (unlikely(anon_vma_prepare(vma))) {
4256 ret = VM_FAULT_OOM;
4257 goto backout_unlocked;
4258 }
409eb8c2 4259 anon_rmap = 1;
23be7468 4260 }
0fe6e20b 4261 } else {
998b4382
NH
4262 /*
4263 * If memory error occurs between mmap() and fault, some process
4264 * don't have hwpoisoned swap entry for errored virtual address.
4265 * So we need to block hugepage fault by PG_hwpoison bit check.
4266 */
4267 if (unlikely(PageHWPoison(page))) {
32f84528 4268 ret = VM_FAULT_HWPOISON |
972dc4de 4269 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4270 goto backout_unlocked;
4271 }
6bda666a 4272 }
1e8f889b 4273
57303d80
AW
4274 /*
4275 * If we are going to COW a private mapping later, we examine the
4276 * pending reservations for this page now. This will ensure that
4277 * any allocations necessary to record that reservation occur outside
4278 * the spinlock.
4279 */
5e911373 4280 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4281 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4282 ret = VM_FAULT_OOM;
4283 goto backout_unlocked;
4284 }
5e911373 4285 /* Just decrements count, does not deallocate */
285b8dca 4286 vma_end_reservation(h, vma, haddr);
5e911373 4287 }
57303d80 4288
8bea8052 4289 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4290 ret = 0;
7f2e9525 4291 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4292 goto backout;
4293
07443a85
JK
4294 if (anon_rmap) {
4295 ClearPagePrivate(page);
285b8dca 4296 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4297 } else
53f9263b 4298 page_dup_rmap(page, true);
1e8f889b
DG
4299 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4300 && (vma->vm_flags & VM_SHARED)));
285b8dca 4301 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4302
5d317b2b 4303 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4304 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4305 /* Optimization, do the COW without a second fault */
974e6d66 4306 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4307 }
4308
cb900f41 4309 spin_unlock(ptl);
cb6acd01
MK
4310
4311 /*
4312 * Only make newly allocated pages active. Existing pages found
4313 * in the pagecache could be !page_huge_active() if they have been
4314 * isolated for migration.
4315 */
4316 if (new_page)
4317 set_page_huge_active(page);
4318
4c887265
AL
4319 unlock_page(page);
4320out:
ac9b9c66 4321 return ret;
4c887265
AL
4322
4323backout:
cb900f41 4324 spin_unlock(ptl);
2b26736c 4325backout_unlocked:
4c887265 4326 unlock_page(page);
285b8dca 4327 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4328 put_page(page);
4329 goto out;
ac9b9c66
HD
4330}
4331
8382d914 4332#ifdef CONFIG_SMP
188b04a7 4333u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4334{
4335 unsigned long key[2];
4336 u32 hash;
4337
1b426bac
MK
4338 key[0] = (unsigned long) mapping;
4339 key[1] = idx;
8382d914 4340
55254636 4341 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4342
4343 return hash & (num_fault_mutexes - 1);
4344}
4345#else
4346/*
4347 * For uniprocesor systems we always use a single mutex, so just
4348 * return 0 and avoid the hashing overhead.
4349 */
188b04a7 4350u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4351{
4352 return 0;
4353}
4354#endif
4355
2b740303 4356vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4357 unsigned long address, unsigned int flags)
86e5216f 4358{
8382d914 4359 pte_t *ptep, entry;
cb900f41 4360 spinlock_t *ptl;
2b740303 4361 vm_fault_t ret;
8382d914
DB
4362 u32 hash;
4363 pgoff_t idx;
0fe6e20b 4364 struct page *page = NULL;
57303d80 4365 struct page *pagecache_page = NULL;
a5516438 4366 struct hstate *h = hstate_vma(vma);
8382d914 4367 struct address_space *mapping;
0f792cf9 4368 int need_wait_lock = 0;
285b8dca 4369 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4370
285b8dca 4371 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4372 if (ptep) {
c0d0381a
MK
4373 /*
4374 * Since we hold no locks, ptep could be stale. That is
4375 * OK as we are only making decisions based on content and
4376 * not actually modifying content here.
4377 */
fd6a03ed 4378 entry = huge_ptep_get(ptep);
290408d4 4379 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4380 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4381 return 0;
4382 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4383 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4384 VM_FAULT_SET_HINDEX(hstate_index(h));
ddeaab32
MK
4385 } else {
4386 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4387 if (!ptep)
4388 return VM_FAULT_OOM;
fd6a03ed
NH
4389 }
4390
c0d0381a
MK
4391 /*
4392 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4393 * until finished with ptep. This serves two purposes:
4394 * 1) It prevents huge_pmd_unshare from being called elsewhere
4395 * and making the ptep no longer valid.
4396 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4397 *
4398 * ptep could have already be assigned via huge_pte_offset. That
4399 * is OK, as huge_pte_alloc will return the same value unless
4400 * something has changed.
4401 */
8382d914 4402 mapping = vma->vm_file->f_mapping;
c0d0381a
MK
4403 i_mmap_lock_read(mapping);
4404 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4405 if (!ptep) {
4406 i_mmap_unlock_read(mapping);
4407 return VM_FAULT_OOM;
4408 }
8382d914 4409
3935baa9
DG
4410 /*
4411 * Serialize hugepage allocation and instantiation, so that we don't
4412 * get spurious allocation failures if two CPUs race to instantiate
4413 * the same page in the page cache.
4414 */
c0d0381a 4415 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4416 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4417 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4418
7f2e9525
GS
4419 entry = huge_ptep_get(ptep);
4420 if (huge_pte_none(entry)) {
8382d914 4421 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4422 goto out_mutex;
3935baa9 4423 }
86e5216f 4424
83c54070 4425 ret = 0;
1e8f889b 4426
0f792cf9
NH
4427 /*
4428 * entry could be a migration/hwpoison entry at this point, so this
4429 * check prevents the kernel from going below assuming that we have
4430 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4431 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4432 * handle it.
4433 */
4434 if (!pte_present(entry))
4435 goto out_mutex;
4436
57303d80
AW
4437 /*
4438 * If we are going to COW the mapping later, we examine the pending
4439 * reservations for this page now. This will ensure that any
4440 * allocations necessary to record that reservation occur outside the
4441 * spinlock. For private mappings, we also lookup the pagecache
4442 * page now as it is used to determine if a reservation has been
4443 * consumed.
4444 */
106c992a 4445 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4446 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4447 ret = VM_FAULT_OOM;
b4d1d99f 4448 goto out_mutex;
2b26736c 4449 }
5e911373 4450 /* Just decrements count, does not deallocate */
285b8dca 4451 vma_end_reservation(h, vma, haddr);
57303d80 4452
f83a275d 4453 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4454 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4455 vma, haddr);
57303d80
AW
4456 }
4457
0f792cf9
NH
4458 ptl = huge_pte_lock(h, mm, ptep);
4459
4460 /* Check for a racing update before calling hugetlb_cow */
4461 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4462 goto out_ptl;
4463
56c9cfb1
NH
4464 /*
4465 * hugetlb_cow() requires page locks of pte_page(entry) and
4466 * pagecache_page, so here we need take the former one
4467 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4468 */
4469 page = pte_page(entry);
4470 if (page != pagecache_page)
0f792cf9
NH
4471 if (!trylock_page(page)) {
4472 need_wait_lock = 1;
4473 goto out_ptl;
4474 }
b4d1d99f 4475
0f792cf9 4476 get_page(page);
b4d1d99f 4477
788c7df4 4478 if (flags & FAULT_FLAG_WRITE) {
106c992a 4479 if (!huge_pte_write(entry)) {
974e6d66 4480 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4481 pagecache_page, ptl);
0f792cf9 4482 goto out_put_page;
b4d1d99f 4483 }
106c992a 4484 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4485 }
4486 entry = pte_mkyoung(entry);
285b8dca 4487 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4488 flags & FAULT_FLAG_WRITE))
285b8dca 4489 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4490out_put_page:
4491 if (page != pagecache_page)
4492 unlock_page(page);
4493 put_page(page);
cb900f41
KS
4494out_ptl:
4495 spin_unlock(ptl);
57303d80
AW
4496
4497 if (pagecache_page) {
4498 unlock_page(pagecache_page);
4499 put_page(pagecache_page);
4500 }
b4d1d99f 4501out_mutex:
c672c7f2 4502 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4503 i_mmap_unlock_read(mapping);
0f792cf9
NH
4504 /*
4505 * Generally it's safe to hold refcount during waiting page lock. But
4506 * here we just wait to defer the next page fault to avoid busy loop and
4507 * the page is not used after unlocked before returning from the current
4508 * page fault. So we are safe from accessing freed page, even if we wait
4509 * here without taking refcount.
4510 */
4511 if (need_wait_lock)
4512 wait_on_page_locked(page);
1e8f889b 4513 return ret;
86e5216f
AL
4514}
4515
8fb5debc
MK
4516/*
4517 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4518 * modifications for huge pages.
4519 */
4520int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4521 pte_t *dst_pte,
4522 struct vm_area_struct *dst_vma,
4523 unsigned long dst_addr,
4524 unsigned long src_addr,
4525 struct page **pagep)
4526{
1e392147
AA
4527 struct address_space *mapping;
4528 pgoff_t idx;
4529 unsigned long size;
1c9e8def 4530 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4531 struct hstate *h = hstate_vma(dst_vma);
4532 pte_t _dst_pte;
4533 spinlock_t *ptl;
4534 int ret;
4535 struct page *page;
4536
4537 if (!*pagep) {
4538 ret = -ENOMEM;
4539 page = alloc_huge_page(dst_vma, dst_addr, 0);
4540 if (IS_ERR(page))
4541 goto out;
4542
4543 ret = copy_huge_page_from_user(page,
4544 (const void __user *) src_addr,
810a56b9 4545 pages_per_huge_page(h), false);
8fb5debc
MK
4546
4547 /* fallback to copy_from_user outside mmap_sem */
4548 if (unlikely(ret)) {
9e368259 4549 ret = -ENOENT;
8fb5debc
MK
4550 *pagep = page;
4551 /* don't free the page */
4552 goto out;
4553 }
4554 } else {
4555 page = *pagep;
4556 *pagep = NULL;
4557 }
4558
4559 /*
4560 * The memory barrier inside __SetPageUptodate makes sure that
4561 * preceding stores to the page contents become visible before
4562 * the set_pte_at() write.
4563 */
4564 __SetPageUptodate(page);
8fb5debc 4565
1e392147
AA
4566 mapping = dst_vma->vm_file->f_mapping;
4567 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4568
1c9e8def
MK
4569 /*
4570 * If shared, add to page cache
4571 */
4572 if (vm_shared) {
1e392147
AA
4573 size = i_size_read(mapping->host) >> huge_page_shift(h);
4574 ret = -EFAULT;
4575 if (idx >= size)
4576 goto out_release_nounlock;
1c9e8def 4577
1e392147
AA
4578 /*
4579 * Serialization between remove_inode_hugepages() and
4580 * huge_add_to_page_cache() below happens through the
4581 * hugetlb_fault_mutex_table that here must be hold by
4582 * the caller.
4583 */
1c9e8def
MK
4584 ret = huge_add_to_page_cache(page, mapping, idx);
4585 if (ret)
4586 goto out_release_nounlock;
4587 }
4588
8fb5debc
MK
4589 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4590 spin_lock(ptl);
4591
1e392147
AA
4592 /*
4593 * Recheck the i_size after holding PT lock to make sure not
4594 * to leave any page mapped (as page_mapped()) beyond the end
4595 * of the i_size (remove_inode_hugepages() is strict about
4596 * enforcing that). If we bail out here, we'll also leave a
4597 * page in the radix tree in the vm_shared case beyond the end
4598 * of the i_size, but remove_inode_hugepages() will take care
4599 * of it as soon as we drop the hugetlb_fault_mutex_table.
4600 */
4601 size = i_size_read(mapping->host) >> huge_page_shift(h);
4602 ret = -EFAULT;
4603 if (idx >= size)
4604 goto out_release_unlock;
4605
8fb5debc
MK
4606 ret = -EEXIST;
4607 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4608 goto out_release_unlock;
4609
1c9e8def
MK
4610 if (vm_shared) {
4611 page_dup_rmap(page, true);
4612 } else {
4613 ClearPagePrivate(page);
4614 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4615 }
8fb5debc
MK
4616
4617 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4618 if (dst_vma->vm_flags & VM_WRITE)
4619 _dst_pte = huge_pte_mkdirty(_dst_pte);
4620 _dst_pte = pte_mkyoung(_dst_pte);
4621
4622 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4623
4624 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4625 dst_vma->vm_flags & VM_WRITE);
4626 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4627
4628 /* No need to invalidate - it was non-present before */
4629 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4630
4631 spin_unlock(ptl);
cb6acd01 4632 set_page_huge_active(page);
1c9e8def
MK
4633 if (vm_shared)
4634 unlock_page(page);
8fb5debc
MK
4635 ret = 0;
4636out:
4637 return ret;
4638out_release_unlock:
4639 spin_unlock(ptl);
1c9e8def
MK
4640 if (vm_shared)
4641 unlock_page(page);
5af10dfd 4642out_release_nounlock:
8fb5debc
MK
4643 put_page(page);
4644 goto out;
4645}
4646
28a35716
ML
4647long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4648 struct page **pages, struct vm_area_struct **vmas,
4649 unsigned long *position, unsigned long *nr_pages,
4f6da934 4650 long i, unsigned int flags, int *locked)
63551ae0 4651{
d5d4b0aa
KC
4652 unsigned long pfn_offset;
4653 unsigned long vaddr = *position;
28a35716 4654 unsigned long remainder = *nr_pages;
a5516438 4655 struct hstate *h = hstate_vma(vma);
2be7cfed 4656 int err = -EFAULT;
63551ae0 4657
63551ae0 4658 while (vaddr < vma->vm_end && remainder) {
4c887265 4659 pte_t *pte;
cb900f41 4660 spinlock_t *ptl = NULL;
2a15efc9 4661 int absent;
4c887265 4662 struct page *page;
63551ae0 4663
02057967
DR
4664 /*
4665 * If we have a pending SIGKILL, don't keep faulting pages and
4666 * potentially allocating memory.
4667 */
fa45f116 4668 if (fatal_signal_pending(current)) {
02057967
DR
4669 remainder = 0;
4670 break;
4671 }
4672
4c887265
AL
4673 /*
4674 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4675 * each hugepage. We have to make sure we get the
4c887265 4676 * first, for the page indexing below to work.
cb900f41
KS
4677 *
4678 * Note that page table lock is not held when pte is null.
4c887265 4679 */
7868a208
PA
4680 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4681 huge_page_size(h));
cb900f41
KS
4682 if (pte)
4683 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4684 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4685
4686 /*
4687 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4688 * an error where there's an empty slot with no huge pagecache
4689 * to back it. This way, we avoid allocating a hugepage, and
4690 * the sparse dumpfile avoids allocating disk blocks, but its
4691 * huge holes still show up with zeroes where they need to be.
2a15efc9 4692 */
3ae77f43
HD
4693 if (absent && (flags & FOLL_DUMP) &&
4694 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4695 if (pte)
4696 spin_unlock(ptl);
2a15efc9
HD
4697 remainder = 0;
4698 break;
4699 }
63551ae0 4700
9cc3a5bd
NH
4701 /*
4702 * We need call hugetlb_fault for both hugepages under migration
4703 * (in which case hugetlb_fault waits for the migration,) and
4704 * hwpoisoned hugepages (in which case we need to prevent the
4705 * caller from accessing to them.) In order to do this, we use
4706 * here is_swap_pte instead of is_hugetlb_entry_migration and
4707 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4708 * both cases, and because we can't follow correct pages
4709 * directly from any kind of swap entries.
4710 */
4711 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4712 ((flags & FOLL_WRITE) &&
4713 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4714 vm_fault_t ret;
87ffc118 4715 unsigned int fault_flags = 0;
63551ae0 4716
cb900f41
KS
4717 if (pte)
4718 spin_unlock(ptl);
87ffc118
AA
4719 if (flags & FOLL_WRITE)
4720 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4721 if (locked)
71335f37
PX
4722 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4723 FAULT_FLAG_KILLABLE;
87ffc118
AA
4724 if (flags & FOLL_NOWAIT)
4725 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4726 FAULT_FLAG_RETRY_NOWAIT;
4727 if (flags & FOLL_TRIED) {
4426e945
PX
4728 /*
4729 * Note: FAULT_FLAG_ALLOW_RETRY and
4730 * FAULT_FLAG_TRIED can co-exist
4731 */
87ffc118
AA
4732 fault_flags |= FAULT_FLAG_TRIED;
4733 }
4734 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4735 if (ret & VM_FAULT_ERROR) {
2be7cfed 4736 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4737 remainder = 0;
4738 break;
4739 }
4740 if (ret & VM_FAULT_RETRY) {
4f6da934 4741 if (locked &&
1ac25013 4742 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4743 *locked = 0;
87ffc118
AA
4744 *nr_pages = 0;
4745 /*
4746 * VM_FAULT_RETRY must not return an
4747 * error, it will return zero
4748 * instead.
4749 *
4750 * No need to update "position" as the
4751 * caller will not check it after
4752 * *nr_pages is set to 0.
4753 */
4754 return i;
4755 }
4756 continue;
4c887265
AL
4757 }
4758
a5516438 4759 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4760 page = pte_page(huge_ptep_get(pte));
8fde12ca 4761
acbfb087
ZL
4762 /*
4763 * If subpage information not requested, update counters
4764 * and skip the same_page loop below.
4765 */
4766 if (!pages && !vmas && !pfn_offset &&
4767 (vaddr + huge_page_size(h) < vma->vm_end) &&
4768 (remainder >= pages_per_huge_page(h))) {
4769 vaddr += huge_page_size(h);
4770 remainder -= pages_per_huge_page(h);
4771 i += pages_per_huge_page(h);
4772 spin_unlock(ptl);
4773 continue;
4774 }
4775
d5d4b0aa 4776same_page:
d6692183 4777 if (pages) {
2a15efc9 4778 pages[i] = mem_map_offset(page, pfn_offset);
3faa52c0
JH
4779 /*
4780 * try_grab_page() should always succeed here, because:
4781 * a) we hold the ptl lock, and b) we've just checked
4782 * that the huge page is present in the page tables. If
4783 * the huge page is present, then the tail pages must
4784 * also be present. The ptl prevents the head page and
4785 * tail pages from being rearranged in any way. So this
4786 * page must be available at this point, unless the page
4787 * refcount overflowed:
4788 */
4789 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4790 spin_unlock(ptl);
4791 remainder = 0;
4792 err = -ENOMEM;
4793 break;
4794 }
d6692183 4795 }
63551ae0
DG
4796
4797 if (vmas)
4798 vmas[i] = vma;
4799
4800 vaddr += PAGE_SIZE;
d5d4b0aa 4801 ++pfn_offset;
63551ae0
DG
4802 --remainder;
4803 ++i;
d5d4b0aa 4804 if (vaddr < vma->vm_end && remainder &&
a5516438 4805 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4806 /*
4807 * We use pfn_offset to avoid touching the pageframes
4808 * of this compound page.
4809 */
4810 goto same_page;
4811 }
cb900f41 4812 spin_unlock(ptl);
63551ae0 4813 }
28a35716 4814 *nr_pages = remainder;
87ffc118
AA
4815 /*
4816 * setting position is actually required only if remainder is
4817 * not zero but it's faster not to add a "if (remainder)"
4818 * branch.
4819 */
63551ae0
DG
4820 *position = vaddr;
4821
2be7cfed 4822 return i ? i : err;
63551ae0 4823}
8f860591 4824
5491ae7b
AK
4825#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4826/*
4827 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4828 * implement this.
4829 */
4830#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4831#endif
4832
7da4d641 4833unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4834 unsigned long address, unsigned long end, pgprot_t newprot)
4835{
4836 struct mm_struct *mm = vma->vm_mm;
4837 unsigned long start = address;
4838 pte_t *ptep;
4839 pte_t pte;
a5516438 4840 struct hstate *h = hstate_vma(vma);
7da4d641 4841 unsigned long pages = 0;
dff11abe 4842 bool shared_pmd = false;
ac46d4f3 4843 struct mmu_notifier_range range;
dff11abe
MK
4844
4845 /*
4846 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4847 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
4848 * range if PMD sharing is possible.
4849 */
7269f999
JG
4850 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4851 0, vma, mm, start, end);
ac46d4f3 4852 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
4853
4854 BUG_ON(address >= end);
ac46d4f3 4855 flush_cache_range(vma, range.start, range.end);
8f860591 4856
ac46d4f3 4857 mmu_notifier_invalidate_range_start(&range);
83cde9e8 4858 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4859 for (; address < end; address += huge_page_size(h)) {
cb900f41 4860 spinlock_t *ptl;
7868a208 4861 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4862 if (!ptep)
4863 continue;
cb900f41 4864 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4865 if (huge_pmd_unshare(mm, &address, ptep)) {
4866 pages++;
cb900f41 4867 spin_unlock(ptl);
dff11abe 4868 shared_pmd = true;
39dde65c 4869 continue;
7da4d641 4870 }
a8bda28d
NH
4871 pte = huge_ptep_get(ptep);
4872 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4873 spin_unlock(ptl);
4874 continue;
4875 }
4876 if (unlikely(is_hugetlb_entry_migration(pte))) {
4877 swp_entry_t entry = pte_to_swp_entry(pte);
4878
4879 if (is_write_migration_entry(entry)) {
4880 pte_t newpte;
4881
4882 make_migration_entry_read(&entry);
4883 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4884 set_huge_swap_pte_at(mm, address, ptep,
4885 newpte, huge_page_size(h));
a8bda28d
NH
4886 pages++;
4887 }
4888 spin_unlock(ptl);
4889 continue;
4890 }
4891 if (!huge_pte_none(pte)) {
023bdd00
AK
4892 pte_t old_pte;
4893
4894 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4895 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 4896 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 4897 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 4898 pages++;
8f860591 4899 }
cb900f41 4900 spin_unlock(ptl);
8f860591 4901 }
d833352a 4902 /*
c8c06efa 4903 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4904 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4905 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
4906 * and that page table be reused and filled with junk. If we actually
4907 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 4908 */
dff11abe 4909 if (shared_pmd)
ac46d4f3 4910 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
4911 else
4912 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4913 /*
4914 * No need to call mmu_notifier_invalidate_range() we are downgrading
4915 * page table protection not changing it to point to a new page.
4916 *
ad56b738 4917 * See Documentation/vm/mmu_notifier.rst
0f10851e 4918 */
83cde9e8 4919 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 4920 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
4921
4922 return pages << h->order;
8f860591
ZY
4923}
4924
a1e78772
MG
4925int hugetlb_reserve_pages(struct inode *inode,
4926 long from, long to,
5a6fe125 4927 struct vm_area_struct *vma,
ca16d140 4928 vm_flags_t vm_flags)
e4e574b7 4929{
0db9d74e 4930 long ret, chg, add = -1;
a5516438 4931 struct hstate *h = hstate_inode(inode);
90481622 4932 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4933 struct resv_map *resv_map;
075a61d0 4934 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 4935 long gbl_reserve, regions_needed = 0;
e4e574b7 4936
63489f8e
MK
4937 /* This should never happen */
4938 if (from > to) {
4939 VM_WARN(1, "%s called with a negative range\n", __func__);
4940 return -EINVAL;
4941 }
4942
17c9d12e
MG
4943 /*
4944 * Only apply hugepage reservation if asked. At fault time, an
4945 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4946 * without using reserves
17c9d12e 4947 */
ca16d140 4948 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4949 return 0;
4950
a1e78772
MG
4951 /*
4952 * Shared mappings base their reservation on the number of pages that
4953 * are already allocated on behalf of the file. Private mappings need
4954 * to reserve the full area even if read-only as mprotect() may be
4955 * called to make the mapping read-write. Assume !vma is a shm mapping
4956 */
9119a41e 4957 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
4958 /*
4959 * resv_map can not be NULL as hugetlb_reserve_pages is only
4960 * called for inodes for which resv_maps were created (see
4961 * hugetlbfs_get_inode).
4962 */
4e35f483 4963 resv_map = inode_resv_map(inode);
9119a41e 4964
0db9d74e 4965 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
4966
4967 } else {
e9fe92ae 4968 /* Private mapping. */
9119a41e 4969 resv_map = resv_map_alloc();
17c9d12e
MG
4970 if (!resv_map)
4971 return -ENOMEM;
4972
a1e78772 4973 chg = to - from;
84afd99b 4974
17c9d12e
MG
4975 set_vma_resv_map(vma, resv_map);
4976 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4977 }
4978
c50ac050
DH
4979 if (chg < 0) {
4980 ret = chg;
4981 goto out_err;
4982 }
8a630112 4983
075a61d0
MA
4984 ret = hugetlb_cgroup_charge_cgroup_rsvd(
4985 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
4986
4987 if (ret < 0) {
4988 ret = -ENOMEM;
4989 goto out_err;
4990 }
4991
4992 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
4993 /* For private mappings, the hugetlb_cgroup uncharge info hangs
4994 * of the resv_map.
4995 */
4996 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
4997 }
4998
1c5ecae3
MK
4999 /*
5000 * There must be enough pages in the subpool for the mapping. If
5001 * the subpool has a minimum size, there may be some global
5002 * reservations already in place (gbl_reserve).
5003 */
5004 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5005 if (gbl_reserve < 0) {
c50ac050 5006 ret = -ENOSPC;
075a61d0 5007 goto out_uncharge_cgroup;
c50ac050 5008 }
5a6fe125
MG
5009
5010 /*
17c9d12e 5011 * Check enough hugepages are available for the reservation.
90481622 5012 * Hand the pages back to the subpool if there are not
5a6fe125 5013 */
1c5ecae3 5014 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 5015 if (ret < 0) {
075a61d0 5016 goto out_put_pages;
68842c9b 5017 }
17c9d12e
MG
5018
5019 /*
5020 * Account for the reservations made. Shared mappings record regions
5021 * that have reservations as they are shared by multiple VMAs.
5022 * When the last VMA disappears, the region map says how much
5023 * the reservation was and the page cache tells how much of
5024 * the reservation was consumed. Private mappings are per-VMA and
5025 * only the consumed reservations are tracked. When the VMA
5026 * disappears, the original reservation is the VMA size and the
5027 * consumed reservations are stored in the map. Hence, nothing
5028 * else has to be done for private mappings here
5029 */
33039678 5030 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5031 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5032
5033 if (unlikely(add < 0)) {
5034 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5035 goto out_put_pages;
0db9d74e 5036 } else if (unlikely(chg > add)) {
33039678
MK
5037 /*
5038 * pages in this range were added to the reserve
5039 * map between region_chg and region_add. This
5040 * indicates a race with alloc_huge_page. Adjust
5041 * the subpool and reserve counts modified above
5042 * based on the difference.
5043 */
5044 long rsv_adjust;
5045
075a61d0
MA
5046 hugetlb_cgroup_uncharge_cgroup_rsvd(
5047 hstate_index(h),
5048 (chg - add) * pages_per_huge_page(h), h_cg);
5049
33039678
MK
5050 rsv_adjust = hugepage_subpool_put_pages(spool,
5051 chg - add);
5052 hugetlb_acct_memory(h, -rsv_adjust);
5053 }
5054 }
a43a8c39 5055 return 0;
075a61d0
MA
5056out_put_pages:
5057 /* put back original number of pages, chg */
5058 (void)hugepage_subpool_put_pages(spool, chg);
5059out_uncharge_cgroup:
5060 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5061 chg * pages_per_huge_page(h), h_cg);
c50ac050 5062out_err:
5e911373 5063 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5064 /* Only call region_abort if the region_chg succeeded but the
5065 * region_add failed or didn't run.
5066 */
5067 if (chg >= 0 && add < 0)
5068 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5069 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5070 kref_put(&resv_map->refs, resv_map_release);
c50ac050 5071 return ret;
a43a8c39
KC
5072}
5073
b5cec28d
MK
5074long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5075 long freed)
a43a8c39 5076{
a5516438 5077 struct hstate *h = hstate_inode(inode);
4e35f483 5078 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5079 long chg = 0;
90481622 5080 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5081 long gbl_reserve;
45c682a6 5082
f27a5136
MK
5083 /*
5084 * Since this routine can be called in the evict inode path for all
5085 * hugetlbfs inodes, resv_map could be NULL.
5086 */
b5cec28d
MK
5087 if (resv_map) {
5088 chg = region_del(resv_map, start, end);
5089 /*
5090 * region_del() can fail in the rare case where a region
5091 * must be split and another region descriptor can not be
5092 * allocated. If end == LONG_MAX, it will not fail.
5093 */
5094 if (chg < 0)
5095 return chg;
5096 }
5097
45c682a6 5098 spin_lock(&inode->i_lock);
e4c6f8be 5099 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5100 spin_unlock(&inode->i_lock);
5101
1c5ecae3
MK
5102 /*
5103 * If the subpool has a minimum size, the number of global
5104 * reservations to be released may be adjusted.
5105 */
5106 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5107 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5108
5109 return 0;
a43a8c39 5110}
93f70f90 5111
3212b535
SC
5112#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5113static unsigned long page_table_shareable(struct vm_area_struct *svma,
5114 struct vm_area_struct *vma,
5115 unsigned long addr, pgoff_t idx)
5116{
5117 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5118 svma->vm_start;
5119 unsigned long sbase = saddr & PUD_MASK;
5120 unsigned long s_end = sbase + PUD_SIZE;
5121
5122 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5123 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5124 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5125
5126 /*
5127 * match the virtual addresses, permission and the alignment of the
5128 * page table page.
5129 */
5130 if (pmd_index(addr) != pmd_index(saddr) ||
5131 vm_flags != svm_flags ||
5132 sbase < svma->vm_start || svma->vm_end < s_end)
5133 return 0;
5134
5135 return saddr;
5136}
5137
31aafb45 5138static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5139{
5140 unsigned long base = addr & PUD_MASK;
5141 unsigned long end = base + PUD_SIZE;
5142
5143 /*
5144 * check on proper vm_flags and page table alignment
5145 */
017b1660 5146 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5147 return true;
5148 return false;
3212b535
SC
5149}
5150
017b1660
MK
5151/*
5152 * Determine if start,end range within vma could be mapped by shared pmd.
5153 * If yes, adjust start and end to cover range associated with possible
5154 * shared pmd mappings.
5155 */
5156void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5157 unsigned long *start, unsigned long *end)
5158{
353b2de4 5159 unsigned long check_addr;
017b1660
MK
5160
5161 if (!(vma->vm_flags & VM_MAYSHARE))
5162 return;
5163
5164 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
5165 unsigned long a_start = check_addr & PUD_MASK;
5166 unsigned long a_end = a_start + PUD_SIZE;
5167
5168 /*
5169 * If sharing is possible, adjust start/end if necessary.
5170 */
5171 if (range_in_vma(vma, a_start, a_end)) {
5172 if (a_start < *start)
5173 *start = a_start;
5174 if (a_end > *end)
5175 *end = a_end;
5176 }
5177 }
5178}
5179
3212b535
SC
5180/*
5181 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5182 * and returns the corresponding pte. While this is not necessary for the
5183 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5184 * code much cleaner.
5185 *
5186 * This routine must be called with i_mmap_rwsem held in at least read mode.
5187 * For hugetlbfs, this prevents removal of any page table entries associated
5188 * with the address space. This is important as we are setting up sharing
5189 * based on existing page table entries (mappings).
3212b535
SC
5190 */
5191pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5192{
5193 struct vm_area_struct *vma = find_vma(mm, addr);
5194 struct address_space *mapping = vma->vm_file->f_mapping;
5195 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5196 vma->vm_pgoff;
5197 struct vm_area_struct *svma;
5198 unsigned long saddr;
5199 pte_t *spte = NULL;
5200 pte_t *pte;
cb900f41 5201 spinlock_t *ptl;
3212b535
SC
5202
5203 if (!vma_shareable(vma, addr))
5204 return (pte_t *)pmd_alloc(mm, pud, addr);
5205
3212b535
SC
5206 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5207 if (svma == vma)
5208 continue;
5209
5210 saddr = page_table_shareable(svma, vma, addr, idx);
5211 if (saddr) {
7868a208
PA
5212 spte = huge_pte_offset(svma->vm_mm, saddr,
5213 vma_mmu_pagesize(svma));
3212b535
SC
5214 if (spte) {
5215 get_page(virt_to_page(spte));
5216 break;
5217 }
5218 }
5219 }
5220
5221 if (!spte)
5222 goto out;
5223
8bea8052 5224 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5225 if (pud_none(*pud)) {
3212b535
SC
5226 pud_populate(mm, pud,
5227 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5228 mm_inc_nr_pmds(mm);
dc6c9a35 5229 } else {
3212b535 5230 put_page(virt_to_page(spte));
dc6c9a35 5231 }
cb900f41 5232 spin_unlock(ptl);
3212b535
SC
5233out:
5234 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5235 return pte;
5236}
5237
5238/*
5239 * unmap huge page backed by shared pte.
5240 *
5241 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5242 * indicated by page_count > 1, unmap is achieved by clearing pud and
5243 * decrementing the ref count. If count == 1, the pte page is not shared.
5244 *
c0d0381a 5245 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5246 *
5247 * returns: 1 successfully unmapped a shared pte page
5248 * 0 the underlying pte page is not shared, or it is the last user
5249 */
5250int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5251{
5252 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5253 p4d_t *p4d = p4d_offset(pgd, *addr);
5254 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
5255
5256 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5257 if (page_count(virt_to_page(ptep)) == 1)
5258 return 0;
5259
5260 pud_clear(pud);
5261 put_page(virt_to_page(ptep));
dc6c9a35 5262 mm_dec_nr_pmds(mm);
3212b535
SC
5263 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5264 return 1;
5265}
9e5fc74c
SC
5266#define want_pmd_share() (1)
5267#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5268pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5269{
5270 return NULL;
5271}
e81f2d22
ZZ
5272
5273int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5274{
5275 return 0;
5276}
017b1660
MK
5277
5278void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5279 unsigned long *start, unsigned long *end)
5280{
5281}
9e5fc74c 5282#define want_pmd_share() (0)
3212b535
SC
5283#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5284
9e5fc74c
SC
5285#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5286pte_t *huge_pte_alloc(struct mm_struct *mm,
5287 unsigned long addr, unsigned long sz)
5288{
5289 pgd_t *pgd;
c2febafc 5290 p4d_t *p4d;
9e5fc74c
SC
5291 pud_t *pud;
5292 pte_t *pte = NULL;
5293
5294 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5295 p4d = p4d_alloc(mm, pgd, addr);
5296 if (!p4d)
5297 return NULL;
c2febafc 5298 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5299 if (pud) {
5300 if (sz == PUD_SIZE) {
5301 pte = (pte_t *)pud;
5302 } else {
5303 BUG_ON(sz != PMD_SIZE);
5304 if (want_pmd_share() && pud_none(*pud))
5305 pte = huge_pmd_share(mm, addr, pud);
5306 else
5307 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5308 }
5309 }
4e666314 5310 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5311
5312 return pte;
5313}
5314
9b19df29
PA
5315/*
5316 * huge_pte_offset() - Walk the page table to resolve the hugepage
5317 * entry at address @addr
5318 *
5319 * Return: Pointer to page table or swap entry (PUD or PMD) for
5320 * address @addr, or NULL if a p*d_none() entry is encountered and the
5321 * size @sz doesn't match the hugepage size at this level of the page
5322 * table.
5323 */
7868a208
PA
5324pte_t *huge_pte_offset(struct mm_struct *mm,
5325 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5326{
5327 pgd_t *pgd;
c2febafc 5328 p4d_t *p4d;
9e5fc74c 5329 pud_t *pud;
c2febafc 5330 pmd_t *pmd;
9e5fc74c
SC
5331
5332 pgd = pgd_offset(mm, addr);
c2febafc
KS
5333 if (!pgd_present(*pgd))
5334 return NULL;
5335 p4d = p4d_offset(pgd, addr);
5336 if (!p4d_present(*p4d))
5337 return NULL;
9b19df29 5338
c2febafc 5339 pud = pud_offset(p4d, addr);
9b19df29 5340 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 5341 return NULL;
9b19df29
PA
5342 /* hugepage or swap? */
5343 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 5344 return (pte_t *)pud;
9b19df29 5345
c2febafc 5346 pmd = pmd_offset(pud, addr);
9b19df29
PA
5347 if (sz != PMD_SIZE && pmd_none(*pmd))
5348 return NULL;
5349 /* hugepage or swap? */
5350 if (pmd_huge(*pmd) || !pmd_present(*pmd))
5351 return (pte_t *)pmd;
5352
5353 return NULL;
9e5fc74c
SC
5354}
5355
61f77eda
NH
5356#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5357
5358/*
5359 * These functions are overwritable if your architecture needs its own
5360 * behavior.
5361 */
5362struct page * __weak
5363follow_huge_addr(struct mm_struct *mm, unsigned long address,
5364 int write)
5365{
5366 return ERR_PTR(-EINVAL);
5367}
5368
4dc71451
AK
5369struct page * __weak
5370follow_huge_pd(struct vm_area_struct *vma,
5371 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5372{
5373 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5374 return NULL;
5375}
5376
61f77eda 5377struct page * __weak
9e5fc74c 5378follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5379 pmd_t *pmd, int flags)
9e5fc74c 5380{
e66f17ff
NH
5381 struct page *page = NULL;
5382 spinlock_t *ptl;
c9d398fa 5383 pte_t pte;
3faa52c0
JH
5384
5385 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5386 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5387 (FOLL_PIN | FOLL_GET)))
5388 return NULL;
5389
e66f17ff
NH
5390retry:
5391 ptl = pmd_lockptr(mm, pmd);
5392 spin_lock(ptl);
5393 /*
5394 * make sure that the address range covered by this pmd is not
5395 * unmapped from other threads.
5396 */
5397 if (!pmd_huge(*pmd))
5398 goto out;
c9d398fa
NH
5399 pte = huge_ptep_get((pte_t *)pmd);
5400 if (pte_present(pte)) {
97534127 5401 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5402 /*
5403 * try_grab_page() should always succeed here, because: a) we
5404 * hold the pmd (ptl) lock, and b) we've just checked that the
5405 * huge pmd (head) page is present in the page tables. The ptl
5406 * prevents the head page and tail pages from being rearranged
5407 * in any way. So this page must be available at this point,
5408 * unless the page refcount overflowed:
5409 */
5410 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5411 page = NULL;
5412 goto out;
5413 }
e66f17ff 5414 } else {
c9d398fa 5415 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5416 spin_unlock(ptl);
5417 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5418 goto retry;
5419 }
5420 /*
5421 * hwpoisoned entry is treated as no_page_table in
5422 * follow_page_mask().
5423 */
5424 }
5425out:
5426 spin_unlock(ptl);
9e5fc74c
SC
5427 return page;
5428}
5429
61f77eda 5430struct page * __weak
9e5fc74c 5431follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5432 pud_t *pud, int flags)
9e5fc74c 5433{
3faa52c0 5434 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5435 return NULL;
9e5fc74c 5436
e66f17ff 5437 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5438}
5439
faaa5b62
AK
5440struct page * __weak
5441follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5442{
3faa52c0 5443 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5444 return NULL;
5445
5446 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5447}
5448
31caf665
NH
5449bool isolate_huge_page(struct page *page, struct list_head *list)
5450{
bcc54222
NH
5451 bool ret = true;
5452
309381fe 5453 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5454 spin_lock(&hugetlb_lock);
bcc54222
NH
5455 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5456 ret = false;
5457 goto unlock;
5458 }
5459 clear_page_huge_active(page);
31caf665 5460 list_move_tail(&page->lru, list);
bcc54222 5461unlock:
31caf665 5462 spin_unlock(&hugetlb_lock);
bcc54222 5463 return ret;
31caf665
NH
5464}
5465
5466void putback_active_hugepage(struct page *page)
5467{
309381fe 5468 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5469 spin_lock(&hugetlb_lock);
bcc54222 5470 set_page_huge_active(page);
31caf665
NH
5471 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5472 spin_unlock(&hugetlb_lock);
5473 put_page(page);
5474}
ab5ac90a
MH
5475
5476void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5477{
5478 struct hstate *h = page_hstate(oldpage);
5479
5480 hugetlb_cgroup_migrate(oldpage, newpage);
5481 set_page_owner_migrate_reason(newpage, reason);
5482
5483 /*
5484 * transfer temporary state of the new huge page. This is
5485 * reverse to other transitions because the newpage is going to
5486 * be final while the old one will be freed so it takes over
5487 * the temporary status.
5488 *
5489 * Also note that we have to transfer the per-node surplus state
5490 * here as well otherwise the global surplus count will not match
5491 * the per-node's.
5492 */
5493 if (PageHugeTemporary(newpage)) {
5494 int old_nid = page_to_nid(oldpage);
5495 int new_nid = page_to_nid(newpage);
5496
5497 SetPageHugeTemporary(oldpage);
5498 ClearPageHugeTemporary(newpage);
5499
5500 spin_lock(&hugetlb_lock);
5501 if (h->surplus_huge_pages_node[old_nid]) {
5502 h->surplus_huge_pages_node[old_nid]--;
5503 h->surplus_huge_pages_node[new_nid]++;
5504 }
5505 spin_unlock(&hugetlb_lock);
5506 }
5507}