]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
hugetlb: disable region_add file_region coalescing
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
63489f8e 22#include <linux/mmdebug.h>
174cd4b1 23#include <linux/sched/signal.h>
0fe6e20b 24#include <linux/rmap.h>
c6247f72 25#include <linux/string_helpers.h>
fd6a03ed
NH
26#include <linux/swap.h>
27#include <linux/swapops.h>
8382d914 28#include <linux/jhash.h>
98fa15f3 29#include <linux/numa.h>
c77c0a8a 30#include <linux/llist.h>
d6606683 31
63551ae0
DG
32#include <asm/page.h>
33#include <asm/pgtable.h>
24669e58 34#include <asm/tlb.h>
63551ae0 35
24669e58 36#include <linux/io.h>
63551ae0 37#include <linux/hugetlb.h>
9dd540e2 38#include <linux/hugetlb_cgroup.h>
9a305230 39#include <linux/node.h>
1a1aad8a 40#include <linux/userfaultfd_k.h>
ab5ac90a 41#include <linux/page_owner.h>
7835e98b 42#include "internal.h"
1da177e4 43
c3f38a38 44int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
45unsigned int default_hstate_idx;
46struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
47/*
48 * Minimum page order among possible hugepage sizes, set to a proper value
49 * at boot time.
50 */
51static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 52
53ba51d2
JT
53__initdata LIST_HEAD(huge_boot_pages);
54
e5ff2159
AK
55/* for command line parsing */
56static struct hstate * __initdata parsed_hstate;
57static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 58static unsigned long __initdata default_hstate_size;
9fee021d 59static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 60
3935baa9 61/*
31caf665
NH
62 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
63 * free_huge_pages, and surplus_huge_pages.
3935baa9 64 */
c3f38a38 65DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 66
8382d914
DB
67/*
68 * Serializes faults on the same logical page. This is used to
69 * prevent spurious OOMs when the hugepage pool is fully utilized.
70 */
71static int num_fault_mutexes;
c672c7f2 72struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 73
7ca02d0a
MK
74/* Forward declaration */
75static int hugetlb_acct_memory(struct hstate *h, long delta);
76
90481622
DG
77static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
78{
79 bool free = (spool->count == 0) && (spool->used_hpages == 0);
80
81 spin_unlock(&spool->lock);
82
83 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
84 * remain, give up any reservations mased on minimum size and
85 * free the subpool */
86 if (free) {
87 if (spool->min_hpages != -1)
88 hugetlb_acct_memory(spool->hstate,
89 -spool->min_hpages);
90481622 90 kfree(spool);
7ca02d0a 91 }
90481622
DG
92}
93
7ca02d0a
MK
94struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
95 long min_hpages)
90481622
DG
96{
97 struct hugepage_subpool *spool;
98
c6a91820 99 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
100 if (!spool)
101 return NULL;
102
103 spin_lock_init(&spool->lock);
104 spool->count = 1;
7ca02d0a
MK
105 spool->max_hpages = max_hpages;
106 spool->hstate = h;
107 spool->min_hpages = min_hpages;
108
109 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
110 kfree(spool);
111 return NULL;
112 }
113 spool->rsv_hpages = min_hpages;
90481622
DG
114
115 return spool;
116}
117
118void hugepage_put_subpool(struct hugepage_subpool *spool)
119{
120 spin_lock(&spool->lock);
121 BUG_ON(!spool->count);
122 spool->count--;
123 unlock_or_release_subpool(spool);
124}
125
1c5ecae3
MK
126/*
127 * Subpool accounting for allocating and reserving pages.
128 * Return -ENOMEM if there are not enough resources to satisfy the
129 * the request. Otherwise, return the number of pages by which the
130 * global pools must be adjusted (upward). The returned value may
131 * only be different than the passed value (delta) in the case where
132 * a subpool minimum size must be manitained.
133 */
134static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
135 long delta)
136{
1c5ecae3 137 long ret = delta;
90481622
DG
138
139 if (!spool)
1c5ecae3 140 return ret;
90481622
DG
141
142 spin_lock(&spool->lock);
1c5ecae3
MK
143
144 if (spool->max_hpages != -1) { /* maximum size accounting */
145 if ((spool->used_hpages + delta) <= spool->max_hpages)
146 spool->used_hpages += delta;
147 else {
148 ret = -ENOMEM;
149 goto unlock_ret;
150 }
90481622 151 }
90481622 152
09a95e29
MK
153 /* minimum size accounting */
154 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
155 if (delta > spool->rsv_hpages) {
156 /*
157 * Asking for more reserves than those already taken on
158 * behalf of subpool. Return difference.
159 */
160 ret = delta - spool->rsv_hpages;
161 spool->rsv_hpages = 0;
162 } else {
163 ret = 0; /* reserves already accounted for */
164 spool->rsv_hpages -= delta;
165 }
166 }
167
168unlock_ret:
169 spin_unlock(&spool->lock);
90481622
DG
170 return ret;
171}
172
1c5ecae3
MK
173/*
174 * Subpool accounting for freeing and unreserving pages.
175 * Return the number of global page reservations that must be dropped.
176 * The return value may only be different than the passed value (delta)
177 * in the case where a subpool minimum size must be maintained.
178 */
179static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
180 long delta)
181{
1c5ecae3
MK
182 long ret = delta;
183
90481622 184 if (!spool)
1c5ecae3 185 return delta;
90481622
DG
186
187 spin_lock(&spool->lock);
1c5ecae3
MK
188
189 if (spool->max_hpages != -1) /* maximum size accounting */
190 spool->used_hpages -= delta;
191
09a95e29
MK
192 /* minimum size accounting */
193 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
194 if (spool->rsv_hpages + delta <= spool->min_hpages)
195 ret = 0;
196 else
197 ret = spool->rsv_hpages + delta - spool->min_hpages;
198
199 spool->rsv_hpages += delta;
200 if (spool->rsv_hpages > spool->min_hpages)
201 spool->rsv_hpages = spool->min_hpages;
202 }
203
204 /*
205 * If hugetlbfs_put_super couldn't free spool due to an outstanding
206 * quota reference, free it now.
207 */
90481622 208 unlock_or_release_subpool(spool);
1c5ecae3
MK
209
210 return ret;
90481622
DG
211}
212
213static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
214{
215 return HUGETLBFS_SB(inode->i_sb)->spool;
216}
217
218static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
219{
496ad9aa 220 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
221}
222
96822904
AW
223/*
224 * Region tracking -- allows tracking of reservations and instantiated pages
225 * across the pages in a mapping.
84afd99b 226 *
1dd308a7
MK
227 * The region data structures are embedded into a resv_map and protected
228 * by a resv_map's lock. The set of regions within the resv_map represent
229 * reservations for huge pages, or huge pages that have already been
230 * instantiated within the map. The from and to elements are huge page
231 * indicies into the associated mapping. from indicates the starting index
232 * of the region. to represents the first index past the end of the region.
233 *
234 * For example, a file region structure with from == 0 and to == 4 represents
235 * four huge pages in a mapping. It is important to note that the to element
236 * represents the first element past the end of the region. This is used in
237 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
238 *
239 * Interval notation of the form [from, to) will be used to indicate that
240 * the endpoint from is inclusive and to is exclusive.
96822904
AW
241 */
242struct file_region {
243 struct list_head link;
244 long from;
245 long to;
246};
247
0db9d74e
MA
248/* Helper that removes a struct file_region from the resv_map cache and returns
249 * it for use.
250 */
251static struct file_region *
252get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
253{
254 struct file_region *nrg = NULL;
255
256 VM_BUG_ON(resv->region_cache_count <= 0);
257
258 resv->region_cache_count--;
259 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
260 VM_BUG_ON(!nrg);
261 list_del(&nrg->link);
262
263 nrg->from = from;
264 nrg->to = to;
265
266 return nrg;
267}
268
d75c6af9
MA
269/* Must be called with resv->lock held. Calling this with count_only == true
270 * will count the number of pages to be added but will not modify the linked
0db9d74e
MA
271 * list. If regions_needed != NULL and count_only == true, then regions_needed
272 * will indicate the number of file_regions needed in the cache to carry out to
273 * add the regions for this range.
d75c6af9
MA
274 */
275static long add_reservation_in_range(struct resv_map *resv, long f, long t,
0db9d74e 276 long *regions_needed, bool count_only)
d75c6af9 277{
0db9d74e 278 long add = 0;
d75c6af9 279 struct list_head *head = &resv->regions;
0db9d74e 280 long last_accounted_offset = f;
d75c6af9
MA
281 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
282
0db9d74e
MA
283 if (regions_needed)
284 *regions_needed = 0;
d75c6af9 285
0db9d74e
MA
286 /* In this loop, we essentially handle an entry for the range
287 * [last_accounted_offset, rg->from), at every iteration, with some
288 * bounds checking.
289 */
290 list_for_each_entry_safe(rg, trg, head, link) {
291 /* Skip irrelevant regions that start before our range. */
292 if (rg->from < f) {
293 /* If this region ends after the last accounted offset,
294 * then we need to update last_accounted_offset.
295 */
296 if (rg->to > last_accounted_offset)
297 last_accounted_offset = rg->to;
298 continue;
299 }
d75c6af9 300
0db9d74e
MA
301 /* When we find a region that starts beyond our range, we've
302 * finished.
303 */
d75c6af9
MA
304 if (rg->from > t)
305 break;
306
0db9d74e
MA
307 /* Add an entry for last_accounted_offset -> rg->from, and
308 * update last_accounted_offset.
309 */
310 if (rg->from > last_accounted_offset) {
311 add += rg->from - last_accounted_offset;
312 if (!count_only) {
313 nrg = get_file_region_entry_from_cache(
314 resv, last_accounted_offset, rg->from);
315 list_add(&nrg->link, rg->link.prev);
316 } else if (regions_needed)
317 *regions_needed += 1;
318 }
319
320 last_accounted_offset = rg->to;
321 }
322
323 /* Handle the case where our range extends beyond
324 * last_accounted_offset.
325 */
326 if (last_accounted_offset < t) {
327 add += t - last_accounted_offset;
328 if (!count_only) {
329 nrg = get_file_region_entry_from_cache(
330 resv, last_accounted_offset, t);
331 list_add(&nrg->link, rg->link.prev);
332 } else if (regions_needed)
333 *regions_needed += 1;
334 }
335
336 VM_BUG_ON(add < 0);
337 return add;
338}
339
340/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
341 */
342static int allocate_file_region_entries(struct resv_map *resv,
343 int regions_needed)
344 __must_hold(&resv->lock)
345{
346 struct list_head allocated_regions;
347 int to_allocate = 0, i = 0;
348 struct file_region *trg = NULL, *rg = NULL;
349
350 VM_BUG_ON(regions_needed < 0);
351
352 INIT_LIST_HEAD(&allocated_regions);
353
354 /*
355 * Check for sufficient descriptors in the cache to accommodate
356 * the number of in progress add operations plus regions_needed.
357 *
358 * This is a while loop because when we drop the lock, some other call
359 * to region_add or region_del may have consumed some region_entries,
360 * so we keep looping here until we finally have enough entries for
361 * (adds_in_progress + regions_needed).
362 */
363 while (resv->region_cache_count <
364 (resv->adds_in_progress + regions_needed)) {
365 to_allocate = resv->adds_in_progress + regions_needed -
366 resv->region_cache_count;
367
368 /* At this point, we should have enough entries in the cache
369 * for all the existings adds_in_progress. We should only be
370 * needing to allocate for regions_needed.
d75c6af9 371 */
0db9d74e
MA
372 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
373
374 spin_unlock(&resv->lock);
375 for (i = 0; i < to_allocate; i++) {
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 if (!trg)
378 goto out_of_memory;
379 list_add(&trg->link, &allocated_regions);
d75c6af9 380 }
d75c6af9 381
0db9d74e
MA
382 spin_lock(&resv->lock);
383
384 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
d75c6af9 385 list_del(&rg->link);
0db9d74e
MA
386 list_add(&rg->link, &resv->region_cache);
387 resv->region_cache_count++;
d75c6af9
MA
388 }
389 }
390
0db9d74e 391 return 0;
d75c6af9 392
0db9d74e
MA
393out_of_memory:
394 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
395 list_del(&rg->link);
396 kfree(rg);
397 }
398 return -ENOMEM;
d75c6af9
MA
399}
400
1dd308a7
MK
401/*
402 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
403 * map. Regions will be taken from the cache to fill in this range.
404 * Sufficient regions should exist in the cache due to the previous
405 * call to region_chg with the same range, but in some cases the cache will not
406 * have sufficient entries due to races with other code doing region_add or
407 * region_del. The extra needed entries will be allocated.
cf3ad20b 408 *
0db9d74e
MA
409 * regions_needed is the out value provided by a previous call to region_chg.
410 *
411 * Return the number of new huge pages added to the map. This number is greater
412 * than or equal to zero. If file_region entries needed to be allocated for
413 * this operation and we were not able to allocate, it ruturns -ENOMEM.
414 * region_add of regions of length 1 never allocate file_regions and cannot
415 * fail; region_chg will always allocate at least 1 entry and a region_add for
416 * 1 page will only require at most 1 entry.
1dd308a7 417 */
0db9d74e
MA
418static long region_add(struct resv_map *resv, long f, long t,
419 long in_regions_needed)
96822904 420{
0db9d74e 421 long add = 0, actual_regions_needed = 0;
96822904 422
7b24d861 423 spin_lock(&resv->lock);
0db9d74e
MA
424retry:
425
426 /* Count how many regions are actually needed to execute this add. */
427 add_reservation_in_range(resv, f, t, &actual_regions_needed, true);
96822904 428
5e911373 429 /*
0db9d74e
MA
430 * Check for sufficient descriptors in the cache to accommodate
431 * this add operation. Note that actual_regions_needed may be greater
432 * than in_regions_needed, as the resv_map may have been modified since
433 * the region_chg call. In this case, we need to make sure that we
434 * allocate extra entries, such that we have enough for all the
435 * existing adds_in_progress, plus the excess needed for this
436 * operation.
5e911373 437 */
0db9d74e
MA
438 if (actual_regions_needed > in_regions_needed &&
439 resv->region_cache_count <
440 resv->adds_in_progress +
441 (actual_regions_needed - in_regions_needed)) {
442 /* region_add operation of range 1 should never need to
443 * allocate file_region entries.
444 */
445 VM_BUG_ON(t - f <= 1);
5e911373 446
0db9d74e
MA
447 if (allocate_file_region_entries(
448 resv, actual_regions_needed - in_regions_needed)) {
449 return -ENOMEM;
450 }
5e911373 451
0db9d74e 452 goto retry;
5e911373
MK
453 }
454
0db9d74e
MA
455 add = add_reservation_in_range(resv, f, t, NULL, false);
456
457 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 458
7b24d861 459 spin_unlock(&resv->lock);
cf3ad20b
MK
460 VM_BUG_ON(add < 0);
461 return add;
96822904
AW
462}
463
1dd308a7
MK
464/*
465 * Examine the existing reserve map and determine how many
466 * huge pages in the specified range [f, t) are NOT currently
467 * represented. This routine is called before a subsequent
468 * call to region_add that will actually modify the reserve
469 * map to add the specified range [f, t). region_chg does
470 * not change the number of huge pages represented by the
0db9d74e
MA
471 * map. A number of new file_region structures is added to the cache as a
472 * placeholder, for the subsequent region_add call to use. At least 1
473 * file_region structure is added.
474 *
475 * out_regions_needed is the number of regions added to the
476 * resv->adds_in_progress. This value needs to be provided to a follow up call
477 * to region_add or region_abort for proper accounting.
5e911373
MK
478 *
479 * Returns the number of huge pages that need to be added to the existing
480 * reservation map for the range [f, t). This number is greater or equal to
481 * zero. -ENOMEM is returned if a new file_region structure or cache entry
482 * is needed and can not be allocated.
1dd308a7 483 */
0db9d74e
MA
484static long region_chg(struct resv_map *resv, long f, long t,
485 long *out_regions_needed)
96822904 486{
96822904
AW
487 long chg = 0;
488
7b24d861 489 spin_lock(&resv->lock);
5e911373 490
0db9d74e
MA
491 /* Count how many hugepages in this range are NOT respresented. */
492 chg = add_reservation_in_range(resv, f, t, out_regions_needed, true);
5e911373 493
0db9d74e
MA
494 if (*out_regions_needed == 0)
495 *out_regions_needed = 1;
5e911373 496
0db9d74e
MA
497 if (allocate_file_region_entries(resv, *out_regions_needed))
498 return -ENOMEM;
5e911373 499
0db9d74e 500 resv->adds_in_progress += *out_regions_needed;
7b24d861 501
7b24d861 502 spin_unlock(&resv->lock);
96822904
AW
503 return chg;
504}
505
5e911373
MK
506/*
507 * Abort the in progress add operation. The adds_in_progress field
508 * of the resv_map keeps track of the operations in progress between
509 * calls to region_chg and region_add. Operations are sometimes
510 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
511 * is called to decrement the adds_in_progress counter. regions_needed
512 * is the value returned by the region_chg call, it is used to decrement
513 * the adds_in_progress counter.
5e911373
MK
514 *
515 * NOTE: The range arguments [f, t) are not needed or used in this
516 * routine. They are kept to make reading the calling code easier as
517 * arguments will match the associated region_chg call.
518 */
0db9d74e
MA
519static void region_abort(struct resv_map *resv, long f, long t,
520 long regions_needed)
5e911373
MK
521{
522 spin_lock(&resv->lock);
523 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 524 resv->adds_in_progress -= regions_needed;
5e911373
MK
525 spin_unlock(&resv->lock);
526}
527
1dd308a7 528/*
feba16e2
MK
529 * Delete the specified range [f, t) from the reserve map. If the
530 * t parameter is LONG_MAX, this indicates that ALL regions after f
531 * should be deleted. Locate the regions which intersect [f, t)
532 * and either trim, delete or split the existing regions.
533 *
534 * Returns the number of huge pages deleted from the reserve map.
535 * In the normal case, the return value is zero or more. In the
536 * case where a region must be split, a new region descriptor must
537 * be allocated. If the allocation fails, -ENOMEM will be returned.
538 * NOTE: If the parameter t == LONG_MAX, then we will never split
539 * a region and possibly return -ENOMEM. Callers specifying
540 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 541 */
feba16e2 542static long region_del(struct resv_map *resv, long f, long t)
96822904 543{
1406ec9b 544 struct list_head *head = &resv->regions;
96822904 545 struct file_region *rg, *trg;
feba16e2
MK
546 struct file_region *nrg = NULL;
547 long del = 0;
96822904 548
feba16e2 549retry:
7b24d861 550 spin_lock(&resv->lock);
feba16e2 551 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
552 /*
553 * Skip regions before the range to be deleted. file_region
554 * ranges are normally of the form [from, to). However, there
555 * may be a "placeholder" entry in the map which is of the form
556 * (from, to) with from == to. Check for placeholder entries
557 * at the beginning of the range to be deleted.
558 */
559 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 560 continue;
dbe409e4 561
feba16e2 562 if (rg->from >= t)
96822904 563 break;
96822904 564
feba16e2
MK
565 if (f > rg->from && t < rg->to) { /* Must split region */
566 /*
567 * Check for an entry in the cache before dropping
568 * lock and attempting allocation.
569 */
570 if (!nrg &&
571 resv->region_cache_count > resv->adds_in_progress) {
572 nrg = list_first_entry(&resv->region_cache,
573 struct file_region,
574 link);
575 list_del(&nrg->link);
576 resv->region_cache_count--;
577 }
96822904 578
feba16e2
MK
579 if (!nrg) {
580 spin_unlock(&resv->lock);
581 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
582 if (!nrg)
583 return -ENOMEM;
584 goto retry;
585 }
586
587 del += t - f;
588
589 /* New entry for end of split region */
590 nrg->from = t;
591 nrg->to = rg->to;
592 INIT_LIST_HEAD(&nrg->link);
593
594 /* Original entry is trimmed */
595 rg->to = f;
596
597 list_add(&nrg->link, &rg->link);
598 nrg = NULL;
96822904 599 break;
feba16e2
MK
600 }
601
602 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
603 del += rg->to - rg->from;
604 list_del(&rg->link);
605 kfree(rg);
606 continue;
607 }
608
609 if (f <= rg->from) { /* Trim beginning of region */
610 del += t - rg->from;
611 rg->from = t;
612 } else { /* Trim end of region */
613 del += rg->to - f;
614 rg->to = f;
615 }
96822904 616 }
7b24d861 617
7b24d861 618 spin_unlock(&resv->lock);
feba16e2
MK
619 kfree(nrg);
620 return del;
96822904
AW
621}
622
b5cec28d
MK
623/*
624 * A rare out of memory error was encountered which prevented removal of
625 * the reserve map region for a page. The huge page itself was free'ed
626 * and removed from the page cache. This routine will adjust the subpool
627 * usage count, and the global reserve count if needed. By incrementing
628 * these counts, the reserve map entry which could not be deleted will
629 * appear as a "reserved" entry instead of simply dangling with incorrect
630 * counts.
631 */
72e2936c 632void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
633{
634 struct hugepage_subpool *spool = subpool_inode(inode);
635 long rsv_adjust;
636
637 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 638 if (rsv_adjust) {
b5cec28d
MK
639 struct hstate *h = hstate_inode(inode);
640
641 hugetlb_acct_memory(h, 1);
642 }
643}
644
1dd308a7
MK
645/*
646 * Count and return the number of huge pages in the reserve map
647 * that intersect with the range [f, t).
648 */
1406ec9b 649static long region_count(struct resv_map *resv, long f, long t)
84afd99b 650{
1406ec9b 651 struct list_head *head = &resv->regions;
84afd99b
AW
652 struct file_region *rg;
653 long chg = 0;
654
7b24d861 655 spin_lock(&resv->lock);
84afd99b
AW
656 /* Locate each segment we overlap with, and count that overlap. */
657 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
658 long seg_from;
659 long seg_to;
84afd99b
AW
660
661 if (rg->to <= f)
662 continue;
663 if (rg->from >= t)
664 break;
665
666 seg_from = max(rg->from, f);
667 seg_to = min(rg->to, t);
668
669 chg += seg_to - seg_from;
670 }
7b24d861 671 spin_unlock(&resv->lock);
84afd99b
AW
672
673 return chg;
674}
675
e7c4b0bf
AW
676/*
677 * Convert the address within this vma to the page offset within
678 * the mapping, in pagecache page units; huge pages here.
679 */
a5516438
AK
680static pgoff_t vma_hugecache_offset(struct hstate *h,
681 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 682{
a5516438
AK
683 return ((address - vma->vm_start) >> huge_page_shift(h)) +
684 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
685}
686
0fe6e20b
NH
687pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
688 unsigned long address)
689{
690 return vma_hugecache_offset(hstate_vma(vma), vma, address);
691}
dee41079 692EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 693
08fba699
MG
694/*
695 * Return the size of the pages allocated when backing a VMA. In the majority
696 * cases this will be same size as used by the page table entries.
697 */
698unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
699{
05ea8860
DW
700 if (vma->vm_ops && vma->vm_ops->pagesize)
701 return vma->vm_ops->pagesize(vma);
702 return PAGE_SIZE;
08fba699 703}
f340ca0f 704EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 705
3340289d
MG
706/*
707 * Return the page size being used by the MMU to back a VMA. In the majority
708 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
709 * architectures where it differs, an architecture-specific 'strong'
710 * version of this symbol is required.
3340289d 711 */
09135cc5 712__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
713{
714 return vma_kernel_pagesize(vma);
715}
3340289d 716
84afd99b
AW
717/*
718 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
719 * bits of the reservation map pointer, which are always clear due to
720 * alignment.
721 */
722#define HPAGE_RESV_OWNER (1UL << 0)
723#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 724#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 725
a1e78772
MG
726/*
727 * These helpers are used to track how many pages are reserved for
728 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
729 * is guaranteed to have their future faults succeed.
730 *
731 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
732 * the reserve counters are updated with the hugetlb_lock held. It is safe
733 * to reset the VMA at fork() time as it is not in use yet and there is no
734 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
735 *
736 * The private mapping reservation is represented in a subtly different
737 * manner to a shared mapping. A shared mapping has a region map associated
738 * with the underlying file, this region map represents the backing file
739 * pages which have ever had a reservation assigned which this persists even
740 * after the page is instantiated. A private mapping has a region map
741 * associated with the original mmap which is attached to all VMAs which
742 * reference it, this region map represents those offsets which have consumed
743 * reservation ie. where pages have been instantiated.
a1e78772 744 */
e7c4b0bf
AW
745static unsigned long get_vma_private_data(struct vm_area_struct *vma)
746{
747 return (unsigned long)vma->vm_private_data;
748}
749
750static void set_vma_private_data(struct vm_area_struct *vma,
751 unsigned long value)
752{
753 vma->vm_private_data = (void *)value;
754}
755
e9fe92ae
MA
756static void
757resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
758 struct hugetlb_cgroup *h_cg,
759 struct hstate *h)
760{
761#ifdef CONFIG_CGROUP_HUGETLB
762 if (!h_cg || !h) {
763 resv_map->reservation_counter = NULL;
764 resv_map->pages_per_hpage = 0;
765 resv_map->css = NULL;
766 } else {
767 resv_map->reservation_counter =
768 &h_cg->rsvd_hugepage[hstate_index(h)];
769 resv_map->pages_per_hpage = pages_per_huge_page(h);
770 resv_map->css = &h_cg->css;
771 }
772#endif
773}
774
9119a41e 775struct resv_map *resv_map_alloc(void)
84afd99b
AW
776{
777 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
778 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
779
780 if (!resv_map || !rg) {
781 kfree(resv_map);
782 kfree(rg);
84afd99b 783 return NULL;
5e911373 784 }
84afd99b
AW
785
786 kref_init(&resv_map->refs);
7b24d861 787 spin_lock_init(&resv_map->lock);
84afd99b
AW
788 INIT_LIST_HEAD(&resv_map->regions);
789
5e911373 790 resv_map->adds_in_progress = 0;
e9fe92ae
MA
791 /*
792 * Initialize these to 0. On shared mappings, 0's here indicate these
793 * fields don't do cgroup accounting. On private mappings, these will be
794 * re-initialized to the proper values, to indicate that hugetlb cgroup
795 * reservations are to be un-charged from here.
796 */
797 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
798
799 INIT_LIST_HEAD(&resv_map->region_cache);
800 list_add(&rg->link, &resv_map->region_cache);
801 resv_map->region_cache_count = 1;
802
84afd99b
AW
803 return resv_map;
804}
805
9119a41e 806void resv_map_release(struct kref *ref)
84afd99b
AW
807{
808 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
809 struct list_head *head = &resv_map->region_cache;
810 struct file_region *rg, *trg;
84afd99b
AW
811
812 /* Clear out any active regions before we release the map. */
feba16e2 813 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
814
815 /* ... and any entries left in the cache */
816 list_for_each_entry_safe(rg, trg, head, link) {
817 list_del(&rg->link);
818 kfree(rg);
819 }
820
821 VM_BUG_ON(resv_map->adds_in_progress);
822
84afd99b
AW
823 kfree(resv_map);
824}
825
4e35f483
JK
826static inline struct resv_map *inode_resv_map(struct inode *inode)
827{
f27a5136
MK
828 /*
829 * At inode evict time, i_mapping may not point to the original
830 * address space within the inode. This original address space
831 * contains the pointer to the resv_map. So, always use the
832 * address space embedded within the inode.
833 * The VERY common case is inode->mapping == &inode->i_data but,
834 * this may not be true for device special inodes.
835 */
836 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
837}
838
84afd99b 839static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 840{
81d1b09c 841 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
842 if (vma->vm_flags & VM_MAYSHARE) {
843 struct address_space *mapping = vma->vm_file->f_mapping;
844 struct inode *inode = mapping->host;
845
846 return inode_resv_map(inode);
847
848 } else {
84afd99b
AW
849 return (struct resv_map *)(get_vma_private_data(vma) &
850 ~HPAGE_RESV_MASK);
4e35f483 851 }
a1e78772
MG
852}
853
84afd99b 854static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 855{
81d1b09c
SL
856 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
857 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 858
84afd99b
AW
859 set_vma_private_data(vma, (get_vma_private_data(vma) &
860 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
861}
862
863static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
864{
81d1b09c
SL
865 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
866 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
867
868 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
869}
870
871static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
872{
81d1b09c 873 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
874
875 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
876}
877
04f2cbe3 878/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
879void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
880{
81d1b09c 881 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 882 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
883 vma->vm_private_data = (void *)0;
884}
885
886/* Returns true if the VMA has associated reserve pages */
559ec2f8 887static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 888{
af0ed73e
JK
889 if (vma->vm_flags & VM_NORESERVE) {
890 /*
891 * This address is already reserved by other process(chg == 0),
892 * so, we should decrement reserved count. Without decrementing,
893 * reserve count remains after releasing inode, because this
894 * allocated page will go into page cache and is regarded as
895 * coming from reserved pool in releasing step. Currently, we
896 * don't have any other solution to deal with this situation
897 * properly, so add work-around here.
898 */
899 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 900 return true;
af0ed73e 901 else
559ec2f8 902 return false;
af0ed73e 903 }
a63884e9
JK
904
905 /* Shared mappings always use reserves */
1fb1b0e9
MK
906 if (vma->vm_flags & VM_MAYSHARE) {
907 /*
908 * We know VM_NORESERVE is not set. Therefore, there SHOULD
909 * be a region map for all pages. The only situation where
910 * there is no region map is if a hole was punched via
911 * fallocate. In this case, there really are no reverves to
912 * use. This situation is indicated if chg != 0.
913 */
914 if (chg)
915 return false;
916 else
917 return true;
918 }
a63884e9
JK
919
920 /*
921 * Only the process that called mmap() has reserves for
922 * private mappings.
923 */
67961f9d
MK
924 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
925 /*
926 * Like the shared case above, a hole punch or truncate
927 * could have been performed on the private mapping.
928 * Examine the value of chg to determine if reserves
929 * actually exist or were previously consumed.
930 * Very Subtle - The value of chg comes from a previous
931 * call to vma_needs_reserves(). The reserve map for
932 * private mappings has different (opposite) semantics
933 * than that of shared mappings. vma_needs_reserves()
934 * has already taken this difference in semantics into
935 * account. Therefore, the meaning of chg is the same
936 * as in the shared case above. Code could easily be
937 * combined, but keeping it separate draws attention to
938 * subtle differences.
939 */
940 if (chg)
941 return false;
942 else
943 return true;
944 }
a63884e9 945
559ec2f8 946 return false;
a1e78772
MG
947}
948
a5516438 949static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
950{
951 int nid = page_to_nid(page);
0edaecfa 952 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
953 h->free_huge_pages++;
954 h->free_huge_pages_node[nid]++;
1da177e4
LT
955}
956
94310cbc 957static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
958{
959 struct page *page;
960
c8721bbb 961 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 962 if (!PageHWPoison(page))
c8721bbb
NH
963 break;
964 /*
965 * if 'non-isolated free hugepage' not found on the list,
966 * the allocation fails.
967 */
968 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 969 return NULL;
0edaecfa 970 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 971 set_page_refcounted(page);
bf50bab2
NH
972 h->free_huge_pages--;
973 h->free_huge_pages_node[nid]--;
974 return page;
975}
976
3e59fcb0
MH
977static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
978 nodemask_t *nmask)
94310cbc 979{
3e59fcb0
MH
980 unsigned int cpuset_mems_cookie;
981 struct zonelist *zonelist;
982 struct zone *zone;
983 struct zoneref *z;
98fa15f3 984 int node = NUMA_NO_NODE;
94310cbc 985
3e59fcb0
MH
986 zonelist = node_zonelist(nid, gfp_mask);
987
988retry_cpuset:
989 cpuset_mems_cookie = read_mems_allowed_begin();
990 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
991 struct page *page;
992
993 if (!cpuset_zone_allowed(zone, gfp_mask))
994 continue;
995 /*
996 * no need to ask again on the same node. Pool is node rather than
997 * zone aware
998 */
999 if (zone_to_nid(zone) == node)
1000 continue;
1001 node = zone_to_nid(zone);
94310cbc 1002
94310cbc
AK
1003 page = dequeue_huge_page_node_exact(h, node);
1004 if (page)
1005 return page;
1006 }
3e59fcb0
MH
1007 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1008 goto retry_cpuset;
1009
94310cbc
AK
1010 return NULL;
1011}
1012
86cdb465
NH
1013/* Movability of hugepages depends on migration support. */
1014static inline gfp_t htlb_alloc_mask(struct hstate *h)
1015{
7ed2c31d 1016 if (hugepage_movable_supported(h))
86cdb465
NH
1017 return GFP_HIGHUSER_MOVABLE;
1018 else
1019 return GFP_HIGHUSER;
1020}
1021
a5516438
AK
1022static struct page *dequeue_huge_page_vma(struct hstate *h,
1023 struct vm_area_struct *vma,
af0ed73e
JK
1024 unsigned long address, int avoid_reserve,
1025 long chg)
1da177e4 1026{
3e59fcb0 1027 struct page *page;
480eccf9 1028 struct mempolicy *mpol;
04ec6264 1029 gfp_t gfp_mask;
3e59fcb0 1030 nodemask_t *nodemask;
04ec6264 1031 int nid;
1da177e4 1032
a1e78772
MG
1033 /*
1034 * A child process with MAP_PRIVATE mappings created by their parent
1035 * have no page reserves. This check ensures that reservations are
1036 * not "stolen". The child may still get SIGKILLed
1037 */
af0ed73e 1038 if (!vma_has_reserves(vma, chg) &&
a5516438 1039 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1040 goto err;
a1e78772 1041
04f2cbe3 1042 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1043 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1044 goto err;
04f2cbe3 1045
04ec6264
VB
1046 gfp_mask = htlb_alloc_mask(h);
1047 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1048 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1049 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1050 SetPagePrivate(page);
1051 h->resv_huge_pages--;
1da177e4 1052 }
cc9a6c87 1053
52cd3b07 1054 mpol_cond_put(mpol);
1da177e4 1055 return page;
cc9a6c87
MG
1056
1057err:
cc9a6c87 1058 return NULL;
1da177e4
LT
1059}
1060
1cac6f2c
LC
1061/*
1062 * common helper functions for hstate_next_node_to_{alloc|free}.
1063 * We may have allocated or freed a huge page based on a different
1064 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1065 * be outside of *nodes_allowed. Ensure that we use an allowed
1066 * node for alloc or free.
1067 */
1068static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1069{
0edaf86c 1070 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1071 VM_BUG_ON(nid >= MAX_NUMNODES);
1072
1073 return nid;
1074}
1075
1076static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1077{
1078 if (!node_isset(nid, *nodes_allowed))
1079 nid = next_node_allowed(nid, nodes_allowed);
1080 return nid;
1081}
1082
1083/*
1084 * returns the previously saved node ["this node"] from which to
1085 * allocate a persistent huge page for the pool and advance the
1086 * next node from which to allocate, handling wrap at end of node
1087 * mask.
1088 */
1089static int hstate_next_node_to_alloc(struct hstate *h,
1090 nodemask_t *nodes_allowed)
1091{
1092 int nid;
1093
1094 VM_BUG_ON(!nodes_allowed);
1095
1096 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1097 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1098
1099 return nid;
1100}
1101
1102/*
1103 * helper for free_pool_huge_page() - return the previously saved
1104 * node ["this node"] from which to free a huge page. Advance the
1105 * next node id whether or not we find a free huge page to free so
1106 * that the next attempt to free addresses the next node.
1107 */
1108static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1109{
1110 int nid;
1111
1112 VM_BUG_ON(!nodes_allowed);
1113
1114 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1115 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1116
1117 return nid;
1118}
1119
1120#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1121 for (nr_nodes = nodes_weight(*mask); \
1122 nr_nodes > 0 && \
1123 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1124 nr_nodes--)
1125
1126#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1127 for (nr_nodes = nodes_weight(*mask); \
1128 nr_nodes > 0 && \
1129 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1130 nr_nodes--)
1131
e1073d1e 1132#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1133static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1134 unsigned int order)
944d9fec
LC
1135{
1136 int i;
1137 int nr_pages = 1 << order;
1138 struct page *p = page + 1;
1139
c8cc708a 1140 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1141 if (hpage_pincount_available(page))
1142 atomic_set(compound_pincount_ptr(page), 0);
1143
944d9fec 1144 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1145 clear_compound_head(p);
944d9fec 1146 set_page_refcounted(p);
944d9fec
LC
1147 }
1148
1149 set_compound_order(page, 0);
1150 __ClearPageHead(page);
1151}
1152
d00181b9 1153static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1154{
1155 free_contig_range(page_to_pfn(page), 1 << order);
1156}
1157
4eb0716e 1158#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1159static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1160 int nid, nodemask_t *nodemask)
944d9fec 1161{
5e27a2df 1162 unsigned long nr_pages = 1UL << huge_page_order(h);
944d9fec 1163
5e27a2df 1164 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1165}
1166
1167static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1168static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1169#else /* !CONFIG_CONTIG_ALLOC */
1170static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1171 int nid, nodemask_t *nodemask)
1172{
1173 return NULL;
1174}
1175#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1176
e1073d1e 1177#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1178static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1179 int nid, nodemask_t *nodemask)
1180{
1181 return NULL;
1182}
d00181b9 1183static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1184static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1185 unsigned int order) { }
944d9fec
LC
1186#endif
1187
a5516438 1188static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1189{
1190 int i;
a5516438 1191
4eb0716e 1192 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1193 return;
18229df5 1194
a5516438
AK
1195 h->nr_huge_pages--;
1196 h->nr_huge_pages_node[page_to_nid(page)]--;
1197 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1198 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1199 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1200 1 << PG_active | 1 << PG_private |
1201 1 << PG_writeback);
6af2acb6 1202 }
309381fe 1203 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1adc4d41 1204 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
f1e61557 1205 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1206 set_page_refcounted(page);
944d9fec
LC
1207 if (hstate_is_gigantic(h)) {
1208 destroy_compound_gigantic_page(page, huge_page_order(h));
1209 free_gigantic_page(page, huge_page_order(h));
1210 } else {
944d9fec
LC
1211 __free_pages(page, huge_page_order(h));
1212 }
6af2acb6
AL
1213}
1214
e5ff2159
AK
1215struct hstate *size_to_hstate(unsigned long size)
1216{
1217 struct hstate *h;
1218
1219 for_each_hstate(h) {
1220 if (huge_page_size(h) == size)
1221 return h;
1222 }
1223 return NULL;
1224}
1225
bcc54222
NH
1226/*
1227 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1228 * to hstate->hugepage_activelist.)
1229 *
1230 * This function can be called for tail pages, but never returns true for them.
1231 */
1232bool page_huge_active(struct page *page)
1233{
1234 VM_BUG_ON_PAGE(!PageHuge(page), page);
1235 return PageHead(page) && PagePrivate(&page[1]);
1236}
1237
1238/* never called for tail page */
1239static void set_page_huge_active(struct page *page)
1240{
1241 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1242 SetPagePrivate(&page[1]);
1243}
1244
1245static void clear_page_huge_active(struct page *page)
1246{
1247 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1248 ClearPagePrivate(&page[1]);
1249}
1250
ab5ac90a
MH
1251/*
1252 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1253 * code
1254 */
1255static inline bool PageHugeTemporary(struct page *page)
1256{
1257 if (!PageHuge(page))
1258 return false;
1259
1260 return (unsigned long)page[2].mapping == -1U;
1261}
1262
1263static inline void SetPageHugeTemporary(struct page *page)
1264{
1265 page[2].mapping = (void *)-1U;
1266}
1267
1268static inline void ClearPageHugeTemporary(struct page *page)
1269{
1270 page[2].mapping = NULL;
1271}
1272
c77c0a8a 1273static void __free_huge_page(struct page *page)
27a85ef1 1274{
a5516438
AK
1275 /*
1276 * Can't pass hstate in here because it is called from the
1277 * compound page destructor.
1278 */
e5ff2159 1279 struct hstate *h = page_hstate(page);
7893d1d5 1280 int nid = page_to_nid(page);
90481622
DG
1281 struct hugepage_subpool *spool =
1282 (struct hugepage_subpool *)page_private(page);
07443a85 1283 bool restore_reserve;
27a85ef1 1284
b4330afb
MK
1285 VM_BUG_ON_PAGE(page_count(page), page);
1286 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1287
1288 set_page_private(page, 0);
1289 page->mapping = NULL;
07443a85 1290 restore_reserve = PagePrivate(page);
16c794b4 1291 ClearPagePrivate(page);
27a85ef1 1292
1c5ecae3 1293 /*
0919e1b6
MK
1294 * If PagePrivate() was set on page, page allocation consumed a
1295 * reservation. If the page was associated with a subpool, there
1296 * would have been a page reserved in the subpool before allocation
1297 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1298 * reservtion, do not call hugepage_subpool_put_pages() as this will
1299 * remove the reserved page from the subpool.
1c5ecae3 1300 */
0919e1b6
MK
1301 if (!restore_reserve) {
1302 /*
1303 * A return code of zero implies that the subpool will be
1304 * under its minimum size if the reservation is not restored
1305 * after page is free. Therefore, force restore_reserve
1306 * operation.
1307 */
1308 if (hugepage_subpool_put_pages(spool, 1) == 0)
1309 restore_reserve = true;
1310 }
1c5ecae3 1311
27a85ef1 1312 spin_lock(&hugetlb_lock);
bcc54222 1313 clear_page_huge_active(page);
6d76dcf4
AK
1314 hugetlb_cgroup_uncharge_page(hstate_index(h),
1315 pages_per_huge_page(h), page);
07443a85
JK
1316 if (restore_reserve)
1317 h->resv_huge_pages++;
1318
ab5ac90a
MH
1319 if (PageHugeTemporary(page)) {
1320 list_del(&page->lru);
1321 ClearPageHugeTemporary(page);
1322 update_and_free_page(h, page);
1323 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1324 /* remove the page from active list */
1325 list_del(&page->lru);
a5516438
AK
1326 update_and_free_page(h, page);
1327 h->surplus_huge_pages--;
1328 h->surplus_huge_pages_node[nid]--;
7893d1d5 1329 } else {
5d3a551c 1330 arch_clear_hugepage_flags(page);
a5516438 1331 enqueue_huge_page(h, page);
7893d1d5 1332 }
27a85ef1
DG
1333 spin_unlock(&hugetlb_lock);
1334}
1335
c77c0a8a
WL
1336/*
1337 * As free_huge_page() can be called from a non-task context, we have
1338 * to defer the actual freeing in a workqueue to prevent potential
1339 * hugetlb_lock deadlock.
1340 *
1341 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1342 * be freed and frees them one-by-one. As the page->mapping pointer is
1343 * going to be cleared in __free_huge_page() anyway, it is reused as the
1344 * llist_node structure of a lockless linked list of huge pages to be freed.
1345 */
1346static LLIST_HEAD(hpage_freelist);
1347
1348static void free_hpage_workfn(struct work_struct *work)
1349{
1350 struct llist_node *node;
1351 struct page *page;
1352
1353 node = llist_del_all(&hpage_freelist);
1354
1355 while (node) {
1356 page = container_of((struct address_space **)node,
1357 struct page, mapping);
1358 node = node->next;
1359 __free_huge_page(page);
1360 }
1361}
1362static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1363
1364void free_huge_page(struct page *page)
1365{
1366 /*
1367 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1368 */
1369 if (!in_task()) {
1370 /*
1371 * Only call schedule_work() if hpage_freelist is previously
1372 * empty. Otherwise, schedule_work() had been called but the
1373 * workfn hasn't retrieved the list yet.
1374 */
1375 if (llist_add((struct llist_node *)&page->mapping,
1376 &hpage_freelist))
1377 schedule_work(&free_hpage_work);
1378 return;
1379 }
1380
1381 __free_huge_page(page);
1382}
1383
a5516438 1384static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1385{
0edaecfa 1386 INIT_LIST_HEAD(&page->lru);
f1e61557 1387 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1388 spin_lock(&hugetlb_lock);
9dd540e2 1389 set_hugetlb_cgroup(page, NULL);
1adc4d41 1390 set_hugetlb_cgroup_rsvd(page, NULL);
a5516438
AK
1391 h->nr_huge_pages++;
1392 h->nr_huge_pages_node[nid]++;
b7ba30c6 1393 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1394}
1395
d00181b9 1396static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1397{
1398 int i;
1399 int nr_pages = 1 << order;
1400 struct page *p = page + 1;
1401
1402 /* we rely on prep_new_huge_page to set the destructor */
1403 set_compound_order(page, order);
ef5a22be 1404 __ClearPageReserved(page);
de09d31d 1405 __SetPageHead(page);
20a0307c 1406 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1407 /*
1408 * For gigantic hugepages allocated through bootmem at
1409 * boot, it's safer to be consistent with the not-gigantic
1410 * hugepages and clear the PG_reserved bit from all tail pages
1411 * too. Otherwse drivers using get_user_pages() to access tail
1412 * pages may get the reference counting wrong if they see
1413 * PG_reserved set on a tail page (despite the head page not
1414 * having PG_reserved set). Enforcing this consistency between
1415 * head and tail pages allows drivers to optimize away a check
1416 * on the head page when they need know if put_page() is needed
1417 * after get_user_pages().
1418 */
1419 __ClearPageReserved(p);
58a84aa9 1420 set_page_count(p, 0);
1d798ca3 1421 set_compound_head(p, page);
20a0307c 1422 }
b4330afb 1423 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
1424
1425 if (hpage_pincount_available(page))
1426 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1427}
1428
7795912c
AM
1429/*
1430 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1431 * transparent huge pages. See the PageTransHuge() documentation for more
1432 * details.
1433 */
20a0307c
WF
1434int PageHuge(struct page *page)
1435{
20a0307c
WF
1436 if (!PageCompound(page))
1437 return 0;
1438
1439 page = compound_head(page);
f1e61557 1440 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1441}
43131e14
NH
1442EXPORT_SYMBOL_GPL(PageHuge);
1443
27c73ae7
AA
1444/*
1445 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1446 * normal or transparent huge pages.
1447 */
1448int PageHeadHuge(struct page *page_head)
1449{
27c73ae7
AA
1450 if (!PageHead(page_head))
1451 return 0;
1452
758f66a2 1453 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1454}
27c73ae7 1455
c0d0381a
MK
1456/*
1457 * Find address_space associated with hugetlbfs page.
1458 * Upon entry page is locked and page 'was' mapped although mapped state
1459 * could change. If necessary, use anon_vma to find vma and associated
1460 * address space. The returned mapping may be stale, but it can not be
1461 * invalid as page lock (which is held) is required to destroy mapping.
1462 */
1463static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1464{
1465 struct anon_vma *anon_vma;
1466 pgoff_t pgoff_start, pgoff_end;
1467 struct anon_vma_chain *avc;
1468 struct address_space *mapping = page_mapping(hpage);
1469
1470 /* Simple file based mapping */
1471 if (mapping)
1472 return mapping;
1473
1474 /*
1475 * Even anonymous hugetlbfs mappings are associated with an
1476 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1477 * code). Find a vma associated with the anonymous vma, and
1478 * use the file pointer to get address_space.
1479 */
1480 anon_vma = page_lock_anon_vma_read(hpage);
1481 if (!anon_vma)
1482 return mapping; /* NULL */
1483
1484 /* Use first found vma */
1485 pgoff_start = page_to_pgoff(hpage);
1486 pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
1487 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1488 pgoff_start, pgoff_end) {
1489 struct vm_area_struct *vma = avc->vma;
1490
1491 mapping = vma->vm_file->f_mapping;
1492 break;
1493 }
1494
1495 anon_vma_unlock_read(anon_vma);
1496 return mapping;
1497}
1498
1499/*
1500 * Find and lock address space (mapping) in write mode.
1501 *
1502 * Upon entry, the page is locked which allows us to find the mapping
1503 * even in the case of an anon page. However, locking order dictates
1504 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
1505 * specific. So, we first try to lock the sema while still holding the
1506 * page lock. If this works, great! If not, then we need to drop the
1507 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
1508 * course, need to revalidate state along the way.
1509 */
1510struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1511{
1512 struct address_space *mapping, *mapping2;
1513
1514 mapping = _get_hugetlb_page_mapping(hpage);
1515retry:
1516 if (!mapping)
1517 return mapping;
1518
1519 /*
1520 * If no contention, take lock and return
1521 */
1522 if (i_mmap_trylock_write(mapping))
1523 return mapping;
1524
1525 /*
1526 * Must drop page lock and wait on mapping sema.
1527 * Note: Once page lock is dropped, mapping could become invalid.
1528 * As a hack, increase map count until we lock page again.
1529 */
1530 atomic_inc(&hpage->_mapcount);
1531 unlock_page(hpage);
1532 i_mmap_lock_write(mapping);
1533 lock_page(hpage);
1534 atomic_add_negative(-1, &hpage->_mapcount);
1535
1536 /* verify page is still mapped */
1537 if (!page_mapped(hpage)) {
1538 i_mmap_unlock_write(mapping);
1539 return NULL;
1540 }
1541
1542 /*
1543 * Get address space again and verify it is the same one
1544 * we locked. If not, drop lock and retry.
1545 */
1546 mapping2 = _get_hugetlb_page_mapping(hpage);
1547 if (mapping2 != mapping) {
1548 i_mmap_unlock_write(mapping);
1549 mapping = mapping2;
1550 goto retry;
1551 }
1552
1553 return mapping;
1554}
1555
13d60f4b
ZY
1556pgoff_t __basepage_index(struct page *page)
1557{
1558 struct page *page_head = compound_head(page);
1559 pgoff_t index = page_index(page_head);
1560 unsigned long compound_idx;
1561
1562 if (!PageHuge(page_head))
1563 return page_index(page);
1564
1565 if (compound_order(page_head) >= MAX_ORDER)
1566 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1567 else
1568 compound_idx = page - page_head;
1569
1570 return (index << compound_order(page_head)) + compound_idx;
1571}
1572
0c397dae 1573static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1574 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1575 nodemask_t *node_alloc_noretry)
1da177e4 1576{
af0fb9df 1577 int order = huge_page_order(h);
1da177e4 1578 struct page *page;
f60858f9 1579 bool alloc_try_hard = true;
f96efd58 1580
f60858f9
MK
1581 /*
1582 * By default we always try hard to allocate the page with
1583 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1584 * a loop (to adjust global huge page counts) and previous allocation
1585 * failed, do not continue to try hard on the same node. Use the
1586 * node_alloc_noretry bitmap to manage this state information.
1587 */
1588 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1589 alloc_try_hard = false;
1590 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1591 if (alloc_try_hard)
1592 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1593 if (nid == NUMA_NO_NODE)
1594 nid = numa_mem_id();
1595 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1596 if (page)
1597 __count_vm_event(HTLB_BUDDY_PGALLOC);
1598 else
1599 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1600
f60858f9
MK
1601 /*
1602 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1603 * indicates an overall state change. Clear bit so that we resume
1604 * normal 'try hard' allocations.
1605 */
1606 if (node_alloc_noretry && page && !alloc_try_hard)
1607 node_clear(nid, *node_alloc_noretry);
1608
1609 /*
1610 * If we tried hard to get a page but failed, set bit so that
1611 * subsequent attempts will not try as hard until there is an
1612 * overall state change.
1613 */
1614 if (node_alloc_noretry && !page && alloc_try_hard)
1615 node_set(nid, *node_alloc_noretry);
1616
63b4613c
NA
1617 return page;
1618}
1619
0c397dae
MH
1620/*
1621 * Common helper to allocate a fresh hugetlb page. All specific allocators
1622 * should use this function to get new hugetlb pages
1623 */
1624static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1625 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1626 nodemask_t *node_alloc_noretry)
0c397dae
MH
1627{
1628 struct page *page;
1629
1630 if (hstate_is_gigantic(h))
1631 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1632 else
1633 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1634 nid, nmask, node_alloc_noretry);
0c397dae
MH
1635 if (!page)
1636 return NULL;
1637
1638 if (hstate_is_gigantic(h))
1639 prep_compound_gigantic_page(page, huge_page_order(h));
1640 prep_new_huge_page(h, page, page_to_nid(page));
1641
1642 return page;
1643}
1644
af0fb9df
MH
1645/*
1646 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1647 * manner.
1648 */
f60858f9
MK
1649static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1650 nodemask_t *node_alloc_noretry)
b2261026
JK
1651{
1652 struct page *page;
1653 int nr_nodes, node;
af0fb9df 1654 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1655
1656 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1657 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1658 node_alloc_noretry);
af0fb9df 1659 if (page)
b2261026 1660 break;
b2261026
JK
1661 }
1662
af0fb9df
MH
1663 if (!page)
1664 return 0;
b2261026 1665
af0fb9df
MH
1666 put_page(page); /* free it into the hugepage allocator */
1667
1668 return 1;
b2261026
JK
1669}
1670
e8c5c824
LS
1671/*
1672 * Free huge page from pool from next node to free.
1673 * Attempt to keep persistent huge pages more or less
1674 * balanced over allowed nodes.
1675 * Called with hugetlb_lock locked.
1676 */
6ae11b27
LS
1677static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1678 bool acct_surplus)
e8c5c824 1679{
b2261026 1680 int nr_nodes, node;
e8c5c824
LS
1681 int ret = 0;
1682
b2261026 1683 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1684 /*
1685 * If we're returning unused surplus pages, only examine
1686 * nodes with surplus pages.
1687 */
b2261026
JK
1688 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1689 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1690 struct page *page =
b2261026 1691 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1692 struct page, lru);
1693 list_del(&page->lru);
1694 h->free_huge_pages--;
b2261026 1695 h->free_huge_pages_node[node]--;
685f3457
LS
1696 if (acct_surplus) {
1697 h->surplus_huge_pages--;
b2261026 1698 h->surplus_huge_pages_node[node]--;
685f3457 1699 }
e8c5c824
LS
1700 update_and_free_page(h, page);
1701 ret = 1;
9a76db09 1702 break;
e8c5c824 1703 }
b2261026 1704 }
e8c5c824
LS
1705
1706 return ret;
1707}
1708
c8721bbb
NH
1709/*
1710 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1711 * nothing for in-use hugepages and non-hugepages.
1712 * This function returns values like below:
1713 *
1714 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1715 * (allocated or reserved.)
1716 * 0: successfully dissolved free hugepages or the page is not a
1717 * hugepage (considered as already dissolved)
c8721bbb 1718 */
c3114a84 1719int dissolve_free_huge_page(struct page *page)
c8721bbb 1720{
6bc9b564 1721 int rc = -EBUSY;
082d5b6b 1722
faf53def
NH
1723 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1724 if (!PageHuge(page))
1725 return 0;
1726
c8721bbb 1727 spin_lock(&hugetlb_lock);
faf53def
NH
1728 if (!PageHuge(page)) {
1729 rc = 0;
1730 goto out;
1731 }
1732
1733 if (!page_count(page)) {
2247bb33
GS
1734 struct page *head = compound_head(page);
1735 struct hstate *h = page_hstate(head);
1736 int nid = page_to_nid(head);
6bc9b564 1737 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1738 goto out;
c3114a84
AK
1739 /*
1740 * Move PageHWPoison flag from head page to the raw error page,
1741 * which makes any subpages rather than the error page reusable.
1742 */
1743 if (PageHWPoison(head) && page != head) {
1744 SetPageHWPoison(page);
1745 ClearPageHWPoison(head);
1746 }
2247bb33 1747 list_del(&head->lru);
c8721bbb
NH
1748 h->free_huge_pages--;
1749 h->free_huge_pages_node[nid]--;
c1470b33 1750 h->max_huge_pages--;
2247bb33 1751 update_and_free_page(h, head);
6bc9b564 1752 rc = 0;
c8721bbb 1753 }
082d5b6b 1754out:
c8721bbb 1755 spin_unlock(&hugetlb_lock);
082d5b6b 1756 return rc;
c8721bbb
NH
1757}
1758
1759/*
1760 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1761 * make specified memory blocks removable from the system.
2247bb33
GS
1762 * Note that this will dissolve a free gigantic hugepage completely, if any
1763 * part of it lies within the given range.
082d5b6b
GS
1764 * Also note that if dissolve_free_huge_page() returns with an error, all
1765 * free hugepages that were dissolved before that error are lost.
c8721bbb 1766 */
082d5b6b 1767int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1768{
c8721bbb 1769 unsigned long pfn;
eb03aa00 1770 struct page *page;
082d5b6b 1771 int rc = 0;
c8721bbb 1772
d0177639 1773 if (!hugepages_supported())
082d5b6b 1774 return rc;
d0177639 1775
eb03aa00
GS
1776 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1777 page = pfn_to_page(pfn);
faf53def
NH
1778 rc = dissolve_free_huge_page(page);
1779 if (rc)
1780 break;
eb03aa00 1781 }
082d5b6b
GS
1782
1783 return rc;
c8721bbb
NH
1784}
1785
ab5ac90a
MH
1786/*
1787 * Allocates a fresh surplus page from the page allocator.
1788 */
0c397dae 1789static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1790 int nid, nodemask_t *nmask)
7893d1d5 1791{
9980d744 1792 struct page *page = NULL;
7893d1d5 1793
bae7f4ae 1794 if (hstate_is_gigantic(h))
aa888a74
AK
1795 return NULL;
1796
d1c3fb1f 1797 spin_lock(&hugetlb_lock);
9980d744
MH
1798 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1799 goto out_unlock;
d1c3fb1f
NA
1800 spin_unlock(&hugetlb_lock);
1801
f60858f9 1802 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1803 if (!page)
0c397dae 1804 return NULL;
d1c3fb1f
NA
1805
1806 spin_lock(&hugetlb_lock);
9980d744
MH
1807 /*
1808 * We could have raced with the pool size change.
1809 * Double check that and simply deallocate the new page
1810 * if we would end up overcommiting the surpluses. Abuse
1811 * temporary page to workaround the nasty free_huge_page
1812 * codeflow
1813 */
1814 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1815 SetPageHugeTemporary(page);
2bf753e6 1816 spin_unlock(&hugetlb_lock);
9980d744 1817 put_page(page);
2bf753e6 1818 return NULL;
9980d744 1819 } else {
9980d744 1820 h->surplus_huge_pages++;
4704dea3 1821 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1822 }
9980d744
MH
1823
1824out_unlock:
d1c3fb1f 1825 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1826
1827 return page;
1828}
1829
9a4e9f3b
AK
1830struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1831 int nid, nodemask_t *nmask)
ab5ac90a
MH
1832{
1833 struct page *page;
1834
1835 if (hstate_is_gigantic(h))
1836 return NULL;
1837
f60858f9 1838 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1839 if (!page)
1840 return NULL;
1841
1842 /*
1843 * We do not account these pages as surplus because they are only
1844 * temporary and will be released properly on the last reference
1845 */
ab5ac90a
MH
1846 SetPageHugeTemporary(page);
1847
1848 return page;
1849}
1850
099730d6
DH
1851/*
1852 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1853 */
e0ec90ee 1854static
0c397dae 1855struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1856 struct vm_area_struct *vma, unsigned long addr)
1857{
aaf14e40
MH
1858 struct page *page;
1859 struct mempolicy *mpol;
1860 gfp_t gfp_mask = htlb_alloc_mask(h);
1861 int nid;
1862 nodemask_t *nodemask;
1863
1864 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1865 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1866 mpol_cond_put(mpol);
1867
1868 return page;
099730d6
DH
1869}
1870
ab5ac90a 1871/* page migration callback function */
bf50bab2
NH
1872struct page *alloc_huge_page_node(struct hstate *h, int nid)
1873{
aaf14e40 1874 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1875 struct page *page = NULL;
bf50bab2 1876
aaf14e40
MH
1877 if (nid != NUMA_NO_NODE)
1878 gfp_mask |= __GFP_THISNODE;
1879
bf50bab2 1880 spin_lock(&hugetlb_lock);
4ef91848 1881 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1882 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1883 spin_unlock(&hugetlb_lock);
1884
94ae8ba7 1885 if (!page)
0c397dae 1886 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1887
1888 return page;
1889}
1890
ab5ac90a 1891/* page migration callback function */
3e59fcb0
MH
1892struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1893 nodemask_t *nmask)
4db9b2ef 1894{
aaf14e40 1895 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1896
1897 spin_lock(&hugetlb_lock);
1898 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1899 struct page *page;
1900
1901 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1902 if (page) {
1903 spin_unlock(&hugetlb_lock);
1904 return page;
4db9b2ef
MH
1905 }
1906 }
1907 spin_unlock(&hugetlb_lock);
4db9b2ef 1908
0c397dae 1909 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1910}
1911
ebd63723 1912/* mempolicy aware migration callback */
389c8178
MH
1913struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1914 unsigned long address)
ebd63723
MH
1915{
1916 struct mempolicy *mpol;
1917 nodemask_t *nodemask;
1918 struct page *page;
ebd63723
MH
1919 gfp_t gfp_mask;
1920 int node;
1921
ebd63723
MH
1922 gfp_mask = htlb_alloc_mask(h);
1923 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1924 page = alloc_huge_page_nodemask(h, node, nodemask);
1925 mpol_cond_put(mpol);
1926
1927 return page;
1928}
1929
e4e574b7 1930/*
25985edc 1931 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1932 * of size 'delta'.
1933 */
a5516438 1934static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1935{
1936 struct list_head surplus_list;
1937 struct page *page, *tmp;
1938 int ret, i;
1939 int needed, allocated;
28073b02 1940 bool alloc_ok = true;
e4e574b7 1941
a5516438 1942 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1943 if (needed <= 0) {
a5516438 1944 h->resv_huge_pages += delta;
e4e574b7 1945 return 0;
ac09b3a1 1946 }
e4e574b7
AL
1947
1948 allocated = 0;
1949 INIT_LIST_HEAD(&surplus_list);
1950
1951 ret = -ENOMEM;
1952retry:
1953 spin_unlock(&hugetlb_lock);
1954 for (i = 0; i < needed; i++) {
0c397dae 1955 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1956 NUMA_NO_NODE, NULL);
28073b02
HD
1957 if (!page) {
1958 alloc_ok = false;
1959 break;
1960 }
e4e574b7 1961 list_add(&page->lru, &surplus_list);
69ed779a 1962 cond_resched();
e4e574b7 1963 }
28073b02 1964 allocated += i;
e4e574b7
AL
1965
1966 /*
1967 * After retaking hugetlb_lock, we need to recalculate 'needed'
1968 * because either resv_huge_pages or free_huge_pages may have changed.
1969 */
1970 spin_lock(&hugetlb_lock);
a5516438
AK
1971 needed = (h->resv_huge_pages + delta) -
1972 (h->free_huge_pages + allocated);
28073b02
HD
1973 if (needed > 0) {
1974 if (alloc_ok)
1975 goto retry;
1976 /*
1977 * We were not able to allocate enough pages to
1978 * satisfy the entire reservation so we free what
1979 * we've allocated so far.
1980 */
1981 goto free;
1982 }
e4e574b7
AL
1983 /*
1984 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1985 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1986 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1987 * allocator. Commit the entire reservation here to prevent another
1988 * process from stealing the pages as they are added to the pool but
1989 * before they are reserved.
e4e574b7
AL
1990 */
1991 needed += allocated;
a5516438 1992 h->resv_huge_pages += delta;
e4e574b7 1993 ret = 0;
a9869b83 1994
19fc3f0a 1995 /* Free the needed pages to the hugetlb pool */
e4e574b7 1996 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1997 if ((--needed) < 0)
1998 break;
a9869b83
NH
1999 /*
2000 * This page is now managed by the hugetlb allocator and has
2001 * no users -- drop the buddy allocator's reference.
2002 */
2003 put_page_testzero(page);
309381fe 2004 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 2005 enqueue_huge_page(h, page);
19fc3f0a 2006 }
28073b02 2007free:
b0365c8d 2008 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
2009
2010 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2011 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2012 put_page(page);
a9869b83 2013 spin_lock(&hugetlb_lock);
e4e574b7
AL
2014
2015 return ret;
2016}
2017
2018/*
e5bbc8a6
MK
2019 * This routine has two main purposes:
2020 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2021 * in unused_resv_pages. This corresponds to the prior adjustments made
2022 * to the associated reservation map.
2023 * 2) Free any unused surplus pages that may have been allocated to satisfy
2024 * the reservation. As many as unused_resv_pages may be freed.
2025 *
2026 * Called with hugetlb_lock held. However, the lock could be dropped (and
2027 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2028 * we must make sure nobody else can claim pages we are in the process of
2029 * freeing. Do this by ensuring resv_huge_page always is greater than the
2030 * number of huge pages we plan to free when dropping the lock.
e4e574b7 2031 */
a5516438
AK
2032static void return_unused_surplus_pages(struct hstate *h,
2033 unsigned long unused_resv_pages)
e4e574b7 2034{
e4e574b7
AL
2035 unsigned long nr_pages;
2036
aa888a74 2037 /* Cannot return gigantic pages currently */
bae7f4ae 2038 if (hstate_is_gigantic(h))
e5bbc8a6 2039 goto out;
aa888a74 2040
e5bbc8a6
MK
2041 /*
2042 * Part (or even all) of the reservation could have been backed
2043 * by pre-allocated pages. Only free surplus pages.
2044 */
a5516438 2045 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2046
685f3457
LS
2047 /*
2048 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2049 * evenly across all nodes with memory. Iterate across these nodes
2050 * until we can no longer free unreserved surplus pages. This occurs
2051 * when the nodes with surplus pages have no free pages.
2052 * free_pool_huge_page() will balance the the freed pages across the
2053 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
2054 *
2055 * Note that we decrement resv_huge_pages as we free the pages. If
2056 * we drop the lock, resv_huge_pages will still be sufficiently large
2057 * to cover subsequent pages we may free.
685f3457
LS
2058 */
2059 while (nr_pages--) {
e5bbc8a6
MK
2060 h->resv_huge_pages--;
2061 unused_resv_pages--;
8cebfcd0 2062 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 2063 goto out;
7848a4bf 2064 cond_resched_lock(&hugetlb_lock);
e4e574b7 2065 }
e5bbc8a6
MK
2066
2067out:
2068 /* Fully uncommit the reservation */
2069 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
2070}
2071
5e911373 2072
c37f9fb1 2073/*
feba16e2 2074 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2075 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2076 *
2077 * vma_needs_reservation is called to determine if the huge page at addr
2078 * within the vma has an associated reservation. If a reservation is
2079 * needed, the value 1 is returned. The caller is then responsible for
2080 * managing the global reservation and subpool usage counts. After
2081 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2082 * to add the page to the reservation map. If the page allocation fails,
2083 * the reservation must be ended instead of committed. vma_end_reservation
2084 * is called in such cases.
cf3ad20b
MK
2085 *
2086 * In the normal case, vma_commit_reservation returns the same value
2087 * as the preceding vma_needs_reservation call. The only time this
2088 * is not the case is if a reserve map was changed between calls. It
2089 * is the responsibility of the caller to notice the difference and
2090 * take appropriate action.
96b96a96
MK
2091 *
2092 * vma_add_reservation is used in error paths where a reservation must
2093 * be restored when a newly allocated huge page must be freed. It is
2094 * to be called after calling vma_needs_reservation to determine if a
2095 * reservation exists.
c37f9fb1 2096 */
5e911373
MK
2097enum vma_resv_mode {
2098 VMA_NEEDS_RESV,
2099 VMA_COMMIT_RESV,
feba16e2 2100 VMA_END_RESV,
96b96a96 2101 VMA_ADD_RESV,
5e911373 2102};
cf3ad20b
MK
2103static long __vma_reservation_common(struct hstate *h,
2104 struct vm_area_struct *vma, unsigned long addr,
5e911373 2105 enum vma_resv_mode mode)
c37f9fb1 2106{
4e35f483
JK
2107 struct resv_map *resv;
2108 pgoff_t idx;
cf3ad20b 2109 long ret;
0db9d74e 2110 long dummy_out_regions_needed;
c37f9fb1 2111
4e35f483
JK
2112 resv = vma_resv_map(vma);
2113 if (!resv)
84afd99b 2114 return 1;
c37f9fb1 2115
4e35f483 2116 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2117 switch (mode) {
2118 case VMA_NEEDS_RESV:
0db9d74e
MA
2119 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2120 /* We assume that vma_reservation_* routines always operate on
2121 * 1 page, and that adding to resv map a 1 page entry can only
2122 * ever require 1 region.
2123 */
2124 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2125 break;
2126 case VMA_COMMIT_RESV:
0db9d74e
MA
2127 ret = region_add(resv, idx, idx + 1, 1);
2128 /* region_add calls of range 1 should never fail. */
2129 VM_BUG_ON(ret < 0);
5e911373 2130 break;
feba16e2 2131 case VMA_END_RESV:
0db9d74e 2132 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2133 ret = 0;
2134 break;
96b96a96 2135 case VMA_ADD_RESV:
0db9d74e
MA
2136 if (vma->vm_flags & VM_MAYSHARE) {
2137 ret = region_add(resv, idx, idx + 1, 1);
2138 /* region_add calls of range 1 should never fail. */
2139 VM_BUG_ON(ret < 0);
2140 } else {
2141 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2142 ret = region_del(resv, idx, idx + 1);
2143 }
2144 break;
5e911373
MK
2145 default:
2146 BUG();
2147 }
84afd99b 2148
4e35f483 2149 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2150 return ret;
67961f9d
MK
2151 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2152 /*
2153 * In most cases, reserves always exist for private mappings.
2154 * However, a file associated with mapping could have been
2155 * hole punched or truncated after reserves were consumed.
2156 * As subsequent fault on such a range will not use reserves.
2157 * Subtle - The reserve map for private mappings has the
2158 * opposite meaning than that of shared mappings. If NO
2159 * entry is in the reserve map, it means a reservation exists.
2160 * If an entry exists in the reserve map, it means the
2161 * reservation has already been consumed. As a result, the
2162 * return value of this routine is the opposite of the
2163 * value returned from reserve map manipulation routines above.
2164 */
2165 if (ret)
2166 return 0;
2167 else
2168 return 1;
2169 }
4e35f483 2170 else
cf3ad20b 2171 return ret < 0 ? ret : 0;
c37f9fb1 2172}
cf3ad20b
MK
2173
2174static long vma_needs_reservation(struct hstate *h,
a5516438 2175 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2176{
5e911373 2177 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2178}
84afd99b 2179
cf3ad20b
MK
2180static long vma_commit_reservation(struct hstate *h,
2181 struct vm_area_struct *vma, unsigned long addr)
2182{
5e911373
MK
2183 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2184}
2185
feba16e2 2186static void vma_end_reservation(struct hstate *h,
5e911373
MK
2187 struct vm_area_struct *vma, unsigned long addr)
2188{
feba16e2 2189 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2190}
2191
96b96a96
MK
2192static long vma_add_reservation(struct hstate *h,
2193 struct vm_area_struct *vma, unsigned long addr)
2194{
2195 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2196}
2197
2198/*
2199 * This routine is called to restore a reservation on error paths. In the
2200 * specific error paths, a huge page was allocated (via alloc_huge_page)
2201 * and is about to be freed. If a reservation for the page existed,
2202 * alloc_huge_page would have consumed the reservation and set PagePrivate
2203 * in the newly allocated page. When the page is freed via free_huge_page,
2204 * the global reservation count will be incremented if PagePrivate is set.
2205 * However, free_huge_page can not adjust the reserve map. Adjust the
2206 * reserve map here to be consistent with global reserve count adjustments
2207 * to be made by free_huge_page.
2208 */
2209static void restore_reserve_on_error(struct hstate *h,
2210 struct vm_area_struct *vma, unsigned long address,
2211 struct page *page)
2212{
2213 if (unlikely(PagePrivate(page))) {
2214 long rc = vma_needs_reservation(h, vma, address);
2215
2216 if (unlikely(rc < 0)) {
2217 /*
2218 * Rare out of memory condition in reserve map
2219 * manipulation. Clear PagePrivate so that
2220 * global reserve count will not be incremented
2221 * by free_huge_page. This will make it appear
2222 * as though the reservation for this page was
2223 * consumed. This may prevent the task from
2224 * faulting in the page at a later time. This
2225 * is better than inconsistent global huge page
2226 * accounting of reserve counts.
2227 */
2228 ClearPagePrivate(page);
2229 } else if (rc) {
2230 rc = vma_add_reservation(h, vma, address);
2231 if (unlikely(rc < 0))
2232 /*
2233 * See above comment about rare out of
2234 * memory condition.
2235 */
2236 ClearPagePrivate(page);
2237 } else
2238 vma_end_reservation(h, vma, address);
2239 }
2240}
2241
70c3547e 2242struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2243 unsigned long addr, int avoid_reserve)
1da177e4 2244{
90481622 2245 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2246 struct hstate *h = hstate_vma(vma);
348ea204 2247 struct page *page;
d85f69b0
MK
2248 long map_chg, map_commit;
2249 long gbl_chg;
6d76dcf4
AK
2250 int ret, idx;
2251 struct hugetlb_cgroup *h_cg;
a1e78772 2252
6d76dcf4 2253 idx = hstate_index(h);
a1e78772 2254 /*
d85f69b0
MK
2255 * Examine the region/reserve map to determine if the process
2256 * has a reservation for the page to be allocated. A return
2257 * code of zero indicates a reservation exists (no change).
a1e78772 2258 */
d85f69b0
MK
2259 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2260 if (map_chg < 0)
76dcee75 2261 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2262
2263 /*
2264 * Processes that did not create the mapping will have no
2265 * reserves as indicated by the region/reserve map. Check
2266 * that the allocation will not exceed the subpool limit.
2267 * Allocations for MAP_NORESERVE mappings also need to be
2268 * checked against any subpool limit.
2269 */
2270 if (map_chg || avoid_reserve) {
2271 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2272 if (gbl_chg < 0) {
feba16e2 2273 vma_end_reservation(h, vma, addr);
76dcee75 2274 return ERR_PTR(-ENOSPC);
5e911373 2275 }
1da177e4 2276
d85f69b0
MK
2277 /*
2278 * Even though there was no reservation in the region/reserve
2279 * map, there could be reservations associated with the
2280 * subpool that can be used. This would be indicated if the
2281 * return value of hugepage_subpool_get_pages() is zero.
2282 * However, if avoid_reserve is specified we still avoid even
2283 * the subpool reservations.
2284 */
2285 if (avoid_reserve)
2286 gbl_chg = 1;
2287 }
2288
6d76dcf4 2289 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2290 if (ret)
2291 goto out_subpool_put;
2292
1da177e4 2293 spin_lock(&hugetlb_lock);
d85f69b0
MK
2294 /*
2295 * glb_chg is passed to indicate whether or not a page must be taken
2296 * from the global free pool (global change). gbl_chg == 0 indicates
2297 * a reservation exists for the allocation.
2298 */
2299 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2300 if (!page) {
94ae8ba7 2301 spin_unlock(&hugetlb_lock);
0c397dae 2302 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2303 if (!page)
2304 goto out_uncharge_cgroup;
a88c7695
NH
2305 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2306 SetPagePrivate(page);
2307 h->resv_huge_pages--;
2308 }
79dbb236
AK
2309 spin_lock(&hugetlb_lock);
2310 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2311 /* Fall through */
68842c9b 2312 }
81a6fcae
JK
2313 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2314 spin_unlock(&hugetlb_lock);
348ea204 2315
90481622 2316 set_page_private(page, (unsigned long)spool);
90d8b7e6 2317
d85f69b0
MK
2318 map_commit = vma_commit_reservation(h, vma, addr);
2319 if (unlikely(map_chg > map_commit)) {
33039678
MK
2320 /*
2321 * The page was added to the reservation map between
2322 * vma_needs_reservation and vma_commit_reservation.
2323 * This indicates a race with hugetlb_reserve_pages.
2324 * Adjust for the subpool count incremented above AND
2325 * in hugetlb_reserve_pages for the same page. Also,
2326 * the reservation count added in hugetlb_reserve_pages
2327 * no longer applies.
2328 */
2329 long rsv_adjust;
2330
2331 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2332 hugetlb_acct_memory(h, -rsv_adjust);
2333 }
90d8b7e6 2334 return page;
8f34af6f
JZ
2335
2336out_uncharge_cgroup:
2337 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2338out_subpool_put:
d85f69b0 2339 if (map_chg || avoid_reserve)
8f34af6f 2340 hugepage_subpool_put_pages(spool, 1);
feba16e2 2341 vma_end_reservation(h, vma, addr);
8f34af6f 2342 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2343}
2344
e24a1307
AK
2345int alloc_bootmem_huge_page(struct hstate *h)
2346 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2347int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2348{
2349 struct huge_bootmem_page *m;
b2261026 2350 int nr_nodes, node;
aa888a74 2351
b2261026 2352 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2353 void *addr;
2354
eb31d559 2355 addr = memblock_alloc_try_nid_raw(
8b89a116 2356 huge_page_size(h), huge_page_size(h),
97ad1087 2357 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2358 if (addr) {
2359 /*
2360 * Use the beginning of the huge page to store the
2361 * huge_bootmem_page struct (until gather_bootmem
2362 * puts them into the mem_map).
2363 */
2364 m = addr;
91f47662 2365 goto found;
aa888a74 2366 }
aa888a74
AK
2367 }
2368 return 0;
2369
2370found:
df994ead 2371 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2372 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2373 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2374 list_add(&m->list, &huge_boot_pages);
2375 m->hstate = h;
2376 return 1;
2377}
2378
d00181b9
KS
2379static void __init prep_compound_huge_page(struct page *page,
2380 unsigned int order)
18229df5
AW
2381{
2382 if (unlikely(order > (MAX_ORDER - 1)))
2383 prep_compound_gigantic_page(page, order);
2384 else
2385 prep_compound_page(page, order);
2386}
2387
aa888a74
AK
2388/* Put bootmem huge pages into the standard lists after mem_map is up */
2389static void __init gather_bootmem_prealloc(void)
2390{
2391 struct huge_bootmem_page *m;
2392
2393 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2394 struct page *page = virt_to_page(m);
aa888a74 2395 struct hstate *h = m->hstate;
ee8f248d 2396
aa888a74 2397 WARN_ON(page_count(page) != 1);
18229df5 2398 prep_compound_huge_page(page, h->order);
ef5a22be 2399 WARN_ON(PageReserved(page));
aa888a74 2400 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2401 put_page(page); /* free it into the hugepage allocator */
2402
b0320c7b
RA
2403 /*
2404 * If we had gigantic hugepages allocated at boot time, we need
2405 * to restore the 'stolen' pages to totalram_pages in order to
2406 * fix confusing memory reports from free(1) and another
2407 * side-effects, like CommitLimit going negative.
2408 */
bae7f4ae 2409 if (hstate_is_gigantic(h))
3dcc0571 2410 adjust_managed_page_count(page, 1 << h->order);
520495fe 2411 cond_resched();
aa888a74
AK
2412 }
2413}
2414
8faa8b07 2415static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2416{
2417 unsigned long i;
f60858f9
MK
2418 nodemask_t *node_alloc_noretry;
2419
2420 if (!hstate_is_gigantic(h)) {
2421 /*
2422 * Bit mask controlling how hard we retry per-node allocations.
2423 * Ignore errors as lower level routines can deal with
2424 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2425 * time, we are likely in bigger trouble.
2426 */
2427 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2428 GFP_KERNEL);
2429 } else {
2430 /* allocations done at boot time */
2431 node_alloc_noretry = NULL;
2432 }
2433
2434 /* bit mask controlling how hard we retry per-node allocations */
2435 if (node_alloc_noretry)
2436 nodes_clear(*node_alloc_noretry);
a5516438 2437
e5ff2159 2438 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2439 if (hstate_is_gigantic(h)) {
aa888a74
AK
2440 if (!alloc_bootmem_huge_page(h))
2441 break;
0c397dae 2442 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2443 &node_states[N_MEMORY],
2444 node_alloc_noretry))
1da177e4 2445 break;
69ed779a 2446 cond_resched();
1da177e4 2447 }
d715cf80
LH
2448 if (i < h->max_huge_pages) {
2449 char buf[32];
2450
c6247f72 2451 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2452 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2453 h->max_huge_pages, buf, i);
2454 h->max_huge_pages = i;
2455 }
f60858f9
MK
2456
2457 kfree(node_alloc_noretry);
e5ff2159
AK
2458}
2459
2460static void __init hugetlb_init_hstates(void)
2461{
2462 struct hstate *h;
2463
2464 for_each_hstate(h) {
641844f5
NH
2465 if (minimum_order > huge_page_order(h))
2466 minimum_order = huge_page_order(h);
2467
8faa8b07 2468 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2469 if (!hstate_is_gigantic(h))
8faa8b07 2470 hugetlb_hstate_alloc_pages(h);
e5ff2159 2471 }
641844f5 2472 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2473}
2474
2475static void __init report_hugepages(void)
2476{
2477 struct hstate *h;
2478
2479 for_each_hstate(h) {
4abd32db 2480 char buf[32];
c6247f72
MW
2481
2482 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2483 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2484 buf, h->free_huge_pages);
e5ff2159
AK
2485 }
2486}
2487
1da177e4 2488#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2489static void try_to_free_low(struct hstate *h, unsigned long count,
2490 nodemask_t *nodes_allowed)
1da177e4 2491{
4415cc8d
CL
2492 int i;
2493
bae7f4ae 2494 if (hstate_is_gigantic(h))
aa888a74
AK
2495 return;
2496
6ae11b27 2497 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2498 struct page *page, *next;
a5516438
AK
2499 struct list_head *freel = &h->hugepage_freelists[i];
2500 list_for_each_entry_safe(page, next, freel, lru) {
2501 if (count >= h->nr_huge_pages)
6b0c880d 2502 return;
1da177e4
LT
2503 if (PageHighMem(page))
2504 continue;
2505 list_del(&page->lru);
e5ff2159 2506 update_and_free_page(h, page);
a5516438
AK
2507 h->free_huge_pages--;
2508 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2509 }
2510 }
2511}
2512#else
6ae11b27
LS
2513static inline void try_to_free_low(struct hstate *h, unsigned long count,
2514 nodemask_t *nodes_allowed)
1da177e4
LT
2515{
2516}
2517#endif
2518
20a0307c
WF
2519/*
2520 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2521 * balanced by operating on them in a round-robin fashion.
2522 * Returns 1 if an adjustment was made.
2523 */
6ae11b27
LS
2524static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2525 int delta)
20a0307c 2526{
b2261026 2527 int nr_nodes, node;
20a0307c
WF
2528
2529 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2530
b2261026
JK
2531 if (delta < 0) {
2532 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2533 if (h->surplus_huge_pages_node[node])
2534 goto found;
e8c5c824 2535 }
b2261026
JK
2536 } else {
2537 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2538 if (h->surplus_huge_pages_node[node] <
2539 h->nr_huge_pages_node[node])
2540 goto found;
e8c5c824 2541 }
b2261026
JK
2542 }
2543 return 0;
20a0307c 2544
b2261026
JK
2545found:
2546 h->surplus_huge_pages += delta;
2547 h->surplus_huge_pages_node[node] += delta;
2548 return 1;
20a0307c
WF
2549}
2550
a5516438 2551#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2552static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2553 nodemask_t *nodes_allowed)
1da177e4 2554{
7893d1d5 2555 unsigned long min_count, ret;
f60858f9
MK
2556 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2557
2558 /*
2559 * Bit mask controlling how hard we retry per-node allocations.
2560 * If we can not allocate the bit mask, do not attempt to allocate
2561 * the requested huge pages.
2562 */
2563 if (node_alloc_noretry)
2564 nodes_clear(*node_alloc_noretry);
2565 else
2566 return -ENOMEM;
1da177e4 2567
4eb0716e
AG
2568 spin_lock(&hugetlb_lock);
2569
fd875dca
MK
2570 /*
2571 * Check for a node specific request.
2572 * Changing node specific huge page count may require a corresponding
2573 * change to the global count. In any case, the passed node mask
2574 * (nodes_allowed) will restrict alloc/free to the specified node.
2575 */
2576 if (nid != NUMA_NO_NODE) {
2577 unsigned long old_count = count;
2578
2579 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2580 /*
2581 * User may have specified a large count value which caused the
2582 * above calculation to overflow. In this case, they wanted
2583 * to allocate as many huge pages as possible. Set count to
2584 * largest possible value to align with their intention.
2585 */
2586 if (count < old_count)
2587 count = ULONG_MAX;
2588 }
2589
4eb0716e
AG
2590 /*
2591 * Gigantic pages runtime allocation depend on the capability for large
2592 * page range allocation.
2593 * If the system does not provide this feature, return an error when
2594 * the user tries to allocate gigantic pages but let the user free the
2595 * boottime allocated gigantic pages.
2596 */
2597 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2598 if (count > persistent_huge_pages(h)) {
2599 spin_unlock(&hugetlb_lock);
f60858f9 2600 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2601 return -EINVAL;
2602 }
2603 /* Fall through to decrease pool */
2604 }
aa888a74 2605
7893d1d5
AL
2606 /*
2607 * Increase the pool size
2608 * First take pages out of surplus state. Then make up the
2609 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2610 *
0c397dae 2611 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2612 * to convert a surplus huge page to a normal huge page. That is
2613 * not critical, though, it just means the overall size of the
2614 * pool might be one hugepage larger than it needs to be, but
2615 * within all the constraints specified by the sysctls.
7893d1d5 2616 */
a5516438 2617 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2618 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2619 break;
2620 }
2621
a5516438 2622 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2623 /*
2624 * If this allocation races such that we no longer need the
2625 * page, free_huge_page will handle it by freeing the page
2626 * and reducing the surplus.
2627 */
2628 spin_unlock(&hugetlb_lock);
649920c6
JH
2629
2630 /* yield cpu to avoid soft lockup */
2631 cond_resched();
2632
f60858f9
MK
2633 ret = alloc_pool_huge_page(h, nodes_allowed,
2634 node_alloc_noretry);
7893d1d5
AL
2635 spin_lock(&hugetlb_lock);
2636 if (!ret)
2637 goto out;
2638
536240f2
MG
2639 /* Bail for signals. Probably ctrl-c from user */
2640 if (signal_pending(current))
2641 goto out;
7893d1d5 2642 }
7893d1d5
AL
2643
2644 /*
2645 * Decrease the pool size
2646 * First return free pages to the buddy allocator (being careful
2647 * to keep enough around to satisfy reservations). Then place
2648 * pages into surplus state as needed so the pool will shrink
2649 * to the desired size as pages become free.
d1c3fb1f
NA
2650 *
2651 * By placing pages into the surplus state independent of the
2652 * overcommit value, we are allowing the surplus pool size to
2653 * exceed overcommit. There are few sane options here. Since
0c397dae 2654 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2655 * though, we'll note that we're not allowed to exceed surplus
2656 * and won't grow the pool anywhere else. Not until one of the
2657 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2658 */
a5516438 2659 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2660 min_count = max(count, min_count);
6ae11b27 2661 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2662 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2663 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2664 break;
55f67141 2665 cond_resched_lock(&hugetlb_lock);
1da177e4 2666 }
a5516438 2667 while (count < persistent_huge_pages(h)) {
6ae11b27 2668 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2669 break;
2670 }
2671out:
4eb0716e 2672 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2673 spin_unlock(&hugetlb_lock);
4eb0716e 2674
f60858f9
MK
2675 NODEMASK_FREE(node_alloc_noretry);
2676
4eb0716e 2677 return 0;
1da177e4
LT
2678}
2679
a3437870
NA
2680#define HSTATE_ATTR_RO(_name) \
2681 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2682
2683#define HSTATE_ATTR(_name) \
2684 static struct kobj_attribute _name##_attr = \
2685 __ATTR(_name, 0644, _name##_show, _name##_store)
2686
2687static struct kobject *hugepages_kobj;
2688static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2689
9a305230
LS
2690static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2691
2692static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2693{
2694 int i;
9a305230 2695
a3437870 2696 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2697 if (hstate_kobjs[i] == kobj) {
2698 if (nidp)
2699 *nidp = NUMA_NO_NODE;
a3437870 2700 return &hstates[i];
9a305230
LS
2701 }
2702
2703 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2704}
2705
06808b08 2706static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2707 struct kobj_attribute *attr, char *buf)
2708{
9a305230
LS
2709 struct hstate *h;
2710 unsigned long nr_huge_pages;
2711 int nid;
2712
2713 h = kobj_to_hstate(kobj, &nid);
2714 if (nid == NUMA_NO_NODE)
2715 nr_huge_pages = h->nr_huge_pages;
2716 else
2717 nr_huge_pages = h->nr_huge_pages_node[nid];
2718
2719 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2720}
adbe8726 2721
238d3c13
DR
2722static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2723 struct hstate *h, int nid,
2724 unsigned long count, size_t len)
a3437870
NA
2725{
2726 int err;
2d0adf7e 2727 nodemask_t nodes_allowed, *n_mask;
a3437870 2728
2d0adf7e
OS
2729 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2730 return -EINVAL;
adbe8726 2731
9a305230
LS
2732 if (nid == NUMA_NO_NODE) {
2733 /*
2734 * global hstate attribute
2735 */
2736 if (!(obey_mempolicy &&
2d0adf7e
OS
2737 init_nodemask_of_mempolicy(&nodes_allowed)))
2738 n_mask = &node_states[N_MEMORY];
2739 else
2740 n_mask = &nodes_allowed;
2741 } else {
9a305230 2742 /*
fd875dca
MK
2743 * Node specific request. count adjustment happens in
2744 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2745 */
2d0adf7e
OS
2746 init_nodemask_of_node(&nodes_allowed, nid);
2747 n_mask = &nodes_allowed;
fd875dca 2748 }
9a305230 2749
2d0adf7e 2750 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2751
4eb0716e 2752 return err ? err : len;
06808b08
LS
2753}
2754
238d3c13
DR
2755static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2756 struct kobject *kobj, const char *buf,
2757 size_t len)
2758{
2759 struct hstate *h;
2760 unsigned long count;
2761 int nid;
2762 int err;
2763
2764 err = kstrtoul(buf, 10, &count);
2765 if (err)
2766 return err;
2767
2768 h = kobj_to_hstate(kobj, &nid);
2769 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2770}
2771
06808b08
LS
2772static ssize_t nr_hugepages_show(struct kobject *kobj,
2773 struct kobj_attribute *attr, char *buf)
2774{
2775 return nr_hugepages_show_common(kobj, attr, buf);
2776}
2777
2778static ssize_t nr_hugepages_store(struct kobject *kobj,
2779 struct kobj_attribute *attr, const char *buf, size_t len)
2780{
238d3c13 2781 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2782}
2783HSTATE_ATTR(nr_hugepages);
2784
06808b08
LS
2785#ifdef CONFIG_NUMA
2786
2787/*
2788 * hstate attribute for optionally mempolicy-based constraint on persistent
2789 * huge page alloc/free.
2790 */
2791static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2792 struct kobj_attribute *attr, char *buf)
2793{
2794 return nr_hugepages_show_common(kobj, attr, buf);
2795}
2796
2797static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2798 struct kobj_attribute *attr, const char *buf, size_t len)
2799{
238d3c13 2800 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2801}
2802HSTATE_ATTR(nr_hugepages_mempolicy);
2803#endif
2804
2805
a3437870
NA
2806static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2807 struct kobj_attribute *attr, char *buf)
2808{
9a305230 2809 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2810 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2811}
adbe8726 2812
a3437870
NA
2813static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2814 struct kobj_attribute *attr, const char *buf, size_t count)
2815{
2816 int err;
2817 unsigned long input;
9a305230 2818 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2819
bae7f4ae 2820 if (hstate_is_gigantic(h))
adbe8726
EM
2821 return -EINVAL;
2822
3dbb95f7 2823 err = kstrtoul(buf, 10, &input);
a3437870 2824 if (err)
73ae31e5 2825 return err;
a3437870
NA
2826
2827 spin_lock(&hugetlb_lock);
2828 h->nr_overcommit_huge_pages = input;
2829 spin_unlock(&hugetlb_lock);
2830
2831 return count;
2832}
2833HSTATE_ATTR(nr_overcommit_hugepages);
2834
2835static ssize_t free_hugepages_show(struct kobject *kobj,
2836 struct kobj_attribute *attr, char *buf)
2837{
9a305230
LS
2838 struct hstate *h;
2839 unsigned long free_huge_pages;
2840 int nid;
2841
2842 h = kobj_to_hstate(kobj, &nid);
2843 if (nid == NUMA_NO_NODE)
2844 free_huge_pages = h->free_huge_pages;
2845 else
2846 free_huge_pages = h->free_huge_pages_node[nid];
2847
2848 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2849}
2850HSTATE_ATTR_RO(free_hugepages);
2851
2852static ssize_t resv_hugepages_show(struct kobject *kobj,
2853 struct kobj_attribute *attr, char *buf)
2854{
9a305230 2855 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2856 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2857}
2858HSTATE_ATTR_RO(resv_hugepages);
2859
2860static ssize_t surplus_hugepages_show(struct kobject *kobj,
2861 struct kobj_attribute *attr, char *buf)
2862{
9a305230
LS
2863 struct hstate *h;
2864 unsigned long surplus_huge_pages;
2865 int nid;
2866
2867 h = kobj_to_hstate(kobj, &nid);
2868 if (nid == NUMA_NO_NODE)
2869 surplus_huge_pages = h->surplus_huge_pages;
2870 else
2871 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2872
2873 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2874}
2875HSTATE_ATTR_RO(surplus_hugepages);
2876
2877static struct attribute *hstate_attrs[] = {
2878 &nr_hugepages_attr.attr,
2879 &nr_overcommit_hugepages_attr.attr,
2880 &free_hugepages_attr.attr,
2881 &resv_hugepages_attr.attr,
2882 &surplus_hugepages_attr.attr,
06808b08
LS
2883#ifdef CONFIG_NUMA
2884 &nr_hugepages_mempolicy_attr.attr,
2885#endif
a3437870
NA
2886 NULL,
2887};
2888
67e5ed96 2889static const struct attribute_group hstate_attr_group = {
a3437870
NA
2890 .attrs = hstate_attrs,
2891};
2892
094e9539
JM
2893static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2894 struct kobject **hstate_kobjs,
67e5ed96 2895 const struct attribute_group *hstate_attr_group)
a3437870
NA
2896{
2897 int retval;
972dc4de 2898 int hi = hstate_index(h);
a3437870 2899
9a305230
LS
2900 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2901 if (!hstate_kobjs[hi])
a3437870
NA
2902 return -ENOMEM;
2903
9a305230 2904 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2905 if (retval)
9a305230 2906 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2907
2908 return retval;
2909}
2910
2911static void __init hugetlb_sysfs_init(void)
2912{
2913 struct hstate *h;
2914 int err;
2915
2916 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2917 if (!hugepages_kobj)
2918 return;
2919
2920 for_each_hstate(h) {
9a305230
LS
2921 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2922 hstate_kobjs, &hstate_attr_group);
a3437870 2923 if (err)
ffb22af5 2924 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2925 }
2926}
2927
9a305230
LS
2928#ifdef CONFIG_NUMA
2929
2930/*
2931 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2932 * with node devices in node_devices[] using a parallel array. The array
2933 * index of a node device or _hstate == node id.
2934 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2935 * the base kernel, on the hugetlb module.
2936 */
2937struct node_hstate {
2938 struct kobject *hugepages_kobj;
2939 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2940};
b4e289a6 2941static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2942
2943/*
10fbcf4c 2944 * A subset of global hstate attributes for node devices
9a305230
LS
2945 */
2946static struct attribute *per_node_hstate_attrs[] = {
2947 &nr_hugepages_attr.attr,
2948 &free_hugepages_attr.attr,
2949 &surplus_hugepages_attr.attr,
2950 NULL,
2951};
2952
67e5ed96 2953static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2954 .attrs = per_node_hstate_attrs,
2955};
2956
2957/*
10fbcf4c 2958 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2959 * Returns node id via non-NULL nidp.
2960 */
2961static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2962{
2963 int nid;
2964
2965 for (nid = 0; nid < nr_node_ids; nid++) {
2966 struct node_hstate *nhs = &node_hstates[nid];
2967 int i;
2968 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2969 if (nhs->hstate_kobjs[i] == kobj) {
2970 if (nidp)
2971 *nidp = nid;
2972 return &hstates[i];
2973 }
2974 }
2975
2976 BUG();
2977 return NULL;
2978}
2979
2980/*
10fbcf4c 2981 * Unregister hstate attributes from a single node device.
9a305230
LS
2982 * No-op if no hstate attributes attached.
2983 */
3cd8b44f 2984static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2985{
2986 struct hstate *h;
10fbcf4c 2987 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2988
2989 if (!nhs->hugepages_kobj)
9b5e5d0f 2990 return; /* no hstate attributes */
9a305230 2991
972dc4de
AK
2992 for_each_hstate(h) {
2993 int idx = hstate_index(h);
2994 if (nhs->hstate_kobjs[idx]) {
2995 kobject_put(nhs->hstate_kobjs[idx]);
2996 nhs->hstate_kobjs[idx] = NULL;
9a305230 2997 }
972dc4de 2998 }
9a305230
LS
2999
3000 kobject_put(nhs->hugepages_kobj);
3001 nhs->hugepages_kobj = NULL;
3002}
3003
9a305230
LS
3004
3005/*
10fbcf4c 3006 * Register hstate attributes for a single node device.
9a305230
LS
3007 * No-op if attributes already registered.
3008 */
3cd8b44f 3009static void hugetlb_register_node(struct node *node)
9a305230
LS
3010{
3011 struct hstate *h;
10fbcf4c 3012 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3013 int err;
3014
3015 if (nhs->hugepages_kobj)
3016 return; /* already allocated */
3017
3018 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3019 &node->dev.kobj);
9a305230
LS
3020 if (!nhs->hugepages_kobj)
3021 return;
3022
3023 for_each_hstate(h) {
3024 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3025 nhs->hstate_kobjs,
3026 &per_node_hstate_attr_group);
3027 if (err) {
ffb22af5
AM
3028 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
3029 h->name, node->dev.id);
9a305230
LS
3030 hugetlb_unregister_node(node);
3031 break;
3032 }
3033 }
3034}
3035
3036/*
9b5e5d0f 3037 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3038 * devices of nodes that have memory. All on-line nodes should have
3039 * registered their associated device by this time.
9a305230 3040 */
7d9ca000 3041static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3042{
3043 int nid;
3044
8cebfcd0 3045 for_each_node_state(nid, N_MEMORY) {
8732794b 3046 struct node *node = node_devices[nid];
10fbcf4c 3047 if (node->dev.id == nid)
9a305230
LS
3048 hugetlb_register_node(node);
3049 }
3050
3051 /*
10fbcf4c 3052 * Let the node device driver know we're here so it can
9a305230
LS
3053 * [un]register hstate attributes on node hotplug.
3054 */
3055 register_hugetlbfs_with_node(hugetlb_register_node,
3056 hugetlb_unregister_node);
3057}
3058#else /* !CONFIG_NUMA */
3059
3060static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3061{
3062 BUG();
3063 if (nidp)
3064 *nidp = -1;
3065 return NULL;
3066}
3067
9a305230
LS
3068static void hugetlb_register_all_nodes(void) { }
3069
3070#endif
3071
a3437870
NA
3072static int __init hugetlb_init(void)
3073{
8382d914
DB
3074 int i;
3075
457c1b27 3076 if (!hugepages_supported())
0ef89d25 3077 return 0;
a3437870 3078
e11bfbfc 3079 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
3080 if (default_hstate_size != 0) {
3081 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
3082 default_hstate_size, HPAGE_SIZE);
3083 }
3084
e11bfbfc
NP
3085 default_hstate_size = HPAGE_SIZE;
3086 if (!size_to_hstate(default_hstate_size))
3087 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 3088 }
972dc4de 3089 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
3090 if (default_hstate_max_huge_pages) {
3091 if (!default_hstate.max_huge_pages)
3092 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3093 }
a3437870
NA
3094
3095 hugetlb_init_hstates();
aa888a74 3096 gather_bootmem_prealloc();
a3437870
NA
3097 report_hugepages();
3098
3099 hugetlb_sysfs_init();
9a305230 3100 hugetlb_register_all_nodes();
7179e7bf 3101 hugetlb_cgroup_file_init();
9a305230 3102
8382d914
DB
3103#ifdef CONFIG_SMP
3104 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3105#else
3106 num_fault_mutexes = 1;
3107#endif
c672c7f2 3108 hugetlb_fault_mutex_table =
6da2ec56
KC
3109 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3110 GFP_KERNEL);
c672c7f2 3111 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3112
3113 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3114 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3115 return 0;
3116}
3e89e1c5 3117subsys_initcall(hugetlb_init);
a3437870
NA
3118
3119/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
3120void __init hugetlb_bad_size(void)
3121{
3122 parsed_valid_hugepagesz = false;
3123}
3124
d00181b9 3125void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3126{
3127 struct hstate *h;
8faa8b07
AK
3128 unsigned long i;
3129
a3437870 3130 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 3131 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
3132 return;
3133 }
47d38344 3134 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3135 BUG_ON(order == 0);
47d38344 3136 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
3137 h->order = order;
3138 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
3139 h->nr_huge_pages = 0;
3140 h->free_huge_pages = 0;
3141 for (i = 0; i < MAX_NUMNODES; ++i)
3142 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3143 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3144 h->next_nid_to_alloc = first_memory_node;
3145 h->next_nid_to_free = first_memory_node;
a3437870
NA
3146 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3147 huge_page_size(h)/1024);
8faa8b07 3148
a3437870
NA
3149 parsed_hstate = h;
3150}
3151
e11bfbfc 3152static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
3153{
3154 unsigned long *mhp;
8faa8b07 3155 static unsigned long *last_mhp;
a3437870 3156
9fee021d
VT
3157 if (!parsed_valid_hugepagesz) {
3158 pr_warn("hugepages = %s preceded by "
3159 "an unsupported hugepagesz, ignoring\n", s);
3160 parsed_valid_hugepagesz = true;
3161 return 1;
3162 }
a3437870 3163 /*
47d38344 3164 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
3165 * so this hugepages= parameter goes to the "default hstate".
3166 */
9fee021d 3167 else if (!hugetlb_max_hstate)
a3437870
NA
3168 mhp = &default_hstate_max_huge_pages;
3169 else
3170 mhp = &parsed_hstate->max_huge_pages;
3171
8faa8b07 3172 if (mhp == last_mhp) {
598d8091 3173 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
3174 return 1;
3175 }
3176
a3437870
NA
3177 if (sscanf(s, "%lu", mhp) <= 0)
3178 *mhp = 0;
3179
8faa8b07
AK
3180 /*
3181 * Global state is always initialized later in hugetlb_init.
3182 * But we need to allocate >= MAX_ORDER hstates here early to still
3183 * use the bootmem allocator.
3184 */
47d38344 3185 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
3186 hugetlb_hstate_alloc_pages(parsed_hstate);
3187
3188 last_mhp = mhp;
3189
a3437870
NA
3190 return 1;
3191}
e11bfbfc
NP
3192__setup("hugepages=", hugetlb_nrpages_setup);
3193
3194static int __init hugetlb_default_setup(char *s)
3195{
3196 default_hstate_size = memparse(s, &s);
3197 return 1;
3198}
3199__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 3200
8a213460
NA
3201static unsigned int cpuset_mems_nr(unsigned int *array)
3202{
3203 int node;
3204 unsigned int nr = 0;
3205
3206 for_each_node_mask(node, cpuset_current_mems_allowed)
3207 nr += array[node];
3208
3209 return nr;
3210}
3211
3212#ifdef CONFIG_SYSCTL
06808b08
LS
3213static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3214 struct ctl_table *table, int write,
3215 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 3216{
e5ff2159 3217 struct hstate *h = &default_hstate;
238d3c13 3218 unsigned long tmp = h->max_huge_pages;
08d4a246 3219 int ret;
e5ff2159 3220
457c1b27 3221 if (!hugepages_supported())
86613628 3222 return -EOPNOTSUPP;
457c1b27 3223
e5ff2159
AK
3224 table->data = &tmp;
3225 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3226 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3227 if (ret)
3228 goto out;
e5ff2159 3229
238d3c13
DR
3230 if (write)
3231 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3232 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3233out:
3234 return ret;
1da177e4 3235}
396faf03 3236
06808b08
LS
3237int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3238 void __user *buffer, size_t *length, loff_t *ppos)
3239{
3240
3241 return hugetlb_sysctl_handler_common(false, table, write,
3242 buffer, length, ppos);
3243}
3244
3245#ifdef CONFIG_NUMA
3246int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3247 void __user *buffer, size_t *length, loff_t *ppos)
3248{
3249 return hugetlb_sysctl_handler_common(true, table, write,
3250 buffer, length, ppos);
3251}
3252#endif /* CONFIG_NUMA */
3253
a3d0c6aa 3254int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 3255 void __user *buffer,
a3d0c6aa
NA
3256 size_t *length, loff_t *ppos)
3257{
a5516438 3258 struct hstate *h = &default_hstate;
e5ff2159 3259 unsigned long tmp;
08d4a246 3260 int ret;
e5ff2159 3261
457c1b27 3262 if (!hugepages_supported())
86613628 3263 return -EOPNOTSUPP;
457c1b27 3264
c033a93c 3265 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3266
bae7f4ae 3267 if (write && hstate_is_gigantic(h))
adbe8726
EM
3268 return -EINVAL;
3269
e5ff2159
AK
3270 table->data = &tmp;
3271 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3272 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3273 if (ret)
3274 goto out;
e5ff2159
AK
3275
3276 if (write) {
3277 spin_lock(&hugetlb_lock);
3278 h->nr_overcommit_huge_pages = tmp;
3279 spin_unlock(&hugetlb_lock);
3280 }
08d4a246
MH
3281out:
3282 return ret;
a3d0c6aa
NA
3283}
3284
1da177e4
LT
3285#endif /* CONFIG_SYSCTL */
3286
e1759c21 3287void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3288{
fcb2b0c5
RG
3289 struct hstate *h;
3290 unsigned long total = 0;
3291
457c1b27
NA
3292 if (!hugepages_supported())
3293 return;
fcb2b0c5
RG
3294
3295 for_each_hstate(h) {
3296 unsigned long count = h->nr_huge_pages;
3297
3298 total += (PAGE_SIZE << huge_page_order(h)) * count;
3299
3300 if (h == &default_hstate)
3301 seq_printf(m,
3302 "HugePages_Total: %5lu\n"
3303 "HugePages_Free: %5lu\n"
3304 "HugePages_Rsvd: %5lu\n"
3305 "HugePages_Surp: %5lu\n"
3306 "Hugepagesize: %8lu kB\n",
3307 count,
3308 h->free_huge_pages,
3309 h->resv_huge_pages,
3310 h->surplus_huge_pages,
3311 (PAGE_SIZE << huge_page_order(h)) / 1024);
3312 }
3313
3314 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3315}
3316
3317int hugetlb_report_node_meminfo(int nid, char *buf)
3318{
a5516438 3319 struct hstate *h = &default_hstate;
457c1b27
NA
3320 if (!hugepages_supported())
3321 return 0;
1da177e4
LT
3322 return sprintf(buf,
3323 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3324 "Node %d HugePages_Free: %5u\n"
3325 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3326 nid, h->nr_huge_pages_node[nid],
3327 nid, h->free_huge_pages_node[nid],
3328 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3329}
3330
949f7ec5
DR
3331void hugetlb_show_meminfo(void)
3332{
3333 struct hstate *h;
3334 int nid;
3335
457c1b27
NA
3336 if (!hugepages_supported())
3337 return;
3338
949f7ec5
DR
3339 for_each_node_state(nid, N_MEMORY)
3340 for_each_hstate(h)
3341 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3342 nid,
3343 h->nr_huge_pages_node[nid],
3344 h->free_huge_pages_node[nid],
3345 h->surplus_huge_pages_node[nid],
3346 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3347}
3348
5d317b2b
NH
3349void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3350{
3351 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3352 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3353}
3354
1da177e4
LT
3355/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3356unsigned long hugetlb_total_pages(void)
3357{
d0028588
WL
3358 struct hstate *h;
3359 unsigned long nr_total_pages = 0;
3360
3361 for_each_hstate(h)
3362 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3363 return nr_total_pages;
1da177e4 3364}
1da177e4 3365
a5516438 3366static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3367{
3368 int ret = -ENOMEM;
3369
3370 spin_lock(&hugetlb_lock);
3371 /*
3372 * When cpuset is configured, it breaks the strict hugetlb page
3373 * reservation as the accounting is done on a global variable. Such
3374 * reservation is completely rubbish in the presence of cpuset because
3375 * the reservation is not checked against page availability for the
3376 * current cpuset. Application can still potentially OOM'ed by kernel
3377 * with lack of free htlb page in cpuset that the task is in.
3378 * Attempt to enforce strict accounting with cpuset is almost
3379 * impossible (or too ugly) because cpuset is too fluid that
3380 * task or memory node can be dynamically moved between cpusets.
3381 *
3382 * The change of semantics for shared hugetlb mapping with cpuset is
3383 * undesirable. However, in order to preserve some of the semantics,
3384 * we fall back to check against current free page availability as
3385 * a best attempt and hopefully to minimize the impact of changing
3386 * semantics that cpuset has.
3387 */
3388 if (delta > 0) {
a5516438 3389 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3390 goto out;
3391
a5516438
AK
3392 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3393 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3394 goto out;
3395 }
3396 }
3397
3398 ret = 0;
3399 if (delta < 0)
a5516438 3400 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3401
3402out:
3403 spin_unlock(&hugetlb_lock);
3404 return ret;
3405}
3406
84afd99b
AW
3407static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3408{
f522c3ac 3409 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3410
3411 /*
3412 * This new VMA should share its siblings reservation map if present.
3413 * The VMA will only ever have a valid reservation map pointer where
3414 * it is being copied for another still existing VMA. As that VMA
25985edc 3415 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3416 * after this open call completes. It is therefore safe to take a
3417 * new reference here without additional locking.
3418 */
4e35f483 3419 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3420 kref_get(&resv->refs);
84afd99b
AW
3421}
3422
a1e78772
MG
3423static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3424{
a5516438 3425 struct hstate *h = hstate_vma(vma);
f522c3ac 3426 struct resv_map *resv = vma_resv_map(vma);
90481622 3427 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3428 unsigned long reserve, start, end;
1c5ecae3 3429 long gbl_reserve;
84afd99b 3430
4e35f483
JK
3431 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3432 return;
84afd99b 3433
4e35f483
JK
3434 start = vma_hugecache_offset(h, vma, vma->vm_start);
3435 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3436
4e35f483 3437 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3438 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3439 if (reserve) {
1c5ecae3
MK
3440 /*
3441 * Decrement reserve counts. The global reserve count may be
3442 * adjusted if the subpool has a minimum size.
3443 */
3444 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3445 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3446 }
e9fe92ae
MA
3447
3448 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3449}
3450
31383c68
DW
3451static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3452{
3453 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3454 return -EINVAL;
3455 return 0;
3456}
3457
05ea8860
DW
3458static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3459{
3460 struct hstate *hstate = hstate_vma(vma);
3461
3462 return 1UL << huge_page_shift(hstate);
3463}
3464
1da177e4
LT
3465/*
3466 * We cannot handle pagefaults against hugetlb pages at all. They cause
3467 * handle_mm_fault() to try to instantiate regular-sized pages in the
3468 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3469 * this far.
3470 */
b3ec9f33 3471static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3472{
3473 BUG();
d0217ac0 3474 return 0;
1da177e4
LT
3475}
3476
eec3636a
JC
3477/*
3478 * When a new function is introduced to vm_operations_struct and added
3479 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3480 * This is because under System V memory model, mappings created via
3481 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3482 * their original vm_ops are overwritten with shm_vm_ops.
3483 */
f0f37e2f 3484const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3485 .fault = hugetlb_vm_op_fault,
84afd99b 3486 .open = hugetlb_vm_op_open,
a1e78772 3487 .close = hugetlb_vm_op_close,
31383c68 3488 .split = hugetlb_vm_op_split,
05ea8860 3489 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3490};
3491
1e8f889b
DG
3492static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3493 int writable)
63551ae0
DG
3494{
3495 pte_t entry;
3496
1e8f889b 3497 if (writable) {
106c992a
GS
3498 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3499 vma->vm_page_prot)));
63551ae0 3500 } else {
106c992a
GS
3501 entry = huge_pte_wrprotect(mk_huge_pte(page,
3502 vma->vm_page_prot));
63551ae0
DG
3503 }
3504 entry = pte_mkyoung(entry);
3505 entry = pte_mkhuge(entry);
d9ed9faa 3506 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3507
3508 return entry;
3509}
3510
1e8f889b
DG
3511static void set_huge_ptep_writable(struct vm_area_struct *vma,
3512 unsigned long address, pte_t *ptep)
3513{
3514 pte_t entry;
3515
106c992a 3516 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3517 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3518 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3519}
3520
d5ed7444 3521bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3522{
3523 swp_entry_t swp;
3524
3525 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3526 return false;
4a705fef
NH
3527 swp = pte_to_swp_entry(pte);
3528 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3529 return true;
4a705fef 3530 else
d5ed7444 3531 return false;
4a705fef
NH
3532}
3533
3534static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3535{
3536 swp_entry_t swp;
3537
3538 if (huge_pte_none(pte) || pte_present(pte))
3539 return 0;
3540 swp = pte_to_swp_entry(pte);
3541 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3542 return 1;
3543 else
3544 return 0;
3545}
1e8f889b 3546
63551ae0
DG
3547int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3548 struct vm_area_struct *vma)
3549{
5e41540c 3550 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3551 struct page *ptepage;
1c59827d 3552 unsigned long addr;
1e8f889b 3553 int cow;
a5516438
AK
3554 struct hstate *h = hstate_vma(vma);
3555 unsigned long sz = huge_page_size(h);
c0d0381a 3556 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3557 struct mmu_notifier_range range;
e8569dd2 3558 int ret = 0;
1e8f889b
DG
3559
3560 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3561
ac46d4f3 3562 if (cow) {
7269f999 3563 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3564 vma->vm_start,
ac46d4f3
JG
3565 vma->vm_end);
3566 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3567 } else {
3568 /*
3569 * For shared mappings i_mmap_rwsem must be held to call
3570 * huge_pte_alloc, otherwise the returned ptep could go
3571 * away if part of a shared pmd and another thread calls
3572 * huge_pmd_unshare.
3573 */
3574 i_mmap_lock_read(mapping);
ac46d4f3 3575 }
e8569dd2 3576
a5516438 3577 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3578 spinlock_t *src_ptl, *dst_ptl;
7868a208 3579 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3580 if (!src_pte)
3581 continue;
a5516438 3582 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3583 if (!dst_pte) {
3584 ret = -ENOMEM;
3585 break;
3586 }
c5c99429 3587
5e41540c
MK
3588 /*
3589 * If the pagetables are shared don't copy or take references.
3590 * dst_pte == src_pte is the common case of src/dest sharing.
3591 *
3592 * However, src could have 'unshared' and dst shares with
3593 * another vma. If dst_pte !none, this implies sharing.
3594 * Check here before taking page table lock, and once again
3595 * after taking the lock below.
3596 */
3597 dst_entry = huge_ptep_get(dst_pte);
3598 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3599 continue;
3600
cb900f41
KS
3601 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3602 src_ptl = huge_pte_lockptr(h, src, src_pte);
3603 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3604 entry = huge_ptep_get(src_pte);
5e41540c
MK
3605 dst_entry = huge_ptep_get(dst_pte);
3606 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3607 /*
3608 * Skip if src entry none. Also, skip in the
3609 * unlikely case dst entry !none as this implies
3610 * sharing with another vma.
3611 */
4a705fef
NH
3612 ;
3613 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3614 is_hugetlb_entry_hwpoisoned(entry))) {
3615 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3616
3617 if (is_write_migration_entry(swp_entry) && cow) {
3618 /*
3619 * COW mappings require pages in both
3620 * parent and child to be set to read.
3621 */
3622 make_migration_entry_read(&swp_entry);
3623 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3624 set_huge_swap_pte_at(src, addr, src_pte,
3625 entry, sz);
4a705fef 3626 }
e5251fd4 3627 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3628 } else {
34ee645e 3629 if (cow) {
0f10851e
JG
3630 /*
3631 * No need to notify as we are downgrading page
3632 * table protection not changing it to point
3633 * to a new page.
3634 *
ad56b738 3635 * See Documentation/vm/mmu_notifier.rst
0f10851e 3636 */
7f2e9525 3637 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3638 }
0253d634 3639 entry = huge_ptep_get(src_pte);
1c59827d
HD
3640 ptepage = pte_page(entry);
3641 get_page(ptepage);
53f9263b 3642 page_dup_rmap(ptepage, true);
1c59827d 3643 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3644 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3645 }
cb900f41
KS
3646 spin_unlock(src_ptl);
3647 spin_unlock(dst_ptl);
63551ae0 3648 }
63551ae0 3649
e8569dd2 3650 if (cow)
ac46d4f3 3651 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3652 else
3653 i_mmap_unlock_read(mapping);
e8569dd2
AS
3654
3655 return ret;
63551ae0
DG
3656}
3657
24669e58
AK
3658void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3659 unsigned long start, unsigned long end,
3660 struct page *ref_page)
63551ae0
DG
3661{
3662 struct mm_struct *mm = vma->vm_mm;
3663 unsigned long address;
c7546f8f 3664 pte_t *ptep;
63551ae0 3665 pte_t pte;
cb900f41 3666 spinlock_t *ptl;
63551ae0 3667 struct page *page;
a5516438
AK
3668 struct hstate *h = hstate_vma(vma);
3669 unsigned long sz = huge_page_size(h);
ac46d4f3 3670 struct mmu_notifier_range range;
a5516438 3671
63551ae0 3672 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3673 BUG_ON(start & ~huge_page_mask(h));
3674 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3675
07e32661
AK
3676 /*
3677 * This is a hugetlb vma, all the pte entries should point
3678 * to huge page.
3679 */
ed6a7935 3680 tlb_change_page_size(tlb, sz);
24669e58 3681 tlb_start_vma(tlb, vma);
dff11abe
MK
3682
3683 /*
3684 * If sharing possible, alert mmu notifiers of worst case.
3685 */
6f4f13e8
JG
3686 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3687 end);
ac46d4f3
JG
3688 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3689 mmu_notifier_invalidate_range_start(&range);
569f48b8 3690 address = start;
569f48b8 3691 for (; address < end; address += sz) {
7868a208 3692 ptep = huge_pte_offset(mm, address, sz);
4c887265 3693 if (!ptep)
c7546f8f
DG
3694 continue;
3695
cb900f41 3696 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3697 if (huge_pmd_unshare(mm, &address, ptep)) {
3698 spin_unlock(ptl);
dff11abe
MK
3699 /*
3700 * We just unmapped a page of PMDs by clearing a PUD.
3701 * The caller's TLB flush range should cover this area.
3702 */
31d49da5
AK
3703 continue;
3704 }
39dde65c 3705
6629326b 3706 pte = huge_ptep_get(ptep);
31d49da5
AK
3707 if (huge_pte_none(pte)) {
3708 spin_unlock(ptl);
3709 continue;
3710 }
6629326b
HD
3711
3712 /*
9fbc1f63
NH
3713 * Migrating hugepage or HWPoisoned hugepage is already
3714 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3715 */
9fbc1f63 3716 if (unlikely(!pte_present(pte))) {
9386fac3 3717 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3718 spin_unlock(ptl);
3719 continue;
8c4894c6 3720 }
6629326b
HD
3721
3722 page = pte_page(pte);
04f2cbe3
MG
3723 /*
3724 * If a reference page is supplied, it is because a specific
3725 * page is being unmapped, not a range. Ensure the page we
3726 * are about to unmap is the actual page of interest.
3727 */
3728 if (ref_page) {
31d49da5
AK
3729 if (page != ref_page) {
3730 spin_unlock(ptl);
3731 continue;
3732 }
04f2cbe3
MG
3733 /*
3734 * Mark the VMA as having unmapped its page so that
3735 * future faults in this VMA will fail rather than
3736 * looking like data was lost
3737 */
3738 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3739 }
3740
c7546f8f 3741 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3742 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3743 if (huge_pte_dirty(pte))
6649a386 3744 set_page_dirty(page);
9e81130b 3745
5d317b2b 3746 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3747 page_remove_rmap(page, true);
31d49da5 3748
cb900f41 3749 spin_unlock(ptl);
e77b0852 3750 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3751 /*
3752 * Bail out after unmapping reference page if supplied
3753 */
3754 if (ref_page)
3755 break;
fe1668ae 3756 }
ac46d4f3 3757 mmu_notifier_invalidate_range_end(&range);
24669e58 3758 tlb_end_vma(tlb, vma);
1da177e4 3759}
63551ae0 3760
d833352a
MG
3761void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3762 struct vm_area_struct *vma, unsigned long start,
3763 unsigned long end, struct page *ref_page)
3764{
3765 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3766
3767 /*
3768 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3769 * test will fail on a vma being torn down, and not grab a page table
3770 * on its way out. We're lucky that the flag has such an appropriate
3771 * name, and can in fact be safely cleared here. We could clear it
3772 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3773 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3774 * because in the context this is called, the VMA is about to be
c8c06efa 3775 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3776 */
3777 vma->vm_flags &= ~VM_MAYSHARE;
3778}
3779
502717f4 3780void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3781 unsigned long end, struct page *ref_page)
502717f4 3782{
24669e58
AK
3783 struct mm_struct *mm;
3784 struct mmu_gather tlb;
dff11abe
MK
3785 unsigned long tlb_start = start;
3786 unsigned long tlb_end = end;
3787
3788 /*
3789 * If shared PMDs were possibly used within this vma range, adjust
3790 * start/end for worst case tlb flushing.
3791 * Note that we can not be sure if PMDs are shared until we try to
3792 * unmap pages. However, we want to make sure TLB flushing covers
3793 * the largest possible range.
3794 */
3795 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
3796
3797 mm = vma->vm_mm;
3798
dff11abe 3799 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 3800 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 3801 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
KC
3802}
3803
04f2cbe3
MG
3804/*
3805 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3806 * mappping it owns the reserve page for. The intention is to unmap the page
3807 * from other VMAs and let the children be SIGKILLed if they are faulting the
3808 * same region.
3809 */
2f4612af
DB
3810static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3811 struct page *page, unsigned long address)
04f2cbe3 3812{
7526674d 3813 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3814 struct vm_area_struct *iter_vma;
3815 struct address_space *mapping;
04f2cbe3
MG
3816 pgoff_t pgoff;
3817
3818 /*
3819 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3820 * from page cache lookup which is in HPAGE_SIZE units.
3821 */
7526674d 3822 address = address & huge_page_mask(h);
36e4f20a
MH
3823 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3824 vma->vm_pgoff;
93c76a3d 3825 mapping = vma->vm_file->f_mapping;
04f2cbe3 3826
4eb2b1dc
MG
3827 /*
3828 * Take the mapping lock for the duration of the table walk. As
3829 * this mapping should be shared between all the VMAs,
3830 * __unmap_hugepage_range() is called as the lock is already held
3831 */
83cde9e8 3832 i_mmap_lock_write(mapping);
6b2dbba8 3833 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3834 /* Do not unmap the current VMA */
3835 if (iter_vma == vma)
3836 continue;
3837
2f84a899
MG
3838 /*
3839 * Shared VMAs have their own reserves and do not affect
3840 * MAP_PRIVATE accounting but it is possible that a shared
3841 * VMA is using the same page so check and skip such VMAs.
3842 */
3843 if (iter_vma->vm_flags & VM_MAYSHARE)
3844 continue;
3845
04f2cbe3
MG
3846 /*
3847 * Unmap the page from other VMAs without their own reserves.
3848 * They get marked to be SIGKILLed if they fault in these
3849 * areas. This is because a future no-page fault on this VMA
3850 * could insert a zeroed page instead of the data existing
3851 * from the time of fork. This would look like data corruption
3852 */
3853 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3854 unmap_hugepage_range(iter_vma, address,
3855 address + huge_page_size(h), page);
04f2cbe3 3856 }
83cde9e8 3857 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3858}
3859
0fe6e20b
NH
3860/*
3861 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3862 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3863 * cannot race with other handlers or page migration.
3864 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3865 */
2b740303 3866static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3867 unsigned long address, pte_t *ptep,
3999f52e 3868 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3869{
3999f52e 3870 pte_t pte;
a5516438 3871 struct hstate *h = hstate_vma(vma);
1e8f889b 3872 struct page *old_page, *new_page;
2b740303
SJ
3873 int outside_reserve = 0;
3874 vm_fault_t ret = 0;
974e6d66 3875 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 3876 struct mmu_notifier_range range;
1e8f889b 3877
3999f52e 3878 pte = huge_ptep_get(ptep);
1e8f889b
DG
3879 old_page = pte_page(pte);
3880
04f2cbe3 3881retry_avoidcopy:
1e8f889b
DG
3882 /* If no-one else is actually using this page, avoid the copy
3883 * and just make the page writable */
37a2140d 3884 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3885 page_move_anon_rmap(old_page, vma);
5b7a1d40 3886 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3887 return 0;
1e8f889b
DG
3888 }
3889
04f2cbe3
MG
3890 /*
3891 * If the process that created a MAP_PRIVATE mapping is about to
3892 * perform a COW due to a shared page count, attempt to satisfy
3893 * the allocation without using the existing reserves. The pagecache
3894 * page is used to determine if the reserve at this address was
3895 * consumed or not. If reserves were used, a partial faulted mapping
3896 * at the time of fork() could consume its reserves on COW instead
3897 * of the full address range.
3898 */
5944d011 3899 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3900 old_page != pagecache_page)
3901 outside_reserve = 1;
3902
09cbfeaf 3903 get_page(old_page);
b76c8cfb 3904
ad4404a2
DB
3905 /*
3906 * Drop page table lock as buddy allocator may be called. It will
3907 * be acquired again before returning to the caller, as expected.
3908 */
cb900f41 3909 spin_unlock(ptl);
5b7a1d40 3910 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 3911
2fc39cec 3912 if (IS_ERR(new_page)) {
04f2cbe3
MG
3913 /*
3914 * If a process owning a MAP_PRIVATE mapping fails to COW,
3915 * it is due to references held by a child and an insufficient
3916 * huge page pool. To guarantee the original mappers
3917 * reliability, unmap the page from child processes. The child
3918 * may get SIGKILLed if it later faults.
3919 */
3920 if (outside_reserve) {
09cbfeaf 3921 put_page(old_page);
04f2cbe3 3922 BUG_ON(huge_pte_none(pte));
5b7a1d40 3923 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
3924 BUG_ON(huge_pte_none(pte));
3925 spin_lock(ptl);
5b7a1d40 3926 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
3927 if (likely(ptep &&
3928 pte_same(huge_ptep_get(ptep), pte)))
3929 goto retry_avoidcopy;
3930 /*
3931 * race occurs while re-acquiring page table
3932 * lock, and our job is done.
3933 */
3934 return 0;
04f2cbe3
MG
3935 }
3936
2b740303 3937 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 3938 goto out_release_old;
1e8f889b
DG
3939 }
3940
0fe6e20b
NH
3941 /*
3942 * When the original hugepage is shared one, it does not have
3943 * anon_vma prepared.
3944 */
44e2aa93 3945 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3946 ret = VM_FAULT_OOM;
3947 goto out_release_all;
44e2aa93 3948 }
0fe6e20b 3949
974e6d66 3950 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 3951 pages_per_huge_page(h));
0ed361de 3952 __SetPageUptodate(new_page);
1e8f889b 3953
7269f999 3954 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 3955 haddr + huge_page_size(h));
ac46d4f3 3956 mmu_notifier_invalidate_range_start(&range);
ad4404a2 3957
b76c8cfb 3958 /*
cb900f41 3959 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3960 * before the page tables are altered
3961 */
cb900f41 3962 spin_lock(ptl);
5b7a1d40 3963 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 3964 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3965 ClearPagePrivate(new_page);
3966
1e8f889b 3967 /* Break COW */
5b7a1d40 3968 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 3969 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 3970 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 3971 make_huge_pte(vma, new_page, 1));
d281ee61 3972 page_remove_rmap(old_page, true);
5b7a1d40 3973 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 3974 set_page_huge_active(new_page);
1e8f889b
DG
3975 /* Make the old page be freed below */
3976 new_page = old_page;
3977 }
cb900f41 3978 spin_unlock(ptl);
ac46d4f3 3979 mmu_notifier_invalidate_range_end(&range);
ad4404a2 3980out_release_all:
5b7a1d40 3981 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 3982 put_page(new_page);
ad4404a2 3983out_release_old:
09cbfeaf 3984 put_page(old_page);
8312034f 3985
ad4404a2
DB
3986 spin_lock(ptl); /* Caller expects lock to be held */
3987 return ret;
1e8f889b
DG
3988}
3989
04f2cbe3 3990/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3991static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3992 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3993{
3994 struct address_space *mapping;
e7c4b0bf 3995 pgoff_t idx;
04f2cbe3
MG
3996
3997 mapping = vma->vm_file->f_mapping;
a5516438 3998 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3999
4000 return find_lock_page(mapping, idx);
4001}
4002
3ae77f43
HD
4003/*
4004 * Return whether there is a pagecache page to back given address within VMA.
4005 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4006 */
4007static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4008 struct vm_area_struct *vma, unsigned long address)
4009{
4010 struct address_space *mapping;
4011 pgoff_t idx;
4012 struct page *page;
4013
4014 mapping = vma->vm_file->f_mapping;
4015 idx = vma_hugecache_offset(h, vma, address);
4016
4017 page = find_get_page(mapping, idx);
4018 if (page)
4019 put_page(page);
4020 return page != NULL;
4021}
4022
ab76ad54
MK
4023int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4024 pgoff_t idx)
4025{
4026 struct inode *inode = mapping->host;
4027 struct hstate *h = hstate_inode(inode);
4028 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4029
4030 if (err)
4031 return err;
4032 ClearPagePrivate(page);
4033
22146c3c
MK
4034 /*
4035 * set page dirty so that it will not be removed from cache/file
4036 * by non-hugetlbfs specific code paths.
4037 */
4038 set_page_dirty(page);
4039
ab76ad54
MK
4040 spin_lock(&inode->i_lock);
4041 inode->i_blocks += blocks_per_huge_page(h);
4042 spin_unlock(&inode->i_lock);
4043 return 0;
4044}
4045
2b740303
SJ
4046static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4047 struct vm_area_struct *vma,
4048 struct address_space *mapping, pgoff_t idx,
4049 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4050{
a5516438 4051 struct hstate *h = hstate_vma(vma);
2b740303 4052 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4053 int anon_rmap = 0;
4c887265 4054 unsigned long size;
4c887265 4055 struct page *page;
1e8f889b 4056 pte_t new_pte;
cb900f41 4057 spinlock_t *ptl;
285b8dca 4058 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4059 bool new_page = false;
4c887265 4060
04f2cbe3
MG
4061 /*
4062 * Currently, we are forced to kill the process in the event the
4063 * original mapper has unmapped pages from the child due to a failed
25985edc 4064 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4065 */
4066 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4067 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4068 current->pid);
04f2cbe3
MG
4069 return ret;
4070 }
4071
4c887265 4072 /*
87bf91d3
MK
4073 * We can not race with truncation due to holding i_mmap_rwsem.
4074 * i_size is modified when holding i_mmap_rwsem, so check here
4075 * once for faults beyond end of file.
4c887265 4076 */
87bf91d3
MK
4077 size = i_size_read(mapping->host) >> huge_page_shift(h);
4078 if (idx >= size)
4079 goto out;
4080
6bda666a
CL
4081retry:
4082 page = find_lock_page(mapping, idx);
4083 if (!page) {
1a1aad8a
MK
4084 /*
4085 * Check for page in userfault range
4086 */
4087 if (userfaultfd_missing(vma)) {
4088 u32 hash;
4089 struct vm_fault vmf = {
4090 .vma = vma,
285b8dca 4091 .address = haddr,
1a1aad8a
MK
4092 .flags = flags,
4093 /*
4094 * Hard to debug if it ends up being
4095 * used by a callee that assumes
4096 * something about the other
4097 * uninitialized fields... same as in
4098 * memory.c
4099 */
4100 };
4101
4102 /*
c0d0381a
MK
4103 * hugetlb_fault_mutex and i_mmap_rwsem must be
4104 * dropped before handling userfault. Reacquire
4105 * after handling fault to make calling code simpler.
1a1aad8a 4106 */
188b04a7 4107 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 4108 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4109 i_mmap_unlock_read(mapping);
1a1aad8a 4110 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 4111 i_mmap_lock_read(mapping);
1a1aad8a
MK
4112 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4113 goto out;
4114 }
4115
285b8dca 4116 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4117 if (IS_ERR(page)) {
4643d67e
MK
4118 /*
4119 * Returning error will result in faulting task being
4120 * sent SIGBUS. The hugetlb fault mutex prevents two
4121 * tasks from racing to fault in the same page which
4122 * could result in false unable to allocate errors.
4123 * Page migration does not take the fault mutex, but
4124 * does a clear then write of pte's under page table
4125 * lock. Page fault code could race with migration,
4126 * notice the clear pte and try to allocate a page
4127 * here. Before returning error, get ptl and make
4128 * sure there really is no pte entry.
4129 */
4130 ptl = huge_pte_lock(h, mm, ptep);
4131 if (!huge_pte_none(huge_ptep_get(ptep))) {
4132 ret = 0;
4133 spin_unlock(ptl);
4134 goto out;
4135 }
4136 spin_unlock(ptl);
2b740303 4137 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
4138 goto out;
4139 }
47ad8475 4140 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4141 __SetPageUptodate(page);
cb6acd01 4142 new_page = true;
ac9b9c66 4143
f83a275d 4144 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4145 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4146 if (err) {
4147 put_page(page);
6bda666a
CL
4148 if (err == -EEXIST)
4149 goto retry;
4150 goto out;
4151 }
23be7468 4152 } else {
6bda666a 4153 lock_page(page);
0fe6e20b
NH
4154 if (unlikely(anon_vma_prepare(vma))) {
4155 ret = VM_FAULT_OOM;
4156 goto backout_unlocked;
4157 }
409eb8c2 4158 anon_rmap = 1;
23be7468 4159 }
0fe6e20b 4160 } else {
998b4382
NH
4161 /*
4162 * If memory error occurs between mmap() and fault, some process
4163 * don't have hwpoisoned swap entry for errored virtual address.
4164 * So we need to block hugepage fault by PG_hwpoison bit check.
4165 */
4166 if (unlikely(PageHWPoison(page))) {
32f84528 4167 ret = VM_FAULT_HWPOISON |
972dc4de 4168 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4169 goto backout_unlocked;
4170 }
6bda666a 4171 }
1e8f889b 4172
57303d80
AW
4173 /*
4174 * If we are going to COW a private mapping later, we examine the
4175 * pending reservations for this page now. This will ensure that
4176 * any allocations necessary to record that reservation occur outside
4177 * the spinlock.
4178 */
5e911373 4179 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4180 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4181 ret = VM_FAULT_OOM;
4182 goto backout_unlocked;
4183 }
5e911373 4184 /* Just decrements count, does not deallocate */
285b8dca 4185 vma_end_reservation(h, vma, haddr);
5e911373 4186 }
57303d80 4187
8bea8052 4188 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4189 ret = 0;
7f2e9525 4190 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4191 goto backout;
4192
07443a85
JK
4193 if (anon_rmap) {
4194 ClearPagePrivate(page);
285b8dca 4195 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4196 } else
53f9263b 4197 page_dup_rmap(page, true);
1e8f889b
DG
4198 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4199 && (vma->vm_flags & VM_SHARED)));
285b8dca 4200 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4201
5d317b2b 4202 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4203 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4204 /* Optimization, do the COW without a second fault */
974e6d66 4205 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4206 }
4207
cb900f41 4208 spin_unlock(ptl);
cb6acd01
MK
4209
4210 /*
4211 * Only make newly allocated pages active. Existing pages found
4212 * in the pagecache could be !page_huge_active() if they have been
4213 * isolated for migration.
4214 */
4215 if (new_page)
4216 set_page_huge_active(page);
4217
4c887265
AL
4218 unlock_page(page);
4219out:
ac9b9c66 4220 return ret;
4c887265
AL
4221
4222backout:
cb900f41 4223 spin_unlock(ptl);
2b26736c 4224backout_unlocked:
4c887265 4225 unlock_page(page);
285b8dca 4226 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4227 put_page(page);
4228 goto out;
ac9b9c66
HD
4229}
4230
8382d914 4231#ifdef CONFIG_SMP
188b04a7 4232u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4233{
4234 unsigned long key[2];
4235 u32 hash;
4236
1b426bac
MK
4237 key[0] = (unsigned long) mapping;
4238 key[1] = idx;
8382d914 4239
55254636 4240 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4241
4242 return hash & (num_fault_mutexes - 1);
4243}
4244#else
4245/*
4246 * For uniprocesor systems we always use a single mutex, so just
4247 * return 0 and avoid the hashing overhead.
4248 */
188b04a7 4249u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4250{
4251 return 0;
4252}
4253#endif
4254
2b740303 4255vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4256 unsigned long address, unsigned int flags)
86e5216f 4257{
8382d914 4258 pte_t *ptep, entry;
cb900f41 4259 spinlock_t *ptl;
2b740303 4260 vm_fault_t ret;
8382d914
DB
4261 u32 hash;
4262 pgoff_t idx;
0fe6e20b 4263 struct page *page = NULL;
57303d80 4264 struct page *pagecache_page = NULL;
a5516438 4265 struct hstate *h = hstate_vma(vma);
8382d914 4266 struct address_space *mapping;
0f792cf9 4267 int need_wait_lock = 0;
285b8dca 4268 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4269
285b8dca 4270 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4271 if (ptep) {
c0d0381a
MK
4272 /*
4273 * Since we hold no locks, ptep could be stale. That is
4274 * OK as we are only making decisions based on content and
4275 * not actually modifying content here.
4276 */
fd6a03ed 4277 entry = huge_ptep_get(ptep);
290408d4 4278 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4279 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4280 return 0;
4281 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4282 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4283 VM_FAULT_SET_HINDEX(hstate_index(h));
ddeaab32
MK
4284 } else {
4285 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4286 if (!ptep)
4287 return VM_FAULT_OOM;
fd6a03ed
NH
4288 }
4289
c0d0381a
MK
4290 /*
4291 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4292 * until finished with ptep. This serves two purposes:
4293 * 1) It prevents huge_pmd_unshare from being called elsewhere
4294 * and making the ptep no longer valid.
4295 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4296 *
4297 * ptep could have already be assigned via huge_pte_offset. That
4298 * is OK, as huge_pte_alloc will return the same value unless
4299 * something has changed.
4300 */
8382d914 4301 mapping = vma->vm_file->f_mapping;
c0d0381a
MK
4302 i_mmap_lock_read(mapping);
4303 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4304 if (!ptep) {
4305 i_mmap_unlock_read(mapping);
4306 return VM_FAULT_OOM;
4307 }
8382d914 4308
3935baa9
DG
4309 /*
4310 * Serialize hugepage allocation and instantiation, so that we don't
4311 * get spurious allocation failures if two CPUs race to instantiate
4312 * the same page in the page cache.
4313 */
c0d0381a 4314 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4315 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4316 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4317
7f2e9525
GS
4318 entry = huge_ptep_get(ptep);
4319 if (huge_pte_none(entry)) {
8382d914 4320 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4321 goto out_mutex;
3935baa9 4322 }
86e5216f 4323
83c54070 4324 ret = 0;
1e8f889b 4325
0f792cf9
NH
4326 /*
4327 * entry could be a migration/hwpoison entry at this point, so this
4328 * check prevents the kernel from going below assuming that we have
4329 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4330 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4331 * handle it.
4332 */
4333 if (!pte_present(entry))
4334 goto out_mutex;
4335
57303d80
AW
4336 /*
4337 * If we are going to COW the mapping later, we examine the pending
4338 * reservations for this page now. This will ensure that any
4339 * allocations necessary to record that reservation occur outside the
4340 * spinlock. For private mappings, we also lookup the pagecache
4341 * page now as it is used to determine if a reservation has been
4342 * consumed.
4343 */
106c992a 4344 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4345 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4346 ret = VM_FAULT_OOM;
b4d1d99f 4347 goto out_mutex;
2b26736c 4348 }
5e911373 4349 /* Just decrements count, does not deallocate */
285b8dca 4350 vma_end_reservation(h, vma, haddr);
57303d80 4351
f83a275d 4352 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4353 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4354 vma, haddr);
57303d80
AW
4355 }
4356
0f792cf9
NH
4357 ptl = huge_pte_lock(h, mm, ptep);
4358
4359 /* Check for a racing update before calling hugetlb_cow */
4360 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4361 goto out_ptl;
4362
56c9cfb1
NH
4363 /*
4364 * hugetlb_cow() requires page locks of pte_page(entry) and
4365 * pagecache_page, so here we need take the former one
4366 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4367 */
4368 page = pte_page(entry);
4369 if (page != pagecache_page)
0f792cf9
NH
4370 if (!trylock_page(page)) {
4371 need_wait_lock = 1;
4372 goto out_ptl;
4373 }
b4d1d99f 4374
0f792cf9 4375 get_page(page);
b4d1d99f 4376
788c7df4 4377 if (flags & FAULT_FLAG_WRITE) {
106c992a 4378 if (!huge_pte_write(entry)) {
974e6d66 4379 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4380 pagecache_page, ptl);
0f792cf9 4381 goto out_put_page;
b4d1d99f 4382 }
106c992a 4383 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4384 }
4385 entry = pte_mkyoung(entry);
285b8dca 4386 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4387 flags & FAULT_FLAG_WRITE))
285b8dca 4388 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4389out_put_page:
4390 if (page != pagecache_page)
4391 unlock_page(page);
4392 put_page(page);
cb900f41
KS
4393out_ptl:
4394 spin_unlock(ptl);
57303d80
AW
4395
4396 if (pagecache_page) {
4397 unlock_page(pagecache_page);
4398 put_page(pagecache_page);
4399 }
b4d1d99f 4400out_mutex:
c672c7f2 4401 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4402 i_mmap_unlock_read(mapping);
0f792cf9
NH
4403 /*
4404 * Generally it's safe to hold refcount during waiting page lock. But
4405 * here we just wait to defer the next page fault to avoid busy loop and
4406 * the page is not used after unlocked before returning from the current
4407 * page fault. So we are safe from accessing freed page, even if we wait
4408 * here without taking refcount.
4409 */
4410 if (need_wait_lock)
4411 wait_on_page_locked(page);
1e8f889b 4412 return ret;
86e5216f
AL
4413}
4414
8fb5debc
MK
4415/*
4416 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4417 * modifications for huge pages.
4418 */
4419int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4420 pte_t *dst_pte,
4421 struct vm_area_struct *dst_vma,
4422 unsigned long dst_addr,
4423 unsigned long src_addr,
4424 struct page **pagep)
4425{
1e392147
AA
4426 struct address_space *mapping;
4427 pgoff_t idx;
4428 unsigned long size;
1c9e8def 4429 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4430 struct hstate *h = hstate_vma(dst_vma);
4431 pte_t _dst_pte;
4432 spinlock_t *ptl;
4433 int ret;
4434 struct page *page;
4435
4436 if (!*pagep) {
4437 ret = -ENOMEM;
4438 page = alloc_huge_page(dst_vma, dst_addr, 0);
4439 if (IS_ERR(page))
4440 goto out;
4441
4442 ret = copy_huge_page_from_user(page,
4443 (const void __user *) src_addr,
810a56b9 4444 pages_per_huge_page(h), false);
8fb5debc
MK
4445
4446 /* fallback to copy_from_user outside mmap_sem */
4447 if (unlikely(ret)) {
9e368259 4448 ret = -ENOENT;
8fb5debc
MK
4449 *pagep = page;
4450 /* don't free the page */
4451 goto out;
4452 }
4453 } else {
4454 page = *pagep;
4455 *pagep = NULL;
4456 }
4457
4458 /*
4459 * The memory barrier inside __SetPageUptodate makes sure that
4460 * preceding stores to the page contents become visible before
4461 * the set_pte_at() write.
4462 */
4463 __SetPageUptodate(page);
8fb5debc 4464
1e392147
AA
4465 mapping = dst_vma->vm_file->f_mapping;
4466 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4467
1c9e8def
MK
4468 /*
4469 * If shared, add to page cache
4470 */
4471 if (vm_shared) {
1e392147
AA
4472 size = i_size_read(mapping->host) >> huge_page_shift(h);
4473 ret = -EFAULT;
4474 if (idx >= size)
4475 goto out_release_nounlock;
1c9e8def 4476
1e392147
AA
4477 /*
4478 * Serialization between remove_inode_hugepages() and
4479 * huge_add_to_page_cache() below happens through the
4480 * hugetlb_fault_mutex_table that here must be hold by
4481 * the caller.
4482 */
1c9e8def
MK
4483 ret = huge_add_to_page_cache(page, mapping, idx);
4484 if (ret)
4485 goto out_release_nounlock;
4486 }
4487
8fb5debc
MK
4488 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4489 spin_lock(ptl);
4490
1e392147
AA
4491 /*
4492 * Recheck the i_size after holding PT lock to make sure not
4493 * to leave any page mapped (as page_mapped()) beyond the end
4494 * of the i_size (remove_inode_hugepages() is strict about
4495 * enforcing that). If we bail out here, we'll also leave a
4496 * page in the radix tree in the vm_shared case beyond the end
4497 * of the i_size, but remove_inode_hugepages() will take care
4498 * of it as soon as we drop the hugetlb_fault_mutex_table.
4499 */
4500 size = i_size_read(mapping->host) >> huge_page_shift(h);
4501 ret = -EFAULT;
4502 if (idx >= size)
4503 goto out_release_unlock;
4504
8fb5debc
MK
4505 ret = -EEXIST;
4506 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4507 goto out_release_unlock;
4508
1c9e8def
MK
4509 if (vm_shared) {
4510 page_dup_rmap(page, true);
4511 } else {
4512 ClearPagePrivate(page);
4513 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4514 }
8fb5debc
MK
4515
4516 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4517 if (dst_vma->vm_flags & VM_WRITE)
4518 _dst_pte = huge_pte_mkdirty(_dst_pte);
4519 _dst_pte = pte_mkyoung(_dst_pte);
4520
4521 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4522
4523 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4524 dst_vma->vm_flags & VM_WRITE);
4525 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4526
4527 /* No need to invalidate - it was non-present before */
4528 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4529
4530 spin_unlock(ptl);
cb6acd01 4531 set_page_huge_active(page);
1c9e8def
MK
4532 if (vm_shared)
4533 unlock_page(page);
8fb5debc
MK
4534 ret = 0;
4535out:
4536 return ret;
4537out_release_unlock:
4538 spin_unlock(ptl);
1c9e8def
MK
4539 if (vm_shared)
4540 unlock_page(page);
5af10dfd 4541out_release_nounlock:
8fb5debc
MK
4542 put_page(page);
4543 goto out;
4544}
4545
28a35716
ML
4546long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4547 struct page **pages, struct vm_area_struct **vmas,
4548 unsigned long *position, unsigned long *nr_pages,
4f6da934 4549 long i, unsigned int flags, int *locked)
63551ae0 4550{
d5d4b0aa
KC
4551 unsigned long pfn_offset;
4552 unsigned long vaddr = *position;
28a35716 4553 unsigned long remainder = *nr_pages;
a5516438 4554 struct hstate *h = hstate_vma(vma);
2be7cfed 4555 int err = -EFAULT;
63551ae0 4556
63551ae0 4557 while (vaddr < vma->vm_end && remainder) {
4c887265 4558 pte_t *pte;
cb900f41 4559 spinlock_t *ptl = NULL;
2a15efc9 4560 int absent;
4c887265 4561 struct page *page;
63551ae0 4562
02057967
DR
4563 /*
4564 * If we have a pending SIGKILL, don't keep faulting pages and
4565 * potentially allocating memory.
4566 */
fa45f116 4567 if (fatal_signal_pending(current)) {
02057967
DR
4568 remainder = 0;
4569 break;
4570 }
4571
4c887265
AL
4572 /*
4573 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4574 * each hugepage. We have to make sure we get the
4c887265 4575 * first, for the page indexing below to work.
cb900f41
KS
4576 *
4577 * Note that page table lock is not held when pte is null.
4c887265 4578 */
7868a208
PA
4579 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4580 huge_page_size(h));
cb900f41
KS
4581 if (pte)
4582 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4583 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4584
4585 /*
4586 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4587 * an error where there's an empty slot with no huge pagecache
4588 * to back it. This way, we avoid allocating a hugepage, and
4589 * the sparse dumpfile avoids allocating disk blocks, but its
4590 * huge holes still show up with zeroes where they need to be.
2a15efc9 4591 */
3ae77f43
HD
4592 if (absent && (flags & FOLL_DUMP) &&
4593 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4594 if (pte)
4595 spin_unlock(ptl);
2a15efc9
HD
4596 remainder = 0;
4597 break;
4598 }
63551ae0 4599
9cc3a5bd
NH
4600 /*
4601 * We need call hugetlb_fault for both hugepages under migration
4602 * (in which case hugetlb_fault waits for the migration,) and
4603 * hwpoisoned hugepages (in which case we need to prevent the
4604 * caller from accessing to them.) In order to do this, we use
4605 * here is_swap_pte instead of is_hugetlb_entry_migration and
4606 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4607 * both cases, and because we can't follow correct pages
4608 * directly from any kind of swap entries.
4609 */
4610 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4611 ((flags & FOLL_WRITE) &&
4612 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4613 vm_fault_t ret;
87ffc118 4614 unsigned int fault_flags = 0;
63551ae0 4615
cb900f41
KS
4616 if (pte)
4617 spin_unlock(ptl);
87ffc118
AA
4618 if (flags & FOLL_WRITE)
4619 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4620 if (locked)
71335f37
PX
4621 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4622 FAULT_FLAG_KILLABLE;
87ffc118
AA
4623 if (flags & FOLL_NOWAIT)
4624 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4625 FAULT_FLAG_RETRY_NOWAIT;
4626 if (flags & FOLL_TRIED) {
4426e945
PX
4627 /*
4628 * Note: FAULT_FLAG_ALLOW_RETRY and
4629 * FAULT_FLAG_TRIED can co-exist
4630 */
87ffc118
AA
4631 fault_flags |= FAULT_FLAG_TRIED;
4632 }
4633 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4634 if (ret & VM_FAULT_ERROR) {
2be7cfed 4635 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4636 remainder = 0;
4637 break;
4638 }
4639 if (ret & VM_FAULT_RETRY) {
4f6da934 4640 if (locked &&
1ac25013 4641 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4642 *locked = 0;
87ffc118
AA
4643 *nr_pages = 0;
4644 /*
4645 * VM_FAULT_RETRY must not return an
4646 * error, it will return zero
4647 * instead.
4648 *
4649 * No need to update "position" as the
4650 * caller will not check it after
4651 * *nr_pages is set to 0.
4652 */
4653 return i;
4654 }
4655 continue;
4c887265
AL
4656 }
4657
a5516438 4658 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4659 page = pte_page(huge_ptep_get(pte));
8fde12ca 4660
acbfb087
ZL
4661 /*
4662 * If subpage information not requested, update counters
4663 * and skip the same_page loop below.
4664 */
4665 if (!pages && !vmas && !pfn_offset &&
4666 (vaddr + huge_page_size(h) < vma->vm_end) &&
4667 (remainder >= pages_per_huge_page(h))) {
4668 vaddr += huge_page_size(h);
4669 remainder -= pages_per_huge_page(h);
4670 i += pages_per_huge_page(h);
4671 spin_unlock(ptl);
4672 continue;
4673 }
4674
d5d4b0aa 4675same_page:
d6692183 4676 if (pages) {
2a15efc9 4677 pages[i] = mem_map_offset(page, pfn_offset);
3faa52c0
JH
4678 /*
4679 * try_grab_page() should always succeed here, because:
4680 * a) we hold the ptl lock, and b) we've just checked
4681 * that the huge page is present in the page tables. If
4682 * the huge page is present, then the tail pages must
4683 * also be present. The ptl prevents the head page and
4684 * tail pages from being rearranged in any way. So this
4685 * page must be available at this point, unless the page
4686 * refcount overflowed:
4687 */
4688 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4689 spin_unlock(ptl);
4690 remainder = 0;
4691 err = -ENOMEM;
4692 break;
4693 }
d6692183 4694 }
63551ae0
DG
4695
4696 if (vmas)
4697 vmas[i] = vma;
4698
4699 vaddr += PAGE_SIZE;
d5d4b0aa 4700 ++pfn_offset;
63551ae0
DG
4701 --remainder;
4702 ++i;
d5d4b0aa 4703 if (vaddr < vma->vm_end && remainder &&
a5516438 4704 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4705 /*
4706 * We use pfn_offset to avoid touching the pageframes
4707 * of this compound page.
4708 */
4709 goto same_page;
4710 }
cb900f41 4711 spin_unlock(ptl);
63551ae0 4712 }
28a35716 4713 *nr_pages = remainder;
87ffc118
AA
4714 /*
4715 * setting position is actually required only if remainder is
4716 * not zero but it's faster not to add a "if (remainder)"
4717 * branch.
4718 */
63551ae0
DG
4719 *position = vaddr;
4720
2be7cfed 4721 return i ? i : err;
63551ae0 4722}
8f860591 4723
5491ae7b
AK
4724#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4725/*
4726 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4727 * implement this.
4728 */
4729#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4730#endif
4731
7da4d641 4732unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4733 unsigned long address, unsigned long end, pgprot_t newprot)
4734{
4735 struct mm_struct *mm = vma->vm_mm;
4736 unsigned long start = address;
4737 pte_t *ptep;
4738 pte_t pte;
a5516438 4739 struct hstate *h = hstate_vma(vma);
7da4d641 4740 unsigned long pages = 0;
dff11abe 4741 bool shared_pmd = false;
ac46d4f3 4742 struct mmu_notifier_range range;
dff11abe
MK
4743
4744 /*
4745 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4746 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
4747 * range if PMD sharing is possible.
4748 */
7269f999
JG
4749 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4750 0, vma, mm, start, end);
ac46d4f3 4751 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
4752
4753 BUG_ON(address >= end);
ac46d4f3 4754 flush_cache_range(vma, range.start, range.end);
8f860591 4755
ac46d4f3 4756 mmu_notifier_invalidate_range_start(&range);
83cde9e8 4757 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4758 for (; address < end; address += huge_page_size(h)) {
cb900f41 4759 spinlock_t *ptl;
7868a208 4760 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4761 if (!ptep)
4762 continue;
cb900f41 4763 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4764 if (huge_pmd_unshare(mm, &address, ptep)) {
4765 pages++;
cb900f41 4766 spin_unlock(ptl);
dff11abe 4767 shared_pmd = true;
39dde65c 4768 continue;
7da4d641 4769 }
a8bda28d
NH
4770 pte = huge_ptep_get(ptep);
4771 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4772 spin_unlock(ptl);
4773 continue;
4774 }
4775 if (unlikely(is_hugetlb_entry_migration(pte))) {
4776 swp_entry_t entry = pte_to_swp_entry(pte);
4777
4778 if (is_write_migration_entry(entry)) {
4779 pte_t newpte;
4780
4781 make_migration_entry_read(&entry);
4782 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4783 set_huge_swap_pte_at(mm, address, ptep,
4784 newpte, huge_page_size(h));
a8bda28d
NH
4785 pages++;
4786 }
4787 spin_unlock(ptl);
4788 continue;
4789 }
4790 if (!huge_pte_none(pte)) {
023bdd00
AK
4791 pte_t old_pte;
4792
4793 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4794 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 4795 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 4796 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 4797 pages++;
8f860591 4798 }
cb900f41 4799 spin_unlock(ptl);
8f860591 4800 }
d833352a 4801 /*
c8c06efa 4802 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4803 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4804 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
4805 * and that page table be reused and filled with junk. If we actually
4806 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 4807 */
dff11abe 4808 if (shared_pmd)
ac46d4f3 4809 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
4810 else
4811 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4812 /*
4813 * No need to call mmu_notifier_invalidate_range() we are downgrading
4814 * page table protection not changing it to point to a new page.
4815 *
ad56b738 4816 * See Documentation/vm/mmu_notifier.rst
0f10851e 4817 */
83cde9e8 4818 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 4819 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
4820
4821 return pages << h->order;
8f860591
ZY
4822}
4823
a1e78772
MG
4824int hugetlb_reserve_pages(struct inode *inode,
4825 long from, long to,
5a6fe125 4826 struct vm_area_struct *vma,
ca16d140 4827 vm_flags_t vm_flags)
e4e574b7 4828{
0db9d74e 4829 long ret, chg, add = -1;
a5516438 4830 struct hstate *h = hstate_inode(inode);
90481622 4831 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4832 struct resv_map *resv_map;
e9fe92ae 4833 struct hugetlb_cgroup *h_cg;
0db9d74e 4834 long gbl_reserve, regions_needed = 0;
e4e574b7 4835
63489f8e
MK
4836 /* This should never happen */
4837 if (from > to) {
4838 VM_WARN(1, "%s called with a negative range\n", __func__);
4839 return -EINVAL;
4840 }
4841
17c9d12e
MG
4842 /*
4843 * Only apply hugepage reservation if asked. At fault time, an
4844 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4845 * without using reserves
17c9d12e 4846 */
ca16d140 4847 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4848 return 0;
4849
a1e78772
MG
4850 /*
4851 * Shared mappings base their reservation on the number of pages that
4852 * are already allocated on behalf of the file. Private mappings need
4853 * to reserve the full area even if read-only as mprotect() may be
4854 * called to make the mapping read-write. Assume !vma is a shm mapping
4855 */
9119a41e 4856 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
4857 /*
4858 * resv_map can not be NULL as hugetlb_reserve_pages is only
4859 * called for inodes for which resv_maps were created (see
4860 * hugetlbfs_get_inode).
4861 */
4e35f483 4862 resv_map = inode_resv_map(inode);
9119a41e 4863
0db9d74e 4864 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
4865
4866 } else {
e9fe92ae 4867 /* Private mapping. */
9119a41e 4868 resv_map = resv_map_alloc();
17c9d12e
MG
4869 if (!resv_map)
4870 return -ENOMEM;
4871
a1e78772 4872 chg = to - from;
84afd99b 4873
e9fe92ae
MA
4874 if (hugetlb_cgroup_charge_cgroup_rsvd(
4875 hstate_index(h), chg * pages_per_huge_page(h),
4876 &h_cg)) {
4877 kref_put(&resv_map->refs, resv_map_release);
4878 return -ENOMEM;
4879 }
4880
4881 /*
4882 * Since this branch handles private mappings, we attach the
4883 * counter to uncharge for this reservation off resv_map.
4884 */
4885 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
4886
17c9d12e
MG
4887 set_vma_resv_map(vma, resv_map);
4888 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4889 }
4890
c50ac050
DH
4891 if (chg < 0) {
4892 ret = chg;
4893 goto out_err;
4894 }
8a630112 4895
1c5ecae3
MK
4896 /*
4897 * There must be enough pages in the subpool for the mapping. If
4898 * the subpool has a minimum size, there may be some global
4899 * reservations already in place (gbl_reserve).
4900 */
4901 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4902 if (gbl_reserve < 0) {
c50ac050
DH
4903 ret = -ENOSPC;
4904 goto out_err;
4905 }
5a6fe125
MG
4906
4907 /*
17c9d12e 4908 * Check enough hugepages are available for the reservation.
90481622 4909 * Hand the pages back to the subpool if there are not
5a6fe125 4910 */
1c5ecae3 4911 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4912 if (ret < 0) {
1c5ecae3
MK
4913 /* put back original number of pages, chg */
4914 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4915 goto out_err;
68842c9b 4916 }
17c9d12e
MG
4917
4918 /*
4919 * Account for the reservations made. Shared mappings record regions
4920 * that have reservations as they are shared by multiple VMAs.
4921 * When the last VMA disappears, the region map says how much
4922 * the reservation was and the page cache tells how much of
4923 * the reservation was consumed. Private mappings are per-VMA and
4924 * only the consumed reservations are tracked. When the VMA
4925 * disappears, the original reservation is the VMA size and the
4926 * consumed reservations are stored in the map. Hence, nothing
4927 * else has to be done for private mappings here
4928 */
33039678 4929 if (!vma || vma->vm_flags & VM_MAYSHARE) {
0db9d74e
MA
4930 add = region_add(resv_map, from, to, regions_needed);
4931
4932 if (unlikely(add < 0)) {
4933 hugetlb_acct_memory(h, -gbl_reserve);
4934 /* put back original number of pages, chg */
4935 (void)hugepage_subpool_put_pages(spool, chg);
4936 goto out_err;
4937 } else if (unlikely(chg > add)) {
33039678
MK
4938 /*
4939 * pages in this range were added to the reserve
4940 * map between region_chg and region_add. This
4941 * indicates a race with alloc_huge_page. Adjust
4942 * the subpool and reserve counts modified above
4943 * based on the difference.
4944 */
4945 long rsv_adjust;
4946
4947 rsv_adjust = hugepage_subpool_put_pages(spool,
4948 chg - add);
4949 hugetlb_acct_memory(h, -rsv_adjust);
4950 }
4951 }
a43a8c39 4952 return 0;
c50ac050 4953out_err:
5e911373 4954 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
4955 /* Only call region_abort if the region_chg succeeded but the
4956 * region_add failed or didn't run.
4957 */
4958 if (chg >= 0 && add < 0)
4959 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
4960 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4961 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4962 return ret;
a43a8c39
KC
4963}
4964
b5cec28d
MK
4965long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4966 long freed)
a43a8c39 4967{
a5516438 4968 struct hstate *h = hstate_inode(inode);
4e35f483 4969 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4970 long chg = 0;
90481622 4971 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4972 long gbl_reserve;
45c682a6 4973
f27a5136
MK
4974 /*
4975 * Since this routine can be called in the evict inode path for all
4976 * hugetlbfs inodes, resv_map could be NULL.
4977 */
b5cec28d
MK
4978 if (resv_map) {
4979 chg = region_del(resv_map, start, end);
4980 /*
4981 * region_del() can fail in the rare case where a region
4982 * must be split and another region descriptor can not be
4983 * allocated. If end == LONG_MAX, it will not fail.
4984 */
4985 if (chg < 0)
4986 return chg;
4987 }
4988
45c682a6 4989 spin_lock(&inode->i_lock);
e4c6f8be 4990 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4991 spin_unlock(&inode->i_lock);
4992
1c5ecae3
MK
4993 /*
4994 * If the subpool has a minimum size, the number of global
4995 * reservations to be released may be adjusted.
4996 */
4997 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4998 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4999
5000 return 0;
a43a8c39 5001}
93f70f90 5002
3212b535
SC
5003#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5004static unsigned long page_table_shareable(struct vm_area_struct *svma,
5005 struct vm_area_struct *vma,
5006 unsigned long addr, pgoff_t idx)
5007{
5008 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5009 svma->vm_start;
5010 unsigned long sbase = saddr & PUD_MASK;
5011 unsigned long s_end = sbase + PUD_SIZE;
5012
5013 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5014 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5015 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5016
5017 /*
5018 * match the virtual addresses, permission and the alignment of the
5019 * page table page.
5020 */
5021 if (pmd_index(addr) != pmd_index(saddr) ||
5022 vm_flags != svm_flags ||
5023 sbase < svma->vm_start || svma->vm_end < s_end)
5024 return 0;
5025
5026 return saddr;
5027}
5028
31aafb45 5029static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5030{
5031 unsigned long base = addr & PUD_MASK;
5032 unsigned long end = base + PUD_SIZE;
5033
5034 /*
5035 * check on proper vm_flags and page table alignment
5036 */
017b1660 5037 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5038 return true;
5039 return false;
3212b535
SC
5040}
5041
017b1660
MK
5042/*
5043 * Determine if start,end range within vma could be mapped by shared pmd.
5044 * If yes, adjust start and end to cover range associated with possible
5045 * shared pmd mappings.
5046 */
5047void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5048 unsigned long *start, unsigned long *end)
5049{
5050 unsigned long check_addr = *start;
5051
5052 if (!(vma->vm_flags & VM_MAYSHARE))
5053 return;
5054
5055 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
5056 unsigned long a_start = check_addr & PUD_MASK;
5057 unsigned long a_end = a_start + PUD_SIZE;
5058
5059 /*
5060 * If sharing is possible, adjust start/end if necessary.
5061 */
5062 if (range_in_vma(vma, a_start, a_end)) {
5063 if (a_start < *start)
5064 *start = a_start;
5065 if (a_end > *end)
5066 *end = a_end;
5067 }
5068 }
5069}
5070
3212b535
SC
5071/*
5072 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5073 * and returns the corresponding pte. While this is not necessary for the
5074 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5075 * code much cleaner.
5076 *
5077 * This routine must be called with i_mmap_rwsem held in at least read mode.
5078 * For hugetlbfs, this prevents removal of any page table entries associated
5079 * with the address space. This is important as we are setting up sharing
5080 * based on existing page table entries (mappings).
3212b535
SC
5081 */
5082pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5083{
5084 struct vm_area_struct *vma = find_vma(mm, addr);
5085 struct address_space *mapping = vma->vm_file->f_mapping;
5086 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5087 vma->vm_pgoff;
5088 struct vm_area_struct *svma;
5089 unsigned long saddr;
5090 pte_t *spte = NULL;
5091 pte_t *pte;
cb900f41 5092 spinlock_t *ptl;
3212b535
SC
5093
5094 if (!vma_shareable(vma, addr))
5095 return (pte_t *)pmd_alloc(mm, pud, addr);
5096
3212b535
SC
5097 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5098 if (svma == vma)
5099 continue;
5100
5101 saddr = page_table_shareable(svma, vma, addr, idx);
5102 if (saddr) {
7868a208
PA
5103 spte = huge_pte_offset(svma->vm_mm, saddr,
5104 vma_mmu_pagesize(svma));
3212b535
SC
5105 if (spte) {
5106 get_page(virt_to_page(spte));
5107 break;
5108 }
5109 }
5110 }
5111
5112 if (!spte)
5113 goto out;
5114
8bea8052 5115 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5116 if (pud_none(*pud)) {
3212b535
SC
5117 pud_populate(mm, pud,
5118 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5119 mm_inc_nr_pmds(mm);
dc6c9a35 5120 } else {
3212b535 5121 put_page(virt_to_page(spte));
dc6c9a35 5122 }
cb900f41 5123 spin_unlock(ptl);
3212b535
SC
5124out:
5125 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5126 return pte;
5127}
5128
5129/*
5130 * unmap huge page backed by shared pte.
5131 *
5132 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5133 * indicated by page_count > 1, unmap is achieved by clearing pud and
5134 * decrementing the ref count. If count == 1, the pte page is not shared.
5135 *
c0d0381a 5136 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5137 *
5138 * returns: 1 successfully unmapped a shared pte page
5139 * 0 the underlying pte page is not shared, or it is the last user
5140 */
5141int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5142{
5143 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5144 p4d_t *p4d = p4d_offset(pgd, *addr);
5145 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
5146
5147 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5148 if (page_count(virt_to_page(ptep)) == 1)
5149 return 0;
5150
5151 pud_clear(pud);
5152 put_page(virt_to_page(ptep));
dc6c9a35 5153 mm_dec_nr_pmds(mm);
3212b535
SC
5154 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5155 return 1;
5156}
9e5fc74c
SC
5157#define want_pmd_share() (1)
5158#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5159pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5160{
5161 return NULL;
5162}
e81f2d22
ZZ
5163
5164int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5165{
5166 return 0;
5167}
017b1660
MK
5168
5169void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5170 unsigned long *start, unsigned long *end)
5171{
5172}
9e5fc74c 5173#define want_pmd_share() (0)
3212b535
SC
5174#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5175
9e5fc74c
SC
5176#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5177pte_t *huge_pte_alloc(struct mm_struct *mm,
5178 unsigned long addr, unsigned long sz)
5179{
5180 pgd_t *pgd;
c2febafc 5181 p4d_t *p4d;
9e5fc74c
SC
5182 pud_t *pud;
5183 pte_t *pte = NULL;
5184
5185 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5186 p4d = p4d_alloc(mm, pgd, addr);
5187 if (!p4d)
5188 return NULL;
c2febafc 5189 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5190 if (pud) {
5191 if (sz == PUD_SIZE) {
5192 pte = (pte_t *)pud;
5193 } else {
5194 BUG_ON(sz != PMD_SIZE);
5195 if (want_pmd_share() && pud_none(*pud))
5196 pte = huge_pmd_share(mm, addr, pud);
5197 else
5198 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5199 }
5200 }
4e666314 5201 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5202
5203 return pte;
5204}
5205
9b19df29
PA
5206/*
5207 * huge_pte_offset() - Walk the page table to resolve the hugepage
5208 * entry at address @addr
5209 *
5210 * Return: Pointer to page table or swap entry (PUD or PMD) for
5211 * address @addr, or NULL if a p*d_none() entry is encountered and the
5212 * size @sz doesn't match the hugepage size at this level of the page
5213 * table.
5214 */
7868a208
PA
5215pte_t *huge_pte_offset(struct mm_struct *mm,
5216 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5217{
5218 pgd_t *pgd;
c2febafc 5219 p4d_t *p4d;
9e5fc74c 5220 pud_t *pud;
c2febafc 5221 pmd_t *pmd;
9e5fc74c
SC
5222
5223 pgd = pgd_offset(mm, addr);
c2febafc
KS
5224 if (!pgd_present(*pgd))
5225 return NULL;
5226 p4d = p4d_offset(pgd, addr);
5227 if (!p4d_present(*p4d))
5228 return NULL;
9b19df29 5229
c2febafc 5230 pud = pud_offset(p4d, addr);
9b19df29 5231 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 5232 return NULL;
9b19df29
PA
5233 /* hugepage or swap? */
5234 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 5235 return (pte_t *)pud;
9b19df29 5236
c2febafc 5237 pmd = pmd_offset(pud, addr);
9b19df29
PA
5238 if (sz != PMD_SIZE && pmd_none(*pmd))
5239 return NULL;
5240 /* hugepage or swap? */
5241 if (pmd_huge(*pmd) || !pmd_present(*pmd))
5242 return (pte_t *)pmd;
5243
5244 return NULL;
9e5fc74c
SC
5245}
5246
61f77eda
NH
5247#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5248
5249/*
5250 * These functions are overwritable if your architecture needs its own
5251 * behavior.
5252 */
5253struct page * __weak
5254follow_huge_addr(struct mm_struct *mm, unsigned long address,
5255 int write)
5256{
5257 return ERR_PTR(-EINVAL);
5258}
5259
4dc71451
AK
5260struct page * __weak
5261follow_huge_pd(struct vm_area_struct *vma,
5262 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5263{
5264 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5265 return NULL;
5266}
5267
61f77eda 5268struct page * __weak
9e5fc74c 5269follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5270 pmd_t *pmd, int flags)
9e5fc74c 5271{
e66f17ff
NH
5272 struct page *page = NULL;
5273 spinlock_t *ptl;
c9d398fa 5274 pte_t pte;
3faa52c0
JH
5275
5276 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5277 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5278 (FOLL_PIN | FOLL_GET)))
5279 return NULL;
5280
e66f17ff
NH
5281retry:
5282 ptl = pmd_lockptr(mm, pmd);
5283 spin_lock(ptl);
5284 /*
5285 * make sure that the address range covered by this pmd is not
5286 * unmapped from other threads.
5287 */
5288 if (!pmd_huge(*pmd))
5289 goto out;
c9d398fa
NH
5290 pte = huge_ptep_get((pte_t *)pmd);
5291 if (pte_present(pte)) {
97534127 5292 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5293 /*
5294 * try_grab_page() should always succeed here, because: a) we
5295 * hold the pmd (ptl) lock, and b) we've just checked that the
5296 * huge pmd (head) page is present in the page tables. The ptl
5297 * prevents the head page and tail pages from being rearranged
5298 * in any way. So this page must be available at this point,
5299 * unless the page refcount overflowed:
5300 */
5301 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5302 page = NULL;
5303 goto out;
5304 }
e66f17ff 5305 } else {
c9d398fa 5306 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5307 spin_unlock(ptl);
5308 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5309 goto retry;
5310 }
5311 /*
5312 * hwpoisoned entry is treated as no_page_table in
5313 * follow_page_mask().
5314 */
5315 }
5316out:
5317 spin_unlock(ptl);
9e5fc74c
SC
5318 return page;
5319}
5320
61f77eda 5321struct page * __weak
9e5fc74c 5322follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5323 pud_t *pud, int flags)
9e5fc74c 5324{
3faa52c0 5325 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5326 return NULL;
9e5fc74c 5327
e66f17ff 5328 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5329}
5330
faaa5b62
AK
5331struct page * __weak
5332follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5333{
3faa52c0 5334 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5335 return NULL;
5336
5337 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5338}
5339
31caf665
NH
5340bool isolate_huge_page(struct page *page, struct list_head *list)
5341{
bcc54222
NH
5342 bool ret = true;
5343
309381fe 5344 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5345 spin_lock(&hugetlb_lock);
bcc54222
NH
5346 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5347 ret = false;
5348 goto unlock;
5349 }
5350 clear_page_huge_active(page);
31caf665 5351 list_move_tail(&page->lru, list);
bcc54222 5352unlock:
31caf665 5353 spin_unlock(&hugetlb_lock);
bcc54222 5354 return ret;
31caf665
NH
5355}
5356
5357void putback_active_hugepage(struct page *page)
5358{
309381fe 5359 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5360 spin_lock(&hugetlb_lock);
bcc54222 5361 set_page_huge_active(page);
31caf665
NH
5362 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5363 spin_unlock(&hugetlb_lock);
5364 put_page(page);
5365}
ab5ac90a
MH
5366
5367void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5368{
5369 struct hstate *h = page_hstate(oldpage);
5370
5371 hugetlb_cgroup_migrate(oldpage, newpage);
5372 set_page_owner_migrate_reason(newpage, reason);
5373
5374 /*
5375 * transfer temporary state of the new huge page. This is
5376 * reverse to other transitions because the newpage is going to
5377 * be final while the old one will be freed so it takes over
5378 * the temporary status.
5379 *
5380 * Also note that we have to transfer the per-node surplus state
5381 * here as well otherwise the global surplus count will not match
5382 * the per-node's.
5383 */
5384 if (PageHugeTemporary(newpage)) {
5385 int old_nid = page_to_nid(oldpage);
5386 int new_nid = page_to_nid(newpage);
5387
5388 SetPageHugeTemporary(oldpage);
5389 ClearPageHugeTemporary(newpage);
5390
5391 spin_lock(&hugetlb_lock);
5392 if (h->surplus_huge_pages_node[old_nid]) {
5393 h->surplus_huge_pages_node[old_nid]--;
5394 h->surplus_huge_pages_node[new_nid]++;
5395 }
5396 spin_unlock(&hugetlb_lock);
5397 }
5398}