]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
userfaultfd: disable huge PMD sharing for MINOR registered VMAs
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
1a1aad8a 42#include <linux/userfaultfd_k.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
1da177e4 45
c3f38a38 46int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 49
dbda8fea 50#ifdef CONFIG_CMA
cf11e85f 51static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
52#endif
53static unsigned long hugetlb_cma_size __initdata;
cf11e85f 54
641844f5
NH
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 60
53ba51d2
JT
61__initdata LIST_HEAD(huge_boot_pages);
62
e5ff2159
AK
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 66static bool __initdata parsed_valid_hugepagesz = true;
282f4214 67static bool __initdata parsed_default_hugepagesz;
e5ff2159 68
3935baa9 69/*
31caf665
NH
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
3935baa9 72 */
c3f38a38 73DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 74
8382d914
DB
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
c672c7f2 80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 81
7ca02d0a
MK
82/* Forward declaration */
83static int hugetlb_acct_memory(struct hstate *h, long delta);
84
1d88433b 85static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 86{
1d88433b
ML
87 if (spool->count)
88 return false;
89 if (spool->max_hpages != -1)
90 return spool->used_hpages == 0;
91 if (spool->min_hpages != -1)
92 return spool->rsv_hpages == spool->min_hpages;
93
94 return true;
95}
90481622 96
db71ef79
MK
97static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
98 unsigned long irq_flags)
1d88433b 99{
db71ef79 100 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
101
102 /* If no pages are used, and no other handles to the subpool
7c8de358 103 * remain, give up any reservations based on minimum size and
7ca02d0a 104 * free the subpool */
1d88433b 105 if (subpool_is_free(spool)) {
7ca02d0a
MK
106 if (spool->min_hpages != -1)
107 hugetlb_acct_memory(spool->hstate,
108 -spool->min_hpages);
90481622 109 kfree(spool);
7ca02d0a 110 }
90481622
DG
111}
112
7ca02d0a
MK
113struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
114 long min_hpages)
90481622
DG
115{
116 struct hugepage_subpool *spool;
117
c6a91820 118 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
119 if (!spool)
120 return NULL;
121
122 spin_lock_init(&spool->lock);
123 spool->count = 1;
7ca02d0a
MK
124 spool->max_hpages = max_hpages;
125 spool->hstate = h;
126 spool->min_hpages = min_hpages;
127
128 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
129 kfree(spool);
130 return NULL;
131 }
132 spool->rsv_hpages = min_hpages;
90481622
DG
133
134 return spool;
135}
136
137void hugepage_put_subpool(struct hugepage_subpool *spool)
138{
db71ef79
MK
139 unsigned long flags;
140
141 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
142 BUG_ON(!spool->count);
143 spool->count--;
db71ef79 144 unlock_or_release_subpool(spool, flags);
90481622
DG
145}
146
1c5ecae3
MK
147/*
148 * Subpool accounting for allocating and reserving pages.
149 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 150 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
151 * global pools must be adjusted (upward). The returned value may
152 * only be different than the passed value (delta) in the case where
7c8de358 153 * a subpool minimum size must be maintained.
1c5ecae3
MK
154 */
155static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
156 long delta)
157{
1c5ecae3 158 long ret = delta;
90481622
DG
159
160 if (!spool)
1c5ecae3 161 return ret;
90481622 162
db71ef79 163 spin_lock_irq(&spool->lock);
1c5ecae3
MK
164
165 if (spool->max_hpages != -1) { /* maximum size accounting */
166 if ((spool->used_hpages + delta) <= spool->max_hpages)
167 spool->used_hpages += delta;
168 else {
169 ret = -ENOMEM;
170 goto unlock_ret;
171 }
90481622 172 }
90481622 173
09a95e29
MK
174 /* minimum size accounting */
175 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
176 if (delta > spool->rsv_hpages) {
177 /*
178 * Asking for more reserves than those already taken on
179 * behalf of subpool. Return difference.
180 */
181 ret = delta - spool->rsv_hpages;
182 spool->rsv_hpages = 0;
183 } else {
184 ret = 0; /* reserves already accounted for */
185 spool->rsv_hpages -= delta;
186 }
187 }
188
189unlock_ret:
db71ef79 190 spin_unlock_irq(&spool->lock);
90481622
DG
191 return ret;
192}
193
1c5ecae3
MK
194/*
195 * Subpool accounting for freeing and unreserving pages.
196 * Return the number of global page reservations that must be dropped.
197 * The return value may only be different than the passed value (delta)
198 * in the case where a subpool minimum size must be maintained.
199 */
200static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
201 long delta)
202{
1c5ecae3 203 long ret = delta;
db71ef79 204 unsigned long flags;
1c5ecae3 205
90481622 206 if (!spool)
1c5ecae3 207 return delta;
90481622 208
db71ef79 209 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
210
211 if (spool->max_hpages != -1) /* maximum size accounting */
212 spool->used_hpages -= delta;
213
09a95e29
MK
214 /* minimum size accounting */
215 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
216 if (spool->rsv_hpages + delta <= spool->min_hpages)
217 ret = 0;
218 else
219 ret = spool->rsv_hpages + delta - spool->min_hpages;
220
221 spool->rsv_hpages += delta;
222 if (spool->rsv_hpages > spool->min_hpages)
223 spool->rsv_hpages = spool->min_hpages;
224 }
225
226 /*
227 * If hugetlbfs_put_super couldn't free spool due to an outstanding
228 * quota reference, free it now.
229 */
db71ef79 230 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
231
232 return ret;
90481622
DG
233}
234
235static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
236{
237 return HUGETLBFS_SB(inode->i_sb)->spool;
238}
239
240static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
241{
496ad9aa 242 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
243}
244
0db9d74e
MA
245/* Helper that removes a struct file_region from the resv_map cache and returns
246 * it for use.
247 */
248static struct file_region *
249get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
250{
251 struct file_region *nrg = NULL;
252
253 VM_BUG_ON(resv->region_cache_count <= 0);
254
255 resv->region_cache_count--;
256 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
257 list_del(&nrg->link);
258
259 nrg->from = from;
260 nrg->to = to;
261
262 return nrg;
263}
264
075a61d0
MA
265static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
266 struct file_region *rg)
267{
268#ifdef CONFIG_CGROUP_HUGETLB
269 nrg->reservation_counter = rg->reservation_counter;
270 nrg->css = rg->css;
271 if (rg->css)
272 css_get(rg->css);
273#endif
274}
275
276/* Helper that records hugetlb_cgroup uncharge info. */
277static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
278 struct hstate *h,
279 struct resv_map *resv,
280 struct file_region *nrg)
281{
282#ifdef CONFIG_CGROUP_HUGETLB
283 if (h_cg) {
284 nrg->reservation_counter =
285 &h_cg->rsvd_hugepage[hstate_index(h)];
286 nrg->css = &h_cg->css;
d85aecf2
ML
287 /*
288 * The caller will hold exactly one h_cg->css reference for the
289 * whole contiguous reservation region. But this area might be
290 * scattered when there are already some file_regions reside in
291 * it. As a result, many file_regions may share only one css
292 * reference. In order to ensure that one file_region must hold
293 * exactly one h_cg->css reference, we should do css_get for
294 * each file_region and leave the reference held by caller
295 * untouched.
296 */
297 css_get(&h_cg->css);
075a61d0
MA
298 if (!resv->pages_per_hpage)
299 resv->pages_per_hpage = pages_per_huge_page(h);
300 /* pages_per_hpage should be the same for all entries in
301 * a resv_map.
302 */
303 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304 } else {
305 nrg->reservation_counter = NULL;
306 nrg->css = NULL;
307 }
308#endif
309}
310
d85aecf2
ML
311static void put_uncharge_info(struct file_region *rg)
312{
313#ifdef CONFIG_CGROUP_HUGETLB
314 if (rg->css)
315 css_put(rg->css);
316#endif
317}
318
a9b3f867
MA
319static bool has_same_uncharge_info(struct file_region *rg,
320 struct file_region *org)
321{
322#ifdef CONFIG_CGROUP_HUGETLB
323 return rg && org &&
324 rg->reservation_counter == org->reservation_counter &&
325 rg->css == org->css;
326
327#else
328 return true;
329#endif
330}
331
332static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
333{
334 struct file_region *nrg = NULL, *prg = NULL;
335
336 prg = list_prev_entry(rg, link);
337 if (&prg->link != &resv->regions && prg->to == rg->from &&
338 has_same_uncharge_info(prg, rg)) {
339 prg->to = rg->to;
340
341 list_del(&rg->link);
d85aecf2 342 put_uncharge_info(rg);
a9b3f867
MA
343 kfree(rg);
344
7db5e7b6 345 rg = prg;
a9b3f867
MA
346 }
347
348 nrg = list_next_entry(rg, link);
349 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
350 has_same_uncharge_info(nrg, rg)) {
351 nrg->from = rg->from;
352
353 list_del(&rg->link);
d85aecf2 354 put_uncharge_info(rg);
a9b3f867 355 kfree(rg);
a9b3f867
MA
356 }
357}
358
2103cf9c
PX
359static inline long
360hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
361 long to, struct hstate *h, struct hugetlb_cgroup *cg,
362 long *regions_needed)
363{
364 struct file_region *nrg;
365
366 if (!regions_needed) {
367 nrg = get_file_region_entry_from_cache(map, from, to);
368 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
369 list_add(&nrg->link, rg->link.prev);
370 coalesce_file_region(map, nrg);
371 } else
372 *regions_needed += 1;
373
374 return to - from;
375}
376
972a3da3
WY
377/*
378 * Must be called with resv->lock held.
379 *
380 * Calling this with regions_needed != NULL will count the number of pages
381 * to be added but will not modify the linked list. And regions_needed will
382 * indicate the number of file_regions needed in the cache to carry out to add
383 * the regions for this range.
d75c6af9
MA
384 */
385static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 386 struct hugetlb_cgroup *h_cg,
972a3da3 387 struct hstate *h, long *regions_needed)
d75c6af9 388{
0db9d74e 389 long add = 0;
d75c6af9 390 struct list_head *head = &resv->regions;
0db9d74e 391 long last_accounted_offset = f;
2103cf9c 392 struct file_region *rg = NULL, *trg = NULL;
d75c6af9 393
0db9d74e
MA
394 if (regions_needed)
395 *regions_needed = 0;
d75c6af9 396
0db9d74e
MA
397 /* In this loop, we essentially handle an entry for the range
398 * [last_accounted_offset, rg->from), at every iteration, with some
399 * bounds checking.
400 */
401 list_for_each_entry_safe(rg, trg, head, link) {
402 /* Skip irrelevant regions that start before our range. */
403 if (rg->from < f) {
404 /* If this region ends after the last accounted offset,
405 * then we need to update last_accounted_offset.
406 */
407 if (rg->to > last_accounted_offset)
408 last_accounted_offset = rg->to;
409 continue;
410 }
d75c6af9 411
0db9d74e
MA
412 /* When we find a region that starts beyond our range, we've
413 * finished.
414 */
ca7e0457 415 if (rg->from >= t)
d75c6af9
MA
416 break;
417
0db9d74e
MA
418 /* Add an entry for last_accounted_offset -> rg->from, and
419 * update last_accounted_offset.
420 */
2103cf9c
PX
421 if (rg->from > last_accounted_offset)
422 add += hugetlb_resv_map_add(resv, rg,
423 last_accounted_offset,
424 rg->from, h, h_cg,
425 regions_needed);
0db9d74e
MA
426
427 last_accounted_offset = rg->to;
428 }
429
430 /* Handle the case where our range extends beyond
431 * last_accounted_offset.
432 */
2103cf9c
PX
433 if (last_accounted_offset < t)
434 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
435 t, h, h_cg, regions_needed);
0db9d74e
MA
436
437 VM_BUG_ON(add < 0);
438 return add;
439}
440
441/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
442 */
443static int allocate_file_region_entries(struct resv_map *resv,
444 int regions_needed)
445 __must_hold(&resv->lock)
446{
447 struct list_head allocated_regions;
448 int to_allocate = 0, i = 0;
449 struct file_region *trg = NULL, *rg = NULL;
450
451 VM_BUG_ON(regions_needed < 0);
452
453 INIT_LIST_HEAD(&allocated_regions);
454
455 /*
456 * Check for sufficient descriptors in the cache to accommodate
457 * the number of in progress add operations plus regions_needed.
458 *
459 * This is a while loop because when we drop the lock, some other call
460 * to region_add or region_del may have consumed some region_entries,
461 * so we keep looping here until we finally have enough entries for
462 * (adds_in_progress + regions_needed).
463 */
464 while (resv->region_cache_count <
465 (resv->adds_in_progress + regions_needed)) {
466 to_allocate = resv->adds_in_progress + regions_needed -
467 resv->region_cache_count;
468
469 /* At this point, we should have enough entries in the cache
470 * for all the existings adds_in_progress. We should only be
471 * needing to allocate for regions_needed.
d75c6af9 472 */
0db9d74e
MA
473 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
474
475 spin_unlock(&resv->lock);
476 for (i = 0; i < to_allocate; i++) {
477 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
478 if (!trg)
479 goto out_of_memory;
480 list_add(&trg->link, &allocated_regions);
d75c6af9 481 }
d75c6af9 482
0db9d74e
MA
483 spin_lock(&resv->lock);
484
d3ec7b6e
WY
485 list_splice(&allocated_regions, &resv->region_cache);
486 resv->region_cache_count += to_allocate;
d75c6af9
MA
487 }
488
0db9d74e 489 return 0;
d75c6af9 490
0db9d74e
MA
491out_of_memory:
492 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
493 list_del(&rg->link);
494 kfree(rg);
495 }
496 return -ENOMEM;
d75c6af9
MA
497}
498
1dd308a7
MK
499/*
500 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
501 * map. Regions will be taken from the cache to fill in this range.
502 * Sufficient regions should exist in the cache due to the previous
503 * call to region_chg with the same range, but in some cases the cache will not
504 * have sufficient entries due to races with other code doing region_add or
505 * region_del. The extra needed entries will be allocated.
cf3ad20b 506 *
0db9d74e
MA
507 * regions_needed is the out value provided by a previous call to region_chg.
508 *
509 * Return the number of new huge pages added to the map. This number is greater
510 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 511 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
512 * region_add of regions of length 1 never allocate file_regions and cannot
513 * fail; region_chg will always allocate at least 1 entry and a region_add for
514 * 1 page will only require at most 1 entry.
1dd308a7 515 */
0db9d74e 516static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
517 long in_regions_needed, struct hstate *h,
518 struct hugetlb_cgroup *h_cg)
96822904 519{
0db9d74e 520 long add = 0, actual_regions_needed = 0;
96822904 521
7b24d861 522 spin_lock(&resv->lock);
0db9d74e
MA
523retry:
524
525 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
526 add_reservation_in_range(resv, f, t, NULL, NULL,
527 &actual_regions_needed);
96822904 528
5e911373 529 /*
0db9d74e
MA
530 * Check for sufficient descriptors in the cache to accommodate
531 * this add operation. Note that actual_regions_needed may be greater
532 * than in_regions_needed, as the resv_map may have been modified since
533 * the region_chg call. In this case, we need to make sure that we
534 * allocate extra entries, such that we have enough for all the
535 * existing adds_in_progress, plus the excess needed for this
536 * operation.
5e911373 537 */
0db9d74e
MA
538 if (actual_regions_needed > in_regions_needed &&
539 resv->region_cache_count <
540 resv->adds_in_progress +
541 (actual_regions_needed - in_regions_needed)) {
542 /* region_add operation of range 1 should never need to
543 * allocate file_region entries.
544 */
545 VM_BUG_ON(t - f <= 1);
5e911373 546
0db9d74e
MA
547 if (allocate_file_region_entries(
548 resv, actual_regions_needed - in_regions_needed)) {
549 return -ENOMEM;
550 }
5e911373 551
0db9d74e 552 goto retry;
5e911373
MK
553 }
554
972a3da3 555 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
556
557 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 558
7b24d861 559 spin_unlock(&resv->lock);
cf3ad20b 560 return add;
96822904
AW
561}
562
1dd308a7
MK
563/*
564 * Examine the existing reserve map and determine how many
565 * huge pages in the specified range [f, t) are NOT currently
566 * represented. This routine is called before a subsequent
567 * call to region_add that will actually modify the reserve
568 * map to add the specified range [f, t). region_chg does
569 * not change the number of huge pages represented by the
0db9d74e
MA
570 * map. A number of new file_region structures is added to the cache as a
571 * placeholder, for the subsequent region_add call to use. At least 1
572 * file_region structure is added.
573 *
574 * out_regions_needed is the number of regions added to the
575 * resv->adds_in_progress. This value needs to be provided to a follow up call
576 * to region_add or region_abort for proper accounting.
5e911373
MK
577 *
578 * Returns the number of huge pages that need to be added to the existing
579 * reservation map for the range [f, t). This number is greater or equal to
580 * zero. -ENOMEM is returned if a new file_region structure or cache entry
581 * is needed and can not be allocated.
1dd308a7 582 */
0db9d74e
MA
583static long region_chg(struct resv_map *resv, long f, long t,
584 long *out_regions_needed)
96822904 585{
96822904
AW
586 long chg = 0;
587
7b24d861 588 spin_lock(&resv->lock);
5e911373 589
972a3da3 590 /* Count how many hugepages in this range are NOT represented. */
075a61d0 591 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 592 out_regions_needed);
5e911373 593
0db9d74e
MA
594 if (*out_regions_needed == 0)
595 *out_regions_needed = 1;
5e911373 596
0db9d74e
MA
597 if (allocate_file_region_entries(resv, *out_regions_needed))
598 return -ENOMEM;
5e911373 599
0db9d74e 600 resv->adds_in_progress += *out_regions_needed;
7b24d861 601
7b24d861 602 spin_unlock(&resv->lock);
96822904
AW
603 return chg;
604}
605
5e911373
MK
606/*
607 * Abort the in progress add operation. The adds_in_progress field
608 * of the resv_map keeps track of the operations in progress between
609 * calls to region_chg and region_add. Operations are sometimes
610 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
611 * is called to decrement the adds_in_progress counter. regions_needed
612 * is the value returned by the region_chg call, it is used to decrement
613 * the adds_in_progress counter.
5e911373
MK
614 *
615 * NOTE: The range arguments [f, t) are not needed or used in this
616 * routine. They are kept to make reading the calling code easier as
617 * arguments will match the associated region_chg call.
618 */
0db9d74e
MA
619static void region_abort(struct resv_map *resv, long f, long t,
620 long regions_needed)
5e911373
MK
621{
622 spin_lock(&resv->lock);
623 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 624 resv->adds_in_progress -= regions_needed;
5e911373
MK
625 spin_unlock(&resv->lock);
626}
627
1dd308a7 628/*
feba16e2
MK
629 * Delete the specified range [f, t) from the reserve map. If the
630 * t parameter is LONG_MAX, this indicates that ALL regions after f
631 * should be deleted. Locate the regions which intersect [f, t)
632 * and either trim, delete or split the existing regions.
633 *
634 * Returns the number of huge pages deleted from the reserve map.
635 * In the normal case, the return value is zero or more. In the
636 * case where a region must be split, a new region descriptor must
637 * be allocated. If the allocation fails, -ENOMEM will be returned.
638 * NOTE: If the parameter t == LONG_MAX, then we will never split
639 * a region and possibly return -ENOMEM. Callers specifying
640 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 641 */
feba16e2 642static long region_del(struct resv_map *resv, long f, long t)
96822904 643{
1406ec9b 644 struct list_head *head = &resv->regions;
96822904 645 struct file_region *rg, *trg;
feba16e2
MK
646 struct file_region *nrg = NULL;
647 long del = 0;
96822904 648
feba16e2 649retry:
7b24d861 650 spin_lock(&resv->lock);
feba16e2 651 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
652 /*
653 * Skip regions before the range to be deleted. file_region
654 * ranges are normally of the form [from, to). However, there
655 * may be a "placeholder" entry in the map which is of the form
656 * (from, to) with from == to. Check for placeholder entries
657 * at the beginning of the range to be deleted.
658 */
659 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 660 continue;
dbe409e4 661
feba16e2 662 if (rg->from >= t)
96822904 663 break;
96822904 664
feba16e2
MK
665 if (f > rg->from && t < rg->to) { /* Must split region */
666 /*
667 * Check for an entry in the cache before dropping
668 * lock and attempting allocation.
669 */
670 if (!nrg &&
671 resv->region_cache_count > resv->adds_in_progress) {
672 nrg = list_first_entry(&resv->region_cache,
673 struct file_region,
674 link);
675 list_del(&nrg->link);
676 resv->region_cache_count--;
677 }
96822904 678
feba16e2
MK
679 if (!nrg) {
680 spin_unlock(&resv->lock);
681 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
682 if (!nrg)
683 return -ENOMEM;
684 goto retry;
685 }
686
687 del += t - f;
79aa925b 688 hugetlb_cgroup_uncharge_file_region(
d85aecf2 689 resv, rg, t - f, false);
feba16e2
MK
690
691 /* New entry for end of split region */
692 nrg->from = t;
693 nrg->to = rg->to;
075a61d0
MA
694
695 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
696
feba16e2
MK
697 INIT_LIST_HEAD(&nrg->link);
698
699 /* Original entry is trimmed */
700 rg->to = f;
701
702 list_add(&nrg->link, &rg->link);
703 nrg = NULL;
96822904 704 break;
feba16e2
MK
705 }
706
707 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
708 del += rg->to - rg->from;
075a61d0 709 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 710 rg->to - rg->from, true);
feba16e2
MK
711 list_del(&rg->link);
712 kfree(rg);
713 continue;
714 }
715
716 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 717 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 718 t - rg->from, false);
075a61d0 719
79aa925b
MK
720 del += t - rg->from;
721 rg->from = t;
722 } else { /* Trim end of region */
075a61d0 723 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 724 rg->to - f, false);
79aa925b
MK
725
726 del += rg->to - f;
727 rg->to = f;
feba16e2 728 }
96822904 729 }
7b24d861 730
7b24d861 731 spin_unlock(&resv->lock);
feba16e2
MK
732 kfree(nrg);
733 return del;
96822904
AW
734}
735
b5cec28d
MK
736/*
737 * A rare out of memory error was encountered which prevented removal of
738 * the reserve map region for a page. The huge page itself was free'ed
739 * and removed from the page cache. This routine will adjust the subpool
740 * usage count, and the global reserve count if needed. By incrementing
741 * these counts, the reserve map entry which could not be deleted will
742 * appear as a "reserved" entry instead of simply dangling with incorrect
743 * counts.
744 */
72e2936c 745void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
746{
747 struct hugepage_subpool *spool = subpool_inode(inode);
748 long rsv_adjust;
da56388c 749 bool reserved = false;
b5cec28d
MK
750
751 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 752 if (rsv_adjust > 0) {
b5cec28d
MK
753 struct hstate *h = hstate_inode(inode);
754
da56388c
ML
755 if (!hugetlb_acct_memory(h, 1))
756 reserved = true;
757 } else if (!rsv_adjust) {
758 reserved = true;
b5cec28d 759 }
da56388c
ML
760
761 if (!reserved)
762 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
763}
764
1dd308a7
MK
765/*
766 * Count and return the number of huge pages in the reserve map
767 * that intersect with the range [f, t).
768 */
1406ec9b 769static long region_count(struct resv_map *resv, long f, long t)
84afd99b 770{
1406ec9b 771 struct list_head *head = &resv->regions;
84afd99b
AW
772 struct file_region *rg;
773 long chg = 0;
774
7b24d861 775 spin_lock(&resv->lock);
84afd99b
AW
776 /* Locate each segment we overlap with, and count that overlap. */
777 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
778 long seg_from;
779 long seg_to;
84afd99b
AW
780
781 if (rg->to <= f)
782 continue;
783 if (rg->from >= t)
784 break;
785
786 seg_from = max(rg->from, f);
787 seg_to = min(rg->to, t);
788
789 chg += seg_to - seg_from;
790 }
7b24d861 791 spin_unlock(&resv->lock);
84afd99b
AW
792
793 return chg;
794}
795
e7c4b0bf
AW
796/*
797 * Convert the address within this vma to the page offset within
798 * the mapping, in pagecache page units; huge pages here.
799 */
a5516438
AK
800static pgoff_t vma_hugecache_offset(struct hstate *h,
801 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 802{
a5516438
AK
803 return ((address - vma->vm_start) >> huge_page_shift(h)) +
804 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
805}
806
0fe6e20b
NH
807pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
808 unsigned long address)
809{
810 return vma_hugecache_offset(hstate_vma(vma), vma, address);
811}
dee41079 812EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 813
08fba699
MG
814/*
815 * Return the size of the pages allocated when backing a VMA. In the majority
816 * cases this will be same size as used by the page table entries.
817 */
818unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
819{
05ea8860
DW
820 if (vma->vm_ops && vma->vm_ops->pagesize)
821 return vma->vm_ops->pagesize(vma);
822 return PAGE_SIZE;
08fba699 823}
f340ca0f 824EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 825
3340289d
MG
826/*
827 * Return the page size being used by the MMU to back a VMA. In the majority
828 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
829 * architectures where it differs, an architecture-specific 'strong'
830 * version of this symbol is required.
3340289d 831 */
09135cc5 832__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
833{
834 return vma_kernel_pagesize(vma);
835}
3340289d 836
84afd99b
AW
837/*
838 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
839 * bits of the reservation map pointer, which are always clear due to
840 * alignment.
841 */
842#define HPAGE_RESV_OWNER (1UL << 0)
843#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 844#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 845
a1e78772
MG
846/*
847 * These helpers are used to track how many pages are reserved for
848 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
849 * is guaranteed to have their future faults succeed.
850 *
851 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
852 * the reserve counters are updated with the hugetlb_lock held. It is safe
853 * to reset the VMA at fork() time as it is not in use yet and there is no
854 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
855 *
856 * The private mapping reservation is represented in a subtly different
857 * manner to a shared mapping. A shared mapping has a region map associated
858 * with the underlying file, this region map represents the backing file
859 * pages which have ever had a reservation assigned which this persists even
860 * after the page is instantiated. A private mapping has a region map
861 * associated with the original mmap which is attached to all VMAs which
862 * reference it, this region map represents those offsets which have consumed
863 * reservation ie. where pages have been instantiated.
a1e78772 864 */
e7c4b0bf
AW
865static unsigned long get_vma_private_data(struct vm_area_struct *vma)
866{
867 return (unsigned long)vma->vm_private_data;
868}
869
870static void set_vma_private_data(struct vm_area_struct *vma,
871 unsigned long value)
872{
873 vma->vm_private_data = (void *)value;
874}
875
e9fe92ae
MA
876static void
877resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
878 struct hugetlb_cgroup *h_cg,
879 struct hstate *h)
880{
881#ifdef CONFIG_CGROUP_HUGETLB
882 if (!h_cg || !h) {
883 resv_map->reservation_counter = NULL;
884 resv_map->pages_per_hpage = 0;
885 resv_map->css = NULL;
886 } else {
887 resv_map->reservation_counter =
888 &h_cg->rsvd_hugepage[hstate_index(h)];
889 resv_map->pages_per_hpage = pages_per_huge_page(h);
890 resv_map->css = &h_cg->css;
891 }
892#endif
893}
894
9119a41e 895struct resv_map *resv_map_alloc(void)
84afd99b
AW
896{
897 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
898 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
899
900 if (!resv_map || !rg) {
901 kfree(resv_map);
902 kfree(rg);
84afd99b 903 return NULL;
5e911373 904 }
84afd99b
AW
905
906 kref_init(&resv_map->refs);
7b24d861 907 spin_lock_init(&resv_map->lock);
84afd99b
AW
908 INIT_LIST_HEAD(&resv_map->regions);
909
5e911373 910 resv_map->adds_in_progress = 0;
e9fe92ae
MA
911 /*
912 * Initialize these to 0. On shared mappings, 0's here indicate these
913 * fields don't do cgroup accounting. On private mappings, these will be
914 * re-initialized to the proper values, to indicate that hugetlb cgroup
915 * reservations are to be un-charged from here.
916 */
917 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
918
919 INIT_LIST_HEAD(&resv_map->region_cache);
920 list_add(&rg->link, &resv_map->region_cache);
921 resv_map->region_cache_count = 1;
922
84afd99b
AW
923 return resv_map;
924}
925
9119a41e 926void resv_map_release(struct kref *ref)
84afd99b
AW
927{
928 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
929 struct list_head *head = &resv_map->region_cache;
930 struct file_region *rg, *trg;
84afd99b
AW
931
932 /* Clear out any active regions before we release the map. */
feba16e2 933 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
934
935 /* ... and any entries left in the cache */
936 list_for_each_entry_safe(rg, trg, head, link) {
937 list_del(&rg->link);
938 kfree(rg);
939 }
940
941 VM_BUG_ON(resv_map->adds_in_progress);
942
84afd99b
AW
943 kfree(resv_map);
944}
945
4e35f483
JK
946static inline struct resv_map *inode_resv_map(struct inode *inode)
947{
f27a5136
MK
948 /*
949 * At inode evict time, i_mapping may not point to the original
950 * address space within the inode. This original address space
951 * contains the pointer to the resv_map. So, always use the
952 * address space embedded within the inode.
953 * The VERY common case is inode->mapping == &inode->i_data but,
954 * this may not be true for device special inodes.
955 */
956 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
957}
958
84afd99b 959static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 960{
81d1b09c 961 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
962 if (vma->vm_flags & VM_MAYSHARE) {
963 struct address_space *mapping = vma->vm_file->f_mapping;
964 struct inode *inode = mapping->host;
965
966 return inode_resv_map(inode);
967
968 } else {
84afd99b
AW
969 return (struct resv_map *)(get_vma_private_data(vma) &
970 ~HPAGE_RESV_MASK);
4e35f483 971 }
a1e78772
MG
972}
973
84afd99b 974static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 975{
81d1b09c
SL
976 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
977 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 978
84afd99b
AW
979 set_vma_private_data(vma, (get_vma_private_data(vma) &
980 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
981}
982
983static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
984{
81d1b09c
SL
985 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
986 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
987
988 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
989}
990
991static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
992{
81d1b09c 993 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
994
995 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
996}
997
04f2cbe3 998/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
999void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1000{
81d1b09c 1001 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 1002 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
1003 vma->vm_private_data = (void *)0;
1004}
1005
1006/* Returns true if the VMA has associated reserve pages */
559ec2f8 1007static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1008{
af0ed73e
JK
1009 if (vma->vm_flags & VM_NORESERVE) {
1010 /*
1011 * This address is already reserved by other process(chg == 0),
1012 * so, we should decrement reserved count. Without decrementing,
1013 * reserve count remains after releasing inode, because this
1014 * allocated page will go into page cache and is regarded as
1015 * coming from reserved pool in releasing step. Currently, we
1016 * don't have any other solution to deal with this situation
1017 * properly, so add work-around here.
1018 */
1019 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1020 return true;
af0ed73e 1021 else
559ec2f8 1022 return false;
af0ed73e 1023 }
a63884e9
JK
1024
1025 /* Shared mappings always use reserves */
1fb1b0e9
MK
1026 if (vma->vm_flags & VM_MAYSHARE) {
1027 /*
1028 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1029 * be a region map for all pages. The only situation where
1030 * there is no region map is if a hole was punched via
7c8de358 1031 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1032 * use. This situation is indicated if chg != 0.
1033 */
1034 if (chg)
1035 return false;
1036 else
1037 return true;
1038 }
a63884e9
JK
1039
1040 /*
1041 * Only the process that called mmap() has reserves for
1042 * private mappings.
1043 */
67961f9d
MK
1044 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1045 /*
1046 * Like the shared case above, a hole punch or truncate
1047 * could have been performed on the private mapping.
1048 * Examine the value of chg to determine if reserves
1049 * actually exist or were previously consumed.
1050 * Very Subtle - The value of chg comes from a previous
1051 * call to vma_needs_reserves(). The reserve map for
1052 * private mappings has different (opposite) semantics
1053 * than that of shared mappings. vma_needs_reserves()
1054 * has already taken this difference in semantics into
1055 * account. Therefore, the meaning of chg is the same
1056 * as in the shared case above. Code could easily be
1057 * combined, but keeping it separate draws attention to
1058 * subtle differences.
1059 */
1060 if (chg)
1061 return false;
1062 else
1063 return true;
1064 }
a63884e9 1065
559ec2f8 1066 return false;
a1e78772
MG
1067}
1068
a5516438 1069static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1070{
1071 int nid = page_to_nid(page);
9487ca60
MK
1072
1073 lockdep_assert_held(&hugetlb_lock);
0edaecfa 1074 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1075 h->free_huge_pages++;
1076 h->free_huge_pages_node[nid]++;
6c037149 1077 SetHPageFreed(page);
1da177e4
LT
1078}
1079
94310cbc 1080static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1081{
1082 struct page *page;
bbe88753
JK
1083 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1084
9487ca60 1085 lockdep_assert_held(&hugetlb_lock);
bbe88753
JK
1086 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1087 if (nocma && is_migrate_cma_page(page))
1088 continue;
bf50bab2 1089
6664bfc8
WY
1090 if (PageHWPoison(page))
1091 continue;
1092
1093 list_move(&page->lru, &h->hugepage_activelist);
1094 set_page_refcounted(page);
6c037149 1095 ClearHPageFreed(page);
6664bfc8
WY
1096 h->free_huge_pages--;
1097 h->free_huge_pages_node[nid]--;
1098 return page;
bbe88753
JK
1099 }
1100
6664bfc8 1101 return NULL;
bf50bab2
NH
1102}
1103
3e59fcb0
MH
1104static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1105 nodemask_t *nmask)
94310cbc 1106{
3e59fcb0
MH
1107 unsigned int cpuset_mems_cookie;
1108 struct zonelist *zonelist;
1109 struct zone *zone;
1110 struct zoneref *z;
98fa15f3 1111 int node = NUMA_NO_NODE;
94310cbc 1112
3e59fcb0
MH
1113 zonelist = node_zonelist(nid, gfp_mask);
1114
1115retry_cpuset:
1116 cpuset_mems_cookie = read_mems_allowed_begin();
1117 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1118 struct page *page;
1119
1120 if (!cpuset_zone_allowed(zone, gfp_mask))
1121 continue;
1122 /*
1123 * no need to ask again on the same node. Pool is node rather than
1124 * zone aware
1125 */
1126 if (zone_to_nid(zone) == node)
1127 continue;
1128 node = zone_to_nid(zone);
94310cbc 1129
94310cbc
AK
1130 page = dequeue_huge_page_node_exact(h, node);
1131 if (page)
1132 return page;
1133 }
3e59fcb0
MH
1134 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1135 goto retry_cpuset;
1136
94310cbc
AK
1137 return NULL;
1138}
1139
a5516438
AK
1140static struct page *dequeue_huge_page_vma(struct hstate *h,
1141 struct vm_area_struct *vma,
af0ed73e
JK
1142 unsigned long address, int avoid_reserve,
1143 long chg)
1da177e4 1144{
3e59fcb0 1145 struct page *page;
480eccf9 1146 struct mempolicy *mpol;
04ec6264 1147 gfp_t gfp_mask;
3e59fcb0 1148 nodemask_t *nodemask;
04ec6264 1149 int nid;
1da177e4 1150
a1e78772
MG
1151 /*
1152 * A child process with MAP_PRIVATE mappings created by their parent
1153 * have no page reserves. This check ensures that reservations are
1154 * not "stolen". The child may still get SIGKILLed
1155 */
af0ed73e 1156 if (!vma_has_reserves(vma, chg) &&
a5516438 1157 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1158 goto err;
a1e78772 1159
04f2cbe3 1160 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1161 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1162 goto err;
04f2cbe3 1163
04ec6264
VB
1164 gfp_mask = htlb_alloc_mask(h);
1165 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1166 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1167 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1168 SetHPageRestoreReserve(page);
3e59fcb0 1169 h->resv_huge_pages--;
1da177e4 1170 }
cc9a6c87 1171
52cd3b07 1172 mpol_cond_put(mpol);
1da177e4 1173 return page;
cc9a6c87
MG
1174
1175err:
cc9a6c87 1176 return NULL;
1da177e4
LT
1177}
1178
1cac6f2c
LC
1179/*
1180 * common helper functions for hstate_next_node_to_{alloc|free}.
1181 * We may have allocated or freed a huge page based on a different
1182 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1183 * be outside of *nodes_allowed. Ensure that we use an allowed
1184 * node for alloc or free.
1185 */
1186static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1187{
0edaf86c 1188 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1189 VM_BUG_ON(nid >= MAX_NUMNODES);
1190
1191 return nid;
1192}
1193
1194static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1195{
1196 if (!node_isset(nid, *nodes_allowed))
1197 nid = next_node_allowed(nid, nodes_allowed);
1198 return nid;
1199}
1200
1201/*
1202 * returns the previously saved node ["this node"] from which to
1203 * allocate a persistent huge page for the pool and advance the
1204 * next node from which to allocate, handling wrap at end of node
1205 * mask.
1206 */
1207static int hstate_next_node_to_alloc(struct hstate *h,
1208 nodemask_t *nodes_allowed)
1209{
1210 int nid;
1211
1212 VM_BUG_ON(!nodes_allowed);
1213
1214 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1215 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1216
1217 return nid;
1218}
1219
1220/*
10c6ec49 1221 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1222 * node ["this node"] from which to free a huge page. Advance the
1223 * next node id whether or not we find a free huge page to free so
1224 * that the next attempt to free addresses the next node.
1225 */
1226static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1227{
1228 int nid;
1229
1230 VM_BUG_ON(!nodes_allowed);
1231
1232 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1233 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1234
1235 return nid;
1236}
1237
1238#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1239 for (nr_nodes = nodes_weight(*mask); \
1240 nr_nodes > 0 && \
1241 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1242 nr_nodes--)
1243
1244#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1245 for (nr_nodes = nodes_weight(*mask); \
1246 nr_nodes > 0 && \
1247 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1248 nr_nodes--)
1249
e1073d1e 1250#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1251static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1252 unsigned int order)
944d9fec
LC
1253{
1254 int i;
1255 int nr_pages = 1 << order;
1256 struct page *p = page + 1;
1257
c8cc708a 1258 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1259 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1260
944d9fec 1261 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1262 clear_compound_head(p);
944d9fec 1263 set_page_refcounted(p);
944d9fec
LC
1264 }
1265
1266 set_compound_order(page, 0);
ba9c1201 1267 page[1].compound_nr = 0;
944d9fec
LC
1268 __ClearPageHead(page);
1269}
1270
d00181b9 1271static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1272{
cf11e85f
RG
1273 /*
1274 * If the page isn't allocated using the cma allocator,
1275 * cma_release() returns false.
1276 */
dbda8fea
BS
1277#ifdef CONFIG_CMA
1278 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1279 return;
dbda8fea 1280#endif
cf11e85f 1281
944d9fec
LC
1282 free_contig_range(page_to_pfn(page), 1 << order);
1283}
1284
4eb0716e 1285#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1286static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1287 int nid, nodemask_t *nodemask)
944d9fec 1288{
04adbc3f 1289 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1290 if (nid == NUMA_NO_NODE)
1291 nid = numa_mem_id();
944d9fec 1292
dbda8fea
BS
1293#ifdef CONFIG_CMA
1294 {
cf11e85f
RG
1295 struct page *page;
1296 int node;
1297
953f064a
LX
1298 if (hugetlb_cma[nid]) {
1299 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1300 huge_page_order(h), true);
cf11e85f
RG
1301 if (page)
1302 return page;
1303 }
953f064a
LX
1304
1305 if (!(gfp_mask & __GFP_THISNODE)) {
1306 for_each_node_mask(node, *nodemask) {
1307 if (node == nid || !hugetlb_cma[node])
1308 continue;
1309
1310 page = cma_alloc(hugetlb_cma[node], nr_pages,
1311 huge_page_order(h), true);
1312 if (page)
1313 return page;
1314 }
1315 }
cf11e85f 1316 }
dbda8fea 1317#endif
cf11e85f 1318
5e27a2df 1319 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1320}
1321
1322static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1323static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1324#else /* !CONFIG_CONTIG_ALLOC */
1325static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1326 int nid, nodemask_t *nodemask)
1327{
1328 return NULL;
1329}
1330#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1331
e1073d1e 1332#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1333static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1334 int nid, nodemask_t *nodemask)
1335{
1336 return NULL;
1337}
d00181b9 1338static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1339static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1340 unsigned int order) { }
944d9fec
LC
1341#endif
1342
6eb4e88a
MK
1343/*
1344 * Remove hugetlb page from lists, and update dtor so that page appears
1345 * as just a compound page. A reference is held on the page.
1346 *
1347 * Must be called with hugetlb lock held.
1348 */
1349static void remove_hugetlb_page(struct hstate *h, struct page *page,
1350 bool adjust_surplus)
1351{
1352 int nid = page_to_nid(page);
1353
1354 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1355 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1356
9487ca60 1357 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1358 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1359 return;
1360
1361 list_del(&page->lru);
1362
1363 if (HPageFreed(page)) {
1364 h->free_huge_pages--;
1365 h->free_huge_pages_node[nid]--;
1366 }
1367 if (adjust_surplus) {
1368 h->surplus_huge_pages--;
1369 h->surplus_huge_pages_node[nid]--;
1370 }
1371
1372 set_page_refcounted(page);
1373 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1374
1375 h->nr_huge_pages--;
1376 h->nr_huge_pages_node[nid]--;
1377}
1378
a5516438 1379static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1380{
1381 int i;
dbfee5ae 1382 struct page *subpage = page;
a5516438 1383
4eb0716e 1384 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1385 return;
18229df5 1386
dbfee5ae
MK
1387 for (i = 0; i < pages_per_huge_page(h);
1388 i++, subpage = mem_map_next(subpage, page, i)) {
1389 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1390 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1391 1 << PG_active | 1 << PG_private |
1392 1 << PG_writeback);
6af2acb6 1393 }
944d9fec
LC
1394 if (hstate_is_gigantic(h)) {
1395 destroy_compound_gigantic_page(page, huge_page_order(h));
1396 free_gigantic_page(page, huge_page_order(h));
1397 } else {
944d9fec
LC
1398 __free_pages(page, huge_page_order(h));
1399 }
6af2acb6
AL
1400}
1401
10c6ec49
MK
1402static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1403{
1404 struct page *page, *t_page;
1405
1406 list_for_each_entry_safe(page, t_page, list, lru) {
1407 update_and_free_page(h, page);
1408 cond_resched();
1409 }
1410}
1411
e5ff2159
AK
1412struct hstate *size_to_hstate(unsigned long size)
1413{
1414 struct hstate *h;
1415
1416 for_each_hstate(h) {
1417 if (huge_page_size(h) == size)
1418 return h;
1419 }
1420 return NULL;
1421}
1422
db71ef79 1423void free_huge_page(struct page *page)
27a85ef1 1424{
a5516438
AK
1425 /*
1426 * Can't pass hstate in here because it is called from the
1427 * compound page destructor.
1428 */
e5ff2159 1429 struct hstate *h = page_hstate(page);
7893d1d5 1430 int nid = page_to_nid(page);
d6995da3 1431 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1432 bool restore_reserve;
db71ef79 1433 unsigned long flags;
27a85ef1 1434
b4330afb
MK
1435 VM_BUG_ON_PAGE(page_count(page), page);
1436 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1437
d6995da3 1438 hugetlb_set_page_subpool(page, NULL);
8ace22bc 1439 page->mapping = NULL;
d6995da3
MK
1440 restore_reserve = HPageRestoreReserve(page);
1441 ClearHPageRestoreReserve(page);
27a85ef1 1442
1c5ecae3 1443 /*
d6995da3 1444 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1445 * reservation. If the page was associated with a subpool, there
1446 * would have been a page reserved in the subpool before allocation
1447 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1448 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1449 * remove the reserved page from the subpool.
1c5ecae3 1450 */
0919e1b6
MK
1451 if (!restore_reserve) {
1452 /*
1453 * A return code of zero implies that the subpool will be
1454 * under its minimum size if the reservation is not restored
1455 * after page is free. Therefore, force restore_reserve
1456 * operation.
1457 */
1458 if (hugepage_subpool_put_pages(spool, 1) == 0)
1459 restore_reserve = true;
1460 }
1c5ecae3 1461
db71ef79 1462 spin_lock_irqsave(&hugetlb_lock, flags);
8f251a3d 1463 ClearHPageMigratable(page);
6d76dcf4
AK
1464 hugetlb_cgroup_uncharge_page(hstate_index(h),
1465 pages_per_huge_page(h), page);
08cf9faf
MA
1466 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1467 pages_per_huge_page(h), page);
07443a85
JK
1468 if (restore_reserve)
1469 h->resv_huge_pages++;
1470
9157c311 1471 if (HPageTemporary(page)) {
6eb4e88a 1472 remove_hugetlb_page(h, page, false);
db71ef79 1473 spin_unlock_irqrestore(&hugetlb_lock, flags);
ab5ac90a
MH
1474 update_and_free_page(h, page);
1475 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1476 /* remove the page from active list */
6eb4e88a 1477 remove_hugetlb_page(h, page, true);
db71ef79 1478 spin_unlock_irqrestore(&hugetlb_lock, flags);
a5516438 1479 update_and_free_page(h, page);
7893d1d5 1480 } else {
5d3a551c 1481 arch_clear_hugepage_flags(page);
a5516438 1482 enqueue_huge_page(h, page);
db71ef79 1483 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1484 }
c77c0a8a
WL
1485}
1486
d3d99fcc
OS
1487/*
1488 * Must be called with the hugetlb lock held
1489 */
1490static void __prep_account_new_huge_page(struct hstate *h, int nid)
1491{
1492 lockdep_assert_held(&hugetlb_lock);
1493 h->nr_huge_pages++;
1494 h->nr_huge_pages_node[nid]++;
1495}
1496
1497static void __prep_new_huge_page(struct page *page)
b7ba30c6 1498{
0edaecfa 1499 INIT_LIST_HEAD(&page->lru);
f1e61557 1500 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1501 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1502 set_hugetlb_cgroup(page, NULL);
1adc4d41 1503 set_hugetlb_cgroup_rsvd(page, NULL);
d3d99fcc
OS
1504}
1505
1506static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1507{
1508 __prep_new_huge_page(page);
db71ef79 1509 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1510 __prep_account_new_huge_page(h, nid);
db71ef79 1511 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1512}
1513
d00181b9 1514static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1515{
1516 int i;
1517 int nr_pages = 1 << order;
1518 struct page *p = page + 1;
1519
1520 /* we rely on prep_new_huge_page to set the destructor */
1521 set_compound_order(page, order);
ef5a22be 1522 __ClearPageReserved(page);
de09d31d 1523 __SetPageHead(page);
20a0307c 1524 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1525 /*
1526 * For gigantic hugepages allocated through bootmem at
1527 * boot, it's safer to be consistent with the not-gigantic
1528 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1529 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1530 * pages may get the reference counting wrong if they see
1531 * PG_reserved set on a tail page (despite the head page not
1532 * having PG_reserved set). Enforcing this consistency between
1533 * head and tail pages allows drivers to optimize away a check
1534 * on the head page when they need know if put_page() is needed
1535 * after get_user_pages().
1536 */
1537 __ClearPageReserved(p);
58a84aa9 1538 set_page_count(p, 0);
1d798ca3 1539 set_compound_head(p, page);
20a0307c 1540 }
b4330afb 1541 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1542 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1543}
1544
7795912c
AM
1545/*
1546 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1547 * transparent huge pages. See the PageTransHuge() documentation for more
1548 * details.
1549 */
20a0307c
WF
1550int PageHuge(struct page *page)
1551{
20a0307c
WF
1552 if (!PageCompound(page))
1553 return 0;
1554
1555 page = compound_head(page);
f1e61557 1556 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1557}
43131e14
NH
1558EXPORT_SYMBOL_GPL(PageHuge);
1559
27c73ae7
AA
1560/*
1561 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1562 * normal or transparent huge pages.
1563 */
1564int PageHeadHuge(struct page *page_head)
1565{
27c73ae7
AA
1566 if (!PageHead(page_head))
1567 return 0;
1568
d4af73e3 1569 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1570}
27c73ae7 1571
c0d0381a
MK
1572/*
1573 * Find and lock address space (mapping) in write mode.
1574 *
336bf30e
MK
1575 * Upon entry, the page is locked which means that page_mapping() is
1576 * stable. Due to locking order, we can only trylock_write. If we can
1577 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1578 */
1579struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1580{
336bf30e 1581 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1582
c0d0381a
MK
1583 if (!mapping)
1584 return mapping;
1585
c0d0381a
MK
1586 if (i_mmap_trylock_write(mapping))
1587 return mapping;
1588
336bf30e 1589 return NULL;
c0d0381a
MK
1590}
1591
13d60f4b
ZY
1592pgoff_t __basepage_index(struct page *page)
1593{
1594 struct page *page_head = compound_head(page);
1595 pgoff_t index = page_index(page_head);
1596 unsigned long compound_idx;
1597
1598 if (!PageHuge(page_head))
1599 return page_index(page);
1600
1601 if (compound_order(page_head) >= MAX_ORDER)
1602 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1603 else
1604 compound_idx = page - page_head;
1605
1606 return (index << compound_order(page_head)) + compound_idx;
1607}
1608
0c397dae 1609static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1610 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1611 nodemask_t *node_alloc_noretry)
1da177e4 1612{
af0fb9df 1613 int order = huge_page_order(h);
1da177e4 1614 struct page *page;
f60858f9 1615 bool alloc_try_hard = true;
f96efd58 1616
f60858f9
MK
1617 /*
1618 * By default we always try hard to allocate the page with
1619 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1620 * a loop (to adjust global huge page counts) and previous allocation
1621 * failed, do not continue to try hard on the same node. Use the
1622 * node_alloc_noretry bitmap to manage this state information.
1623 */
1624 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1625 alloc_try_hard = false;
1626 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1627 if (alloc_try_hard)
1628 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1629 if (nid == NUMA_NO_NODE)
1630 nid = numa_mem_id();
84172f4b 1631 page = __alloc_pages(gfp_mask, order, nid, nmask);
af0fb9df
MH
1632 if (page)
1633 __count_vm_event(HTLB_BUDDY_PGALLOC);
1634 else
1635 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1636
f60858f9
MK
1637 /*
1638 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1639 * indicates an overall state change. Clear bit so that we resume
1640 * normal 'try hard' allocations.
1641 */
1642 if (node_alloc_noretry && page && !alloc_try_hard)
1643 node_clear(nid, *node_alloc_noretry);
1644
1645 /*
1646 * If we tried hard to get a page but failed, set bit so that
1647 * subsequent attempts will not try as hard until there is an
1648 * overall state change.
1649 */
1650 if (node_alloc_noretry && !page && alloc_try_hard)
1651 node_set(nid, *node_alloc_noretry);
1652
63b4613c
NA
1653 return page;
1654}
1655
0c397dae
MH
1656/*
1657 * Common helper to allocate a fresh hugetlb page. All specific allocators
1658 * should use this function to get new hugetlb pages
1659 */
1660static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1661 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1662 nodemask_t *node_alloc_noretry)
0c397dae
MH
1663{
1664 struct page *page;
1665
1666 if (hstate_is_gigantic(h))
1667 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1668 else
1669 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1670 nid, nmask, node_alloc_noretry);
0c397dae
MH
1671 if (!page)
1672 return NULL;
1673
1674 if (hstate_is_gigantic(h))
1675 prep_compound_gigantic_page(page, huge_page_order(h));
1676 prep_new_huge_page(h, page, page_to_nid(page));
1677
1678 return page;
1679}
1680
af0fb9df
MH
1681/*
1682 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1683 * manner.
1684 */
f60858f9
MK
1685static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1686 nodemask_t *node_alloc_noretry)
b2261026
JK
1687{
1688 struct page *page;
1689 int nr_nodes, node;
af0fb9df 1690 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1691
1692 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1693 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1694 node_alloc_noretry);
af0fb9df 1695 if (page)
b2261026 1696 break;
b2261026
JK
1697 }
1698
af0fb9df
MH
1699 if (!page)
1700 return 0;
b2261026 1701
af0fb9df
MH
1702 put_page(page); /* free it into the hugepage allocator */
1703
1704 return 1;
b2261026
JK
1705}
1706
e8c5c824 1707/*
10c6ec49
MK
1708 * Remove huge page from pool from next node to free. Attempt to keep
1709 * persistent huge pages more or less balanced over allowed nodes.
1710 * This routine only 'removes' the hugetlb page. The caller must make
1711 * an additional call to free the page to low level allocators.
e8c5c824
LS
1712 * Called with hugetlb_lock locked.
1713 */
10c6ec49
MK
1714static struct page *remove_pool_huge_page(struct hstate *h,
1715 nodemask_t *nodes_allowed,
1716 bool acct_surplus)
e8c5c824 1717{
b2261026 1718 int nr_nodes, node;
10c6ec49 1719 struct page *page = NULL;
e8c5c824 1720
9487ca60 1721 lockdep_assert_held(&hugetlb_lock);
b2261026 1722 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1723 /*
1724 * If we're returning unused surplus pages, only examine
1725 * nodes with surplus pages.
1726 */
b2261026
JK
1727 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1728 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 1729 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 1730 struct page, lru);
6eb4e88a 1731 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 1732 break;
e8c5c824 1733 }
b2261026 1734 }
e8c5c824 1735
10c6ec49 1736 return page;
e8c5c824
LS
1737}
1738
c8721bbb
NH
1739/*
1740 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1741 * nothing for in-use hugepages and non-hugepages.
1742 * This function returns values like below:
1743 *
1744 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1745 * (allocated or reserved.)
1746 * 0: successfully dissolved free hugepages or the page is not a
1747 * hugepage (considered as already dissolved)
c8721bbb 1748 */
c3114a84 1749int dissolve_free_huge_page(struct page *page)
c8721bbb 1750{
6bc9b564 1751 int rc = -EBUSY;
082d5b6b 1752
7ffddd49 1753retry:
faf53def
NH
1754 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1755 if (!PageHuge(page))
1756 return 0;
1757
db71ef79 1758 spin_lock_irq(&hugetlb_lock);
faf53def
NH
1759 if (!PageHuge(page)) {
1760 rc = 0;
1761 goto out;
1762 }
1763
1764 if (!page_count(page)) {
2247bb33
GS
1765 struct page *head = compound_head(page);
1766 struct hstate *h = page_hstate(head);
6bc9b564 1767 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1768 goto out;
7ffddd49
MS
1769
1770 /*
1771 * We should make sure that the page is already on the free list
1772 * when it is dissolved.
1773 */
6c037149 1774 if (unlikely(!HPageFreed(head))) {
db71ef79 1775 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
1776 cond_resched();
1777
1778 /*
1779 * Theoretically, we should return -EBUSY when we
1780 * encounter this race. In fact, we have a chance
1781 * to successfully dissolve the page if we do a
1782 * retry. Because the race window is quite small.
1783 * If we seize this opportunity, it is an optimization
1784 * for increasing the success rate of dissolving page.
1785 */
1786 goto retry;
1787 }
1788
c3114a84
AK
1789 /*
1790 * Move PageHWPoison flag from head page to the raw error page,
1791 * which makes any subpages rather than the error page reusable.
1792 */
1793 if (PageHWPoison(head) && page != head) {
1794 SetPageHWPoison(page);
1795 ClearPageHWPoison(head);
1796 }
6eb4e88a 1797 remove_hugetlb_page(h, page, false);
c1470b33 1798 h->max_huge_pages--;
db71ef79 1799 spin_unlock_irq(&hugetlb_lock);
2247bb33 1800 update_and_free_page(h, head);
1121828a 1801 return 0;
c8721bbb 1802 }
082d5b6b 1803out:
db71ef79 1804 spin_unlock_irq(&hugetlb_lock);
082d5b6b 1805 return rc;
c8721bbb
NH
1806}
1807
1808/*
1809 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1810 * make specified memory blocks removable from the system.
2247bb33
GS
1811 * Note that this will dissolve a free gigantic hugepage completely, if any
1812 * part of it lies within the given range.
082d5b6b
GS
1813 * Also note that if dissolve_free_huge_page() returns with an error, all
1814 * free hugepages that were dissolved before that error are lost.
c8721bbb 1815 */
082d5b6b 1816int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1817{
c8721bbb 1818 unsigned long pfn;
eb03aa00 1819 struct page *page;
082d5b6b 1820 int rc = 0;
c8721bbb 1821
d0177639 1822 if (!hugepages_supported())
082d5b6b 1823 return rc;
d0177639 1824
eb03aa00
GS
1825 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1826 page = pfn_to_page(pfn);
faf53def
NH
1827 rc = dissolve_free_huge_page(page);
1828 if (rc)
1829 break;
eb03aa00 1830 }
082d5b6b
GS
1831
1832 return rc;
c8721bbb
NH
1833}
1834
ab5ac90a
MH
1835/*
1836 * Allocates a fresh surplus page from the page allocator.
1837 */
0c397dae 1838static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1839 int nid, nodemask_t *nmask)
7893d1d5 1840{
9980d744 1841 struct page *page = NULL;
7893d1d5 1842
bae7f4ae 1843 if (hstate_is_gigantic(h))
aa888a74
AK
1844 return NULL;
1845
db71ef79 1846 spin_lock_irq(&hugetlb_lock);
9980d744
MH
1847 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1848 goto out_unlock;
db71ef79 1849 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 1850
f60858f9 1851 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1852 if (!page)
0c397dae 1853 return NULL;
d1c3fb1f 1854
db71ef79 1855 spin_lock_irq(&hugetlb_lock);
9980d744
MH
1856 /*
1857 * We could have raced with the pool size change.
1858 * Double check that and simply deallocate the new page
1859 * if we would end up overcommiting the surpluses. Abuse
1860 * temporary page to workaround the nasty free_huge_page
1861 * codeflow
1862 */
1863 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 1864 SetHPageTemporary(page);
db71ef79 1865 spin_unlock_irq(&hugetlb_lock);
9980d744 1866 put_page(page);
2bf753e6 1867 return NULL;
9980d744 1868 } else {
9980d744 1869 h->surplus_huge_pages++;
4704dea3 1870 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1871 }
9980d744
MH
1872
1873out_unlock:
db71ef79 1874 spin_unlock_irq(&hugetlb_lock);
7893d1d5
AL
1875
1876 return page;
1877}
1878
bbe88753 1879static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1880 int nid, nodemask_t *nmask)
ab5ac90a
MH
1881{
1882 struct page *page;
1883
1884 if (hstate_is_gigantic(h))
1885 return NULL;
1886
f60858f9 1887 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1888 if (!page)
1889 return NULL;
1890
1891 /*
1892 * We do not account these pages as surplus because they are only
1893 * temporary and will be released properly on the last reference
1894 */
9157c311 1895 SetHPageTemporary(page);
ab5ac90a
MH
1896
1897 return page;
1898}
1899
099730d6
DH
1900/*
1901 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1902 */
e0ec90ee 1903static
0c397dae 1904struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1905 struct vm_area_struct *vma, unsigned long addr)
1906{
aaf14e40
MH
1907 struct page *page;
1908 struct mempolicy *mpol;
1909 gfp_t gfp_mask = htlb_alloc_mask(h);
1910 int nid;
1911 nodemask_t *nodemask;
1912
1913 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1914 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1915 mpol_cond_put(mpol);
1916
1917 return page;
099730d6
DH
1918}
1919
ab5ac90a 1920/* page migration callback function */
3e59fcb0 1921struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1922 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1923{
db71ef79 1924 spin_lock_irq(&hugetlb_lock);
4db9b2ef 1925 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1926 struct page *page;
1927
1928 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1929 if (page) {
db71ef79 1930 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 1931 return page;
4db9b2ef
MH
1932 }
1933 }
db71ef79 1934 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 1935
0c397dae 1936 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1937}
1938
ebd63723 1939/* mempolicy aware migration callback */
389c8178
MH
1940struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1941 unsigned long address)
ebd63723
MH
1942{
1943 struct mempolicy *mpol;
1944 nodemask_t *nodemask;
1945 struct page *page;
ebd63723
MH
1946 gfp_t gfp_mask;
1947 int node;
1948
ebd63723
MH
1949 gfp_mask = htlb_alloc_mask(h);
1950 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 1951 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
1952 mpol_cond_put(mpol);
1953
1954 return page;
1955}
1956
e4e574b7 1957/*
25985edc 1958 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1959 * of size 'delta'.
1960 */
0a4f3d1b 1961static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 1962 __must_hold(&hugetlb_lock)
e4e574b7
AL
1963{
1964 struct list_head surplus_list;
1965 struct page *page, *tmp;
0a4f3d1b
LX
1966 int ret;
1967 long i;
1968 long needed, allocated;
28073b02 1969 bool alloc_ok = true;
e4e574b7 1970
9487ca60 1971 lockdep_assert_held(&hugetlb_lock);
a5516438 1972 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1973 if (needed <= 0) {
a5516438 1974 h->resv_huge_pages += delta;
e4e574b7 1975 return 0;
ac09b3a1 1976 }
e4e574b7
AL
1977
1978 allocated = 0;
1979 INIT_LIST_HEAD(&surplus_list);
1980
1981 ret = -ENOMEM;
1982retry:
db71ef79 1983 spin_unlock_irq(&hugetlb_lock);
e4e574b7 1984 for (i = 0; i < needed; i++) {
0c397dae 1985 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1986 NUMA_NO_NODE, NULL);
28073b02
HD
1987 if (!page) {
1988 alloc_ok = false;
1989 break;
1990 }
e4e574b7 1991 list_add(&page->lru, &surplus_list);
69ed779a 1992 cond_resched();
e4e574b7 1993 }
28073b02 1994 allocated += i;
e4e574b7
AL
1995
1996 /*
1997 * After retaking hugetlb_lock, we need to recalculate 'needed'
1998 * because either resv_huge_pages or free_huge_pages may have changed.
1999 */
db71ef79 2000 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2001 needed = (h->resv_huge_pages + delta) -
2002 (h->free_huge_pages + allocated);
28073b02
HD
2003 if (needed > 0) {
2004 if (alloc_ok)
2005 goto retry;
2006 /*
2007 * We were not able to allocate enough pages to
2008 * satisfy the entire reservation so we free what
2009 * we've allocated so far.
2010 */
2011 goto free;
2012 }
e4e574b7
AL
2013 /*
2014 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2015 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2016 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2017 * allocator. Commit the entire reservation here to prevent another
2018 * process from stealing the pages as they are added to the pool but
2019 * before they are reserved.
e4e574b7
AL
2020 */
2021 needed += allocated;
a5516438 2022 h->resv_huge_pages += delta;
e4e574b7 2023 ret = 0;
a9869b83 2024
19fc3f0a 2025 /* Free the needed pages to the hugetlb pool */
e4e574b7 2026 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
e558464b
MS
2027 int zeroed;
2028
19fc3f0a
AL
2029 if ((--needed) < 0)
2030 break;
a9869b83
NH
2031 /*
2032 * This page is now managed by the hugetlb allocator and has
2033 * no users -- drop the buddy allocator's reference.
2034 */
e558464b
MS
2035 zeroed = put_page_testzero(page);
2036 VM_BUG_ON_PAGE(!zeroed, page);
a5516438 2037 enqueue_huge_page(h, page);
19fc3f0a 2038 }
28073b02 2039free:
db71ef79 2040 spin_unlock_irq(&hugetlb_lock);
19fc3f0a
AL
2041
2042 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2043 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2044 put_page(page);
db71ef79 2045 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2046
2047 return ret;
2048}
2049
2050/*
e5bbc8a6
MK
2051 * This routine has two main purposes:
2052 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2053 * in unused_resv_pages. This corresponds to the prior adjustments made
2054 * to the associated reservation map.
2055 * 2) Free any unused surplus pages that may have been allocated to satisfy
2056 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2057 */
a5516438
AK
2058static void return_unused_surplus_pages(struct hstate *h,
2059 unsigned long unused_resv_pages)
e4e574b7 2060{
e4e574b7 2061 unsigned long nr_pages;
10c6ec49
MK
2062 struct page *page;
2063 LIST_HEAD(page_list);
2064
9487ca60 2065 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2066 /* Uncommit the reservation */
2067 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2068
aa888a74 2069 /* Cannot return gigantic pages currently */
bae7f4ae 2070 if (hstate_is_gigantic(h))
e5bbc8a6 2071 goto out;
aa888a74 2072
e5bbc8a6
MK
2073 /*
2074 * Part (or even all) of the reservation could have been backed
2075 * by pre-allocated pages. Only free surplus pages.
2076 */
a5516438 2077 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2078
685f3457
LS
2079 /*
2080 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2081 * evenly across all nodes with memory. Iterate across these nodes
2082 * until we can no longer free unreserved surplus pages. This occurs
2083 * when the nodes with surplus pages have no free pages.
10c6ec49 2084 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2085 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2086 */
2087 while (nr_pages--) {
10c6ec49
MK
2088 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2089 if (!page)
e5bbc8a6 2090 goto out;
10c6ec49
MK
2091
2092 list_add(&page->lru, &page_list);
e4e574b7 2093 }
e5bbc8a6
MK
2094
2095out:
db71ef79 2096 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2097 update_and_free_pages_bulk(h, &page_list);
db71ef79 2098 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2099}
2100
5e911373 2101
c37f9fb1 2102/*
feba16e2 2103 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2104 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2105 *
2106 * vma_needs_reservation is called to determine if the huge page at addr
2107 * within the vma has an associated reservation. If a reservation is
2108 * needed, the value 1 is returned. The caller is then responsible for
2109 * managing the global reservation and subpool usage counts. After
2110 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2111 * to add the page to the reservation map. If the page allocation fails,
2112 * the reservation must be ended instead of committed. vma_end_reservation
2113 * is called in such cases.
cf3ad20b
MK
2114 *
2115 * In the normal case, vma_commit_reservation returns the same value
2116 * as the preceding vma_needs_reservation call. The only time this
2117 * is not the case is if a reserve map was changed between calls. It
2118 * is the responsibility of the caller to notice the difference and
2119 * take appropriate action.
96b96a96
MK
2120 *
2121 * vma_add_reservation is used in error paths where a reservation must
2122 * be restored when a newly allocated huge page must be freed. It is
2123 * to be called after calling vma_needs_reservation to determine if a
2124 * reservation exists.
c37f9fb1 2125 */
5e911373
MK
2126enum vma_resv_mode {
2127 VMA_NEEDS_RESV,
2128 VMA_COMMIT_RESV,
feba16e2 2129 VMA_END_RESV,
96b96a96 2130 VMA_ADD_RESV,
5e911373 2131};
cf3ad20b
MK
2132static long __vma_reservation_common(struct hstate *h,
2133 struct vm_area_struct *vma, unsigned long addr,
5e911373 2134 enum vma_resv_mode mode)
c37f9fb1 2135{
4e35f483
JK
2136 struct resv_map *resv;
2137 pgoff_t idx;
cf3ad20b 2138 long ret;
0db9d74e 2139 long dummy_out_regions_needed;
c37f9fb1 2140
4e35f483
JK
2141 resv = vma_resv_map(vma);
2142 if (!resv)
84afd99b 2143 return 1;
c37f9fb1 2144
4e35f483 2145 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2146 switch (mode) {
2147 case VMA_NEEDS_RESV:
0db9d74e
MA
2148 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2149 /* We assume that vma_reservation_* routines always operate on
2150 * 1 page, and that adding to resv map a 1 page entry can only
2151 * ever require 1 region.
2152 */
2153 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2154 break;
2155 case VMA_COMMIT_RESV:
075a61d0 2156 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2157 /* region_add calls of range 1 should never fail. */
2158 VM_BUG_ON(ret < 0);
5e911373 2159 break;
feba16e2 2160 case VMA_END_RESV:
0db9d74e 2161 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2162 ret = 0;
2163 break;
96b96a96 2164 case VMA_ADD_RESV:
0db9d74e 2165 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2166 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2167 /* region_add calls of range 1 should never fail. */
2168 VM_BUG_ON(ret < 0);
2169 } else {
2170 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2171 ret = region_del(resv, idx, idx + 1);
2172 }
2173 break;
5e911373
MK
2174 default:
2175 BUG();
2176 }
84afd99b 2177
4e35f483 2178 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2179 return ret;
bf3d12b9
ML
2180 /*
2181 * We know private mapping must have HPAGE_RESV_OWNER set.
2182 *
2183 * In most cases, reserves always exist for private mappings.
2184 * However, a file associated with mapping could have been
2185 * hole punched or truncated after reserves were consumed.
2186 * As subsequent fault on such a range will not use reserves.
2187 * Subtle - The reserve map for private mappings has the
2188 * opposite meaning than that of shared mappings. If NO
2189 * entry is in the reserve map, it means a reservation exists.
2190 * If an entry exists in the reserve map, it means the
2191 * reservation has already been consumed. As a result, the
2192 * return value of this routine is the opposite of the
2193 * value returned from reserve map manipulation routines above.
2194 */
2195 if (ret > 0)
2196 return 0;
2197 if (ret == 0)
2198 return 1;
2199 return ret;
c37f9fb1 2200}
cf3ad20b
MK
2201
2202static long vma_needs_reservation(struct hstate *h,
a5516438 2203 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2204{
5e911373 2205 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2206}
84afd99b 2207
cf3ad20b
MK
2208static long vma_commit_reservation(struct hstate *h,
2209 struct vm_area_struct *vma, unsigned long addr)
2210{
5e911373
MK
2211 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2212}
2213
feba16e2 2214static void vma_end_reservation(struct hstate *h,
5e911373
MK
2215 struct vm_area_struct *vma, unsigned long addr)
2216{
feba16e2 2217 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2218}
2219
96b96a96
MK
2220static long vma_add_reservation(struct hstate *h,
2221 struct vm_area_struct *vma, unsigned long addr)
2222{
2223 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2224}
2225
2226/*
2227 * This routine is called to restore a reservation on error paths. In the
2228 * specific error paths, a huge page was allocated (via alloc_huge_page)
2229 * and is about to be freed. If a reservation for the page existed,
d6995da3
MK
2230 * alloc_huge_page would have consumed the reservation and set
2231 * HPageRestoreReserve in the newly allocated page. When the page is freed
2232 * via free_huge_page, the global reservation count will be incremented if
2233 * HPageRestoreReserve is set. However, free_huge_page can not adjust the
2234 * reserve map. Adjust the reserve map here to be consistent with global
2235 * reserve count adjustments to be made by free_huge_page.
96b96a96
MK
2236 */
2237static void restore_reserve_on_error(struct hstate *h,
2238 struct vm_area_struct *vma, unsigned long address,
2239 struct page *page)
2240{
d6995da3 2241 if (unlikely(HPageRestoreReserve(page))) {
96b96a96
MK
2242 long rc = vma_needs_reservation(h, vma, address);
2243
2244 if (unlikely(rc < 0)) {
2245 /*
2246 * Rare out of memory condition in reserve map
d6995da3 2247 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2248 * global reserve count will not be incremented
2249 * by free_huge_page. This will make it appear
2250 * as though the reservation for this page was
2251 * consumed. This may prevent the task from
2252 * faulting in the page at a later time. This
2253 * is better than inconsistent global huge page
2254 * accounting of reserve counts.
2255 */
d6995da3 2256 ClearHPageRestoreReserve(page);
96b96a96
MK
2257 } else if (rc) {
2258 rc = vma_add_reservation(h, vma, address);
2259 if (unlikely(rc < 0))
2260 /*
2261 * See above comment about rare out of
2262 * memory condition.
2263 */
d6995da3 2264 ClearHPageRestoreReserve(page);
96b96a96
MK
2265 } else
2266 vma_end_reservation(h, vma, address);
2267 }
2268}
2269
369fa227
OS
2270/*
2271 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2272 * @h: struct hstate old page belongs to
2273 * @old_page: Old page to dissolve
ae37c7ff 2274 * @list: List to isolate the page in case we need to
369fa227
OS
2275 * Returns 0 on success, otherwise negated error.
2276 */
ae37c7ff
OS
2277static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2278 struct list_head *list)
369fa227
OS
2279{
2280 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2281 int nid = page_to_nid(old_page);
2282 struct page *new_page;
2283 int ret = 0;
2284
2285 /*
2286 * Before dissolving the page, we need to allocate a new one for the
2287 * pool to remain stable. Using alloc_buddy_huge_page() allows us to
2288 * not having to deal with prep_new_huge_page() and avoids dealing of any
2289 * counters. This simplifies and let us do the whole thing under the
2290 * lock.
2291 */
2292 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2293 if (!new_page)
2294 return -ENOMEM;
2295
2296retry:
2297 spin_lock_irq(&hugetlb_lock);
2298 if (!PageHuge(old_page)) {
2299 /*
2300 * Freed from under us. Drop new_page too.
2301 */
2302 goto free_new;
2303 } else if (page_count(old_page)) {
2304 /*
ae37c7ff
OS
2305 * Someone has grabbed the page, try to isolate it here.
2306 * Fail with -EBUSY if not possible.
369fa227 2307 */
ae37c7ff
OS
2308 spin_unlock_irq(&hugetlb_lock);
2309 if (!isolate_huge_page(old_page, list))
2310 ret = -EBUSY;
2311 spin_lock_irq(&hugetlb_lock);
369fa227
OS
2312 goto free_new;
2313 } else if (!HPageFreed(old_page)) {
2314 /*
2315 * Page's refcount is 0 but it has not been enqueued in the
2316 * freelist yet. Race window is small, so we can succeed here if
2317 * we retry.
2318 */
2319 spin_unlock_irq(&hugetlb_lock);
2320 cond_resched();
2321 goto retry;
2322 } else {
2323 /*
2324 * Ok, old_page is still a genuine free hugepage. Remove it from
2325 * the freelist and decrease the counters. These will be
2326 * incremented again when calling __prep_account_new_huge_page()
2327 * and enqueue_huge_page() for new_page. The counters will remain
2328 * stable since this happens under the lock.
2329 */
2330 remove_hugetlb_page(h, old_page, false);
2331
2332 /*
2333 * new_page needs to be initialized with the standard hugetlb
2334 * state. This is normally done by prep_new_huge_page() but
2335 * that takes hugetlb_lock which is already held so we need to
2336 * open code it here.
2337 * Reference count trick is needed because allocator gives us
2338 * referenced page but the pool requires pages with 0 refcount.
2339 */
2340 __prep_new_huge_page(new_page);
2341 __prep_account_new_huge_page(h, nid);
2342 page_ref_dec(new_page);
2343 enqueue_huge_page(h, new_page);
2344
2345 /*
2346 * Pages have been replaced, we can safely free the old one.
2347 */
2348 spin_unlock_irq(&hugetlb_lock);
2349 update_and_free_page(h, old_page);
2350 }
2351
2352 return ret;
2353
2354free_new:
2355 spin_unlock_irq(&hugetlb_lock);
2356 __free_pages(new_page, huge_page_order(h));
2357
2358 return ret;
2359}
2360
ae37c7ff 2361int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2362{
2363 struct hstate *h;
2364 struct page *head;
ae37c7ff 2365 int ret = -EBUSY;
369fa227
OS
2366
2367 /*
2368 * The page might have been dissolved from under our feet, so make sure
2369 * to carefully check the state under the lock.
2370 * Return success when racing as if we dissolved the page ourselves.
2371 */
2372 spin_lock_irq(&hugetlb_lock);
2373 if (PageHuge(page)) {
2374 head = compound_head(page);
2375 h = page_hstate(head);
2376 } else {
2377 spin_unlock_irq(&hugetlb_lock);
2378 return 0;
2379 }
2380 spin_unlock_irq(&hugetlb_lock);
2381
2382 /*
2383 * Fence off gigantic pages as there is a cyclic dependency between
2384 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2385 * of bailing out right away without further retrying.
2386 */
2387 if (hstate_is_gigantic(h))
2388 return -ENOMEM;
2389
ae37c7ff
OS
2390 if (page_count(head) && isolate_huge_page(head, list))
2391 ret = 0;
2392 else if (!page_count(head))
2393 ret = alloc_and_dissolve_huge_page(h, head, list);
2394
2395 return ret;
369fa227
OS
2396}
2397
70c3547e 2398struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2399 unsigned long addr, int avoid_reserve)
1da177e4 2400{
90481622 2401 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2402 struct hstate *h = hstate_vma(vma);
348ea204 2403 struct page *page;
d85f69b0
MK
2404 long map_chg, map_commit;
2405 long gbl_chg;
6d76dcf4
AK
2406 int ret, idx;
2407 struct hugetlb_cgroup *h_cg;
08cf9faf 2408 bool deferred_reserve;
a1e78772 2409
6d76dcf4 2410 idx = hstate_index(h);
a1e78772 2411 /*
d85f69b0
MK
2412 * Examine the region/reserve map to determine if the process
2413 * has a reservation for the page to be allocated. A return
2414 * code of zero indicates a reservation exists (no change).
a1e78772 2415 */
d85f69b0
MK
2416 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2417 if (map_chg < 0)
76dcee75 2418 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2419
2420 /*
2421 * Processes that did not create the mapping will have no
2422 * reserves as indicated by the region/reserve map. Check
2423 * that the allocation will not exceed the subpool limit.
2424 * Allocations for MAP_NORESERVE mappings also need to be
2425 * checked against any subpool limit.
2426 */
2427 if (map_chg || avoid_reserve) {
2428 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2429 if (gbl_chg < 0) {
feba16e2 2430 vma_end_reservation(h, vma, addr);
76dcee75 2431 return ERR_PTR(-ENOSPC);
5e911373 2432 }
1da177e4 2433
d85f69b0
MK
2434 /*
2435 * Even though there was no reservation in the region/reserve
2436 * map, there could be reservations associated with the
2437 * subpool that can be used. This would be indicated if the
2438 * return value of hugepage_subpool_get_pages() is zero.
2439 * However, if avoid_reserve is specified we still avoid even
2440 * the subpool reservations.
2441 */
2442 if (avoid_reserve)
2443 gbl_chg = 1;
2444 }
2445
08cf9faf
MA
2446 /* If this allocation is not consuming a reservation, charge it now.
2447 */
6501fe5f 2448 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2449 if (deferred_reserve) {
2450 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2451 idx, pages_per_huge_page(h), &h_cg);
2452 if (ret)
2453 goto out_subpool_put;
2454 }
2455
6d76dcf4 2456 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2457 if (ret)
08cf9faf 2458 goto out_uncharge_cgroup_reservation;
8f34af6f 2459
db71ef79 2460 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
2461 /*
2462 * glb_chg is passed to indicate whether or not a page must be taken
2463 * from the global free pool (global change). gbl_chg == 0 indicates
2464 * a reservation exists for the allocation.
2465 */
2466 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2467 if (!page) {
db71ef79 2468 spin_unlock_irq(&hugetlb_lock);
0c397dae 2469 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2470 if (!page)
2471 goto out_uncharge_cgroup;
a88c7695 2472 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2473 SetHPageRestoreReserve(page);
a88c7695
NH
2474 h->resv_huge_pages--;
2475 }
db71ef79 2476 spin_lock_irq(&hugetlb_lock);
15a8d68e 2477 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2478 /* Fall through */
68842c9b 2479 }
81a6fcae 2480 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2481 /* If allocation is not consuming a reservation, also store the
2482 * hugetlb_cgroup pointer on the page.
2483 */
2484 if (deferred_reserve) {
2485 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2486 h_cg, page);
2487 }
2488
db71ef79 2489 spin_unlock_irq(&hugetlb_lock);
348ea204 2490
d6995da3 2491 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2492
d85f69b0
MK
2493 map_commit = vma_commit_reservation(h, vma, addr);
2494 if (unlikely(map_chg > map_commit)) {
33039678
MK
2495 /*
2496 * The page was added to the reservation map between
2497 * vma_needs_reservation and vma_commit_reservation.
2498 * This indicates a race with hugetlb_reserve_pages.
2499 * Adjust for the subpool count incremented above AND
2500 * in hugetlb_reserve_pages for the same page. Also,
2501 * the reservation count added in hugetlb_reserve_pages
2502 * no longer applies.
2503 */
2504 long rsv_adjust;
2505
2506 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2507 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2508 if (deferred_reserve)
2509 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2510 pages_per_huge_page(h), page);
33039678 2511 }
90d8b7e6 2512 return page;
8f34af6f
JZ
2513
2514out_uncharge_cgroup:
2515 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2516out_uncharge_cgroup_reservation:
2517 if (deferred_reserve)
2518 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2519 h_cg);
8f34af6f 2520out_subpool_put:
d85f69b0 2521 if (map_chg || avoid_reserve)
8f34af6f 2522 hugepage_subpool_put_pages(spool, 1);
feba16e2 2523 vma_end_reservation(h, vma, addr);
8f34af6f 2524 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2525}
2526
e24a1307
AK
2527int alloc_bootmem_huge_page(struct hstate *h)
2528 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2529int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2530{
2531 struct huge_bootmem_page *m;
b2261026 2532 int nr_nodes, node;
aa888a74 2533
b2261026 2534 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2535 void *addr;
2536
eb31d559 2537 addr = memblock_alloc_try_nid_raw(
8b89a116 2538 huge_page_size(h), huge_page_size(h),
97ad1087 2539 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2540 if (addr) {
2541 /*
2542 * Use the beginning of the huge page to store the
2543 * huge_bootmem_page struct (until gather_bootmem
2544 * puts them into the mem_map).
2545 */
2546 m = addr;
91f47662 2547 goto found;
aa888a74 2548 }
aa888a74
AK
2549 }
2550 return 0;
2551
2552found:
df994ead 2553 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2554 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2555 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2556 list_add(&m->list, &huge_boot_pages);
2557 m->hstate = h;
2558 return 1;
2559}
2560
d00181b9
KS
2561static void __init prep_compound_huge_page(struct page *page,
2562 unsigned int order)
18229df5
AW
2563{
2564 if (unlikely(order > (MAX_ORDER - 1)))
2565 prep_compound_gigantic_page(page, order);
2566 else
2567 prep_compound_page(page, order);
2568}
2569
aa888a74
AK
2570/* Put bootmem huge pages into the standard lists after mem_map is up */
2571static void __init gather_bootmem_prealloc(void)
2572{
2573 struct huge_bootmem_page *m;
2574
2575 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2576 struct page *page = virt_to_page(m);
aa888a74 2577 struct hstate *h = m->hstate;
ee8f248d 2578
aa888a74 2579 WARN_ON(page_count(page) != 1);
c78a7f36 2580 prep_compound_huge_page(page, huge_page_order(h));
ef5a22be 2581 WARN_ON(PageReserved(page));
aa888a74 2582 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2583 put_page(page); /* free it into the hugepage allocator */
2584
b0320c7b
RA
2585 /*
2586 * If we had gigantic hugepages allocated at boot time, we need
2587 * to restore the 'stolen' pages to totalram_pages in order to
2588 * fix confusing memory reports from free(1) and another
2589 * side-effects, like CommitLimit going negative.
2590 */
bae7f4ae 2591 if (hstate_is_gigantic(h))
c78a7f36 2592 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 2593 cond_resched();
aa888a74
AK
2594 }
2595}
2596
8faa8b07 2597static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2598{
2599 unsigned long i;
f60858f9
MK
2600 nodemask_t *node_alloc_noretry;
2601
2602 if (!hstate_is_gigantic(h)) {
2603 /*
2604 * Bit mask controlling how hard we retry per-node allocations.
2605 * Ignore errors as lower level routines can deal with
2606 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2607 * time, we are likely in bigger trouble.
2608 */
2609 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2610 GFP_KERNEL);
2611 } else {
2612 /* allocations done at boot time */
2613 node_alloc_noretry = NULL;
2614 }
2615
2616 /* bit mask controlling how hard we retry per-node allocations */
2617 if (node_alloc_noretry)
2618 nodes_clear(*node_alloc_noretry);
a5516438 2619
e5ff2159 2620 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2621 if (hstate_is_gigantic(h)) {
dbda8fea 2622 if (hugetlb_cma_size) {
cf11e85f 2623 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
7ecc9565 2624 goto free;
cf11e85f 2625 }
aa888a74
AK
2626 if (!alloc_bootmem_huge_page(h))
2627 break;
0c397dae 2628 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2629 &node_states[N_MEMORY],
2630 node_alloc_noretry))
1da177e4 2631 break;
69ed779a 2632 cond_resched();
1da177e4 2633 }
d715cf80
LH
2634 if (i < h->max_huge_pages) {
2635 char buf[32];
2636
c6247f72 2637 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2638 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2639 h->max_huge_pages, buf, i);
2640 h->max_huge_pages = i;
2641 }
7ecc9565 2642free:
f60858f9 2643 kfree(node_alloc_noretry);
e5ff2159
AK
2644}
2645
2646static void __init hugetlb_init_hstates(void)
2647{
2648 struct hstate *h;
2649
2650 for_each_hstate(h) {
641844f5
NH
2651 if (minimum_order > huge_page_order(h))
2652 minimum_order = huge_page_order(h);
2653
8faa8b07 2654 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2655 if (!hstate_is_gigantic(h))
8faa8b07 2656 hugetlb_hstate_alloc_pages(h);
e5ff2159 2657 }
641844f5 2658 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2659}
2660
2661static void __init report_hugepages(void)
2662{
2663 struct hstate *h;
2664
2665 for_each_hstate(h) {
4abd32db 2666 char buf[32];
c6247f72
MW
2667
2668 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2669 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2670 buf, h->free_huge_pages);
e5ff2159
AK
2671 }
2672}
2673
1da177e4 2674#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2675static void try_to_free_low(struct hstate *h, unsigned long count,
2676 nodemask_t *nodes_allowed)
1da177e4 2677{
4415cc8d 2678 int i;
1121828a 2679 LIST_HEAD(page_list);
4415cc8d 2680
9487ca60 2681 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 2682 if (hstate_is_gigantic(h))
aa888a74
AK
2683 return;
2684
1121828a
MK
2685 /*
2686 * Collect pages to be freed on a list, and free after dropping lock
2687 */
6ae11b27 2688 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 2689 struct page *page, *next;
a5516438
AK
2690 struct list_head *freel = &h->hugepage_freelists[i];
2691 list_for_each_entry_safe(page, next, freel, lru) {
2692 if (count >= h->nr_huge_pages)
1121828a 2693 goto out;
1da177e4
LT
2694 if (PageHighMem(page))
2695 continue;
6eb4e88a 2696 remove_hugetlb_page(h, page, false);
1121828a 2697 list_add(&page->lru, &page_list);
1da177e4
LT
2698 }
2699 }
1121828a
MK
2700
2701out:
db71ef79 2702 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2703 update_and_free_pages_bulk(h, &page_list);
db71ef79 2704 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
2705}
2706#else
6ae11b27
LS
2707static inline void try_to_free_low(struct hstate *h, unsigned long count,
2708 nodemask_t *nodes_allowed)
1da177e4
LT
2709{
2710}
2711#endif
2712
20a0307c
WF
2713/*
2714 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2715 * balanced by operating on them in a round-robin fashion.
2716 * Returns 1 if an adjustment was made.
2717 */
6ae11b27
LS
2718static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2719 int delta)
20a0307c 2720{
b2261026 2721 int nr_nodes, node;
20a0307c 2722
9487ca60 2723 lockdep_assert_held(&hugetlb_lock);
20a0307c 2724 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2725
b2261026
JK
2726 if (delta < 0) {
2727 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2728 if (h->surplus_huge_pages_node[node])
2729 goto found;
e8c5c824 2730 }
b2261026
JK
2731 } else {
2732 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2733 if (h->surplus_huge_pages_node[node] <
2734 h->nr_huge_pages_node[node])
2735 goto found;
e8c5c824 2736 }
b2261026
JK
2737 }
2738 return 0;
20a0307c 2739
b2261026
JK
2740found:
2741 h->surplus_huge_pages += delta;
2742 h->surplus_huge_pages_node[node] += delta;
2743 return 1;
20a0307c
WF
2744}
2745
a5516438 2746#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2747static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2748 nodemask_t *nodes_allowed)
1da177e4 2749{
7893d1d5 2750 unsigned long min_count, ret;
10c6ec49
MK
2751 struct page *page;
2752 LIST_HEAD(page_list);
f60858f9
MK
2753 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2754
2755 /*
2756 * Bit mask controlling how hard we retry per-node allocations.
2757 * If we can not allocate the bit mask, do not attempt to allocate
2758 * the requested huge pages.
2759 */
2760 if (node_alloc_noretry)
2761 nodes_clear(*node_alloc_noretry);
2762 else
2763 return -ENOMEM;
1da177e4 2764
29383967
MK
2765 /*
2766 * resize_lock mutex prevents concurrent adjustments to number of
2767 * pages in hstate via the proc/sysfs interfaces.
2768 */
2769 mutex_lock(&h->resize_lock);
db71ef79 2770 spin_lock_irq(&hugetlb_lock);
4eb0716e 2771
fd875dca
MK
2772 /*
2773 * Check for a node specific request.
2774 * Changing node specific huge page count may require a corresponding
2775 * change to the global count. In any case, the passed node mask
2776 * (nodes_allowed) will restrict alloc/free to the specified node.
2777 */
2778 if (nid != NUMA_NO_NODE) {
2779 unsigned long old_count = count;
2780
2781 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2782 /*
2783 * User may have specified a large count value which caused the
2784 * above calculation to overflow. In this case, they wanted
2785 * to allocate as many huge pages as possible. Set count to
2786 * largest possible value to align with their intention.
2787 */
2788 if (count < old_count)
2789 count = ULONG_MAX;
2790 }
2791
4eb0716e
AG
2792 /*
2793 * Gigantic pages runtime allocation depend on the capability for large
2794 * page range allocation.
2795 * If the system does not provide this feature, return an error when
2796 * the user tries to allocate gigantic pages but let the user free the
2797 * boottime allocated gigantic pages.
2798 */
2799 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2800 if (count > persistent_huge_pages(h)) {
db71ef79 2801 spin_unlock_irq(&hugetlb_lock);
29383967 2802 mutex_unlock(&h->resize_lock);
f60858f9 2803 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2804 return -EINVAL;
2805 }
2806 /* Fall through to decrease pool */
2807 }
aa888a74 2808
7893d1d5
AL
2809 /*
2810 * Increase the pool size
2811 * First take pages out of surplus state. Then make up the
2812 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2813 *
0c397dae 2814 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2815 * to convert a surplus huge page to a normal huge page. That is
2816 * not critical, though, it just means the overall size of the
2817 * pool might be one hugepage larger than it needs to be, but
2818 * within all the constraints specified by the sysctls.
7893d1d5 2819 */
a5516438 2820 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2821 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2822 break;
2823 }
2824
a5516438 2825 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2826 /*
2827 * If this allocation races such that we no longer need the
2828 * page, free_huge_page will handle it by freeing the page
2829 * and reducing the surplus.
2830 */
db71ef79 2831 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
2832
2833 /* yield cpu to avoid soft lockup */
2834 cond_resched();
2835
f60858f9
MK
2836 ret = alloc_pool_huge_page(h, nodes_allowed,
2837 node_alloc_noretry);
db71ef79 2838 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
2839 if (!ret)
2840 goto out;
2841
536240f2
MG
2842 /* Bail for signals. Probably ctrl-c from user */
2843 if (signal_pending(current))
2844 goto out;
7893d1d5 2845 }
7893d1d5
AL
2846
2847 /*
2848 * Decrease the pool size
2849 * First return free pages to the buddy allocator (being careful
2850 * to keep enough around to satisfy reservations). Then place
2851 * pages into surplus state as needed so the pool will shrink
2852 * to the desired size as pages become free.
d1c3fb1f
NA
2853 *
2854 * By placing pages into the surplus state independent of the
2855 * overcommit value, we are allowing the surplus pool size to
2856 * exceed overcommit. There are few sane options here. Since
0c397dae 2857 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2858 * though, we'll note that we're not allowed to exceed surplus
2859 * and won't grow the pool anywhere else. Not until one of the
2860 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2861 */
a5516438 2862 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2863 min_count = max(count, min_count);
6ae11b27 2864 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
2865
2866 /*
2867 * Collect pages to be removed on list without dropping lock
2868 */
a5516438 2869 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
2870 page = remove_pool_huge_page(h, nodes_allowed, 0);
2871 if (!page)
1da177e4 2872 break;
10c6ec49
MK
2873
2874 list_add(&page->lru, &page_list);
1da177e4 2875 }
10c6ec49 2876 /* free the pages after dropping lock */
db71ef79 2877 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2878 update_and_free_pages_bulk(h, &page_list);
db71ef79 2879 spin_lock_irq(&hugetlb_lock);
10c6ec49 2880
a5516438 2881 while (count < persistent_huge_pages(h)) {
6ae11b27 2882 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2883 break;
2884 }
2885out:
4eb0716e 2886 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 2887 spin_unlock_irq(&hugetlb_lock);
29383967 2888 mutex_unlock(&h->resize_lock);
4eb0716e 2889
f60858f9
MK
2890 NODEMASK_FREE(node_alloc_noretry);
2891
4eb0716e 2892 return 0;
1da177e4
LT
2893}
2894
a3437870
NA
2895#define HSTATE_ATTR_RO(_name) \
2896 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2897
2898#define HSTATE_ATTR(_name) \
2899 static struct kobj_attribute _name##_attr = \
2900 __ATTR(_name, 0644, _name##_show, _name##_store)
2901
2902static struct kobject *hugepages_kobj;
2903static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2904
9a305230
LS
2905static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2906
2907static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2908{
2909 int i;
9a305230 2910
a3437870 2911 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2912 if (hstate_kobjs[i] == kobj) {
2913 if (nidp)
2914 *nidp = NUMA_NO_NODE;
a3437870 2915 return &hstates[i];
9a305230
LS
2916 }
2917
2918 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2919}
2920
06808b08 2921static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2922 struct kobj_attribute *attr, char *buf)
2923{
9a305230
LS
2924 struct hstate *h;
2925 unsigned long nr_huge_pages;
2926 int nid;
2927
2928 h = kobj_to_hstate(kobj, &nid);
2929 if (nid == NUMA_NO_NODE)
2930 nr_huge_pages = h->nr_huge_pages;
2931 else
2932 nr_huge_pages = h->nr_huge_pages_node[nid];
2933
ae7a927d 2934 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 2935}
adbe8726 2936
238d3c13
DR
2937static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2938 struct hstate *h, int nid,
2939 unsigned long count, size_t len)
a3437870
NA
2940{
2941 int err;
2d0adf7e 2942 nodemask_t nodes_allowed, *n_mask;
a3437870 2943
2d0adf7e
OS
2944 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2945 return -EINVAL;
adbe8726 2946
9a305230
LS
2947 if (nid == NUMA_NO_NODE) {
2948 /*
2949 * global hstate attribute
2950 */
2951 if (!(obey_mempolicy &&
2d0adf7e
OS
2952 init_nodemask_of_mempolicy(&nodes_allowed)))
2953 n_mask = &node_states[N_MEMORY];
2954 else
2955 n_mask = &nodes_allowed;
2956 } else {
9a305230 2957 /*
fd875dca
MK
2958 * Node specific request. count adjustment happens in
2959 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2960 */
2d0adf7e
OS
2961 init_nodemask_of_node(&nodes_allowed, nid);
2962 n_mask = &nodes_allowed;
fd875dca 2963 }
9a305230 2964
2d0adf7e 2965 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2966
4eb0716e 2967 return err ? err : len;
06808b08
LS
2968}
2969
238d3c13
DR
2970static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2971 struct kobject *kobj, const char *buf,
2972 size_t len)
2973{
2974 struct hstate *h;
2975 unsigned long count;
2976 int nid;
2977 int err;
2978
2979 err = kstrtoul(buf, 10, &count);
2980 if (err)
2981 return err;
2982
2983 h = kobj_to_hstate(kobj, &nid);
2984 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2985}
2986
06808b08
LS
2987static ssize_t nr_hugepages_show(struct kobject *kobj,
2988 struct kobj_attribute *attr, char *buf)
2989{
2990 return nr_hugepages_show_common(kobj, attr, buf);
2991}
2992
2993static ssize_t nr_hugepages_store(struct kobject *kobj,
2994 struct kobj_attribute *attr, const char *buf, size_t len)
2995{
238d3c13 2996 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2997}
2998HSTATE_ATTR(nr_hugepages);
2999
06808b08
LS
3000#ifdef CONFIG_NUMA
3001
3002/*
3003 * hstate attribute for optionally mempolicy-based constraint on persistent
3004 * huge page alloc/free.
3005 */
3006static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3007 struct kobj_attribute *attr,
3008 char *buf)
06808b08
LS
3009{
3010 return nr_hugepages_show_common(kobj, attr, buf);
3011}
3012
3013static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3014 struct kobj_attribute *attr, const char *buf, size_t len)
3015{
238d3c13 3016 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3017}
3018HSTATE_ATTR(nr_hugepages_mempolicy);
3019#endif
3020
3021
a3437870
NA
3022static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3023 struct kobj_attribute *attr, char *buf)
3024{
9a305230 3025 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3026 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3027}
adbe8726 3028
a3437870
NA
3029static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3030 struct kobj_attribute *attr, const char *buf, size_t count)
3031{
3032 int err;
3033 unsigned long input;
9a305230 3034 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3035
bae7f4ae 3036 if (hstate_is_gigantic(h))
adbe8726
EM
3037 return -EINVAL;
3038
3dbb95f7 3039 err = kstrtoul(buf, 10, &input);
a3437870 3040 if (err)
73ae31e5 3041 return err;
a3437870 3042
db71ef79 3043 spin_lock_irq(&hugetlb_lock);
a3437870 3044 h->nr_overcommit_huge_pages = input;
db71ef79 3045 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3046
3047 return count;
3048}
3049HSTATE_ATTR(nr_overcommit_hugepages);
3050
3051static ssize_t free_hugepages_show(struct kobject *kobj,
3052 struct kobj_attribute *attr, char *buf)
3053{
9a305230
LS
3054 struct hstate *h;
3055 unsigned long free_huge_pages;
3056 int nid;
3057
3058 h = kobj_to_hstate(kobj, &nid);
3059 if (nid == NUMA_NO_NODE)
3060 free_huge_pages = h->free_huge_pages;
3061 else
3062 free_huge_pages = h->free_huge_pages_node[nid];
3063
ae7a927d 3064 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3065}
3066HSTATE_ATTR_RO(free_hugepages);
3067
3068static ssize_t resv_hugepages_show(struct kobject *kobj,
3069 struct kobj_attribute *attr, char *buf)
3070{
9a305230 3071 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3072 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3073}
3074HSTATE_ATTR_RO(resv_hugepages);
3075
3076static ssize_t surplus_hugepages_show(struct kobject *kobj,
3077 struct kobj_attribute *attr, char *buf)
3078{
9a305230
LS
3079 struct hstate *h;
3080 unsigned long surplus_huge_pages;
3081 int nid;
3082
3083 h = kobj_to_hstate(kobj, &nid);
3084 if (nid == NUMA_NO_NODE)
3085 surplus_huge_pages = h->surplus_huge_pages;
3086 else
3087 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3088
ae7a927d 3089 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3090}
3091HSTATE_ATTR_RO(surplus_hugepages);
3092
3093static struct attribute *hstate_attrs[] = {
3094 &nr_hugepages_attr.attr,
3095 &nr_overcommit_hugepages_attr.attr,
3096 &free_hugepages_attr.attr,
3097 &resv_hugepages_attr.attr,
3098 &surplus_hugepages_attr.attr,
06808b08
LS
3099#ifdef CONFIG_NUMA
3100 &nr_hugepages_mempolicy_attr.attr,
3101#endif
a3437870
NA
3102 NULL,
3103};
3104
67e5ed96 3105static const struct attribute_group hstate_attr_group = {
a3437870
NA
3106 .attrs = hstate_attrs,
3107};
3108
094e9539
JM
3109static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3110 struct kobject **hstate_kobjs,
67e5ed96 3111 const struct attribute_group *hstate_attr_group)
a3437870
NA
3112{
3113 int retval;
972dc4de 3114 int hi = hstate_index(h);
a3437870 3115
9a305230
LS
3116 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3117 if (!hstate_kobjs[hi])
a3437870
NA
3118 return -ENOMEM;
3119
9a305230 3120 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 3121 if (retval) {
9a305230 3122 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
3123 hstate_kobjs[hi] = NULL;
3124 }
a3437870
NA
3125
3126 return retval;
3127}
3128
3129static void __init hugetlb_sysfs_init(void)
3130{
3131 struct hstate *h;
3132 int err;
3133
3134 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3135 if (!hugepages_kobj)
3136 return;
3137
3138 for_each_hstate(h) {
9a305230
LS
3139 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3140 hstate_kobjs, &hstate_attr_group);
a3437870 3141 if (err)
282f4214 3142 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3143 }
3144}
3145
9a305230
LS
3146#ifdef CONFIG_NUMA
3147
3148/*
3149 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3150 * with node devices in node_devices[] using a parallel array. The array
3151 * index of a node device or _hstate == node id.
3152 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3153 * the base kernel, on the hugetlb module.
3154 */
3155struct node_hstate {
3156 struct kobject *hugepages_kobj;
3157 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3158};
b4e289a6 3159static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3160
3161/*
10fbcf4c 3162 * A subset of global hstate attributes for node devices
9a305230
LS
3163 */
3164static struct attribute *per_node_hstate_attrs[] = {
3165 &nr_hugepages_attr.attr,
3166 &free_hugepages_attr.attr,
3167 &surplus_hugepages_attr.attr,
3168 NULL,
3169};
3170
67e5ed96 3171static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3172 .attrs = per_node_hstate_attrs,
3173};
3174
3175/*
10fbcf4c 3176 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3177 * Returns node id via non-NULL nidp.
3178 */
3179static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3180{
3181 int nid;
3182
3183 for (nid = 0; nid < nr_node_ids; nid++) {
3184 struct node_hstate *nhs = &node_hstates[nid];
3185 int i;
3186 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3187 if (nhs->hstate_kobjs[i] == kobj) {
3188 if (nidp)
3189 *nidp = nid;
3190 return &hstates[i];
3191 }
3192 }
3193
3194 BUG();
3195 return NULL;
3196}
3197
3198/*
10fbcf4c 3199 * Unregister hstate attributes from a single node device.
9a305230
LS
3200 * No-op if no hstate attributes attached.
3201 */
3cd8b44f 3202static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3203{
3204 struct hstate *h;
10fbcf4c 3205 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3206
3207 if (!nhs->hugepages_kobj)
9b5e5d0f 3208 return; /* no hstate attributes */
9a305230 3209
972dc4de
AK
3210 for_each_hstate(h) {
3211 int idx = hstate_index(h);
3212 if (nhs->hstate_kobjs[idx]) {
3213 kobject_put(nhs->hstate_kobjs[idx]);
3214 nhs->hstate_kobjs[idx] = NULL;
9a305230 3215 }
972dc4de 3216 }
9a305230
LS
3217
3218 kobject_put(nhs->hugepages_kobj);
3219 nhs->hugepages_kobj = NULL;
3220}
3221
9a305230
LS
3222
3223/*
10fbcf4c 3224 * Register hstate attributes for a single node device.
9a305230
LS
3225 * No-op if attributes already registered.
3226 */
3cd8b44f 3227static void hugetlb_register_node(struct node *node)
9a305230
LS
3228{
3229 struct hstate *h;
10fbcf4c 3230 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3231 int err;
3232
3233 if (nhs->hugepages_kobj)
3234 return; /* already allocated */
3235
3236 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3237 &node->dev.kobj);
9a305230
LS
3238 if (!nhs->hugepages_kobj)
3239 return;
3240
3241 for_each_hstate(h) {
3242 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3243 nhs->hstate_kobjs,
3244 &per_node_hstate_attr_group);
3245 if (err) {
282f4214 3246 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3247 h->name, node->dev.id);
9a305230
LS
3248 hugetlb_unregister_node(node);
3249 break;
3250 }
3251 }
3252}
3253
3254/*
9b5e5d0f 3255 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3256 * devices of nodes that have memory. All on-line nodes should have
3257 * registered their associated device by this time.
9a305230 3258 */
7d9ca000 3259static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3260{
3261 int nid;
3262
8cebfcd0 3263 for_each_node_state(nid, N_MEMORY) {
8732794b 3264 struct node *node = node_devices[nid];
10fbcf4c 3265 if (node->dev.id == nid)
9a305230
LS
3266 hugetlb_register_node(node);
3267 }
3268
3269 /*
10fbcf4c 3270 * Let the node device driver know we're here so it can
9a305230
LS
3271 * [un]register hstate attributes on node hotplug.
3272 */
3273 register_hugetlbfs_with_node(hugetlb_register_node,
3274 hugetlb_unregister_node);
3275}
3276#else /* !CONFIG_NUMA */
3277
3278static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3279{
3280 BUG();
3281 if (nidp)
3282 *nidp = -1;
3283 return NULL;
3284}
3285
9a305230
LS
3286static void hugetlb_register_all_nodes(void) { }
3287
3288#endif
3289
a3437870
NA
3290static int __init hugetlb_init(void)
3291{
8382d914
DB
3292 int i;
3293
d6995da3
MK
3294 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3295 __NR_HPAGEFLAGS);
3296
c2833a5b
MK
3297 if (!hugepages_supported()) {
3298 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3299 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3300 return 0;
c2833a5b 3301 }
a3437870 3302
282f4214
MK
3303 /*
3304 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3305 * architectures depend on setup being done here.
3306 */
3307 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3308 if (!parsed_default_hugepagesz) {
3309 /*
3310 * If we did not parse a default huge page size, set
3311 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3312 * number of huge pages for this default size was implicitly
3313 * specified, set that here as well.
3314 * Note that the implicit setting will overwrite an explicit
3315 * setting. A warning will be printed in this case.
3316 */
3317 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3318 if (default_hstate_max_huge_pages) {
3319 if (default_hstate.max_huge_pages) {
3320 char buf[32];
3321
3322 string_get_size(huge_page_size(&default_hstate),
3323 1, STRING_UNITS_2, buf, 32);
3324 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3325 default_hstate.max_huge_pages, buf);
3326 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3327 default_hstate_max_huge_pages);
3328 }
3329 default_hstate.max_huge_pages =
3330 default_hstate_max_huge_pages;
d715cf80 3331 }
f8b74815 3332 }
a3437870 3333
cf11e85f 3334 hugetlb_cma_check();
a3437870 3335 hugetlb_init_hstates();
aa888a74 3336 gather_bootmem_prealloc();
a3437870
NA
3337 report_hugepages();
3338
3339 hugetlb_sysfs_init();
9a305230 3340 hugetlb_register_all_nodes();
7179e7bf 3341 hugetlb_cgroup_file_init();
9a305230 3342
8382d914
DB
3343#ifdef CONFIG_SMP
3344 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3345#else
3346 num_fault_mutexes = 1;
3347#endif
c672c7f2 3348 hugetlb_fault_mutex_table =
6da2ec56
KC
3349 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3350 GFP_KERNEL);
c672c7f2 3351 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3352
3353 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3354 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3355 return 0;
3356}
3e89e1c5 3357subsys_initcall(hugetlb_init);
a3437870 3358
ae94da89
MK
3359/* Overwritten by architectures with more huge page sizes */
3360bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3361{
ae94da89 3362 return size == HPAGE_SIZE;
9fee021d
VT
3363}
3364
d00181b9 3365void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3366{
3367 struct hstate *h;
8faa8b07
AK
3368 unsigned long i;
3369
a3437870 3370 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3371 return;
3372 }
47d38344 3373 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3374 BUG_ON(order == 0);
47d38344 3375 h = &hstates[hugetlb_max_hstate++];
29383967 3376 mutex_init(&h->resize_lock);
a3437870 3377 h->order = order;
aca78307 3378 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
3379 for (i = 0; i < MAX_NUMNODES; ++i)
3380 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3381 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3382 h->next_nid_to_alloc = first_memory_node;
3383 h->next_nid_to_free = first_memory_node;
a3437870
NA
3384 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3385 huge_page_size(h)/1024);
8faa8b07 3386
a3437870
NA
3387 parsed_hstate = h;
3388}
3389
282f4214
MK
3390/*
3391 * hugepages command line processing
3392 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3393 * specification. If not, ignore the hugepages value. hugepages can also
3394 * be the first huge page command line option in which case it implicitly
3395 * specifies the number of huge pages for the default size.
3396 */
3397static int __init hugepages_setup(char *s)
a3437870
NA
3398{
3399 unsigned long *mhp;
8faa8b07 3400 static unsigned long *last_mhp;
a3437870 3401
9fee021d 3402 if (!parsed_valid_hugepagesz) {
282f4214 3403 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3404 parsed_valid_hugepagesz = true;
282f4214 3405 return 0;
9fee021d 3406 }
282f4214 3407
a3437870 3408 /*
282f4214
MK
3409 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3410 * yet, so this hugepages= parameter goes to the "default hstate".
3411 * Otherwise, it goes with the previously parsed hugepagesz or
3412 * default_hugepagesz.
a3437870 3413 */
9fee021d 3414 else if (!hugetlb_max_hstate)
a3437870
NA
3415 mhp = &default_hstate_max_huge_pages;
3416 else
3417 mhp = &parsed_hstate->max_huge_pages;
3418
8faa8b07 3419 if (mhp == last_mhp) {
282f4214
MK
3420 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3421 return 0;
8faa8b07
AK
3422 }
3423
a3437870
NA
3424 if (sscanf(s, "%lu", mhp) <= 0)
3425 *mhp = 0;
3426
8faa8b07
AK
3427 /*
3428 * Global state is always initialized later in hugetlb_init.
04adbc3f 3429 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
3430 * use the bootmem allocator.
3431 */
04adbc3f 3432 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
3433 hugetlb_hstate_alloc_pages(parsed_hstate);
3434
3435 last_mhp = mhp;
3436
a3437870
NA
3437 return 1;
3438}
282f4214 3439__setup("hugepages=", hugepages_setup);
e11bfbfc 3440
282f4214
MK
3441/*
3442 * hugepagesz command line processing
3443 * A specific huge page size can only be specified once with hugepagesz.
3444 * hugepagesz is followed by hugepages on the command line. The global
3445 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3446 * hugepagesz argument was valid.
3447 */
359f2544 3448static int __init hugepagesz_setup(char *s)
e11bfbfc 3449{
359f2544 3450 unsigned long size;
282f4214
MK
3451 struct hstate *h;
3452
3453 parsed_valid_hugepagesz = false;
359f2544
MK
3454 size = (unsigned long)memparse(s, NULL);
3455
3456 if (!arch_hugetlb_valid_size(size)) {
282f4214 3457 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3458 return 0;
3459 }
3460
282f4214
MK
3461 h = size_to_hstate(size);
3462 if (h) {
3463 /*
3464 * hstate for this size already exists. This is normally
3465 * an error, but is allowed if the existing hstate is the
3466 * default hstate. More specifically, it is only allowed if
3467 * the number of huge pages for the default hstate was not
3468 * previously specified.
3469 */
3470 if (!parsed_default_hugepagesz || h != &default_hstate ||
3471 default_hstate.max_huge_pages) {
3472 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3473 return 0;
3474 }
3475
3476 /*
3477 * No need to call hugetlb_add_hstate() as hstate already
3478 * exists. But, do set parsed_hstate so that a following
3479 * hugepages= parameter will be applied to this hstate.
3480 */
3481 parsed_hstate = h;
3482 parsed_valid_hugepagesz = true;
3483 return 1;
38237830
MK
3484 }
3485
359f2544 3486 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3487 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3488 return 1;
3489}
359f2544
MK
3490__setup("hugepagesz=", hugepagesz_setup);
3491
282f4214
MK
3492/*
3493 * default_hugepagesz command line input
3494 * Only one instance of default_hugepagesz allowed on command line.
3495 */
ae94da89 3496static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3497{
ae94da89
MK
3498 unsigned long size;
3499
282f4214 3500 parsed_valid_hugepagesz = false;
282f4214
MK
3501 if (parsed_default_hugepagesz) {
3502 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3503 return 0;
3504 }
3505
ae94da89
MK
3506 size = (unsigned long)memparse(s, NULL);
3507
3508 if (!arch_hugetlb_valid_size(size)) {
282f4214 3509 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3510 return 0;
3511 }
3512
282f4214
MK
3513 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3514 parsed_valid_hugepagesz = true;
3515 parsed_default_hugepagesz = true;
3516 default_hstate_idx = hstate_index(size_to_hstate(size));
3517
3518 /*
3519 * The number of default huge pages (for this size) could have been
3520 * specified as the first hugetlb parameter: hugepages=X. If so,
3521 * then default_hstate_max_huge_pages is set. If the default huge
3522 * page size is gigantic (>= MAX_ORDER), then the pages must be
3523 * allocated here from bootmem allocator.
3524 */
3525 if (default_hstate_max_huge_pages) {
3526 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3527 if (hstate_is_gigantic(&default_hstate))
3528 hugetlb_hstate_alloc_pages(&default_hstate);
3529 default_hstate_max_huge_pages = 0;
3530 }
3531
e11bfbfc
NP
3532 return 1;
3533}
ae94da89 3534__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3535
8ca39e68 3536static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3537{
3538 int node;
3539 unsigned int nr = 0;
8ca39e68
MS
3540 nodemask_t *mpol_allowed;
3541 unsigned int *array = h->free_huge_pages_node;
3542 gfp_t gfp_mask = htlb_alloc_mask(h);
3543
3544 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3545
8ca39e68 3546 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 3547 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
3548 nr += array[node];
3549 }
8a213460
NA
3550
3551 return nr;
3552}
3553
3554#ifdef CONFIG_SYSCTL
17743798
MS
3555static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3556 void *buffer, size_t *length,
3557 loff_t *ppos, unsigned long *out)
3558{
3559 struct ctl_table dup_table;
3560
3561 /*
3562 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3563 * can duplicate the @table and alter the duplicate of it.
3564 */
3565 dup_table = *table;
3566 dup_table.data = out;
3567
3568 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3569}
3570
06808b08
LS
3571static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3572 struct ctl_table *table, int write,
32927393 3573 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3574{
e5ff2159 3575 struct hstate *h = &default_hstate;
238d3c13 3576 unsigned long tmp = h->max_huge_pages;
08d4a246 3577 int ret;
e5ff2159 3578
457c1b27 3579 if (!hugepages_supported())
86613628 3580 return -EOPNOTSUPP;
457c1b27 3581
17743798
MS
3582 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3583 &tmp);
08d4a246
MH
3584 if (ret)
3585 goto out;
e5ff2159 3586
238d3c13
DR
3587 if (write)
3588 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3589 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3590out:
3591 return ret;
1da177e4 3592}
396faf03 3593
06808b08 3594int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3595 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3596{
3597
3598 return hugetlb_sysctl_handler_common(false, table, write,
3599 buffer, length, ppos);
3600}
3601
3602#ifdef CONFIG_NUMA
3603int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3604 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3605{
3606 return hugetlb_sysctl_handler_common(true, table, write,
3607 buffer, length, ppos);
3608}
3609#endif /* CONFIG_NUMA */
3610
a3d0c6aa 3611int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3612 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3613{
a5516438 3614 struct hstate *h = &default_hstate;
e5ff2159 3615 unsigned long tmp;
08d4a246 3616 int ret;
e5ff2159 3617
457c1b27 3618 if (!hugepages_supported())
86613628 3619 return -EOPNOTSUPP;
457c1b27 3620
c033a93c 3621 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3622
bae7f4ae 3623 if (write && hstate_is_gigantic(h))
adbe8726
EM
3624 return -EINVAL;
3625
17743798
MS
3626 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3627 &tmp);
08d4a246
MH
3628 if (ret)
3629 goto out;
e5ff2159
AK
3630
3631 if (write) {
db71ef79 3632 spin_lock_irq(&hugetlb_lock);
e5ff2159 3633 h->nr_overcommit_huge_pages = tmp;
db71ef79 3634 spin_unlock_irq(&hugetlb_lock);
e5ff2159 3635 }
08d4a246
MH
3636out:
3637 return ret;
a3d0c6aa
NA
3638}
3639
1da177e4
LT
3640#endif /* CONFIG_SYSCTL */
3641
e1759c21 3642void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3643{
fcb2b0c5
RG
3644 struct hstate *h;
3645 unsigned long total = 0;
3646
457c1b27
NA
3647 if (!hugepages_supported())
3648 return;
fcb2b0c5
RG
3649
3650 for_each_hstate(h) {
3651 unsigned long count = h->nr_huge_pages;
3652
aca78307 3653 total += huge_page_size(h) * count;
fcb2b0c5
RG
3654
3655 if (h == &default_hstate)
3656 seq_printf(m,
3657 "HugePages_Total: %5lu\n"
3658 "HugePages_Free: %5lu\n"
3659 "HugePages_Rsvd: %5lu\n"
3660 "HugePages_Surp: %5lu\n"
3661 "Hugepagesize: %8lu kB\n",
3662 count,
3663 h->free_huge_pages,
3664 h->resv_huge_pages,
3665 h->surplus_huge_pages,
aca78307 3666 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
3667 }
3668
aca78307 3669 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
3670}
3671
7981593b 3672int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3673{
a5516438 3674 struct hstate *h = &default_hstate;
7981593b 3675
457c1b27
NA
3676 if (!hugepages_supported())
3677 return 0;
7981593b
JP
3678
3679 return sysfs_emit_at(buf, len,
3680 "Node %d HugePages_Total: %5u\n"
3681 "Node %d HugePages_Free: %5u\n"
3682 "Node %d HugePages_Surp: %5u\n",
3683 nid, h->nr_huge_pages_node[nid],
3684 nid, h->free_huge_pages_node[nid],
3685 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3686}
3687
949f7ec5
DR
3688void hugetlb_show_meminfo(void)
3689{
3690 struct hstate *h;
3691 int nid;
3692
457c1b27
NA
3693 if (!hugepages_supported())
3694 return;
3695
949f7ec5
DR
3696 for_each_node_state(nid, N_MEMORY)
3697 for_each_hstate(h)
3698 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3699 nid,
3700 h->nr_huge_pages_node[nid],
3701 h->free_huge_pages_node[nid],
3702 h->surplus_huge_pages_node[nid],
aca78307 3703 huge_page_size(h) / SZ_1K);
949f7ec5
DR
3704}
3705
5d317b2b
NH
3706void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3707{
3708 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3709 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3710}
3711
1da177e4
LT
3712/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3713unsigned long hugetlb_total_pages(void)
3714{
d0028588
WL
3715 struct hstate *h;
3716 unsigned long nr_total_pages = 0;
3717
3718 for_each_hstate(h)
3719 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3720 return nr_total_pages;
1da177e4 3721}
1da177e4 3722
a5516438 3723static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3724{
3725 int ret = -ENOMEM;
3726
0aa7f354
ML
3727 if (!delta)
3728 return 0;
3729
db71ef79 3730 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
3731 /*
3732 * When cpuset is configured, it breaks the strict hugetlb page
3733 * reservation as the accounting is done on a global variable. Such
3734 * reservation is completely rubbish in the presence of cpuset because
3735 * the reservation is not checked against page availability for the
3736 * current cpuset. Application can still potentially OOM'ed by kernel
3737 * with lack of free htlb page in cpuset that the task is in.
3738 * Attempt to enforce strict accounting with cpuset is almost
3739 * impossible (or too ugly) because cpuset is too fluid that
3740 * task or memory node can be dynamically moved between cpusets.
3741 *
3742 * The change of semantics for shared hugetlb mapping with cpuset is
3743 * undesirable. However, in order to preserve some of the semantics,
3744 * we fall back to check against current free page availability as
3745 * a best attempt and hopefully to minimize the impact of changing
3746 * semantics that cpuset has.
8ca39e68
MS
3747 *
3748 * Apart from cpuset, we also have memory policy mechanism that
3749 * also determines from which node the kernel will allocate memory
3750 * in a NUMA system. So similar to cpuset, we also should consider
3751 * the memory policy of the current task. Similar to the description
3752 * above.
fc1b8a73
MG
3753 */
3754 if (delta > 0) {
a5516438 3755 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3756 goto out;
3757
8ca39e68 3758 if (delta > allowed_mems_nr(h)) {
a5516438 3759 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3760 goto out;
3761 }
3762 }
3763
3764 ret = 0;
3765 if (delta < 0)
a5516438 3766 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3767
3768out:
db71ef79 3769 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
3770 return ret;
3771}
3772
84afd99b
AW
3773static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3774{
f522c3ac 3775 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3776
3777 /*
3778 * This new VMA should share its siblings reservation map if present.
3779 * The VMA will only ever have a valid reservation map pointer where
3780 * it is being copied for another still existing VMA. As that VMA
25985edc 3781 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3782 * after this open call completes. It is therefore safe to take a
3783 * new reference here without additional locking.
3784 */
4e35f483 3785 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3786 kref_get(&resv->refs);
84afd99b
AW
3787}
3788
a1e78772
MG
3789static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3790{
a5516438 3791 struct hstate *h = hstate_vma(vma);
f522c3ac 3792 struct resv_map *resv = vma_resv_map(vma);
90481622 3793 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3794 unsigned long reserve, start, end;
1c5ecae3 3795 long gbl_reserve;
84afd99b 3796
4e35f483
JK
3797 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3798 return;
84afd99b 3799
4e35f483
JK
3800 start = vma_hugecache_offset(h, vma, vma->vm_start);
3801 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3802
4e35f483 3803 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3804 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3805 if (reserve) {
1c5ecae3
MK
3806 /*
3807 * Decrement reserve counts. The global reserve count may be
3808 * adjusted if the subpool has a minimum size.
3809 */
3810 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3811 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3812 }
e9fe92ae
MA
3813
3814 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3815}
3816
31383c68
DW
3817static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3818{
3819 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3820 return -EINVAL;
3821 return 0;
3822}
3823
05ea8860
DW
3824static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3825{
aca78307 3826 return huge_page_size(hstate_vma(vma));
05ea8860
DW
3827}
3828
1da177e4
LT
3829/*
3830 * We cannot handle pagefaults against hugetlb pages at all. They cause
3831 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 3832 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
3833 * this far.
3834 */
b3ec9f33 3835static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3836{
3837 BUG();
d0217ac0 3838 return 0;
1da177e4
LT
3839}
3840
eec3636a
JC
3841/*
3842 * When a new function is introduced to vm_operations_struct and added
3843 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3844 * This is because under System V memory model, mappings created via
3845 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3846 * their original vm_ops are overwritten with shm_vm_ops.
3847 */
f0f37e2f 3848const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3849 .fault = hugetlb_vm_op_fault,
84afd99b 3850 .open = hugetlb_vm_op_open,
a1e78772 3851 .close = hugetlb_vm_op_close,
dd3b614f 3852 .may_split = hugetlb_vm_op_split,
05ea8860 3853 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3854};
3855
1e8f889b
DG
3856static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3857 int writable)
63551ae0
DG
3858{
3859 pte_t entry;
3860
1e8f889b 3861 if (writable) {
106c992a
GS
3862 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3863 vma->vm_page_prot)));
63551ae0 3864 } else {
106c992a
GS
3865 entry = huge_pte_wrprotect(mk_huge_pte(page,
3866 vma->vm_page_prot));
63551ae0
DG
3867 }
3868 entry = pte_mkyoung(entry);
3869 entry = pte_mkhuge(entry);
d9ed9faa 3870 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3871
3872 return entry;
3873}
3874
1e8f889b
DG
3875static void set_huge_ptep_writable(struct vm_area_struct *vma,
3876 unsigned long address, pte_t *ptep)
3877{
3878 pte_t entry;
3879
106c992a 3880 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3881 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3882 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3883}
3884
d5ed7444 3885bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3886{
3887 swp_entry_t swp;
3888
3889 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3890 return false;
4a705fef 3891 swp = pte_to_swp_entry(pte);
d79d176a 3892 if (is_migration_entry(swp))
d5ed7444 3893 return true;
4a705fef 3894 else
d5ed7444 3895 return false;
4a705fef
NH
3896}
3897
3e5c3600 3898static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
3899{
3900 swp_entry_t swp;
3901
3902 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 3903 return false;
4a705fef 3904 swp = pte_to_swp_entry(pte);
d79d176a 3905 if (is_hwpoison_entry(swp))
3e5c3600 3906 return true;
4a705fef 3907 else
3e5c3600 3908 return false;
4a705fef 3909}
1e8f889b 3910
4eae4efa
PX
3911static void
3912hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3913 struct page *new_page)
3914{
3915 __SetPageUptodate(new_page);
3916 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3917 hugepage_add_new_anon_rmap(new_page, vma, addr);
3918 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3919 ClearHPageRestoreReserve(new_page);
3920 SetHPageMigratable(new_page);
3921}
3922
63551ae0
DG
3923int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3924 struct vm_area_struct *vma)
3925{
5e41540c 3926 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3927 struct page *ptepage;
1c59827d 3928 unsigned long addr;
ca6eb14d 3929 bool cow = is_cow_mapping(vma->vm_flags);
a5516438
AK
3930 struct hstate *h = hstate_vma(vma);
3931 unsigned long sz = huge_page_size(h);
4eae4efa 3932 unsigned long npages = pages_per_huge_page(h);
c0d0381a 3933 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3934 struct mmu_notifier_range range;
e8569dd2 3935 int ret = 0;
1e8f889b 3936
ac46d4f3 3937 if (cow) {
7269f999 3938 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3939 vma->vm_start,
ac46d4f3
JG
3940 vma->vm_end);
3941 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3942 } else {
3943 /*
3944 * For shared mappings i_mmap_rwsem must be held to call
3945 * huge_pte_alloc, otherwise the returned ptep could go
3946 * away if part of a shared pmd and another thread calls
3947 * huge_pmd_unshare.
3948 */
3949 i_mmap_lock_read(mapping);
ac46d4f3 3950 }
e8569dd2 3951
a5516438 3952 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3953 spinlock_t *src_ptl, *dst_ptl;
7868a208 3954 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3955 if (!src_pte)
3956 continue;
aec44e0f 3957 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
e8569dd2
AS
3958 if (!dst_pte) {
3959 ret = -ENOMEM;
3960 break;
3961 }
c5c99429 3962
5e41540c
MK
3963 /*
3964 * If the pagetables are shared don't copy or take references.
3965 * dst_pte == src_pte is the common case of src/dest sharing.
3966 *
3967 * However, src could have 'unshared' and dst shares with
3968 * another vma. If dst_pte !none, this implies sharing.
3969 * Check here before taking page table lock, and once again
3970 * after taking the lock below.
3971 */
3972 dst_entry = huge_ptep_get(dst_pte);
3973 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3974 continue;
3975
cb900f41
KS
3976 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3977 src_ptl = huge_pte_lockptr(h, src, src_pte);
3978 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3979 entry = huge_ptep_get(src_pte);
5e41540c 3980 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 3981again:
5e41540c
MK
3982 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3983 /*
3984 * Skip if src entry none. Also, skip in the
3985 * unlikely case dst entry !none as this implies
3986 * sharing with another vma.
3987 */
4a705fef
NH
3988 ;
3989 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3990 is_hugetlb_entry_hwpoisoned(entry))) {
3991 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3992
3993 if (is_write_migration_entry(swp_entry) && cow) {
3994 /*
3995 * COW mappings require pages in both
3996 * parent and child to be set to read.
3997 */
3998 make_migration_entry_read(&swp_entry);
3999 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
4000 set_huge_swap_pte_at(src, addr, src_pte,
4001 entry, sz);
4a705fef 4002 }
e5251fd4 4003 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 4004 } else {
4eae4efa
PX
4005 entry = huge_ptep_get(src_pte);
4006 ptepage = pte_page(entry);
4007 get_page(ptepage);
4008
4009 /*
4010 * This is a rare case where we see pinned hugetlb
4011 * pages while they're prone to COW. We need to do the
4012 * COW earlier during fork.
4013 *
4014 * When pre-allocating the page or copying data, we
4015 * need to be without the pgtable locks since we could
4016 * sleep during the process.
4017 */
4018 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4019 pte_t src_pte_old = entry;
4020 struct page *new;
4021
4022 spin_unlock(src_ptl);
4023 spin_unlock(dst_ptl);
4024 /* Do not use reserve as it's private owned */
4025 new = alloc_huge_page(vma, addr, 1);
4026 if (IS_ERR(new)) {
4027 put_page(ptepage);
4028 ret = PTR_ERR(new);
4029 break;
4030 }
4031 copy_user_huge_page(new, ptepage, addr, vma,
4032 npages);
4033 put_page(ptepage);
4034
4035 /* Install the new huge page if src pte stable */
4036 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4037 src_ptl = huge_pte_lockptr(h, src, src_pte);
4038 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4039 entry = huge_ptep_get(src_pte);
4040 if (!pte_same(src_pte_old, entry)) {
4041 put_page(new);
4042 /* dst_entry won't change as in child */
4043 goto again;
4044 }
4045 hugetlb_install_page(vma, dst_pte, addr, new);
4046 spin_unlock(src_ptl);
4047 spin_unlock(dst_ptl);
4048 continue;
4049 }
4050
34ee645e 4051 if (cow) {
0f10851e
JG
4052 /*
4053 * No need to notify as we are downgrading page
4054 * table protection not changing it to point
4055 * to a new page.
4056 *
ad56b738 4057 * See Documentation/vm/mmu_notifier.rst
0f10851e 4058 */
7f2e9525 4059 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 4060 }
4eae4efa 4061
53f9263b 4062 page_dup_rmap(ptepage, true);
1c59827d 4063 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 4064 hugetlb_count_add(npages, dst);
1c59827d 4065 }
cb900f41
KS
4066 spin_unlock(src_ptl);
4067 spin_unlock(dst_ptl);
63551ae0 4068 }
63551ae0 4069
e8569dd2 4070 if (cow)
ac46d4f3 4071 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
4072 else
4073 i_mmap_unlock_read(mapping);
e8569dd2
AS
4074
4075 return ret;
63551ae0
DG
4076}
4077
24669e58
AK
4078void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4079 unsigned long start, unsigned long end,
4080 struct page *ref_page)
63551ae0
DG
4081{
4082 struct mm_struct *mm = vma->vm_mm;
4083 unsigned long address;
c7546f8f 4084 pte_t *ptep;
63551ae0 4085 pte_t pte;
cb900f41 4086 spinlock_t *ptl;
63551ae0 4087 struct page *page;
a5516438
AK
4088 struct hstate *h = hstate_vma(vma);
4089 unsigned long sz = huge_page_size(h);
ac46d4f3 4090 struct mmu_notifier_range range;
a5516438 4091
63551ae0 4092 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
4093 BUG_ON(start & ~huge_page_mask(h));
4094 BUG_ON(end & ~huge_page_mask(h));
63551ae0 4095
07e32661
AK
4096 /*
4097 * This is a hugetlb vma, all the pte entries should point
4098 * to huge page.
4099 */
ed6a7935 4100 tlb_change_page_size(tlb, sz);
24669e58 4101 tlb_start_vma(tlb, vma);
dff11abe
MK
4102
4103 /*
4104 * If sharing possible, alert mmu notifiers of worst case.
4105 */
6f4f13e8
JG
4106 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4107 end);
ac46d4f3
JG
4108 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4109 mmu_notifier_invalidate_range_start(&range);
569f48b8 4110 address = start;
569f48b8 4111 for (; address < end; address += sz) {
7868a208 4112 ptep = huge_pte_offset(mm, address, sz);
4c887265 4113 if (!ptep)
c7546f8f
DG
4114 continue;
4115
cb900f41 4116 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 4117 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 4118 spin_unlock(ptl);
dff11abe
MK
4119 /*
4120 * We just unmapped a page of PMDs by clearing a PUD.
4121 * The caller's TLB flush range should cover this area.
4122 */
31d49da5
AK
4123 continue;
4124 }
39dde65c 4125
6629326b 4126 pte = huge_ptep_get(ptep);
31d49da5
AK
4127 if (huge_pte_none(pte)) {
4128 spin_unlock(ptl);
4129 continue;
4130 }
6629326b
HD
4131
4132 /*
9fbc1f63
NH
4133 * Migrating hugepage or HWPoisoned hugepage is already
4134 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 4135 */
9fbc1f63 4136 if (unlikely(!pte_present(pte))) {
9386fac3 4137 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
4138 spin_unlock(ptl);
4139 continue;
8c4894c6 4140 }
6629326b
HD
4141
4142 page = pte_page(pte);
04f2cbe3
MG
4143 /*
4144 * If a reference page is supplied, it is because a specific
4145 * page is being unmapped, not a range. Ensure the page we
4146 * are about to unmap is the actual page of interest.
4147 */
4148 if (ref_page) {
31d49da5
AK
4149 if (page != ref_page) {
4150 spin_unlock(ptl);
4151 continue;
4152 }
04f2cbe3
MG
4153 /*
4154 * Mark the VMA as having unmapped its page so that
4155 * future faults in this VMA will fail rather than
4156 * looking like data was lost
4157 */
4158 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4159 }
4160
c7546f8f 4161 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 4162 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 4163 if (huge_pte_dirty(pte))
6649a386 4164 set_page_dirty(page);
9e81130b 4165
5d317b2b 4166 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4167 page_remove_rmap(page, true);
31d49da5 4168
cb900f41 4169 spin_unlock(ptl);
e77b0852 4170 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4171 /*
4172 * Bail out after unmapping reference page if supplied
4173 */
4174 if (ref_page)
4175 break;
fe1668ae 4176 }
ac46d4f3 4177 mmu_notifier_invalidate_range_end(&range);
24669e58 4178 tlb_end_vma(tlb, vma);
1da177e4 4179}
63551ae0 4180
d833352a
MG
4181void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4182 struct vm_area_struct *vma, unsigned long start,
4183 unsigned long end, struct page *ref_page)
4184{
4185 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4186
4187 /*
4188 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4189 * test will fail on a vma being torn down, and not grab a page table
4190 * on its way out. We're lucky that the flag has such an appropriate
4191 * name, and can in fact be safely cleared here. We could clear it
4192 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4193 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4194 * because in the context this is called, the VMA is about to be
c8c06efa 4195 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4196 */
4197 vma->vm_flags &= ~VM_MAYSHARE;
4198}
4199
502717f4 4200void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4201 unsigned long end, struct page *ref_page)
502717f4 4202{
24669e58 4203 struct mmu_gather tlb;
dff11abe 4204
a72afd87 4205 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 4206 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 4207 tlb_finish_mmu(&tlb);
502717f4
KC
4208}
4209
04f2cbe3
MG
4210/*
4211 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 4212 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
4213 * from other VMAs and let the children be SIGKILLed if they are faulting the
4214 * same region.
4215 */
2f4612af
DB
4216static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4217 struct page *page, unsigned long address)
04f2cbe3 4218{
7526674d 4219 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4220 struct vm_area_struct *iter_vma;
4221 struct address_space *mapping;
04f2cbe3
MG
4222 pgoff_t pgoff;
4223
4224 /*
4225 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4226 * from page cache lookup which is in HPAGE_SIZE units.
4227 */
7526674d 4228 address = address & huge_page_mask(h);
36e4f20a
MH
4229 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4230 vma->vm_pgoff;
93c76a3d 4231 mapping = vma->vm_file->f_mapping;
04f2cbe3 4232
4eb2b1dc
MG
4233 /*
4234 * Take the mapping lock for the duration of the table walk. As
4235 * this mapping should be shared between all the VMAs,
4236 * __unmap_hugepage_range() is called as the lock is already held
4237 */
83cde9e8 4238 i_mmap_lock_write(mapping);
6b2dbba8 4239 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4240 /* Do not unmap the current VMA */
4241 if (iter_vma == vma)
4242 continue;
4243
2f84a899
MG
4244 /*
4245 * Shared VMAs have their own reserves and do not affect
4246 * MAP_PRIVATE accounting but it is possible that a shared
4247 * VMA is using the same page so check and skip such VMAs.
4248 */
4249 if (iter_vma->vm_flags & VM_MAYSHARE)
4250 continue;
4251
04f2cbe3
MG
4252 /*
4253 * Unmap the page from other VMAs without their own reserves.
4254 * They get marked to be SIGKILLed if they fault in these
4255 * areas. This is because a future no-page fault on this VMA
4256 * could insert a zeroed page instead of the data existing
4257 * from the time of fork. This would look like data corruption
4258 */
4259 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4260 unmap_hugepage_range(iter_vma, address,
4261 address + huge_page_size(h), page);
04f2cbe3 4262 }
83cde9e8 4263 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4264}
4265
0fe6e20b
NH
4266/*
4267 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4268 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4269 * cannot race with other handlers or page migration.
4270 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4271 */
2b740303 4272static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4273 unsigned long address, pte_t *ptep,
3999f52e 4274 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4275{
3999f52e 4276 pte_t pte;
a5516438 4277 struct hstate *h = hstate_vma(vma);
1e8f889b 4278 struct page *old_page, *new_page;
2b740303
SJ
4279 int outside_reserve = 0;
4280 vm_fault_t ret = 0;
974e6d66 4281 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4282 struct mmu_notifier_range range;
1e8f889b 4283
3999f52e 4284 pte = huge_ptep_get(ptep);
1e8f889b
DG
4285 old_page = pte_page(pte);
4286
04f2cbe3 4287retry_avoidcopy:
1e8f889b
DG
4288 /* If no-one else is actually using this page, avoid the copy
4289 * and just make the page writable */
37a2140d 4290 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4291 page_move_anon_rmap(old_page, vma);
5b7a1d40 4292 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4293 return 0;
1e8f889b
DG
4294 }
4295
04f2cbe3
MG
4296 /*
4297 * If the process that created a MAP_PRIVATE mapping is about to
4298 * perform a COW due to a shared page count, attempt to satisfy
4299 * the allocation without using the existing reserves. The pagecache
4300 * page is used to determine if the reserve at this address was
4301 * consumed or not. If reserves were used, a partial faulted mapping
4302 * at the time of fork() could consume its reserves on COW instead
4303 * of the full address range.
4304 */
5944d011 4305 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4306 old_page != pagecache_page)
4307 outside_reserve = 1;
4308
09cbfeaf 4309 get_page(old_page);
b76c8cfb 4310
ad4404a2
DB
4311 /*
4312 * Drop page table lock as buddy allocator may be called. It will
4313 * be acquired again before returning to the caller, as expected.
4314 */
cb900f41 4315 spin_unlock(ptl);
5b7a1d40 4316 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4317
2fc39cec 4318 if (IS_ERR(new_page)) {
04f2cbe3
MG
4319 /*
4320 * If a process owning a MAP_PRIVATE mapping fails to COW,
4321 * it is due to references held by a child and an insufficient
4322 * huge page pool. To guarantee the original mappers
4323 * reliability, unmap the page from child processes. The child
4324 * may get SIGKILLed if it later faults.
4325 */
4326 if (outside_reserve) {
e7dd91c4
MK
4327 struct address_space *mapping = vma->vm_file->f_mapping;
4328 pgoff_t idx;
4329 u32 hash;
4330
09cbfeaf 4331 put_page(old_page);
04f2cbe3 4332 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4333 /*
4334 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4335 * unmapping. unmapping needs to hold i_mmap_rwsem
4336 * in write mode. Dropping i_mmap_rwsem in read mode
4337 * here is OK as COW mappings do not interact with
4338 * PMD sharing.
4339 *
4340 * Reacquire both after unmap operation.
4341 */
4342 idx = vma_hugecache_offset(h, vma, haddr);
4343 hash = hugetlb_fault_mutex_hash(mapping, idx);
4344 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4345 i_mmap_unlock_read(mapping);
4346
5b7a1d40 4347 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4348
4349 i_mmap_lock_read(mapping);
4350 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4351 spin_lock(ptl);
5b7a1d40 4352 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4353 if (likely(ptep &&
4354 pte_same(huge_ptep_get(ptep), pte)))
4355 goto retry_avoidcopy;
4356 /*
4357 * race occurs while re-acquiring page table
4358 * lock, and our job is done.
4359 */
4360 return 0;
04f2cbe3
MG
4361 }
4362
2b740303 4363 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4364 goto out_release_old;
1e8f889b
DG
4365 }
4366
0fe6e20b
NH
4367 /*
4368 * When the original hugepage is shared one, it does not have
4369 * anon_vma prepared.
4370 */
44e2aa93 4371 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4372 ret = VM_FAULT_OOM;
4373 goto out_release_all;
44e2aa93 4374 }
0fe6e20b 4375
974e6d66 4376 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4377 pages_per_huge_page(h));
0ed361de 4378 __SetPageUptodate(new_page);
1e8f889b 4379
7269f999 4380 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4381 haddr + huge_page_size(h));
ac46d4f3 4382 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4383
b76c8cfb 4384 /*
cb900f41 4385 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4386 * before the page tables are altered
4387 */
cb900f41 4388 spin_lock(ptl);
5b7a1d40 4389 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4390 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 4391 ClearHPageRestoreReserve(new_page);
07443a85 4392
1e8f889b 4393 /* Break COW */
5b7a1d40 4394 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4395 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4396 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4397 make_huge_pte(vma, new_page, 1));
d281ee61 4398 page_remove_rmap(old_page, true);
5b7a1d40 4399 hugepage_add_new_anon_rmap(new_page, vma, haddr);
8f251a3d 4400 SetHPageMigratable(new_page);
1e8f889b
DG
4401 /* Make the old page be freed below */
4402 new_page = old_page;
4403 }
cb900f41 4404 spin_unlock(ptl);
ac46d4f3 4405 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4406out_release_all:
5b7a1d40 4407 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4408 put_page(new_page);
ad4404a2 4409out_release_old:
09cbfeaf 4410 put_page(old_page);
8312034f 4411
ad4404a2
DB
4412 spin_lock(ptl); /* Caller expects lock to be held */
4413 return ret;
1e8f889b
DG
4414}
4415
04f2cbe3 4416/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4417static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4418 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4419{
4420 struct address_space *mapping;
e7c4b0bf 4421 pgoff_t idx;
04f2cbe3
MG
4422
4423 mapping = vma->vm_file->f_mapping;
a5516438 4424 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4425
4426 return find_lock_page(mapping, idx);
4427}
4428
3ae77f43
HD
4429/*
4430 * Return whether there is a pagecache page to back given address within VMA.
4431 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4432 */
4433static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4434 struct vm_area_struct *vma, unsigned long address)
4435{
4436 struct address_space *mapping;
4437 pgoff_t idx;
4438 struct page *page;
4439
4440 mapping = vma->vm_file->f_mapping;
4441 idx = vma_hugecache_offset(h, vma, address);
4442
4443 page = find_get_page(mapping, idx);
4444 if (page)
4445 put_page(page);
4446 return page != NULL;
4447}
4448
ab76ad54
MK
4449int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4450 pgoff_t idx)
4451{
4452 struct inode *inode = mapping->host;
4453 struct hstate *h = hstate_inode(inode);
4454 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4455
4456 if (err)
4457 return err;
d6995da3 4458 ClearHPageRestoreReserve(page);
ab76ad54 4459
22146c3c
MK
4460 /*
4461 * set page dirty so that it will not be removed from cache/file
4462 * by non-hugetlbfs specific code paths.
4463 */
4464 set_page_dirty(page);
4465
ab76ad54
MK
4466 spin_lock(&inode->i_lock);
4467 inode->i_blocks += blocks_per_huge_page(h);
4468 spin_unlock(&inode->i_lock);
4469 return 0;
4470}
4471
7677f7fd
AR
4472static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4473 struct address_space *mapping,
4474 pgoff_t idx,
4475 unsigned int flags,
4476 unsigned long haddr,
4477 unsigned long reason)
4478{
4479 vm_fault_t ret;
4480 u32 hash;
4481 struct vm_fault vmf = {
4482 .vma = vma,
4483 .address = haddr,
4484 .flags = flags,
4485
4486 /*
4487 * Hard to debug if it ends up being
4488 * used by a callee that assumes
4489 * something about the other
4490 * uninitialized fields... same as in
4491 * memory.c
4492 */
4493 };
4494
4495 /*
4496 * hugetlb_fault_mutex and i_mmap_rwsem must be
4497 * dropped before handling userfault. Reacquire
4498 * after handling fault to make calling code simpler.
4499 */
4500 hash = hugetlb_fault_mutex_hash(mapping, idx);
4501 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4502 i_mmap_unlock_read(mapping);
4503 ret = handle_userfault(&vmf, reason);
4504 i_mmap_lock_read(mapping);
4505 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4506
4507 return ret;
4508}
4509
2b740303
SJ
4510static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4511 struct vm_area_struct *vma,
4512 struct address_space *mapping, pgoff_t idx,
4513 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4514{
a5516438 4515 struct hstate *h = hstate_vma(vma);
2b740303 4516 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4517 int anon_rmap = 0;
4c887265 4518 unsigned long size;
4c887265 4519 struct page *page;
1e8f889b 4520 pte_t new_pte;
cb900f41 4521 spinlock_t *ptl;
285b8dca 4522 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4523 bool new_page = false;
4c887265 4524
04f2cbe3
MG
4525 /*
4526 * Currently, we are forced to kill the process in the event the
4527 * original mapper has unmapped pages from the child due to a failed
25985edc 4528 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4529 */
4530 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4531 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4532 current->pid);
04f2cbe3
MG
4533 return ret;
4534 }
4535
4c887265 4536 /*
87bf91d3
MK
4537 * We can not race with truncation due to holding i_mmap_rwsem.
4538 * i_size is modified when holding i_mmap_rwsem, so check here
4539 * once for faults beyond end of file.
4c887265 4540 */
87bf91d3
MK
4541 size = i_size_read(mapping->host) >> huge_page_shift(h);
4542 if (idx >= size)
4543 goto out;
4544
6bda666a
CL
4545retry:
4546 page = find_lock_page(mapping, idx);
4547 if (!page) {
7677f7fd 4548 /* Check for page in userfault range */
1a1aad8a 4549 if (userfaultfd_missing(vma)) {
7677f7fd
AR
4550 ret = hugetlb_handle_userfault(vma, mapping, idx,
4551 flags, haddr,
4552 VM_UFFD_MISSING);
1a1aad8a
MK
4553 goto out;
4554 }
4555
285b8dca 4556 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4557 if (IS_ERR(page)) {
4643d67e
MK
4558 /*
4559 * Returning error will result in faulting task being
4560 * sent SIGBUS. The hugetlb fault mutex prevents two
4561 * tasks from racing to fault in the same page which
4562 * could result in false unable to allocate errors.
4563 * Page migration does not take the fault mutex, but
4564 * does a clear then write of pte's under page table
4565 * lock. Page fault code could race with migration,
4566 * notice the clear pte and try to allocate a page
4567 * here. Before returning error, get ptl and make
4568 * sure there really is no pte entry.
4569 */
4570 ptl = huge_pte_lock(h, mm, ptep);
d83e6c8a
ML
4571 ret = 0;
4572 if (huge_pte_none(huge_ptep_get(ptep)))
4573 ret = vmf_error(PTR_ERR(page));
4643d67e 4574 spin_unlock(ptl);
6bda666a
CL
4575 goto out;
4576 }
47ad8475 4577 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4578 __SetPageUptodate(page);
cb6acd01 4579 new_page = true;
ac9b9c66 4580
f83a275d 4581 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4582 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4583 if (err) {
4584 put_page(page);
6bda666a
CL
4585 if (err == -EEXIST)
4586 goto retry;
4587 goto out;
4588 }
23be7468 4589 } else {
6bda666a 4590 lock_page(page);
0fe6e20b
NH
4591 if (unlikely(anon_vma_prepare(vma))) {
4592 ret = VM_FAULT_OOM;
4593 goto backout_unlocked;
4594 }
409eb8c2 4595 anon_rmap = 1;
23be7468 4596 }
0fe6e20b 4597 } else {
998b4382
NH
4598 /*
4599 * If memory error occurs between mmap() and fault, some process
4600 * don't have hwpoisoned swap entry for errored virtual address.
4601 * So we need to block hugepage fault by PG_hwpoison bit check.
4602 */
4603 if (unlikely(PageHWPoison(page))) {
0eb98f15 4604 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4605 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4606 goto backout_unlocked;
4607 }
7677f7fd
AR
4608
4609 /* Check for page in userfault range. */
4610 if (userfaultfd_minor(vma)) {
4611 unlock_page(page);
4612 put_page(page);
4613 ret = hugetlb_handle_userfault(vma, mapping, idx,
4614 flags, haddr,
4615 VM_UFFD_MINOR);
4616 goto out;
4617 }
6bda666a 4618 }
1e8f889b 4619
57303d80
AW
4620 /*
4621 * If we are going to COW a private mapping later, we examine the
4622 * pending reservations for this page now. This will ensure that
4623 * any allocations necessary to record that reservation occur outside
4624 * the spinlock.
4625 */
5e911373 4626 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4627 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4628 ret = VM_FAULT_OOM;
4629 goto backout_unlocked;
4630 }
5e911373 4631 /* Just decrements count, does not deallocate */
285b8dca 4632 vma_end_reservation(h, vma, haddr);
5e911373 4633 }
57303d80 4634
8bea8052 4635 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4636 ret = 0;
7f2e9525 4637 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4638 goto backout;
4639
07443a85 4640 if (anon_rmap) {
d6995da3 4641 ClearHPageRestoreReserve(page);
285b8dca 4642 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4643 } else
53f9263b 4644 page_dup_rmap(page, true);
1e8f889b
DG
4645 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4646 && (vma->vm_flags & VM_SHARED)));
285b8dca 4647 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4648
5d317b2b 4649 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4650 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4651 /* Optimization, do the COW without a second fault */
974e6d66 4652 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4653 }
4654
cb900f41 4655 spin_unlock(ptl);
cb6acd01
MK
4656
4657 /*
8f251a3d
MK
4658 * Only set HPageMigratable in newly allocated pages. Existing pages
4659 * found in the pagecache may not have HPageMigratableset if they have
4660 * been isolated for migration.
cb6acd01
MK
4661 */
4662 if (new_page)
8f251a3d 4663 SetHPageMigratable(page);
cb6acd01 4664
4c887265
AL
4665 unlock_page(page);
4666out:
ac9b9c66 4667 return ret;
4c887265
AL
4668
4669backout:
cb900f41 4670 spin_unlock(ptl);
2b26736c 4671backout_unlocked:
4c887265 4672 unlock_page(page);
285b8dca 4673 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4674 put_page(page);
4675 goto out;
ac9b9c66
HD
4676}
4677
8382d914 4678#ifdef CONFIG_SMP
188b04a7 4679u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4680{
4681 unsigned long key[2];
4682 u32 hash;
4683
1b426bac
MK
4684 key[0] = (unsigned long) mapping;
4685 key[1] = idx;
8382d914 4686
55254636 4687 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4688
4689 return hash & (num_fault_mutexes - 1);
4690}
4691#else
4692/*
6c26d310 4693 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
4694 * return 0 and avoid the hashing overhead.
4695 */
188b04a7 4696u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4697{
4698 return 0;
4699}
4700#endif
4701
2b740303 4702vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4703 unsigned long address, unsigned int flags)
86e5216f 4704{
8382d914 4705 pte_t *ptep, entry;
cb900f41 4706 spinlock_t *ptl;
2b740303 4707 vm_fault_t ret;
8382d914
DB
4708 u32 hash;
4709 pgoff_t idx;
0fe6e20b 4710 struct page *page = NULL;
57303d80 4711 struct page *pagecache_page = NULL;
a5516438 4712 struct hstate *h = hstate_vma(vma);
8382d914 4713 struct address_space *mapping;
0f792cf9 4714 int need_wait_lock = 0;
285b8dca 4715 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4716
285b8dca 4717 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4718 if (ptep) {
c0d0381a
MK
4719 /*
4720 * Since we hold no locks, ptep could be stale. That is
4721 * OK as we are only making decisions based on content and
4722 * not actually modifying content here.
4723 */
fd6a03ed 4724 entry = huge_ptep_get(ptep);
290408d4 4725 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4726 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4727 return 0;
4728 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4729 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4730 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4731 }
4732
c0d0381a
MK
4733 /*
4734 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4735 * until finished with ptep. This serves two purposes:
4736 * 1) It prevents huge_pmd_unshare from being called elsewhere
4737 * and making the ptep no longer valid.
4738 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4739 *
4740 * ptep could have already be assigned via huge_pte_offset. That
4741 * is OK, as huge_pte_alloc will return the same value unless
4742 * something has changed.
4743 */
8382d914 4744 mapping = vma->vm_file->f_mapping;
c0d0381a 4745 i_mmap_lock_read(mapping);
aec44e0f 4746 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
c0d0381a
MK
4747 if (!ptep) {
4748 i_mmap_unlock_read(mapping);
4749 return VM_FAULT_OOM;
4750 }
8382d914 4751
3935baa9
DG
4752 /*
4753 * Serialize hugepage allocation and instantiation, so that we don't
4754 * get spurious allocation failures if two CPUs race to instantiate
4755 * the same page in the page cache.
4756 */
c0d0381a 4757 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4758 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4759 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4760
7f2e9525
GS
4761 entry = huge_ptep_get(ptep);
4762 if (huge_pte_none(entry)) {
8382d914 4763 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4764 goto out_mutex;
3935baa9 4765 }
86e5216f 4766
83c54070 4767 ret = 0;
1e8f889b 4768
0f792cf9
NH
4769 /*
4770 * entry could be a migration/hwpoison entry at this point, so this
4771 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4772 * an active hugepage in pagecache. This goto expects the 2nd page
4773 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4774 * properly handle it.
0f792cf9
NH
4775 */
4776 if (!pte_present(entry))
4777 goto out_mutex;
4778
57303d80
AW
4779 /*
4780 * If we are going to COW the mapping later, we examine the pending
4781 * reservations for this page now. This will ensure that any
4782 * allocations necessary to record that reservation occur outside the
4783 * spinlock. For private mappings, we also lookup the pagecache
4784 * page now as it is used to determine if a reservation has been
4785 * consumed.
4786 */
106c992a 4787 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4788 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4789 ret = VM_FAULT_OOM;
b4d1d99f 4790 goto out_mutex;
2b26736c 4791 }
5e911373 4792 /* Just decrements count, does not deallocate */
285b8dca 4793 vma_end_reservation(h, vma, haddr);
57303d80 4794
f83a275d 4795 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4796 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4797 vma, haddr);
57303d80
AW
4798 }
4799
0f792cf9
NH
4800 ptl = huge_pte_lock(h, mm, ptep);
4801
4802 /* Check for a racing update before calling hugetlb_cow */
4803 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4804 goto out_ptl;
4805
56c9cfb1
NH
4806 /*
4807 * hugetlb_cow() requires page locks of pte_page(entry) and
4808 * pagecache_page, so here we need take the former one
4809 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4810 */
4811 page = pte_page(entry);
4812 if (page != pagecache_page)
0f792cf9
NH
4813 if (!trylock_page(page)) {
4814 need_wait_lock = 1;
4815 goto out_ptl;
4816 }
b4d1d99f 4817
0f792cf9 4818 get_page(page);
b4d1d99f 4819
788c7df4 4820 if (flags & FAULT_FLAG_WRITE) {
106c992a 4821 if (!huge_pte_write(entry)) {
974e6d66 4822 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4823 pagecache_page, ptl);
0f792cf9 4824 goto out_put_page;
b4d1d99f 4825 }
106c992a 4826 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4827 }
4828 entry = pte_mkyoung(entry);
285b8dca 4829 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4830 flags & FAULT_FLAG_WRITE))
285b8dca 4831 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4832out_put_page:
4833 if (page != pagecache_page)
4834 unlock_page(page);
4835 put_page(page);
cb900f41
KS
4836out_ptl:
4837 spin_unlock(ptl);
57303d80
AW
4838
4839 if (pagecache_page) {
4840 unlock_page(pagecache_page);
4841 put_page(pagecache_page);
4842 }
b4d1d99f 4843out_mutex:
c672c7f2 4844 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4845 i_mmap_unlock_read(mapping);
0f792cf9
NH
4846 /*
4847 * Generally it's safe to hold refcount during waiting page lock. But
4848 * here we just wait to defer the next page fault to avoid busy loop and
4849 * the page is not used after unlocked before returning from the current
4850 * page fault. So we are safe from accessing freed page, even if we wait
4851 * here without taking refcount.
4852 */
4853 if (need_wait_lock)
4854 wait_on_page_locked(page);
1e8f889b 4855 return ret;
86e5216f
AL
4856}
4857
8fb5debc
MK
4858/*
4859 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4860 * modifications for huge pages.
4861 */
4862int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4863 pte_t *dst_pte,
4864 struct vm_area_struct *dst_vma,
4865 unsigned long dst_addr,
4866 unsigned long src_addr,
4867 struct page **pagep)
4868{
1e392147
AA
4869 struct address_space *mapping;
4870 pgoff_t idx;
4871 unsigned long size;
1c9e8def 4872 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4873 struct hstate *h = hstate_vma(dst_vma);
4874 pte_t _dst_pte;
4875 spinlock_t *ptl;
4876 int ret;
4877 struct page *page;
4878
4879 if (!*pagep) {
4880 ret = -ENOMEM;
4881 page = alloc_huge_page(dst_vma, dst_addr, 0);
4882 if (IS_ERR(page))
4883 goto out;
4884
4885 ret = copy_huge_page_from_user(page,
4886 (const void __user *) src_addr,
810a56b9 4887 pages_per_huge_page(h), false);
8fb5debc 4888
c1e8d7c6 4889 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 4890 if (unlikely(ret)) {
9e368259 4891 ret = -ENOENT;
8fb5debc
MK
4892 *pagep = page;
4893 /* don't free the page */
4894 goto out;
4895 }
4896 } else {
4897 page = *pagep;
4898 *pagep = NULL;
4899 }
4900
4901 /*
4902 * The memory barrier inside __SetPageUptodate makes sure that
4903 * preceding stores to the page contents become visible before
4904 * the set_pte_at() write.
4905 */
4906 __SetPageUptodate(page);
8fb5debc 4907
1e392147
AA
4908 mapping = dst_vma->vm_file->f_mapping;
4909 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4910
1c9e8def
MK
4911 /*
4912 * If shared, add to page cache
4913 */
4914 if (vm_shared) {
1e392147
AA
4915 size = i_size_read(mapping->host) >> huge_page_shift(h);
4916 ret = -EFAULT;
4917 if (idx >= size)
4918 goto out_release_nounlock;
1c9e8def 4919
1e392147
AA
4920 /*
4921 * Serialization between remove_inode_hugepages() and
4922 * huge_add_to_page_cache() below happens through the
4923 * hugetlb_fault_mutex_table that here must be hold by
4924 * the caller.
4925 */
1c9e8def
MK
4926 ret = huge_add_to_page_cache(page, mapping, idx);
4927 if (ret)
4928 goto out_release_nounlock;
4929 }
4930
8fb5debc
MK
4931 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4932 spin_lock(ptl);
4933
1e392147
AA
4934 /*
4935 * Recheck the i_size after holding PT lock to make sure not
4936 * to leave any page mapped (as page_mapped()) beyond the end
4937 * of the i_size (remove_inode_hugepages() is strict about
4938 * enforcing that). If we bail out here, we'll also leave a
4939 * page in the radix tree in the vm_shared case beyond the end
4940 * of the i_size, but remove_inode_hugepages() will take care
4941 * of it as soon as we drop the hugetlb_fault_mutex_table.
4942 */
4943 size = i_size_read(mapping->host) >> huge_page_shift(h);
4944 ret = -EFAULT;
4945 if (idx >= size)
4946 goto out_release_unlock;
4947
8fb5debc
MK
4948 ret = -EEXIST;
4949 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4950 goto out_release_unlock;
4951
1c9e8def
MK
4952 if (vm_shared) {
4953 page_dup_rmap(page, true);
4954 } else {
d6995da3 4955 ClearHPageRestoreReserve(page);
1c9e8def
MK
4956 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4957 }
8fb5debc
MK
4958
4959 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4960 if (dst_vma->vm_flags & VM_WRITE)
4961 _dst_pte = huge_pte_mkdirty(_dst_pte);
4962 _dst_pte = pte_mkyoung(_dst_pte);
4963
4964 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4965
4966 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4967 dst_vma->vm_flags & VM_WRITE);
4968 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4969
4970 /* No need to invalidate - it was non-present before */
4971 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4972
4973 spin_unlock(ptl);
8f251a3d 4974 SetHPageMigratable(page);
1c9e8def
MK
4975 if (vm_shared)
4976 unlock_page(page);
8fb5debc
MK
4977 ret = 0;
4978out:
4979 return ret;
4980out_release_unlock:
4981 spin_unlock(ptl);
1c9e8def
MK
4982 if (vm_shared)
4983 unlock_page(page);
5af10dfd 4984out_release_nounlock:
8fb5debc
MK
4985 put_page(page);
4986 goto out;
4987}
4988
82e5d378
JM
4989static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4990 int refs, struct page **pages,
4991 struct vm_area_struct **vmas)
4992{
4993 int nr;
4994
4995 for (nr = 0; nr < refs; nr++) {
4996 if (likely(pages))
4997 pages[nr] = mem_map_offset(page, nr);
4998 if (vmas)
4999 vmas[nr] = vma;
5000 }
5001}
5002
28a35716
ML
5003long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5004 struct page **pages, struct vm_area_struct **vmas,
5005 unsigned long *position, unsigned long *nr_pages,
4f6da934 5006 long i, unsigned int flags, int *locked)
63551ae0 5007{
d5d4b0aa
KC
5008 unsigned long pfn_offset;
5009 unsigned long vaddr = *position;
28a35716 5010 unsigned long remainder = *nr_pages;
a5516438 5011 struct hstate *h = hstate_vma(vma);
0fa5bc40 5012 int err = -EFAULT, refs;
63551ae0 5013
63551ae0 5014 while (vaddr < vma->vm_end && remainder) {
4c887265 5015 pte_t *pte;
cb900f41 5016 spinlock_t *ptl = NULL;
2a15efc9 5017 int absent;
4c887265 5018 struct page *page;
63551ae0 5019
02057967
DR
5020 /*
5021 * If we have a pending SIGKILL, don't keep faulting pages and
5022 * potentially allocating memory.
5023 */
fa45f116 5024 if (fatal_signal_pending(current)) {
02057967
DR
5025 remainder = 0;
5026 break;
5027 }
5028
4c887265
AL
5029 /*
5030 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 5031 * each hugepage. We have to make sure we get the
4c887265 5032 * first, for the page indexing below to work.
cb900f41
KS
5033 *
5034 * Note that page table lock is not held when pte is null.
4c887265 5035 */
7868a208
PA
5036 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5037 huge_page_size(h));
cb900f41
KS
5038 if (pte)
5039 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
5040 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5041
5042 /*
5043 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
5044 * an error where there's an empty slot with no huge pagecache
5045 * to back it. This way, we avoid allocating a hugepage, and
5046 * the sparse dumpfile avoids allocating disk blocks, but its
5047 * huge holes still show up with zeroes where they need to be.
2a15efc9 5048 */
3ae77f43
HD
5049 if (absent && (flags & FOLL_DUMP) &&
5050 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
5051 if (pte)
5052 spin_unlock(ptl);
2a15efc9
HD
5053 remainder = 0;
5054 break;
5055 }
63551ae0 5056
9cc3a5bd
NH
5057 /*
5058 * We need call hugetlb_fault for both hugepages under migration
5059 * (in which case hugetlb_fault waits for the migration,) and
5060 * hwpoisoned hugepages (in which case we need to prevent the
5061 * caller from accessing to them.) In order to do this, we use
5062 * here is_swap_pte instead of is_hugetlb_entry_migration and
5063 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5064 * both cases, and because we can't follow correct pages
5065 * directly from any kind of swap entries.
5066 */
5067 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
5068 ((flags & FOLL_WRITE) &&
5069 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 5070 vm_fault_t ret;
87ffc118 5071 unsigned int fault_flags = 0;
63551ae0 5072
cb900f41
KS
5073 if (pte)
5074 spin_unlock(ptl);
87ffc118
AA
5075 if (flags & FOLL_WRITE)
5076 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 5077 if (locked)
71335f37
PX
5078 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5079 FAULT_FLAG_KILLABLE;
87ffc118
AA
5080 if (flags & FOLL_NOWAIT)
5081 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5082 FAULT_FLAG_RETRY_NOWAIT;
5083 if (flags & FOLL_TRIED) {
4426e945
PX
5084 /*
5085 * Note: FAULT_FLAG_ALLOW_RETRY and
5086 * FAULT_FLAG_TRIED can co-exist
5087 */
87ffc118
AA
5088 fault_flags |= FAULT_FLAG_TRIED;
5089 }
5090 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5091 if (ret & VM_FAULT_ERROR) {
2be7cfed 5092 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
5093 remainder = 0;
5094 break;
5095 }
5096 if (ret & VM_FAULT_RETRY) {
4f6da934 5097 if (locked &&
1ac25013 5098 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 5099 *locked = 0;
87ffc118
AA
5100 *nr_pages = 0;
5101 /*
5102 * VM_FAULT_RETRY must not return an
5103 * error, it will return zero
5104 * instead.
5105 *
5106 * No need to update "position" as the
5107 * caller will not check it after
5108 * *nr_pages is set to 0.
5109 */
5110 return i;
5111 }
5112 continue;
4c887265
AL
5113 }
5114
a5516438 5115 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 5116 page = pte_page(huge_ptep_get(pte));
8fde12ca 5117
acbfb087
ZL
5118 /*
5119 * If subpage information not requested, update counters
5120 * and skip the same_page loop below.
5121 */
5122 if (!pages && !vmas && !pfn_offset &&
5123 (vaddr + huge_page_size(h) < vma->vm_end) &&
5124 (remainder >= pages_per_huge_page(h))) {
5125 vaddr += huge_page_size(h);
5126 remainder -= pages_per_huge_page(h);
5127 i += pages_per_huge_page(h);
5128 spin_unlock(ptl);
5129 continue;
5130 }
5131
82e5d378
JM
5132 refs = min3(pages_per_huge_page(h) - pfn_offset,
5133 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
0fa5bc40 5134
82e5d378
JM
5135 if (pages || vmas)
5136 record_subpages_vmas(mem_map_offset(page, pfn_offset),
5137 vma, refs,
5138 likely(pages) ? pages + i : NULL,
5139 vmas ? vmas + i : NULL);
63551ae0 5140
82e5d378 5141 if (pages) {
0fa5bc40
JM
5142 /*
5143 * try_grab_compound_head() should always succeed here,
5144 * because: a) we hold the ptl lock, and b) we've just
5145 * checked that the huge page is present in the page
5146 * tables. If the huge page is present, then the tail
5147 * pages must also be present. The ptl prevents the
5148 * head page and tail pages from being rearranged in
5149 * any way. So this page must be available at this
5150 * point, unless the page refcount overflowed:
5151 */
82e5d378 5152 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
5153 refs,
5154 flags))) {
5155 spin_unlock(ptl);
5156 remainder = 0;
5157 err = -ENOMEM;
5158 break;
5159 }
d5d4b0aa 5160 }
82e5d378
JM
5161
5162 vaddr += (refs << PAGE_SHIFT);
5163 remainder -= refs;
5164 i += refs;
5165
cb900f41 5166 spin_unlock(ptl);
63551ae0 5167 }
28a35716 5168 *nr_pages = remainder;
87ffc118
AA
5169 /*
5170 * setting position is actually required only if remainder is
5171 * not zero but it's faster not to add a "if (remainder)"
5172 * branch.
5173 */
63551ae0
DG
5174 *position = vaddr;
5175
2be7cfed 5176 return i ? i : err;
63551ae0 5177}
8f860591 5178
7da4d641 5179unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
5180 unsigned long address, unsigned long end, pgprot_t newprot)
5181{
5182 struct mm_struct *mm = vma->vm_mm;
5183 unsigned long start = address;
5184 pte_t *ptep;
5185 pte_t pte;
a5516438 5186 struct hstate *h = hstate_vma(vma);
7da4d641 5187 unsigned long pages = 0;
dff11abe 5188 bool shared_pmd = false;
ac46d4f3 5189 struct mmu_notifier_range range;
dff11abe
MK
5190
5191 /*
5192 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5193 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5194 * range if PMD sharing is possible.
5195 */
7269f999
JG
5196 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5197 0, vma, mm, start, end);
ac46d4f3 5198 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5199
5200 BUG_ON(address >= end);
ac46d4f3 5201 flush_cache_range(vma, range.start, range.end);
8f860591 5202
ac46d4f3 5203 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5204 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5205 for (; address < end; address += huge_page_size(h)) {
cb900f41 5206 spinlock_t *ptl;
7868a208 5207 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5208 if (!ptep)
5209 continue;
cb900f41 5210 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5211 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5212 pages++;
cb900f41 5213 spin_unlock(ptl);
dff11abe 5214 shared_pmd = true;
39dde65c 5215 continue;
7da4d641 5216 }
a8bda28d
NH
5217 pte = huge_ptep_get(ptep);
5218 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5219 spin_unlock(ptl);
5220 continue;
5221 }
5222 if (unlikely(is_hugetlb_entry_migration(pte))) {
5223 swp_entry_t entry = pte_to_swp_entry(pte);
5224
5225 if (is_write_migration_entry(entry)) {
5226 pte_t newpte;
5227
5228 make_migration_entry_read(&entry);
5229 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5230 set_huge_swap_pte_at(mm, address, ptep,
5231 newpte, huge_page_size(h));
a8bda28d
NH
5232 pages++;
5233 }
5234 spin_unlock(ptl);
5235 continue;
5236 }
5237 if (!huge_pte_none(pte)) {
023bdd00
AK
5238 pte_t old_pte;
5239
5240 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5241 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5242 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5243 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5244 pages++;
8f860591 5245 }
cb900f41 5246 spin_unlock(ptl);
8f860591 5247 }
d833352a 5248 /*
c8c06efa 5249 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5250 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5251 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5252 * and that page table be reused and filled with junk. If we actually
5253 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5254 */
dff11abe 5255 if (shared_pmd)
ac46d4f3 5256 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5257 else
5258 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5259 /*
5260 * No need to call mmu_notifier_invalidate_range() we are downgrading
5261 * page table protection not changing it to point to a new page.
5262 *
ad56b738 5263 * See Documentation/vm/mmu_notifier.rst
0f10851e 5264 */
83cde9e8 5265 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5266 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5267
5268 return pages << h->order;
8f860591
ZY
5269}
5270
33b8f84a
MK
5271/* Return true if reservation was successful, false otherwise. */
5272bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 5273 long from, long to,
5a6fe125 5274 struct vm_area_struct *vma,
ca16d140 5275 vm_flags_t vm_flags)
e4e574b7 5276{
33b8f84a 5277 long chg, add = -1;
a5516438 5278 struct hstate *h = hstate_inode(inode);
90481622 5279 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5280 struct resv_map *resv_map;
075a61d0 5281 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5282 long gbl_reserve, regions_needed = 0;
e4e574b7 5283
63489f8e
MK
5284 /* This should never happen */
5285 if (from > to) {
5286 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 5287 return false;
63489f8e
MK
5288 }
5289
17c9d12e
MG
5290 /*
5291 * Only apply hugepage reservation if asked. At fault time, an
5292 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5293 * without using reserves
17c9d12e 5294 */
ca16d140 5295 if (vm_flags & VM_NORESERVE)
33b8f84a 5296 return true;
17c9d12e 5297
a1e78772
MG
5298 /*
5299 * Shared mappings base their reservation on the number of pages that
5300 * are already allocated on behalf of the file. Private mappings need
5301 * to reserve the full area even if read-only as mprotect() may be
5302 * called to make the mapping read-write. Assume !vma is a shm mapping
5303 */
9119a41e 5304 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5305 /*
5306 * resv_map can not be NULL as hugetlb_reserve_pages is only
5307 * called for inodes for which resv_maps were created (see
5308 * hugetlbfs_get_inode).
5309 */
4e35f483 5310 resv_map = inode_resv_map(inode);
9119a41e 5311
0db9d74e 5312 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5313
5314 } else {
e9fe92ae 5315 /* Private mapping. */
9119a41e 5316 resv_map = resv_map_alloc();
17c9d12e 5317 if (!resv_map)
33b8f84a 5318 return false;
17c9d12e 5319
a1e78772 5320 chg = to - from;
84afd99b 5321
17c9d12e
MG
5322 set_vma_resv_map(vma, resv_map);
5323 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5324 }
5325
33b8f84a 5326 if (chg < 0)
c50ac050 5327 goto out_err;
8a630112 5328
33b8f84a
MK
5329 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5330 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 5331 goto out_err;
075a61d0
MA
5332
5333 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5334 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5335 * of the resv_map.
5336 */
5337 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5338 }
5339
1c5ecae3
MK
5340 /*
5341 * There must be enough pages in the subpool for the mapping. If
5342 * the subpool has a minimum size, there may be some global
5343 * reservations already in place (gbl_reserve).
5344 */
5345 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 5346 if (gbl_reserve < 0)
075a61d0 5347 goto out_uncharge_cgroup;
5a6fe125
MG
5348
5349 /*
17c9d12e 5350 * Check enough hugepages are available for the reservation.
90481622 5351 * Hand the pages back to the subpool if there are not
5a6fe125 5352 */
33b8f84a 5353 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 5354 goto out_put_pages;
17c9d12e
MG
5355
5356 /*
5357 * Account for the reservations made. Shared mappings record regions
5358 * that have reservations as they are shared by multiple VMAs.
5359 * When the last VMA disappears, the region map says how much
5360 * the reservation was and the page cache tells how much of
5361 * the reservation was consumed. Private mappings are per-VMA and
5362 * only the consumed reservations are tracked. When the VMA
5363 * disappears, the original reservation is the VMA size and the
5364 * consumed reservations are stored in the map. Hence, nothing
5365 * else has to be done for private mappings here
5366 */
33039678 5367 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5368 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5369
5370 if (unlikely(add < 0)) {
5371 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5372 goto out_put_pages;
0db9d74e 5373 } else if (unlikely(chg > add)) {
33039678
MK
5374 /*
5375 * pages in this range were added to the reserve
5376 * map between region_chg and region_add. This
5377 * indicates a race with alloc_huge_page. Adjust
5378 * the subpool and reserve counts modified above
5379 * based on the difference.
5380 */
5381 long rsv_adjust;
5382
d85aecf2
ML
5383 /*
5384 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5385 * reference to h_cg->css. See comment below for detail.
5386 */
075a61d0
MA
5387 hugetlb_cgroup_uncharge_cgroup_rsvd(
5388 hstate_index(h),
5389 (chg - add) * pages_per_huge_page(h), h_cg);
5390
33039678
MK
5391 rsv_adjust = hugepage_subpool_put_pages(spool,
5392 chg - add);
5393 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
5394 } else if (h_cg) {
5395 /*
5396 * The file_regions will hold their own reference to
5397 * h_cg->css. So we should release the reference held
5398 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5399 * done.
5400 */
5401 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
5402 }
5403 }
33b8f84a
MK
5404 return true;
5405
075a61d0
MA
5406out_put_pages:
5407 /* put back original number of pages, chg */
5408 (void)hugepage_subpool_put_pages(spool, chg);
5409out_uncharge_cgroup:
5410 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5411 chg * pages_per_huge_page(h), h_cg);
c50ac050 5412out_err:
5e911373 5413 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5414 /* Only call region_abort if the region_chg succeeded but the
5415 * region_add failed or didn't run.
5416 */
5417 if (chg >= 0 && add < 0)
5418 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5419 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5420 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 5421 return false;
a43a8c39
KC
5422}
5423
b5cec28d
MK
5424long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5425 long freed)
a43a8c39 5426{
a5516438 5427 struct hstate *h = hstate_inode(inode);
4e35f483 5428 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5429 long chg = 0;
90481622 5430 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5431 long gbl_reserve;
45c682a6 5432
f27a5136
MK
5433 /*
5434 * Since this routine can be called in the evict inode path for all
5435 * hugetlbfs inodes, resv_map could be NULL.
5436 */
b5cec28d
MK
5437 if (resv_map) {
5438 chg = region_del(resv_map, start, end);
5439 /*
5440 * region_del() can fail in the rare case where a region
5441 * must be split and another region descriptor can not be
5442 * allocated. If end == LONG_MAX, it will not fail.
5443 */
5444 if (chg < 0)
5445 return chg;
5446 }
5447
45c682a6 5448 spin_lock(&inode->i_lock);
e4c6f8be 5449 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5450 spin_unlock(&inode->i_lock);
5451
1c5ecae3
MK
5452 /*
5453 * If the subpool has a minimum size, the number of global
5454 * reservations to be released may be adjusted.
dddf31a4
ML
5455 *
5456 * Note that !resv_map implies freed == 0. So (chg - freed)
5457 * won't go negative.
1c5ecae3
MK
5458 */
5459 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5460 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5461
5462 return 0;
a43a8c39 5463}
93f70f90 5464
3212b535
SC
5465#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5466static unsigned long page_table_shareable(struct vm_area_struct *svma,
5467 struct vm_area_struct *vma,
5468 unsigned long addr, pgoff_t idx)
5469{
5470 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5471 svma->vm_start;
5472 unsigned long sbase = saddr & PUD_MASK;
5473 unsigned long s_end = sbase + PUD_SIZE;
5474
5475 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5476 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5477 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5478
5479 /*
5480 * match the virtual addresses, permission and the alignment of the
5481 * page table page.
5482 */
5483 if (pmd_index(addr) != pmd_index(saddr) ||
5484 vm_flags != svm_flags ||
07e51edf 5485 !range_in_vma(svma, sbase, s_end))
3212b535
SC
5486 return 0;
5487
5488 return saddr;
5489}
5490
31aafb45 5491static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5492{
5493 unsigned long base = addr & PUD_MASK;
5494 unsigned long end = base + PUD_SIZE;
5495
5496 /*
5497 * check on proper vm_flags and page table alignment
5498 */
017b1660 5499 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5500 return true;
5501 return false;
3212b535
SC
5502}
5503
c1991e07
PX
5504bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5505{
5506#ifdef CONFIG_USERFAULTFD
5507 if (uffd_disable_huge_pmd_share(vma))
5508 return false;
5509#endif
5510 return vma_shareable(vma, addr);
5511}
5512
017b1660
MK
5513/*
5514 * Determine if start,end range within vma could be mapped by shared pmd.
5515 * If yes, adjust start and end to cover range associated with possible
5516 * shared pmd mappings.
5517 */
5518void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5519 unsigned long *start, unsigned long *end)
5520{
a1ba9da8
LX
5521 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5522 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5523
a1ba9da8
LX
5524 /*
5525 * vma need span at least one aligned PUD size and the start,end range
5526 * must at least partialy within it.
5527 */
5528 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5529 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5530 return;
5531
75802ca6 5532 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
5533 if (*start > v_start)
5534 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5535
a1ba9da8
LX
5536 if (*end < v_end)
5537 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5538}
5539
3212b535
SC
5540/*
5541 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5542 * and returns the corresponding pte. While this is not necessary for the
5543 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5544 * code much cleaner.
5545 *
0bf7b64e
MK
5546 * This routine must be called with i_mmap_rwsem held in at least read mode if
5547 * sharing is possible. For hugetlbfs, this prevents removal of any page
5548 * table entries associated with the address space. This is important as we
5549 * are setting up sharing based on existing page table entries (mappings).
5550 *
5551 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5552 * huge_pte_alloc know that sharing is not possible and do not take
5553 * i_mmap_rwsem as a performance optimization. This is handled by the
5554 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5555 * only required for subsequent processing.
3212b535 5556 */
aec44e0f
PX
5557pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5558 unsigned long addr, pud_t *pud)
3212b535 5559{
3212b535
SC
5560 struct address_space *mapping = vma->vm_file->f_mapping;
5561 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5562 vma->vm_pgoff;
5563 struct vm_area_struct *svma;
5564 unsigned long saddr;
5565 pte_t *spte = NULL;
5566 pte_t *pte;
cb900f41 5567 spinlock_t *ptl;
3212b535 5568
0bf7b64e 5569 i_mmap_assert_locked(mapping);
3212b535
SC
5570 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5571 if (svma == vma)
5572 continue;
5573
5574 saddr = page_table_shareable(svma, vma, addr, idx);
5575 if (saddr) {
7868a208
PA
5576 spte = huge_pte_offset(svma->vm_mm, saddr,
5577 vma_mmu_pagesize(svma));
3212b535
SC
5578 if (spte) {
5579 get_page(virt_to_page(spte));
5580 break;
5581 }
5582 }
5583 }
5584
5585 if (!spte)
5586 goto out;
5587
8bea8052 5588 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5589 if (pud_none(*pud)) {
3212b535
SC
5590 pud_populate(mm, pud,
5591 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5592 mm_inc_nr_pmds(mm);
dc6c9a35 5593 } else {
3212b535 5594 put_page(virt_to_page(spte));
dc6c9a35 5595 }
cb900f41 5596 spin_unlock(ptl);
3212b535
SC
5597out:
5598 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5599 return pte;
5600}
5601
5602/*
5603 * unmap huge page backed by shared pte.
5604 *
5605 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5606 * indicated by page_count > 1, unmap is achieved by clearing pud and
5607 * decrementing the ref count. If count == 1, the pte page is not shared.
5608 *
c0d0381a 5609 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5610 *
5611 * returns: 1 successfully unmapped a shared pte page
5612 * 0 the underlying pte page is not shared, or it is the last user
5613 */
34ae204f
MK
5614int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5615 unsigned long *addr, pte_t *ptep)
3212b535
SC
5616{
5617 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5618 p4d_t *p4d = p4d_offset(pgd, *addr);
5619 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5620
34ae204f 5621 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5622 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5623 if (page_count(virt_to_page(ptep)) == 1)
5624 return 0;
5625
5626 pud_clear(pud);
5627 put_page(virt_to_page(ptep));
dc6c9a35 5628 mm_dec_nr_pmds(mm);
3212b535
SC
5629 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5630 return 1;
5631}
c1991e07 5632
9e5fc74c 5633#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
aec44e0f
PX
5634pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5635 unsigned long addr, pud_t *pud)
9e5fc74c
SC
5636{
5637 return NULL;
5638}
e81f2d22 5639
34ae204f
MK
5640int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5641 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5642{
5643 return 0;
5644}
017b1660
MK
5645
5646void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5647 unsigned long *start, unsigned long *end)
5648{
5649}
c1991e07
PX
5650
5651bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5652{
5653 return false;
5654}
3212b535
SC
5655#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5656
9e5fc74c 5657#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 5658pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
5659 unsigned long addr, unsigned long sz)
5660{
5661 pgd_t *pgd;
c2febafc 5662 p4d_t *p4d;
9e5fc74c
SC
5663 pud_t *pud;
5664 pte_t *pte = NULL;
5665
5666 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5667 p4d = p4d_alloc(mm, pgd, addr);
5668 if (!p4d)
5669 return NULL;
c2febafc 5670 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5671 if (pud) {
5672 if (sz == PUD_SIZE) {
5673 pte = (pte_t *)pud;
5674 } else {
5675 BUG_ON(sz != PMD_SIZE);
c1991e07 5676 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 5677 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
5678 else
5679 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5680 }
5681 }
4e666314 5682 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5683
5684 return pte;
5685}
5686
9b19df29
PA
5687/*
5688 * huge_pte_offset() - Walk the page table to resolve the hugepage
5689 * entry at address @addr
5690 *
8ac0b81a
LX
5691 * Return: Pointer to page table entry (PUD or PMD) for
5692 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5693 * size @sz doesn't match the hugepage size at this level of the page
5694 * table.
5695 */
7868a208
PA
5696pte_t *huge_pte_offset(struct mm_struct *mm,
5697 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5698{
5699 pgd_t *pgd;
c2febafc 5700 p4d_t *p4d;
8ac0b81a
LX
5701 pud_t *pud;
5702 pmd_t *pmd;
9e5fc74c
SC
5703
5704 pgd = pgd_offset(mm, addr);
c2febafc
KS
5705 if (!pgd_present(*pgd))
5706 return NULL;
5707 p4d = p4d_offset(pgd, addr);
5708 if (!p4d_present(*p4d))
5709 return NULL;
9b19df29 5710
c2febafc 5711 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5712 if (sz == PUD_SIZE)
5713 /* must be pud huge, non-present or none */
c2febafc 5714 return (pte_t *)pud;
8ac0b81a 5715 if (!pud_present(*pud))
9b19df29 5716 return NULL;
8ac0b81a 5717 /* must have a valid entry and size to go further */
9b19df29 5718
8ac0b81a
LX
5719 pmd = pmd_offset(pud, addr);
5720 /* must be pmd huge, non-present or none */
5721 return (pte_t *)pmd;
9e5fc74c
SC
5722}
5723
61f77eda
NH
5724#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5725
5726/*
5727 * These functions are overwritable if your architecture needs its own
5728 * behavior.
5729 */
5730struct page * __weak
5731follow_huge_addr(struct mm_struct *mm, unsigned long address,
5732 int write)
5733{
5734 return ERR_PTR(-EINVAL);
5735}
5736
4dc71451
AK
5737struct page * __weak
5738follow_huge_pd(struct vm_area_struct *vma,
5739 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5740{
5741 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5742 return NULL;
5743}
5744
61f77eda 5745struct page * __weak
9e5fc74c 5746follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5747 pmd_t *pmd, int flags)
9e5fc74c 5748{
e66f17ff
NH
5749 struct page *page = NULL;
5750 spinlock_t *ptl;
c9d398fa 5751 pte_t pte;
3faa52c0
JH
5752
5753 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5754 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5755 (FOLL_PIN | FOLL_GET)))
5756 return NULL;
5757
e66f17ff
NH
5758retry:
5759 ptl = pmd_lockptr(mm, pmd);
5760 spin_lock(ptl);
5761 /*
5762 * make sure that the address range covered by this pmd is not
5763 * unmapped from other threads.
5764 */
5765 if (!pmd_huge(*pmd))
5766 goto out;
c9d398fa
NH
5767 pte = huge_ptep_get((pte_t *)pmd);
5768 if (pte_present(pte)) {
97534127 5769 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5770 /*
5771 * try_grab_page() should always succeed here, because: a) we
5772 * hold the pmd (ptl) lock, and b) we've just checked that the
5773 * huge pmd (head) page is present in the page tables. The ptl
5774 * prevents the head page and tail pages from being rearranged
5775 * in any way. So this page must be available at this point,
5776 * unless the page refcount overflowed:
5777 */
5778 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5779 page = NULL;
5780 goto out;
5781 }
e66f17ff 5782 } else {
c9d398fa 5783 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5784 spin_unlock(ptl);
5785 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5786 goto retry;
5787 }
5788 /*
5789 * hwpoisoned entry is treated as no_page_table in
5790 * follow_page_mask().
5791 */
5792 }
5793out:
5794 spin_unlock(ptl);
9e5fc74c
SC
5795 return page;
5796}
5797
61f77eda 5798struct page * __weak
9e5fc74c 5799follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5800 pud_t *pud, int flags)
9e5fc74c 5801{
3faa52c0 5802 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5803 return NULL;
9e5fc74c 5804
e66f17ff 5805 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5806}
5807
faaa5b62
AK
5808struct page * __weak
5809follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5810{
3faa52c0 5811 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5812 return NULL;
5813
5814 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5815}
5816
31caf665
NH
5817bool isolate_huge_page(struct page *page, struct list_head *list)
5818{
bcc54222
NH
5819 bool ret = true;
5820
db71ef79 5821 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
5822 if (!PageHeadHuge(page) ||
5823 !HPageMigratable(page) ||
0eb2df2b 5824 !get_page_unless_zero(page)) {
bcc54222
NH
5825 ret = false;
5826 goto unlock;
5827 }
8f251a3d 5828 ClearHPageMigratable(page);
31caf665 5829 list_move_tail(&page->lru, list);
bcc54222 5830unlock:
db71ef79 5831 spin_unlock_irq(&hugetlb_lock);
bcc54222 5832 return ret;
31caf665
NH
5833}
5834
5835void putback_active_hugepage(struct page *page)
5836{
db71ef79 5837 spin_lock_irq(&hugetlb_lock);
8f251a3d 5838 SetHPageMigratable(page);
31caf665 5839 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 5840 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
5841 put_page(page);
5842}
ab5ac90a
MH
5843
5844void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5845{
5846 struct hstate *h = page_hstate(oldpage);
5847
5848 hugetlb_cgroup_migrate(oldpage, newpage);
5849 set_page_owner_migrate_reason(newpage, reason);
5850
5851 /*
5852 * transfer temporary state of the new huge page. This is
5853 * reverse to other transitions because the newpage is going to
5854 * be final while the old one will be freed so it takes over
5855 * the temporary status.
5856 *
5857 * Also note that we have to transfer the per-node surplus state
5858 * here as well otherwise the global surplus count will not match
5859 * the per-node's.
5860 */
9157c311 5861 if (HPageTemporary(newpage)) {
ab5ac90a
MH
5862 int old_nid = page_to_nid(oldpage);
5863 int new_nid = page_to_nid(newpage);
5864
9157c311
MK
5865 SetHPageTemporary(oldpage);
5866 ClearHPageTemporary(newpage);
ab5ac90a 5867
5af1ab1d
ML
5868 /*
5869 * There is no need to transfer the per-node surplus state
5870 * when we do not cross the node.
5871 */
5872 if (new_nid == old_nid)
5873 return;
db71ef79 5874 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
5875 if (h->surplus_huge_pages_node[old_nid]) {
5876 h->surplus_huge_pages_node[old_nid]--;
5877 h->surplus_huge_pages_node[new_nid]++;
5878 }
db71ef79 5879 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
5880 }
5881}
cf11e85f 5882
6dfeaff9
PX
5883/*
5884 * This function will unconditionally remove all the shared pmd pgtable entries
5885 * within the specific vma for a hugetlbfs memory range.
5886 */
5887void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5888{
5889 struct hstate *h = hstate_vma(vma);
5890 unsigned long sz = huge_page_size(h);
5891 struct mm_struct *mm = vma->vm_mm;
5892 struct mmu_notifier_range range;
5893 unsigned long address, start, end;
5894 spinlock_t *ptl;
5895 pte_t *ptep;
5896
5897 if (!(vma->vm_flags & VM_MAYSHARE))
5898 return;
5899
5900 start = ALIGN(vma->vm_start, PUD_SIZE);
5901 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5902
5903 if (start >= end)
5904 return;
5905
5906 /*
5907 * No need to call adjust_range_if_pmd_sharing_possible(), because
5908 * we have already done the PUD_SIZE alignment.
5909 */
5910 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5911 start, end);
5912 mmu_notifier_invalidate_range_start(&range);
5913 i_mmap_lock_write(vma->vm_file->f_mapping);
5914 for (address = start; address < end; address += PUD_SIZE) {
5915 unsigned long tmp = address;
5916
5917 ptep = huge_pte_offset(mm, address, sz);
5918 if (!ptep)
5919 continue;
5920 ptl = huge_pte_lock(h, mm, ptep);
5921 /* We don't want 'address' to be changed */
5922 huge_pmd_unshare(mm, vma, &tmp, ptep);
5923 spin_unlock(ptl);
5924 }
5925 flush_hugetlb_tlb_range(vma, start, end);
5926 i_mmap_unlock_write(vma->vm_file->f_mapping);
5927 /*
5928 * No need to call mmu_notifier_invalidate_range(), see
5929 * Documentation/vm/mmu_notifier.rst.
5930 */
5931 mmu_notifier_invalidate_range_end(&range);
5932}
5933
cf11e85f 5934#ifdef CONFIG_CMA
cf11e85f
RG
5935static bool cma_reserve_called __initdata;
5936
5937static int __init cmdline_parse_hugetlb_cma(char *p)
5938{
5939 hugetlb_cma_size = memparse(p, &p);
5940 return 0;
5941}
5942
5943early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5944
5945void __init hugetlb_cma_reserve(int order)
5946{
5947 unsigned long size, reserved, per_node;
5948 int nid;
5949
5950 cma_reserve_called = true;
5951
5952 if (!hugetlb_cma_size)
5953 return;
5954
5955 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5956 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5957 (PAGE_SIZE << order) / SZ_1M);
5958 return;
5959 }
5960
5961 /*
5962 * If 3 GB area is requested on a machine with 4 numa nodes,
5963 * let's allocate 1 GB on first three nodes and ignore the last one.
5964 */
5965 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5966 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5967 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5968
5969 reserved = 0;
5970 for_each_node_state(nid, N_ONLINE) {
5971 int res;
2281f797 5972 char name[CMA_MAX_NAME];
cf11e85f
RG
5973
5974 size = min(per_node, hugetlb_cma_size - reserved);
5975 size = round_up(size, PAGE_SIZE << order);
5976
2281f797 5977 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 5978 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 5979 0, false, name,
cf11e85f
RG
5980 &hugetlb_cma[nid], nid);
5981 if (res) {
5982 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5983 res, nid);
5984 continue;
5985 }
5986
5987 reserved += size;
5988 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5989 size / SZ_1M, nid);
5990
5991 if (reserved >= hugetlb_cma_size)
5992 break;
5993 }
5994}
5995
5996void __init hugetlb_cma_check(void)
5997{
5998 if (!hugetlb_cma_size || cma_reserve_called)
5999 return;
6000
6001 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6002}
6003
6004#endif /* CONFIG_CMA */