]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/hugetlb.c
hugetlb: redefine hugepage copy functions
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
78a34ae2 27#include <asm/io.h>
63551ae0
DG
28
29#include <linux/hugetlb.h>
9a305230 30#include <linux/node.h>
7835e98b 31#include "internal.h"
1da177e4
LT
32
33const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
a5516438 36
e5ff2159
AK
37static int max_hstate;
38unsigned int default_hstate_idx;
39struct hstate hstates[HUGE_MAX_HSTATE];
40
53ba51d2
JT
41__initdata LIST_HEAD(huge_boot_pages);
42
e5ff2159
AK
43/* for command line parsing */
44static struct hstate * __initdata parsed_hstate;
45static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 46static unsigned long __initdata default_hstate_size;
e5ff2159
AK
47
48#define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 50
3935baa9
DG
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
96822904
AW
56/*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
84afd99b
AW
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
65 * down_write(&mm->mmap_sem);
66 * or
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
69 */
70struct file_region {
71 struct list_head link;
72 long from;
73 long to;
74};
75
76static long region_add(struct list_head *head, long f, long t)
77{
78 struct file_region *rg, *nrg, *trg;
79
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
84
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
88
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
96
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
105 }
106 }
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
110}
111
112static long region_chg(struct list_head *head, long f, long t)
113{
114 struct file_region *rg, *nrg;
115 long chg = 0;
116
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
121
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
133
134 return t - f;
135 }
136
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
141
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
148
149 /* We overlap with this area, if it extends futher than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
155 }
156 chg -= rg->to - rg->from;
157 }
158 return chg;
159}
160
161static long region_truncate(struct list_head *head, long end)
162{
163 struct file_region *rg, *trg;
164 long chg = 0;
165
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
172
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
178 }
179
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 return chg;
189}
190
84afd99b
AW
191static long region_count(struct list_head *head, long f, long t)
192{
193 struct file_region *rg;
194 long chg = 0;
195
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
200
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
205
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
208
209 chg += seg_to - seg_from;
210 }
211
212 return chg;
213}
214
e7c4b0bf
AW
215/*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
a5516438
AK
219static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 221{
a5516438
AK
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
224}
225
0fe6e20b
NH
226pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
228{
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
230}
231
08fba699
MG
232/*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237{
238 struct hstate *hstate;
239
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
242
243 hstate = hstate_vma(vma);
244
245 return 1UL << (hstate->order + PAGE_SHIFT);
246}
f340ca0f 247EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 248
3340289d
MG
249/*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255#ifndef vma_mmu_pagesize
256unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257{
258 return vma_kernel_pagesize(vma);
259}
260#endif
261
84afd99b
AW
262/*
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267#define HPAGE_RESV_OWNER (1UL << 0)
268#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 269#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 270
a1e78772
MG
271/*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
a1e78772 289 */
e7c4b0bf
AW
290static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291{
292 return (unsigned long)vma->vm_private_data;
293}
294
295static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
297{
298 vma->vm_private_data = (void *)value;
299}
300
84afd99b
AW
301struct resv_map {
302 struct kref refs;
303 struct list_head regions;
304};
305
2a4b3ded 306static struct resv_map *resv_map_alloc(void)
84afd99b
AW
307{
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
311
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
314
315 return resv_map;
316}
317
2a4b3ded 318static void resv_map_release(struct kref *ref)
84afd99b
AW
319{
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
325}
326
327static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
328{
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 330 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
2a4b3ded 333 return NULL;
a1e78772
MG
334}
335
84afd99b 336static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
337{
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 340
84afd99b
AW
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
343}
344
345static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346{
04f2cbe3 347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
349
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
351}
352
353static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354{
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
356
357 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
358}
359
360/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
361static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
a1e78772 363{
c37f9fb1
AW
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
366
f83a275d 367 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 368 /* Shared mappings always use reserves */
a5516438 369 h->resv_huge_pages--;
84afd99b 370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
371 /*
372 * Only the process that called mmap() has reserves for
373 * private mappings.
374 */
a5516438 375 h->resv_huge_pages--;
a1e78772
MG
376 }
377}
378
04f2cbe3 379/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
380void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381{
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 383 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
384 vma->vm_private_data = (void *)0;
385}
386
387/* Returns true if the VMA has associated reserve pages */
7f09ca51 388static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 389{
f83a275d 390 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
a1e78772
MG
395}
396
69d177c2
AW
397static void clear_gigantic_page(struct page *page,
398 unsigned long addr, unsigned long sz)
399{
400 int i;
401 struct page *p = page;
402
403 might_sleep();
404 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
405 cond_resched();
406 clear_user_highpage(p, addr + i * PAGE_SIZE);
407 }
408}
a5516438
AK
409static void clear_huge_page(struct page *page,
410 unsigned long addr, unsigned long sz)
79ac6ba4
DG
411{
412 int i;
413
74dbdd23 414 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
ebdd4aea
HE
415 clear_gigantic_page(page, addr, sz);
416 return;
417 }
69d177c2 418
79ac6ba4 419 might_sleep();
a5516438 420 for (i = 0; i < sz/PAGE_SIZE; i++) {
79ac6ba4 421 cond_resched();
281e0e3b 422 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
423 }
424}
425
0ebabb41 426static void copy_user_gigantic_page(struct page *dst, struct page *src,
69d177c2
AW
427 unsigned long addr, struct vm_area_struct *vma)
428{
429 int i;
430 struct hstate *h = hstate_vma(vma);
431 struct page *dst_base = dst;
432 struct page *src_base = src;
0ebabb41 433
69d177c2
AW
434 for (i = 0; i < pages_per_huge_page(h); ) {
435 cond_resched();
436 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
437
438 i++;
439 dst = mem_map_next(dst, dst_base, i);
440 src = mem_map_next(src, src_base, i);
441 }
442}
0ebabb41
NH
443
444static void copy_user_huge_page(struct page *dst, struct page *src,
9de455b2 445 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
446{
447 int i;
a5516438 448 struct hstate *h = hstate_vma(vma);
79ac6ba4 449
ebdd4aea 450 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
0ebabb41 451 copy_user_gigantic_page(dst, src, addr, vma);
ebdd4aea
HE
452 return;
453 }
69d177c2 454
79ac6ba4 455 might_sleep();
a5516438 456 for (i = 0; i < pages_per_huge_page(h); i++) {
79ac6ba4 457 cond_resched();
9de455b2 458 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
459 }
460}
461
0ebabb41
NH
462static void copy_gigantic_page(struct page *dst, struct page *src)
463{
464 int i;
465 struct hstate *h = page_hstate(src);
466 struct page *dst_base = dst;
467 struct page *src_base = src;
468
469 for (i = 0; i < pages_per_huge_page(h); ) {
470 cond_resched();
471 copy_highpage(dst, src);
472
473 i++;
474 dst = mem_map_next(dst, dst_base, i);
475 src = mem_map_next(src, src_base, i);
476 }
477}
478
479void copy_huge_page(struct page *dst, struct page *src)
480{
481 int i;
482 struct hstate *h = page_hstate(src);
483
484 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
485 copy_gigantic_page(dst, src);
486 return;
487 }
488
489 might_sleep();
490 for (i = 0; i < pages_per_huge_page(h); i++) {
491 cond_resched();
492 copy_highpage(dst + i, src + i);
493 }
494}
495
a5516438 496static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
497{
498 int nid = page_to_nid(page);
a5516438
AK
499 list_add(&page->lru, &h->hugepage_freelists[nid]);
500 h->free_huge_pages++;
501 h->free_huge_pages_node[nid]++;
1da177e4
LT
502}
503
bf50bab2
NH
504static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
505{
506 struct page *page;
507
508 if (list_empty(&h->hugepage_freelists[nid]))
509 return NULL;
510 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
511 list_del(&page->lru);
512 h->free_huge_pages--;
513 h->free_huge_pages_node[nid]--;
514 return page;
515}
516
a5516438
AK
517static struct page *dequeue_huge_page_vma(struct hstate *h,
518 struct vm_area_struct *vma,
04f2cbe3 519 unsigned long address, int avoid_reserve)
1da177e4 520{
1da177e4 521 struct page *page = NULL;
480eccf9 522 struct mempolicy *mpol;
19770b32 523 nodemask_t *nodemask;
c0ff7453 524 struct zonelist *zonelist;
dd1a239f
MG
525 struct zone *zone;
526 struct zoneref *z;
1da177e4 527
c0ff7453
MX
528 get_mems_allowed();
529 zonelist = huge_zonelist(vma, address,
530 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
531 /*
532 * A child process with MAP_PRIVATE mappings created by their parent
533 * have no page reserves. This check ensures that reservations are
534 * not "stolen". The child may still get SIGKILLed
535 */
7f09ca51 536 if (!vma_has_reserves(vma) &&
a5516438 537 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 538 goto err;
a1e78772 539
04f2cbe3 540 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 541 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 542 goto err;;
04f2cbe3 543
19770b32
MG
544 for_each_zone_zonelist_nodemask(zone, z, zonelist,
545 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
546 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
547 page = dequeue_huge_page_node(h, zone_to_nid(zone));
548 if (page) {
549 if (!avoid_reserve)
550 decrement_hugepage_resv_vma(h, vma);
551 break;
552 }
3abf7afd 553 }
1da177e4 554 }
c0ff7453 555err:
52cd3b07 556 mpol_cond_put(mpol);
c0ff7453 557 put_mems_allowed();
1da177e4
LT
558 return page;
559}
560
a5516438 561static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
562{
563 int i;
a5516438 564
18229df5
AW
565 VM_BUG_ON(h->order >= MAX_ORDER);
566
a5516438
AK
567 h->nr_huge_pages--;
568 h->nr_huge_pages_node[page_to_nid(page)]--;
569 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
570 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
571 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
572 1 << PG_private | 1<< PG_writeback);
573 }
574 set_compound_page_dtor(page, NULL);
575 set_page_refcounted(page);
7f2e9525 576 arch_release_hugepage(page);
a5516438 577 __free_pages(page, huge_page_order(h));
6af2acb6
AL
578}
579
e5ff2159
AK
580struct hstate *size_to_hstate(unsigned long size)
581{
582 struct hstate *h;
583
584 for_each_hstate(h) {
585 if (huge_page_size(h) == size)
586 return h;
587 }
588 return NULL;
589}
590
27a85ef1
DG
591static void free_huge_page(struct page *page)
592{
a5516438
AK
593 /*
594 * Can't pass hstate in here because it is called from the
595 * compound page destructor.
596 */
e5ff2159 597 struct hstate *h = page_hstate(page);
7893d1d5 598 int nid = page_to_nid(page);
c79fb75e 599 struct address_space *mapping;
27a85ef1 600
c79fb75e 601 mapping = (struct address_space *) page_private(page);
e5df70ab 602 set_page_private(page, 0);
23be7468 603 page->mapping = NULL;
7893d1d5 604 BUG_ON(page_count(page));
0fe6e20b 605 BUG_ON(page_mapcount(page));
27a85ef1
DG
606 INIT_LIST_HEAD(&page->lru);
607
608 spin_lock(&hugetlb_lock);
aa888a74 609 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
610 update_and_free_page(h, page);
611 h->surplus_huge_pages--;
612 h->surplus_huge_pages_node[nid]--;
7893d1d5 613 } else {
a5516438 614 enqueue_huge_page(h, page);
7893d1d5 615 }
27a85ef1 616 spin_unlock(&hugetlb_lock);
c79fb75e 617 if (mapping)
9a119c05 618 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
619}
620
a5516438 621static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
622{
623 set_compound_page_dtor(page, free_huge_page);
624 spin_lock(&hugetlb_lock);
a5516438
AK
625 h->nr_huge_pages++;
626 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
627 spin_unlock(&hugetlb_lock);
628 put_page(page); /* free it into the hugepage allocator */
629}
630
20a0307c
WF
631static void prep_compound_gigantic_page(struct page *page, unsigned long order)
632{
633 int i;
634 int nr_pages = 1 << order;
635 struct page *p = page + 1;
636
637 /* we rely on prep_new_huge_page to set the destructor */
638 set_compound_order(page, order);
639 __SetPageHead(page);
640 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
641 __SetPageTail(p);
642 p->first_page = page;
643 }
644}
645
646int PageHuge(struct page *page)
647{
648 compound_page_dtor *dtor;
649
650 if (!PageCompound(page))
651 return 0;
652
653 page = compound_head(page);
654 dtor = get_compound_page_dtor(page);
655
656 return dtor == free_huge_page;
657}
658
43131e14
NH
659EXPORT_SYMBOL_GPL(PageHuge);
660
a5516438 661static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 662{
1da177e4 663 struct page *page;
f96efd58 664
aa888a74
AK
665 if (h->order >= MAX_ORDER)
666 return NULL;
667
6484eb3e 668 page = alloc_pages_exact_node(nid,
551883ae
NA
669 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
670 __GFP_REPEAT|__GFP_NOWARN,
a5516438 671 huge_page_order(h));
1da177e4 672 if (page) {
7f2e9525 673 if (arch_prepare_hugepage(page)) {
caff3a2c 674 __free_pages(page, huge_page_order(h));
7b8ee84d 675 return NULL;
7f2e9525 676 }
a5516438 677 prep_new_huge_page(h, page, nid);
1da177e4 678 }
63b4613c
NA
679
680 return page;
681}
682
9a76db09 683/*
6ae11b27
LS
684 * common helper functions for hstate_next_node_to_{alloc|free}.
685 * We may have allocated or freed a huge page based on a different
686 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
687 * be outside of *nodes_allowed. Ensure that we use an allowed
688 * node for alloc or free.
9a76db09 689 */
6ae11b27 690static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 691{
6ae11b27 692 nid = next_node(nid, *nodes_allowed);
9a76db09 693 if (nid == MAX_NUMNODES)
6ae11b27 694 nid = first_node(*nodes_allowed);
9a76db09
LS
695 VM_BUG_ON(nid >= MAX_NUMNODES);
696
697 return nid;
698}
699
6ae11b27
LS
700static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
701{
702 if (!node_isset(nid, *nodes_allowed))
703 nid = next_node_allowed(nid, nodes_allowed);
704 return nid;
705}
706
5ced66c9 707/*
6ae11b27
LS
708 * returns the previously saved node ["this node"] from which to
709 * allocate a persistent huge page for the pool and advance the
710 * next node from which to allocate, handling wrap at end of node
711 * mask.
5ced66c9 712 */
6ae11b27
LS
713static int hstate_next_node_to_alloc(struct hstate *h,
714 nodemask_t *nodes_allowed)
5ced66c9 715{
6ae11b27
LS
716 int nid;
717
718 VM_BUG_ON(!nodes_allowed);
719
720 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
721 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 722
9a76db09 723 return nid;
5ced66c9
AK
724}
725
6ae11b27 726static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
727{
728 struct page *page;
729 int start_nid;
730 int next_nid;
731 int ret = 0;
732
6ae11b27 733 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 734 next_nid = start_nid;
63b4613c
NA
735
736 do {
e8c5c824 737 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 738 if (page) {
63b4613c 739 ret = 1;
9a76db09
LS
740 break;
741 }
6ae11b27 742 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 743 } while (next_nid != start_nid);
63b4613c 744
3b116300
AL
745 if (ret)
746 count_vm_event(HTLB_BUDDY_PGALLOC);
747 else
748 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
749
63b4613c 750 return ret;
1da177e4
LT
751}
752
e8c5c824 753/*
6ae11b27
LS
754 * helper for free_pool_huge_page() - return the previously saved
755 * node ["this node"] from which to free a huge page. Advance the
756 * next node id whether or not we find a free huge page to free so
757 * that the next attempt to free addresses the next node.
e8c5c824 758 */
6ae11b27 759static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 760{
6ae11b27
LS
761 int nid;
762
763 VM_BUG_ON(!nodes_allowed);
764
765 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
766 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 767
9a76db09 768 return nid;
e8c5c824
LS
769}
770
771/*
772 * Free huge page from pool from next node to free.
773 * Attempt to keep persistent huge pages more or less
774 * balanced over allowed nodes.
775 * Called with hugetlb_lock locked.
776 */
6ae11b27
LS
777static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
778 bool acct_surplus)
e8c5c824
LS
779{
780 int start_nid;
781 int next_nid;
782 int ret = 0;
783
6ae11b27 784 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
785 next_nid = start_nid;
786
787 do {
685f3457
LS
788 /*
789 * If we're returning unused surplus pages, only examine
790 * nodes with surplus pages.
791 */
792 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
793 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
794 struct page *page =
795 list_entry(h->hugepage_freelists[next_nid].next,
796 struct page, lru);
797 list_del(&page->lru);
798 h->free_huge_pages--;
799 h->free_huge_pages_node[next_nid]--;
685f3457
LS
800 if (acct_surplus) {
801 h->surplus_huge_pages--;
802 h->surplus_huge_pages_node[next_nid]--;
803 }
e8c5c824
LS
804 update_and_free_page(h, page);
805 ret = 1;
9a76db09 806 break;
e8c5c824 807 }
6ae11b27 808 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 809 } while (next_nid != start_nid);
e8c5c824
LS
810
811 return ret;
812}
813
bf50bab2 814static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
815{
816 struct page *page;
bf50bab2 817 unsigned int r_nid;
7893d1d5 818
aa888a74
AK
819 if (h->order >= MAX_ORDER)
820 return NULL;
821
d1c3fb1f
NA
822 /*
823 * Assume we will successfully allocate the surplus page to
824 * prevent racing processes from causing the surplus to exceed
825 * overcommit
826 *
827 * This however introduces a different race, where a process B
828 * tries to grow the static hugepage pool while alloc_pages() is
829 * called by process A. B will only examine the per-node
830 * counters in determining if surplus huge pages can be
831 * converted to normal huge pages in adjust_pool_surplus(). A
832 * won't be able to increment the per-node counter, until the
833 * lock is dropped by B, but B doesn't drop hugetlb_lock until
834 * no more huge pages can be converted from surplus to normal
835 * state (and doesn't try to convert again). Thus, we have a
836 * case where a surplus huge page exists, the pool is grown, and
837 * the surplus huge page still exists after, even though it
838 * should just have been converted to a normal huge page. This
839 * does not leak memory, though, as the hugepage will be freed
840 * once it is out of use. It also does not allow the counters to
841 * go out of whack in adjust_pool_surplus() as we don't modify
842 * the node values until we've gotten the hugepage and only the
843 * per-node value is checked there.
844 */
845 spin_lock(&hugetlb_lock);
a5516438 846 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
847 spin_unlock(&hugetlb_lock);
848 return NULL;
849 } else {
a5516438
AK
850 h->nr_huge_pages++;
851 h->surplus_huge_pages++;
d1c3fb1f
NA
852 }
853 spin_unlock(&hugetlb_lock);
854
bf50bab2
NH
855 if (nid == NUMA_NO_NODE)
856 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
857 __GFP_REPEAT|__GFP_NOWARN,
858 huge_page_order(h));
859 else
860 page = alloc_pages_exact_node(nid,
861 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
862 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 863
caff3a2c
GS
864 if (page && arch_prepare_hugepage(page)) {
865 __free_pages(page, huge_page_order(h));
866 return NULL;
867 }
868
d1c3fb1f 869 spin_lock(&hugetlb_lock);
7893d1d5 870 if (page) {
2668db91
AL
871 /*
872 * This page is now managed by the hugetlb allocator and has
873 * no users -- drop the buddy allocator's reference.
874 */
875 put_page_testzero(page);
876 VM_BUG_ON(page_count(page));
bf50bab2 877 r_nid = page_to_nid(page);
7893d1d5 878 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
879 /*
880 * We incremented the global counters already
881 */
bf50bab2
NH
882 h->nr_huge_pages_node[r_nid]++;
883 h->surplus_huge_pages_node[r_nid]++;
3b116300 884 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 885 } else {
a5516438
AK
886 h->nr_huge_pages--;
887 h->surplus_huge_pages--;
3b116300 888 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 889 }
d1c3fb1f 890 spin_unlock(&hugetlb_lock);
7893d1d5
AL
891
892 return page;
893}
894
bf50bab2
NH
895/*
896 * This allocation function is useful in the context where vma is irrelevant.
897 * E.g. soft-offlining uses this function because it only cares physical
898 * address of error page.
899 */
900struct page *alloc_huge_page_node(struct hstate *h, int nid)
901{
902 struct page *page;
903
904 spin_lock(&hugetlb_lock);
905 page = dequeue_huge_page_node(h, nid);
906 spin_unlock(&hugetlb_lock);
907
908 if (!page)
909 page = alloc_buddy_huge_page(h, nid);
910
911 return page;
912}
913
e4e574b7
AL
914/*
915 * Increase the hugetlb pool such that it can accomodate a reservation
916 * of size 'delta'.
917 */
a5516438 918static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
919{
920 struct list_head surplus_list;
921 struct page *page, *tmp;
922 int ret, i;
923 int needed, allocated;
924
a5516438 925 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 926 if (needed <= 0) {
a5516438 927 h->resv_huge_pages += delta;
e4e574b7 928 return 0;
ac09b3a1 929 }
e4e574b7
AL
930
931 allocated = 0;
932 INIT_LIST_HEAD(&surplus_list);
933
934 ret = -ENOMEM;
935retry:
936 spin_unlock(&hugetlb_lock);
937 for (i = 0; i < needed; i++) {
bf50bab2 938 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
e4e574b7
AL
939 if (!page) {
940 /*
941 * We were not able to allocate enough pages to
942 * satisfy the entire reservation so we free what
943 * we've allocated so far.
944 */
945 spin_lock(&hugetlb_lock);
946 needed = 0;
947 goto free;
948 }
949
950 list_add(&page->lru, &surplus_list);
951 }
952 allocated += needed;
953
954 /*
955 * After retaking hugetlb_lock, we need to recalculate 'needed'
956 * because either resv_huge_pages or free_huge_pages may have changed.
957 */
958 spin_lock(&hugetlb_lock);
a5516438
AK
959 needed = (h->resv_huge_pages + delta) -
960 (h->free_huge_pages + allocated);
e4e574b7
AL
961 if (needed > 0)
962 goto retry;
963
964 /*
965 * The surplus_list now contains _at_least_ the number of extra pages
966 * needed to accomodate the reservation. Add the appropriate number
967 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
968 * allocator. Commit the entire reservation here to prevent another
969 * process from stealing the pages as they are added to the pool but
970 * before they are reserved.
e4e574b7
AL
971 */
972 needed += allocated;
a5516438 973 h->resv_huge_pages += delta;
e4e574b7
AL
974 ret = 0;
975free:
19fc3f0a 976 /* Free the needed pages to the hugetlb pool */
e4e574b7 977 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
978 if ((--needed) < 0)
979 break;
e4e574b7 980 list_del(&page->lru);
a5516438 981 enqueue_huge_page(h, page);
19fc3f0a
AL
982 }
983
984 /* Free unnecessary surplus pages to the buddy allocator */
985 if (!list_empty(&surplus_list)) {
986 spin_unlock(&hugetlb_lock);
987 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
988 list_del(&page->lru);
af767cbd 989 /*
2668db91
AL
990 * The page has a reference count of zero already, so
991 * call free_huge_page directly instead of using
992 * put_page. This must be done with hugetlb_lock
af767cbd
AL
993 * unlocked which is safe because free_huge_page takes
994 * hugetlb_lock before deciding how to free the page.
995 */
2668db91 996 free_huge_page(page);
af767cbd 997 }
19fc3f0a 998 spin_lock(&hugetlb_lock);
e4e574b7
AL
999 }
1000
1001 return ret;
1002}
1003
1004/*
1005 * When releasing a hugetlb pool reservation, any surplus pages that were
1006 * allocated to satisfy the reservation must be explicitly freed if they were
1007 * never used.
685f3457 1008 * Called with hugetlb_lock held.
e4e574b7 1009 */
a5516438
AK
1010static void return_unused_surplus_pages(struct hstate *h,
1011 unsigned long unused_resv_pages)
e4e574b7 1012{
e4e574b7
AL
1013 unsigned long nr_pages;
1014
ac09b3a1 1015 /* Uncommit the reservation */
a5516438 1016 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1017
aa888a74
AK
1018 /* Cannot return gigantic pages currently */
1019 if (h->order >= MAX_ORDER)
1020 return;
1021
a5516438 1022 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1023
685f3457
LS
1024 /*
1025 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1026 * evenly across all nodes with memory. Iterate across these nodes
1027 * until we can no longer free unreserved surplus pages. This occurs
1028 * when the nodes with surplus pages have no free pages.
1029 * free_pool_huge_page() will balance the the freed pages across the
1030 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1031 */
1032 while (nr_pages--) {
9b5e5d0f 1033 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 1034 break;
e4e574b7
AL
1035 }
1036}
1037
c37f9fb1
AW
1038/*
1039 * Determine if the huge page at addr within the vma has an associated
1040 * reservation. Where it does not we will need to logically increase
1041 * reservation and actually increase quota before an allocation can occur.
1042 * Where any new reservation would be required the reservation change is
1043 * prepared, but not committed. Once the page has been quota'd allocated
1044 * an instantiated the change should be committed via vma_commit_reservation.
1045 * No action is required on failure.
1046 */
e2f17d94 1047static long vma_needs_reservation(struct hstate *h,
a5516438 1048 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1049{
1050 struct address_space *mapping = vma->vm_file->f_mapping;
1051 struct inode *inode = mapping->host;
1052
f83a275d 1053 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1054 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1055 return region_chg(&inode->i_mapping->private_list,
1056 idx, idx + 1);
1057
84afd99b
AW
1058 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1059 return 1;
c37f9fb1 1060
84afd99b 1061 } else {
e2f17d94 1062 long err;
a5516438 1063 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1064 struct resv_map *reservations = vma_resv_map(vma);
1065
1066 err = region_chg(&reservations->regions, idx, idx + 1);
1067 if (err < 0)
1068 return err;
1069 return 0;
1070 }
c37f9fb1 1071}
a5516438
AK
1072static void vma_commit_reservation(struct hstate *h,
1073 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1074{
1075 struct address_space *mapping = vma->vm_file->f_mapping;
1076 struct inode *inode = mapping->host;
1077
f83a275d 1078 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1079 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1080 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1081
1082 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1083 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1084 struct resv_map *reservations = vma_resv_map(vma);
1085
1086 /* Mark this page used in the map. */
1087 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1088 }
1089}
1090
a1e78772 1091static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1092 unsigned long addr, int avoid_reserve)
1da177e4 1093{
a5516438 1094 struct hstate *h = hstate_vma(vma);
348ea204 1095 struct page *page;
a1e78772
MG
1096 struct address_space *mapping = vma->vm_file->f_mapping;
1097 struct inode *inode = mapping->host;
e2f17d94 1098 long chg;
a1e78772
MG
1099
1100 /*
1101 * Processes that did not create the mapping will have no reserves and
1102 * will not have accounted against quota. Check that the quota can be
1103 * made before satisfying the allocation
c37f9fb1
AW
1104 * MAP_NORESERVE mappings may also need pages and quota allocated
1105 * if no reserve mapping overlaps.
a1e78772 1106 */
a5516438 1107 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1
AW
1108 if (chg < 0)
1109 return ERR_PTR(chg);
1110 if (chg)
a1e78772
MG
1111 if (hugetlb_get_quota(inode->i_mapping, chg))
1112 return ERR_PTR(-ENOSPC);
1da177e4
LT
1113
1114 spin_lock(&hugetlb_lock);
a5516438 1115 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1116 spin_unlock(&hugetlb_lock);
b45b5bd6 1117
68842c9b 1118 if (!page) {
bf50bab2 1119 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1120 if (!page) {
a1e78772 1121 hugetlb_put_quota(inode->i_mapping, chg);
4a6018f7 1122 return ERR_PTR(-VM_FAULT_SIGBUS);
68842c9b
KC
1123 }
1124 }
348ea204 1125
a1e78772
MG
1126 set_page_refcounted(page);
1127 set_page_private(page, (unsigned long) mapping);
90d8b7e6 1128
a5516438 1129 vma_commit_reservation(h, vma, addr);
c37f9fb1 1130
90d8b7e6 1131 return page;
b45b5bd6
DG
1132}
1133
91f47662 1134int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1135{
1136 struct huge_bootmem_page *m;
9b5e5d0f 1137 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1138
1139 while (nr_nodes) {
1140 void *addr;
1141
1142 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1143 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1144 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1145 huge_page_size(h), huge_page_size(h), 0);
1146
1147 if (addr) {
1148 /*
1149 * Use the beginning of the huge page to store the
1150 * huge_bootmem_page struct (until gather_bootmem
1151 * puts them into the mem_map).
1152 */
1153 m = addr;
91f47662 1154 goto found;
aa888a74 1155 }
aa888a74
AK
1156 nr_nodes--;
1157 }
1158 return 0;
1159
1160found:
1161 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1162 /* Put them into a private list first because mem_map is not up yet */
1163 list_add(&m->list, &huge_boot_pages);
1164 m->hstate = h;
1165 return 1;
1166}
1167
18229df5
AW
1168static void prep_compound_huge_page(struct page *page, int order)
1169{
1170 if (unlikely(order > (MAX_ORDER - 1)))
1171 prep_compound_gigantic_page(page, order);
1172 else
1173 prep_compound_page(page, order);
1174}
1175
aa888a74
AK
1176/* Put bootmem huge pages into the standard lists after mem_map is up */
1177static void __init gather_bootmem_prealloc(void)
1178{
1179 struct huge_bootmem_page *m;
1180
1181 list_for_each_entry(m, &huge_boot_pages, list) {
1182 struct page *page = virt_to_page(m);
1183 struct hstate *h = m->hstate;
1184 __ClearPageReserved(page);
1185 WARN_ON(page_count(page) != 1);
18229df5 1186 prep_compound_huge_page(page, h->order);
aa888a74
AK
1187 prep_new_huge_page(h, page, page_to_nid(page));
1188 }
1189}
1190
8faa8b07 1191static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1192{
1193 unsigned long i;
a5516438 1194
e5ff2159 1195 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1196 if (h->order >= MAX_ORDER) {
1197 if (!alloc_bootmem_huge_page(h))
1198 break;
9b5e5d0f
LS
1199 } else if (!alloc_fresh_huge_page(h,
1200 &node_states[N_HIGH_MEMORY]))
1da177e4 1201 break;
1da177e4 1202 }
8faa8b07 1203 h->max_huge_pages = i;
e5ff2159
AK
1204}
1205
1206static void __init hugetlb_init_hstates(void)
1207{
1208 struct hstate *h;
1209
1210 for_each_hstate(h) {
8faa8b07
AK
1211 /* oversize hugepages were init'ed in early boot */
1212 if (h->order < MAX_ORDER)
1213 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1214 }
1215}
1216
4abd32db
AK
1217static char * __init memfmt(char *buf, unsigned long n)
1218{
1219 if (n >= (1UL << 30))
1220 sprintf(buf, "%lu GB", n >> 30);
1221 else if (n >= (1UL << 20))
1222 sprintf(buf, "%lu MB", n >> 20);
1223 else
1224 sprintf(buf, "%lu KB", n >> 10);
1225 return buf;
1226}
1227
e5ff2159
AK
1228static void __init report_hugepages(void)
1229{
1230 struct hstate *h;
1231
1232 for_each_hstate(h) {
4abd32db
AK
1233 char buf[32];
1234 printk(KERN_INFO "HugeTLB registered %s page size, "
1235 "pre-allocated %ld pages\n",
1236 memfmt(buf, huge_page_size(h)),
1237 h->free_huge_pages);
e5ff2159
AK
1238 }
1239}
1240
1da177e4 1241#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1242static void try_to_free_low(struct hstate *h, unsigned long count,
1243 nodemask_t *nodes_allowed)
1da177e4 1244{
4415cc8d
CL
1245 int i;
1246
aa888a74
AK
1247 if (h->order >= MAX_ORDER)
1248 return;
1249
6ae11b27 1250 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1251 struct page *page, *next;
a5516438
AK
1252 struct list_head *freel = &h->hugepage_freelists[i];
1253 list_for_each_entry_safe(page, next, freel, lru) {
1254 if (count >= h->nr_huge_pages)
6b0c880d 1255 return;
1da177e4
LT
1256 if (PageHighMem(page))
1257 continue;
1258 list_del(&page->lru);
e5ff2159 1259 update_and_free_page(h, page);
a5516438
AK
1260 h->free_huge_pages--;
1261 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1262 }
1263 }
1264}
1265#else
6ae11b27
LS
1266static inline void try_to_free_low(struct hstate *h, unsigned long count,
1267 nodemask_t *nodes_allowed)
1da177e4
LT
1268{
1269}
1270#endif
1271
20a0307c
WF
1272/*
1273 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1274 * balanced by operating on them in a round-robin fashion.
1275 * Returns 1 if an adjustment was made.
1276 */
6ae11b27
LS
1277static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1278 int delta)
20a0307c 1279{
e8c5c824 1280 int start_nid, next_nid;
20a0307c
WF
1281 int ret = 0;
1282
1283 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1284
e8c5c824 1285 if (delta < 0)
6ae11b27 1286 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1287 else
6ae11b27 1288 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1289 next_nid = start_nid;
1290
1291 do {
1292 int nid = next_nid;
1293 if (delta < 0) {
e8c5c824
LS
1294 /*
1295 * To shrink on this node, there must be a surplus page
1296 */
9a76db09 1297 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1298 next_nid = hstate_next_node_to_alloc(h,
1299 nodes_allowed);
e8c5c824 1300 continue;
9a76db09 1301 }
e8c5c824
LS
1302 }
1303 if (delta > 0) {
e8c5c824
LS
1304 /*
1305 * Surplus cannot exceed the total number of pages
1306 */
1307 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1308 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1309 next_nid = hstate_next_node_to_free(h,
1310 nodes_allowed);
e8c5c824 1311 continue;
9a76db09 1312 }
e8c5c824 1313 }
20a0307c
WF
1314
1315 h->surplus_huge_pages += delta;
1316 h->surplus_huge_pages_node[nid] += delta;
1317 ret = 1;
1318 break;
e8c5c824 1319 } while (next_nid != start_nid);
20a0307c 1320
20a0307c
WF
1321 return ret;
1322}
1323
a5516438 1324#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1325static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1326 nodemask_t *nodes_allowed)
1da177e4 1327{
7893d1d5 1328 unsigned long min_count, ret;
1da177e4 1329
aa888a74
AK
1330 if (h->order >= MAX_ORDER)
1331 return h->max_huge_pages;
1332
7893d1d5
AL
1333 /*
1334 * Increase the pool size
1335 * First take pages out of surplus state. Then make up the
1336 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1337 *
1338 * We might race with alloc_buddy_huge_page() here and be unable
1339 * to convert a surplus huge page to a normal huge page. That is
1340 * not critical, though, it just means the overall size of the
1341 * pool might be one hugepage larger than it needs to be, but
1342 * within all the constraints specified by the sysctls.
7893d1d5 1343 */
1da177e4 1344 spin_lock(&hugetlb_lock);
a5516438 1345 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1346 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1347 break;
1348 }
1349
a5516438 1350 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1351 /*
1352 * If this allocation races such that we no longer need the
1353 * page, free_huge_page will handle it by freeing the page
1354 * and reducing the surplus.
1355 */
1356 spin_unlock(&hugetlb_lock);
6ae11b27 1357 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1358 spin_lock(&hugetlb_lock);
1359 if (!ret)
1360 goto out;
1361
536240f2
MG
1362 /* Bail for signals. Probably ctrl-c from user */
1363 if (signal_pending(current))
1364 goto out;
7893d1d5 1365 }
7893d1d5
AL
1366
1367 /*
1368 * Decrease the pool size
1369 * First return free pages to the buddy allocator (being careful
1370 * to keep enough around to satisfy reservations). Then place
1371 * pages into surplus state as needed so the pool will shrink
1372 * to the desired size as pages become free.
d1c3fb1f
NA
1373 *
1374 * By placing pages into the surplus state independent of the
1375 * overcommit value, we are allowing the surplus pool size to
1376 * exceed overcommit. There are few sane options here. Since
1377 * alloc_buddy_huge_page() is checking the global counter,
1378 * though, we'll note that we're not allowed to exceed surplus
1379 * and won't grow the pool anywhere else. Not until one of the
1380 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1381 */
a5516438 1382 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1383 min_count = max(count, min_count);
6ae11b27 1384 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1385 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1386 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1387 break;
1da177e4 1388 }
a5516438 1389 while (count < persistent_huge_pages(h)) {
6ae11b27 1390 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1391 break;
1392 }
1393out:
a5516438 1394 ret = persistent_huge_pages(h);
1da177e4 1395 spin_unlock(&hugetlb_lock);
7893d1d5 1396 return ret;
1da177e4
LT
1397}
1398
a3437870
NA
1399#define HSTATE_ATTR_RO(_name) \
1400 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1401
1402#define HSTATE_ATTR(_name) \
1403 static struct kobj_attribute _name##_attr = \
1404 __ATTR(_name, 0644, _name##_show, _name##_store)
1405
1406static struct kobject *hugepages_kobj;
1407static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1408
9a305230
LS
1409static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1410
1411static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1412{
1413 int i;
9a305230 1414
a3437870 1415 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1416 if (hstate_kobjs[i] == kobj) {
1417 if (nidp)
1418 *nidp = NUMA_NO_NODE;
a3437870 1419 return &hstates[i];
9a305230
LS
1420 }
1421
1422 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1423}
1424
06808b08 1425static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1426 struct kobj_attribute *attr, char *buf)
1427{
9a305230
LS
1428 struct hstate *h;
1429 unsigned long nr_huge_pages;
1430 int nid;
1431
1432 h = kobj_to_hstate(kobj, &nid);
1433 if (nid == NUMA_NO_NODE)
1434 nr_huge_pages = h->nr_huge_pages;
1435 else
1436 nr_huge_pages = h->nr_huge_pages_node[nid];
1437
1438 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1439}
06808b08
LS
1440static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1441 struct kobject *kobj, struct kobj_attribute *attr,
1442 const char *buf, size_t len)
a3437870
NA
1443{
1444 int err;
9a305230 1445 int nid;
06808b08 1446 unsigned long count;
9a305230 1447 struct hstate *h;
bad44b5b 1448 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1449
06808b08 1450 err = strict_strtoul(buf, 10, &count);
a3437870
NA
1451 if (err)
1452 return 0;
1453
9a305230
LS
1454 h = kobj_to_hstate(kobj, &nid);
1455 if (nid == NUMA_NO_NODE) {
1456 /*
1457 * global hstate attribute
1458 */
1459 if (!(obey_mempolicy &&
1460 init_nodemask_of_mempolicy(nodes_allowed))) {
1461 NODEMASK_FREE(nodes_allowed);
1462 nodes_allowed = &node_states[N_HIGH_MEMORY];
1463 }
1464 } else if (nodes_allowed) {
1465 /*
1466 * per node hstate attribute: adjust count to global,
1467 * but restrict alloc/free to the specified node.
1468 */
1469 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1470 init_nodemask_of_node(nodes_allowed, nid);
1471 } else
1472 nodes_allowed = &node_states[N_HIGH_MEMORY];
1473
06808b08 1474 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1475
9b5e5d0f 1476 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1477 NODEMASK_FREE(nodes_allowed);
1478
1479 return len;
1480}
1481
1482static ssize_t nr_hugepages_show(struct kobject *kobj,
1483 struct kobj_attribute *attr, char *buf)
1484{
1485 return nr_hugepages_show_common(kobj, attr, buf);
1486}
1487
1488static ssize_t nr_hugepages_store(struct kobject *kobj,
1489 struct kobj_attribute *attr, const char *buf, size_t len)
1490{
1491 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1492}
1493HSTATE_ATTR(nr_hugepages);
1494
06808b08
LS
1495#ifdef CONFIG_NUMA
1496
1497/*
1498 * hstate attribute for optionally mempolicy-based constraint on persistent
1499 * huge page alloc/free.
1500 */
1501static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1502 struct kobj_attribute *attr, char *buf)
1503{
1504 return nr_hugepages_show_common(kobj, attr, buf);
1505}
1506
1507static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1508 struct kobj_attribute *attr, const char *buf, size_t len)
1509{
1510 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1511}
1512HSTATE_ATTR(nr_hugepages_mempolicy);
1513#endif
1514
1515
a3437870
NA
1516static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1517 struct kobj_attribute *attr, char *buf)
1518{
9a305230 1519 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1520 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1521}
1522static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1523 struct kobj_attribute *attr, const char *buf, size_t count)
1524{
1525 int err;
1526 unsigned long input;
9a305230 1527 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1528
1529 err = strict_strtoul(buf, 10, &input);
1530 if (err)
1531 return 0;
1532
1533 spin_lock(&hugetlb_lock);
1534 h->nr_overcommit_huge_pages = input;
1535 spin_unlock(&hugetlb_lock);
1536
1537 return count;
1538}
1539HSTATE_ATTR(nr_overcommit_hugepages);
1540
1541static ssize_t free_hugepages_show(struct kobject *kobj,
1542 struct kobj_attribute *attr, char *buf)
1543{
9a305230
LS
1544 struct hstate *h;
1545 unsigned long free_huge_pages;
1546 int nid;
1547
1548 h = kobj_to_hstate(kobj, &nid);
1549 if (nid == NUMA_NO_NODE)
1550 free_huge_pages = h->free_huge_pages;
1551 else
1552 free_huge_pages = h->free_huge_pages_node[nid];
1553
1554 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1555}
1556HSTATE_ATTR_RO(free_hugepages);
1557
1558static ssize_t resv_hugepages_show(struct kobject *kobj,
1559 struct kobj_attribute *attr, char *buf)
1560{
9a305230 1561 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1562 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1563}
1564HSTATE_ATTR_RO(resv_hugepages);
1565
1566static ssize_t surplus_hugepages_show(struct kobject *kobj,
1567 struct kobj_attribute *attr, char *buf)
1568{
9a305230
LS
1569 struct hstate *h;
1570 unsigned long surplus_huge_pages;
1571 int nid;
1572
1573 h = kobj_to_hstate(kobj, &nid);
1574 if (nid == NUMA_NO_NODE)
1575 surplus_huge_pages = h->surplus_huge_pages;
1576 else
1577 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1578
1579 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1580}
1581HSTATE_ATTR_RO(surplus_hugepages);
1582
1583static struct attribute *hstate_attrs[] = {
1584 &nr_hugepages_attr.attr,
1585 &nr_overcommit_hugepages_attr.attr,
1586 &free_hugepages_attr.attr,
1587 &resv_hugepages_attr.attr,
1588 &surplus_hugepages_attr.attr,
06808b08
LS
1589#ifdef CONFIG_NUMA
1590 &nr_hugepages_mempolicy_attr.attr,
1591#endif
a3437870
NA
1592 NULL,
1593};
1594
1595static struct attribute_group hstate_attr_group = {
1596 .attrs = hstate_attrs,
1597};
1598
094e9539
JM
1599static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1600 struct kobject **hstate_kobjs,
1601 struct attribute_group *hstate_attr_group)
a3437870
NA
1602{
1603 int retval;
9a305230 1604 int hi = h - hstates;
a3437870 1605
9a305230
LS
1606 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1607 if (!hstate_kobjs[hi])
a3437870
NA
1608 return -ENOMEM;
1609
9a305230 1610 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1611 if (retval)
9a305230 1612 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1613
1614 return retval;
1615}
1616
1617static void __init hugetlb_sysfs_init(void)
1618{
1619 struct hstate *h;
1620 int err;
1621
1622 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1623 if (!hugepages_kobj)
1624 return;
1625
1626 for_each_hstate(h) {
9a305230
LS
1627 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1628 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1629 if (err)
1630 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1631 h->name);
1632 }
1633}
1634
9a305230
LS
1635#ifdef CONFIG_NUMA
1636
1637/*
1638 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1639 * with node sysdevs in node_devices[] using a parallel array. The array
1640 * index of a node sysdev or _hstate == node id.
1641 * This is here to avoid any static dependency of the node sysdev driver, in
1642 * the base kernel, on the hugetlb module.
1643 */
1644struct node_hstate {
1645 struct kobject *hugepages_kobj;
1646 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1647};
1648struct node_hstate node_hstates[MAX_NUMNODES];
1649
1650/*
1651 * A subset of global hstate attributes for node sysdevs
1652 */
1653static struct attribute *per_node_hstate_attrs[] = {
1654 &nr_hugepages_attr.attr,
1655 &free_hugepages_attr.attr,
1656 &surplus_hugepages_attr.attr,
1657 NULL,
1658};
1659
1660static struct attribute_group per_node_hstate_attr_group = {
1661 .attrs = per_node_hstate_attrs,
1662};
1663
1664/*
1665 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1666 * Returns node id via non-NULL nidp.
1667 */
1668static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1669{
1670 int nid;
1671
1672 for (nid = 0; nid < nr_node_ids; nid++) {
1673 struct node_hstate *nhs = &node_hstates[nid];
1674 int i;
1675 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1676 if (nhs->hstate_kobjs[i] == kobj) {
1677 if (nidp)
1678 *nidp = nid;
1679 return &hstates[i];
1680 }
1681 }
1682
1683 BUG();
1684 return NULL;
1685}
1686
1687/*
1688 * Unregister hstate attributes from a single node sysdev.
1689 * No-op if no hstate attributes attached.
1690 */
1691void hugetlb_unregister_node(struct node *node)
1692{
1693 struct hstate *h;
1694 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1695
1696 if (!nhs->hugepages_kobj)
9b5e5d0f 1697 return; /* no hstate attributes */
9a305230
LS
1698
1699 for_each_hstate(h)
1700 if (nhs->hstate_kobjs[h - hstates]) {
1701 kobject_put(nhs->hstate_kobjs[h - hstates]);
1702 nhs->hstate_kobjs[h - hstates] = NULL;
1703 }
1704
1705 kobject_put(nhs->hugepages_kobj);
1706 nhs->hugepages_kobj = NULL;
1707}
1708
1709/*
1710 * hugetlb module exit: unregister hstate attributes from node sysdevs
1711 * that have them.
1712 */
1713static void hugetlb_unregister_all_nodes(void)
1714{
1715 int nid;
1716
1717 /*
1718 * disable node sysdev registrations.
1719 */
1720 register_hugetlbfs_with_node(NULL, NULL);
1721
1722 /*
1723 * remove hstate attributes from any nodes that have them.
1724 */
1725 for (nid = 0; nid < nr_node_ids; nid++)
1726 hugetlb_unregister_node(&node_devices[nid]);
1727}
1728
1729/*
1730 * Register hstate attributes for a single node sysdev.
1731 * No-op if attributes already registered.
1732 */
1733void hugetlb_register_node(struct node *node)
1734{
1735 struct hstate *h;
1736 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1737 int err;
1738
1739 if (nhs->hugepages_kobj)
1740 return; /* already allocated */
1741
1742 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1743 &node->sysdev.kobj);
1744 if (!nhs->hugepages_kobj)
1745 return;
1746
1747 for_each_hstate(h) {
1748 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1749 nhs->hstate_kobjs,
1750 &per_node_hstate_attr_group);
1751 if (err) {
1752 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1753 " for node %d\n",
1754 h->name, node->sysdev.id);
1755 hugetlb_unregister_node(node);
1756 break;
1757 }
1758 }
1759}
1760
1761/*
9b5e5d0f
LS
1762 * hugetlb init time: register hstate attributes for all registered node
1763 * sysdevs of nodes that have memory. All on-line nodes should have
1764 * registered their associated sysdev by this time.
9a305230
LS
1765 */
1766static void hugetlb_register_all_nodes(void)
1767{
1768 int nid;
1769
9b5e5d0f 1770 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230
LS
1771 struct node *node = &node_devices[nid];
1772 if (node->sysdev.id == nid)
1773 hugetlb_register_node(node);
1774 }
1775
1776 /*
1777 * Let the node sysdev driver know we're here so it can
1778 * [un]register hstate attributes on node hotplug.
1779 */
1780 register_hugetlbfs_with_node(hugetlb_register_node,
1781 hugetlb_unregister_node);
1782}
1783#else /* !CONFIG_NUMA */
1784
1785static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1786{
1787 BUG();
1788 if (nidp)
1789 *nidp = -1;
1790 return NULL;
1791}
1792
1793static void hugetlb_unregister_all_nodes(void) { }
1794
1795static void hugetlb_register_all_nodes(void) { }
1796
1797#endif
1798
a3437870
NA
1799static void __exit hugetlb_exit(void)
1800{
1801 struct hstate *h;
1802
9a305230
LS
1803 hugetlb_unregister_all_nodes();
1804
a3437870
NA
1805 for_each_hstate(h) {
1806 kobject_put(hstate_kobjs[h - hstates]);
1807 }
1808
1809 kobject_put(hugepages_kobj);
1810}
1811module_exit(hugetlb_exit);
1812
1813static int __init hugetlb_init(void)
1814{
0ef89d25
BH
1815 /* Some platform decide whether they support huge pages at boot
1816 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1817 * there is no such support
1818 */
1819 if (HPAGE_SHIFT == 0)
1820 return 0;
a3437870 1821
e11bfbfc
NP
1822 if (!size_to_hstate(default_hstate_size)) {
1823 default_hstate_size = HPAGE_SIZE;
1824 if (!size_to_hstate(default_hstate_size))
1825 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1826 }
e11bfbfc
NP
1827 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1828 if (default_hstate_max_huge_pages)
1829 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1830
1831 hugetlb_init_hstates();
1832
aa888a74
AK
1833 gather_bootmem_prealloc();
1834
a3437870
NA
1835 report_hugepages();
1836
1837 hugetlb_sysfs_init();
1838
9a305230
LS
1839 hugetlb_register_all_nodes();
1840
a3437870
NA
1841 return 0;
1842}
1843module_init(hugetlb_init);
1844
1845/* Should be called on processing a hugepagesz=... option */
1846void __init hugetlb_add_hstate(unsigned order)
1847{
1848 struct hstate *h;
8faa8b07
AK
1849 unsigned long i;
1850
a3437870
NA
1851 if (size_to_hstate(PAGE_SIZE << order)) {
1852 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1853 return;
1854 }
1855 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1856 BUG_ON(order == 0);
1857 h = &hstates[max_hstate++];
1858 h->order = order;
1859 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1860 h->nr_huge_pages = 0;
1861 h->free_huge_pages = 0;
1862 for (i = 0; i < MAX_NUMNODES; ++i)
1863 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
9b5e5d0f
LS
1864 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1865 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1866 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1867 huge_page_size(h)/1024);
8faa8b07 1868
a3437870
NA
1869 parsed_hstate = h;
1870}
1871
e11bfbfc 1872static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1873{
1874 unsigned long *mhp;
8faa8b07 1875 static unsigned long *last_mhp;
a3437870
NA
1876
1877 /*
1878 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1879 * so this hugepages= parameter goes to the "default hstate".
1880 */
1881 if (!max_hstate)
1882 mhp = &default_hstate_max_huge_pages;
1883 else
1884 mhp = &parsed_hstate->max_huge_pages;
1885
8faa8b07
AK
1886 if (mhp == last_mhp) {
1887 printk(KERN_WARNING "hugepages= specified twice without "
1888 "interleaving hugepagesz=, ignoring\n");
1889 return 1;
1890 }
1891
a3437870
NA
1892 if (sscanf(s, "%lu", mhp) <= 0)
1893 *mhp = 0;
1894
8faa8b07
AK
1895 /*
1896 * Global state is always initialized later in hugetlb_init.
1897 * But we need to allocate >= MAX_ORDER hstates here early to still
1898 * use the bootmem allocator.
1899 */
1900 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1901 hugetlb_hstate_alloc_pages(parsed_hstate);
1902
1903 last_mhp = mhp;
1904
a3437870
NA
1905 return 1;
1906}
e11bfbfc
NP
1907__setup("hugepages=", hugetlb_nrpages_setup);
1908
1909static int __init hugetlb_default_setup(char *s)
1910{
1911 default_hstate_size = memparse(s, &s);
1912 return 1;
1913}
1914__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1915
8a213460
NA
1916static unsigned int cpuset_mems_nr(unsigned int *array)
1917{
1918 int node;
1919 unsigned int nr = 0;
1920
1921 for_each_node_mask(node, cpuset_current_mems_allowed)
1922 nr += array[node];
1923
1924 return nr;
1925}
1926
1927#ifdef CONFIG_SYSCTL
06808b08
LS
1928static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1929 struct ctl_table *table, int write,
1930 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1931{
e5ff2159
AK
1932 struct hstate *h = &default_hstate;
1933 unsigned long tmp;
1934
1935 if (!write)
1936 tmp = h->max_huge_pages;
1937
1938 table->data = &tmp;
1939 table->maxlen = sizeof(unsigned long);
8d65af78 1940 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159 1941
06808b08 1942 if (write) {
bad44b5b
DR
1943 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1944 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
1945 if (!(obey_mempolicy &&
1946 init_nodemask_of_mempolicy(nodes_allowed))) {
1947 NODEMASK_FREE(nodes_allowed);
1948 nodes_allowed = &node_states[N_HIGH_MEMORY];
1949 }
1950 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1951
1952 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1953 NODEMASK_FREE(nodes_allowed);
1954 }
e5ff2159 1955
1da177e4
LT
1956 return 0;
1957}
396faf03 1958
06808b08
LS
1959int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1960 void __user *buffer, size_t *length, loff_t *ppos)
1961{
1962
1963 return hugetlb_sysctl_handler_common(false, table, write,
1964 buffer, length, ppos);
1965}
1966
1967#ifdef CONFIG_NUMA
1968int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1969 void __user *buffer, size_t *length, loff_t *ppos)
1970{
1971 return hugetlb_sysctl_handler_common(true, table, write,
1972 buffer, length, ppos);
1973}
1974#endif /* CONFIG_NUMA */
1975
396faf03 1976int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 1977 void __user *buffer,
396faf03
MG
1978 size_t *length, loff_t *ppos)
1979{
8d65af78 1980 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
1981 if (hugepages_treat_as_movable)
1982 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1983 else
1984 htlb_alloc_mask = GFP_HIGHUSER;
1985 return 0;
1986}
1987
a3d0c6aa 1988int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 1989 void __user *buffer,
a3d0c6aa
NA
1990 size_t *length, loff_t *ppos)
1991{
a5516438 1992 struct hstate *h = &default_hstate;
e5ff2159
AK
1993 unsigned long tmp;
1994
1995 if (!write)
1996 tmp = h->nr_overcommit_huge_pages;
1997
1998 table->data = &tmp;
1999 table->maxlen = sizeof(unsigned long);
8d65af78 2000 proc_doulongvec_minmax(table, write, buffer, length, ppos);
e5ff2159
AK
2001
2002 if (write) {
2003 spin_lock(&hugetlb_lock);
2004 h->nr_overcommit_huge_pages = tmp;
2005 spin_unlock(&hugetlb_lock);
2006 }
2007
a3d0c6aa
NA
2008 return 0;
2009}
2010
1da177e4
LT
2011#endif /* CONFIG_SYSCTL */
2012
e1759c21 2013void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2014{
a5516438 2015 struct hstate *h = &default_hstate;
e1759c21 2016 seq_printf(m,
4f98a2fe
RR
2017 "HugePages_Total: %5lu\n"
2018 "HugePages_Free: %5lu\n"
2019 "HugePages_Rsvd: %5lu\n"
2020 "HugePages_Surp: %5lu\n"
2021 "Hugepagesize: %8lu kB\n",
a5516438
AK
2022 h->nr_huge_pages,
2023 h->free_huge_pages,
2024 h->resv_huge_pages,
2025 h->surplus_huge_pages,
2026 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2027}
2028
2029int hugetlb_report_node_meminfo(int nid, char *buf)
2030{
a5516438 2031 struct hstate *h = &default_hstate;
1da177e4
LT
2032 return sprintf(buf,
2033 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2034 "Node %d HugePages_Free: %5u\n"
2035 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2036 nid, h->nr_huge_pages_node[nid],
2037 nid, h->free_huge_pages_node[nid],
2038 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2039}
2040
1da177e4
LT
2041/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2042unsigned long hugetlb_total_pages(void)
2043{
a5516438
AK
2044 struct hstate *h = &default_hstate;
2045 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 2046}
1da177e4 2047
a5516438 2048static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2049{
2050 int ret = -ENOMEM;
2051
2052 spin_lock(&hugetlb_lock);
2053 /*
2054 * When cpuset is configured, it breaks the strict hugetlb page
2055 * reservation as the accounting is done on a global variable. Such
2056 * reservation is completely rubbish in the presence of cpuset because
2057 * the reservation is not checked against page availability for the
2058 * current cpuset. Application can still potentially OOM'ed by kernel
2059 * with lack of free htlb page in cpuset that the task is in.
2060 * Attempt to enforce strict accounting with cpuset is almost
2061 * impossible (or too ugly) because cpuset is too fluid that
2062 * task or memory node can be dynamically moved between cpusets.
2063 *
2064 * The change of semantics for shared hugetlb mapping with cpuset is
2065 * undesirable. However, in order to preserve some of the semantics,
2066 * we fall back to check against current free page availability as
2067 * a best attempt and hopefully to minimize the impact of changing
2068 * semantics that cpuset has.
2069 */
2070 if (delta > 0) {
a5516438 2071 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2072 goto out;
2073
a5516438
AK
2074 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2075 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2076 goto out;
2077 }
2078 }
2079
2080 ret = 0;
2081 if (delta < 0)
a5516438 2082 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2083
2084out:
2085 spin_unlock(&hugetlb_lock);
2086 return ret;
2087}
2088
84afd99b
AW
2089static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2090{
2091 struct resv_map *reservations = vma_resv_map(vma);
2092
2093 /*
2094 * This new VMA should share its siblings reservation map if present.
2095 * The VMA will only ever have a valid reservation map pointer where
2096 * it is being copied for another still existing VMA. As that VMA
2097 * has a reference to the reservation map it cannot dissappear until
2098 * after this open call completes. It is therefore safe to take a
2099 * new reference here without additional locking.
2100 */
2101 if (reservations)
2102 kref_get(&reservations->refs);
2103}
2104
a1e78772
MG
2105static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2106{
a5516438 2107 struct hstate *h = hstate_vma(vma);
84afd99b
AW
2108 struct resv_map *reservations = vma_resv_map(vma);
2109 unsigned long reserve;
2110 unsigned long start;
2111 unsigned long end;
2112
2113 if (reservations) {
a5516438
AK
2114 start = vma_hugecache_offset(h, vma, vma->vm_start);
2115 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2116
2117 reserve = (end - start) -
2118 region_count(&reservations->regions, start, end);
2119
2120 kref_put(&reservations->refs, resv_map_release);
2121
7251ff78 2122 if (reserve) {
a5516438 2123 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
2124 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2125 }
84afd99b 2126 }
a1e78772
MG
2127}
2128
1da177e4
LT
2129/*
2130 * We cannot handle pagefaults against hugetlb pages at all. They cause
2131 * handle_mm_fault() to try to instantiate regular-sized pages in the
2132 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2133 * this far.
2134 */
d0217ac0 2135static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2136{
2137 BUG();
d0217ac0 2138 return 0;
1da177e4
LT
2139}
2140
f0f37e2f 2141const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2142 .fault = hugetlb_vm_op_fault,
84afd99b 2143 .open = hugetlb_vm_op_open,
a1e78772 2144 .close = hugetlb_vm_op_close,
1da177e4
LT
2145};
2146
1e8f889b
DG
2147static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2148 int writable)
63551ae0
DG
2149{
2150 pte_t entry;
2151
1e8f889b 2152 if (writable) {
63551ae0
DG
2153 entry =
2154 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2155 } else {
7f2e9525 2156 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2157 }
2158 entry = pte_mkyoung(entry);
2159 entry = pte_mkhuge(entry);
2160
2161 return entry;
2162}
2163
1e8f889b
DG
2164static void set_huge_ptep_writable(struct vm_area_struct *vma,
2165 unsigned long address, pte_t *ptep)
2166{
2167 pte_t entry;
2168
7f2e9525
GS
2169 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2170 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
4b3073e1 2171 update_mmu_cache(vma, address, ptep);
8dab5241 2172 }
1e8f889b
DG
2173}
2174
2175
63551ae0
DG
2176int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2177 struct vm_area_struct *vma)
2178{
2179 pte_t *src_pte, *dst_pte, entry;
2180 struct page *ptepage;
1c59827d 2181 unsigned long addr;
1e8f889b 2182 int cow;
a5516438
AK
2183 struct hstate *h = hstate_vma(vma);
2184 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2185
2186 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2187
a5516438 2188 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2189 src_pte = huge_pte_offset(src, addr);
2190 if (!src_pte)
2191 continue;
a5516438 2192 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2193 if (!dst_pte)
2194 goto nomem;
c5c99429
LW
2195
2196 /* If the pagetables are shared don't copy or take references */
2197 if (dst_pte == src_pte)
2198 continue;
2199
c74df32c 2200 spin_lock(&dst->page_table_lock);
46478758 2201 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2202 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2203 if (cow)
7f2e9525
GS
2204 huge_ptep_set_wrprotect(src, addr, src_pte);
2205 entry = huge_ptep_get(src_pte);
1c59827d
HD
2206 ptepage = pte_page(entry);
2207 get_page(ptepage);
0fe6e20b 2208 page_dup_rmap(ptepage);
1c59827d
HD
2209 set_huge_pte_at(dst, addr, dst_pte, entry);
2210 }
2211 spin_unlock(&src->page_table_lock);
c74df32c 2212 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2213 }
2214 return 0;
2215
2216nomem:
2217 return -ENOMEM;
2218}
2219
fd6a03ed
NH
2220static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2221{
2222 swp_entry_t swp;
2223
2224 if (huge_pte_none(pte) || pte_present(pte))
2225 return 0;
2226 swp = pte_to_swp_entry(pte);
2227 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2228 return 1;
2229 } else
2230 return 0;
2231}
2232
502717f4 2233void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2234 unsigned long end, struct page *ref_page)
63551ae0
DG
2235{
2236 struct mm_struct *mm = vma->vm_mm;
2237 unsigned long address;
c7546f8f 2238 pte_t *ptep;
63551ae0
DG
2239 pte_t pte;
2240 struct page *page;
fe1668ae 2241 struct page *tmp;
a5516438
AK
2242 struct hstate *h = hstate_vma(vma);
2243 unsigned long sz = huge_page_size(h);
2244
c0a499c2
KC
2245 /*
2246 * A page gathering list, protected by per file i_mmap_lock. The
2247 * lock is used to avoid list corruption from multiple unmapping
2248 * of the same page since we are using page->lru.
2249 */
fe1668ae 2250 LIST_HEAD(page_list);
63551ae0
DG
2251
2252 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2253 BUG_ON(start & ~huge_page_mask(h));
2254 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2255
cddb8a5c 2256 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 2257 spin_lock(&mm->page_table_lock);
a5516438 2258 for (address = start; address < end; address += sz) {
c7546f8f 2259 ptep = huge_pte_offset(mm, address);
4c887265 2260 if (!ptep)
c7546f8f
DG
2261 continue;
2262
39dde65c
KC
2263 if (huge_pmd_unshare(mm, &address, ptep))
2264 continue;
2265
04f2cbe3
MG
2266 /*
2267 * If a reference page is supplied, it is because a specific
2268 * page is being unmapped, not a range. Ensure the page we
2269 * are about to unmap is the actual page of interest.
2270 */
2271 if (ref_page) {
2272 pte = huge_ptep_get(ptep);
2273 if (huge_pte_none(pte))
2274 continue;
2275 page = pte_page(pte);
2276 if (page != ref_page)
2277 continue;
2278
2279 /*
2280 * Mark the VMA as having unmapped its page so that
2281 * future faults in this VMA will fail rather than
2282 * looking like data was lost
2283 */
2284 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2285 }
2286
c7546f8f 2287 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 2288 if (huge_pte_none(pte))
63551ae0 2289 continue;
c7546f8f 2290
fd6a03ed
NH
2291 /*
2292 * HWPoisoned hugepage is already unmapped and dropped reference
2293 */
2294 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2295 continue;
2296
63551ae0 2297 page = pte_page(pte);
6649a386
KC
2298 if (pte_dirty(pte))
2299 set_page_dirty(page);
fe1668ae 2300 list_add(&page->lru, &page_list);
63551ae0 2301 }
1da177e4 2302 spin_unlock(&mm->page_table_lock);
508034a3 2303 flush_tlb_range(vma, start, end);
cddb8a5c 2304 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae 2305 list_for_each_entry_safe(page, tmp, &page_list, lru) {
0fe6e20b 2306 page_remove_rmap(page);
fe1668ae
KC
2307 list_del(&page->lru);
2308 put_page(page);
2309 }
1da177e4 2310}
63551ae0 2311
502717f4 2312void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2313 unsigned long end, struct page *ref_page)
502717f4 2314{
a137e1cc
AK
2315 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2316 __unmap_hugepage_range(vma, start, end, ref_page);
2317 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
502717f4
KC
2318}
2319
04f2cbe3
MG
2320/*
2321 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2322 * mappping it owns the reserve page for. The intention is to unmap the page
2323 * from other VMAs and let the children be SIGKILLed if they are faulting the
2324 * same region.
2325 */
2a4b3ded
HH
2326static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2327 struct page *page, unsigned long address)
04f2cbe3 2328{
7526674d 2329 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2330 struct vm_area_struct *iter_vma;
2331 struct address_space *mapping;
2332 struct prio_tree_iter iter;
2333 pgoff_t pgoff;
2334
2335 /*
2336 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2337 * from page cache lookup which is in HPAGE_SIZE units.
2338 */
7526674d 2339 address = address & huge_page_mask(h);
04f2cbe3
MG
2340 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2341 + (vma->vm_pgoff >> PAGE_SHIFT);
2342 mapping = (struct address_space *)page_private(page);
2343
4eb2b1dc
MG
2344 /*
2345 * Take the mapping lock for the duration of the table walk. As
2346 * this mapping should be shared between all the VMAs,
2347 * __unmap_hugepage_range() is called as the lock is already held
2348 */
2349 spin_lock(&mapping->i_mmap_lock);
04f2cbe3
MG
2350 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2351 /* Do not unmap the current VMA */
2352 if (iter_vma == vma)
2353 continue;
2354
2355 /*
2356 * Unmap the page from other VMAs without their own reserves.
2357 * They get marked to be SIGKILLed if they fault in these
2358 * areas. This is because a future no-page fault on this VMA
2359 * could insert a zeroed page instead of the data existing
2360 * from the time of fork. This would look like data corruption
2361 */
2362 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4eb2b1dc 2363 __unmap_hugepage_range(iter_vma,
7526674d 2364 address, address + huge_page_size(h),
04f2cbe3
MG
2365 page);
2366 }
4eb2b1dc 2367 spin_unlock(&mapping->i_mmap_lock);
04f2cbe3
MG
2368
2369 return 1;
2370}
2371
0fe6e20b
NH
2372/*
2373 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2374 */
1e8f889b 2375static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2376 unsigned long address, pte_t *ptep, pte_t pte,
2377 struct page *pagecache_page)
1e8f889b 2378{
a5516438 2379 struct hstate *h = hstate_vma(vma);
1e8f889b 2380 struct page *old_page, *new_page;
79ac6ba4 2381 int avoidcopy;
04f2cbe3 2382 int outside_reserve = 0;
1e8f889b
DG
2383
2384 old_page = pte_page(pte);
2385
04f2cbe3 2386retry_avoidcopy:
1e8f889b
DG
2387 /* If no-one else is actually using this page, avoid the copy
2388 * and just make the page writable */
0fe6e20b 2389 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2390 if (avoidcopy) {
56c9cfb1
NH
2391 if (PageAnon(old_page))
2392 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2393 set_huge_ptep_writable(vma, address, ptep);
83c54070 2394 return 0;
1e8f889b
DG
2395 }
2396
04f2cbe3
MG
2397 /*
2398 * If the process that created a MAP_PRIVATE mapping is about to
2399 * perform a COW due to a shared page count, attempt to satisfy
2400 * the allocation without using the existing reserves. The pagecache
2401 * page is used to determine if the reserve at this address was
2402 * consumed or not. If reserves were used, a partial faulted mapping
2403 * at the time of fork() could consume its reserves on COW instead
2404 * of the full address range.
2405 */
f83a275d 2406 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2407 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2408 old_page != pagecache_page)
2409 outside_reserve = 1;
2410
1e8f889b 2411 page_cache_get(old_page);
b76c8cfb
LW
2412
2413 /* Drop page_table_lock as buddy allocator may be called */
2414 spin_unlock(&mm->page_table_lock);
04f2cbe3 2415 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2416
2fc39cec 2417 if (IS_ERR(new_page)) {
1e8f889b 2418 page_cache_release(old_page);
04f2cbe3
MG
2419
2420 /*
2421 * If a process owning a MAP_PRIVATE mapping fails to COW,
2422 * it is due to references held by a child and an insufficient
2423 * huge page pool. To guarantee the original mappers
2424 * reliability, unmap the page from child processes. The child
2425 * may get SIGKILLed if it later faults.
2426 */
2427 if (outside_reserve) {
2428 BUG_ON(huge_pte_none(pte));
2429 if (unmap_ref_private(mm, vma, old_page, address)) {
2430 BUG_ON(page_count(old_page) != 1);
2431 BUG_ON(huge_pte_none(pte));
b76c8cfb 2432 spin_lock(&mm->page_table_lock);
04f2cbe3
MG
2433 goto retry_avoidcopy;
2434 }
2435 WARN_ON_ONCE(1);
2436 }
2437
b76c8cfb
LW
2438 /* Caller expects lock to be held */
2439 spin_lock(&mm->page_table_lock);
2fc39cec 2440 return -PTR_ERR(new_page);
1e8f889b
DG
2441 }
2442
0fe6e20b
NH
2443 /*
2444 * When the original hugepage is shared one, it does not have
2445 * anon_vma prepared.
2446 */
2447 if (unlikely(anon_vma_prepare(vma)))
2448 return VM_FAULT_OOM;
2449
0ebabb41 2450 copy_user_huge_page(new_page, old_page, address, vma);
0ed361de 2451 __SetPageUptodate(new_page);
1e8f889b 2452
b76c8cfb
LW
2453 /*
2454 * Retake the page_table_lock to check for racing updates
2455 * before the page tables are altered
2456 */
2457 spin_lock(&mm->page_table_lock);
a5516438 2458 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2459 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2460 /* Break COW */
3edd4fc9
DD
2461 mmu_notifier_invalidate_range_start(mm,
2462 address & huge_page_mask(h),
2463 (address & huge_page_mask(h)) + huge_page_size(h));
8fe627ec 2464 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2465 set_huge_pte_at(mm, address, ptep,
2466 make_huge_pte(vma, new_page, 1));
0fe6e20b 2467 page_remove_rmap(old_page);
cd67f0d2 2468 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2469 /* Make the old page be freed below */
2470 new_page = old_page;
3edd4fc9
DD
2471 mmu_notifier_invalidate_range_end(mm,
2472 address & huge_page_mask(h),
2473 (address & huge_page_mask(h)) + huge_page_size(h));
1e8f889b
DG
2474 }
2475 page_cache_release(new_page);
2476 page_cache_release(old_page);
83c54070 2477 return 0;
1e8f889b
DG
2478}
2479
04f2cbe3 2480/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2481static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2482 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2483{
2484 struct address_space *mapping;
e7c4b0bf 2485 pgoff_t idx;
04f2cbe3
MG
2486
2487 mapping = vma->vm_file->f_mapping;
a5516438 2488 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2489
2490 return find_lock_page(mapping, idx);
2491}
2492
3ae77f43
HD
2493/*
2494 * Return whether there is a pagecache page to back given address within VMA.
2495 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2496 */
2497static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2498 struct vm_area_struct *vma, unsigned long address)
2499{
2500 struct address_space *mapping;
2501 pgoff_t idx;
2502 struct page *page;
2503
2504 mapping = vma->vm_file->f_mapping;
2505 idx = vma_hugecache_offset(h, vma, address);
2506
2507 page = find_get_page(mapping, idx);
2508 if (page)
2509 put_page(page);
2510 return page != NULL;
2511}
2512
a1ed3dda 2513static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2514 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2515{
a5516438 2516 struct hstate *h = hstate_vma(vma);
ac9b9c66 2517 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 2518 pgoff_t idx;
4c887265 2519 unsigned long size;
4c887265
AL
2520 struct page *page;
2521 struct address_space *mapping;
1e8f889b 2522 pte_t new_pte;
4c887265 2523
04f2cbe3
MG
2524 /*
2525 * Currently, we are forced to kill the process in the event the
2526 * original mapper has unmapped pages from the child due to a failed
2527 * COW. Warn that such a situation has occured as it may not be obvious
2528 */
2529 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2530 printk(KERN_WARNING
2531 "PID %d killed due to inadequate hugepage pool\n",
2532 current->pid);
2533 return ret;
2534 }
2535
4c887265 2536 mapping = vma->vm_file->f_mapping;
a5516438 2537 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2538
2539 /*
2540 * Use page lock to guard against racing truncation
2541 * before we get page_table_lock.
2542 */
6bda666a
CL
2543retry:
2544 page = find_lock_page(mapping, idx);
2545 if (!page) {
a5516438 2546 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2547 if (idx >= size)
2548 goto out;
04f2cbe3 2549 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
2550 if (IS_ERR(page)) {
2551 ret = -PTR_ERR(page);
6bda666a
CL
2552 goto out;
2553 }
a5516438 2554 clear_huge_page(page, address, huge_page_size(h));
0ed361de 2555 __SetPageUptodate(page);
ac9b9c66 2556
f83a275d 2557 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2558 int err;
45c682a6 2559 struct inode *inode = mapping->host;
6bda666a
CL
2560
2561 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2562 if (err) {
2563 put_page(page);
6bda666a
CL
2564 if (err == -EEXIST)
2565 goto retry;
2566 goto out;
2567 }
45c682a6
KC
2568
2569 spin_lock(&inode->i_lock);
a5516438 2570 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2571 spin_unlock(&inode->i_lock);
0fe6e20b 2572 page_dup_rmap(page);
23be7468 2573 } else {
6bda666a 2574 lock_page(page);
0fe6e20b
NH
2575 if (unlikely(anon_vma_prepare(vma))) {
2576 ret = VM_FAULT_OOM;
2577 goto backout_unlocked;
2578 }
2579 hugepage_add_new_anon_rmap(page, vma, address);
23be7468 2580 }
0fe6e20b 2581 } else {
998b4382
NH
2582 /*
2583 * If memory error occurs between mmap() and fault, some process
2584 * don't have hwpoisoned swap entry for errored virtual address.
2585 * So we need to block hugepage fault by PG_hwpoison bit check.
2586 */
2587 if (unlikely(PageHWPoison(page))) {
2588 ret = VM_FAULT_HWPOISON;
2589 goto backout_unlocked;
2590 }
0fe6e20b 2591 page_dup_rmap(page);
6bda666a 2592 }
1e8f889b 2593
57303d80
AW
2594 /*
2595 * If we are going to COW a private mapping later, we examine the
2596 * pending reservations for this page now. This will ensure that
2597 * any allocations necessary to record that reservation occur outside
2598 * the spinlock.
2599 */
788c7df4 2600 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2601 if (vma_needs_reservation(h, vma, address) < 0) {
2602 ret = VM_FAULT_OOM;
2603 goto backout_unlocked;
2604 }
57303d80 2605
ac9b9c66 2606 spin_lock(&mm->page_table_lock);
a5516438 2607 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2608 if (idx >= size)
2609 goto backout;
2610
83c54070 2611 ret = 0;
7f2e9525 2612 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2613 goto backout;
2614
1e8f889b
DG
2615 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2616 && (vma->vm_flags & VM_SHARED)));
2617 set_huge_pte_at(mm, address, ptep, new_pte);
2618
788c7df4 2619 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2620 /* Optimization, do the COW without a second fault */
04f2cbe3 2621 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2622 }
2623
ac9b9c66 2624 spin_unlock(&mm->page_table_lock);
4c887265
AL
2625 unlock_page(page);
2626out:
ac9b9c66 2627 return ret;
4c887265
AL
2628
2629backout:
2630 spin_unlock(&mm->page_table_lock);
2b26736c 2631backout_unlocked:
4c887265
AL
2632 unlock_page(page);
2633 put_page(page);
2634 goto out;
ac9b9c66
HD
2635}
2636
86e5216f 2637int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2638 unsigned long address, unsigned int flags)
86e5216f
AL
2639{
2640 pte_t *ptep;
2641 pte_t entry;
1e8f889b 2642 int ret;
0fe6e20b 2643 struct page *page = NULL;
57303d80 2644 struct page *pagecache_page = NULL;
3935baa9 2645 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2646 struct hstate *h = hstate_vma(vma);
86e5216f 2647
fd6a03ed
NH
2648 ptep = huge_pte_offset(mm, address);
2649 if (ptep) {
2650 entry = huge_ptep_get(ptep);
2651 if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2652 return VM_FAULT_HWPOISON;
2653 }
2654
a5516438 2655 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2656 if (!ptep)
2657 return VM_FAULT_OOM;
2658
3935baa9
DG
2659 /*
2660 * Serialize hugepage allocation and instantiation, so that we don't
2661 * get spurious allocation failures if two CPUs race to instantiate
2662 * the same page in the page cache.
2663 */
2664 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2665 entry = huge_ptep_get(ptep);
2666 if (huge_pte_none(entry)) {
788c7df4 2667 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2668 goto out_mutex;
3935baa9 2669 }
86e5216f 2670
83c54070 2671 ret = 0;
1e8f889b 2672
57303d80
AW
2673 /*
2674 * If we are going to COW the mapping later, we examine the pending
2675 * reservations for this page now. This will ensure that any
2676 * allocations necessary to record that reservation occur outside the
2677 * spinlock. For private mappings, we also lookup the pagecache
2678 * page now as it is used to determine if a reservation has been
2679 * consumed.
2680 */
788c7df4 2681 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2682 if (vma_needs_reservation(h, vma, address) < 0) {
2683 ret = VM_FAULT_OOM;
b4d1d99f 2684 goto out_mutex;
2b26736c 2685 }
57303d80 2686
f83a275d 2687 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2688 pagecache_page = hugetlbfs_pagecache_page(h,
2689 vma, address);
2690 }
2691
56c9cfb1
NH
2692 /*
2693 * hugetlb_cow() requires page locks of pte_page(entry) and
2694 * pagecache_page, so here we need take the former one
2695 * when page != pagecache_page or !pagecache_page.
2696 * Note that locking order is always pagecache_page -> page,
2697 * so no worry about deadlock.
2698 */
2699 page = pte_page(entry);
2700 if (page != pagecache_page)
0fe6e20b 2701 lock_page(page);
0fe6e20b 2702
1e8f889b
DG
2703 spin_lock(&mm->page_table_lock);
2704 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2705 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2706 goto out_page_table_lock;
2707
2708
788c7df4 2709 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2710 if (!pte_write(entry)) {
57303d80
AW
2711 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2712 pagecache_page);
b4d1d99f
DG
2713 goto out_page_table_lock;
2714 }
2715 entry = pte_mkdirty(entry);
2716 }
2717 entry = pte_mkyoung(entry);
788c7df4
HD
2718 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2719 flags & FAULT_FLAG_WRITE))
4b3073e1 2720 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2721
2722out_page_table_lock:
1e8f889b 2723 spin_unlock(&mm->page_table_lock);
57303d80
AW
2724
2725 if (pagecache_page) {
2726 unlock_page(pagecache_page);
2727 put_page(pagecache_page);
2728 }
56c9cfb1 2729 unlock_page(page);
57303d80 2730
b4d1d99f 2731out_mutex:
3935baa9 2732 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2733
2734 return ret;
86e5216f
AL
2735}
2736
ceb86879
AK
2737/* Can be overriden by architectures */
2738__attribute__((weak)) struct page *
2739follow_huge_pud(struct mm_struct *mm, unsigned long address,
2740 pud_t *pud, int write)
2741{
2742 BUG();
2743 return NULL;
2744}
2745
63551ae0
DG
2746int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2747 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2748 unsigned long *position, int *length, int i,
2a15efc9 2749 unsigned int flags)
63551ae0 2750{
d5d4b0aa
KC
2751 unsigned long pfn_offset;
2752 unsigned long vaddr = *position;
63551ae0 2753 int remainder = *length;
a5516438 2754 struct hstate *h = hstate_vma(vma);
63551ae0 2755
1c59827d 2756 spin_lock(&mm->page_table_lock);
63551ae0 2757 while (vaddr < vma->vm_end && remainder) {
4c887265 2758 pte_t *pte;
2a15efc9 2759 int absent;
4c887265 2760 struct page *page;
63551ae0 2761
4c887265
AL
2762 /*
2763 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2764 * each hugepage. We have to make sure we get the
4c887265
AL
2765 * first, for the page indexing below to work.
2766 */
a5516438 2767 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2768 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2769
2770 /*
2771 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2772 * an error where there's an empty slot with no huge pagecache
2773 * to back it. This way, we avoid allocating a hugepage, and
2774 * the sparse dumpfile avoids allocating disk blocks, but its
2775 * huge holes still show up with zeroes where they need to be.
2a15efc9 2776 */
3ae77f43
HD
2777 if (absent && (flags & FOLL_DUMP) &&
2778 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2779 remainder = 0;
2780 break;
2781 }
63551ae0 2782
2a15efc9
HD
2783 if (absent ||
2784 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2785 int ret;
63551ae0 2786
4c887265 2787 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2788 ret = hugetlb_fault(mm, vma, vaddr,
2789 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2790 spin_lock(&mm->page_table_lock);
a89182c7 2791 if (!(ret & VM_FAULT_ERROR))
4c887265 2792 continue;
63551ae0 2793
4c887265 2794 remainder = 0;
4c887265
AL
2795 break;
2796 }
2797
a5516438 2798 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2799 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2800same_page:
d6692183 2801 if (pages) {
2a15efc9 2802 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2803 get_page(pages[i]);
d6692183 2804 }
63551ae0
DG
2805
2806 if (vmas)
2807 vmas[i] = vma;
2808
2809 vaddr += PAGE_SIZE;
d5d4b0aa 2810 ++pfn_offset;
63551ae0
DG
2811 --remainder;
2812 ++i;
d5d4b0aa 2813 if (vaddr < vma->vm_end && remainder &&
a5516438 2814 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
2815 /*
2816 * We use pfn_offset to avoid touching the pageframes
2817 * of this compound page.
2818 */
2819 goto same_page;
2820 }
63551ae0 2821 }
1c59827d 2822 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2823 *length = remainder;
2824 *position = vaddr;
2825
2a15efc9 2826 return i ? i : -EFAULT;
63551ae0 2827}
8f860591
ZY
2828
2829void hugetlb_change_protection(struct vm_area_struct *vma,
2830 unsigned long address, unsigned long end, pgprot_t newprot)
2831{
2832 struct mm_struct *mm = vma->vm_mm;
2833 unsigned long start = address;
2834 pte_t *ptep;
2835 pte_t pte;
a5516438 2836 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2837
2838 BUG_ON(address >= end);
2839 flush_cache_range(vma, address, end);
2840
39dde65c 2841 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591 2842 spin_lock(&mm->page_table_lock);
a5516438 2843 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2844 ptep = huge_pte_offset(mm, address);
2845 if (!ptep)
2846 continue;
39dde65c
KC
2847 if (huge_pmd_unshare(mm, &address, ptep))
2848 continue;
7f2e9525 2849 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2850 pte = huge_ptep_get_and_clear(mm, address, ptep);
2851 pte = pte_mkhuge(pte_modify(pte, newprot));
2852 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2853 }
2854 }
2855 spin_unlock(&mm->page_table_lock);
39dde65c 2856 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
2857
2858 flush_tlb_range(vma, start, end);
2859}
2860
a1e78772
MG
2861int hugetlb_reserve_pages(struct inode *inode,
2862 long from, long to,
5a6fe125
MG
2863 struct vm_area_struct *vma,
2864 int acctflag)
e4e574b7 2865{
17c9d12e 2866 long ret, chg;
a5516438 2867 struct hstate *h = hstate_inode(inode);
e4e574b7 2868
17c9d12e
MG
2869 /*
2870 * Only apply hugepage reservation if asked. At fault time, an
2871 * attempt will be made for VM_NORESERVE to allocate a page
2872 * and filesystem quota without using reserves
2873 */
2874 if (acctflag & VM_NORESERVE)
2875 return 0;
2876
a1e78772
MG
2877 /*
2878 * Shared mappings base their reservation on the number of pages that
2879 * are already allocated on behalf of the file. Private mappings need
2880 * to reserve the full area even if read-only as mprotect() may be
2881 * called to make the mapping read-write. Assume !vma is a shm mapping
2882 */
f83a275d 2883 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2884 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
2885 else {
2886 struct resv_map *resv_map = resv_map_alloc();
2887 if (!resv_map)
2888 return -ENOMEM;
2889
a1e78772 2890 chg = to - from;
84afd99b 2891
17c9d12e
MG
2892 set_vma_resv_map(vma, resv_map);
2893 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2894 }
2895
e4e574b7
AL
2896 if (chg < 0)
2897 return chg;
8a630112 2898
17c9d12e 2899 /* There must be enough filesystem quota for the mapping */
90d8b7e6
AL
2900 if (hugetlb_get_quota(inode->i_mapping, chg))
2901 return -ENOSPC;
5a6fe125
MG
2902
2903 /*
17c9d12e
MG
2904 * Check enough hugepages are available for the reservation.
2905 * Hand back the quota if there are not
5a6fe125 2906 */
a5516438 2907 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2908 if (ret < 0) {
2909 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2910 return ret;
68842c9b 2911 }
17c9d12e
MG
2912
2913 /*
2914 * Account for the reservations made. Shared mappings record regions
2915 * that have reservations as they are shared by multiple VMAs.
2916 * When the last VMA disappears, the region map says how much
2917 * the reservation was and the page cache tells how much of
2918 * the reservation was consumed. Private mappings are per-VMA and
2919 * only the consumed reservations are tracked. When the VMA
2920 * disappears, the original reservation is the VMA size and the
2921 * consumed reservations are stored in the map. Hence, nothing
2922 * else has to be done for private mappings here
2923 */
f83a275d 2924 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2925 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
KC
2926 return 0;
2927}
2928
2929void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2930{
a5516438 2931 struct hstate *h = hstate_inode(inode);
a43a8c39 2932 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2933
2934 spin_lock(&inode->i_lock);
e4c6f8be 2935 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
2936 spin_unlock(&inode->i_lock);
2937
90d8b7e6 2938 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2939 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2940}
93f70f90
NH
2941
2942/*
2943 * This function is called from memory failure code.
2944 * Assume the caller holds page lock of the head page.
2945 */
2946void __isolate_hwpoisoned_huge_page(struct page *hpage)
2947{
2948 struct hstate *h = page_hstate(hpage);
2949 int nid = page_to_nid(hpage);
2950
2951 spin_lock(&hugetlb_lock);
2952 list_del(&hpage->lru);
2953 h->free_huge_pages--;
2954 h->free_huge_pages_node[nid]--;
2955 spin_unlock(&hugetlb_lock);
2956}