]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
mm: support memblock alloc on the exact node for sparse_buffer_init()
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
63489f8e 22#include <linux/mmdebug.h>
174cd4b1 23#include <linux/sched/signal.h>
0fe6e20b 24#include <linux/rmap.h>
c6247f72 25#include <linux/string_helpers.h>
fd6a03ed
NH
26#include <linux/swap.h>
27#include <linux/swapops.h>
8382d914 28#include <linux/jhash.h>
98fa15f3 29#include <linux/numa.h>
d6606683 30
63551ae0
DG
31#include <asm/page.h>
32#include <asm/pgtable.h>
24669e58 33#include <asm/tlb.h>
63551ae0 34
24669e58 35#include <linux/io.h>
63551ae0 36#include <linux/hugetlb.h>
9dd540e2 37#include <linux/hugetlb_cgroup.h>
9a305230 38#include <linux/node.h>
1a1aad8a 39#include <linux/userfaultfd_k.h>
ab5ac90a 40#include <linux/page_owner.h>
7835e98b 41#include "internal.h"
1da177e4 42
c3f38a38 43int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
44unsigned int default_hstate_idx;
45struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
46/*
47 * Minimum page order among possible hugepage sizes, set to a proper value
48 * at boot time.
49 */
50static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 51
53ba51d2
JT
52__initdata LIST_HEAD(huge_boot_pages);
53
e5ff2159
AK
54/* for command line parsing */
55static struct hstate * __initdata parsed_hstate;
56static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 57static unsigned long __initdata default_hstate_size;
9fee021d 58static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 59
3935baa9 60/*
31caf665
NH
61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62 * free_huge_pages, and surplus_huge_pages.
3935baa9 63 */
c3f38a38 64DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 65
8382d914
DB
66/*
67 * Serializes faults on the same logical page. This is used to
68 * prevent spurious OOMs when the hugepage pool is fully utilized.
69 */
70static int num_fault_mutexes;
c672c7f2 71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 72
7ca02d0a
MK
73/* Forward declaration */
74static int hugetlb_acct_memory(struct hstate *h, long delta);
75
90481622
DG
76static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77{
78 bool free = (spool->count == 0) && (spool->used_hpages == 0);
79
80 spin_unlock(&spool->lock);
81
82 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
83 * remain, give up any reservations mased on minimum size and
84 * free the subpool */
85 if (free) {
86 if (spool->min_hpages != -1)
87 hugetlb_acct_memory(spool->hstate,
88 -spool->min_hpages);
90481622 89 kfree(spool);
7ca02d0a 90 }
90481622
DG
91}
92
7ca02d0a
MK
93struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 long min_hpages)
90481622
DG
95{
96 struct hugepage_subpool *spool;
97
c6a91820 98 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
99 if (!spool)
100 return NULL;
101
102 spin_lock_init(&spool->lock);
103 spool->count = 1;
7ca02d0a
MK
104 spool->max_hpages = max_hpages;
105 spool->hstate = h;
106 spool->min_hpages = min_hpages;
107
108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 kfree(spool);
110 return NULL;
111 }
112 spool->rsv_hpages = min_hpages;
90481622
DG
113
114 return spool;
115}
116
117void hugepage_put_subpool(struct hugepage_subpool *spool)
118{
119 spin_lock(&spool->lock);
120 BUG_ON(!spool->count);
121 spool->count--;
122 unlock_or_release_subpool(spool);
123}
124
1c5ecae3
MK
125/*
126 * Subpool accounting for allocating and reserving pages.
127 * Return -ENOMEM if there are not enough resources to satisfy the
128 * the request. Otherwise, return the number of pages by which the
129 * global pools must be adjusted (upward). The returned value may
130 * only be different than the passed value (delta) in the case where
131 * a subpool minimum size must be manitained.
132 */
133static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
134 long delta)
135{
1c5ecae3 136 long ret = delta;
90481622
DG
137
138 if (!spool)
1c5ecae3 139 return ret;
90481622
DG
140
141 spin_lock(&spool->lock);
1c5ecae3
MK
142
143 if (spool->max_hpages != -1) { /* maximum size accounting */
144 if ((spool->used_hpages + delta) <= spool->max_hpages)
145 spool->used_hpages += delta;
146 else {
147 ret = -ENOMEM;
148 goto unlock_ret;
149 }
90481622 150 }
90481622 151
09a95e29
MK
152 /* minimum size accounting */
153 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
154 if (delta > spool->rsv_hpages) {
155 /*
156 * Asking for more reserves than those already taken on
157 * behalf of subpool. Return difference.
158 */
159 ret = delta - spool->rsv_hpages;
160 spool->rsv_hpages = 0;
161 } else {
162 ret = 0; /* reserves already accounted for */
163 spool->rsv_hpages -= delta;
164 }
165 }
166
167unlock_ret:
168 spin_unlock(&spool->lock);
90481622
DG
169 return ret;
170}
171
1c5ecae3
MK
172/*
173 * Subpool accounting for freeing and unreserving pages.
174 * Return the number of global page reservations that must be dropped.
175 * The return value may only be different than the passed value (delta)
176 * in the case where a subpool minimum size must be maintained.
177 */
178static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
179 long delta)
180{
1c5ecae3
MK
181 long ret = delta;
182
90481622 183 if (!spool)
1c5ecae3 184 return delta;
90481622
DG
185
186 spin_lock(&spool->lock);
1c5ecae3
MK
187
188 if (spool->max_hpages != -1) /* maximum size accounting */
189 spool->used_hpages -= delta;
190
09a95e29
MK
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
193 if (spool->rsv_hpages + delta <= spool->min_hpages)
194 ret = 0;
195 else
196 ret = spool->rsv_hpages + delta - spool->min_hpages;
197
198 spool->rsv_hpages += delta;
199 if (spool->rsv_hpages > spool->min_hpages)
200 spool->rsv_hpages = spool->min_hpages;
201 }
202
203 /*
204 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 * quota reference, free it now.
206 */
90481622 207 unlock_or_release_subpool(spool);
1c5ecae3
MK
208
209 return ret;
90481622
DG
210}
211
212static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213{
214 return HUGETLBFS_SB(inode->i_sb)->spool;
215}
216
217static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218{
496ad9aa 219 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
220}
221
96822904
AW
222/*
223 * Region tracking -- allows tracking of reservations and instantiated pages
224 * across the pages in a mapping.
84afd99b 225 *
1dd308a7
MK
226 * The region data structures are embedded into a resv_map and protected
227 * by a resv_map's lock. The set of regions within the resv_map represent
228 * reservations for huge pages, or huge pages that have already been
229 * instantiated within the map. The from and to elements are huge page
230 * indicies into the associated mapping. from indicates the starting index
231 * of the region. to represents the first index past the end of the region.
232 *
233 * For example, a file region structure with from == 0 and to == 4 represents
234 * four huge pages in a mapping. It is important to note that the to element
235 * represents the first element past the end of the region. This is used in
236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237 *
238 * Interval notation of the form [from, to) will be used to indicate that
239 * the endpoint from is inclusive and to is exclusive.
96822904
AW
240 */
241struct file_region {
242 struct list_head link;
243 long from;
244 long to;
245};
246
1dd308a7
MK
247/*
248 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
249 * map. In the normal case, existing regions will be expanded
250 * to accommodate the specified range. Sufficient regions should
251 * exist for expansion due to the previous call to region_chg
252 * with the same range. However, it is possible that region_del
253 * could have been called after region_chg and modifed the map
254 * in such a way that no region exists to be expanded. In this
255 * case, pull a region descriptor from the cache associated with
256 * the map and use that for the new range.
cf3ad20b
MK
257 *
258 * Return the number of new huge pages added to the map. This
259 * number is greater than or equal to zero.
1dd308a7 260 */
1406ec9b 261static long region_add(struct resv_map *resv, long f, long t)
96822904 262{
1406ec9b 263 struct list_head *head = &resv->regions;
96822904 264 struct file_region *rg, *nrg, *trg;
cf3ad20b 265 long add = 0;
96822904 266
7b24d861 267 spin_lock(&resv->lock);
96822904
AW
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (f <= rg->to)
271 break;
272
5e911373
MK
273 /*
274 * If no region exists which can be expanded to include the
275 * specified range, the list must have been modified by an
276 * interleving call to region_del(). Pull a region descriptor
277 * from the cache and use it for this range.
278 */
279 if (&rg->link == head || t < rg->from) {
280 VM_BUG_ON(resv->region_cache_count <= 0);
281
282 resv->region_cache_count--;
283 nrg = list_first_entry(&resv->region_cache, struct file_region,
284 link);
285 list_del(&nrg->link);
286
287 nrg->from = f;
288 nrg->to = t;
289 list_add(&nrg->link, rg->link.prev);
290
291 add += t - f;
292 goto out_locked;
293 }
294
96822904
AW
295 /* Round our left edge to the current segment if it encloses us. */
296 if (f > rg->from)
297 f = rg->from;
298
299 /* Check for and consume any regions we now overlap with. */
300 nrg = rg;
301 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
302 if (&rg->link == head)
303 break;
304 if (rg->from > t)
305 break;
306
307 /* If this area reaches higher then extend our area to
308 * include it completely. If this is not the first area
309 * which we intend to reuse, free it. */
310 if (rg->to > t)
311 t = rg->to;
312 if (rg != nrg) {
cf3ad20b
MK
313 /* Decrement return value by the deleted range.
314 * Another range will span this area so that by
315 * end of routine add will be >= zero
316 */
317 add -= (rg->to - rg->from);
96822904
AW
318 list_del(&rg->link);
319 kfree(rg);
320 }
321 }
cf3ad20b
MK
322
323 add += (nrg->from - f); /* Added to beginning of region */
96822904 324 nrg->from = f;
cf3ad20b 325 add += t - nrg->to; /* Added to end of region */
96822904 326 nrg->to = t;
cf3ad20b 327
5e911373
MK
328out_locked:
329 resv->adds_in_progress--;
7b24d861 330 spin_unlock(&resv->lock);
cf3ad20b
MK
331 VM_BUG_ON(add < 0);
332 return add;
96822904
AW
333}
334
1dd308a7
MK
335/*
336 * Examine the existing reserve map and determine how many
337 * huge pages in the specified range [f, t) are NOT currently
338 * represented. This routine is called before a subsequent
339 * call to region_add that will actually modify the reserve
340 * map to add the specified range [f, t). region_chg does
341 * not change the number of huge pages represented by the
342 * map. However, if the existing regions in the map can not
343 * be expanded to represent the new range, a new file_region
344 * structure is added to the map as a placeholder. This is
345 * so that the subsequent region_add call will have all the
346 * regions it needs and will not fail.
347 *
5e911373
MK
348 * Upon entry, region_chg will also examine the cache of region descriptors
349 * associated with the map. If there are not enough descriptors cached, one
350 * will be allocated for the in progress add operation.
351 *
352 * Returns the number of huge pages that need to be added to the existing
353 * reservation map for the range [f, t). This number is greater or equal to
354 * zero. -ENOMEM is returned if a new file_region structure or cache entry
355 * is needed and can not be allocated.
1dd308a7 356 */
1406ec9b 357static long region_chg(struct resv_map *resv, long f, long t)
96822904 358{
1406ec9b 359 struct list_head *head = &resv->regions;
7b24d861 360 struct file_region *rg, *nrg = NULL;
96822904
AW
361 long chg = 0;
362
7b24d861
DB
363retry:
364 spin_lock(&resv->lock);
5e911373
MK
365retry_locked:
366 resv->adds_in_progress++;
367
368 /*
369 * Check for sufficient descriptors in the cache to accommodate
370 * the number of in progress add operations.
371 */
372 if (resv->adds_in_progress > resv->region_cache_count) {
373 struct file_region *trg;
374
375 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
376 /* Must drop lock to allocate a new descriptor. */
377 resv->adds_in_progress--;
378 spin_unlock(&resv->lock);
379
380 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
381 if (!trg) {
382 kfree(nrg);
5e911373 383 return -ENOMEM;
dbe409e4 384 }
5e911373
MK
385
386 spin_lock(&resv->lock);
387 list_add(&trg->link, &resv->region_cache);
388 resv->region_cache_count++;
389 goto retry_locked;
390 }
391
96822904
AW
392 /* Locate the region we are before or in. */
393 list_for_each_entry(rg, head, link)
394 if (f <= rg->to)
395 break;
396
397 /* If we are below the current region then a new region is required.
398 * Subtle, allocate a new region at the position but make it zero
399 * size such that we can guarantee to record the reservation. */
400 if (&rg->link == head || t < rg->from) {
7b24d861 401 if (!nrg) {
5e911373 402 resv->adds_in_progress--;
7b24d861
DB
403 spin_unlock(&resv->lock);
404 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
405 if (!nrg)
406 return -ENOMEM;
407
408 nrg->from = f;
409 nrg->to = f;
410 INIT_LIST_HEAD(&nrg->link);
411 goto retry;
412 }
96822904 413
7b24d861
DB
414 list_add(&nrg->link, rg->link.prev);
415 chg = t - f;
416 goto out_nrg;
96822904
AW
417 }
418
419 /* Round our left edge to the current segment if it encloses us. */
420 if (f > rg->from)
421 f = rg->from;
422 chg = t - f;
423
424 /* Check for and consume any regions we now overlap with. */
425 list_for_each_entry(rg, rg->link.prev, link) {
426 if (&rg->link == head)
427 break;
428 if (rg->from > t)
7b24d861 429 goto out;
96822904 430
25985edc 431 /* We overlap with this area, if it extends further than
96822904
AW
432 * us then we must extend ourselves. Account for its
433 * existing reservation. */
434 if (rg->to > t) {
435 chg += rg->to - t;
436 t = rg->to;
437 }
438 chg -= rg->to - rg->from;
439 }
7b24d861
DB
440
441out:
442 spin_unlock(&resv->lock);
443 /* We already know we raced and no longer need the new region */
444 kfree(nrg);
445 return chg;
446out_nrg:
447 spin_unlock(&resv->lock);
96822904
AW
448 return chg;
449}
450
5e911373
MK
451/*
452 * Abort the in progress add operation. The adds_in_progress field
453 * of the resv_map keeps track of the operations in progress between
454 * calls to region_chg and region_add. Operations are sometimes
455 * aborted after the call to region_chg. In such cases, region_abort
456 * is called to decrement the adds_in_progress counter.
457 *
458 * NOTE: The range arguments [f, t) are not needed or used in this
459 * routine. They are kept to make reading the calling code easier as
460 * arguments will match the associated region_chg call.
461 */
462static void region_abort(struct resv_map *resv, long f, long t)
463{
464 spin_lock(&resv->lock);
465 VM_BUG_ON(!resv->region_cache_count);
466 resv->adds_in_progress--;
467 spin_unlock(&resv->lock);
468}
469
1dd308a7 470/*
feba16e2
MK
471 * Delete the specified range [f, t) from the reserve map. If the
472 * t parameter is LONG_MAX, this indicates that ALL regions after f
473 * should be deleted. Locate the regions which intersect [f, t)
474 * and either trim, delete or split the existing regions.
475 *
476 * Returns the number of huge pages deleted from the reserve map.
477 * In the normal case, the return value is zero or more. In the
478 * case where a region must be split, a new region descriptor must
479 * be allocated. If the allocation fails, -ENOMEM will be returned.
480 * NOTE: If the parameter t == LONG_MAX, then we will never split
481 * a region and possibly return -ENOMEM. Callers specifying
482 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 483 */
feba16e2 484static long region_del(struct resv_map *resv, long f, long t)
96822904 485{
1406ec9b 486 struct list_head *head = &resv->regions;
96822904 487 struct file_region *rg, *trg;
feba16e2
MK
488 struct file_region *nrg = NULL;
489 long del = 0;
96822904 490
feba16e2 491retry:
7b24d861 492 spin_lock(&resv->lock);
feba16e2 493 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
494 /*
495 * Skip regions before the range to be deleted. file_region
496 * ranges are normally of the form [from, to). However, there
497 * may be a "placeholder" entry in the map which is of the form
498 * (from, to) with from == to. Check for placeholder entries
499 * at the beginning of the range to be deleted.
500 */
501 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 502 continue;
dbe409e4 503
feba16e2 504 if (rg->from >= t)
96822904 505 break;
96822904 506
feba16e2
MK
507 if (f > rg->from && t < rg->to) { /* Must split region */
508 /*
509 * Check for an entry in the cache before dropping
510 * lock and attempting allocation.
511 */
512 if (!nrg &&
513 resv->region_cache_count > resv->adds_in_progress) {
514 nrg = list_first_entry(&resv->region_cache,
515 struct file_region,
516 link);
517 list_del(&nrg->link);
518 resv->region_cache_count--;
519 }
96822904 520
feba16e2
MK
521 if (!nrg) {
522 spin_unlock(&resv->lock);
523 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
524 if (!nrg)
525 return -ENOMEM;
526 goto retry;
527 }
528
529 del += t - f;
530
531 /* New entry for end of split region */
532 nrg->from = t;
533 nrg->to = rg->to;
534 INIT_LIST_HEAD(&nrg->link);
535
536 /* Original entry is trimmed */
537 rg->to = f;
538
539 list_add(&nrg->link, &rg->link);
540 nrg = NULL;
96822904 541 break;
feba16e2
MK
542 }
543
544 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
545 del += rg->to - rg->from;
546 list_del(&rg->link);
547 kfree(rg);
548 continue;
549 }
550
551 if (f <= rg->from) { /* Trim beginning of region */
552 del += t - rg->from;
553 rg->from = t;
554 } else { /* Trim end of region */
555 del += rg->to - f;
556 rg->to = f;
557 }
96822904 558 }
7b24d861 559
7b24d861 560 spin_unlock(&resv->lock);
feba16e2
MK
561 kfree(nrg);
562 return del;
96822904
AW
563}
564
b5cec28d
MK
565/*
566 * A rare out of memory error was encountered which prevented removal of
567 * the reserve map region for a page. The huge page itself was free'ed
568 * and removed from the page cache. This routine will adjust the subpool
569 * usage count, and the global reserve count if needed. By incrementing
570 * these counts, the reserve map entry which could not be deleted will
571 * appear as a "reserved" entry instead of simply dangling with incorrect
572 * counts.
573 */
72e2936c 574void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
575{
576 struct hugepage_subpool *spool = subpool_inode(inode);
577 long rsv_adjust;
578
579 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 580 if (rsv_adjust) {
b5cec28d
MK
581 struct hstate *h = hstate_inode(inode);
582
583 hugetlb_acct_memory(h, 1);
584 }
585}
586
1dd308a7
MK
587/*
588 * Count and return the number of huge pages in the reserve map
589 * that intersect with the range [f, t).
590 */
1406ec9b 591static long region_count(struct resv_map *resv, long f, long t)
84afd99b 592{
1406ec9b 593 struct list_head *head = &resv->regions;
84afd99b
AW
594 struct file_region *rg;
595 long chg = 0;
596
7b24d861 597 spin_lock(&resv->lock);
84afd99b
AW
598 /* Locate each segment we overlap with, and count that overlap. */
599 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
600 long seg_from;
601 long seg_to;
84afd99b
AW
602
603 if (rg->to <= f)
604 continue;
605 if (rg->from >= t)
606 break;
607
608 seg_from = max(rg->from, f);
609 seg_to = min(rg->to, t);
610
611 chg += seg_to - seg_from;
612 }
7b24d861 613 spin_unlock(&resv->lock);
84afd99b
AW
614
615 return chg;
616}
617
e7c4b0bf
AW
618/*
619 * Convert the address within this vma to the page offset within
620 * the mapping, in pagecache page units; huge pages here.
621 */
a5516438
AK
622static pgoff_t vma_hugecache_offset(struct hstate *h,
623 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 624{
a5516438
AK
625 return ((address - vma->vm_start) >> huge_page_shift(h)) +
626 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
627}
628
0fe6e20b
NH
629pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
630 unsigned long address)
631{
632 return vma_hugecache_offset(hstate_vma(vma), vma, address);
633}
dee41079 634EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 635
08fba699
MG
636/*
637 * Return the size of the pages allocated when backing a VMA. In the majority
638 * cases this will be same size as used by the page table entries.
639 */
640unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
641{
05ea8860
DW
642 if (vma->vm_ops && vma->vm_ops->pagesize)
643 return vma->vm_ops->pagesize(vma);
644 return PAGE_SIZE;
08fba699 645}
f340ca0f 646EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 647
3340289d
MG
648/*
649 * Return the page size being used by the MMU to back a VMA. In the majority
650 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
651 * architectures where it differs, an architecture-specific 'strong'
652 * version of this symbol is required.
3340289d 653 */
09135cc5 654__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
655{
656 return vma_kernel_pagesize(vma);
657}
3340289d 658
84afd99b
AW
659/*
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
662 * alignment.
663 */
664#define HPAGE_RESV_OWNER (1UL << 0)
665#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 666#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 667
a1e78772
MG
668/*
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
672 *
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
677 *
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
a1e78772 686 */
e7c4b0bf
AW
687static unsigned long get_vma_private_data(struct vm_area_struct *vma)
688{
689 return (unsigned long)vma->vm_private_data;
690}
691
692static void set_vma_private_data(struct vm_area_struct *vma,
693 unsigned long value)
694{
695 vma->vm_private_data = (void *)value;
696}
697
9119a41e 698struct resv_map *resv_map_alloc(void)
84afd99b
AW
699{
700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
702
703 if (!resv_map || !rg) {
704 kfree(resv_map);
705 kfree(rg);
84afd99b 706 return NULL;
5e911373 707 }
84afd99b
AW
708
709 kref_init(&resv_map->refs);
7b24d861 710 spin_lock_init(&resv_map->lock);
84afd99b
AW
711 INIT_LIST_HEAD(&resv_map->regions);
712
5e911373
MK
713 resv_map->adds_in_progress = 0;
714
715 INIT_LIST_HEAD(&resv_map->region_cache);
716 list_add(&rg->link, &resv_map->region_cache);
717 resv_map->region_cache_count = 1;
718
84afd99b
AW
719 return resv_map;
720}
721
9119a41e 722void resv_map_release(struct kref *ref)
84afd99b
AW
723{
724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
725 struct list_head *head = &resv_map->region_cache;
726 struct file_region *rg, *trg;
84afd99b
AW
727
728 /* Clear out any active regions before we release the map. */
feba16e2 729 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
730
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg, trg, head, link) {
733 list_del(&rg->link);
734 kfree(rg);
735 }
736
737 VM_BUG_ON(resv_map->adds_in_progress);
738
84afd99b
AW
739 kfree(resv_map);
740}
741
4e35f483
JK
742static inline struct resv_map *inode_resv_map(struct inode *inode)
743{
f27a5136
MK
744 /*
745 * At inode evict time, i_mapping may not point to the original
746 * address space within the inode. This original address space
747 * contains the pointer to the resv_map. So, always use the
748 * address space embedded within the inode.
749 * The VERY common case is inode->mapping == &inode->i_data but,
750 * this may not be true for device special inodes.
751 */
752 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
753}
754
84afd99b 755static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 756{
81d1b09c 757 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
758 if (vma->vm_flags & VM_MAYSHARE) {
759 struct address_space *mapping = vma->vm_file->f_mapping;
760 struct inode *inode = mapping->host;
761
762 return inode_resv_map(inode);
763
764 } else {
84afd99b
AW
765 return (struct resv_map *)(get_vma_private_data(vma) &
766 ~HPAGE_RESV_MASK);
4e35f483 767 }
a1e78772
MG
768}
769
84afd99b 770static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 771{
81d1b09c
SL
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 774
84afd99b
AW
775 set_vma_private_data(vma, (get_vma_private_data(vma) &
776 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
777}
778
779static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
780{
81d1b09c
SL
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
783
784 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
785}
786
787static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
788{
81d1b09c 789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
790
791 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
792}
793
04f2cbe3 794/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
795void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
796{
81d1b09c 797 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 798 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
799 vma->vm_private_data = (void *)0;
800}
801
802/* Returns true if the VMA has associated reserve pages */
559ec2f8 803static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 804{
af0ed73e
JK
805 if (vma->vm_flags & VM_NORESERVE) {
806 /*
807 * This address is already reserved by other process(chg == 0),
808 * so, we should decrement reserved count. Without decrementing,
809 * reserve count remains after releasing inode, because this
810 * allocated page will go into page cache and is regarded as
811 * coming from reserved pool in releasing step. Currently, we
812 * don't have any other solution to deal with this situation
813 * properly, so add work-around here.
814 */
815 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 816 return true;
af0ed73e 817 else
559ec2f8 818 return false;
af0ed73e 819 }
a63884e9
JK
820
821 /* Shared mappings always use reserves */
1fb1b0e9
MK
822 if (vma->vm_flags & VM_MAYSHARE) {
823 /*
824 * We know VM_NORESERVE is not set. Therefore, there SHOULD
825 * be a region map for all pages. The only situation where
826 * there is no region map is if a hole was punched via
827 * fallocate. In this case, there really are no reverves to
828 * use. This situation is indicated if chg != 0.
829 */
830 if (chg)
831 return false;
832 else
833 return true;
834 }
a63884e9
JK
835
836 /*
837 * Only the process that called mmap() has reserves for
838 * private mappings.
839 */
67961f9d
MK
840 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
841 /*
842 * Like the shared case above, a hole punch or truncate
843 * could have been performed on the private mapping.
844 * Examine the value of chg to determine if reserves
845 * actually exist or were previously consumed.
846 * Very Subtle - The value of chg comes from a previous
847 * call to vma_needs_reserves(). The reserve map for
848 * private mappings has different (opposite) semantics
849 * than that of shared mappings. vma_needs_reserves()
850 * has already taken this difference in semantics into
851 * account. Therefore, the meaning of chg is the same
852 * as in the shared case above. Code could easily be
853 * combined, but keeping it separate draws attention to
854 * subtle differences.
855 */
856 if (chg)
857 return false;
858 else
859 return true;
860 }
a63884e9 861
559ec2f8 862 return false;
a1e78772
MG
863}
864
a5516438 865static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
866{
867 int nid = page_to_nid(page);
0edaecfa 868 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
869 h->free_huge_pages++;
870 h->free_huge_pages_node[nid]++;
1da177e4
LT
871}
872
94310cbc 873static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
874{
875 struct page *page;
876
c8721bbb 877 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 878 if (!PageHWPoison(page))
c8721bbb
NH
879 break;
880 /*
881 * if 'non-isolated free hugepage' not found on the list,
882 * the allocation fails.
883 */
884 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 885 return NULL;
0edaecfa 886 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 887 set_page_refcounted(page);
bf50bab2
NH
888 h->free_huge_pages--;
889 h->free_huge_pages_node[nid]--;
890 return page;
891}
892
3e59fcb0
MH
893static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
894 nodemask_t *nmask)
94310cbc 895{
3e59fcb0
MH
896 unsigned int cpuset_mems_cookie;
897 struct zonelist *zonelist;
898 struct zone *zone;
899 struct zoneref *z;
98fa15f3 900 int node = NUMA_NO_NODE;
94310cbc 901
3e59fcb0
MH
902 zonelist = node_zonelist(nid, gfp_mask);
903
904retry_cpuset:
905 cpuset_mems_cookie = read_mems_allowed_begin();
906 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
907 struct page *page;
908
909 if (!cpuset_zone_allowed(zone, gfp_mask))
910 continue;
911 /*
912 * no need to ask again on the same node. Pool is node rather than
913 * zone aware
914 */
915 if (zone_to_nid(zone) == node)
916 continue;
917 node = zone_to_nid(zone);
94310cbc 918
94310cbc
AK
919 page = dequeue_huge_page_node_exact(h, node);
920 if (page)
921 return page;
922 }
3e59fcb0
MH
923 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
924 goto retry_cpuset;
925
94310cbc
AK
926 return NULL;
927}
928
86cdb465
NH
929/* Movability of hugepages depends on migration support. */
930static inline gfp_t htlb_alloc_mask(struct hstate *h)
931{
7ed2c31d 932 if (hugepage_movable_supported(h))
86cdb465
NH
933 return GFP_HIGHUSER_MOVABLE;
934 else
935 return GFP_HIGHUSER;
936}
937
a5516438
AK
938static struct page *dequeue_huge_page_vma(struct hstate *h,
939 struct vm_area_struct *vma,
af0ed73e
JK
940 unsigned long address, int avoid_reserve,
941 long chg)
1da177e4 942{
3e59fcb0 943 struct page *page;
480eccf9 944 struct mempolicy *mpol;
04ec6264 945 gfp_t gfp_mask;
3e59fcb0 946 nodemask_t *nodemask;
04ec6264 947 int nid;
1da177e4 948
a1e78772
MG
949 /*
950 * A child process with MAP_PRIVATE mappings created by their parent
951 * have no page reserves. This check ensures that reservations are
952 * not "stolen". The child may still get SIGKILLed
953 */
af0ed73e 954 if (!vma_has_reserves(vma, chg) &&
a5516438 955 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 956 goto err;
a1e78772 957
04f2cbe3 958 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 959 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 960 goto err;
04f2cbe3 961
04ec6264
VB
962 gfp_mask = htlb_alloc_mask(h);
963 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
964 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
965 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
966 SetPagePrivate(page);
967 h->resv_huge_pages--;
1da177e4 968 }
cc9a6c87 969
52cd3b07 970 mpol_cond_put(mpol);
1da177e4 971 return page;
cc9a6c87
MG
972
973err:
cc9a6c87 974 return NULL;
1da177e4
LT
975}
976
1cac6f2c
LC
977/*
978 * common helper functions for hstate_next_node_to_{alloc|free}.
979 * We may have allocated or freed a huge page based on a different
980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981 * be outside of *nodes_allowed. Ensure that we use an allowed
982 * node for alloc or free.
983 */
984static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
985{
0edaf86c 986 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
987 VM_BUG_ON(nid >= MAX_NUMNODES);
988
989 return nid;
990}
991
992static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
993{
994 if (!node_isset(nid, *nodes_allowed))
995 nid = next_node_allowed(nid, nodes_allowed);
996 return nid;
997}
998
999/*
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1004 */
1005static int hstate_next_node_to_alloc(struct hstate *h,
1006 nodemask_t *nodes_allowed)
1007{
1008 int nid;
1009
1010 VM_BUG_ON(!nodes_allowed);
1011
1012 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1014
1015 return nid;
1016}
1017
1018/*
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page. Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1023 */
1024static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1025{
1026 int nid;
1027
1028 VM_BUG_ON(!nodes_allowed);
1029
1030 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1032
1033 return nid;
1034}
1035
1036#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1037 for (nr_nodes = nodes_weight(*mask); \
1038 nr_nodes > 0 && \
1039 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1040 nr_nodes--)
1041
1042#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1043 for (nr_nodes = nodes_weight(*mask); \
1044 nr_nodes > 0 && \
1045 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1046 nr_nodes--)
1047
e1073d1e 1048#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1049static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1050 unsigned int order)
944d9fec
LC
1051{
1052 int i;
1053 int nr_pages = 1 << order;
1054 struct page *p = page + 1;
1055
c8cc708a 1056 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1057 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1058 clear_compound_head(p);
944d9fec 1059 set_page_refcounted(p);
944d9fec
LC
1060 }
1061
1062 set_compound_order(page, 0);
1063 __ClearPageHead(page);
1064}
1065
d00181b9 1066static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1067{
1068 free_contig_range(page_to_pfn(page), 1 << order);
1069}
1070
4eb0716e 1071#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1072static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1073 int nid, nodemask_t *nodemask)
944d9fec 1074{
5e27a2df 1075 unsigned long nr_pages = 1UL << huge_page_order(h);
944d9fec 1076
5e27a2df 1077 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1078}
1079
1080static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1081static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1082#else /* !CONFIG_CONTIG_ALLOC */
1083static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1084 int nid, nodemask_t *nodemask)
1085{
1086 return NULL;
1087}
1088#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1089
e1073d1e 1090#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1091static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1092 int nid, nodemask_t *nodemask)
1093{
1094 return NULL;
1095}
d00181b9 1096static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1097static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1098 unsigned int order) { }
944d9fec
LC
1099#endif
1100
a5516438 1101static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1102{
1103 int i;
a5516438 1104
4eb0716e 1105 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1106 return;
18229df5 1107
a5516438
AK
1108 h->nr_huge_pages--;
1109 h->nr_huge_pages_node[page_to_nid(page)]--;
1110 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1111 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1112 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1113 1 << PG_active | 1 << PG_private |
1114 1 << PG_writeback);
6af2acb6 1115 }
309381fe 1116 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1117 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1118 set_page_refcounted(page);
944d9fec
LC
1119 if (hstate_is_gigantic(h)) {
1120 destroy_compound_gigantic_page(page, huge_page_order(h));
1121 free_gigantic_page(page, huge_page_order(h));
1122 } else {
944d9fec
LC
1123 __free_pages(page, huge_page_order(h));
1124 }
6af2acb6
AL
1125}
1126
e5ff2159
AK
1127struct hstate *size_to_hstate(unsigned long size)
1128{
1129 struct hstate *h;
1130
1131 for_each_hstate(h) {
1132 if (huge_page_size(h) == size)
1133 return h;
1134 }
1135 return NULL;
1136}
1137
bcc54222
NH
1138/*
1139 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1140 * to hstate->hugepage_activelist.)
1141 *
1142 * This function can be called for tail pages, but never returns true for them.
1143 */
1144bool page_huge_active(struct page *page)
1145{
1146 VM_BUG_ON_PAGE(!PageHuge(page), page);
1147 return PageHead(page) && PagePrivate(&page[1]);
1148}
1149
1150/* never called for tail page */
1151static void set_page_huge_active(struct page *page)
1152{
1153 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1154 SetPagePrivate(&page[1]);
1155}
1156
1157static void clear_page_huge_active(struct page *page)
1158{
1159 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1160 ClearPagePrivate(&page[1]);
1161}
1162
ab5ac90a
MH
1163/*
1164 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1165 * code
1166 */
1167static inline bool PageHugeTemporary(struct page *page)
1168{
1169 if (!PageHuge(page))
1170 return false;
1171
1172 return (unsigned long)page[2].mapping == -1U;
1173}
1174
1175static inline void SetPageHugeTemporary(struct page *page)
1176{
1177 page[2].mapping = (void *)-1U;
1178}
1179
1180static inline void ClearPageHugeTemporary(struct page *page)
1181{
1182 page[2].mapping = NULL;
1183}
1184
8f1d26d0 1185void free_huge_page(struct page *page)
27a85ef1 1186{
a5516438
AK
1187 /*
1188 * Can't pass hstate in here because it is called from the
1189 * compound page destructor.
1190 */
e5ff2159 1191 struct hstate *h = page_hstate(page);
7893d1d5 1192 int nid = page_to_nid(page);
90481622
DG
1193 struct hugepage_subpool *spool =
1194 (struct hugepage_subpool *)page_private(page);
07443a85 1195 bool restore_reserve;
27a85ef1 1196
b4330afb
MK
1197 VM_BUG_ON_PAGE(page_count(page), page);
1198 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1199
1200 set_page_private(page, 0);
1201 page->mapping = NULL;
07443a85 1202 restore_reserve = PagePrivate(page);
16c794b4 1203 ClearPagePrivate(page);
27a85ef1 1204
1c5ecae3 1205 /*
0919e1b6
MK
1206 * If PagePrivate() was set on page, page allocation consumed a
1207 * reservation. If the page was associated with a subpool, there
1208 * would have been a page reserved in the subpool before allocation
1209 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1210 * reservtion, do not call hugepage_subpool_put_pages() as this will
1211 * remove the reserved page from the subpool.
1c5ecae3 1212 */
0919e1b6
MK
1213 if (!restore_reserve) {
1214 /*
1215 * A return code of zero implies that the subpool will be
1216 * under its minimum size if the reservation is not restored
1217 * after page is free. Therefore, force restore_reserve
1218 * operation.
1219 */
1220 if (hugepage_subpool_put_pages(spool, 1) == 0)
1221 restore_reserve = true;
1222 }
1c5ecae3 1223
27a85ef1 1224 spin_lock(&hugetlb_lock);
bcc54222 1225 clear_page_huge_active(page);
6d76dcf4
AK
1226 hugetlb_cgroup_uncharge_page(hstate_index(h),
1227 pages_per_huge_page(h), page);
07443a85
JK
1228 if (restore_reserve)
1229 h->resv_huge_pages++;
1230
ab5ac90a
MH
1231 if (PageHugeTemporary(page)) {
1232 list_del(&page->lru);
1233 ClearPageHugeTemporary(page);
1234 update_and_free_page(h, page);
1235 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1236 /* remove the page from active list */
1237 list_del(&page->lru);
a5516438
AK
1238 update_and_free_page(h, page);
1239 h->surplus_huge_pages--;
1240 h->surplus_huge_pages_node[nid]--;
7893d1d5 1241 } else {
5d3a551c 1242 arch_clear_hugepage_flags(page);
a5516438 1243 enqueue_huge_page(h, page);
7893d1d5 1244 }
27a85ef1
DG
1245 spin_unlock(&hugetlb_lock);
1246}
1247
a5516438 1248static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1249{
0edaecfa 1250 INIT_LIST_HEAD(&page->lru);
f1e61557 1251 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1252 spin_lock(&hugetlb_lock);
9dd540e2 1253 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1254 h->nr_huge_pages++;
1255 h->nr_huge_pages_node[nid]++;
b7ba30c6 1256 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1257}
1258
d00181b9 1259static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1260{
1261 int i;
1262 int nr_pages = 1 << order;
1263 struct page *p = page + 1;
1264
1265 /* we rely on prep_new_huge_page to set the destructor */
1266 set_compound_order(page, order);
ef5a22be 1267 __ClearPageReserved(page);
de09d31d 1268 __SetPageHead(page);
20a0307c 1269 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1270 /*
1271 * For gigantic hugepages allocated through bootmem at
1272 * boot, it's safer to be consistent with the not-gigantic
1273 * hugepages and clear the PG_reserved bit from all tail pages
1274 * too. Otherwse drivers using get_user_pages() to access tail
1275 * pages may get the reference counting wrong if they see
1276 * PG_reserved set on a tail page (despite the head page not
1277 * having PG_reserved set). Enforcing this consistency between
1278 * head and tail pages allows drivers to optimize away a check
1279 * on the head page when they need know if put_page() is needed
1280 * after get_user_pages().
1281 */
1282 __ClearPageReserved(p);
58a84aa9 1283 set_page_count(p, 0);
1d798ca3 1284 set_compound_head(p, page);
20a0307c 1285 }
b4330afb 1286 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1287}
1288
7795912c
AM
1289/*
1290 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1291 * transparent huge pages. See the PageTransHuge() documentation for more
1292 * details.
1293 */
20a0307c
WF
1294int PageHuge(struct page *page)
1295{
20a0307c
WF
1296 if (!PageCompound(page))
1297 return 0;
1298
1299 page = compound_head(page);
f1e61557 1300 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1301}
43131e14
NH
1302EXPORT_SYMBOL_GPL(PageHuge);
1303
27c73ae7
AA
1304/*
1305 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1306 * normal or transparent huge pages.
1307 */
1308int PageHeadHuge(struct page *page_head)
1309{
27c73ae7
AA
1310 if (!PageHead(page_head))
1311 return 0;
1312
758f66a2 1313 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1314}
27c73ae7 1315
13d60f4b
ZY
1316pgoff_t __basepage_index(struct page *page)
1317{
1318 struct page *page_head = compound_head(page);
1319 pgoff_t index = page_index(page_head);
1320 unsigned long compound_idx;
1321
1322 if (!PageHuge(page_head))
1323 return page_index(page);
1324
1325 if (compound_order(page_head) >= MAX_ORDER)
1326 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1327 else
1328 compound_idx = page - page_head;
1329
1330 return (index << compound_order(page_head)) + compound_idx;
1331}
1332
0c397dae 1333static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1334 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1335 nodemask_t *node_alloc_noretry)
1da177e4 1336{
af0fb9df 1337 int order = huge_page_order(h);
1da177e4 1338 struct page *page;
f60858f9 1339 bool alloc_try_hard = true;
f96efd58 1340
f60858f9
MK
1341 /*
1342 * By default we always try hard to allocate the page with
1343 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1344 * a loop (to adjust global huge page counts) and previous allocation
1345 * failed, do not continue to try hard on the same node. Use the
1346 * node_alloc_noretry bitmap to manage this state information.
1347 */
1348 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1349 alloc_try_hard = false;
1350 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1351 if (alloc_try_hard)
1352 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1353 if (nid == NUMA_NO_NODE)
1354 nid = numa_mem_id();
1355 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1356 if (page)
1357 __count_vm_event(HTLB_BUDDY_PGALLOC);
1358 else
1359 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1360
f60858f9
MK
1361 /*
1362 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1363 * indicates an overall state change. Clear bit so that we resume
1364 * normal 'try hard' allocations.
1365 */
1366 if (node_alloc_noretry && page && !alloc_try_hard)
1367 node_clear(nid, *node_alloc_noretry);
1368
1369 /*
1370 * If we tried hard to get a page but failed, set bit so that
1371 * subsequent attempts will not try as hard until there is an
1372 * overall state change.
1373 */
1374 if (node_alloc_noretry && !page && alloc_try_hard)
1375 node_set(nid, *node_alloc_noretry);
1376
63b4613c
NA
1377 return page;
1378}
1379
0c397dae
MH
1380/*
1381 * Common helper to allocate a fresh hugetlb page. All specific allocators
1382 * should use this function to get new hugetlb pages
1383 */
1384static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1385 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1386 nodemask_t *node_alloc_noretry)
0c397dae
MH
1387{
1388 struct page *page;
1389
1390 if (hstate_is_gigantic(h))
1391 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1392 else
1393 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1394 nid, nmask, node_alloc_noretry);
0c397dae
MH
1395 if (!page)
1396 return NULL;
1397
1398 if (hstate_is_gigantic(h))
1399 prep_compound_gigantic_page(page, huge_page_order(h));
1400 prep_new_huge_page(h, page, page_to_nid(page));
1401
1402 return page;
1403}
1404
af0fb9df
MH
1405/*
1406 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1407 * manner.
1408 */
f60858f9
MK
1409static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1410 nodemask_t *node_alloc_noretry)
b2261026
JK
1411{
1412 struct page *page;
1413 int nr_nodes, node;
af0fb9df 1414 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1415
1416 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1417 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1418 node_alloc_noretry);
af0fb9df 1419 if (page)
b2261026 1420 break;
b2261026
JK
1421 }
1422
af0fb9df
MH
1423 if (!page)
1424 return 0;
b2261026 1425
af0fb9df
MH
1426 put_page(page); /* free it into the hugepage allocator */
1427
1428 return 1;
b2261026
JK
1429}
1430
e8c5c824
LS
1431/*
1432 * Free huge page from pool from next node to free.
1433 * Attempt to keep persistent huge pages more or less
1434 * balanced over allowed nodes.
1435 * Called with hugetlb_lock locked.
1436 */
6ae11b27
LS
1437static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1438 bool acct_surplus)
e8c5c824 1439{
b2261026 1440 int nr_nodes, node;
e8c5c824
LS
1441 int ret = 0;
1442
b2261026 1443 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1444 /*
1445 * If we're returning unused surplus pages, only examine
1446 * nodes with surplus pages.
1447 */
b2261026
JK
1448 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1449 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1450 struct page *page =
b2261026 1451 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1452 struct page, lru);
1453 list_del(&page->lru);
1454 h->free_huge_pages--;
b2261026 1455 h->free_huge_pages_node[node]--;
685f3457
LS
1456 if (acct_surplus) {
1457 h->surplus_huge_pages--;
b2261026 1458 h->surplus_huge_pages_node[node]--;
685f3457 1459 }
e8c5c824
LS
1460 update_and_free_page(h, page);
1461 ret = 1;
9a76db09 1462 break;
e8c5c824 1463 }
b2261026 1464 }
e8c5c824
LS
1465
1466 return ret;
1467}
1468
c8721bbb
NH
1469/*
1470 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1471 * nothing for in-use hugepages and non-hugepages.
1472 * This function returns values like below:
1473 *
1474 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1475 * (allocated or reserved.)
1476 * 0: successfully dissolved free hugepages or the page is not a
1477 * hugepage (considered as already dissolved)
c8721bbb 1478 */
c3114a84 1479int dissolve_free_huge_page(struct page *page)
c8721bbb 1480{
6bc9b564 1481 int rc = -EBUSY;
082d5b6b 1482
faf53def
NH
1483 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1484 if (!PageHuge(page))
1485 return 0;
1486
c8721bbb 1487 spin_lock(&hugetlb_lock);
faf53def
NH
1488 if (!PageHuge(page)) {
1489 rc = 0;
1490 goto out;
1491 }
1492
1493 if (!page_count(page)) {
2247bb33
GS
1494 struct page *head = compound_head(page);
1495 struct hstate *h = page_hstate(head);
1496 int nid = page_to_nid(head);
6bc9b564 1497 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1498 goto out;
c3114a84
AK
1499 /*
1500 * Move PageHWPoison flag from head page to the raw error page,
1501 * which makes any subpages rather than the error page reusable.
1502 */
1503 if (PageHWPoison(head) && page != head) {
1504 SetPageHWPoison(page);
1505 ClearPageHWPoison(head);
1506 }
2247bb33 1507 list_del(&head->lru);
c8721bbb
NH
1508 h->free_huge_pages--;
1509 h->free_huge_pages_node[nid]--;
c1470b33 1510 h->max_huge_pages--;
2247bb33 1511 update_and_free_page(h, head);
6bc9b564 1512 rc = 0;
c8721bbb 1513 }
082d5b6b 1514out:
c8721bbb 1515 spin_unlock(&hugetlb_lock);
082d5b6b 1516 return rc;
c8721bbb
NH
1517}
1518
1519/*
1520 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1521 * make specified memory blocks removable from the system.
2247bb33
GS
1522 * Note that this will dissolve a free gigantic hugepage completely, if any
1523 * part of it lies within the given range.
082d5b6b
GS
1524 * Also note that if dissolve_free_huge_page() returns with an error, all
1525 * free hugepages that were dissolved before that error are lost.
c8721bbb 1526 */
082d5b6b 1527int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1528{
c8721bbb 1529 unsigned long pfn;
eb03aa00 1530 struct page *page;
082d5b6b 1531 int rc = 0;
c8721bbb 1532
d0177639 1533 if (!hugepages_supported())
082d5b6b 1534 return rc;
d0177639 1535
eb03aa00
GS
1536 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1537 page = pfn_to_page(pfn);
faf53def
NH
1538 rc = dissolve_free_huge_page(page);
1539 if (rc)
1540 break;
eb03aa00 1541 }
082d5b6b
GS
1542
1543 return rc;
c8721bbb
NH
1544}
1545
ab5ac90a
MH
1546/*
1547 * Allocates a fresh surplus page from the page allocator.
1548 */
0c397dae 1549static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1550 int nid, nodemask_t *nmask)
7893d1d5 1551{
9980d744 1552 struct page *page = NULL;
7893d1d5 1553
bae7f4ae 1554 if (hstate_is_gigantic(h))
aa888a74
AK
1555 return NULL;
1556
d1c3fb1f 1557 spin_lock(&hugetlb_lock);
9980d744
MH
1558 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1559 goto out_unlock;
d1c3fb1f
NA
1560 spin_unlock(&hugetlb_lock);
1561
f60858f9 1562 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1563 if (!page)
0c397dae 1564 return NULL;
d1c3fb1f
NA
1565
1566 spin_lock(&hugetlb_lock);
9980d744
MH
1567 /*
1568 * We could have raced with the pool size change.
1569 * Double check that and simply deallocate the new page
1570 * if we would end up overcommiting the surpluses. Abuse
1571 * temporary page to workaround the nasty free_huge_page
1572 * codeflow
1573 */
1574 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1575 SetPageHugeTemporary(page);
2bf753e6 1576 spin_unlock(&hugetlb_lock);
9980d744 1577 put_page(page);
2bf753e6 1578 return NULL;
9980d744 1579 } else {
9980d744 1580 h->surplus_huge_pages++;
4704dea3 1581 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1582 }
9980d744
MH
1583
1584out_unlock:
d1c3fb1f 1585 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1586
1587 return page;
1588}
1589
9a4e9f3b
AK
1590struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1591 int nid, nodemask_t *nmask)
ab5ac90a
MH
1592{
1593 struct page *page;
1594
1595 if (hstate_is_gigantic(h))
1596 return NULL;
1597
f60858f9 1598 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1599 if (!page)
1600 return NULL;
1601
1602 /*
1603 * We do not account these pages as surplus because they are only
1604 * temporary and will be released properly on the last reference
1605 */
ab5ac90a
MH
1606 SetPageHugeTemporary(page);
1607
1608 return page;
1609}
1610
099730d6
DH
1611/*
1612 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1613 */
e0ec90ee 1614static
0c397dae 1615struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1616 struct vm_area_struct *vma, unsigned long addr)
1617{
aaf14e40
MH
1618 struct page *page;
1619 struct mempolicy *mpol;
1620 gfp_t gfp_mask = htlb_alloc_mask(h);
1621 int nid;
1622 nodemask_t *nodemask;
1623
1624 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1625 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1626 mpol_cond_put(mpol);
1627
1628 return page;
099730d6
DH
1629}
1630
ab5ac90a 1631/* page migration callback function */
bf50bab2
NH
1632struct page *alloc_huge_page_node(struct hstate *h, int nid)
1633{
aaf14e40 1634 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1635 struct page *page = NULL;
bf50bab2 1636
aaf14e40
MH
1637 if (nid != NUMA_NO_NODE)
1638 gfp_mask |= __GFP_THISNODE;
1639
bf50bab2 1640 spin_lock(&hugetlb_lock);
4ef91848 1641 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1642 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1643 spin_unlock(&hugetlb_lock);
1644
94ae8ba7 1645 if (!page)
0c397dae 1646 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1647
1648 return page;
1649}
1650
ab5ac90a 1651/* page migration callback function */
3e59fcb0
MH
1652struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1653 nodemask_t *nmask)
4db9b2ef 1654{
aaf14e40 1655 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1656
1657 spin_lock(&hugetlb_lock);
1658 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1659 struct page *page;
1660
1661 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1662 if (page) {
1663 spin_unlock(&hugetlb_lock);
1664 return page;
4db9b2ef
MH
1665 }
1666 }
1667 spin_unlock(&hugetlb_lock);
4db9b2ef 1668
0c397dae 1669 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1670}
1671
ebd63723 1672/* mempolicy aware migration callback */
389c8178
MH
1673struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1674 unsigned long address)
ebd63723
MH
1675{
1676 struct mempolicy *mpol;
1677 nodemask_t *nodemask;
1678 struct page *page;
ebd63723
MH
1679 gfp_t gfp_mask;
1680 int node;
1681
ebd63723
MH
1682 gfp_mask = htlb_alloc_mask(h);
1683 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1684 page = alloc_huge_page_nodemask(h, node, nodemask);
1685 mpol_cond_put(mpol);
1686
1687 return page;
1688}
1689
e4e574b7 1690/*
25985edc 1691 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1692 * of size 'delta'.
1693 */
a5516438 1694static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1695{
1696 struct list_head surplus_list;
1697 struct page *page, *tmp;
1698 int ret, i;
1699 int needed, allocated;
28073b02 1700 bool alloc_ok = true;
e4e574b7 1701
a5516438 1702 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1703 if (needed <= 0) {
a5516438 1704 h->resv_huge_pages += delta;
e4e574b7 1705 return 0;
ac09b3a1 1706 }
e4e574b7
AL
1707
1708 allocated = 0;
1709 INIT_LIST_HEAD(&surplus_list);
1710
1711 ret = -ENOMEM;
1712retry:
1713 spin_unlock(&hugetlb_lock);
1714 for (i = 0; i < needed; i++) {
0c397dae 1715 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1716 NUMA_NO_NODE, NULL);
28073b02
HD
1717 if (!page) {
1718 alloc_ok = false;
1719 break;
1720 }
e4e574b7 1721 list_add(&page->lru, &surplus_list);
69ed779a 1722 cond_resched();
e4e574b7 1723 }
28073b02 1724 allocated += i;
e4e574b7
AL
1725
1726 /*
1727 * After retaking hugetlb_lock, we need to recalculate 'needed'
1728 * because either resv_huge_pages or free_huge_pages may have changed.
1729 */
1730 spin_lock(&hugetlb_lock);
a5516438
AK
1731 needed = (h->resv_huge_pages + delta) -
1732 (h->free_huge_pages + allocated);
28073b02
HD
1733 if (needed > 0) {
1734 if (alloc_ok)
1735 goto retry;
1736 /*
1737 * We were not able to allocate enough pages to
1738 * satisfy the entire reservation so we free what
1739 * we've allocated so far.
1740 */
1741 goto free;
1742 }
e4e574b7
AL
1743 /*
1744 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1745 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1746 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1747 * allocator. Commit the entire reservation here to prevent another
1748 * process from stealing the pages as they are added to the pool but
1749 * before they are reserved.
e4e574b7
AL
1750 */
1751 needed += allocated;
a5516438 1752 h->resv_huge_pages += delta;
e4e574b7 1753 ret = 0;
a9869b83 1754
19fc3f0a 1755 /* Free the needed pages to the hugetlb pool */
e4e574b7 1756 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1757 if ((--needed) < 0)
1758 break;
a9869b83
NH
1759 /*
1760 * This page is now managed by the hugetlb allocator and has
1761 * no users -- drop the buddy allocator's reference.
1762 */
1763 put_page_testzero(page);
309381fe 1764 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1765 enqueue_huge_page(h, page);
19fc3f0a 1766 }
28073b02 1767free:
b0365c8d 1768 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1769
1770 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1771 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1772 put_page(page);
a9869b83 1773 spin_lock(&hugetlb_lock);
e4e574b7
AL
1774
1775 return ret;
1776}
1777
1778/*
e5bbc8a6
MK
1779 * This routine has two main purposes:
1780 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1781 * in unused_resv_pages. This corresponds to the prior adjustments made
1782 * to the associated reservation map.
1783 * 2) Free any unused surplus pages that may have been allocated to satisfy
1784 * the reservation. As many as unused_resv_pages may be freed.
1785 *
1786 * Called with hugetlb_lock held. However, the lock could be dropped (and
1787 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1788 * we must make sure nobody else can claim pages we are in the process of
1789 * freeing. Do this by ensuring resv_huge_page always is greater than the
1790 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1791 */
a5516438
AK
1792static void return_unused_surplus_pages(struct hstate *h,
1793 unsigned long unused_resv_pages)
e4e574b7 1794{
e4e574b7
AL
1795 unsigned long nr_pages;
1796
aa888a74 1797 /* Cannot return gigantic pages currently */
bae7f4ae 1798 if (hstate_is_gigantic(h))
e5bbc8a6 1799 goto out;
aa888a74 1800
e5bbc8a6
MK
1801 /*
1802 * Part (or even all) of the reservation could have been backed
1803 * by pre-allocated pages. Only free surplus pages.
1804 */
a5516438 1805 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1806
685f3457
LS
1807 /*
1808 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1809 * evenly across all nodes with memory. Iterate across these nodes
1810 * until we can no longer free unreserved surplus pages. This occurs
1811 * when the nodes with surplus pages have no free pages.
1812 * free_pool_huge_page() will balance the the freed pages across the
1813 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1814 *
1815 * Note that we decrement resv_huge_pages as we free the pages. If
1816 * we drop the lock, resv_huge_pages will still be sufficiently large
1817 * to cover subsequent pages we may free.
685f3457
LS
1818 */
1819 while (nr_pages--) {
e5bbc8a6
MK
1820 h->resv_huge_pages--;
1821 unused_resv_pages--;
8cebfcd0 1822 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1823 goto out;
7848a4bf 1824 cond_resched_lock(&hugetlb_lock);
e4e574b7 1825 }
e5bbc8a6
MK
1826
1827out:
1828 /* Fully uncommit the reservation */
1829 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1830}
1831
5e911373 1832
c37f9fb1 1833/*
feba16e2 1834 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1835 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1836 *
1837 * vma_needs_reservation is called to determine if the huge page at addr
1838 * within the vma has an associated reservation. If a reservation is
1839 * needed, the value 1 is returned. The caller is then responsible for
1840 * managing the global reservation and subpool usage counts. After
1841 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1842 * to add the page to the reservation map. If the page allocation fails,
1843 * the reservation must be ended instead of committed. vma_end_reservation
1844 * is called in such cases.
cf3ad20b
MK
1845 *
1846 * In the normal case, vma_commit_reservation returns the same value
1847 * as the preceding vma_needs_reservation call. The only time this
1848 * is not the case is if a reserve map was changed between calls. It
1849 * is the responsibility of the caller to notice the difference and
1850 * take appropriate action.
96b96a96
MK
1851 *
1852 * vma_add_reservation is used in error paths where a reservation must
1853 * be restored when a newly allocated huge page must be freed. It is
1854 * to be called after calling vma_needs_reservation to determine if a
1855 * reservation exists.
c37f9fb1 1856 */
5e911373
MK
1857enum vma_resv_mode {
1858 VMA_NEEDS_RESV,
1859 VMA_COMMIT_RESV,
feba16e2 1860 VMA_END_RESV,
96b96a96 1861 VMA_ADD_RESV,
5e911373 1862};
cf3ad20b
MK
1863static long __vma_reservation_common(struct hstate *h,
1864 struct vm_area_struct *vma, unsigned long addr,
5e911373 1865 enum vma_resv_mode mode)
c37f9fb1 1866{
4e35f483
JK
1867 struct resv_map *resv;
1868 pgoff_t idx;
cf3ad20b 1869 long ret;
c37f9fb1 1870
4e35f483
JK
1871 resv = vma_resv_map(vma);
1872 if (!resv)
84afd99b 1873 return 1;
c37f9fb1 1874
4e35f483 1875 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1876 switch (mode) {
1877 case VMA_NEEDS_RESV:
cf3ad20b 1878 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1879 break;
1880 case VMA_COMMIT_RESV:
1881 ret = region_add(resv, idx, idx + 1);
1882 break;
feba16e2 1883 case VMA_END_RESV:
5e911373
MK
1884 region_abort(resv, idx, idx + 1);
1885 ret = 0;
1886 break;
96b96a96
MK
1887 case VMA_ADD_RESV:
1888 if (vma->vm_flags & VM_MAYSHARE)
1889 ret = region_add(resv, idx, idx + 1);
1890 else {
1891 region_abort(resv, idx, idx + 1);
1892 ret = region_del(resv, idx, idx + 1);
1893 }
1894 break;
5e911373
MK
1895 default:
1896 BUG();
1897 }
84afd99b 1898
4e35f483 1899 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1900 return ret;
67961f9d
MK
1901 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1902 /*
1903 * In most cases, reserves always exist for private mappings.
1904 * However, a file associated with mapping could have been
1905 * hole punched or truncated after reserves were consumed.
1906 * As subsequent fault on such a range will not use reserves.
1907 * Subtle - The reserve map for private mappings has the
1908 * opposite meaning than that of shared mappings. If NO
1909 * entry is in the reserve map, it means a reservation exists.
1910 * If an entry exists in the reserve map, it means the
1911 * reservation has already been consumed. As a result, the
1912 * return value of this routine is the opposite of the
1913 * value returned from reserve map manipulation routines above.
1914 */
1915 if (ret)
1916 return 0;
1917 else
1918 return 1;
1919 }
4e35f483 1920 else
cf3ad20b 1921 return ret < 0 ? ret : 0;
c37f9fb1 1922}
cf3ad20b
MK
1923
1924static long vma_needs_reservation(struct hstate *h,
a5516438 1925 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1926{
5e911373 1927 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1928}
84afd99b 1929
cf3ad20b
MK
1930static long vma_commit_reservation(struct hstate *h,
1931 struct vm_area_struct *vma, unsigned long addr)
1932{
5e911373
MK
1933 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1934}
1935
feba16e2 1936static void vma_end_reservation(struct hstate *h,
5e911373
MK
1937 struct vm_area_struct *vma, unsigned long addr)
1938{
feba16e2 1939 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1940}
1941
96b96a96
MK
1942static long vma_add_reservation(struct hstate *h,
1943 struct vm_area_struct *vma, unsigned long addr)
1944{
1945 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1946}
1947
1948/*
1949 * This routine is called to restore a reservation on error paths. In the
1950 * specific error paths, a huge page was allocated (via alloc_huge_page)
1951 * and is about to be freed. If a reservation for the page existed,
1952 * alloc_huge_page would have consumed the reservation and set PagePrivate
1953 * in the newly allocated page. When the page is freed via free_huge_page,
1954 * the global reservation count will be incremented if PagePrivate is set.
1955 * However, free_huge_page can not adjust the reserve map. Adjust the
1956 * reserve map here to be consistent with global reserve count adjustments
1957 * to be made by free_huge_page.
1958 */
1959static void restore_reserve_on_error(struct hstate *h,
1960 struct vm_area_struct *vma, unsigned long address,
1961 struct page *page)
1962{
1963 if (unlikely(PagePrivate(page))) {
1964 long rc = vma_needs_reservation(h, vma, address);
1965
1966 if (unlikely(rc < 0)) {
1967 /*
1968 * Rare out of memory condition in reserve map
1969 * manipulation. Clear PagePrivate so that
1970 * global reserve count will not be incremented
1971 * by free_huge_page. This will make it appear
1972 * as though the reservation for this page was
1973 * consumed. This may prevent the task from
1974 * faulting in the page at a later time. This
1975 * is better than inconsistent global huge page
1976 * accounting of reserve counts.
1977 */
1978 ClearPagePrivate(page);
1979 } else if (rc) {
1980 rc = vma_add_reservation(h, vma, address);
1981 if (unlikely(rc < 0))
1982 /*
1983 * See above comment about rare out of
1984 * memory condition.
1985 */
1986 ClearPagePrivate(page);
1987 } else
1988 vma_end_reservation(h, vma, address);
1989 }
1990}
1991
70c3547e 1992struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1993 unsigned long addr, int avoid_reserve)
1da177e4 1994{
90481622 1995 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1996 struct hstate *h = hstate_vma(vma);
348ea204 1997 struct page *page;
d85f69b0
MK
1998 long map_chg, map_commit;
1999 long gbl_chg;
6d76dcf4
AK
2000 int ret, idx;
2001 struct hugetlb_cgroup *h_cg;
a1e78772 2002
6d76dcf4 2003 idx = hstate_index(h);
a1e78772 2004 /*
d85f69b0
MK
2005 * Examine the region/reserve map to determine if the process
2006 * has a reservation for the page to be allocated. A return
2007 * code of zero indicates a reservation exists (no change).
a1e78772 2008 */
d85f69b0
MK
2009 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2010 if (map_chg < 0)
76dcee75 2011 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2012
2013 /*
2014 * Processes that did not create the mapping will have no
2015 * reserves as indicated by the region/reserve map. Check
2016 * that the allocation will not exceed the subpool limit.
2017 * Allocations for MAP_NORESERVE mappings also need to be
2018 * checked against any subpool limit.
2019 */
2020 if (map_chg || avoid_reserve) {
2021 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2022 if (gbl_chg < 0) {
feba16e2 2023 vma_end_reservation(h, vma, addr);
76dcee75 2024 return ERR_PTR(-ENOSPC);
5e911373 2025 }
1da177e4 2026
d85f69b0
MK
2027 /*
2028 * Even though there was no reservation in the region/reserve
2029 * map, there could be reservations associated with the
2030 * subpool that can be used. This would be indicated if the
2031 * return value of hugepage_subpool_get_pages() is zero.
2032 * However, if avoid_reserve is specified we still avoid even
2033 * the subpool reservations.
2034 */
2035 if (avoid_reserve)
2036 gbl_chg = 1;
2037 }
2038
6d76dcf4 2039 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2040 if (ret)
2041 goto out_subpool_put;
2042
1da177e4 2043 spin_lock(&hugetlb_lock);
d85f69b0
MK
2044 /*
2045 * glb_chg is passed to indicate whether or not a page must be taken
2046 * from the global free pool (global change). gbl_chg == 0 indicates
2047 * a reservation exists for the allocation.
2048 */
2049 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2050 if (!page) {
94ae8ba7 2051 spin_unlock(&hugetlb_lock);
0c397dae 2052 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2053 if (!page)
2054 goto out_uncharge_cgroup;
a88c7695
NH
2055 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2056 SetPagePrivate(page);
2057 h->resv_huge_pages--;
2058 }
79dbb236
AK
2059 spin_lock(&hugetlb_lock);
2060 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2061 /* Fall through */
68842c9b 2062 }
81a6fcae
JK
2063 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2064 spin_unlock(&hugetlb_lock);
348ea204 2065
90481622 2066 set_page_private(page, (unsigned long)spool);
90d8b7e6 2067
d85f69b0
MK
2068 map_commit = vma_commit_reservation(h, vma, addr);
2069 if (unlikely(map_chg > map_commit)) {
33039678
MK
2070 /*
2071 * The page was added to the reservation map between
2072 * vma_needs_reservation and vma_commit_reservation.
2073 * This indicates a race with hugetlb_reserve_pages.
2074 * Adjust for the subpool count incremented above AND
2075 * in hugetlb_reserve_pages for the same page. Also,
2076 * the reservation count added in hugetlb_reserve_pages
2077 * no longer applies.
2078 */
2079 long rsv_adjust;
2080
2081 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2082 hugetlb_acct_memory(h, -rsv_adjust);
2083 }
90d8b7e6 2084 return page;
8f34af6f
JZ
2085
2086out_uncharge_cgroup:
2087 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2088out_subpool_put:
d85f69b0 2089 if (map_chg || avoid_reserve)
8f34af6f 2090 hugepage_subpool_put_pages(spool, 1);
feba16e2 2091 vma_end_reservation(h, vma, addr);
8f34af6f 2092 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2093}
2094
e24a1307
AK
2095int alloc_bootmem_huge_page(struct hstate *h)
2096 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2097int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2098{
2099 struct huge_bootmem_page *m;
b2261026 2100 int nr_nodes, node;
aa888a74 2101
b2261026 2102 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2103 void *addr;
2104
eb31d559 2105 addr = memblock_alloc_try_nid_raw(
8b89a116 2106 huge_page_size(h), huge_page_size(h),
97ad1087 2107 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2108 if (addr) {
2109 /*
2110 * Use the beginning of the huge page to store the
2111 * huge_bootmem_page struct (until gather_bootmem
2112 * puts them into the mem_map).
2113 */
2114 m = addr;
91f47662 2115 goto found;
aa888a74 2116 }
aa888a74
AK
2117 }
2118 return 0;
2119
2120found:
df994ead 2121 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2122 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2123 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2124 list_add(&m->list, &huge_boot_pages);
2125 m->hstate = h;
2126 return 1;
2127}
2128
d00181b9
KS
2129static void __init prep_compound_huge_page(struct page *page,
2130 unsigned int order)
18229df5
AW
2131{
2132 if (unlikely(order > (MAX_ORDER - 1)))
2133 prep_compound_gigantic_page(page, order);
2134 else
2135 prep_compound_page(page, order);
2136}
2137
aa888a74
AK
2138/* Put bootmem huge pages into the standard lists after mem_map is up */
2139static void __init gather_bootmem_prealloc(void)
2140{
2141 struct huge_bootmem_page *m;
2142
2143 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2144 struct page *page = virt_to_page(m);
aa888a74 2145 struct hstate *h = m->hstate;
ee8f248d 2146
aa888a74 2147 WARN_ON(page_count(page) != 1);
18229df5 2148 prep_compound_huge_page(page, h->order);
ef5a22be 2149 WARN_ON(PageReserved(page));
aa888a74 2150 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2151 put_page(page); /* free it into the hugepage allocator */
2152
b0320c7b
RA
2153 /*
2154 * If we had gigantic hugepages allocated at boot time, we need
2155 * to restore the 'stolen' pages to totalram_pages in order to
2156 * fix confusing memory reports from free(1) and another
2157 * side-effects, like CommitLimit going negative.
2158 */
bae7f4ae 2159 if (hstate_is_gigantic(h))
3dcc0571 2160 adjust_managed_page_count(page, 1 << h->order);
520495fe 2161 cond_resched();
aa888a74
AK
2162 }
2163}
2164
8faa8b07 2165static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2166{
2167 unsigned long i;
f60858f9
MK
2168 nodemask_t *node_alloc_noretry;
2169
2170 if (!hstate_is_gigantic(h)) {
2171 /*
2172 * Bit mask controlling how hard we retry per-node allocations.
2173 * Ignore errors as lower level routines can deal with
2174 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2175 * time, we are likely in bigger trouble.
2176 */
2177 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2178 GFP_KERNEL);
2179 } else {
2180 /* allocations done at boot time */
2181 node_alloc_noretry = NULL;
2182 }
2183
2184 /* bit mask controlling how hard we retry per-node allocations */
2185 if (node_alloc_noretry)
2186 nodes_clear(*node_alloc_noretry);
a5516438 2187
e5ff2159 2188 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2189 if (hstate_is_gigantic(h)) {
aa888a74
AK
2190 if (!alloc_bootmem_huge_page(h))
2191 break;
0c397dae 2192 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2193 &node_states[N_MEMORY],
2194 node_alloc_noretry))
1da177e4 2195 break;
69ed779a 2196 cond_resched();
1da177e4 2197 }
d715cf80
LH
2198 if (i < h->max_huge_pages) {
2199 char buf[32];
2200
c6247f72 2201 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2202 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2203 h->max_huge_pages, buf, i);
2204 h->max_huge_pages = i;
2205 }
f60858f9
MK
2206
2207 kfree(node_alloc_noretry);
e5ff2159
AK
2208}
2209
2210static void __init hugetlb_init_hstates(void)
2211{
2212 struct hstate *h;
2213
2214 for_each_hstate(h) {
641844f5
NH
2215 if (minimum_order > huge_page_order(h))
2216 minimum_order = huge_page_order(h);
2217
8faa8b07 2218 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2219 if (!hstate_is_gigantic(h))
8faa8b07 2220 hugetlb_hstate_alloc_pages(h);
e5ff2159 2221 }
641844f5 2222 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2223}
2224
2225static void __init report_hugepages(void)
2226{
2227 struct hstate *h;
2228
2229 for_each_hstate(h) {
4abd32db 2230 char buf[32];
c6247f72
MW
2231
2232 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2233 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2234 buf, h->free_huge_pages);
e5ff2159
AK
2235 }
2236}
2237
1da177e4 2238#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2239static void try_to_free_low(struct hstate *h, unsigned long count,
2240 nodemask_t *nodes_allowed)
1da177e4 2241{
4415cc8d
CL
2242 int i;
2243
bae7f4ae 2244 if (hstate_is_gigantic(h))
aa888a74
AK
2245 return;
2246
6ae11b27 2247 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2248 struct page *page, *next;
a5516438
AK
2249 struct list_head *freel = &h->hugepage_freelists[i];
2250 list_for_each_entry_safe(page, next, freel, lru) {
2251 if (count >= h->nr_huge_pages)
6b0c880d 2252 return;
1da177e4
LT
2253 if (PageHighMem(page))
2254 continue;
2255 list_del(&page->lru);
e5ff2159 2256 update_and_free_page(h, page);
a5516438
AK
2257 h->free_huge_pages--;
2258 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2259 }
2260 }
2261}
2262#else
6ae11b27
LS
2263static inline void try_to_free_low(struct hstate *h, unsigned long count,
2264 nodemask_t *nodes_allowed)
1da177e4
LT
2265{
2266}
2267#endif
2268
20a0307c
WF
2269/*
2270 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2271 * balanced by operating on them in a round-robin fashion.
2272 * Returns 1 if an adjustment was made.
2273 */
6ae11b27
LS
2274static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2275 int delta)
20a0307c 2276{
b2261026 2277 int nr_nodes, node;
20a0307c
WF
2278
2279 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2280
b2261026
JK
2281 if (delta < 0) {
2282 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2283 if (h->surplus_huge_pages_node[node])
2284 goto found;
e8c5c824 2285 }
b2261026
JK
2286 } else {
2287 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2288 if (h->surplus_huge_pages_node[node] <
2289 h->nr_huge_pages_node[node])
2290 goto found;
e8c5c824 2291 }
b2261026
JK
2292 }
2293 return 0;
20a0307c 2294
b2261026
JK
2295found:
2296 h->surplus_huge_pages += delta;
2297 h->surplus_huge_pages_node[node] += delta;
2298 return 1;
20a0307c
WF
2299}
2300
a5516438 2301#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2302static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2303 nodemask_t *nodes_allowed)
1da177e4 2304{
7893d1d5 2305 unsigned long min_count, ret;
f60858f9
MK
2306 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2307
2308 /*
2309 * Bit mask controlling how hard we retry per-node allocations.
2310 * If we can not allocate the bit mask, do not attempt to allocate
2311 * the requested huge pages.
2312 */
2313 if (node_alloc_noretry)
2314 nodes_clear(*node_alloc_noretry);
2315 else
2316 return -ENOMEM;
1da177e4 2317
4eb0716e
AG
2318 spin_lock(&hugetlb_lock);
2319
fd875dca
MK
2320 /*
2321 * Check for a node specific request.
2322 * Changing node specific huge page count may require a corresponding
2323 * change to the global count. In any case, the passed node mask
2324 * (nodes_allowed) will restrict alloc/free to the specified node.
2325 */
2326 if (nid != NUMA_NO_NODE) {
2327 unsigned long old_count = count;
2328
2329 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2330 /*
2331 * User may have specified a large count value which caused the
2332 * above calculation to overflow. In this case, they wanted
2333 * to allocate as many huge pages as possible. Set count to
2334 * largest possible value to align with their intention.
2335 */
2336 if (count < old_count)
2337 count = ULONG_MAX;
2338 }
2339
4eb0716e
AG
2340 /*
2341 * Gigantic pages runtime allocation depend on the capability for large
2342 * page range allocation.
2343 * If the system does not provide this feature, return an error when
2344 * the user tries to allocate gigantic pages but let the user free the
2345 * boottime allocated gigantic pages.
2346 */
2347 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2348 if (count > persistent_huge_pages(h)) {
2349 spin_unlock(&hugetlb_lock);
f60858f9 2350 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2351 return -EINVAL;
2352 }
2353 /* Fall through to decrease pool */
2354 }
aa888a74 2355
7893d1d5
AL
2356 /*
2357 * Increase the pool size
2358 * First take pages out of surplus state. Then make up the
2359 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2360 *
0c397dae 2361 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2362 * to convert a surplus huge page to a normal huge page. That is
2363 * not critical, though, it just means the overall size of the
2364 * pool might be one hugepage larger than it needs to be, but
2365 * within all the constraints specified by the sysctls.
7893d1d5 2366 */
a5516438 2367 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2368 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2369 break;
2370 }
2371
a5516438 2372 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2373 /*
2374 * If this allocation races such that we no longer need the
2375 * page, free_huge_page will handle it by freeing the page
2376 * and reducing the surplus.
2377 */
2378 spin_unlock(&hugetlb_lock);
649920c6
JH
2379
2380 /* yield cpu to avoid soft lockup */
2381 cond_resched();
2382
f60858f9
MK
2383 ret = alloc_pool_huge_page(h, nodes_allowed,
2384 node_alloc_noretry);
7893d1d5
AL
2385 spin_lock(&hugetlb_lock);
2386 if (!ret)
2387 goto out;
2388
536240f2
MG
2389 /* Bail for signals. Probably ctrl-c from user */
2390 if (signal_pending(current))
2391 goto out;
7893d1d5 2392 }
7893d1d5
AL
2393
2394 /*
2395 * Decrease the pool size
2396 * First return free pages to the buddy allocator (being careful
2397 * to keep enough around to satisfy reservations). Then place
2398 * pages into surplus state as needed so the pool will shrink
2399 * to the desired size as pages become free.
d1c3fb1f
NA
2400 *
2401 * By placing pages into the surplus state independent of the
2402 * overcommit value, we are allowing the surplus pool size to
2403 * exceed overcommit. There are few sane options here. Since
0c397dae 2404 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2405 * though, we'll note that we're not allowed to exceed surplus
2406 * and won't grow the pool anywhere else. Not until one of the
2407 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2408 */
a5516438 2409 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2410 min_count = max(count, min_count);
6ae11b27 2411 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2412 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2413 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2414 break;
55f67141 2415 cond_resched_lock(&hugetlb_lock);
1da177e4 2416 }
a5516438 2417 while (count < persistent_huge_pages(h)) {
6ae11b27 2418 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2419 break;
2420 }
2421out:
4eb0716e 2422 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2423 spin_unlock(&hugetlb_lock);
4eb0716e 2424
f60858f9
MK
2425 NODEMASK_FREE(node_alloc_noretry);
2426
4eb0716e 2427 return 0;
1da177e4
LT
2428}
2429
a3437870
NA
2430#define HSTATE_ATTR_RO(_name) \
2431 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2432
2433#define HSTATE_ATTR(_name) \
2434 static struct kobj_attribute _name##_attr = \
2435 __ATTR(_name, 0644, _name##_show, _name##_store)
2436
2437static struct kobject *hugepages_kobj;
2438static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2439
9a305230
LS
2440static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2441
2442static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2443{
2444 int i;
9a305230 2445
a3437870 2446 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2447 if (hstate_kobjs[i] == kobj) {
2448 if (nidp)
2449 *nidp = NUMA_NO_NODE;
a3437870 2450 return &hstates[i];
9a305230
LS
2451 }
2452
2453 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2454}
2455
06808b08 2456static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2457 struct kobj_attribute *attr, char *buf)
2458{
9a305230
LS
2459 struct hstate *h;
2460 unsigned long nr_huge_pages;
2461 int nid;
2462
2463 h = kobj_to_hstate(kobj, &nid);
2464 if (nid == NUMA_NO_NODE)
2465 nr_huge_pages = h->nr_huge_pages;
2466 else
2467 nr_huge_pages = h->nr_huge_pages_node[nid];
2468
2469 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2470}
adbe8726 2471
238d3c13
DR
2472static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2473 struct hstate *h, int nid,
2474 unsigned long count, size_t len)
a3437870
NA
2475{
2476 int err;
2d0adf7e 2477 nodemask_t nodes_allowed, *n_mask;
a3437870 2478
2d0adf7e
OS
2479 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2480 return -EINVAL;
adbe8726 2481
9a305230
LS
2482 if (nid == NUMA_NO_NODE) {
2483 /*
2484 * global hstate attribute
2485 */
2486 if (!(obey_mempolicy &&
2d0adf7e
OS
2487 init_nodemask_of_mempolicy(&nodes_allowed)))
2488 n_mask = &node_states[N_MEMORY];
2489 else
2490 n_mask = &nodes_allowed;
2491 } else {
9a305230 2492 /*
fd875dca
MK
2493 * Node specific request. count adjustment happens in
2494 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2495 */
2d0adf7e
OS
2496 init_nodemask_of_node(&nodes_allowed, nid);
2497 n_mask = &nodes_allowed;
fd875dca 2498 }
9a305230 2499
2d0adf7e 2500 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2501
4eb0716e 2502 return err ? err : len;
06808b08
LS
2503}
2504
238d3c13
DR
2505static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2506 struct kobject *kobj, const char *buf,
2507 size_t len)
2508{
2509 struct hstate *h;
2510 unsigned long count;
2511 int nid;
2512 int err;
2513
2514 err = kstrtoul(buf, 10, &count);
2515 if (err)
2516 return err;
2517
2518 h = kobj_to_hstate(kobj, &nid);
2519 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2520}
2521
06808b08
LS
2522static ssize_t nr_hugepages_show(struct kobject *kobj,
2523 struct kobj_attribute *attr, char *buf)
2524{
2525 return nr_hugepages_show_common(kobj, attr, buf);
2526}
2527
2528static ssize_t nr_hugepages_store(struct kobject *kobj,
2529 struct kobj_attribute *attr, const char *buf, size_t len)
2530{
238d3c13 2531 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2532}
2533HSTATE_ATTR(nr_hugepages);
2534
06808b08
LS
2535#ifdef CONFIG_NUMA
2536
2537/*
2538 * hstate attribute for optionally mempolicy-based constraint on persistent
2539 * huge page alloc/free.
2540 */
2541static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2542 struct kobj_attribute *attr, char *buf)
2543{
2544 return nr_hugepages_show_common(kobj, attr, buf);
2545}
2546
2547static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2548 struct kobj_attribute *attr, const char *buf, size_t len)
2549{
238d3c13 2550 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2551}
2552HSTATE_ATTR(nr_hugepages_mempolicy);
2553#endif
2554
2555
a3437870
NA
2556static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2557 struct kobj_attribute *attr, char *buf)
2558{
9a305230 2559 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2560 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2561}
adbe8726 2562
a3437870
NA
2563static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2564 struct kobj_attribute *attr, const char *buf, size_t count)
2565{
2566 int err;
2567 unsigned long input;
9a305230 2568 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2569
bae7f4ae 2570 if (hstate_is_gigantic(h))
adbe8726
EM
2571 return -EINVAL;
2572
3dbb95f7 2573 err = kstrtoul(buf, 10, &input);
a3437870 2574 if (err)
73ae31e5 2575 return err;
a3437870
NA
2576
2577 spin_lock(&hugetlb_lock);
2578 h->nr_overcommit_huge_pages = input;
2579 spin_unlock(&hugetlb_lock);
2580
2581 return count;
2582}
2583HSTATE_ATTR(nr_overcommit_hugepages);
2584
2585static ssize_t free_hugepages_show(struct kobject *kobj,
2586 struct kobj_attribute *attr, char *buf)
2587{
9a305230
LS
2588 struct hstate *h;
2589 unsigned long free_huge_pages;
2590 int nid;
2591
2592 h = kobj_to_hstate(kobj, &nid);
2593 if (nid == NUMA_NO_NODE)
2594 free_huge_pages = h->free_huge_pages;
2595 else
2596 free_huge_pages = h->free_huge_pages_node[nid];
2597
2598 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2599}
2600HSTATE_ATTR_RO(free_hugepages);
2601
2602static ssize_t resv_hugepages_show(struct kobject *kobj,
2603 struct kobj_attribute *attr, char *buf)
2604{
9a305230 2605 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2606 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2607}
2608HSTATE_ATTR_RO(resv_hugepages);
2609
2610static ssize_t surplus_hugepages_show(struct kobject *kobj,
2611 struct kobj_attribute *attr, char *buf)
2612{
9a305230
LS
2613 struct hstate *h;
2614 unsigned long surplus_huge_pages;
2615 int nid;
2616
2617 h = kobj_to_hstate(kobj, &nid);
2618 if (nid == NUMA_NO_NODE)
2619 surplus_huge_pages = h->surplus_huge_pages;
2620 else
2621 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2622
2623 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2624}
2625HSTATE_ATTR_RO(surplus_hugepages);
2626
2627static struct attribute *hstate_attrs[] = {
2628 &nr_hugepages_attr.attr,
2629 &nr_overcommit_hugepages_attr.attr,
2630 &free_hugepages_attr.attr,
2631 &resv_hugepages_attr.attr,
2632 &surplus_hugepages_attr.attr,
06808b08
LS
2633#ifdef CONFIG_NUMA
2634 &nr_hugepages_mempolicy_attr.attr,
2635#endif
a3437870
NA
2636 NULL,
2637};
2638
67e5ed96 2639static const struct attribute_group hstate_attr_group = {
a3437870
NA
2640 .attrs = hstate_attrs,
2641};
2642
094e9539
JM
2643static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2644 struct kobject **hstate_kobjs,
67e5ed96 2645 const struct attribute_group *hstate_attr_group)
a3437870
NA
2646{
2647 int retval;
972dc4de 2648 int hi = hstate_index(h);
a3437870 2649
9a305230
LS
2650 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2651 if (!hstate_kobjs[hi])
a3437870
NA
2652 return -ENOMEM;
2653
9a305230 2654 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2655 if (retval)
9a305230 2656 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2657
2658 return retval;
2659}
2660
2661static void __init hugetlb_sysfs_init(void)
2662{
2663 struct hstate *h;
2664 int err;
2665
2666 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2667 if (!hugepages_kobj)
2668 return;
2669
2670 for_each_hstate(h) {
9a305230
LS
2671 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2672 hstate_kobjs, &hstate_attr_group);
a3437870 2673 if (err)
ffb22af5 2674 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2675 }
2676}
2677
9a305230
LS
2678#ifdef CONFIG_NUMA
2679
2680/*
2681 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2682 * with node devices in node_devices[] using a parallel array. The array
2683 * index of a node device or _hstate == node id.
2684 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2685 * the base kernel, on the hugetlb module.
2686 */
2687struct node_hstate {
2688 struct kobject *hugepages_kobj;
2689 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2690};
b4e289a6 2691static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2692
2693/*
10fbcf4c 2694 * A subset of global hstate attributes for node devices
9a305230
LS
2695 */
2696static struct attribute *per_node_hstate_attrs[] = {
2697 &nr_hugepages_attr.attr,
2698 &free_hugepages_attr.attr,
2699 &surplus_hugepages_attr.attr,
2700 NULL,
2701};
2702
67e5ed96 2703static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2704 .attrs = per_node_hstate_attrs,
2705};
2706
2707/*
10fbcf4c 2708 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2709 * Returns node id via non-NULL nidp.
2710 */
2711static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2712{
2713 int nid;
2714
2715 for (nid = 0; nid < nr_node_ids; nid++) {
2716 struct node_hstate *nhs = &node_hstates[nid];
2717 int i;
2718 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2719 if (nhs->hstate_kobjs[i] == kobj) {
2720 if (nidp)
2721 *nidp = nid;
2722 return &hstates[i];
2723 }
2724 }
2725
2726 BUG();
2727 return NULL;
2728}
2729
2730/*
10fbcf4c 2731 * Unregister hstate attributes from a single node device.
9a305230
LS
2732 * No-op if no hstate attributes attached.
2733 */
3cd8b44f 2734static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2735{
2736 struct hstate *h;
10fbcf4c 2737 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2738
2739 if (!nhs->hugepages_kobj)
9b5e5d0f 2740 return; /* no hstate attributes */
9a305230 2741
972dc4de
AK
2742 for_each_hstate(h) {
2743 int idx = hstate_index(h);
2744 if (nhs->hstate_kobjs[idx]) {
2745 kobject_put(nhs->hstate_kobjs[idx]);
2746 nhs->hstate_kobjs[idx] = NULL;
9a305230 2747 }
972dc4de 2748 }
9a305230
LS
2749
2750 kobject_put(nhs->hugepages_kobj);
2751 nhs->hugepages_kobj = NULL;
2752}
2753
9a305230
LS
2754
2755/*
10fbcf4c 2756 * Register hstate attributes for a single node device.
9a305230
LS
2757 * No-op if attributes already registered.
2758 */
3cd8b44f 2759static void hugetlb_register_node(struct node *node)
9a305230
LS
2760{
2761 struct hstate *h;
10fbcf4c 2762 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2763 int err;
2764
2765 if (nhs->hugepages_kobj)
2766 return; /* already allocated */
2767
2768 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2769 &node->dev.kobj);
9a305230
LS
2770 if (!nhs->hugepages_kobj)
2771 return;
2772
2773 for_each_hstate(h) {
2774 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2775 nhs->hstate_kobjs,
2776 &per_node_hstate_attr_group);
2777 if (err) {
ffb22af5
AM
2778 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2779 h->name, node->dev.id);
9a305230
LS
2780 hugetlb_unregister_node(node);
2781 break;
2782 }
2783 }
2784}
2785
2786/*
9b5e5d0f 2787 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2788 * devices of nodes that have memory. All on-line nodes should have
2789 * registered their associated device by this time.
9a305230 2790 */
7d9ca000 2791static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2792{
2793 int nid;
2794
8cebfcd0 2795 for_each_node_state(nid, N_MEMORY) {
8732794b 2796 struct node *node = node_devices[nid];
10fbcf4c 2797 if (node->dev.id == nid)
9a305230
LS
2798 hugetlb_register_node(node);
2799 }
2800
2801 /*
10fbcf4c 2802 * Let the node device driver know we're here so it can
9a305230
LS
2803 * [un]register hstate attributes on node hotplug.
2804 */
2805 register_hugetlbfs_with_node(hugetlb_register_node,
2806 hugetlb_unregister_node);
2807}
2808#else /* !CONFIG_NUMA */
2809
2810static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2811{
2812 BUG();
2813 if (nidp)
2814 *nidp = -1;
2815 return NULL;
2816}
2817
9a305230
LS
2818static void hugetlb_register_all_nodes(void) { }
2819
2820#endif
2821
a3437870
NA
2822static int __init hugetlb_init(void)
2823{
8382d914
DB
2824 int i;
2825
457c1b27 2826 if (!hugepages_supported())
0ef89d25 2827 return 0;
a3437870 2828
e11bfbfc 2829 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2830 if (default_hstate_size != 0) {
2831 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2832 default_hstate_size, HPAGE_SIZE);
2833 }
2834
e11bfbfc
NP
2835 default_hstate_size = HPAGE_SIZE;
2836 if (!size_to_hstate(default_hstate_size))
2837 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2838 }
972dc4de 2839 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2840 if (default_hstate_max_huge_pages) {
2841 if (!default_hstate.max_huge_pages)
2842 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2843 }
a3437870
NA
2844
2845 hugetlb_init_hstates();
aa888a74 2846 gather_bootmem_prealloc();
a3437870
NA
2847 report_hugepages();
2848
2849 hugetlb_sysfs_init();
9a305230 2850 hugetlb_register_all_nodes();
7179e7bf 2851 hugetlb_cgroup_file_init();
9a305230 2852
8382d914
DB
2853#ifdef CONFIG_SMP
2854 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2855#else
2856 num_fault_mutexes = 1;
2857#endif
c672c7f2 2858 hugetlb_fault_mutex_table =
6da2ec56
KC
2859 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2860 GFP_KERNEL);
c672c7f2 2861 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2862
2863 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2864 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2865 return 0;
2866}
3e89e1c5 2867subsys_initcall(hugetlb_init);
a3437870
NA
2868
2869/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2870void __init hugetlb_bad_size(void)
2871{
2872 parsed_valid_hugepagesz = false;
2873}
2874
d00181b9 2875void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2876{
2877 struct hstate *h;
8faa8b07
AK
2878 unsigned long i;
2879
a3437870 2880 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2881 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2882 return;
2883 }
47d38344 2884 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2885 BUG_ON(order == 0);
47d38344 2886 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2887 h->order = order;
2888 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2889 h->nr_huge_pages = 0;
2890 h->free_huge_pages = 0;
2891 for (i = 0; i < MAX_NUMNODES; ++i)
2892 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2893 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2894 h->next_nid_to_alloc = first_memory_node;
2895 h->next_nid_to_free = first_memory_node;
a3437870
NA
2896 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2897 huge_page_size(h)/1024);
8faa8b07 2898
a3437870
NA
2899 parsed_hstate = h;
2900}
2901
e11bfbfc 2902static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2903{
2904 unsigned long *mhp;
8faa8b07 2905 static unsigned long *last_mhp;
a3437870 2906
9fee021d
VT
2907 if (!parsed_valid_hugepagesz) {
2908 pr_warn("hugepages = %s preceded by "
2909 "an unsupported hugepagesz, ignoring\n", s);
2910 parsed_valid_hugepagesz = true;
2911 return 1;
2912 }
a3437870 2913 /*
47d38344 2914 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2915 * so this hugepages= parameter goes to the "default hstate".
2916 */
9fee021d 2917 else if (!hugetlb_max_hstate)
a3437870
NA
2918 mhp = &default_hstate_max_huge_pages;
2919 else
2920 mhp = &parsed_hstate->max_huge_pages;
2921
8faa8b07 2922 if (mhp == last_mhp) {
598d8091 2923 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2924 return 1;
2925 }
2926
a3437870
NA
2927 if (sscanf(s, "%lu", mhp) <= 0)
2928 *mhp = 0;
2929
8faa8b07
AK
2930 /*
2931 * Global state is always initialized later in hugetlb_init.
2932 * But we need to allocate >= MAX_ORDER hstates here early to still
2933 * use the bootmem allocator.
2934 */
47d38344 2935 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2936 hugetlb_hstate_alloc_pages(parsed_hstate);
2937
2938 last_mhp = mhp;
2939
a3437870
NA
2940 return 1;
2941}
e11bfbfc
NP
2942__setup("hugepages=", hugetlb_nrpages_setup);
2943
2944static int __init hugetlb_default_setup(char *s)
2945{
2946 default_hstate_size = memparse(s, &s);
2947 return 1;
2948}
2949__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2950
8a213460
NA
2951static unsigned int cpuset_mems_nr(unsigned int *array)
2952{
2953 int node;
2954 unsigned int nr = 0;
2955
2956 for_each_node_mask(node, cpuset_current_mems_allowed)
2957 nr += array[node];
2958
2959 return nr;
2960}
2961
2962#ifdef CONFIG_SYSCTL
06808b08
LS
2963static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2964 struct ctl_table *table, int write,
2965 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2966{
e5ff2159 2967 struct hstate *h = &default_hstate;
238d3c13 2968 unsigned long tmp = h->max_huge_pages;
08d4a246 2969 int ret;
e5ff2159 2970
457c1b27 2971 if (!hugepages_supported())
86613628 2972 return -EOPNOTSUPP;
457c1b27 2973
e5ff2159
AK
2974 table->data = &tmp;
2975 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2976 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2977 if (ret)
2978 goto out;
e5ff2159 2979
238d3c13
DR
2980 if (write)
2981 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2982 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2983out:
2984 return ret;
1da177e4 2985}
396faf03 2986
06808b08
LS
2987int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2988 void __user *buffer, size_t *length, loff_t *ppos)
2989{
2990
2991 return hugetlb_sysctl_handler_common(false, table, write,
2992 buffer, length, ppos);
2993}
2994
2995#ifdef CONFIG_NUMA
2996int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2997 void __user *buffer, size_t *length, loff_t *ppos)
2998{
2999 return hugetlb_sysctl_handler_common(true, table, write,
3000 buffer, length, ppos);
3001}
3002#endif /* CONFIG_NUMA */
3003
a3d0c6aa 3004int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 3005 void __user *buffer,
a3d0c6aa
NA
3006 size_t *length, loff_t *ppos)
3007{
a5516438 3008 struct hstate *h = &default_hstate;
e5ff2159 3009 unsigned long tmp;
08d4a246 3010 int ret;
e5ff2159 3011
457c1b27 3012 if (!hugepages_supported())
86613628 3013 return -EOPNOTSUPP;
457c1b27 3014
c033a93c 3015 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3016
bae7f4ae 3017 if (write && hstate_is_gigantic(h))
adbe8726
EM
3018 return -EINVAL;
3019
e5ff2159
AK
3020 table->data = &tmp;
3021 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3022 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3023 if (ret)
3024 goto out;
e5ff2159
AK
3025
3026 if (write) {
3027 spin_lock(&hugetlb_lock);
3028 h->nr_overcommit_huge_pages = tmp;
3029 spin_unlock(&hugetlb_lock);
3030 }
08d4a246
MH
3031out:
3032 return ret;
a3d0c6aa
NA
3033}
3034
1da177e4
LT
3035#endif /* CONFIG_SYSCTL */
3036
e1759c21 3037void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3038{
fcb2b0c5
RG
3039 struct hstate *h;
3040 unsigned long total = 0;
3041
457c1b27
NA
3042 if (!hugepages_supported())
3043 return;
fcb2b0c5
RG
3044
3045 for_each_hstate(h) {
3046 unsigned long count = h->nr_huge_pages;
3047
3048 total += (PAGE_SIZE << huge_page_order(h)) * count;
3049
3050 if (h == &default_hstate)
3051 seq_printf(m,
3052 "HugePages_Total: %5lu\n"
3053 "HugePages_Free: %5lu\n"
3054 "HugePages_Rsvd: %5lu\n"
3055 "HugePages_Surp: %5lu\n"
3056 "Hugepagesize: %8lu kB\n",
3057 count,
3058 h->free_huge_pages,
3059 h->resv_huge_pages,
3060 h->surplus_huge_pages,
3061 (PAGE_SIZE << huge_page_order(h)) / 1024);
3062 }
3063
3064 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3065}
3066
3067int hugetlb_report_node_meminfo(int nid, char *buf)
3068{
a5516438 3069 struct hstate *h = &default_hstate;
457c1b27
NA
3070 if (!hugepages_supported())
3071 return 0;
1da177e4
LT
3072 return sprintf(buf,
3073 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3074 "Node %d HugePages_Free: %5u\n"
3075 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3076 nid, h->nr_huge_pages_node[nid],
3077 nid, h->free_huge_pages_node[nid],
3078 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3079}
3080
949f7ec5
DR
3081void hugetlb_show_meminfo(void)
3082{
3083 struct hstate *h;
3084 int nid;
3085
457c1b27
NA
3086 if (!hugepages_supported())
3087 return;
3088
949f7ec5
DR
3089 for_each_node_state(nid, N_MEMORY)
3090 for_each_hstate(h)
3091 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3092 nid,
3093 h->nr_huge_pages_node[nid],
3094 h->free_huge_pages_node[nid],
3095 h->surplus_huge_pages_node[nid],
3096 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3097}
3098
5d317b2b
NH
3099void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3100{
3101 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3102 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3103}
3104
1da177e4
LT
3105/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3106unsigned long hugetlb_total_pages(void)
3107{
d0028588
WL
3108 struct hstate *h;
3109 unsigned long nr_total_pages = 0;
3110
3111 for_each_hstate(h)
3112 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3113 return nr_total_pages;
1da177e4 3114}
1da177e4 3115
a5516438 3116static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3117{
3118 int ret = -ENOMEM;
3119
3120 spin_lock(&hugetlb_lock);
3121 /*
3122 * When cpuset is configured, it breaks the strict hugetlb page
3123 * reservation as the accounting is done on a global variable. Such
3124 * reservation is completely rubbish in the presence of cpuset because
3125 * the reservation is not checked against page availability for the
3126 * current cpuset. Application can still potentially OOM'ed by kernel
3127 * with lack of free htlb page in cpuset that the task is in.
3128 * Attempt to enforce strict accounting with cpuset is almost
3129 * impossible (or too ugly) because cpuset is too fluid that
3130 * task or memory node can be dynamically moved between cpusets.
3131 *
3132 * The change of semantics for shared hugetlb mapping with cpuset is
3133 * undesirable. However, in order to preserve some of the semantics,
3134 * we fall back to check against current free page availability as
3135 * a best attempt and hopefully to minimize the impact of changing
3136 * semantics that cpuset has.
3137 */
3138 if (delta > 0) {
a5516438 3139 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3140 goto out;
3141
a5516438
AK
3142 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3143 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3144 goto out;
3145 }
3146 }
3147
3148 ret = 0;
3149 if (delta < 0)
a5516438 3150 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3151
3152out:
3153 spin_unlock(&hugetlb_lock);
3154 return ret;
3155}
3156
84afd99b
AW
3157static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3158{
f522c3ac 3159 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3160
3161 /*
3162 * This new VMA should share its siblings reservation map if present.
3163 * The VMA will only ever have a valid reservation map pointer where
3164 * it is being copied for another still existing VMA. As that VMA
25985edc 3165 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3166 * after this open call completes. It is therefore safe to take a
3167 * new reference here without additional locking.
3168 */
4e35f483 3169 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3170 kref_get(&resv->refs);
84afd99b
AW
3171}
3172
a1e78772
MG
3173static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3174{
a5516438 3175 struct hstate *h = hstate_vma(vma);
f522c3ac 3176 struct resv_map *resv = vma_resv_map(vma);
90481622 3177 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3178 unsigned long reserve, start, end;
1c5ecae3 3179 long gbl_reserve;
84afd99b 3180
4e35f483
JK
3181 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3182 return;
84afd99b 3183
4e35f483
JK
3184 start = vma_hugecache_offset(h, vma, vma->vm_start);
3185 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3186
4e35f483 3187 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3188
4e35f483
JK
3189 kref_put(&resv->refs, resv_map_release);
3190
3191 if (reserve) {
1c5ecae3
MK
3192 /*
3193 * Decrement reserve counts. The global reserve count may be
3194 * adjusted if the subpool has a minimum size.
3195 */
3196 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3197 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3198 }
a1e78772
MG
3199}
3200
31383c68
DW
3201static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3202{
3203 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3204 return -EINVAL;
3205 return 0;
3206}
3207
05ea8860
DW
3208static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3209{
3210 struct hstate *hstate = hstate_vma(vma);
3211
3212 return 1UL << huge_page_shift(hstate);
3213}
3214
1da177e4
LT
3215/*
3216 * We cannot handle pagefaults against hugetlb pages at all. They cause
3217 * handle_mm_fault() to try to instantiate regular-sized pages in the
3218 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3219 * this far.
3220 */
b3ec9f33 3221static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3222{
3223 BUG();
d0217ac0 3224 return 0;
1da177e4
LT
3225}
3226
eec3636a
JC
3227/*
3228 * When a new function is introduced to vm_operations_struct and added
3229 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3230 * This is because under System V memory model, mappings created via
3231 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3232 * their original vm_ops are overwritten with shm_vm_ops.
3233 */
f0f37e2f 3234const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3235 .fault = hugetlb_vm_op_fault,
84afd99b 3236 .open = hugetlb_vm_op_open,
a1e78772 3237 .close = hugetlb_vm_op_close,
31383c68 3238 .split = hugetlb_vm_op_split,
05ea8860 3239 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3240};
3241
1e8f889b
DG
3242static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3243 int writable)
63551ae0
DG
3244{
3245 pte_t entry;
3246
1e8f889b 3247 if (writable) {
106c992a
GS
3248 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3249 vma->vm_page_prot)));
63551ae0 3250 } else {
106c992a
GS
3251 entry = huge_pte_wrprotect(mk_huge_pte(page,
3252 vma->vm_page_prot));
63551ae0
DG
3253 }
3254 entry = pte_mkyoung(entry);
3255 entry = pte_mkhuge(entry);
d9ed9faa 3256 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3257
3258 return entry;
3259}
3260
1e8f889b
DG
3261static void set_huge_ptep_writable(struct vm_area_struct *vma,
3262 unsigned long address, pte_t *ptep)
3263{
3264 pte_t entry;
3265
106c992a 3266 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3267 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3268 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3269}
3270
d5ed7444 3271bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3272{
3273 swp_entry_t swp;
3274
3275 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3276 return false;
4a705fef
NH
3277 swp = pte_to_swp_entry(pte);
3278 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3279 return true;
4a705fef 3280 else
d5ed7444 3281 return false;
4a705fef
NH
3282}
3283
3284static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3285{
3286 swp_entry_t swp;
3287
3288 if (huge_pte_none(pte) || pte_present(pte))
3289 return 0;
3290 swp = pte_to_swp_entry(pte);
3291 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3292 return 1;
3293 else
3294 return 0;
3295}
1e8f889b 3296
63551ae0
DG
3297int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3298 struct vm_area_struct *vma)
3299{
5e41540c 3300 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3301 struct page *ptepage;
1c59827d 3302 unsigned long addr;
1e8f889b 3303 int cow;
a5516438
AK
3304 struct hstate *h = hstate_vma(vma);
3305 unsigned long sz = huge_page_size(h);
ac46d4f3 3306 struct mmu_notifier_range range;
e8569dd2 3307 int ret = 0;
1e8f889b
DG
3308
3309 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3310
ac46d4f3 3311 if (cow) {
7269f999 3312 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3313 vma->vm_start,
ac46d4f3
JG
3314 vma->vm_end);
3315 mmu_notifier_invalidate_range_start(&range);
3316 }
e8569dd2 3317
a5516438 3318 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3319 spinlock_t *src_ptl, *dst_ptl;
7868a208 3320 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3321 if (!src_pte)
3322 continue;
a5516438 3323 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3324 if (!dst_pte) {
3325 ret = -ENOMEM;
3326 break;
3327 }
c5c99429 3328
5e41540c
MK
3329 /*
3330 * If the pagetables are shared don't copy or take references.
3331 * dst_pte == src_pte is the common case of src/dest sharing.
3332 *
3333 * However, src could have 'unshared' and dst shares with
3334 * another vma. If dst_pte !none, this implies sharing.
3335 * Check here before taking page table lock, and once again
3336 * after taking the lock below.
3337 */
3338 dst_entry = huge_ptep_get(dst_pte);
3339 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3340 continue;
3341
cb900f41
KS
3342 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3343 src_ptl = huge_pte_lockptr(h, src, src_pte);
3344 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3345 entry = huge_ptep_get(src_pte);
5e41540c
MK
3346 dst_entry = huge_ptep_get(dst_pte);
3347 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3348 /*
3349 * Skip if src entry none. Also, skip in the
3350 * unlikely case dst entry !none as this implies
3351 * sharing with another vma.
3352 */
4a705fef
NH
3353 ;
3354 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3355 is_hugetlb_entry_hwpoisoned(entry))) {
3356 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3357
3358 if (is_write_migration_entry(swp_entry) && cow) {
3359 /*
3360 * COW mappings require pages in both
3361 * parent and child to be set to read.
3362 */
3363 make_migration_entry_read(&swp_entry);
3364 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3365 set_huge_swap_pte_at(src, addr, src_pte,
3366 entry, sz);
4a705fef 3367 }
e5251fd4 3368 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3369 } else {
34ee645e 3370 if (cow) {
0f10851e
JG
3371 /*
3372 * No need to notify as we are downgrading page
3373 * table protection not changing it to point
3374 * to a new page.
3375 *
ad56b738 3376 * See Documentation/vm/mmu_notifier.rst
0f10851e 3377 */
7f2e9525 3378 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3379 }
0253d634 3380 entry = huge_ptep_get(src_pte);
1c59827d
HD
3381 ptepage = pte_page(entry);
3382 get_page(ptepage);
53f9263b 3383 page_dup_rmap(ptepage, true);
1c59827d 3384 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3385 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3386 }
cb900f41
KS
3387 spin_unlock(src_ptl);
3388 spin_unlock(dst_ptl);
63551ae0 3389 }
63551ae0 3390
e8569dd2 3391 if (cow)
ac46d4f3 3392 mmu_notifier_invalidate_range_end(&range);
e8569dd2
AS
3393
3394 return ret;
63551ae0
DG
3395}
3396
24669e58
AK
3397void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3398 unsigned long start, unsigned long end,
3399 struct page *ref_page)
63551ae0
DG
3400{
3401 struct mm_struct *mm = vma->vm_mm;
3402 unsigned long address;
c7546f8f 3403 pte_t *ptep;
63551ae0 3404 pte_t pte;
cb900f41 3405 spinlock_t *ptl;
63551ae0 3406 struct page *page;
a5516438
AK
3407 struct hstate *h = hstate_vma(vma);
3408 unsigned long sz = huge_page_size(h);
ac46d4f3 3409 struct mmu_notifier_range range;
a5516438 3410
63551ae0 3411 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3412 BUG_ON(start & ~huge_page_mask(h));
3413 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3414
07e32661
AK
3415 /*
3416 * This is a hugetlb vma, all the pte entries should point
3417 * to huge page.
3418 */
ed6a7935 3419 tlb_change_page_size(tlb, sz);
24669e58 3420 tlb_start_vma(tlb, vma);
dff11abe
MK
3421
3422 /*
3423 * If sharing possible, alert mmu notifiers of worst case.
3424 */
6f4f13e8
JG
3425 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3426 end);
ac46d4f3
JG
3427 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3428 mmu_notifier_invalidate_range_start(&range);
569f48b8 3429 address = start;
569f48b8 3430 for (; address < end; address += sz) {
7868a208 3431 ptep = huge_pte_offset(mm, address, sz);
4c887265 3432 if (!ptep)
c7546f8f
DG
3433 continue;
3434
cb900f41 3435 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3436 if (huge_pmd_unshare(mm, &address, ptep)) {
3437 spin_unlock(ptl);
dff11abe
MK
3438 /*
3439 * We just unmapped a page of PMDs by clearing a PUD.
3440 * The caller's TLB flush range should cover this area.
3441 */
31d49da5
AK
3442 continue;
3443 }
39dde65c 3444
6629326b 3445 pte = huge_ptep_get(ptep);
31d49da5
AK
3446 if (huge_pte_none(pte)) {
3447 spin_unlock(ptl);
3448 continue;
3449 }
6629326b
HD
3450
3451 /*
9fbc1f63
NH
3452 * Migrating hugepage or HWPoisoned hugepage is already
3453 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3454 */
9fbc1f63 3455 if (unlikely(!pte_present(pte))) {
9386fac3 3456 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3457 spin_unlock(ptl);
3458 continue;
8c4894c6 3459 }
6629326b
HD
3460
3461 page = pte_page(pte);
04f2cbe3
MG
3462 /*
3463 * If a reference page is supplied, it is because a specific
3464 * page is being unmapped, not a range. Ensure the page we
3465 * are about to unmap is the actual page of interest.
3466 */
3467 if (ref_page) {
31d49da5
AK
3468 if (page != ref_page) {
3469 spin_unlock(ptl);
3470 continue;
3471 }
04f2cbe3
MG
3472 /*
3473 * Mark the VMA as having unmapped its page so that
3474 * future faults in this VMA will fail rather than
3475 * looking like data was lost
3476 */
3477 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3478 }
3479
c7546f8f 3480 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3481 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3482 if (huge_pte_dirty(pte))
6649a386 3483 set_page_dirty(page);
9e81130b 3484
5d317b2b 3485 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3486 page_remove_rmap(page, true);
31d49da5 3487
cb900f41 3488 spin_unlock(ptl);
e77b0852 3489 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3490 /*
3491 * Bail out after unmapping reference page if supplied
3492 */
3493 if (ref_page)
3494 break;
fe1668ae 3495 }
ac46d4f3 3496 mmu_notifier_invalidate_range_end(&range);
24669e58 3497 tlb_end_vma(tlb, vma);
1da177e4 3498}
63551ae0 3499
d833352a
MG
3500void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3501 struct vm_area_struct *vma, unsigned long start,
3502 unsigned long end, struct page *ref_page)
3503{
3504 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3505
3506 /*
3507 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3508 * test will fail on a vma being torn down, and not grab a page table
3509 * on its way out. We're lucky that the flag has such an appropriate
3510 * name, and can in fact be safely cleared here. We could clear it
3511 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3512 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3513 * because in the context this is called, the VMA is about to be
c8c06efa 3514 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3515 */
3516 vma->vm_flags &= ~VM_MAYSHARE;
3517}
3518
502717f4 3519void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3520 unsigned long end, struct page *ref_page)
502717f4 3521{
24669e58
AK
3522 struct mm_struct *mm;
3523 struct mmu_gather tlb;
dff11abe
MK
3524 unsigned long tlb_start = start;
3525 unsigned long tlb_end = end;
3526
3527 /*
3528 * If shared PMDs were possibly used within this vma range, adjust
3529 * start/end for worst case tlb flushing.
3530 * Note that we can not be sure if PMDs are shared until we try to
3531 * unmap pages. However, we want to make sure TLB flushing covers
3532 * the largest possible range.
3533 */
3534 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
3535
3536 mm = vma->vm_mm;
3537
dff11abe 3538 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 3539 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 3540 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
KC
3541}
3542
04f2cbe3
MG
3543/*
3544 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3545 * mappping it owns the reserve page for. The intention is to unmap the page
3546 * from other VMAs and let the children be SIGKILLed if they are faulting the
3547 * same region.
3548 */
2f4612af
DB
3549static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3550 struct page *page, unsigned long address)
04f2cbe3 3551{
7526674d 3552 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3553 struct vm_area_struct *iter_vma;
3554 struct address_space *mapping;
04f2cbe3
MG
3555 pgoff_t pgoff;
3556
3557 /*
3558 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3559 * from page cache lookup which is in HPAGE_SIZE units.
3560 */
7526674d 3561 address = address & huge_page_mask(h);
36e4f20a
MH
3562 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3563 vma->vm_pgoff;
93c76a3d 3564 mapping = vma->vm_file->f_mapping;
04f2cbe3 3565
4eb2b1dc
MG
3566 /*
3567 * Take the mapping lock for the duration of the table walk. As
3568 * this mapping should be shared between all the VMAs,
3569 * __unmap_hugepage_range() is called as the lock is already held
3570 */
83cde9e8 3571 i_mmap_lock_write(mapping);
6b2dbba8 3572 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3573 /* Do not unmap the current VMA */
3574 if (iter_vma == vma)
3575 continue;
3576
2f84a899
MG
3577 /*
3578 * Shared VMAs have their own reserves and do not affect
3579 * MAP_PRIVATE accounting but it is possible that a shared
3580 * VMA is using the same page so check and skip such VMAs.
3581 */
3582 if (iter_vma->vm_flags & VM_MAYSHARE)
3583 continue;
3584
04f2cbe3
MG
3585 /*
3586 * Unmap the page from other VMAs without their own reserves.
3587 * They get marked to be SIGKILLed if they fault in these
3588 * areas. This is because a future no-page fault on this VMA
3589 * could insert a zeroed page instead of the data existing
3590 * from the time of fork. This would look like data corruption
3591 */
3592 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3593 unmap_hugepage_range(iter_vma, address,
3594 address + huge_page_size(h), page);
04f2cbe3 3595 }
83cde9e8 3596 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3597}
3598
0fe6e20b
NH
3599/*
3600 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3601 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3602 * cannot race with other handlers or page migration.
3603 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3604 */
2b740303 3605static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3606 unsigned long address, pte_t *ptep,
3999f52e 3607 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3608{
3999f52e 3609 pte_t pte;
a5516438 3610 struct hstate *h = hstate_vma(vma);
1e8f889b 3611 struct page *old_page, *new_page;
2b740303
SJ
3612 int outside_reserve = 0;
3613 vm_fault_t ret = 0;
974e6d66 3614 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 3615 struct mmu_notifier_range range;
1e8f889b 3616
3999f52e 3617 pte = huge_ptep_get(ptep);
1e8f889b
DG
3618 old_page = pte_page(pte);
3619
04f2cbe3 3620retry_avoidcopy:
1e8f889b
DG
3621 /* If no-one else is actually using this page, avoid the copy
3622 * and just make the page writable */
37a2140d 3623 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3624 page_move_anon_rmap(old_page, vma);
5b7a1d40 3625 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3626 return 0;
1e8f889b
DG
3627 }
3628
04f2cbe3
MG
3629 /*
3630 * If the process that created a MAP_PRIVATE mapping is about to
3631 * perform a COW due to a shared page count, attempt to satisfy
3632 * the allocation without using the existing reserves. The pagecache
3633 * page is used to determine if the reserve at this address was
3634 * consumed or not. If reserves were used, a partial faulted mapping
3635 * at the time of fork() could consume its reserves on COW instead
3636 * of the full address range.
3637 */
5944d011 3638 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3639 old_page != pagecache_page)
3640 outside_reserve = 1;
3641
09cbfeaf 3642 get_page(old_page);
b76c8cfb 3643
ad4404a2
DB
3644 /*
3645 * Drop page table lock as buddy allocator may be called. It will
3646 * be acquired again before returning to the caller, as expected.
3647 */
cb900f41 3648 spin_unlock(ptl);
5b7a1d40 3649 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 3650
2fc39cec 3651 if (IS_ERR(new_page)) {
04f2cbe3
MG
3652 /*
3653 * If a process owning a MAP_PRIVATE mapping fails to COW,
3654 * it is due to references held by a child and an insufficient
3655 * huge page pool. To guarantee the original mappers
3656 * reliability, unmap the page from child processes. The child
3657 * may get SIGKILLed if it later faults.
3658 */
3659 if (outside_reserve) {
09cbfeaf 3660 put_page(old_page);
04f2cbe3 3661 BUG_ON(huge_pte_none(pte));
5b7a1d40 3662 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
3663 BUG_ON(huge_pte_none(pte));
3664 spin_lock(ptl);
5b7a1d40 3665 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
3666 if (likely(ptep &&
3667 pte_same(huge_ptep_get(ptep), pte)))
3668 goto retry_avoidcopy;
3669 /*
3670 * race occurs while re-acquiring page table
3671 * lock, and our job is done.
3672 */
3673 return 0;
04f2cbe3
MG
3674 }
3675
2b740303 3676 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 3677 goto out_release_old;
1e8f889b
DG
3678 }
3679
0fe6e20b
NH
3680 /*
3681 * When the original hugepage is shared one, it does not have
3682 * anon_vma prepared.
3683 */
44e2aa93 3684 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3685 ret = VM_FAULT_OOM;
3686 goto out_release_all;
44e2aa93 3687 }
0fe6e20b 3688
974e6d66 3689 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 3690 pages_per_huge_page(h));
0ed361de 3691 __SetPageUptodate(new_page);
1e8f889b 3692
7269f999 3693 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 3694 haddr + huge_page_size(h));
ac46d4f3 3695 mmu_notifier_invalidate_range_start(&range);
ad4404a2 3696
b76c8cfb 3697 /*
cb900f41 3698 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3699 * before the page tables are altered
3700 */
cb900f41 3701 spin_lock(ptl);
5b7a1d40 3702 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 3703 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3704 ClearPagePrivate(new_page);
3705
1e8f889b 3706 /* Break COW */
5b7a1d40 3707 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 3708 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 3709 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 3710 make_huge_pte(vma, new_page, 1));
d281ee61 3711 page_remove_rmap(old_page, true);
5b7a1d40 3712 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 3713 set_page_huge_active(new_page);
1e8f889b
DG
3714 /* Make the old page be freed below */
3715 new_page = old_page;
3716 }
cb900f41 3717 spin_unlock(ptl);
ac46d4f3 3718 mmu_notifier_invalidate_range_end(&range);
ad4404a2 3719out_release_all:
5b7a1d40 3720 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 3721 put_page(new_page);
ad4404a2 3722out_release_old:
09cbfeaf 3723 put_page(old_page);
8312034f 3724
ad4404a2
DB
3725 spin_lock(ptl); /* Caller expects lock to be held */
3726 return ret;
1e8f889b
DG
3727}
3728
04f2cbe3 3729/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3730static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3731 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3732{
3733 struct address_space *mapping;
e7c4b0bf 3734 pgoff_t idx;
04f2cbe3
MG
3735
3736 mapping = vma->vm_file->f_mapping;
a5516438 3737 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3738
3739 return find_lock_page(mapping, idx);
3740}
3741
3ae77f43
HD
3742/*
3743 * Return whether there is a pagecache page to back given address within VMA.
3744 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3745 */
3746static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3747 struct vm_area_struct *vma, unsigned long address)
3748{
3749 struct address_space *mapping;
3750 pgoff_t idx;
3751 struct page *page;
3752
3753 mapping = vma->vm_file->f_mapping;
3754 idx = vma_hugecache_offset(h, vma, address);
3755
3756 page = find_get_page(mapping, idx);
3757 if (page)
3758 put_page(page);
3759 return page != NULL;
3760}
3761
ab76ad54
MK
3762int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3763 pgoff_t idx)
3764{
3765 struct inode *inode = mapping->host;
3766 struct hstate *h = hstate_inode(inode);
3767 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3768
3769 if (err)
3770 return err;
3771 ClearPagePrivate(page);
3772
22146c3c
MK
3773 /*
3774 * set page dirty so that it will not be removed from cache/file
3775 * by non-hugetlbfs specific code paths.
3776 */
3777 set_page_dirty(page);
3778
ab76ad54
MK
3779 spin_lock(&inode->i_lock);
3780 inode->i_blocks += blocks_per_huge_page(h);
3781 spin_unlock(&inode->i_lock);
3782 return 0;
3783}
3784
2b740303
SJ
3785static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3786 struct vm_area_struct *vma,
3787 struct address_space *mapping, pgoff_t idx,
3788 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3789{
a5516438 3790 struct hstate *h = hstate_vma(vma);
2b740303 3791 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 3792 int anon_rmap = 0;
4c887265 3793 unsigned long size;
4c887265 3794 struct page *page;
1e8f889b 3795 pte_t new_pte;
cb900f41 3796 spinlock_t *ptl;
285b8dca 3797 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 3798 bool new_page = false;
4c887265 3799
04f2cbe3
MG
3800 /*
3801 * Currently, we are forced to kill the process in the event the
3802 * original mapper has unmapped pages from the child due to a failed
25985edc 3803 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3804 */
3805 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3806 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3807 current->pid);
04f2cbe3
MG
3808 return ret;
3809 }
3810
4c887265 3811 /*
e7c58097
MK
3812 * Use page lock to guard against racing truncation
3813 * before we get page_table_lock.
4c887265 3814 */
6bda666a
CL
3815retry:
3816 page = find_lock_page(mapping, idx);
3817 if (!page) {
e7c58097
MK
3818 size = i_size_read(mapping->host) >> huge_page_shift(h);
3819 if (idx >= size)
3820 goto out;
3821
1a1aad8a
MK
3822 /*
3823 * Check for page in userfault range
3824 */
3825 if (userfaultfd_missing(vma)) {
3826 u32 hash;
3827 struct vm_fault vmf = {
3828 .vma = vma,
285b8dca 3829 .address = haddr,
1a1aad8a
MK
3830 .flags = flags,
3831 /*
3832 * Hard to debug if it ends up being
3833 * used by a callee that assumes
3834 * something about the other
3835 * uninitialized fields... same as in
3836 * memory.c
3837 */
3838 };
3839
3840 /*
ddeaab32
MK
3841 * hugetlb_fault_mutex must be dropped before
3842 * handling userfault. Reacquire after handling
3843 * fault to make calling code simpler.
1a1aad8a 3844 */
1b426bac 3845 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
1a1aad8a
MK
3846 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3847 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3848 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3849 goto out;
3850 }
3851
285b8dca 3852 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 3853 if (IS_ERR(page)) {
4643d67e
MK
3854 /*
3855 * Returning error will result in faulting task being
3856 * sent SIGBUS. The hugetlb fault mutex prevents two
3857 * tasks from racing to fault in the same page which
3858 * could result in false unable to allocate errors.
3859 * Page migration does not take the fault mutex, but
3860 * does a clear then write of pte's under page table
3861 * lock. Page fault code could race with migration,
3862 * notice the clear pte and try to allocate a page
3863 * here. Before returning error, get ptl and make
3864 * sure there really is no pte entry.
3865 */
3866 ptl = huge_pte_lock(h, mm, ptep);
3867 if (!huge_pte_none(huge_ptep_get(ptep))) {
3868 ret = 0;
3869 spin_unlock(ptl);
3870 goto out;
3871 }
3872 spin_unlock(ptl);
2b740303 3873 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
3874 goto out;
3875 }
47ad8475 3876 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3877 __SetPageUptodate(page);
cb6acd01 3878 new_page = true;
ac9b9c66 3879
f83a275d 3880 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3881 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3882 if (err) {
3883 put_page(page);
6bda666a
CL
3884 if (err == -EEXIST)
3885 goto retry;
3886 goto out;
3887 }
23be7468 3888 } else {
6bda666a 3889 lock_page(page);
0fe6e20b
NH
3890 if (unlikely(anon_vma_prepare(vma))) {
3891 ret = VM_FAULT_OOM;
3892 goto backout_unlocked;
3893 }
409eb8c2 3894 anon_rmap = 1;
23be7468 3895 }
0fe6e20b 3896 } else {
998b4382
NH
3897 /*
3898 * If memory error occurs between mmap() and fault, some process
3899 * don't have hwpoisoned swap entry for errored virtual address.
3900 * So we need to block hugepage fault by PG_hwpoison bit check.
3901 */
3902 if (unlikely(PageHWPoison(page))) {
32f84528 3903 ret = VM_FAULT_HWPOISON |
972dc4de 3904 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3905 goto backout_unlocked;
3906 }
6bda666a 3907 }
1e8f889b 3908
57303d80
AW
3909 /*
3910 * If we are going to COW a private mapping later, we examine the
3911 * pending reservations for this page now. This will ensure that
3912 * any allocations necessary to record that reservation occur outside
3913 * the spinlock.
3914 */
5e911373 3915 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 3916 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
3917 ret = VM_FAULT_OOM;
3918 goto backout_unlocked;
3919 }
5e911373 3920 /* Just decrements count, does not deallocate */
285b8dca 3921 vma_end_reservation(h, vma, haddr);
5e911373 3922 }
57303d80 3923
8bea8052 3924 ptl = huge_pte_lock(h, mm, ptep);
e7c58097
MK
3925 size = i_size_read(mapping->host) >> huge_page_shift(h);
3926 if (idx >= size)
3927 goto backout;
4c887265 3928
83c54070 3929 ret = 0;
7f2e9525 3930 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3931 goto backout;
3932
07443a85
JK
3933 if (anon_rmap) {
3934 ClearPagePrivate(page);
285b8dca 3935 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 3936 } else
53f9263b 3937 page_dup_rmap(page, true);
1e8f889b
DG
3938 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3939 && (vma->vm_flags & VM_SHARED)));
285b8dca 3940 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 3941
5d317b2b 3942 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3943 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3944 /* Optimization, do the COW without a second fault */
974e6d66 3945 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3946 }
3947
cb900f41 3948 spin_unlock(ptl);
cb6acd01
MK
3949
3950 /*
3951 * Only make newly allocated pages active. Existing pages found
3952 * in the pagecache could be !page_huge_active() if they have been
3953 * isolated for migration.
3954 */
3955 if (new_page)
3956 set_page_huge_active(page);
3957
4c887265
AL
3958 unlock_page(page);
3959out:
ac9b9c66 3960 return ret;
4c887265
AL
3961
3962backout:
cb900f41 3963 spin_unlock(ptl);
2b26736c 3964backout_unlocked:
4c887265 3965 unlock_page(page);
285b8dca 3966 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
3967 put_page(page);
3968 goto out;
ac9b9c66
HD
3969}
3970
8382d914 3971#ifdef CONFIG_SMP
1b426bac 3972u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
3973 pgoff_t idx, unsigned long address)
3974{
3975 unsigned long key[2];
3976 u32 hash;
3977
1b426bac
MK
3978 key[0] = (unsigned long) mapping;
3979 key[1] = idx;
8382d914
DB
3980
3981 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3982
3983 return hash & (num_fault_mutexes - 1);
3984}
3985#else
3986/*
3987 * For uniprocesor systems we always use a single mutex, so just
3988 * return 0 and avoid the hashing overhead.
3989 */
1b426bac 3990u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
3991 pgoff_t idx, unsigned long address)
3992{
3993 return 0;
3994}
3995#endif
3996
2b740303 3997vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3998 unsigned long address, unsigned int flags)
86e5216f 3999{
8382d914 4000 pte_t *ptep, entry;
cb900f41 4001 spinlock_t *ptl;
2b740303 4002 vm_fault_t ret;
8382d914
DB
4003 u32 hash;
4004 pgoff_t idx;
0fe6e20b 4005 struct page *page = NULL;
57303d80 4006 struct page *pagecache_page = NULL;
a5516438 4007 struct hstate *h = hstate_vma(vma);
8382d914 4008 struct address_space *mapping;
0f792cf9 4009 int need_wait_lock = 0;
285b8dca 4010 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4011
285b8dca 4012 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed
NH
4013 if (ptep) {
4014 entry = huge_ptep_get(ptep);
290408d4 4015 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4016 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4017 return 0;
4018 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4019 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4020 VM_FAULT_SET_HINDEX(hstate_index(h));
ddeaab32
MK
4021 } else {
4022 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4023 if (!ptep)
4024 return VM_FAULT_OOM;
fd6a03ed
NH
4025 }
4026
8382d914 4027 mapping = vma->vm_file->f_mapping;
ddeaab32 4028 idx = vma_hugecache_offset(h, vma, haddr);
8382d914 4029
3935baa9
DG
4030 /*
4031 * Serialize hugepage allocation and instantiation, so that we don't
4032 * get spurious allocation failures if two CPUs race to instantiate
4033 * the same page in the page cache.
4034 */
1b426bac 4035 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
c672c7f2 4036 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4037
7f2e9525
GS
4038 entry = huge_ptep_get(ptep);
4039 if (huge_pte_none(entry)) {
8382d914 4040 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4041 goto out_mutex;
3935baa9 4042 }
86e5216f 4043
83c54070 4044 ret = 0;
1e8f889b 4045
0f792cf9
NH
4046 /*
4047 * entry could be a migration/hwpoison entry at this point, so this
4048 * check prevents the kernel from going below assuming that we have
4049 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4050 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4051 * handle it.
4052 */
4053 if (!pte_present(entry))
4054 goto out_mutex;
4055
57303d80
AW
4056 /*
4057 * If we are going to COW the mapping later, we examine the pending
4058 * reservations for this page now. This will ensure that any
4059 * allocations necessary to record that reservation occur outside the
4060 * spinlock. For private mappings, we also lookup the pagecache
4061 * page now as it is used to determine if a reservation has been
4062 * consumed.
4063 */
106c992a 4064 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4065 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4066 ret = VM_FAULT_OOM;
b4d1d99f 4067 goto out_mutex;
2b26736c 4068 }
5e911373 4069 /* Just decrements count, does not deallocate */
285b8dca 4070 vma_end_reservation(h, vma, haddr);
57303d80 4071
f83a275d 4072 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4073 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4074 vma, haddr);
57303d80
AW
4075 }
4076
0f792cf9
NH
4077 ptl = huge_pte_lock(h, mm, ptep);
4078
4079 /* Check for a racing update before calling hugetlb_cow */
4080 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4081 goto out_ptl;
4082
56c9cfb1
NH
4083 /*
4084 * hugetlb_cow() requires page locks of pte_page(entry) and
4085 * pagecache_page, so here we need take the former one
4086 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4087 */
4088 page = pte_page(entry);
4089 if (page != pagecache_page)
0f792cf9
NH
4090 if (!trylock_page(page)) {
4091 need_wait_lock = 1;
4092 goto out_ptl;
4093 }
b4d1d99f 4094
0f792cf9 4095 get_page(page);
b4d1d99f 4096
788c7df4 4097 if (flags & FAULT_FLAG_WRITE) {
106c992a 4098 if (!huge_pte_write(entry)) {
974e6d66 4099 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4100 pagecache_page, ptl);
0f792cf9 4101 goto out_put_page;
b4d1d99f 4102 }
106c992a 4103 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4104 }
4105 entry = pte_mkyoung(entry);
285b8dca 4106 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4107 flags & FAULT_FLAG_WRITE))
285b8dca 4108 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4109out_put_page:
4110 if (page != pagecache_page)
4111 unlock_page(page);
4112 put_page(page);
cb900f41
KS
4113out_ptl:
4114 spin_unlock(ptl);
57303d80
AW
4115
4116 if (pagecache_page) {
4117 unlock_page(pagecache_page);
4118 put_page(pagecache_page);
4119 }
b4d1d99f 4120out_mutex:
c672c7f2 4121 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4122 /*
4123 * Generally it's safe to hold refcount during waiting page lock. But
4124 * here we just wait to defer the next page fault to avoid busy loop and
4125 * the page is not used after unlocked before returning from the current
4126 * page fault. So we are safe from accessing freed page, even if we wait
4127 * here without taking refcount.
4128 */
4129 if (need_wait_lock)
4130 wait_on_page_locked(page);
1e8f889b 4131 return ret;
86e5216f
AL
4132}
4133
8fb5debc
MK
4134/*
4135 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4136 * modifications for huge pages.
4137 */
4138int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4139 pte_t *dst_pte,
4140 struct vm_area_struct *dst_vma,
4141 unsigned long dst_addr,
4142 unsigned long src_addr,
4143 struct page **pagep)
4144{
1e392147
AA
4145 struct address_space *mapping;
4146 pgoff_t idx;
4147 unsigned long size;
1c9e8def 4148 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4149 struct hstate *h = hstate_vma(dst_vma);
4150 pte_t _dst_pte;
4151 spinlock_t *ptl;
4152 int ret;
4153 struct page *page;
4154
4155 if (!*pagep) {
4156 ret = -ENOMEM;
4157 page = alloc_huge_page(dst_vma, dst_addr, 0);
4158 if (IS_ERR(page))
4159 goto out;
4160
4161 ret = copy_huge_page_from_user(page,
4162 (const void __user *) src_addr,
810a56b9 4163 pages_per_huge_page(h), false);
8fb5debc
MK
4164
4165 /* fallback to copy_from_user outside mmap_sem */
4166 if (unlikely(ret)) {
9e368259 4167 ret = -ENOENT;
8fb5debc
MK
4168 *pagep = page;
4169 /* don't free the page */
4170 goto out;
4171 }
4172 } else {
4173 page = *pagep;
4174 *pagep = NULL;
4175 }
4176
4177 /*
4178 * The memory barrier inside __SetPageUptodate makes sure that
4179 * preceding stores to the page contents become visible before
4180 * the set_pte_at() write.
4181 */
4182 __SetPageUptodate(page);
8fb5debc 4183
1e392147
AA
4184 mapping = dst_vma->vm_file->f_mapping;
4185 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4186
1c9e8def
MK
4187 /*
4188 * If shared, add to page cache
4189 */
4190 if (vm_shared) {
1e392147
AA
4191 size = i_size_read(mapping->host) >> huge_page_shift(h);
4192 ret = -EFAULT;
4193 if (idx >= size)
4194 goto out_release_nounlock;
1c9e8def 4195
1e392147
AA
4196 /*
4197 * Serialization between remove_inode_hugepages() and
4198 * huge_add_to_page_cache() below happens through the
4199 * hugetlb_fault_mutex_table that here must be hold by
4200 * the caller.
4201 */
1c9e8def
MK
4202 ret = huge_add_to_page_cache(page, mapping, idx);
4203 if (ret)
4204 goto out_release_nounlock;
4205 }
4206
8fb5debc
MK
4207 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4208 spin_lock(ptl);
4209
1e392147
AA
4210 /*
4211 * Recheck the i_size after holding PT lock to make sure not
4212 * to leave any page mapped (as page_mapped()) beyond the end
4213 * of the i_size (remove_inode_hugepages() is strict about
4214 * enforcing that). If we bail out here, we'll also leave a
4215 * page in the radix tree in the vm_shared case beyond the end
4216 * of the i_size, but remove_inode_hugepages() will take care
4217 * of it as soon as we drop the hugetlb_fault_mutex_table.
4218 */
4219 size = i_size_read(mapping->host) >> huge_page_shift(h);
4220 ret = -EFAULT;
4221 if (idx >= size)
4222 goto out_release_unlock;
4223
8fb5debc
MK
4224 ret = -EEXIST;
4225 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4226 goto out_release_unlock;
4227
1c9e8def
MK
4228 if (vm_shared) {
4229 page_dup_rmap(page, true);
4230 } else {
4231 ClearPagePrivate(page);
4232 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4233 }
8fb5debc
MK
4234
4235 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4236 if (dst_vma->vm_flags & VM_WRITE)
4237 _dst_pte = huge_pte_mkdirty(_dst_pte);
4238 _dst_pte = pte_mkyoung(_dst_pte);
4239
4240 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4241
4242 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4243 dst_vma->vm_flags & VM_WRITE);
4244 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4245
4246 /* No need to invalidate - it was non-present before */
4247 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4248
4249 spin_unlock(ptl);
cb6acd01 4250 set_page_huge_active(page);
1c9e8def
MK
4251 if (vm_shared)
4252 unlock_page(page);
8fb5debc
MK
4253 ret = 0;
4254out:
4255 return ret;
4256out_release_unlock:
4257 spin_unlock(ptl);
1c9e8def
MK
4258 if (vm_shared)
4259 unlock_page(page);
5af10dfd 4260out_release_nounlock:
8fb5debc
MK
4261 put_page(page);
4262 goto out;
4263}
4264
28a35716
ML
4265long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4266 struct page **pages, struct vm_area_struct **vmas,
4267 unsigned long *position, unsigned long *nr_pages,
87ffc118 4268 long i, unsigned int flags, int *nonblocking)
63551ae0 4269{
d5d4b0aa
KC
4270 unsigned long pfn_offset;
4271 unsigned long vaddr = *position;
28a35716 4272 unsigned long remainder = *nr_pages;
a5516438 4273 struct hstate *h = hstate_vma(vma);
2be7cfed 4274 int err = -EFAULT;
63551ae0 4275
63551ae0 4276 while (vaddr < vma->vm_end && remainder) {
4c887265 4277 pte_t *pte;
cb900f41 4278 spinlock_t *ptl = NULL;
2a15efc9 4279 int absent;
4c887265 4280 struct page *page;
63551ae0 4281
02057967
DR
4282 /*
4283 * If we have a pending SIGKILL, don't keep faulting pages and
4284 * potentially allocating memory.
4285 */
fa45f116 4286 if (fatal_signal_pending(current)) {
02057967
DR
4287 remainder = 0;
4288 break;
4289 }
4290
4c887265
AL
4291 /*
4292 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4293 * each hugepage. We have to make sure we get the
4c887265 4294 * first, for the page indexing below to work.
cb900f41
KS
4295 *
4296 * Note that page table lock is not held when pte is null.
4c887265 4297 */
7868a208
PA
4298 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4299 huge_page_size(h));
cb900f41
KS
4300 if (pte)
4301 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4302 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4303
4304 /*
4305 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4306 * an error where there's an empty slot with no huge pagecache
4307 * to back it. This way, we avoid allocating a hugepage, and
4308 * the sparse dumpfile avoids allocating disk blocks, but its
4309 * huge holes still show up with zeroes where they need to be.
2a15efc9 4310 */
3ae77f43
HD
4311 if (absent && (flags & FOLL_DUMP) &&
4312 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4313 if (pte)
4314 spin_unlock(ptl);
2a15efc9
HD
4315 remainder = 0;
4316 break;
4317 }
63551ae0 4318
9cc3a5bd
NH
4319 /*
4320 * We need call hugetlb_fault for both hugepages under migration
4321 * (in which case hugetlb_fault waits for the migration,) and
4322 * hwpoisoned hugepages (in which case we need to prevent the
4323 * caller from accessing to them.) In order to do this, we use
4324 * here is_swap_pte instead of is_hugetlb_entry_migration and
4325 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4326 * both cases, and because we can't follow correct pages
4327 * directly from any kind of swap entries.
4328 */
4329 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4330 ((flags & FOLL_WRITE) &&
4331 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4332 vm_fault_t ret;
87ffc118 4333 unsigned int fault_flags = 0;
63551ae0 4334
cb900f41
KS
4335 if (pte)
4336 spin_unlock(ptl);
87ffc118
AA
4337 if (flags & FOLL_WRITE)
4338 fault_flags |= FAULT_FLAG_WRITE;
4339 if (nonblocking)
4340 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4341 if (flags & FOLL_NOWAIT)
4342 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4343 FAULT_FLAG_RETRY_NOWAIT;
4344 if (flags & FOLL_TRIED) {
4345 VM_WARN_ON_ONCE(fault_flags &
4346 FAULT_FLAG_ALLOW_RETRY);
4347 fault_flags |= FAULT_FLAG_TRIED;
4348 }
4349 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4350 if (ret & VM_FAULT_ERROR) {
2be7cfed 4351 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4352 remainder = 0;
4353 break;
4354 }
4355 if (ret & VM_FAULT_RETRY) {
1ac25013
AA
4356 if (nonblocking &&
4357 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
87ffc118
AA
4358 *nonblocking = 0;
4359 *nr_pages = 0;
4360 /*
4361 * VM_FAULT_RETRY must not return an
4362 * error, it will return zero
4363 * instead.
4364 *
4365 * No need to update "position" as the
4366 * caller will not check it after
4367 * *nr_pages is set to 0.
4368 */
4369 return i;
4370 }
4371 continue;
4c887265
AL
4372 }
4373
a5516438 4374 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4375 page = pte_page(huge_ptep_get(pte));
8fde12ca
LT
4376
4377 /*
4378 * Instead of doing 'try_get_page()' below in the same_page
4379 * loop, just check the count once here.
4380 */
4381 if (unlikely(page_count(page) <= 0)) {
4382 if (pages) {
4383 spin_unlock(ptl);
4384 remainder = 0;
4385 err = -ENOMEM;
4386 break;
4387 }
4388 }
d5d4b0aa 4389same_page:
d6692183 4390 if (pages) {
2a15efc9 4391 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4392 get_page(pages[i]);
d6692183 4393 }
63551ae0
DG
4394
4395 if (vmas)
4396 vmas[i] = vma;
4397
4398 vaddr += PAGE_SIZE;
d5d4b0aa 4399 ++pfn_offset;
63551ae0
DG
4400 --remainder;
4401 ++i;
d5d4b0aa 4402 if (vaddr < vma->vm_end && remainder &&
a5516438 4403 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4404 /*
4405 * We use pfn_offset to avoid touching the pageframes
4406 * of this compound page.
4407 */
4408 goto same_page;
4409 }
cb900f41 4410 spin_unlock(ptl);
63551ae0 4411 }
28a35716 4412 *nr_pages = remainder;
87ffc118
AA
4413 /*
4414 * setting position is actually required only if remainder is
4415 * not zero but it's faster not to add a "if (remainder)"
4416 * branch.
4417 */
63551ae0
DG
4418 *position = vaddr;
4419
2be7cfed 4420 return i ? i : err;
63551ae0 4421}
8f860591 4422
5491ae7b
AK
4423#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4424/*
4425 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4426 * implement this.
4427 */
4428#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4429#endif
4430
7da4d641 4431unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4432 unsigned long address, unsigned long end, pgprot_t newprot)
4433{
4434 struct mm_struct *mm = vma->vm_mm;
4435 unsigned long start = address;
4436 pte_t *ptep;
4437 pte_t pte;
a5516438 4438 struct hstate *h = hstate_vma(vma);
7da4d641 4439 unsigned long pages = 0;
dff11abe 4440 bool shared_pmd = false;
ac46d4f3 4441 struct mmu_notifier_range range;
dff11abe
MK
4442
4443 /*
4444 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4445 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
4446 * range if PMD sharing is possible.
4447 */
7269f999
JG
4448 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4449 0, vma, mm, start, end);
ac46d4f3 4450 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
4451
4452 BUG_ON(address >= end);
ac46d4f3 4453 flush_cache_range(vma, range.start, range.end);
8f860591 4454
ac46d4f3 4455 mmu_notifier_invalidate_range_start(&range);
83cde9e8 4456 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4457 for (; address < end; address += huge_page_size(h)) {
cb900f41 4458 spinlock_t *ptl;
7868a208 4459 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4460 if (!ptep)
4461 continue;
cb900f41 4462 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4463 if (huge_pmd_unshare(mm, &address, ptep)) {
4464 pages++;
cb900f41 4465 spin_unlock(ptl);
dff11abe 4466 shared_pmd = true;
39dde65c 4467 continue;
7da4d641 4468 }
a8bda28d
NH
4469 pte = huge_ptep_get(ptep);
4470 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4471 spin_unlock(ptl);
4472 continue;
4473 }
4474 if (unlikely(is_hugetlb_entry_migration(pte))) {
4475 swp_entry_t entry = pte_to_swp_entry(pte);
4476
4477 if (is_write_migration_entry(entry)) {
4478 pte_t newpte;
4479
4480 make_migration_entry_read(&entry);
4481 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4482 set_huge_swap_pte_at(mm, address, ptep,
4483 newpte, huge_page_size(h));
a8bda28d
NH
4484 pages++;
4485 }
4486 spin_unlock(ptl);
4487 continue;
4488 }
4489 if (!huge_pte_none(pte)) {
023bdd00
AK
4490 pte_t old_pte;
4491
4492 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4493 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 4494 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 4495 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 4496 pages++;
8f860591 4497 }
cb900f41 4498 spin_unlock(ptl);
8f860591 4499 }
d833352a 4500 /*
c8c06efa 4501 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4502 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4503 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
4504 * and that page table be reused and filled with junk. If we actually
4505 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 4506 */
dff11abe 4507 if (shared_pmd)
ac46d4f3 4508 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
4509 else
4510 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4511 /*
4512 * No need to call mmu_notifier_invalidate_range() we are downgrading
4513 * page table protection not changing it to point to a new page.
4514 *
ad56b738 4515 * See Documentation/vm/mmu_notifier.rst
0f10851e 4516 */
83cde9e8 4517 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 4518 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
4519
4520 return pages << h->order;
8f860591
ZY
4521}
4522
a1e78772
MG
4523int hugetlb_reserve_pages(struct inode *inode,
4524 long from, long to,
5a6fe125 4525 struct vm_area_struct *vma,
ca16d140 4526 vm_flags_t vm_flags)
e4e574b7 4527{
17c9d12e 4528 long ret, chg;
a5516438 4529 struct hstate *h = hstate_inode(inode);
90481622 4530 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4531 struct resv_map *resv_map;
1c5ecae3 4532 long gbl_reserve;
e4e574b7 4533
63489f8e
MK
4534 /* This should never happen */
4535 if (from > to) {
4536 VM_WARN(1, "%s called with a negative range\n", __func__);
4537 return -EINVAL;
4538 }
4539
17c9d12e
MG
4540 /*
4541 * Only apply hugepage reservation if asked. At fault time, an
4542 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4543 * without using reserves
17c9d12e 4544 */
ca16d140 4545 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4546 return 0;
4547
a1e78772
MG
4548 /*
4549 * Shared mappings base their reservation on the number of pages that
4550 * are already allocated on behalf of the file. Private mappings need
4551 * to reserve the full area even if read-only as mprotect() may be
4552 * called to make the mapping read-write. Assume !vma is a shm mapping
4553 */
9119a41e 4554 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
4555 /*
4556 * resv_map can not be NULL as hugetlb_reserve_pages is only
4557 * called for inodes for which resv_maps were created (see
4558 * hugetlbfs_get_inode).
4559 */
4e35f483 4560 resv_map = inode_resv_map(inode);
9119a41e 4561
1406ec9b 4562 chg = region_chg(resv_map, from, to);
9119a41e
JK
4563
4564 } else {
4565 resv_map = resv_map_alloc();
17c9d12e
MG
4566 if (!resv_map)
4567 return -ENOMEM;
4568
a1e78772 4569 chg = to - from;
84afd99b 4570
17c9d12e
MG
4571 set_vma_resv_map(vma, resv_map);
4572 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4573 }
4574
c50ac050
DH
4575 if (chg < 0) {
4576 ret = chg;
4577 goto out_err;
4578 }
8a630112 4579
1c5ecae3
MK
4580 /*
4581 * There must be enough pages in the subpool for the mapping. If
4582 * the subpool has a minimum size, there may be some global
4583 * reservations already in place (gbl_reserve).
4584 */
4585 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4586 if (gbl_reserve < 0) {
c50ac050
DH
4587 ret = -ENOSPC;
4588 goto out_err;
4589 }
5a6fe125
MG
4590
4591 /*
17c9d12e 4592 * Check enough hugepages are available for the reservation.
90481622 4593 * Hand the pages back to the subpool if there are not
5a6fe125 4594 */
1c5ecae3 4595 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4596 if (ret < 0) {
1c5ecae3
MK
4597 /* put back original number of pages, chg */
4598 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4599 goto out_err;
68842c9b 4600 }
17c9d12e
MG
4601
4602 /*
4603 * Account for the reservations made. Shared mappings record regions
4604 * that have reservations as they are shared by multiple VMAs.
4605 * When the last VMA disappears, the region map says how much
4606 * the reservation was and the page cache tells how much of
4607 * the reservation was consumed. Private mappings are per-VMA and
4608 * only the consumed reservations are tracked. When the VMA
4609 * disappears, the original reservation is the VMA size and the
4610 * consumed reservations are stored in the map. Hence, nothing
4611 * else has to be done for private mappings here
4612 */
33039678
MK
4613 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4614 long add = region_add(resv_map, from, to);
4615
4616 if (unlikely(chg > add)) {
4617 /*
4618 * pages in this range were added to the reserve
4619 * map between region_chg and region_add. This
4620 * indicates a race with alloc_huge_page. Adjust
4621 * the subpool and reserve counts modified above
4622 * based on the difference.
4623 */
4624 long rsv_adjust;
4625
4626 rsv_adjust = hugepage_subpool_put_pages(spool,
4627 chg - add);
4628 hugetlb_acct_memory(h, -rsv_adjust);
4629 }
4630 }
a43a8c39 4631 return 0;
c50ac050 4632out_err:
5e911373 4633 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4634 /* Don't call region_abort if region_chg failed */
4635 if (chg >= 0)
4636 region_abort(resv_map, from, to);
f031dd27
JK
4637 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4638 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4639 return ret;
a43a8c39
KC
4640}
4641
b5cec28d
MK
4642long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4643 long freed)
a43a8c39 4644{
a5516438 4645 struct hstate *h = hstate_inode(inode);
4e35f483 4646 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4647 long chg = 0;
90481622 4648 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4649 long gbl_reserve;
45c682a6 4650
f27a5136
MK
4651 /*
4652 * Since this routine can be called in the evict inode path for all
4653 * hugetlbfs inodes, resv_map could be NULL.
4654 */
b5cec28d
MK
4655 if (resv_map) {
4656 chg = region_del(resv_map, start, end);
4657 /*
4658 * region_del() can fail in the rare case where a region
4659 * must be split and another region descriptor can not be
4660 * allocated. If end == LONG_MAX, it will not fail.
4661 */
4662 if (chg < 0)
4663 return chg;
4664 }
4665
45c682a6 4666 spin_lock(&inode->i_lock);
e4c6f8be 4667 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4668 spin_unlock(&inode->i_lock);
4669
1c5ecae3
MK
4670 /*
4671 * If the subpool has a minimum size, the number of global
4672 * reservations to be released may be adjusted.
4673 */
4674 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4675 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4676
4677 return 0;
a43a8c39 4678}
93f70f90 4679
3212b535
SC
4680#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4681static unsigned long page_table_shareable(struct vm_area_struct *svma,
4682 struct vm_area_struct *vma,
4683 unsigned long addr, pgoff_t idx)
4684{
4685 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4686 svma->vm_start;
4687 unsigned long sbase = saddr & PUD_MASK;
4688 unsigned long s_end = sbase + PUD_SIZE;
4689
4690 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4691 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4692 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4693
4694 /*
4695 * match the virtual addresses, permission and the alignment of the
4696 * page table page.
4697 */
4698 if (pmd_index(addr) != pmd_index(saddr) ||
4699 vm_flags != svm_flags ||
4700 sbase < svma->vm_start || svma->vm_end < s_end)
4701 return 0;
4702
4703 return saddr;
4704}
4705
31aafb45 4706static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4707{
4708 unsigned long base = addr & PUD_MASK;
4709 unsigned long end = base + PUD_SIZE;
4710
4711 /*
4712 * check on proper vm_flags and page table alignment
4713 */
017b1660 4714 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
4715 return true;
4716 return false;
3212b535
SC
4717}
4718
017b1660
MK
4719/*
4720 * Determine if start,end range within vma could be mapped by shared pmd.
4721 * If yes, adjust start and end to cover range associated with possible
4722 * shared pmd mappings.
4723 */
4724void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4725 unsigned long *start, unsigned long *end)
4726{
4727 unsigned long check_addr = *start;
4728
4729 if (!(vma->vm_flags & VM_MAYSHARE))
4730 return;
4731
4732 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4733 unsigned long a_start = check_addr & PUD_MASK;
4734 unsigned long a_end = a_start + PUD_SIZE;
4735
4736 /*
4737 * If sharing is possible, adjust start/end if necessary.
4738 */
4739 if (range_in_vma(vma, a_start, a_end)) {
4740 if (a_start < *start)
4741 *start = a_start;
4742 if (a_end > *end)
4743 *end = a_end;
4744 }
4745 }
4746}
4747
3212b535
SC
4748/*
4749 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4750 * and returns the corresponding pte. While this is not necessary for the
4751 * !shared pmd case because we can allocate the pmd later as well, it makes the
ddeaab32
MK
4752 * code much cleaner. pmd allocation is essential for the shared case because
4753 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4754 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4755 * bad pmd for sharing.
3212b535
SC
4756 */
4757pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4758{
4759 struct vm_area_struct *vma = find_vma(mm, addr);
4760 struct address_space *mapping = vma->vm_file->f_mapping;
4761 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4762 vma->vm_pgoff;
4763 struct vm_area_struct *svma;
4764 unsigned long saddr;
4765 pte_t *spte = NULL;
4766 pte_t *pte;
cb900f41 4767 spinlock_t *ptl;
3212b535
SC
4768
4769 if (!vma_shareable(vma, addr))
4770 return (pte_t *)pmd_alloc(mm, pud, addr);
4771
ddeaab32 4772 i_mmap_lock_write(mapping);
3212b535
SC
4773 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4774 if (svma == vma)
4775 continue;
4776
4777 saddr = page_table_shareable(svma, vma, addr, idx);
4778 if (saddr) {
7868a208
PA
4779 spte = huge_pte_offset(svma->vm_mm, saddr,
4780 vma_mmu_pagesize(svma));
3212b535
SC
4781 if (spte) {
4782 get_page(virt_to_page(spte));
4783 break;
4784 }
4785 }
4786 }
4787
4788 if (!spte)
4789 goto out;
4790
8bea8052 4791 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4792 if (pud_none(*pud)) {
3212b535
SC
4793 pud_populate(mm, pud,
4794 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4795 mm_inc_nr_pmds(mm);
dc6c9a35 4796 } else {
3212b535 4797 put_page(virt_to_page(spte));
dc6c9a35 4798 }
cb900f41 4799 spin_unlock(ptl);
3212b535
SC
4800out:
4801 pte = (pte_t *)pmd_alloc(mm, pud, addr);
ddeaab32 4802 i_mmap_unlock_write(mapping);
3212b535
SC
4803 return pte;
4804}
4805
4806/*
4807 * unmap huge page backed by shared pte.
4808 *
4809 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4810 * indicated by page_count > 1, unmap is achieved by clearing pud and
4811 * decrementing the ref count. If count == 1, the pte page is not shared.
4812 *
ddeaab32 4813 * called with page table lock held.
3212b535
SC
4814 *
4815 * returns: 1 successfully unmapped a shared pte page
4816 * 0 the underlying pte page is not shared, or it is the last user
4817 */
4818int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4819{
4820 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4821 p4d_t *p4d = p4d_offset(pgd, *addr);
4822 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4823
4824 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4825 if (page_count(virt_to_page(ptep)) == 1)
4826 return 0;
4827
4828 pud_clear(pud);
4829 put_page(virt_to_page(ptep));
dc6c9a35 4830 mm_dec_nr_pmds(mm);
3212b535
SC
4831 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4832 return 1;
4833}
9e5fc74c
SC
4834#define want_pmd_share() (1)
4835#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4836pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4837{
4838 return NULL;
4839}
e81f2d22
ZZ
4840
4841int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4842{
4843 return 0;
4844}
017b1660
MK
4845
4846void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4847 unsigned long *start, unsigned long *end)
4848{
4849}
9e5fc74c 4850#define want_pmd_share() (0)
3212b535
SC
4851#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4852
9e5fc74c
SC
4853#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4854pte_t *huge_pte_alloc(struct mm_struct *mm,
4855 unsigned long addr, unsigned long sz)
4856{
4857 pgd_t *pgd;
c2febafc 4858 p4d_t *p4d;
9e5fc74c
SC
4859 pud_t *pud;
4860 pte_t *pte = NULL;
4861
4862 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4863 p4d = p4d_alloc(mm, pgd, addr);
4864 if (!p4d)
4865 return NULL;
c2febafc 4866 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4867 if (pud) {
4868 if (sz == PUD_SIZE) {
4869 pte = (pte_t *)pud;
4870 } else {
4871 BUG_ON(sz != PMD_SIZE);
4872 if (want_pmd_share() && pud_none(*pud))
4873 pte = huge_pmd_share(mm, addr, pud);
4874 else
4875 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4876 }
4877 }
4e666314 4878 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4879
4880 return pte;
4881}
4882
9b19df29
PA
4883/*
4884 * huge_pte_offset() - Walk the page table to resolve the hugepage
4885 * entry at address @addr
4886 *
4887 * Return: Pointer to page table or swap entry (PUD or PMD) for
4888 * address @addr, or NULL if a p*d_none() entry is encountered and the
4889 * size @sz doesn't match the hugepage size at this level of the page
4890 * table.
4891 */
7868a208
PA
4892pte_t *huge_pte_offset(struct mm_struct *mm,
4893 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4894{
4895 pgd_t *pgd;
c2febafc 4896 p4d_t *p4d;
9e5fc74c 4897 pud_t *pud;
c2febafc 4898 pmd_t *pmd;
9e5fc74c
SC
4899
4900 pgd = pgd_offset(mm, addr);
c2febafc
KS
4901 if (!pgd_present(*pgd))
4902 return NULL;
4903 p4d = p4d_offset(pgd, addr);
4904 if (!p4d_present(*p4d))
4905 return NULL;
9b19df29 4906
c2febafc 4907 pud = pud_offset(p4d, addr);
9b19df29 4908 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4909 return NULL;
9b19df29
PA
4910 /* hugepage or swap? */
4911 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4912 return (pte_t *)pud;
9b19df29 4913
c2febafc 4914 pmd = pmd_offset(pud, addr);
9b19df29
PA
4915 if (sz != PMD_SIZE && pmd_none(*pmd))
4916 return NULL;
4917 /* hugepage or swap? */
4918 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4919 return (pte_t *)pmd;
4920
4921 return NULL;
9e5fc74c
SC
4922}
4923
61f77eda
NH
4924#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4925
4926/*
4927 * These functions are overwritable if your architecture needs its own
4928 * behavior.
4929 */
4930struct page * __weak
4931follow_huge_addr(struct mm_struct *mm, unsigned long address,
4932 int write)
4933{
4934 return ERR_PTR(-EINVAL);
4935}
4936
4dc71451
AK
4937struct page * __weak
4938follow_huge_pd(struct vm_area_struct *vma,
4939 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4940{
4941 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4942 return NULL;
4943}
4944
61f77eda 4945struct page * __weak
9e5fc74c 4946follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4947 pmd_t *pmd, int flags)
9e5fc74c 4948{
e66f17ff
NH
4949 struct page *page = NULL;
4950 spinlock_t *ptl;
c9d398fa 4951 pte_t pte;
e66f17ff
NH
4952retry:
4953 ptl = pmd_lockptr(mm, pmd);
4954 spin_lock(ptl);
4955 /*
4956 * make sure that the address range covered by this pmd is not
4957 * unmapped from other threads.
4958 */
4959 if (!pmd_huge(*pmd))
4960 goto out;
c9d398fa
NH
4961 pte = huge_ptep_get((pte_t *)pmd);
4962 if (pte_present(pte)) {
97534127 4963 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4964 if (flags & FOLL_GET)
4965 get_page(page);
4966 } else {
c9d398fa 4967 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4968 spin_unlock(ptl);
4969 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4970 goto retry;
4971 }
4972 /*
4973 * hwpoisoned entry is treated as no_page_table in
4974 * follow_page_mask().
4975 */
4976 }
4977out:
4978 spin_unlock(ptl);
9e5fc74c
SC
4979 return page;
4980}
4981
61f77eda 4982struct page * __weak
9e5fc74c 4983follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4984 pud_t *pud, int flags)
9e5fc74c 4985{
e66f17ff
NH
4986 if (flags & FOLL_GET)
4987 return NULL;
9e5fc74c 4988
e66f17ff 4989 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4990}
4991
faaa5b62
AK
4992struct page * __weak
4993follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4994{
4995 if (flags & FOLL_GET)
4996 return NULL;
4997
4998 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4999}
5000
31caf665
NH
5001bool isolate_huge_page(struct page *page, struct list_head *list)
5002{
bcc54222
NH
5003 bool ret = true;
5004
309381fe 5005 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5006 spin_lock(&hugetlb_lock);
bcc54222
NH
5007 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5008 ret = false;
5009 goto unlock;
5010 }
5011 clear_page_huge_active(page);
31caf665 5012 list_move_tail(&page->lru, list);
bcc54222 5013unlock:
31caf665 5014 spin_unlock(&hugetlb_lock);
bcc54222 5015 return ret;
31caf665
NH
5016}
5017
5018void putback_active_hugepage(struct page *page)
5019{
309381fe 5020 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5021 spin_lock(&hugetlb_lock);
bcc54222 5022 set_page_huge_active(page);
31caf665
NH
5023 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5024 spin_unlock(&hugetlb_lock);
5025 put_page(page);
5026}
ab5ac90a
MH
5027
5028void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5029{
5030 struct hstate *h = page_hstate(oldpage);
5031
5032 hugetlb_cgroup_migrate(oldpage, newpage);
5033 set_page_owner_migrate_reason(newpage, reason);
5034
5035 /*
5036 * transfer temporary state of the new huge page. This is
5037 * reverse to other transitions because the newpage is going to
5038 * be final while the old one will be freed so it takes over
5039 * the temporary status.
5040 *
5041 * Also note that we have to transfer the per-node surplus state
5042 * here as well otherwise the global surplus count will not match
5043 * the per-node's.
5044 */
5045 if (PageHugeTemporary(newpage)) {
5046 int old_nid = page_to_nid(oldpage);
5047 int new_nid = page_to_nid(newpage);
5048
5049 SetPageHugeTemporary(oldpage);
5050 ClearPageHugeTemporary(newpage);
5051
5052 spin_lock(&hugetlb_lock);
5053 if (h->surplus_huge_pages_node[old_nid]) {
5054 h->surplus_huge_pages_node[old_nid]--;
5055 h->surplus_huge_pages_node[new_nid]++;
5056 }
5057 spin_unlock(&hugetlb_lock);
5058 }
5059}