]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/hugetlb.c
hugetlb: add a list for tracking in-use HugeTLB pages
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
24669e58 27#include <asm/tlb.h>
63551ae0 28
24669e58 29#include <linux/io.h>
63551ae0 30#include <linux/hugetlb.h>
9a305230 31#include <linux/node.h>
7835e98b 32#include "internal.h"
1da177e4
LT
33
34const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
35static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
36unsigned long hugepages_treat_as_movable;
a5516438 37
47d38344 38static int hugetlb_max_hstate;
e5ff2159
AK
39unsigned int default_hstate_idx;
40struct hstate hstates[HUGE_MAX_HSTATE];
41
53ba51d2
JT
42__initdata LIST_HEAD(huge_boot_pages);
43
e5ff2159
AK
44/* for command line parsing */
45static struct hstate * __initdata parsed_hstate;
46static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 47static unsigned long __initdata default_hstate_size;
e5ff2159
AK
48
49#define for_each_hstate(h) \
47d38344 50 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
396faf03 51
3935baa9
DG
52/*
53 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 */
55static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 56
90481622
DG
57static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58{
59 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60
61 spin_unlock(&spool->lock);
62
63 /* If no pages are used, and no other handles to the subpool
64 * remain, free the subpool the subpool remain */
65 if (free)
66 kfree(spool);
67}
68
69struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70{
71 struct hugepage_subpool *spool;
72
73 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
74 if (!spool)
75 return NULL;
76
77 spin_lock_init(&spool->lock);
78 spool->count = 1;
79 spool->max_hpages = nr_blocks;
80 spool->used_hpages = 0;
81
82 return spool;
83}
84
85void hugepage_put_subpool(struct hugepage_subpool *spool)
86{
87 spin_lock(&spool->lock);
88 BUG_ON(!spool->count);
89 spool->count--;
90 unlock_or_release_subpool(spool);
91}
92
93static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
94 long delta)
95{
96 int ret = 0;
97
98 if (!spool)
99 return 0;
100
101 spin_lock(&spool->lock);
102 if ((spool->used_hpages + delta) <= spool->max_hpages) {
103 spool->used_hpages += delta;
104 } else {
105 ret = -ENOMEM;
106 }
107 spin_unlock(&spool->lock);
108
109 return ret;
110}
111
112static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
113 long delta)
114{
115 if (!spool)
116 return;
117
118 spin_lock(&spool->lock);
119 spool->used_hpages -= delta;
120 /* If hugetlbfs_put_super couldn't free spool due to
121 * an outstanding quota reference, free it now. */
122 unlock_or_release_subpool(spool);
123}
124
125static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126{
127 return HUGETLBFS_SB(inode->i_sb)->spool;
128}
129
130static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131{
132 return subpool_inode(vma->vm_file->f_dentry->d_inode);
133}
134
96822904
AW
135/*
136 * Region tracking -- allows tracking of reservations and instantiated pages
137 * across the pages in a mapping.
84afd99b
AW
138 *
139 * The region data structures are protected by a combination of the mmap_sem
140 * and the hugetlb_instantion_mutex. To access or modify a region the caller
141 * must either hold the mmap_sem for write, or the mmap_sem for read and
142 * the hugetlb_instantiation mutex:
143 *
32f84528 144 * down_write(&mm->mmap_sem);
84afd99b 145 * or
32f84528
CF
146 * down_read(&mm->mmap_sem);
147 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
148 */
149struct file_region {
150 struct list_head link;
151 long from;
152 long to;
153};
154
155static long region_add(struct list_head *head, long f, long t)
156{
157 struct file_region *rg, *nrg, *trg;
158
159 /* Locate the region we are either in or before. */
160 list_for_each_entry(rg, head, link)
161 if (f <= rg->to)
162 break;
163
164 /* Round our left edge to the current segment if it encloses us. */
165 if (f > rg->from)
166 f = rg->from;
167
168 /* Check for and consume any regions we now overlap with. */
169 nrg = rg;
170 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
171 if (&rg->link == head)
172 break;
173 if (rg->from > t)
174 break;
175
176 /* If this area reaches higher then extend our area to
177 * include it completely. If this is not the first area
178 * which we intend to reuse, free it. */
179 if (rg->to > t)
180 t = rg->to;
181 if (rg != nrg) {
182 list_del(&rg->link);
183 kfree(rg);
184 }
185 }
186 nrg->from = f;
187 nrg->to = t;
188 return 0;
189}
190
191static long region_chg(struct list_head *head, long f, long t)
192{
193 struct file_region *rg, *nrg;
194 long chg = 0;
195
196 /* Locate the region we are before or in. */
197 list_for_each_entry(rg, head, link)
198 if (f <= rg->to)
199 break;
200
201 /* If we are below the current region then a new region is required.
202 * Subtle, allocate a new region at the position but make it zero
203 * size such that we can guarantee to record the reservation. */
204 if (&rg->link == head || t < rg->from) {
205 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
206 if (!nrg)
207 return -ENOMEM;
208 nrg->from = f;
209 nrg->to = f;
210 INIT_LIST_HEAD(&nrg->link);
211 list_add(&nrg->link, rg->link.prev);
212
213 return t - f;
214 }
215
216 /* Round our left edge to the current segment if it encloses us. */
217 if (f > rg->from)
218 f = rg->from;
219 chg = t - f;
220
221 /* Check for and consume any regions we now overlap with. */
222 list_for_each_entry(rg, rg->link.prev, link) {
223 if (&rg->link == head)
224 break;
225 if (rg->from > t)
226 return chg;
227
25985edc 228 /* We overlap with this area, if it extends further than
96822904
AW
229 * us then we must extend ourselves. Account for its
230 * existing reservation. */
231 if (rg->to > t) {
232 chg += rg->to - t;
233 t = rg->to;
234 }
235 chg -= rg->to - rg->from;
236 }
237 return chg;
238}
239
240static long region_truncate(struct list_head *head, long end)
241{
242 struct file_region *rg, *trg;
243 long chg = 0;
244
245 /* Locate the region we are either in or before. */
246 list_for_each_entry(rg, head, link)
247 if (end <= rg->to)
248 break;
249 if (&rg->link == head)
250 return 0;
251
252 /* If we are in the middle of a region then adjust it. */
253 if (end > rg->from) {
254 chg = rg->to - end;
255 rg->to = end;
256 rg = list_entry(rg->link.next, typeof(*rg), link);
257 }
258
259 /* Drop any remaining regions. */
260 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
261 if (&rg->link == head)
262 break;
263 chg += rg->to - rg->from;
264 list_del(&rg->link);
265 kfree(rg);
266 }
267 return chg;
268}
269
84afd99b
AW
270static long region_count(struct list_head *head, long f, long t)
271{
272 struct file_region *rg;
273 long chg = 0;
274
275 /* Locate each segment we overlap with, and count that overlap. */
276 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
277 long seg_from;
278 long seg_to;
84afd99b
AW
279
280 if (rg->to <= f)
281 continue;
282 if (rg->from >= t)
283 break;
284
285 seg_from = max(rg->from, f);
286 seg_to = min(rg->to, t);
287
288 chg += seg_to - seg_from;
289 }
290
291 return chg;
292}
293
e7c4b0bf
AW
294/*
295 * Convert the address within this vma to the page offset within
296 * the mapping, in pagecache page units; huge pages here.
297 */
a5516438
AK
298static pgoff_t vma_hugecache_offset(struct hstate *h,
299 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 300{
a5516438
AK
301 return ((address - vma->vm_start) >> huge_page_shift(h)) +
302 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
303}
304
0fe6e20b
NH
305pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
306 unsigned long address)
307{
308 return vma_hugecache_offset(hstate_vma(vma), vma, address);
309}
310
08fba699
MG
311/*
312 * Return the size of the pages allocated when backing a VMA. In the majority
313 * cases this will be same size as used by the page table entries.
314 */
315unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316{
317 struct hstate *hstate;
318
319 if (!is_vm_hugetlb_page(vma))
320 return PAGE_SIZE;
321
322 hstate = hstate_vma(vma);
323
324 return 1UL << (hstate->order + PAGE_SHIFT);
325}
f340ca0f 326EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 327
3340289d
MG
328/*
329 * Return the page size being used by the MMU to back a VMA. In the majority
330 * of cases, the page size used by the kernel matches the MMU size. On
331 * architectures where it differs, an architecture-specific version of this
332 * function is required.
333 */
334#ifndef vma_mmu_pagesize
335unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336{
337 return vma_kernel_pagesize(vma);
338}
339#endif
340
84afd99b
AW
341/*
342 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
343 * bits of the reservation map pointer, which are always clear due to
344 * alignment.
345 */
346#define HPAGE_RESV_OWNER (1UL << 0)
347#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 348#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 349
a1e78772
MG
350/*
351 * These helpers are used to track how many pages are reserved for
352 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
353 * is guaranteed to have their future faults succeed.
354 *
355 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
356 * the reserve counters are updated with the hugetlb_lock held. It is safe
357 * to reset the VMA at fork() time as it is not in use yet and there is no
358 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
359 *
360 * The private mapping reservation is represented in a subtly different
361 * manner to a shared mapping. A shared mapping has a region map associated
362 * with the underlying file, this region map represents the backing file
363 * pages which have ever had a reservation assigned which this persists even
364 * after the page is instantiated. A private mapping has a region map
365 * associated with the original mmap which is attached to all VMAs which
366 * reference it, this region map represents those offsets which have consumed
367 * reservation ie. where pages have been instantiated.
a1e78772 368 */
e7c4b0bf
AW
369static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370{
371 return (unsigned long)vma->vm_private_data;
372}
373
374static void set_vma_private_data(struct vm_area_struct *vma,
375 unsigned long value)
376{
377 vma->vm_private_data = (void *)value;
378}
379
84afd99b
AW
380struct resv_map {
381 struct kref refs;
382 struct list_head regions;
383};
384
2a4b3ded 385static struct resv_map *resv_map_alloc(void)
84afd99b
AW
386{
387 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
388 if (!resv_map)
389 return NULL;
390
391 kref_init(&resv_map->refs);
392 INIT_LIST_HEAD(&resv_map->regions);
393
394 return resv_map;
395}
396
2a4b3ded 397static void resv_map_release(struct kref *ref)
84afd99b
AW
398{
399 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400
401 /* Clear out any active regions before we release the map. */
402 region_truncate(&resv_map->regions, 0);
403 kfree(resv_map);
404}
405
406static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
407{
408 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 409 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
410 return (struct resv_map *)(get_vma_private_data(vma) &
411 ~HPAGE_RESV_MASK);
2a4b3ded 412 return NULL;
a1e78772
MG
413}
414
84afd99b 415static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
416{
417 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 418 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 419
84afd99b
AW
420 set_vma_private_data(vma, (get_vma_private_data(vma) &
421 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
422}
423
424static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425{
04f2cbe3 426 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 427 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
428
429 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
430}
431
432static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433{
434 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
435
436 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
437}
438
439/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
440static void decrement_hugepage_resv_vma(struct hstate *h,
441 struct vm_area_struct *vma)
a1e78772 442{
c37f9fb1
AW
443 if (vma->vm_flags & VM_NORESERVE)
444 return;
445
f83a275d 446 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 447 /* Shared mappings always use reserves */
a5516438 448 h->resv_huge_pages--;
84afd99b 449 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
450 /*
451 * Only the process that called mmap() has reserves for
452 * private mappings.
453 */
a5516438 454 h->resv_huge_pages--;
a1e78772
MG
455 }
456}
457
04f2cbe3 458/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
459void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
460{
461 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 462 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
463 vma->vm_private_data = (void *)0;
464}
465
466/* Returns true if the VMA has associated reserve pages */
7f09ca51 467static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 468{
f83a275d 469 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
470 return 1;
471 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
472 return 1;
473 return 0;
a1e78772
MG
474}
475
0ebabb41
NH
476static void copy_gigantic_page(struct page *dst, struct page *src)
477{
478 int i;
479 struct hstate *h = page_hstate(src);
480 struct page *dst_base = dst;
481 struct page *src_base = src;
482
483 for (i = 0; i < pages_per_huge_page(h); ) {
484 cond_resched();
485 copy_highpage(dst, src);
486
487 i++;
488 dst = mem_map_next(dst, dst_base, i);
489 src = mem_map_next(src, src_base, i);
490 }
491}
492
493void copy_huge_page(struct page *dst, struct page *src)
494{
495 int i;
496 struct hstate *h = page_hstate(src);
497
498 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
499 copy_gigantic_page(dst, src);
500 return;
501 }
502
503 might_sleep();
504 for (i = 0; i < pages_per_huge_page(h); i++) {
505 cond_resched();
506 copy_highpage(dst + i, src + i);
507 }
508}
509
a5516438 510static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
511{
512 int nid = page_to_nid(page);
0edaecfa 513 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
514 h->free_huge_pages++;
515 h->free_huge_pages_node[nid]++;
1da177e4
LT
516}
517
bf50bab2
NH
518static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
519{
520 struct page *page;
521
522 if (list_empty(&h->hugepage_freelists[nid]))
523 return NULL;
524 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
0edaecfa 525 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 526 set_page_refcounted(page);
bf50bab2
NH
527 h->free_huge_pages--;
528 h->free_huge_pages_node[nid]--;
529 return page;
530}
531
a5516438
AK
532static struct page *dequeue_huge_page_vma(struct hstate *h,
533 struct vm_area_struct *vma,
04f2cbe3 534 unsigned long address, int avoid_reserve)
1da177e4 535{
b1c12cbc 536 struct page *page = NULL;
480eccf9 537 struct mempolicy *mpol;
19770b32 538 nodemask_t *nodemask;
c0ff7453 539 struct zonelist *zonelist;
dd1a239f
MG
540 struct zone *zone;
541 struct zoneref *z;
cc9a6c87 542 unsigned int cpuset_mems_cookie;
1da177e4 543
cc9a6c87
MG
544retry_cpuset:
545 cpuset_mems_cookie = get_mems_allowed();
c0ff7453
MX
546 zonelist = huge_zonelist(vma, address,
547 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
548 /*
549 * A child process with MAP_PRIVATE mappings created by their parent
550 * have no page reserves. This check ensures that reservations are
551 * not "stolen". The child may still get SIGKILLed
552 */
7f09ca51 553 if (!vma_has_reserves(vma) &&
a5516438 554 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 555 goto err;
a1e78772 556
04f2cbe3 557 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 558 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 559 goto err;
04f2cbe3 560
19770b32
MG
561 for_each_zone_zonelist_nodemask(zone, z, zonelist,
562 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
563 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
564 page = dequeue_huge_page_node(h, zone_to_nid(zone));
565 if (page) {
566 if (!avoid_reserve)
567 decrement_hugepage_resv_vma(h, vma);
568 break;
569 }
3abf7afd 570 }
1da177e4 571 }
cc9a6c87 572
52cd3b07 573 mpol_cond_put(mpol);
cc9a6c87
MG
574 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
575 goto retry_cpuset;
1da177e4 576 return page;
cc9a6c87
MG
577
578err:
579 mpol_cond_put(mpol);
580 return NULL;
1da177e4
LT
581}
582
a5516438 583static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
584{
585 int i;
a5516438 586
18229df5
AW
587 VM_BUG_ON(h->order >= MAX_ORDER);
588
a5516438
AK
589 h->nr_huge_pages--;
590 h->nr_huge_pages_node[page_to_nid(page)]--;
591 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
592 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
593 1 << PG_referenced | 1 << PG_dirty |
594 1 << PG_active | 1 << PG_reserved |
595 1 << PG_private | 1 << PG_writeback);
6af2acb6
AL
596 }
597 set_compound_page_dtor(page, NULL);
598 set_page_refcounted(page);
7f2e9525 599 arch_release_hugepage(page);
a5516438 600 __free_pages(page, huge_page_order(h));
6af2acb6
AL
601}
602
e5ff2159
AK
603struct hstate *size_to_hstate(unsigned long size)
604{
605 struct hstate *h;
606
607 for_each_hstate(h) {
608 if (huge_page_size(h) == size)
609 return h;
610 }
611 return NULL;
612}
613
27a85ef1
DG
614static void free_huge_page(struct page *page)
615{
a5516438
AK
616 /*
617 * Can't pass hstate in here because it is called from the
618 * compound page destructor.
619 */
e5ff2159 620 struct hstate *h = page_hstate(page);
7893d1d5 621 int nid = page_to_nid(page);
90481622
DG
622 struct hugepage_subpool *spool =
623 (struct hugepage_subpool *)page_private(page);
27a85ef1 624
e5df70ab 625 set_page_private(page, 0);
23be7468 626 page->mapping = NULL;
7893d1d5 627 BUG_ON(page_count(page));
0fe6e20b 628 BUG_ON(page_mapcount(page));
27a85ef1
DG
629
630 spin_lock(&hugetlb_lock);
aa888a74 631 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
632 /* remove the page from active list */
633 list_del(&page->lru);
a5516438
AK
634 update_and_free_page(h, page);
635 h->surplus_huge_pages--;
636 h->surplus_huge_pages_node[nid]--;
7893d1d5 637 } else {
a5516438 638 enqueue_huge_page(h, page);
7893d1d5 639 }
27a85ef1 640 spin_unlock(&hugetlb_lock);
90481622 641 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
642}
643
a5516438 644static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 645{
0edaecfa 646 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
647 set_compound_page_dtor(page, free_huge_page);
648 spin_lock(&hugetlb_lock);
a5516438
AK
649 h->nr_huge_pages++;
650 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
651 spin_unlock(&hugetlb_lock);
652 put_page(page); /* free it into the hugepage allocator */
653}
654
20a0307c
WF
655static void prep_compound_gigantic_page(struct page *page, unsigned long order)
656{
657 int i;
658 int nr_pages = 1 << order;
659 struct page *p = page + 1;
660
661 /* we rely on prep_new_huge_page to set the destructor */
662 set_compound_order(page, order);
663 __SetPageHead(page);
664 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
665 __SetPageTail(p);
58a84aa9 666 set_page_count(p, 0);
20a0307c
WF
667 p->first_page = page;
668 }
669}
670
671int PageHuge(struct page *page)
672{
673 compound_page_dtor *dtor;
674
675 if (!PageCompound(page))
676 return 0;
677
678 page = compound_head(page);
679 dtor = get_compound_page_dtor(page);
680
681 return dtor == free_huge_page;
682}
43131e14
NH
683EXPORT_SYMBOL_GPL(PageHuge);
684
a5516438 685static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 686{
1da177e4 687 struct page *page;
f96efd58 688
aa888a74
AK
689 if (h->order >= MAX_ORDER)
690 return NULL;
691
6484eb3e 692 page = alloc_pages_exact_node(nid,
551883ae
NA
693 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
694 __GFP_REPEAT|__GFP_NOWARN,
a5516438 695 huge_page_order(h));
1da177e4 696 if (page) {
7f2e9525 697 if (arch_prepare_hugepage(page)) {
caff3a2c 698 __free_pages(page, huge_page_order(h));
7b8ee84d 699 return NULL;
7f2e9525 700 }
a5516438 701 prep_new_huge_page(h, page, nid);
1da177e4 702 }
63b4613c
NA
703
704 return page;
705}
706
9a76db09 707/*
6ae11b27
LS
708 * common helper functions for hstate_next_node_to_{alloc|free}.
709 * We may have allocated or freed a huge page based on a different
710 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
711 * be outside of *nodes_allowed. Ensure that we use an allowed
712 * node for alloc or free.
9a76db09 713 */
6ae11b27 714static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 715{
6ae11b27 716 nid = next_node(nid, *nodes_allowed);
9a76db09 717 if (nid == MAX_NUMNODES)
6ae11b27 718 nid = first_node(*nodes_allowed);
9a76db09
LS
719 VM_BUG_ON(nid >= MAX_NUMNODES);
720
721 return nid;
722}
723
6ae11b27
LS
724static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
725{
726 if (!node_isset(nid, *nodes_allowed))
727 nid = next_node_allowed(nid, nodes_allowed);
728 return nid;
729}
730
5ced66c9 731/*
6ae11b27
LS
732 * returns the previously saved node ["this node"] from which to
733 * allocate a persistent huge page for the pool and advance the
734 * next node from which to allocate, handling wrap at end of node
735 * mask.
5ced66c9 736 */
6ae11b27
LS
737static int hstate_next_node_to_alloc(struct hstate *h,
738 nodemask_t *nodes_allowed)
5ced66c9 739{
6ae11b27
LS
740 int nid;
741
742 VM_BUG_ON(!nodes_allowed);
743
744 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
745 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 746
9a76db09 747 return nid;
5ced66c9
AK
748}
749
6ae11b27 750static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
751{
752 struct page *page;
753 int start_nid;
754 int next_nid;
755 int ret = 0;
756
6ae11b27 757 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 758 next_nid = start_nid;
63b4613c
NA
759
760 do {
e8c5c824 761 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 762 if (page) {
63b4613c 763 ret = 1;
9a76db09
LS
764 break;
765 }
6ae11b27 766 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 767 } while (next_nid != start_nid);
63b4613c 768
3b116300
AL
769 if (ret)
770 count_vm_event(HTLB_BUDDY_PGALLOC);
771 else
772 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
773
63b4613c 774 return ret;
1da177e4
LT
775}
776
e8c5c824 777/*
6ae11b27
LS
778 * helper for free_pool_huge_page() - return the previously saved
779 * node ["this node"] from which to free a huge page. Advance the
780 * next node id whether or not we find a free huge page to free so
781 * that the next attempt to free addresses the next node.
e8c5c824 782 */
6ae11b27 783static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 784{
6ae11b27
LS
785 int nid;
786
787 VM_BUG_ON(!nodes_allowed);
788
789 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
790 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 791
9a76db09 792 return nid;
e8c5c824
LS
793}
794
795/*
796 * Free huge page from pool from next node to free.
797 * Attempt to keep persistent huge pages more or less
798 * balanced over allowed nodes.
799 * Called with hugetlb_lock locked.
800 */
6ae11b27
LS
801static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
802 bool acct_surplus)
e8c5c824
LS
803{
804 int start_nid;
805 int next_nid;
806 int ret = 0;
807
6ae11b27 808 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
809 next_nid = start_nid;
810
811 do {
685f3457
LS
812 /*
813 * If we're returning unused surplus pages, only examine
814 * nodes with surplus pages.
815 */
816 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
817 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
818 struct page *page =
819 list_entry(h->hugepage_freelists[next_nid].next,
820 struct page, lru);
821 list_del(&page->lru);
822 h->free_huge_pages--;
823 h->free_huge_pages_node[next_nid]--;
685f3457
LS
824 if (acct_surplus) {
825 h->surplus_huge_pages--;
826 h->surplus_huge_pages_node[next_nid]--;
827 }
e8c5c824
LS
828 update_and_free_page(h, page);
829 ret = 1;
9a76db09 830 break;
e8c5c824 831 }
6ae11b27 832 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 833 } while (next_nid != start_nid);
e8c5c824
LS
834
835 return ret;
836}
837
bf50bab2 838static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
839{
840 struct page *page;
bf50bab2 841 unsigned int r_nid;
7893d1d5 842
aa888a74
AK
843 if (h->order >= MAX_ORDER)
844 return NULL;
845
d1c3fb1f
NA
846 /*
847 * Assume we will successfully allocate the surplus page to
848 * prevent racing processes from causing the surplus to exceed
849 * overcommit
850 *
851 * This however introduces a different race, where a process B
852 * tries to grow the static hugepage pool while alloc_pages() is
853 * called by process A. B will only examine the per-node
854 * counters in determining if surplus huge pages can be
855 * converted to normal huge pages in adjust_pool_surplus(). A
856 * won't be able to increment the per-node counter, until the
857 * lock is dropped by B, but B doesn't drop hugetlb_lock until
858 * no more huge pages can be converted from surplus to normal
859 * state (and doesn't try to convert again). Thus, we have a
860 * case where a surplus huge page exists, the pool is grown, and
861 * the surplus huge page still exists after, even though it
862 * should just have been converted to a normal huge page. This
863 * does not leak memory, though, as the hugepage will be freed
864 * once it is out of use. It also does not allow the counters to
865 * go out of whack in adjust_pool_surplus() as we don't modify
866 * the node values until we've gotten the hugepage and only the
867 * per-node value is checked there.
868 */
869 spin_lock(&hugetlb_lock);
a5516438 870 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
871 spin_unlock(&hugetlb_lock);
872 return NULL;
873 } else {
a5516438
AK
874 h->nr_huge_pages++;
875 h->surplus_huge_pages++;
d1c3fb1f
NA
876 }
877 spin_unlock(&hugetlb_lock);
878
bf50bab2
NH
879 if (nid == NUMA_NO_NODE)
880 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
881 __GFP_REPEAT|__GFP_NOWARN,
882 huge_page_order(h));
883 else
884 page = alloc_pages_exact_node(nid,
885 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
886 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 887
caff3a2c
GS
888 if (page && arch_prepare_hugepage(page)) {
889 __free_pages(page, huge_page_order(h));
ea5768c7 890 page = NULL;
caff3a2c
GS
891 }
892
d1c3fb1f 893 spin_lock(&hugetlb_lock);
7893d1d5 894 if (page) {
0edaecfa 895 INIT_LIST_HEAD(&page->lru);
bf50bab2 896 r_nid = page_to_nid(page);
7893d1d5 897 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
898 /*
899 * We incremented the global counters already
900 */
bf50bab2
NH
901 h->nr_huge_pages_node[r_nid]++;
902 h->surplus_huge_pages_node[r_nid]++;
3b116300 903 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 904 } else {
a5516438
AK
905 h->nr_huge_pages--;
906 h->surplus_huge_pages--;
3b116300 907 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 908 }
d1c3fb1f 909 spin_unlock(&hugetlb_lock);
7893d1d5
AL
910
911 return page;
912}
913
bf50bab2
NH
914/*
915 * This allocation function is useful in the context where vma is irrelevant.
916 * E.g. soft-offlining uses this function because it only cares physical
917 * address of error page.
918 */
919struct page *alloc_huge_page_node(struct hstate *h, int nid)
920{
921 struct page *page;
922
923 spin_lock(&hugetlb_lock);
924 page = dequeue_huge_page_node(h, nid);
925 spin_unlock(&hugetlb_lock);
926
927 if (!page)
928 page = alloc_buddy_huge_page(h, nid);
929
930 return page;
931}
932
e4e574b7 933/*
25985edc 934 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
935 * of size 'delta'.
936 */
a5516438 937static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
938{
939 struct list_head surplus_list;
940 struct page *page, *tmp;
941 int ret, i;
942 int needed, allocated;
28073b02 943 bool alloc_ok = true;
e4e574b7 944
a5516438 945 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 946 if (needed <= 0) {
a5516438 947 h->resv_huge_pages += delta;
e4e574b7 948 return 0;
ac09b3a1 949 }
e4e574b7
AL
950
951 allocated = 0;
952 INIT_LIST_HEAD(&surplus_list);
953
954 ret = -ENOMEM;
955retry:
956 spin_unlock(&hugetlb_lock);
957 for (i = 0; i < needed; i++) {
bf50bab2 958 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
959 if (!page) {
960 alloc_ok = false;
961 break;
962 }
e4e574b7
AL
963 list_add(&page->lru, &surplus_list);
964 }
28073b02 965 allocated += i;
e4e574b7
AL
966
967 /*
968 * After retaking hugetlb_lock, we need to recalculate 'needed'
969 * because either resv_huge_pages or free_huge_pages may have changed.
970 */
971 spin_lock(&hugetlb_lock);
a5516438
AK
972 needed = (h->resv_huge_pages + delta) -
973 (h->free_huge_pages + allocated);
28073b02
HD
974 if (needed > 0) {
975 if (alloc_ok)
976 goto retry;
977 /*
978 * We were not able to allocate enough pages to
979 * satisfy the entire reservation so we free what
980 * we've allocated so far.
981 */
982 goto free;
983 }
e4e574b7
AL
984 /*
985 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 986 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 987 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
988 * allocator. Commit the entire reservation here to prevent another
989 * process from stealing the pages as they are added to the pool but
990 * before they are reserved.
e4e574b7
AL
991 */
992 needed += allocated;
a5516438 993 h->resv_huge_pages += delta;
e4e574b7 994 ret = 0;
a9869b83 995
19fc3f0a 996 /* Free the needed pages to the hugetlb pool */
e4e574b7 997 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
998 if ((--needed) < 0)
999 break;
a9869b83
NH
1000 /*
1001 * This page is now managed by the hugetlb allocator and has
1002 * no users -- drop the buddy allocator's reference.
1003 */
1004 put_page_testzero(page);
1005 VM_BUG_ON(page_count(page));
a5516438 1006 enqueue_huge_page(h, page);
19fc3f0a 1007 }
28073b02 1008free:
b0365c8d 1009 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1010
1011 /* Free unnecessary surplus pages to the buddy allocator */
1012 if (!list_empty(&surplus_list)) {
19fc3f0a 1013 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
a9869b83 1014 put_page(page);
af767cbd 1015 }
e4e574b7 1016 }
a9869b83 1017 spin_lock(&hugetlb_lock);
e4e574b7
AL
1018
1019 return ret;
1020}
1021
1022/*
1023 * When releasing a hugetlb pool reservation, any surplus pages that were
1024 * allocated to satisfy the reservation must be explicitly freed if they were
1025 * never used.
685f3457 1026 * Called with hugetlb_lock held.
e4e574b7 1027 */
a5516438
AK
1028static void return_unused_surplus_pages(struct hstate *h,
1029 unsigned long unused_resv_pages)
e4e574b7 1030{
e4e574b7
AL
1031 unsigned long nr_pages;
1032
ac09b3a1 1033 /* Uncommit the reservation */
a5516438 1034 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1035
aa888a74
AK
1036 /* Cannot return gigantic pages currently */
1037 if (h->order >= MAX_ORDER)
1038 return;
1039
a5516438 1040 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1041
685f3457
LS
1042 /*
1043 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1044 * evenly across all nodes with memory. Iterate across these nodes
1045 * until we can no longer free unreserved surplus pages. This occurs
1046 * when the nodes with surplus pages have no free pages.
1047 * free_pool_huge_page() will balance the the freed pages across the
1048 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1049 */
1050 while (nr_pages--) {
9b5e5d0f 1051 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 1052 break;
e4e574b7
AL
1053 }
1054}
1055
c37f9fb1
AW
1056/*
1057 * Determine if the huge page at addr within the vma has an associated
1058 * reservation. Where it does not we will need to logically increase
90481622
DG
1059 * reservation and actually increase subpool usage before an allocation
1060 * can occur. Where any new reservation would be required the
1061 * reservation change is prepared, but not committed. Once the page
1062 * has been allocated from the subpool and instantiated the change should
1063 * be committed via vma_commit_reservation. No action is required on
1064 * failure.
c37f9fb1 1065 */
e2f17d94 1066static long vma_needs_reservation(struct hstate *h,
a5516438 1067 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1068{
1069 struct address_space *mapping = vma->vm_file->f_mapping;
1070 struct inode *inode = mapping->host;
1071
f83a275d 1072 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1073 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1074 return region_chg(&inode->i_mapping->private_list,
1075 idx, idx + 1);
1076
84afd99b
AW
1077 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1078 return 1;
c37f9fb1 1079
84afd99b 1080 } else {
e2f17d94 1081 long err;
a5516438 1082 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1083 struct resv_map *reservations = vma_resv_map(vma);
1084
1085 err = region_chg(&reservations->regions, idx, idx + 1);
1086 if (err < 0)
1087 return err;
1088 return 0;
1089 }
c37f9fb1 1090}
a5516438
AK
1091static void vma_commit_reservation(struct hstate *h,
1092 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1093{
1094 struct address_space *mapping = vma->vm_file->f_mapping;
1095 struct inode *inode = mapping->host;
1096
f83a275d 1097 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1098 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1099 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1100
1101 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1102 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1103 struct resv_map *reservations = vma_resv_map(vma);
1104
1105 /* Mark this page used in the map. */
1106 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1107 }
1108}
1109
a1e78772 1110static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1111 unsigned long addr, int avoid_reserve)
1da177e4 1112{
90481622 1113 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1114 struct hstate *h = hstate_vma(vma);
348ea204 1115 struct page *page;
e2f17d94 1116 long chg;
a1e78772
MG
1117
1118 /*
90481622
DG
1119 * Processes that did not create the mapping will have no
1120 * reserves and will not have accounted against subpool
1121 * limit. Check that the subpool limit can be made before
1122 * satisfying the allocation MAP_NORESERVE mappings may also
1123 * need pages and subpool limit allocated allocated if no reserve
1124 * mapping overlaps.
a1e78772 1125 */
a5516438 1126 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1127 if (chg < 0)
76dcee75 1128 return ERR_PTR(-ENOMEM);
c37f9fb1 1129 if (chg)
90481622 1130 if (hugepage_subpool_get_pages(spool, chg))
76dcee75 1131 return ERR_PTR(-ENOSPC);
1da177e4
LT
1132
1133 spin_lock(&hugetlb_lock);
a5516438 1134 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1135 spin_unlock(&hugetlb_lock);
b45b5bd6 1136
68842c9b 1137 if (!page) {
bf50bab2 1138 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1139 if (!page) {
90481622 1140 hugepage_subpool_put_pages(spool, chg);
76dcee75 1141 return ERR_PTR(-ENOSPC);
68842c9b
KC
1142 }
1143 }
348ea204 1144
90481622 1145 set_page_private(page, (unsigned long)spool);
90d8b7e6 1146
a5516438 1147 vma_commit_reservation(h, vma, addr);
c37f9fb1 1148
90d8b7e6 1149 return page;
b45b5bd6
DG
1150}
1151
91f47662 1152int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1153{
1154 struct huge_bootmem_page *m;
9b5e5d0f 1155 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1156
1157 while (nr_nodes) {
1158 void *addr;
1159
1160 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1161 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1162 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1163 huge_page_size(h), huge_page_size(h), 0);
1164
1165 if (addr) {
1166 /*
1167 * Use the beginning of the huge page to store the
1168 * huge_bootmem_page struct (until gather_bootmem
1169 * puts them into the mem_map).
1170 */
1171 m = addr;
91f47662 1172 goto found;
aa888a74 1173 }
aa888a74
AK
1174 nr_nodes--;
1175 }
1176 return 0;
1177
1178found:
1179 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1180 /* Put them into a private list first because mem_map is not up yet */
1181 list_add(&m->list, &huge_boot_pages);
1182 m->hstate = h;
1183 return 1;
1184}
1185
18229df5
AW
1186static void prep_compound_huge_page(struct page *page, int order)
1187{
1188 if (unlikely(order > (MAX_ORDER - 1)))
1189 prep_compound_gigantic_page(page, order);
1190 else
1191 prep_compound_page(page, order);
1192}
1193
aa888a74
AK
1194/* Put bootmem huge pages into the standard lists after mem_map is up */
1195static void __init gather_bootmem_prealloc(void)
1196{
1197 struct huge_bootmem_page *m;
1198
1199 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1200 struct hstate *h = m->hstate;
ee8f248d
BB
1201 struct page *page;
1202
1203#ifdef CONFIG_HIGHMEM
1204 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1205 free_bootmem_late((unsigned long)m,
1206 sizeof(struct huge_bootmem_page));
1207#else
1208 page = virt_to_page(m);
1209#endif
aa888a74
AK
1210 __ClearPageReserved(page);
1211 WARN_ON(page_count(page) != 1);
18229df5 1212 prep_compound_huge_page(page, h->order);
aa888a74 1213 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1214 /*
1215 * If we had gigantic hugepages allocated at boot time, we need
1216 * to restore the 'stolen' pages to totalram_pages in order to
1217 * fix confusing memory reports from free(1) and another
1218 * side-effects, like CommitLimit going negative.
1219 */
1220 if (h->order > (MAX_ORDER - 1))
1221 totalram_pages += 1 << h->order;
aa888a74
AK
1222 }
1223}
1224
8faa8b07 1225static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1226{
1227 unsigned long i;
a5516438 1228
e5ff2159 1229 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1230 if (h->order >= MAX_ORDER) {
1231 if (!alloc_bootmem_huge_page(h))
1232 break;
9b5e5d0f
LS
1233 } else if (!alloc_fresh_huge_page(h,
1234 &node_states[N_HIGH_MEMORY]))
1da177e4 1235 break;
1da177e4 1236 }
8faa8b07 1237 h->max_huge_pages = i;
e5ff2159
AK
1238}
1239
1240static void __init hugetlb_init_hstates(void)
1241{
1242 struct hstate *h;
1243
1244 for_each_hstate(h) {
8faa8b07
AK
1245 /* oversize hugepages were init'ed in early boot */
1246 if (h->order < MAX_ORDER)
1247 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1248 }
1249}
1250
4abd32db
AK
1251static char * __init memfmt(char *buf, unsigned long n)
1252{
1253 if (n >= (1UL << 30))
1254 sprintf(buf, "%lu GB", n >> 30);
1255 else if (n >= (1UL << 20))
1256 sprintf(buf, "%lu MB", n >> 20);
1257 else
1258 sprintf(buf, "%lu KB", n >> 10);
1259 return buf;
1260}
1261
e5ff2159
AK
1262static void __init report_hugepages(void)
1263{
1264 struct hstate *h;
1265
1266 for_each_hstate(h) {
4abd32db
AK
1267 char buf[32];
1268 printk(KERN_INFO "HugeTLB registered %s page size, "
1269 "pre-allocated %ld pages\n",
1270 memfmt(buf, huge_page_size(h)),
1271 h->free_huge_pages);
e5ff2159
AK
1272 }
1273}
1274
1da177e4 1275#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1276static void try_to_free_low(struct hstate *h, unsigned long count,
1277 nodemask_t *nodes_allowed)
1da177e4 1278{
4415cc8d
CL
1279 int i;
1280
aa888a74
AK
1281 if (h->order >= MAX_ORDER)
1282 return;
1283
6ae11b27 1284 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1285 struct page *page, *next;
a5516438
AK
1286 struct list_head *freel = &h->hugepage_freelists[i];
1287 list_for_each_entry_safe(page, next, freel, lru) {
1288 if (count >= h->nr_huge_pages)
6b0c880d 1289 return;
1da177e4
LT
1290 if (PageHighMem(page))
1291 continue;
1292 list_del(&page->lru);
e5ff2159 1293 update_and_free_page(h, page);
a5516438
AK
1294 h->free_huge_pages--;
1295 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1296 }
1297 }
1298}
1299#else
6ae11b27
LS
1300static inline void try_to_free_low(struct hstate *h, unsigned long count,
1301 nodemask_t *nodes_allowed)
1da177e4
LT
1302{
1303}
1304#endif
1305
20a0307c
WF
1306/*
1307 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1308 * balanced by operating on them in a round-robin fashion.
1309 * Returns 1 if an adjustment was made.
1310 */
6ae11b27
LS
1311static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1312 int delta)
20a0307c 1313{
e8c5c824 1314 int start_nid, next_nid;
20a0307c
WF
1315 int ret = 0;
1316
1317 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1318
e8c5c824 1319 if (delta < 0)
6ae11b27 1320 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1321 else
6ae11b27 1322 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1323 next_nid = start_nid;
1324
1325 do {
1326 int nid = next_nid;
1327 if (delta < 0) {
e8c5c824
LS
1328 /*
1329 * To shrink on this node, there must be a surplus page
1330 */
9a76db09 1331 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1332 next_nid = hstate_next_node_to_alloc(h,
1333 nodes_allowed);
e8c5c824 1334 continue;
9a76db09 1335 }
e8c5c824
LS
1336 }
1337 if (delta > 0) {
e8c5c824
LS
1338 /*
1339 * Surplus cannot exceed the total number of pages
1340 */
1341 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1342 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1343 next_nid = hstate_next_node_to_free(h,
1344 nodes_allowed);
e8c5c824 1345 continue;
9a76db09 1346 }
e8c5c824 1347 }
20a0307c
WF
1348
1349 h->surplus_huge_pages += delta;
1350 h->surplus_huge_pages_node[nid] += delta;
1351 ret = 1;
1352 break;
e8c5c824 1353 } while (next_nid != start_nid);
20a0307c 1354
20a0307c
WF
1355 return ret;
1356}
1357
a5516438 1358#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1359static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1360 nodemask_t *nodes_allowed)
1da177e4 1361{
7893d1d5 1362 unsigned long min_count, ret;
1da177e4 1363
aa888a74
AK
1364 if (h->order >= MAX_ORDER)
1365 return h->max_huge_pages;
1366
7893d1d5
AL
1367 /*
1368 * Increase the pool size
1369 * First take pages out of surplus state. Then make up the
1370 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1371 *
1372 * We might race with alloc_buddy_huge_page() here and be unable
1373 * to convert a surplus huge page to a normal huge page. That is
1374 * not critical, though, it just means the overall size of the
1375 * pool might be one hugepage larger than it needs to be, but
1376 * within all the constraints specified by the sysctls.
7893d1d5 1377 */
1da177e4 1378 spin_lock(&hugetlb_lock);
a5516438 1379 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1380 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1381 break;
1382 }
1383
a5516438 1384 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1385 /*
1386 * If this allocation races such that we no longer need the
1387 * page, free_huge_page will handle it by freeing the page
1388 * and reducing the surplus.
1389 */
1390 spin_unlock(&hugetlb_lock);
6ae11b27 1391 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1392 spin_lock(&hugetlb_lock);
1393 if (!ret)
1394 goto out;
1395
536240f2
MG
1396 /* Bail for signals. Probably ctrl-c from user */
1397 if (signal_pending(current))
1398 goto out;
7893d1d5 1399 }
7893d1d5
AL
1400
1401 /*
1402 * Decrease the pool size
1403 * First return free pages to the buddy allocator (being careful
1404 * to keep enough around to satisfy reservations). Then place
1405 * pages into surplus state as needed so the pool will shrink
1406 * to the desired size as pages become free.
d1c3fb1f
NA
1407 *
1408 * By placing pages into the surplus state independent of the
1409 * overcommit value, we are allowing the surplus pool size to
1410 * exceed overcommit. There are few sane options here. Since
1411 * alloc_buddy_huge_page() is checking the global counter,
1412 * though, we'll note that we're not allowed to exceed surplus
1413 * and won't grow the pool anywhere else. Not until one of the
1414 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1415 */
a5516438 1416 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1417 min_count = max(count, min_count);
6ae11b27 1418 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1419 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1420 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1421 break;
1da177e4 1422 }
a5516438 1423 while (count < persistent_huge_pages(h)) {
6ae11b27 1424 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1425 break;
1426 }
1427out:
a5516438 1428 ret = persistent_huge_pages(h);
1da177e4 1429 spin_unlock(&hugetlb_lock);
7893d1d5 1430 return ret;
1da177e4
LT
1431}
1432
a3437870
NA
1433#define HSTATE_ATTR_RO(_name) \
1434 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1435
1436#define HSTATE_ATTR(_name) \
1437 static struct kobj_attribute _name##_attr = \
1438 __ATTR(_name, 0644, _name##_show, _name##_store)
1439
1440static struct kobject *hugepages_kobj;
1441static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1442
9a305230
LS
1443static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1444
1445static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1446{
1447 int i;
9a305230 1448
a3437870 1449 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1450 if (hstate_kobjs[i] == kobj) {
1451 if (nidp)
1452 *nidp = NUMA_NO_NODE;
a3437870 1453 return &hstates[i];
9a305230
LS
1454 }
1455
1456 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1457}
1458
06808b08 1459static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1460 struct kobj_attribute *attr, char *buf)
1461{
9a305230
LS
1462 struct hstate *h;
1463 unsigned long nr_huge_pages;
1464 int nid;
1465
1466 h = kobj_to_hstate(kobj, &nid);
1467 if (nid == NUMA_NO_NODE)
1468 nr_huge_pages = h->nr_huge_pages;
1469 else
1470 nr_huge_pages = h->nr_huge_pages_node[nid];
1471
1472 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1473}
adbe8726 1474
06808b08
LS
1475static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1476 struct kobject *kobj, struct kobj_attribute *attr,
1477 const char *buf, size_t len)
a3437870
NA
1478{
1479 int err;
9a305230 1480 int nid;
06808b08 1481 unsigned long count;
9a305230 1482 struct hstate *h;
bad44b5b 1483 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1484
06808b08 1485 err = strict_strtoul(buf, 10, &count);
73ae31e5 1486 if (err)
adbe8726 1487 goto out;
a3437870 1488
9a305230 1489 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1490 if (h->order >= MAX_ORDER) {
1491 err = -EINVAL;
1492 goto out;
1493 }
1494
9a305230
LS
1495 if (nid == NUMA_NO_NODE) {
1496 /*
1497 * global hstate attribute
1498 */
1499 if (!(obey_mempolicy &&
1500 init_nodemask_of_mempolicy(nodes_allowed))) {
1501 NODEMASK_FREE(nodes_allowed);
1502 nodes_allowed = &node_states[N_HIGH_MEMORY];
1503 }
1504 } else if (nodes_allowed) {
1505 /*
1506 * per node hstate attribute: adjust count to global,
1507 * but restrict alloc/free to the specified node.
1508 */
1509 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1510 init_nodemask_of_node(nodes_allowed, nid);
1511 } else
1512 nodes_allowed = &node_states[N_HIGH_MEMORY];
1513
06808b08 1514 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1515
9b5e5d0f 1516 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1517 NODEMASK_FREE(nodes_allowed);
1518
1519 return len;
adbe8726
EM
1520out:
1521 NODEMASK_FREE(nodes_allowed);
1522 return err;
06808b08
LS
1523}
1524
1525static ssize_t nr_hugepages_show(struct kobject *kobj,
1526 struct kobj_attribute *attr, char *buf)
1527{
1528 return nr_hugepages_show_common(kobj, attr, buf);
1529}
1530
1531static ssize_t nr_hugepages_store(struct kobject *kobj,
1532 struct kobj_attribute *attr, const char *buf, size_t len)
1533{
1534 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1535}
1536HSTATE_ATTR(nr_hugepages);
1537
06808b08
LS
1538#ifdef CONFIG_NUMA
1539
1540/*
1541 * hstate attribute for optionally mempolicy-based constraint on persistent
1542 * huge page alloc/free.
1543 */
1544static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1545 struct kobj_attribute *attr, char *buf)
1546{
1547 return nr_hugepages_show_common(kobj, attr, buf);
1548}
1549
1550static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1551 struct kobj_attribute *attr, const char *buf, size_t len)
1552{
1553 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1554}
1555HSTATE_ATTR(nr_hugepages_mempolicy);
1556#endif
1557
1558
a3437870
NA
1559static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1560 struct kobj_attribute *attr, char *buf)
1561{
9a305230 1562 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1563 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1564}
adbe8726 1565
a3437870
NA
1566static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1567 struct kobj_attribute *attr, const char *buf, size_t count)
1568{
1569 int err;
1570 unsigned long input;
9a305230 1571 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1572
adbe8726
EM
1573 if (h->order >= MAX_ORDER)
1574 return -EINVAL;
1575
a3437870
NA
1576 err = strict_strtoul(buf, 10, &input);
1577 if (err)
73ae31e5 1578 return err;
a3437870
NA
1579
1580 spin_lock(&hugetlb_lock);
1581 h->nr_overcommit_huge_pages = input;
1582 spin_unlock(&hugetlb_lock);
1583
1584 return count;
1585}
1586HSTATE_ATTR(nr_overcommit_hugepages);
1587
1588static ssize_t free_hugepages_show(struct kobject *kobj,
1589 struct kobj_attribute *attr, char *buf)
1590{
9a305230
LS
1591 struct hstate *h;
1592 unsigned long free_huge_pages;
1593 int nid;
1594
1595 h = kobj_to_hstate(kobj, &nid);
1596 if (nid == NUMA_NO_NODE)
1597 free_huge_pages = h->free_huge_pages;
1598 else
1599 free_huge_pages = h->free_huge_pages_node[nid];
1600
1601 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1602}
1603HSTATE_ATTR_RO(free_hugepages);
1604
1605static ssize_t resv_hugepages_show(struct kobject *kobj,
1606 struct kobj_attribute *attr, char *buf)
1607{
9a305230 1608 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1609 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1610}
1611HSTATE_ATTR_RO(resv_hugepages);
1612
1613static ssize_t surplus_hugepages_show(struct kobject *kobj,
1614 struct kobj_attribute *attr, char *buf)
1615{
9a305230
LS
1616 struct hstate *h;
1617 unsigned long surplus_huge_pages;
1618 int nid;
1619
1620 h = kobj_to_hstate(kobj, &nid);
1621 if (nid == NUMA_NO_NODE)
1622 surplus_huge_pages = h->surplus_huge_pages;
1623 else
1624 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1625
1626 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1627}
1628HSTATE_ATTR_RO(surplus_hugepages);
1629
1630static struct attribute *hstate_attrs[] = {
1631 &nr_hugepages_attr.attr,
1632 &nr_overcommit_hugepages_attr.attr,
1633 &free_hugepages_attr.attr,
1634 &resv_hugepages_attr.attr,
1635 &surplus_hugepages_attr.attr,
06808b08
LS
1636#ifdef CONFIG_NUMA
1637 &nr_hugepages_mempolicy_attr.attr,
1638#endif
a3437870
NA
1639 NULL,
1640};
1641
1642static struct attribute_group hstate_attr_group = {
1643 .attrs = hstate_attrs,
1644};
1645
094e9539
JM
1646static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1647 struct kobject **hstate_kobjs,
1648 struct attribute_group *hstate_attr_group)
a3437870
NA
1649{
1650 int retval;
972dc4de 1651 int hi = hstate_index(h);
a3437870 1652
9a305230
LS
1653 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1654 if (!hstate_kobjs[hi])
a3437870
NA
1655 return -ENOMEM;
1656
9a305230 1657 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1658 if (retval)
9a305230 1659 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1660
1661 return retval;
1662}
1663
1664static void __init hugetlb_sysfs_init(void)
1665{
1666 struct hstate *h;
1667 int err;
1668
1669 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1670 if (!hugepages_kobj)
1671 return;
1672
1673 for_each_hstate(h) {
9a305230
LS
1674 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1675 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1676 if (err)
1677 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1678 h->name);
1679 }
1680}
1681
9a305230
LS
1682#ifdef CONFIG_NUMA
1683
1684/*
1685 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1686 * with node devices in node_devices[] using a parallel array. The array
1687 * index of a node device or _hstate == node id.
1688 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1689 * the base kernel, on the hugetlb module.
1690 */
1691struct node_hstate {
1692 struct kobject *hugepages_kobj;
1693 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1694};
1695struct node_hstate node_hstates[MAX_NUMNODES];
1696
1697/*
10fbcf4c 1698 * A subset of global hstate attributes for node devices
9a305230
LS
1699 */
1700static struct attribute *per_node_hstate_attrs[] = {
1701 &nr_hugepages_attr.attr,
1702 &free_hugepages_attr.attr,
1703 &surplus_hugepages_attr.attr,
1704 NULL,
1705};
1706
1707static struct attribute_group per_node_hstate_attr_group = {
1708 .attrs = per_node_hstate_attrs,
1709};
1710
1711/*
10fbcf4c 1712 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1713 * Returns node id via non-NULL nidp.
1714 */
1715static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1716{
1717 int nid;
1718
1719 for (nid = 0; nid < nr_node_ids; nid++) {
1720 struct node_hstate *nhs = &node_hstates[nid];
1721 int i;
1722 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1723 if (nhs->hstate_kobjs[i] == kobj) {
1724 if (nidp)
1725 *nidp = nid;
1726 return &hstates[i];
1727 }
1728 }
1729
1730 BUG();
1731 return NULL;
1732}
1733
1734/*
10fbcf4c 1735 * Unregister hstate attributes from a single node device.
9a305230
LS
1736 * No-op if no hstate attributes attached.
1737 */
1738void hugetlb_unregister_node(struct node *node)
1739{
1740 struct hstate *h;
10fbcf4c 1741 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1742
1743 if (!nhs->hugepages_kobj)
9b5e5d0f 1744 return; /* no hstate attributes */
9a305230 1745
972dc4de
AK
1746 for_each_hstate(h) {
1747 int idx = hstate_index(h);
1748 if (nhs->hstate_kobjs[idx]) {
1749 kobject_put(nhs->hstate_kobjs[idx]);
1750 nhs->hstate_kobjs[idx] = NULL;
9a305230 1751 }
972dc4de 1752 }
9a305230
LS
1753
1754 kobject_put(nhs->hugepages_kobj);
1755 nhs->hugepages_kobj = NULL;
1756}
1757
1758/*
10fbcf4c 1759 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1760 * that have them.
1761 */
1762static void hugetlb_unregister_all_nodes(void)
1763{
1764 int nid;
1765
1766 /*
10fbcf4c 1767 * disable node device registrations.
9a305230
LS
1768 */
1769 register_hugetlbfs_with_node(NULL, NULL);
1770
1771 /*
1772 * remove hstate attributes from any nodes that have them.
1773 */
1774 for (nid = 0; nid < nr_node_ids; nid++)
1775 hugetlb_unregister_node(&node_devices[nid]);
1776}
1777
1778/*
10fbcf4c 1779 * Register hstate attributes for a single node device.
9a305230
LS
1780 * No-op if attributes already registered.
1781 */
1782void hugetlb_register_node(struct node *node)
1783{
1784 struct hstate *h;
10fbcf4c 1785 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1786 int err;
1787
1788 if (nhs->hugepages_kobj)
1789 return; /* already allocated */
1790
1791 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1792 &node->dev.kobj);
9a305230
LS
1793 if (!nhs->hugepages_kobj)
1794 return;
1795
1796 for_each_hstate(h) {
1797 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1798 nhs->hstate_kobjs,
1799 &per_node_hstate_attr_group);
1800 if (err) {
1801 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1802 " for node %d\n",
10fbcf4c 1803 h->name, node->dev.id);
9a305230
LS
1804 hugetlb_unregister_node(node);
1805 break;
1806 }
1807 }
1808}
1809
1810/*
9b5e5d0f 1811 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1812 * devices of nodes that have memory. All on-line nodes should have
1813 * registered their associated device by this time.
9a305230
LS
1814 */
1815static void hugetlb_register_all_nodes(void)
1816{
1817 int nid;
1818
9b5e5d0f 1819 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230 1820 struct node *node = &node_devices[nid];
10fbcf4c 1821 if (node->dev.id == nid)
9a305230
LS
1822 hugetlb_register_node(node);
1823 }
1824
1825 /*
10fbcf4c 1826 * Let the node device driver know we're here so it can
9a305230
LS
1827 * [un]register hstate attributes on node hotplug.
1828 */
1829 register_hugetlbfs_with_node(hugetlb_register_node,
1830 hugetlb_unregister_node);
1831}
1832#else /* !CONFIG_NUMA */
1833
1834static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1835{
1836 BUG();
1837 if (nidp)
1838 *nidp = -1;
1839 return NULL;
1840}
1841
1842static void hugetlb_unregister_all_nodes(void) { }
1843
1844static void hugetlb_register_all_nodes(void) { }
1845
1846#endif
1847
a3437870
NA
1848static void __exit hugetlb_exit(void)
1849{
1850 struct hstate *h;
1851
9a305230
LS
1852 hugetlb_unregister_all_nodes();
1853
a3437870 1854 for_each_hstate(h) {
972dc4de 1855 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1856 }
1857
1858 kobject_put(hugepages_kobj);
1859}
1860module_exit(hugetlb_exit);
1861
1862static int __init hugetlb_init(void)
1863{
0ef89d25
BH
1864 /* Some platform decide whether they support huge pages at boot
1865 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1866 * there is no such support
1867 */
1868 if (HPAGE_SHIFT == 0)
1869 return 0;
a3437870 1870
e11bfbfc
NP
1871 if (!size_to_hstate(default_hstate_size)) {
1872 default_hstate_size = HPAGE_SIZE;
1873 if (!size_to_hstate(default_hstate_size))
1874 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1875 }
972dc4de 1876 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1877 if (default_hstate_max_huge_pages)
1878 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1879
1880 hugetlb_init_hstates();
1881
aa888a74
AK
1882 gather_bootmem_prealloc();
1883
a3437870
NA
1884 report_hugepages();
1885
1886 hugetlb_sysfs_init();
1887
9a305230
LS
1888 hugetlb_register_all_nodes();
1889
a3437870
NA
1890 return 0;
1891}
1892module_init(hugetlb_init);
1893
1894/* Should be called on processing a hugepagesz=... option */
1895void __init hugetlb_add_hstate(unsigned order)
1896{
1897 struct hstate *h;
8faa8b07
AK
1898 unsigned long i;
1899
a3437870
NA
1900 if (size_to_hstate(PAGE_SIZE << order)) {
1901 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1902 return;
1903 }
47d38344 1904 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1905 BUG_ON(order == 0);
47d38344 1906 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1907 h->order = order;
1908 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1909 h->nr_huge_pages = 0;
1910 h->free_huge_pages = 0;
1911 for (i = 0; i < MAX_NUMNODES; ++i)
1912 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1913 INIT_LIST_HEAD(&h->hugepage_activelist);
9b5e5d0f
LS
1914 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1915 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1916 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1917 huge_page_size(h)/1024);
8faa8b07 1918
a3437870
NA
1919 parsed_hstate = h;
1920}
1921
e11bfbfc 1922static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1923{
1924 unsigned long *mhp;
8faa8b07 1925 static unsigned long *last_mhp;
a3437870
NA
1926
1927 /*
47d38344 1928 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1929 * so this hugepages= parameter goes to the "default hstate".
1930 */
47d38344 1931 if (!hugetlb_max_hstate)
a3437870
NA
1932 mhp = &default_hstate_max_huge_pages;
1933 else
1934 mhp = &parsed_hstate->max_huge_pages;
1935
8faa8b07
AK
1936 if (mhp == last_mhp) {
1937 printk(KERN_WARNING "hugepages= specified twice without "
1938 "interleaving hugepagesz=, ignoring\n");
1939 return 1;
1940 }
1941
a3437870
NA
1942 if (sscanf(s, "%lu", mhp) <= 0)
1943 *mhp = 0;
1944
8faa8b07
AK
1945 /*
1946 * Global state is always initialized later in hugetlb_init.
1947 * But we need to allocate >= MAX_ORDER hstates here early to still
1948 * use the bootmem allocator.
1949 */
47d38344 1950 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
1951 hugetlb_hstate_alloc_pages(parsed_hstate);
1952
1953 last_mhp = mhp;
1954
a3437870
NA
1955 return 1;
1956}
e11bfbfc
NP
1957__setup("hugepages=", hugetlb_nrpages_setup);
1958
1959static int __init hugetlb_default_setup(char *s)
1960{
1961 default_hstate_size = memparse(s, &s);
1962 return 1;
1963}
1964__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1965
8a213460
NA
1966static unsigned int cpuset_mems_nr(unsigned int *array)
1967{
1968 int node;
1969 unsigned int nr = 0;
1970
1971 for_each_node_mask(node, cpuset_current_mems_allowed)
1972 nr += array[node];
1973
1974 return nr;
1975}
1976
1977#ifdef CONFIG_SYSCTL
06808b08
LS
1978static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1979 struct ctl_table *table, int write,
1980 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1981{
e5ff2159
AK
1982 struct hstate *h = &default_hstate;
1983 unsigned long tmp;
08d4a246 1984 int ret;
e5ff2159 1985
c033a93c 1986 tmp = h->max_huge_pages;
e5ff2159 1987
adbe8726
EM
1988 if (write && h->order >= MAX_ORDER)
1989 return -EINVAL;
1990
e5ff2159
AK
1991 table->data = &tmp;
1992 table->maxlen = sizeof(unsigned long);
08d4a246
MH
1993 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1994 if (ret)
1995 goto out;
e5ff2159 1996
06808b08 1997 if (write) {
bad44b5b
DR
1998 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1999 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2000 if (!(obey_mempolicy &&
2001 init_nodemask_of_mempolicy(nodes_allowed))) {
2002 NODEMASK_FREE(nodes_allowed);
2003 nodes_allowed = &node_states[N_HIGH_MEMORY];
2004 }
2005 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2006
2007 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
2008 NODEMASK_FREE(nodes_allowed);
2009 }
08d4a246
MH
2010out:
2011 return ret;
1da177e4 2012}
396faf03 2013
06808b08
LS
2014int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2015 void __user *buffer, size_t *length, loff_t *ppos)
2016{
2017
2018 return hugetlb_sysctl_handler_common(false, table, write,
2019 buffer, length, ppos);
2020}
2021
2022#ifdef CONFIG_NUMA
2023int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2024 void __user *buffer, size_t *length, loff_t *ppos)
2025{
2026 return hugetlb_sysctl_handler_common(true, table, write,
2027 buffer, length, ppos);
2028}
2029#endif /* CONFIG_NUMA */
2030
396faf03 2031int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2032 void __user *buffer,
396faf03
MG
2033 size_t *length, loff_t *ppos)
2034{
8d65af78 2035 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2036 if (hugepages_treat_as_movable)
2037 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2038 else
2039 htlb_alloc_mask = GFP_HIGHUSER;
2040 return 0;
2041}
2042
a3d0c6aa 2043int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2044 void __user *buffer,
a3d0c6aa
NA
2045 size_t *length, loff_t *ppos)
2046{
a5516438 2047 struct hstate *h = &default_hstate;
e5ff2159 2048 unsigned long tmp;
08d4a246 2049 int ret;
e5ff2159 2050
c033a93c 2051 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2052
adbe8726
EM
2053 if (write && h->order >= MAX_ORDER)
2054 return -EINVAL;
2055
e5ff2159
AK
2056 table->data = &tmp;
2057 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2058 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2059 if (ret)
2060 goto out;
e5ff2159
AK
2061
2062 if (write) {
2063 spin_lock(&hugetlb_lock);
2064 h->nr_overcommit_huge_pages = tmp;
2065 spin_unlock(&hugetlb_lock);
2066 }
08d4a246
MH
2067out:
2068 return ret;
a3d0c6aa
NA
2069}
2070
1da177e4
LT
2071#endif /* CONFIG_SYSCTL */
2072
e1759c21 2073void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2074{
a5516438 2075 struct hstate *h = &default_hstate;
e1759c21 2076 seq_printf(m,
4f98a2fe
RR
2077 "HugePages_Total: %5lu\n"
2078 "HugePages_Free: %5lu\n"
2079 "HugePages_Rsvd: %5lu\n"
2080 "HugePages_Surp: %5lu\n"
2081 "Hugepagesize: %8lu kB\n",
a5516438
AK
2082 h->nr_huge_pages,
2083 h->free_huge_pages,
2084 h->resv_huge_pages,
2085 h->surplus_huge_pages,
2086 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2087}
2088
2089int hugetlb_report_node_meminfo(int nid, char *buf)
2090{
a5516438 2091 struct hstate *h = &default_hstate;
1da177e4
LT
2092 return sprintf(buf,
2093 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2094 "Node %d HugePages_Free: %5u\n"
2095 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2096 nid, h->nr_huge_pages_node[nid],
2097 nid, h->free_huge_pages_node[nid],
2098 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2099}
2100
1da177e4
LT
2101/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2102unsigned long hugetlb_total_pages(void)
2103{
a5516438
AK
2104 struct hstate *h = &default_hstate;
2105 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 2106}
1da177e4 2107
a5516438 2108static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2109{
2110 int ret = -ENOMEM;
2111
2112 spin_lock(&hugetlb_lock);
2113 /*
2114 * When cpuset is configured, it breaks the strict hugetlb page
2115 * reservation as the accounting is done on a global variable. Such
2116 * reservation is completely rubbish in the presence of cpuset because
2117 * the reservation is not checked against page availability for the
2118 * current cpuset. Application can still potentially OOM'ed by kernel
2119 * with lack of free htlb page in cpuset that the task is in.
2120 * Attempt to enforce strict accounting with cpuset is almost
2121 * impossible (or too ugly) because cpuset is too fluid that
2122 * task or memory node can be dynamically moved between cpusets.
2123 *
2124 * The change of semantics for shared hugetlb mapping with cpuset is
2125 * undesirable. However, in order to preserve some of the semantics,
2126 * we fall back to check against current free page availability as
2127 * a best attempt and hopefully to minimize the impact of changing
2128 * semantics that cpuset has.
2129 */
2130 if (delta > 0) {
a5516438 2131 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2132 goto out;
2133
a5516438
AK
2134 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2135 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2136 goto out;
2137 }
2138 }
2139
2140 ret = 0;
2141 if (delta < 0)
a5516438 2142 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2143
2144out:
2145 spin_unlock(&hugetlb_lock);
2146 return ret;
2147}
2148
84afd99b
AW
2149static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2150{
2151 struct resv_map *reservations = vma_resv_map(vma);
2152
2153 /*
2154 * This new VMA should share its siblings reservation map if present.
2155 * The VMA will only ever have a valid reservation map pointer where
2156 * it is being copied for another still existing VMA. As that VMA
25985edc 2157 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2158 * after this open call completes. It is therefore safe to take a
2159 * new reference here without additional locking.
2160 */
2161 if (reservations)
2162 kref_get(&reservations->refs);
2163}
2164
c50ac050
DH
2165static void resv_map_put(struct vm_area_struct *vma)
2166{
2167 struct resv_map *reservations = vma_resv_map(vma);
2168
2169 if (!reservations)
2170 return;
2171 kref_put(&reservations->refs, resv_map_release);
2172}
2173
a1e78772
MG
2174static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2175{
a5516438 2176 struct hstate *h = hstate_vma(vma);
84afd99b 2177 struct resv_map *reservations = vma_resv_map(vma);
90481622 2178 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2179 unsigned long reserve;
2180 unsigned long start;
2181 unsigned long end;
2182
2183 if (reservations) {
a5516438
AK
2184 start = vma_hugecache_offset(h, vma, vma->vm_start);
2185 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2186
2187 reserve = (end - start) -
2188 region_count(&reservations->regions, start, end);
2189
c50ac050 2190 resv_map_put(vma);
84afd99b 2191
7251ff78 2192 if (reserve) {
a5516438 2193 hugetlb_acct_memory(h, -reserve);
90481622 2194 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2195 }
84afd99b 2196 }
a1e78772
MG
2197}
2198
1da177e4
LT
2199/*
2200 * We cannot handle pagefaults against hugetlb pages at all. They cause
2201 * handle_mm_fault() to try to instantiate regular-sized pages in the
2202 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2203 * this far.
2204 */
d0217ac0 2205static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2206{
2207 BUG();
d0217ac0 2208 return 0;
1da177e4
LT
2209}
2210
f0f37e2f 2211const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2212 .fault = hugetlb_vm_op_fault,
84afd99b 2213 .open = hugetlb_vm_op_open,
a1e78772 2214 .close = hugetlb_vm_op_close,
1da177e4
LT
2215};
2216
1e8f889b
DG
2217static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2218 int writable)
63551ae0
DG
2219{
2220 pte_t entry;
2221
1e8f889b 2222 if (writable) {
63551ae0
DG
2223 entry =
2224 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2225 } else {
7f2e9525 2226 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2227 }
2228 entry = pte_mkyoung(entry);
2229 entry = pte_mkhuge(entry);
d9ed9faa 2230 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2231
2232 return entry;
2233}
2234
1e8f889b
DG
2235static void set_huge_ptep_writable(struct vm_area_struct *vma,
2236 unsigned long address, pte_t *ptep)
2237{
2238 pte_t entry;
2239
7f2e9525 2240 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2241 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2242 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2243}
2244
2245
63551ae0
DG
2246int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2247 struct vm_area_struct *vma)
2248{
2249 pte_t *src_pte, *dst_pte, entry;
2250 struct page *ptepage;
1c59827d 2251 unsigned long addr;
1e8f889b 2252 int cow;
a5516438
AK
2253 struct hstate *h = hstate_vma(vma);
2254 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2255
2256 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2257
a5516438 2258 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2259 src_pte = huge_pte_offset(src, addr);
2260 if (!src_pte)
2261 continue;
a5516438 2262 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2263 if (!dst_pte)
2264 goto nomem;
c5c99429
LW
2265
2266 /* If the pagetables are shared don't copy or take references */
2267 if (dst_pte == src_pte)
2268 continue;
2269
c74df32c 2270 spin_lock(&dst->page_table_lock);
46478758 2271 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2272 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2273 if (cow)
7f2e9525
GS
2274 huge_ptep_set_wrprotect(src, addr, src_pte);
2275 entry = huge_ptep_get(src_pte);
1c59827d
HD
2276 ptepage = pte_page(entry);
2277 get_page(ptepage);
0fe6e20b 2278 page_dup_rmap(ptepage);
1c59827d
HD
2279 set_huge_pte_at(dst, addr, dst_pte, entry);
2280 }
2281 spin_unlock(&src->page_table_lock);
c74df32c 2282 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2283 }
2284 return 0;
2285
2286nomem:
2287 return -ENOMEM;
2288}
2289
290408d4
NH
2290static int is_hugetlb_entry_migration(pte_t pte)
2291{
2292 swp_entry_t swp;
2293
2294 if (huge_pte_none(pte) || pte_present(pte))
2295 return 0;
2296 swp = pte_to_swp_entry(pte);
32f84528 2297 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2298 return 1;
32f84528 2299 else
290408d4
NH
2300 return 0;
2301}
2302
fd6a03ed
NH
2303static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2304{
2305 swp_entry_t swp;
2306
2307 if (huge_pte_none(pte) || pte_present(pte))
2308 return 0;
2309 swp = pte_to_swp_entry(pte);
32f84528 2310 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2311 return 1;
32f84528 2312 else
fd6a03ed
NH
2313 return 0;
2314}
2315
24669e58
AK
2316void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2317 unsigned long start, unsigned long end,
2318 struct page *ref_page)
63551ae0 2319{
24669e58 2320 int force_flush = 0;
63551ae0
DG
2321 struct mm_struct *mm = vma->vm_mm;
2322 unsigned long address;
c7546f8f 2323 pte_t *ptep;
63551ae0
DG
2324 pte_t pte;
2325 struct page *page;
a5516438
AK
2326 struct hstate *h = hstate_vma(vma);
2327 unsigned long sz = huge_page_size(h);
2328
63551ae0 2329 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2330 BUG_ON(start & ~huge_page_mask(h));
2331 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2332
24669e58 2333 tlb_start_vma(tlb, vma);
cddb8a5c 2334 mmu_notifier_invalidate_range_start(mm, start, end);
24669e58 2335again:
508034a3 2336 spin_lock(&mm->page_table_lock);
a5516438 2337 for (address = start; address < end; address += sz) {
c7546f8f 2338 ptep = huge_pte_offset(mm, address);
4c887265 2339 if (!ptep)
c7546f8f
DG
2340 continue;
2341
39dde65c
KC
2342 if (huge_pmd_unshare(mm, &address, ptep))
2343 continue;
2344
6629326b
HD
2345 pte = huge_ptep_get(ptep);
2346 if (huge_pte_none(pte))
2347 continue;
2348
2349 /*
2350 * HWPoisoned hugepage is already unmapped and dropped reference
2351 */
2352 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2353 continue;
2354
2355 page = pte_page(pte);
04f2cbe3
MG
2356 /*
2357 * If a reference page is supplied, it is because a specific
2358 * page is being unmapped, not a range. Ensure the page we
2359 * are about to unmap is the actual page of interest.
2360 */
2361 if (ref_page) {
04f2cbe3
MG
2362 if (page != ref_page)
2363 continue;
2364
2365 /*
2366 * Mark the VMA as having unmapped its page so that
2367 * future faults in this VMA will fail rather than
2368 * looking like data was lost
2369 */
2370 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2371 }
2372
c7546f8f 2373 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2374 tlb_remove_tlb_entry(tlb, ptep, address);
6649a386
KC
2375 if (pte_dirty(pte))
2376 set_page_dirty(page);
9e81130b 2377
24669e58
AK
2378 page_remove_rmap(page);
2379 force_flush = !__tlb_remove_page(tlb, page);
2380 if (force_flush)
2381 break;
9e81130b
HD
2382 /* Bail out after unmapping reference page if supplied */
2383 if (ref_page)
2384 break;
63551ae0 2385 }
cd2934a3 2386 spin_unlock(&mm->page_table_lock);
24669e58
AK
2387 /*
2388 * mmu_gather ran out of room to batch pages, we break out of
2389 * the PTE lock to avoid doing the potential expensive TLB invalidate
2390 * and page-free while holding it.
2391 */
2392 if (force_flush) {
2393 force_flush = 0;
2394 tlb_flush_mmu(tlb);
2395 if (address < end && !ref_page)
2396 goto again;
fe1668ae 2397 }
24669e58
AK
2398 mmu_notifier_invalidate_range_end(mm, start, end);
2399 tlb_end_vma(tlb, vma);
1da177e4 2400}
63551ae0 2401
502717f4 2402void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2403 unsigned long end, struct page *ref_page)
502717f4 2404{
24669e58
AK
2405 struct mm_struct *mm;
2406 struct mmu_gather tlb;
2407
2408 mm = vma->vm_mm;
2409
2410 tlb_gather_mmu(&tlb, mm, 0);
2411 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2412 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2413}
2414
04f2cbe3
MG
2415/*
2416 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2417 * mappping it owns the reserve page for. The intention is to unmap the page
2418 * from other VMAs and let the children be SIGKILLed if they are faulting the
2419 * same region.
2420 */
2a4b3ded
HH
2421static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2422 struct page *page, unsigned long address)
04f2cbe3 2423{
7526674d 2424 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2425 struct vm_area_struct *iter_vma;
2426 struct address_space *mapping;
2427 struct prio_tree_iter iter;
2428 pgoff_t pgoff;
2429
2430 /*
2431 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2432 * from page cache lookup which is in HPAGE_SIZE units.
2433 */
7526674d 2434 address = address & huge_page_mask(h);
0c176d52 2435 pgoff = vma_hugecache_offset(h, vma, address);
90481622 2436 mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
04f2cbe3 2437
4eb2b1dc
MG
2438 /*
2439 * Take the mapping lock for the duration of the table walk. As
2440 * this mapping should be shared between all the VMAs,
2441 * __unmap_hugepage_range() is called as the lock is already held
2442 */
3d48ae45 2443 mutex_lock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2444 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2445 /* Do not unmap the current VMA */
2446 if (iter_vma == vma)
2447 continue;
2448
2449 /*
2450 * Unmap the page from other VMAs without their own reserves.
2451 * They get marked to be SIGKILLed if they fault in these
2452 * areas. This is because a future no-page fault on this VMA
2453 * could insert a zeroed page instead of the data existing
2454 * from the time of fork. This would look like data corruption
2455 */
2456 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2457 unmap_hugepage_range(iter_vma, address,
2458 address + huge_page_size(h), page);
04f2cbe3 2459 }
3d48ae45 2460 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2461
2462 return 1;
2463}
2464
0fe6e20b
NH
2465/*
2466 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2467 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2468 * cannot race with other handlers or page migration.
2469 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2470 */
1e8f889b 2471static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2472 unsigned long address, pte_t *ptep, pte_t pte,
2473 struct page *pagecache_page)
1e8f889b 2474{
a5516438 2475 struct hstate *h = hstate_vma(vma);
1e8f889b 2476 struct page *old_page, *new_page;
79ac6ba4 2477 int avoidcopy;
04f2cbe3 2478 int outside_reserve = 0;
1e8f889b
DG
2479
2480 old_page = pte_page(pte);
2481
04f2cbe3 2482retry_avoidcopy:
1e8f889b
DG
2483 /* If no-one else is actually using this page, avoid the copy
2484 * and just make the page writable */
0fe6e20b 2485 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2486 if (avoidcopy) {
56c9cfb1
NH
2487 if (PageAnon(old_page))
2488 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2489 set_huge_ptep_writable(vma, address, ptep);
83c54070 2490 return 0;
1e8f889b
DG
2491 }
2492
04f2cbe3
MG
2493 /*
2494 * If the process that created a MAP_PRIVATE mapping is about to
2495 * perform a COW due to a shared page count, attempt to satisfy
2496 * the allocation without using the existing reserves. The pagecache
2497 * page is used to determine if the reserve at this address was
2498 * consumed or not. If reserves were used, a partial faulted mapping
2499 * at the time of fork() could consume its reserves on COW instead
2500 * of the full address range.
2501 */
f83a275d 2502 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2503 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2504 old_page != pagecache_page)
2505 outside_reserve = 1;
2506
1e8f889b 2507 page_cache_get(old_page);
b76c8cfb
LW
2508
2509 /* Drop page_table_lock as buddy allocator may be called */
2510 spin_unlock(&mm->page_table_lock);
04f2cbe3 2511 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2512
2fc39cec 2513 if (IS_ERR(new_page)) {
76dcee75 2514 long err = PTR_ERR(new_page);
1e8f889b 2515 page_cache_release(old_page);
04f2cbe3
MG
2516
2517 /*
2518 * If a process owning a MAP_PRIVATE mapping fails to COW,
2519 * it is due to references held by a child and an insufficient
2520 * huge page pool. To guarantee the original mappers
2521 * reliability, unmap the page from child processes. The child
2522 * may get SIGKILLed if it later faults.
2523 */
2524 if (outside_reserve) {
2525 BUG_ON(huge_pte_none(pte));
2526 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2527 BUG_ON(huge_pte_none(pte));
b76c8cfb 2528 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2529 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2530 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2531 goto retry_avoidcopy;
2532 /*
2533 * race occurs while re-acquiring page_table_lock, and
2534 * our job is done.
2535 */
2536 return 0;
04f2cbe3
MG
2537 }
2538 WARN_ON_ONCE(1);
2539 }
2540
b76c8cfb
LW
2541 /* Caller expects lock to be held */
2542 spin_lock(&mm->page_table_lock);
76dcee75
AK
2543 if (err == -ENOMEM)
2544 return VM_FAULT_OOM;
2545 else
2546 return VM_FAULT_SIGBUS;
1e8f889b
DG
2547 }
2548
0fe6e20b
NH
2549 /*
2550 * When the original hugepage is shared one, it does not have
2551 * anon_vma prepared.
2552 */
44e2aa93 2553 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2554 page_cache_release(new_page);
2555 page_cache_release(old_page);
44e2aa93
DN
2556 /* Caller expects lock to be held */
2557 spin_lock(&mm->page_table_lock);
0fe6e20b 2558 return VM_FAULT_OOM;
44e2aa93 2559 }
0fe6e20b 2560
47ad8475
AA
2561 copy_user_huge_page(new_page, old_page, address, vma,
2562 pages_per_huge_page(h));
0ed361de 2563 __SetPageUptodate(new_page);
1e8f889b 2564
b76c8cfb
LW
2565 /*
2566 * Retake the page_table_lock to check for racing updates
2567 * before the page tables are altered
2568 */
2569 spin_lock(&mm->page_table_lock);
a5516438 2570 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2571 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2572 /* Break COW */
3edd4fc9
DD
2573 mmu_notifier_invalidate_range_start(mm,
2574 address & huge_page_mask(h),
2575 (address & huge_page_mask(h)) + huge_page_size(h));
8fe627ec 2576 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2577 set_huge_pte_at(mm, address, ptep,
2578 make_huge_pte(vma, new_page, 1));
0fe6e20b 2579 page_remove_rmap(old_page);
cd67f0d2 2580 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2581 /* Make the old page be freed below */
2582 new_page = old_page;
3edd4fc9
DD
2583 mmu_notifier_invalidate_range_end(mm,
2584 address & huge_page_mask(h),
2585 (address & huge_page_mask(h)) + huge_page_size(h));
1e8f889b
DG
2586 }
2587 page_cache_release(new_page);
2588 page_cache_release(old_page);
83c54070 2589 return 0;
1e8f889b
DG
2590}
2591
04f2cbe3 2592/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2593static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2594 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2595{
2596 struct address_space *mapping;
e7c4b0bf 2597 pgoff_t idx;
04f2cbe3
MG
2598
2599 mapping = vma->vm_file->f_mapping;
a5516438 2600 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2601
2602 return find_lock_page(mapping, idx);
2603}
2604
3ae77f43
HD
2605/*
2606 * Return whether there is a pagecache page to back given address within VMA.
2607 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2608 */
2609static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2610 struct vm_area_struct *vma, unsigned long address)
2611{
2612 struct address_space *mapping;
2613 pgoff_t idx;
2614 struct page *page;
2615
2616 mapping = vma->vm_file->f_mapping;
2617 idx = vma_hugecache_offset(h, vma, address);
2618
2619 page = find_get_page(mapping, idx);
2620 if (page)
2621 put_page(page);
2622 return page != NULL;
2623}
2624
a1ed3dda 2625static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2626 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2627{
a5516438 2628 struct hstate *h = hstate_vma(vma);
ac9b9c66 2629 int ret = VM_FAULT_SIGBUS;
409eb8c2 2630 int anon_rmap = 0;
e7c4b0bf 2631 pgoff_t idx;
4c887265 2632 unsigned long size;
4c887265
AL
2633 struct page *page;
2634 struct address_space *mapping;
1e8f889b 2635 pte_t new_pte;
4c887265 2636
04f2cbe3
MG
2637 /*
2638 * Currently, we are forced to kill the process in the event the
2639 * original mapper has unmapped pages from the child due to a failed
25985edc 2640 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2641 */
2642 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2643 printk(KERN_WARNING
2644 "PID %d killed due to inadequate hugepage pool\n",
2645 current->pid);
2646 return ret;
2647 }
2648
4c887265 2649 mapping = vma->vm_file->f_mapping;
a5516438 2650 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2651
2652 /*
2653 * Use page lock to guard against racing truncation
2654 * before we get page_table_lock.
2655 */
6bda666a
CL
2656retry:
2657 page = find_lock_page(mapping, idx);
2658 if (!page) {
a5516438 2659 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2660 if (idx >= size)
2661 goto out;
04f2cbe3 2662 page = alloc_huge_page(vma, address, 0);
2fc39cec 2663 if (IS_ERR(page)) {
76dcee75
AK
2664 ret = PTR_ERR(page);
2665 if (ret == -ENOMEM)
2666 ret = VM_FAULT_OOM;
2667 else
2668 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2669 goto out;
2670 }
47ad8475 2671 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2672 __SetPageUptodate(page);
ac9b9c66 2673
f83a275d 2674 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2675 int err;
45c682a6 2676 struct inode *inode = mapping->host;
6bda666a
CL
2677
2678 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2679 if (err) {
2680 put_page(page);
6bda666a
CL
2681 if (err == -EEXIST)
2682 goto retry;
2683 goto out;
2684 }
45c682a6
KC
2685
2686 spin_lock(&inode->i_lock);
a5516438 2687 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2688 spin_unlock(&inode->i_lock);
23be7468 2689 } else {
6bda666a 2690 lock_page(page);
0fe6e20b
NH
2691 if (unlikely(anon_vma_prepare(vma))) {
2692 ret = VM_FAULT_OOM;
2693 goto backout_unlocked;
2694 }
409eb8c2 2695 anon_rmap = 1;
23be7468 2696 }
0fe6e20b 2697 } else {
998b4382
NH
2698 /*
2699 * If memory error occurs between mmap() and fault, some process
2700 * don't have hwpoisoned swap entry for errored virtual address.
2701 * So we need to block hugepage fault by PG_hwpoison bit check.
2702 */
2703 if (unlikely(PageHWPoison(page))) {
32f84528 2704 ret = VM_FAULT_HWPOISON |
972dc4de 2705 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2706 goto backout_unlocked;
2707 }
6bda666a 2708 }
1e8f889b 2709
57303d80
AW
2710 /*
2711 * If we are going to COW a private mapping later, we examine the
2712 * pending reservations for this page now. This will ensure that
2713 * any allocations necessary to record that reservation occur outside
2714 * the spinlock.
2715 */
788c7df4 2716 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2717 if (vma_needs_reservation(h, vma, address) < 0) {
2718 ret = VM_FAULT_OOM;
2719 goto backout_unlocked;
2720 }
57303d80 2721
ac9b9c66 2722 spin_lock(&mm->page_table_lock);
a5516438 2723 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2724 if (idx >= size)
2725 goto backout;
2726
83c54070 2727 ret = 0;
7f2e9525 2728 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2729 goto backout;
2730
409eb8c2
HD
2731 if (anon_rmap)
2732 hugepage_add_new_anon_rmap(page, vma, address);
2733 else
2734 page_dup_rmap(page);
1e8f889b
DG
2735 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2736 && (vma->vm_flags & VM_SHARED)));
2737 set_huge_pte_at(mm, address, ptep, new_pte);
2738
788c7df4 2739 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2740 /* Optimization, do the COW without a second fault */
04f2cbe3 2741 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2742 }
2743
ac9b9c66 2744 spin_unlock(&mm->page_table_lock);
4c887265
AL
2745 unlock_page(page);
2746out:
ac9b9c66 2747 return ret;
4c887265
AL
2748
2749backout:
2750 spin_unlock(&mm->page_table_lock);
2b26736c 2751backout_unlocked:
4c887265
AL
2752 unlock_page(page);
2753 put_page(page);
2754 goto out;
ac9b9c66
HD
2755}
2756
86e5216f 2757int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2758 unsigned long address, unsigned int flags)
86e5216f
AL
2759{
2760 pte_t *ptep;
2761 pte_t entry;
1e8f889b 2762 int ret;
0fe6e20b 2763 struct page *page = NULL;
57303d80 2764 struct page *pagecache_page = NULL;
3935baa9 2765 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2766 struct hstate *h = hstate_vma(vma);
86e5216f 2767
1e16a539
KH
2768 address &= huge_page_mask(h);
2769
fd6a03ed
NH
2770 ptep = huge_pte_offset(mm, address);
2771 if (ptep) {
2772 entry = huge_ptep_get(ptep);
290408d4
NH
2773 if (unlikely(is_hugetlb_entry_migration(entry))) {
2774 migration_entry_wait(mm, (pmd_t *)ptep, address);
2775 return 0;
2776 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2777 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2778 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2779 }
2780
a5516438 2781 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2782 if (!ptep)
2783 return VM_FAULT_OOM;
2784
3935baa9
DG
2785 /*
2786 * Serialize hugepage allocation and instantiation, so that we don't
2787 * get spurious allocation failures if two CPUs race to instantiate
2788 * the same page in the page cache.
2789 */
2790 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2791 entry = huge_ptep_get(ptep);
2792 if (huge_pte_none(entry)) {
788c7df4 2793 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2794 goto out_mutex;
3935baa9 2795 }
86e5216f 2796
83c54070 2797 ret = 0;
1e8f889b 2798
57303d80
AW
2799 /*
2800 * If we are going to COW the mapping later, we examine the pending
2801 * reservations for this page now. This will ensure that any
2802 * allocations necessary to record that reservation occur outside the
2803 * spinlock. For private mappings, we also lookup the pagecache
2804 * page now as it is used to determine if a reservation has been
2805 * consumed.
2806 */
788c7df4 2807 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2808 if (vma_needs_reservation(h, vma, address) < 0) {
2809 ret = VM_FAULT_OOM;
b4d1d99f 2810 goto out_mutex;
2b26736c 2811 }
57303d80 2812
f83a275d 2813 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2814 pagecache_page = hugetlbfs_pagecache_page(h,
2815 vma, address);
2816 }
2817
56c9cfb1
NH
2818 /*
2819 * hugetlb_cow() requires page locks of pte_page(entry) and
2820 * pagecache_page, so here we need take the former one
2821 * when page != pagecache_page or !pagecache_page.
2822 * Note that locking order is always pagecache_page -> page,
2823 * so no worry about deadlock.
2824 */
2825 page = pte_page(entry);
66aebce7 2826 get_page(page);
56c9cfb1 2827 if (page != pagecache_page)
0fe6e20b 2828 lock_page(page);
0fe6e20b 2829
1e8f889b
DG
2830 spin_lock(&mm->page_table_lock);
2831 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2832 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2833 goto out_page_table_lock;
2834
2835
788c7df4 2836 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2837 if (!pte_write(entry)) {
57303d80
AW
2838 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2839 pagecache_page);
b4d1d99f
DG
2840 goto out_page_table_lock;
2841 }
2842 entry = pte_mkdirty(entry);
2843 }
2844 entry = pte_mkyoung(entry);
788c7df4
HD
2845 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2846 flags & FAULT_FLAG_WRITE))
4b3073e1 2847 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2848
2849out_page_table_lock:
1e8f889b 2850 spin_unlock(&mm->page_table_lock);
57303d80
AW
2851
2852 if (pagecache_page) {
2853 unlock_page(pagecache_page);
2854 put_page(pagecache_page);
2855 }
1f64d69c
DN
2856 if (page != pagecache_page)
2857 unlock_page(page);
66aebce7 2858 put_page(page);
57303d80 2859
b4d1d99f 2860out_mutex:
3935baa9 2861 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2862
2863 return ret;
86e5216f
AL
2864}
2865
ceb86879
AK
2866/* Can be overriden by architectures */
2867__attribute__((weak)) struct page *
2868follow_huge_pud(struct mm_struct *mm, unsigned long address,
2869 pud_t *pud, int write)
2870{
2871 BUG();
2872 return NULL;
2873}
2874
63551ae0
DG
2875int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2876 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2877 unsigned long *position, int *length, int i,
2a15efc9 2878 unsigned int flags)
63551ae0 2879{
d5d4b0aa
KC
2880 unsigned long pfn_offset;
2881 unsigned long vaddr = *position;
63551ae0 2882 int remainder = *length;
a5516438 2883 struct hstate *h = hstate_vma(vma);
63551ae0 2884
1c59827d 2885 spin_lock(&mm->page_table_lock);
63551ae0 2886 while (vaddr < vma->vm_end && remainder) {
4c887265 2887 pte_t *pte;
2a15efc9 2888 int absent;
4c887265 2889 struct page *page;
63551ae0 2890
4c887265
AL
2891 /*
2892 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2893 * each hugepage. We have to make sure we get the
4c887265
AL
2894 * first, for the page indexing below to work.
2895 */
a5516438 2896 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2897 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2898
2899 /*
2900 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2901 * an error where there's an empty slot with no huge pagecache
2902 * to back it. This way, we avoid allocating a hugepage, and
2903 * the sparse dumpfile avoids allocating disk blocks, but its
2904 * huge holes still show up with zeroes where they need to be.
2a15efc9 2905 */
3ae77f43
HD
2906 if (absent && (flags & FOLL_DUMP) &&
2907 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2908 remainder = 0;
2909 break;
2910 }
63551ae0 2911
2a15efc9
HD
2912 if (absent ||
2913 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2914 int ret;
63551ae0 2915
4c887265 2916 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2917 ret = hugetlb_fault(mm, vma, vaddr,
2918 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2919 spin_lock(&mm->page_table_lock);
a89182c7 2920 if (!(ret & VM_FAULT_ERROR))
4c887265 2921 continue;
63551ae0 2922
4c887265 2923 remainder = 0;
4c887265
AL
2924 break;
2925 }
2926
a5516438 2927 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2928 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2929same_page:
d6692183 2930 if (pages) {
2a15efc9 2931 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2932 get_page(pages[i]);
d6692183 2933 }
63551ae0
DG
2934
2935 if (vmas)
2936 vmas[i] = vma;
2937
2938 vaddr += PAGE_SIZE;
d5d4b0aa 2939 ++pfn_offset;
63551ae0
DG
2940 --remainder;
2941 ++i;
d5d4b0aa 2942 if (vaddr < vma->vm_end && remainder &&
a5516438 2943 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
2944 /*
2945 * We use pfn_offset to avoid touching the pageframes
2946 * of this compound page.
2947 */
2948 goto same_page;
2949 }
63551ae0 2950 }
1c59827d 2951 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2952 *length = remainder;
2953 *position = vaddr;
2954
2a15efc9 2955 return i ? i : -EFAULT;
63551ae0 2956}
8f860591
ZY
2957
2958void hugetlb_change_protection(struct vm_area_struct *vma,
2959 unsigned long address, unsigned long end, pgprot_t newprot)
2960{
2961 struct mm_struct *mm = vma->vm_mm;
2962 unsigned long start = address;
2963 pte_t *ptep;
2964 pte_t pte;
a5516438 2965 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2966
2967 BUG_ON(address >= end);
2968 flush_cache_range(vma, address, end);
2969
3d48ae45 2970 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 2971 spin_lock(&mm->page_table_lock);
a5516438 2972 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2973 ptep = huge_pte_offset(mm, address);
2974 if (!ptep)
2975 continue;
39dde65c
KC
2976 if (huge_pmd_unshare(mm, &address, ptep))
2977 continue;
7f2e9525 2978 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2979 pte = huge_ptep_get_and_clear(mm, address, ptep);
2980 pte = pte_mkhuge(pte_modify(pte, newprot));
2981 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2982 }
2983 }
2984 spin_unlock(&mm->page_table_lock);
3d48ae45 2985 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591
ZY
2986
2987 flush_tlb_range(vma, start, end);
2988}
2989
a1e78772
MG
2990int hugetlb_reserve_pages(struct inode *inode,
2991 long from, long to,
5a6fe125 2992 struct vm_area_struct *vma,
ca16d140 2993 vm_flags_t vm_flags)
e4e574b7 2994{
17c9d12e 2995 long ret, chg;
a5516438 2996 struct hstate *h = hstate_inode(inode);
90481622 2997 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 2998
17c9d12e
MG
2999 /*
3000 * Only apply hugepage reservation if asked. At fault time, an
3001 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3002 * without using reserves
17c9d12e 3003 */
ca16d140 3004 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3005 return 0;
3006
a1e78772
MG
3007 /*
3008 * Shared mappings base their reservation on the number of pages that
3009 * are already allocated on behalf of the file. Private mappings need
3010 * to reserve the full area even if read-only as mprotect() may be
3011 * called to make the mapping read-write. Assume !vma is a shm mapping
3012 */
f83a275d 3013 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3014 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3015 else {
3016 struct resv_map *resv_map = resv_map_alloc();
3017 if (!resv_map)
3018 return -ENOMEM;
3019
a1e78772 3020 chg = to - from;
84afd99b 3021
17c9d12e
MG
3022 set_vma_resv_map(vma, resv_map);
3023 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3024 }
3025
c50ac050
DH
3026 if (chg < 0) {
3027 ret = chg;
3028 goto out_err;
3029 }
8a630112 3030
90481622 3031 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3032 if (hugepage_subpool_get_pages(spool, chg)) {
3033 ret = -ENOSPC;
3034 goto out_err;
3035 }
5a6fe125
MG
3036
3037 /*
17c9d12e 3038 * Check enough hugepages are available for the reservation.
90481622 3039 * Hand the pages back to the subpool if there are not
5a6fe125 3040 */
a5516438 3041 ret = hugetlb_acct_memory(h, chg);
68842c9b 3042 if (ret < 0) {
90481622 3043 hugepage_subpool_put_pages(spool, chg);
c50ac050 3044 goto out_err;
68842c9b 3045 }
17c9d12e
MG
3046
3047 /*
3048 * Account for the reservations made. Shared mappings record regions
3049 * that have reservations as they are shared by multiple VMAs.
3050 * When the last VMA disappears, the region map says how much
3051 * the reservation was and the page cache tells how much of
3052 * the reservation was consumed. Private mappings are per-VMA and
3053 * only the consumed reservations are tracked. When the VMA
3054 * disappears, the original reservation is the VMA size and the
3055 * consumed reservations are stored in the map. Hence, nothing
3056 * else has to be done for private mappings here
3057 */
f83a275d 3058 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3059 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3060 return 0;
c50ac050 3061out_err:
4523e145
DH
3062 if (vma)
3063 resv_map_put(vma);
c50ac050 3064 return ret;
a43a8c39
KC
3065}
3066
3067void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3068{
a5516438 3069 struct hstate *h = hstate_inode(inode);
a43a8c39 3070 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3071 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3072
3073 spin_lock(&inode->i_lock);
e4c6f8be 3074 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3075 spin_unlock(&inode->i_lock);
3076
90481622 3077 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3078 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3079}
93f70f90 3080
d5bd9106
AK
3081#ifdef CONFIG_MEMORY_FAILURE
3082
6de2b1aa
NH
3083/* Should be called in hugetlb_lock */
3084static int is_hugepage_on_freelist(struct page *hpage)
3085{
3086 struct page *page;
3087 struct page *tmp;
3088 struct hstate *h = page_hstate(hpage);
3089 int nid = page_to_nid(hpage);
3090
3091 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3092 if (page == hpage)
3093 return 1;
3094 return 0;
3095}
3096
93f70f90
NH
3097/*
3098 * This function is called from memory failure code.
3099 * Assume the caller holds page lock of the head page.
3100 */
6de2b1aa 3101int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3102{
3103 struct hstate *h = page_hstate(hpage);
3104 int nid = page_to_nid(hpage);
6de2b1aa 3105 int ret = -EBUSY;
93f70f90
NH
3106
3107 spin_lock(&hugetlb_lock);
6de2b1aa
NH
3108 if (is_hugepage_on_freelist(hpage)) {
3109 list_del(&hpage->lru);
8c6c2ecb 3110 set_page_refcounted(hpage);
6de2b1aa
NH
3111 h->free_huge_pages--;
3112 h->free_huge_pages_node[nid]--;
3113 ret = 0;
3114 }
93f70f90 3115 spin_unlock(&hugetlb_lock);
6de2b1aa 3116 return ret;
93f70f90 3117}
6de2b1aa 3118#endif