]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
hugetlb: remove unused hstate in hugetlb_fault_mutex_hash()
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
63489f8e 22#include <linux/mmdebug.h>
174cd4b1 23#include <linux/sched/signal.h>
0fe6e20b 24#include <linux/rmap.h>
c6247f72 25#include <linux/string_helpers.h>
fd6a03ed
NH
26#include <linux/swap.h>
27#include <linux/swapops.h>
8382d914 28#include <linux/jhash.h>
98fa15f3 29#include <linux/numa.h>
d6606683 30
63551ae0
DG
31#include <asm/page.h>
32#include <asm/pgtable.h>
24669e58 33#include <asm/tlb.h>
63551ae0 34
24669e58 35#include <linux/io.h>
63551ae0 36#include <linux/hugetlb.h>
9dd540e2 37#include <linux/hugetlb_cgroup.h>
9a305230 38#include <linux/node.h>
1a1aad8a 39#include <linux/userfaultfd_k.h>
ab5ac90a 40#include <linux/page_owner.h>
7835e98b 41#include "internal.h"
1da177e4 42
c3f38a38 43int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
44unsigned int default_hstate_idx;
45struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
46/*
47 * Minimum page order among possible hugepage sizes, set to a proper value
48 * at boot time.
49 */
50static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 51
53ba51d2
JT
52__initdata LIST_HEAD(huge_boot_pages);
53
e5ff2159
AK
54/* for command line parsing */
55static struct hstate * __initdata parsed_hstate;
56static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 57static unsigned long __initdata default_hstate_size;
9fee021d 58static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 59
3935baa9 60/*
31caf665
NH
61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62 * free_huge_pages, and surplus_huge_pages.
3935baa9 63 */
c3f38a38 64DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 65
8382d914
DB
66/*
67 * Serializes faults on the same logical page. This is used to
68 * prevent spurious OOMs when the hugepage pool is fully utilized.
69 */
70static int num_fault_mutexes;
c672c7f2 71struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 72
7ca02d0a
MK
73/* Forward declaration */
74static int hugetlb_acct_memory(struct hstate *h, long delta);
75
90481622
DG
76static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
77{
78 bool free = (spool->count == 0) && (spool->used_hpages == 0);
79
80 spin_unlock(&spool->lock);
81
82 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
83 * remain, give up any reservations mased on minimum size and
84 * free the subpool */
85 if (free) {
86 if (spool->min_hpages != -1)
87 hugetlb_acct_memory(spool->hstate,
88 -spool->min_hpages);
90481622 89 kfree(spool);
7ca02d0a 90 }
90481622
DG
91}
92
7ca02d0a
MK
93struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 long min_hpages)
90481622
DG
95{
96 struct hugepage_subpool *spool;
97
c6a91820 98 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
99 if (!spool)
100 return NULL;
101
102 spin_lock_init(&spool->lock);
103 spool->count = 1;
7ca02d0a
MK
104 spool->max_hpages = max_hpages;
105 spool->hstate = h;
106 spool->min_hpages = min_hpages;
107
108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 kfree(spool);
110 return NULL;
111 }
112 spool->rsv_hpages = min_hpages;
90481622
DG
113
114 return spool;
115}
116
117void hugepage_put_subpool(struct hugepage_subpool *spool)
118{
119 spin_lock(&spool->lock);
120 BUG_ON(!spool->count);
121 spool->count--;
122 unlock_or_release_subpool(spool);
123}
124
1c5ecae3
MK
125/*
126 * Subpool accounting for allocating and reserving pages.
127 * Return -ENOMEM if there are not enough resources to satisfy the
128 * the request. Otherwise, return the number of pages by which the
129 * global pools must be adjusted (upward). The returned value may
130 * only be different than the passed value (delta) in the case where
131 * a subpool minimum size must be manitained.
132 */
133static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
134 long delta)
135{
1c5ecae3 136 long ret = delta;
90481622
DG
137
138 if (!spool)
1c5ecae3 139 return ret;
90481622
DG
140
141 spin_lock(&spool->lock);
1c5ecae3
MK
142
143 if (spool->max_hpages != -1) { /* maximum size accounting */
144 if ((spool->used_hpages + delta) <= spool->max_hpages)
145 spool->used_hpages += delta;
146 else {
147 ret = -ENOMEM;
148 goto unlock_ret;
149 }
90481622 150 }
90481622 151
09a95e29
MK
152 /* minimum size accounting */
153 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
154 if (delta > spool->rsv_hpages) {
155 /*
156 * Asking for more reserves than those already taken on
157 * behalf of subpool. Return difference.
158 */
159 ret = delta - spool->rsv_hpages;
160 spool->rsv_hpages = 0;
161 } else {
162 ret = 0; /* reserves already accounted for */
163 spool->rsv_hpages -= delta;
164 }
165 }
166
167unlock_ret:
168 spin_unlock(&spool->lock);
90481622
DG
169 return ret;
170}
171
1c5ecae3
MK
172/*
173 * Subpool accounting for freeing and unreserving pages.
174 * Return the number of global page reservations that must be dropped.
175 * The return value may only be different than the passed value (delta)
176 * in the case where a subpool minimum size must be maintained.
177 */
178static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
179 long delta)
180{
1c5ecae3
MK
181 long ret = delta;
182
90481622 183 if (!spool)
1c5ecae3 184 return delta;
90481622
DG
185
186 spin_lock(&spool->lock);
1c5ecae3
MK
187
188 if (spool->max_hpages != -1) /* maximum size accounting */
189 spool->used_hpages -= delta;
190
09a95e29
MK
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
193 if (spool->rsv_hpages + delta <= spool->min_hpages)
194 ret = 0;
195 else
196 ret = spool->rsv_hpages + delta - spool->min_hpages;
197
198 spool->rsv_hpages += delta;
199 if (spool->rsv_hpages > spool->min_hpages)
200 spool->rsv_hpages = spool->min_hpages;
201 }
202
203 /*
204 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 * quota reference, free it now.
206 */
90481622 207 unlock_or_release_subpool(spool);
1c5ecae3
MK
208
209 return ret;
90481622
DG
210}
211
212static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
213{
214 return HUGETLBFS_SB(inode->i_sb)->spool;
215}
216
217static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
218{
496ad9aa 219 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
220}
221
96822904
AW
222/*
223 * Region tracking -- allows tracking of reservations and instantiated pages
224 * across the pages in a mapping.
84afd99b 225 *
1dd308a7
MK
226 * The region data structures are embedded into a resv_map and protected
227 * by a resv_map's lock. The set of regions within the resv_map represent
228 * reservations for huge pages, or huge pages that have already been
229 * instantiated within the map. The from and to elements are huge page
230 * indicies into the associated mapping. from indicates the starting index
231 * of the region. to represents the first index past the end of the region.
232 *
233 * For example, a file region structure with from == 0 and to == 4 represents
234 * four huge pages in a mapping. It is important to note that the to element
235 * represents the first element past the end of the region. This is used in
236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
237 *
238 * Interval notation of the form [from, to) will be used to indicate that
239 * the endpoint from is inclusive and to is exclusive.
96822904
AW
240 */
241struct file_region {
242 struct list_head link;
243 long from;
244 long to;
245};
246
d75c6af9
MA
247/* Must be called with resv->lock held. Calling this with count_only == true
248 * will count the number of pages to be added but will not modify the linked
249 * list.
250 */
251static long add_reservation_in_range(struct resv_map *resv, long f, long t,
252 bool count_only)
253{
254 long chg = 0;
255 struct list_head *head = &resv->regions;
256 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
257
258 /* Locate the region we are before or in. */
259 list_for_each_entry(rg, head, link)
260 if (f <= rg->to)
261 break;
262
263 /* Round our left edge to the current segment if it encloses us. */
264 if (f > rg->from)
265 f = rg->from;
266
267 chg = t - f;
268
269 /* Check for and consume any regions we now overlap with. */
270 nrg = rg;
271 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
272 if (&rg->link == head)
273 break;
274 if (rg->from > t)
275 break;
276
277 /* We overlap with this area, if it extends further than
278 * us then we must extend ourselves. Account for its
279 * existing reservation.
280 */
281 if (rg->to > t) {
282 chg += rg->to - t;
283 t = rg->to;
284 }
285 chg -= rg->to - rg->from;
286
287 if (!count_only && rg != nrg) {
288 list_del(&rg->link);
289 kfree(rg);
290 }
291 }
292
293 if (!count_only) {
294 nrg->from = f;
295 nrg->to = t;
296 }
297
298 return chg;
299}
300
1dd308a7
MK
301/*
302 * Add the huge page range represented by [f, t) to the reserve
5c911954
MA
303 * map. Existing regions will be expanded to accommodate the specified
304 * range, or a region will be taken from the cache. Sufficient regions
305 * must exist in the cache due to the previous call to region_chg with
306 * the same range.
cf3ad20b
MK
307 *
308 * Return the number of new huge pages added to the map. This
309 * number is greater than or equal to zero.
1dd308a7 310 */
1406ec9b 311static long region_add(struct resv_map *resv, long f, long t)
96822904 312{
1406ec9b 313 struct list_head *head = &resv->regions;
d75c6af9 314 struct file_region *rg, *nrg;
cf3ad20b 315 long add = 0;
96822904 316
7b24d861 317 spin_lock(&resv->lock);
96822904
AW
318 /* Locate the region we are either in or before. */
319 list_for_each_entry(rg, head, link)
320 if (f <= rg->to)
321 break;
322
5e911373
MK
323 /*
324 * If no region exists which can be expanded to include the
5c911954
MA
325 * specified range, pull a region descriptor from the cache
326 * and use it for this range.
5e911373
MK
327 */
328 if (&rg->link == head || t < rg->from) {
329 VM_BUG_ON(resv->region_cache_count <= 0);
330
331 resv->region_cache_count--;
332 nrg = list_first_entry(&resv->region_cache, struct file_region,
333 link);
334 list_del(&nrg->link);
335
336 nrg->from = f;
337 nrg->to = t;
338 list_add(&nrg->link, rg->link.prev);
339
340 add += t - f;
341 goto out_locked;
342 }
343
d75c6af9 344 add = add_reservation_in_range(resv, f, t, false);
cf3ad20b 345
5e911373
MK
346out_locked:
347 resv->adds_in_progress--;
7b24d861 348 spin_unlock(&resv->lock);
cf3ad20b
MK
349 VM_BUG_ON(add < 0);
350 return add;
96822904
AW
351}
352
1dd308a7
MK
353/*
354 * Examine the existing reserve map and determine how many
355 * huge pages in the specified range [f, t) are NOT currently
356 * represented. This routine is called before a subsequent
357 * call to region_add that will actually modify the reserve
358 * map to add the specified range [f, t). region_chg does
359 * not change the number of huge pages represented by the
5c911954
MA
360 * map. A new file_region structure is added to the cache
361 * as a placeholder, so that the subsequent region_add
362 * call will have all the regions it needs and will not fail.
5e911373
MK
363 *
364 * Returns the number of huge pages that need to be added to the existing
365 * reservation map for the range [f, t). This number is greater or equal to
366 * zero. -ENOMEM is returned if a new file_region structure or cache entry
367 * is needed and can not be allocated.
1dd308a7 368 */
1406ec9b 369static long region_chg(struct resv_map *resv, long f, long t)
96822904 370{
96822904
AW
371 long chg = 0;
372
7b24d861 373 spin_lock(&resv->lock);
5e911373
MK
374retry_locked:
375 resv->adds_in_progress++;
376
377 /*
378 * Check for sufficient descriptors in the cache to accommodate
379 * the number of in progress add operations.
380 */
381 if (resv->adds_in_progress > resv->region_cache_count) {
382 struct file_region *trg;
383
384 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
385 /* Must drop lock to allocate a new descriptor. */
386 resv->adds_in_progress--;
387 spin_unlock(&resv->lock);
388
389 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
5c911954 390 if (!trg)
5e911373
MK
391 return -ENOMEM;
392
393 spin_lock(&resv->lock);
394 list_add(&trg->link, &resv->region_cache);
395 resv->region_cache_count++;
396 goto retry_locked;
397 }
398
d75c6af9 399 chg = add_reservation_in_range(resv, f, t, true);
7b24d861 400
7b24d861 401 spin_unlock(&resv->lock);
96822904
AW
402 return chg;
403}
404
5e911373
MK
405/*
406 * Abort the in progress add operation. The adds_in_progress field
407 * of the resv_map keeps track of the operations in progress between
408 * calls to region_chg and region_add. Operations are sometimes
409 * aborted after the call to region_chg. In such cases, region_abort
410 * is called to decrement the adds_in_progress counter.
411 *
412 * NOTE: The range arguments [f, t) are not needed or used in this
413 * routine. They are kept to make reading the calling code easier as
414 * arguments will match the associated region_chg call.
415 */
416static void region_abort(struct resv_map *resv, long f, long t)
417{
418 spin_lock(&resv->lock);
419 VM_BUG_ON(!resv->region_cache_count);
420 resv->adds_in_progress--;
421 spin_unlock(&resv->lock);
422}
423
1dd308a7 424/*
feba16e2
MK
425 * Delete the specified range [f, t) from the reserve map. If the
426 * t parameter is LONG_MAX, this indicates that ALL regions after f
427 * should be deleted. Locate the regions which intersect [f, t)
428 * and either trim, delete or split the existing regions.
429 *
430 * Returns the number of huge pages deleted from the reserve map.
431 * In the normal case, the return value is zero or more. In the
432 * case where a region must be split, a new region descriptor must
433 * be allocated. If the allocation fails, -ENOMEM will be returned.
434 * NOTE: If the parameter t == LONG_MAX, then we will never split
435 * a region and possibly return -ENOMEM. Callers specifying
436 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 437 */
feba16e2 438static long region_del(struct resv_map *resv, long f, long t)
96822904 439{
1406ec9b 440 struct list_head *head = &resv->regions;
96822904 441 struct file_region *rg, *trg;
feba16e2
MK
442 struct file_region *nrg = NULL;
443 long del = 0;
96822904 444
feba16e2 445retry:
7b24d861 446 spin_lock(&resv->lock);
feba16e2 447 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
448 /*
449 * Skip regions before the range to be deleted. file_region
450 * ranges are normally of the form [from, to). However, there
451 * may be a "placeholder" entry in the map which is of the form
452 * (from, to) with from == to. Check for placeholder entries
453 * at the beginning of the range to be deleted.
454 */
455 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 456 continue;
dbe409e4 457
feba16e2 458 if (rg->from >= t)
96822904 459 break;
96822904 460
feba16e2
MK
461 if (f > rg->from && t < rg->to) { /* Must split region */
462 /*
463 * Check for an entry in the cache before dropping
464 * lock and attempting allocation.
465 */
466 if (!nrg &&
467 resv->region_cache_count > resv->adds_in_progress) {
468 nrg = list_first_entry(&resv->region_cache,
469 struct file_region,
470 link);
471 list_del(&nrg->link);
472 resv->region_cache_count--;
473 }
96822904 474
feba16e2
MK
475 if (!nrg) {
476 spin_unlock(&resv->lock);
477 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
478 if (!nrg)
479 return -ENOMEM;
480 goto retry;
481 }
482
483 del += t - f;
484
485 /* New entry for end of split region */
486 nrg->from = t;
487 nrg->to = rg->to;
488 INIT_LIST_HEAD(&nrg->link);
489
490 /* Original entry is trimmed */
491 rg->to = f;
492
493 list_add(&nrg->link, &rg->link);
494 nrg = NULL;
96822904 495 break;
feba16e2
MK
496 }
497
498 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
499 del += rg->to - rg->from;
500 list_del(&rg->link);
501 kfree(rg);
502 continue;
503 }
504
505 if (f <= rg->from) { /* Trim beginning of region */
506 del += t - rg->from;
507 rg->from = t;
508 } else { /* Trim end of region */
509 del += rg->to - f;
510 rg->to = f;
511 }
96822904 512 }
7b24d861 513
7b24d861 514 spin_unlock(&resv->lock);
feba16e2
MK
515 kfree(nrg);
516 return del;
96822904
AW
517}
518
b5cec28d
MK
519/*
520 * A rare out of memory error was encountered which prevented removal of
521 * the reserve map region for a page. The huge page itself was free'ed
522 * and removed from the page cache. This routine will adjust the subpool
523 * usage count, and the global reserve count if needed. By incrementing
524 * these counts, the reserve map entry which could not be deleted will
525 * appear as a "reserved" entry instead of simply dangling with incorrect
526 * counts.
527 */
72e2936c 528void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
529{
530 struct hugepage_subpool *spool = subpool_inode(inode);
531 long rsv_adjust;
532
533 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 534 if (rsv_adjust) {
b5cec28d
MK
535 struct hstate *h = hstate_inode(inode);
536
537 hugetlb_acct_memory(h, 1);
538 }
539}
540
1dd308a7
MK
541/*
542 * Count and return the number of huge pages in the reserve map
543 * that intersect with the range [f, t).
544 */
1406ec9b 545static long region_count(struct resv_map *resv, long f, long t)
84afd99b 546{
1406ec9b 547 struct list_head *head = &resv->regions;
84afd99b
AW
548 struct file_region *rg;
549 long chg = 0;
550
7b24d861 551 spin_lock(&resv->lock);
84afd99b
AW
552 /* Locate each segment we overlap with, and count that overlap. */
553 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
554 long seg_from;
555 long seg_to;
84afd99b
AW
556
557 if (rg->to <= f)
558 continue;
559 if (rg->from >= t)
560 break;
561
562 seg_from = max(rg->from, f);
563 seg_to = min(rg->to, t);
564
565 chg += seg_to - seg_from;
566 }
7b24d861 567 spin_unlock(&resv->lock);
84afd99b
AW
568
569 return chg;
570}
571
e7c4b0bf
AW
572/*
573 * Convert the address within this vma to the page offset within
574 * the mapping, in pagecache page units; huge pages here.
575 */
a5516438
AK
576static pgoff_t vma_hugecache_offset(struct hstate *h,
577 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 578{
a5516438
AK
579 return ((address - vma->vm_start) >> huge_page_shift(h)) +
580 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
581}
582
0fe6e20b
NH
583pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
584 unsigned long address)
585{
586 return vma_hugecache_offset(hstate_vma(vma), vma, address);
587}
dee41079 588EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 589
08fba699
MG
590/*
591 * Return the size of the pages allocated when backing a VMA. In the majority
592 * cases this will be same size as used by the page table entries.
593 */
594unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
595{
05ea8860
DW
596 if (vma->vm_ops && vma->vm_ops->pagesize)
597 return vma->vm_ops->pagesize(vma);
598 return PAGE_SIZE;
08fba699 599}
f340ca0f 600EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 601
3340289d
MG
602/*
603 * Return the page size being used by the MMU to back a VMA. In the majority
604 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
605 * architectures where it differs, an architecture-specific 'strong'
606 * version of this symbol is required.
3340289d 607 */
09135cc5 608__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
609{
610 return vma_kernel_pagesize(vma);
611}
3340289d 612
84afd99b
AW
613/*
614 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
615 * bits of the reservation map pointer, which are always clear due to
616 * alignment.
617 */
618#define HPAGE_RESV_OWNER (1UL << 0)
619#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 620#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 621
a1e78772
MG
622/*
623 * These helpers are used to track how many pages are reserved for
624 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
625 * is guaranteed to have their future faults succeed.
626 *
627 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
628 * the reserve counters are updated with the hugetlb_lock held. It is safe
629 * to reset the VMA at fork() time as it is not in use yet and there is no
630 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
631 *
632 * The private mapping reservation is represented in a subtly different
633 * manner to a shared mapping. A shared mapping has a region map associated
634 * with the underlying file, this region map represents the backing file
635 * pages which have ever had a reservation assigned which this persists even
636 * after the page is instantiated. A private mapping has a region map
637 * associated with the original mmap which is attached to all VMAs which
638 * reference it, this region map represents those offsets which have consumed
639 * reservation ie. where pages have been instantiated.
a1e78772 640 */
e7c4b0bf
AW
641static unsigned long get_vma_private_data(struct vm_area_struct *vma)
642{
643 return (unsigned long)vma->vm_private_data;
644}
645
646static void set_vma_private_data(struct vm_area_struct *vma,
647 unsigned long value)
648{
649 vma->vm_private_data = (void *)value;
650}
651
9119a41e 652struct resv_map *resv_map_alloc(void)
84afd99b
AW
653{
654 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
655 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
656
657 if (!resv_map || !rg) {
658 kfree(resv_map);
659 kfree(rg);
84afd99b 660 return NULL;
5e911373 661 }
84afd99b
AW
662
663 kref_init(&resv_map->refs);
7b24d861 664 spin_lock_init(&resv_map->lock);
84afd99b
AW
665 INIT_LIST_HEAD(&resv_map->regions);
666
5e911373
MK
667 resv_map->adds_in_progress = 0;
668
669 INIT_LIST_HEAD(&resv_map->region_cache);
670 list_add(&rg->link, &resv_map->region_cache);
671 resv_map->region_cache_count = 1;
672
84afd99b
AW
673 return resv_map;
674}
675
9119a41e 676void resv_map_release(struct kref *ref)
84afd99b
AW
677{
678 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
679 struct list_head *head = &resv_map->region_cache;
680 struct file_region *rg, *trg;
84afd99b
AW
681
682 /* Clear out any active regions before we release the map. */
feba16e2 683 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
684
685 /* ... and any entries left in the cache */
686 list_for_each_entry_safe(rg, trg, head, link) {
687 list_del(&rg->link);
688 kfree(rg);
689 }
690
691 VM_BUG_ON(resv_map->adds_in_progress);
692
84afd99b
AW
693 kfree(resv_map);
694}
695
4e35f483
JK
696static inline struct resv_map *inode_resv_map(struct inode *inode)
697{
f27a5136
MK
698 /*
699 * At inode evict time, i_mapping may not point to the original
700 * address space within the inode. This original address space
701 * contains the pointer to the resv_map. So, always use the
702 * address space embedded within the inode.
703 * The VERY common case is inode->mapping == &inode->i_data but,
704 * this may not be true for device special inodes.
705 */
706 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
707}
708
84afd99b 709static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 710{
81d1b09c 711 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
712 if (vma->vm_flags & VM_MAYSHARE) {
713 struct address_space *mapping = vma->vm_file->f_mapping;
714 struct inode *inode = mapping->host;
715
716 return inode_resv_map(inode);
717
718 } else {
84afd99b
AW
719 return (struct resv_map *)(get_vma_private_data(vma) &
720 ~HPAGE_RESV_MASK);
4e35f483 721 }
a1e78772
MG
722}
723
84afd99b 724static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 725{
81d1b09c
SL
726 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
727 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 728
84afd99b
AW
729 set_vma_private_data(vma, (get_vma_private_data(vma) &
730 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
731}
732
733static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
734{
81d1b09c
SL
735 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
736 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
737
738 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
739}
740
741static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
742{
81d1b09c 743 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
744
745 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
746}
747
04f2cbe3 748/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
749void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
750{
81d1b09c 751 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 752 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
753 vma->vm_private_data = (void *)0;
754}
755
756/* Returns true if the VMA has associated reserve pages */
559ec2f8 757static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 758{
af0ed73e
JK
759 if (vma->vm_flags & VM_NORESERVE) {
760 /*
761 * This address is already reserved by other process(chg == 0),
762 * so, we should decrement reserved count. Without decrementing,
763 * reserve count remains after releasing inode, because this
764 * allocated page will go into page cache and is regarded as
765 * coming from reserved pool in releasing step. Currently, we
766 * don't have any other solution to deal with this situation
767 * properly, so add work-around here.
768 */
769 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 770 return true;
af0ed73e 771 else
559ec2f8 772 return false;
af0ed73e 773 }
a63884e9
JK
774
775 /* Shared mappings always use reserves */
1fb1b0e9
MK
776 if (vma->vm_flags & VM_MAYSHARE) {
777 /*
778 * We know VM_NORESERVE is not set. Therefore, there SHOULD
779 * be a region map for all pages. The only situation where
780 * there is no region map is if a hole was punched via
781 * fallocate. In this case, there really are no reverves to
782 * use. This situation is indicated if chg != 0.
783 */
784 if (chg)
785 return false;
786 else
787 return true;
788 }
a63884e9
JK
789
790 /*
791 * Only the process that called mmap() has reserves for
792 * private mappings.
793 */
67961f9d
MK
794 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
795 /*
796 * Like the shared case above, a hole punch or truncate
797 * could have been performed on the private mapping.
798 * Examine the value of chg to determine if reserves
799 * actually exist or were previously consumed.
800 * Very Subtle - The value of chg comes from a previous
801 * call to vma_needs_reserves(). The reserve map for
802 * private mappings has different (opposite) semantics
803 * than that of shared mappings. vma_needs_reserves()
804 * has already taken this difference in semantics into
805 * account. Therefore, the meaning of chg is the same
806 * as in the shared case above. Code could easily be
807 * combined, but keeping it separate draws attention to
808 * subtle differences.
809 */
810 if (chg)
811 return false;
812 else
813 return true;
814 }
a63884e9 815
559ec2f8 816 return false;
a1e78772
MG
817}
818
a5516438 819static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
820{
821 int nid = page_to_nid(page);
0edaecfa 822 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
823 h->free_huge_pages++;
824 h->free_huge_pages_node[nid]++;
1da177e4
LT
825}
826
94310cbc 827static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
828{
829 struct page *page;
830
c8721bbb 831 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 832 if (!PageHWPoison(page))
c8721bbb
NH
833 break;
834 /*
835 * if 'non-isolated free hugepage' not found on the list,
836 * the allocation fails.
837 */
838 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 839 return NULL;
0edaecfa 840 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 841 set_page_refcounted(page);
bf50bab2
NH
842 h->free_huge_pages--;
843 h->free_huge_pages_node[nid]--;
844 return page;
845}
846
3e59fcb0
MH
847static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
848 nodemask_t *nmask)
94310cbc 849{
3e59fcb0
MH
850 unsigned int cpuset_mems_cookie;
851 struct zonelist *zonelist;
852 struct zone *zone;
853 struct zoneref *z;
98fa15f3 854 int node = NUMA_NO_NODE;
94310cbc 855
3e59fcb0
MH
856 zonelist = node_zonelist(nid, gfp_mask);
857
858retry_cpuset:
859 cpuset_mems_cookie = read_mems_allowed_begin();
860 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
861 struct page *page;
862
863 if (!cpuset_zone_allowed(zone, gfp_mask))
864 continue;
865 /*
866 * no need to ask again on the same node. Pool is node rather than
867 * zone aware
868 */
869 if (zone_to_nid(zone) == node)
870 continue;
871 node = zone_to_nid(zone);
94310cbc 872
94310cbc
AK
873 page = dequeue_huge_page_node_exact(h, node);
874 if (page)
875 return page;
876 }
3e59fcb0
MH
877 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
878 goto retry_cpuset;
879
94310cbc
AK
880 return NULL;
881}
882
86cdb465
NH
883/* Movability of hugepages depends on migration support. */
884static inline gfp_t htlb_alloc_mask(struct hstate *h)
885{
7ed2c31d 886 if (hugepage_movable_supported(h))
86cdb465
NH
887 return GFP_HIGHUSER_MOVABLE;
888 else
889 return GFP_HIGHUSER;
890}
891
a5516438
AK
892static struct page *dequeue_huge_page_vma(struct hstate *h,
893 struct vm_area_struct *vma,
af0ed73e
JK
894 unsigned long address, int avoid_reserve,
895 long chg)
1da177e4 896{
3e59fcb0 897 struct page *page;
480eccf9 898 struct mempolicy *mpol;
04ec6264 899 gfp_t gfp_mask;
3e59fcb0 900 nodemask_t *nodemask;
04ec6264 901 int nid;
1da177e4 902
a1e78772
MG
903 /*
904 * A child process with MAP_PRIVATE mappings created by their parent
905 * have no page reserves. This check ensures that reservations are
906 * not "stolen". The child may still get SIGKILLed
907 */
af0ed73e 908 if (!vma_has_reserves(vma, chg) &&
a5516438 909 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 910 goto err;
a1e78772 911
04f2cbe3 912 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 913 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 914 goto err;
04f2cbe3 915
04ec6264
VB
916 gfp_mask = htlb_alloc_mask(h);
917 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
918 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
919 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
920 SetPagePrivate(page);
921 h->resv_huge_pages--;
1da177e4 922 }
cc9a6c87 923
52cd3b07 924 mpol_cond_put(mpol);
1da177e4 925 return page;
cc9a6c87
MG
926
927err:
cc9a6c87 928 return NULL;
1da177e4
LT
929}
930
1cac6f2c
LC
931/*
932 * common helper functions for hstate_next_node_to_{alloc|free}.
933 * We may have allocated or freed a huge page based on a different
934 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
935 * be outside of *nodes_allowed. Ensure that we use an allowed
936 * node for alloc or free.
937 */
938static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
939{
0edaf86c 940 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
941 VM_BUG_ON(nid >= MAX_NUMNODES);
942
943 return nid;
944}
945
946static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
947{
948 if (!node_isset(nid, *nodes_allowed))
949 nid = next_node_allowed(nid, nodes_allowed);
950 return nid;
951}
952
953/*
954 * returns the previously saved node ["this node"] from which to
955 * allocate a persistent huge page for the pool and advance the
956 * next node from which to allocate, handling wrap at end of node
957 * mask.
958 */
959static int hstate_next_node_to_alloc(struct hstate *h,
960 nodemask_t *nodes_allowed)
961{
962 int nid;
963
964 VM_BUG_ON(!nodes_allowed);
965
966 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
967 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
968
969 return nid;
970}
971
972/*
973 * helper for free_pool_huge_page() - return the previously saved
974 * node ["this node"] from which to free a huge page. Advance the
975 * next node id whether or not we find a free huge page to free so
976 * that the next attempt to free addresses the next node.
977 */
978static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
979{
980 int nid;
981
982 VM_BUG_ON(!nodes_allowed);
983
984 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
985 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
986
987 return nid;
988}
989
990#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
991 for (nr_nodes = nodes_weight(*mask); \
992 nr_nodes > 0 && \
993 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
994 nr_nodes--)
995
996#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
997 for (nr_nodes = nodes_weight(*mask); \
998 nr_nodes > 0 && \
999 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1000 nr_nodes--)
1001
e1073d1e 1002#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1003static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1004 unsigned int order)
944d9fec
LC
1005{
1006 int i;
1007 int nr_pages = 1 << order;
1008 struct page *p = page + 1;
1009
c8cc708a 1010 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1011 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1012 clear_compound_head(p);
944d9fec 1013 set_page_refcounted(p);
944d9fec
LC
1014 }
1015
1016 set_compound_order(page, 0);
1017 __ClearPageHead(page);
1018}
1019
d00181b9 1020static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1021{
1022 free_contig_range(page_to_pfn(page), 1 << order);
1023}
1024
4eb0716e 1025#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1026static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1027 int nid, nodemask_t *nodemask)
944d9fec 1028{
5e27a2df 1029 unsigned long nr_pages = 1UL << huge_page_order(h);
944d9fec 1030
5e27a2df 1031 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1032}
1033
1034static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1035static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1036#else /* !CONFIG_CONTIG_ALLOC */
1037static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1038 int nid, nodemask_t *nodemask)
1039{
1040 return NULL;
1041}
1042#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1043
e1073d1e 1044#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1045static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1046 int nid, nodemask_t *nodemask)
1047{
1048 return NULL;
1049}
d00181b9 1050static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1051static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1052 unsigned int order) { }
944d9fec
LC
1053#endif
1054
a5516438 1055static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1056{
1057 int i;
a5516438 1058
4eb0716e 1059 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1060 return;
18229df5 1061
a5516438
AK
1062 h->nr_huge_pages--;
1063 h->nr_huge_pages_node[page_to_nid(page)]--;
1064 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1065 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1066 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1067 1 << PG_active | 1 << PG_private |
1068 1 << PG_writeback);
6af2acb6 1069 }
309381fe 1070 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1071 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1072 set_page_refcounted(page);
944d9fec
LC
1073 if (hstate_is_gigantic(h)) {
1074 destroy_compound_gigantic_page(page, huge_page_order(h));
1075 free_gigantic_page(page, huge_page_order(h));
1076 } else {
944d9fec
LC
1077 __free_pages(page, huge_page_order(h));
1078 }
6af2acb6
AL
1079}
1080
e5ff2159
AK
1081struct hstate *size_to_hstate(unsigned long size)
1082{
1083 struct hstate *h;
1084
1085 for_each_hstate(h) {
1086 if (huge_page_size(h) == size)
1087 return h;
1088 }
1089 return NULL;
1090}
1091
bcc54222
NH
1092/*
1093 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1094 * to hstate->hugepage_activelist.)
1095 *
1096 * This function can be called for tail pages, but never returns true for them.
1097 */
1098bool page_huge_active(struct page *page)
1099{
1100 VM_BUG_ON_PAGE(!PageHuge(page), page);
1101 return PageHead(page) && PagePrivate(&page[1]);
1102}
1103
1104/* never called for tail page */
1105static void set_page_huge_active(struct page *page)
1106{
1107 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1108 SetPagePrivate(&page[1]);
1109}
1110
1111static void clear_page_huge_active(struct page *page)
1112{
1113 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1114 ClearPagePrivate(&page[1]);
1115}
1116
ab5ac90a
MH
1117/*
1118 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1119 * code
1120 */
1121static inline bool PageHugeTemporary(struct page *page)
1122{
1123 if (!PageHuge(page))
1124 return false;
1125
1126 return (unsigned long)page[2].mapping == -1U;
1127}
1128
1129static inline void SetPageHugeTemporary(struct page *page)
1130{
1131 page[2].mapping = (void *)-1U;
1132}
1133
1134static inline void ClearPageHugeTemporary(struct page *page)
1135{
1136 page[2].mapping = NULL;
1137}
1138
8f1d26d0 1139void free_huge_page(struct page *page)
27a85ef1 1140{
a5516438
AK
1141 /*
1142 * Can't pass hstate in here because it is called from the
1143 * compound page destructor.
1144 */
e5ff2159 1145 struct hstate *h = page_hstate(page);
7893d1d5 1146 int nid = page_to_nid(page);
90481622
DG
1147 struct hugepage_subpool *spool =
1148 (struct hugepage_subpool *)page_private(page);
07443a85 1149 bool restore_reserve;
27a85ef1 1150
b4330afb
MK
1151 VM_BUG_ON_PAGE(page_count(page), page);
1152 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1153
1154 set_page_private(page, 0);
1155 page->mapping = NULL;
07443a85 1156 restore_reserve = PagePrivate(page);
16c794b4 1157 ClearPagePrivate(page);
27a85ef1 1158
1c5ecae3 1159 /*
0919e1b6
MK
1160 * If PagePrivate() was set on page, page allocation consumed a
1161 * reservation. If the page was associated with a subpool, there
1162 * would have been a page reserved in the subpool before allocation
1163 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1164 * reservtion, do not call hugepage_subpool_put_pages() as this will
1165 * remove the reserved page from the subpool.
1c5ecae3 1166 */
0919e1b6
MK
1167 if (!restore_reserve) {
1168 /*
1169 * A return code of zero implies that the subpool will be
1170 * under its minimum size if the reservation is not restored
1171 * after page is free. Therefore, force restore_reserve
1172 * operation.
1173 */
1174 if (hugepage_subpool_put_pages(spool, 1) == 0)
1175 restore_reserve = true;
1176 }
1c5ecae3 1177
27a85ef1 1178 spin_lock(&hugetlb_lock);
bcc54222 1179 clear_page_huge_active(page);
6d76dcf4
AK
1180 hugetlb_cgroup_uncharge_page(hstate_index(h),
1181 pages_per_huge_page(h), page);
07443a85
JK
1182 if (restore_reserve)
1183 h->resv_huge_pages++;
1184
ab5ac90a
MH
1185 if (PageHugeTemporary(page)) {
1186 list_del(&page->lru);
1187 ClearPageHugeTemporary(page);
1188 update_and_free_page(h, page);
1189 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1190 /* remove the page from active list */
1191 list_del(&page->lru);
a5516438
AK
1192 update_and_free_page(h, page);
1193 h->surplus_huge_pages--;
1194 h->surplus_huge_pages_node[nid]--;
7893d1d5 1195 } else {
5d3a551c 1196 arch_clear_hugepage_flags(page);
a5516438 1197 enqueue_huge_page(h, page);
7893d1d5 1198 }
27a85ef1
DG
1199 spin_unlock(&hugetlb_lock);
1200}
1201
a5516438 1202static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1203{
0edaecfa 1204 INIT_LIST_HEAD(&page->lru);
f1e61557 1205 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1206 spin_lock(&hugetlb_lock);
9dd540e2 1207 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1208 h->nr_huge_pages++;
1209 h->nr_huge_pages_node[nid]++;
b7ba30c6 1210 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1211}
1212
d00181b9 1213static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1214{
1215 int i;
1216 int nr_pages = 1 << order;
1217 struct page *p = page + 1;
1218
1219 /* we rely on prep_new_huge_page to set the destructor */
1220 set_compound_order(page, order);
ef5a22be 1221 __ClearPageReserved(page);
de09d31d 1222 __SetPageHead(page);
20a0307c 1223 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1224 /*
1225 * For gigantic hugepages allocated through bootmem at
1226 * boot, it's safer to be consistent with the not-gigantic
1227 * hugepages and clear the PG_reserved bit from all tail pages
1228 * too. Otherwse drivers using get_user_pages() to access tail
1229 * pages may get the reference counting wrong if they see
1230 * PG_reserved set on a tail page (despite the head page not
1231 * having PG_reserved set). Enforcing this consistency between
1232 * head and tail pages allows drivers to optimize away a check
1233 * on the head page when they need know if put_page() is needed
1234 * after get_user_pages().
1235 */
1236 __ClearPageReserved(p);
58a84aa9 1237 set_page_count(p, 0);
1d798ca3 1238 set_compound_head(p, page);
20a0307c 1239 }
b4330afb 1240 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1241}
1242
7795912c
AM
1243/*
1244 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1245 * transparent huge pages. See the PageTransHuge() documentation for more
1246 * details.
1247 */
20a0307c
WF
1248int PageHuge(struct page *page)
1249{
20a0307c
WF
1250 if (!PageCompound(page))
1251 return 0;
1252
1253 page = compound_head(page);
f1e61557 1254 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1255}
43131e14
NH
1256EXPORT_SYMBOL_GPL(PageHuge);
1257
27c73ae7
AA
1258/*
1259 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1260 * normal or transparent huge pages.
1261 */
1262int PageHeadHuge(struct page *page_head)
1263{
27c73ae7
AA
1264 if (!PageHead(page_head))
1265 return 0;
1266
758f66a2 1267 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1268}
27c73ae7 1269
13d60f4b
ZY
1270pgoff_t __basepage_index(struct page *page)
1271{
1272 struct page *page_head = compound_head(page);
1273 pgoff_t index = page_index(page_head);
1274 unsigned long compound_idx;
1275
1276 if (!PageHuge(page_head))
1277 return page_index(page);
1278
1279 if (compound_order(page_head) >= MAX_ORDER)
1280 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1281 else
1282 compound_idx = page - page_head;
1283
1284 return (index << compound_order(page_head)) + compound_idx;
1285}
1286
0c397dae 1287static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1288 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1289 nodemask_t *node_alloc_noretry)
1da177e4 1290{
af0fb9df 1291 int order = huge_page_order(h);
1da177e4 1292 struct page *page;
f60858f9 1293 bool alloc_try_hard = true;
f96efd58 1294
f60858f9
MK
1295 /*
1296 * By default we always try hard to allocate the page with
1297 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1298 * a loop (to adjust global huge page counts) and previous allocation
1299 * failed, do not continue to try hard on the same node. Use the
1300 * node_alloc_noretry bitmap to manage this state information.
1301 */
1302 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1303 alloc_try_hard = false;
1304 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1305 if (alloc_try_hard)
1306 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1307 if (nid == NUMA_NO_NODE)
1308 nid = numa_mem_id();
1309 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1310 if (page)
1311 __count_vm_event(HTLB_BUDDY_PGALLOC);
1312 else
1313 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1314
f60858f9
MK
1315 /*
1316 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1317 * indicates an overall state change. Clear bit so that we resume
1318 * normal 'try hard' allocations.
1319 */
1320 if (node_alloc_noretry && page && !alloc_try_hard)
1321 node_clear(nid, *node_alloc_noretry);
1322
1323 /*
1324 * If we tried hard to get a page but failed, set bit so that
1325 * subsequent attempts will not try as hard until there is an
1326 * overall state change.
1327 */
1328 if (node_alloc_noretry && !page && alloc_try_hard)
1329 node_set(nid, *node_alloc_noretry);
1330
63b4613c
NA
1331 return page;
1332}
1333
0c397dae
MH
1334/*
1335 * Common helper to allocate a fresh hugetlb page. All specific allocators
1336 * should use this function to get new hugetlb pages
1337 */
1338static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1339 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1340 nodemask_t *node_alloc_noretry)
0c397dae
MH
1341{
1342 struct page *page;
1343
1344 if (hstate_is_gigantic(h))
1345 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1346 else
1347 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1348 nid, nmask, node_alloc_noretry);
0c397dae
MH
1349 if (!page)
1350 return NULL;
1351
1352 if (hstate_is_gigantic(h))
1353 prep_compound_gigantic_page(page, huge_page_order(h));
1354 prep_new_huge_page(h, page, page_to_nid(page));
1355
1356 return page;
1357}
1358
af0fb9df
MH
1359/*
1360 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1361 * manner.
1362 */
f60858f9
MK
1363static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1364 nodemask_t *node_alloc_noretry)
b2261026
JK
1365{
1366 struct page *page;
1367 int nr_nodes, node;
af0fb9df 1368 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1369
1370 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1371 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1372 node_alloc_noretry);
af0fb9df 1373 if (page)
b2261026 1374 break;
b2261026
JK
1375 }
1376
af0fb9df
MH
1377 if (!page)
1378 return 0;
b2261026 1379
af0fb9df
MH
1380 put_page(page); /* free it into the hugepage allocator */
1381
1382 return 1;
b2261026
JK
1383}
1384
e8c5c824
LS
1385/*
1386 * Free huge page from pool from next node to free.
1387 * Attempt to keep persistent huge pages more or less
1388 * balanced over allowed nodes.
1389 * Called with hugetlb_lock locked.
1390 */
6ae11b27
LS
1391static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1392 bool acct_surplus)
e8c5c824 1393{
b2261026 1394 int nr_nodes, node;
e8c5c824
LS
1395 int ret = 0;
1396
b2261026 1397 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1398 /*
1399 * If we're returning unused surplus pages, only examine
1400 * nodes with surplus pages.
1401 */
b2261026
JK
1402 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1403 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1404 struct page *page =
b2261026 1405 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1406 struct page, lru);
1407 list_del(&page->lru);
1408 h->free_huge_pages--;
b2261026 1409 h->free_huge_pages_node[node]--;
685f3457
LS
1410 if (acct_surplus) {
1411 h->surplus_huge_pages--;
b2261026 1412 h->surplus_huge_pages_node[node]--;
685f3457 1413 }
e8c5c824
LS
1414 update_and_free_page(h, page);
1415 ret = 1;
9a76db09 1416 break;
e8c5c824 1417 }
b2261026 1418 }
e8c5c824
LS
1419
1420 return ret;
1421}
1422
c8721bbb
NH
1423/*
1424 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1425 * nothing for in-use hugepages and non-hugepages.
1426 * This function returns values like below:
1427 *
1428 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1429 * (allocated or reserved.)
1430 * 0: successfully dissolved free hugepages or the page is not a
1431 * hugepage (considered as already dissolved)
c8721bbb 1432 */
c3114a84 1433int dissolve_free_huge_page(struct page *page)
c8721bbb 1434{
6bc9b564 1435 int rc = -EBUSY;
082d5b6b 1436
faf53def
NH
1437 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1438 if (!PageHuge(page))
1439 return 0;
1440
c8721bbb 1441 spin_lock(&hugetlb_lock);
faf53def
NH
1442 if (!PageHuge(page)) {
1443 rc = 0;
1444 goto out;
1445 }
1446
1447 if (!page_count(page)) {
2247bb33
GS
1448 struct page *head = compound_head(page);
1449 struct hstate *h = page_hstate(head);
1450 int nid = page_to_nid(head);
6bc9b564 1451 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1452 goto out;
c3114a84
AK
1453 /*
1454 * Move PageHWPoison flag from head page to the raw error page,
1455 * which makes any subpages rather than the error page reusable.
1456 */
1457 if (PageHWPoison(head) && page != head) {
1458 SetPageHWPoison(page);
1459 ClearPageHWPoison(head);
1460 }
2247bb33 1461 list_del(&head->lru);
c8721bbb
NH
1462 h->free_huge_pages--;
1463 h->free_huge_pages_node[nid]--;
c1470b33 1464 h->max_huge_pages--;
2247bb33 1465 update_and_free_page(h, head);
6bc9b564 1466 rc = 0;
c8721bbb 1467 }
082d5b6b 1468out:
c8721bbb 1469 spin_unlock(&hugetlb_lock);
082d5b6b 1470 return rc;
c8721bbb
NH
1471}
1472
1473/*
1474 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1475 * make specified memory blocks removable from the system.
2247bb33
GS
1476 * Note that this will dissolve a free gigantic hugepage completely, if any
1477 * part of it lies within the given range.
082d5b6b
GS
1478 * Also note that if dissolve_free_huge_page() returns with an error, all
1479 * free hugepages that were dissolved before that error are lost.
c8721bbb 1480 */
082d5b6b 1481int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1482{
c8721bbb 1483 unsigned long pfn;
eb03aa00 1484 struct page *page;
082d5b6b 1485 int rc = 0;
c8721bbb 1486
d0177639 1487 if (!hugepages_supported())
082d5b6b 1488 return rc;
d0177639 1489
eb03aa00
GS
1490 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1491 page = pfn_to_page(pfn);
faf53def
NH
1492 rc = dissolve_free_huge_page(page);
1493 if (rc)
1494 break;
eb03aa00 1495 }
082d5b6b
GS
1496
1497 return rc;
c8721bbb
NH
1498}
1499
ab5ac90a
MH
1500/*
1501 * Allocates a fresh surplus page from the page allocator.
1502 */
0c397dae 1503static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1504 int nid, nodemask_t *nmask)
7893d1d5 1505{
9980d744 1506 struct page *page = NULL;
7893d1d5 1507
bae7f4ae 1508 if (hstate_is_gigantic(h))
aa888a74
AK
1509 return NULL;
1510
d1c3fb1f 1511 spin_lock(&hugetlb_lock);
9980d744
MH
1512 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1513 goto out_unlock;
d1c3fb1f
NA
1514 spin_unlock(&hugetlb_lock);
1515
f60858f9 1516 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1517 if (!page)
0c397dae 1518 return NULL;
d1c3fb1f
NA
1519
1520 spin_lock(&hugetlb_lock);
9980d744
MH
1521 /*
1522 * We could have raced with the pool size change.
1523 * Double check that and simply deallocate the new page
1524 * if we would end up overcommiting the surpluses. Abuse
1525 * temporary page to workaround the nasty free_huge_page
1526 * codeflow
1527 */
1528 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1529 SetPageHugeTemporary(page);
2bf753e6 1530 spin_unlock(&hugetlb_lock);
9980d744 1531 put_page(page);
2bf753e6 1532 return NULL;
9980d744 1533 } else {
9980d744 1534 h->surplus_huge_pages++;
4704dea3 1535 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1536 }
9980d744
MH
1537
1538out_unlock:
d1c3fb1f 1539 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1540
1541 return page;
1542}
1543
9a4e9f3b
AK
1544struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1545 int nid, nodemask_t *nmask)
ab5ac90a
MH
1546{
1547 struct page *page;
1548
1549 if (hstate_is_gigantic(h))
1550 return NULL;
1551
f60858f9 1552 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1553 if (!page)
1554 return NULL;
1555
1556 /*
1557 * We do not account these pages as surplus because they are only
1558 * temporary and will be released properly on the last reference
1559 */
ab5ac90a
MH
1560 SetPageHugeTemporary(page);
1561
1562 return page;
1563}
1564
099730d6
DH
1565/*
1566 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1567 */
e0ec90ee 1568static
0c397dae 1569struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1570 struct vm_area_struct *vma, unsigned long addr)
1571{
aaf14e40
MH
1572 struct page *page;
1573 struct mempolicy *mpol;
1574 gfp_t gfp_mask = htlb_alloc_mask(h);
1575 int nid;
1576 nodemask_t *nodemask;
1577
1578 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1579 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1580 mpol_cond_put(mpol);
1581
1582 return page;
099730d6
DH
1583}
1584
ab5ac90a 1585/* page migration callback function */
bf50bab2
NH
1586struct page *alloc_huge_page_node(struct hstate *h, int nid)
1587{
aaf14e40 1588 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1589 struct page *page = NULL;
bf50bab2 1590
aaf14e40
MH
1591 if (nid != NUMA_NO_NODE)
1592 gfp_mask |= __GFP_THISNODE;
1593
bf50bab2 1594 spin_lock(&hugetlb_lock);
4ef91848 1595 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1596 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1597 spin_unlock(&hugetlb_lock);
1598
94ae8ba7 1599 if (!page)
0c397dae 1600 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1601
1602 return page;
1603}
1604
ab5ac90a 1605/* page migration callback function */
3e59fcb0
MH
1606struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1607 nodemask_t *nmask)
4db9b2ef 1608{
aaf14e40 1609 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1610
1611 spin_lock(&hugetlb_lock);
1612 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1613 struct page *page;
1614
1615 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1616 if (page) {
1617 spin_unlock(&hugetlb_lock);
1618 return page;
4db9b2ef
MH
1619 }
1620 }
1621 spin_unlock(&hugetlb_lock);
4db9b2ef 1622
0c397dae 1623 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1624}
1625
ebd63723 1626/* mempolicy aware migration callback */
389c8178
MH
1627struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1628 unsigned long address)
ebd63723
MH
1629{
1630 struct mempolicy *mpol;
1631 nodemask_t *nodemask;
1632 struct page *page;
ebd63723
MH
1633 gfp_t gfp_mask;
1634 int node;
1635
ebd63723
MH
1636 gfp_mask = htlb_alloc_mask(h);
1637 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1638 page = alloc_huge_page_nodemask(h, node, nodemask);
1639 mpol_cond_put(mpol);
1640
1641 return page;
1642}
1643
e4e574b7 1644/*
25985edc 1645 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1646 * of size 'delta'.
1647 */
a5516438 1648static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1649{
1650 struct list_head surplus_list;
1651 struct page *page, *tmp;
1652 int ret, i;
1653 int needed, allocated;
28073b02 1654 bool alloc_ok = true;
e4e574b7 1655
a5516438 1656 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1657 if (needed <= 0) {
a5516438 1658 h->resv_huge_pages += delta;
e4e574b7 1659 return 0;
ac09b3a1 1660 }
e4e574b7
AL
1661
1662 allocated = 0;
1663 INIT_LIST_HEAD(&surplus_list);
1664
1665 ret = -ENOMEM;
1666retry:
1667 spin_unlock(&hugetlb_lock);
1668 for (i = 0; i < needed; i++) {
0c397dae 1669 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1670 NUMA_NO_NODE, NULL);
28073b02
HD
1671 if (!page) {
1672 alloc_ok = false;
1673 break;
1674 }
e4e574b7 1675 list_add(&page->lru, &surplus_list);
69ed779a 1676 cond_resched();
e4e574b7 1677 }
28073b02 1678 allocated += i;
e4e574b7
AL
1679
1680 /*
1681 * After retaking hugetlb_lock, we need to recalculate 'needed'
1682 * because either resv_huge_pages or free_huge_pages may have changed.
1683 */
1684 spin_lock(&hugetlb_lock);
a5516438
AK
1685 needed = (h->resv_huge_pages + delta) -
1686 (h->free_huge_pages + allocated);
28073b02
HD
1687 if (needed > 0) {
1688 if (alloc_ok)
1689 goto retry;
1690 /*
1691 * We were not able to allocate enough pages to
1692 * satisfy the entire reservation so we free what
1693 * we've allocated so far.
1694 */
1695 goto free;
1696 }
e4e574b7
AL
1697 /*
1698 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1699 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1700 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1701 * allocator. Commit the entire reservation here to prevent another
1702 * process from stealing the pages as they are added to the pool but
1703 * before they are reserved.
e4e574b7
AL
1704 */
1705 needed += allocated;
a5516438 1706 h->resv_huge_pages += delta;
e4e574b7 1707 ret = 0;
a9869b83 1708
19fc3f0a 1709 /* Free the needed pages to the hugetlb pool */
e4e574b7 1710 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1711 if ((--needed) < 0)
1712 break;
a9869b83
NH
1713 /*
1714 * This page is now managed by the hugetlb allocator and has
1715 * no users -- drop the buddy allocator's reference.
1716 */
1717 put_page_testzero(page);
309381fe 1718 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1719 enqueue_huge_page(h, page);
19fc3f0a 1720 }
28073b02 1721free:
b0365c8d 1722 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1723
1724 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1725 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1726 put_page(page);
a9869b83 1727 spin_lock(&hugetlb_lock);
e4e574b7
AL
1728
1729 return ret;
1730}
1731
1732/*
e5bbc8a6
MK
1733 * This routine has two main purposes:
1734 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1735 * in unused_resv_pages. This corresponds to the prior adjustments made
1736 * to the associated reservation map.
1737 * 2) Free any unused surplus pages that may have been allocated to satisfy
1738 * the reservation. As many as unused_resv_pages may be freed.
1739 *
1740 * Called with hugetlb_lock held. However, the lock could be dropped (and
1741 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1742 * we must make sure nobody else can claim pages we are in the process of
1743 * freeing. Do this by ensuring resv_huge_page always is greater than the
1744 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1745 */
a5516438
AK
1746static void return_unused_surplus_pages(struct hstate *h,
1747 unsigned long unused_resv_pages)
e4e574b7 1748{
e4e574b7
AL
1749 unsigned long nr_pages;
1750
aa888a74 1751 /* Cannot return gigantic pages currently */
bae7f4ae 1752 if (hstate_is_gigantic(h))
e5bbc8a6 1753 goto out;
aa888a74 1754
e5bbc8a6
MK
1755 /*
1756 * Part (or even all) of the reservation could have been backed
1757 * by pre-allocated pages. Only free surplus pages.
1758 */
a5516438 1759 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1760
685f3457
LS
1761 /*
1762 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1763 * evenly across all nodes with memory. Iterate across these nodes
1764 * until we can no longer free unreserved surplus pages. This occurs
1765 * when the nodes with surplus pages have no free pages.
1766 * free_pool_huge_page() will balance the the freed pages across the
1767 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1768 *
1769 * Note that we decrement resv_huge_pages as we free the pages. If
1770 * we drop the lock, resv_huge_pages will still be sufficiently large
1771 * to cover subsequent pages we may free.
685f3457
LS
1772 */
1773 while (nr_pages--) {
e5bbc8a6
MK
1774 h->resv_huge_pages--;
1775 unused_resv_pages--;
8cebfcd0 1776 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1777 goto out;
7848a4bf 1778 cond_resched_lock(&hugetlb_lock);
e4e574b7 1779 }
e5bbc8a6
MK
1780
1781out:
1782 /* Fully uncommit the reservation */
1783 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1784}
1785
5e911373 1786
c37f9fb1 1787/*
feba16e2 1788 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1789 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1790 *
1791 * vma_needs_reservation is called to determine if the huge page at addr
1792 * within the vma has an associated reservation. If a reservation is
1793 * needed, the value 1 is returned. The caller is then responsible for
1794 * managing the global reservation and subpool usage counts. After
1795 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1796 * to add the page to the reservation map. If the page allocation fails,
1797 * the reservation must be ended instead of committed. vma_end_reservation
1798 * is called in such cases.
cf3ad20b
MK
1799 *
1800 * In the normal case, vma_commit_reservation returns the same value
1801 * as the preceding vma_needs_reservation call. The only time this
1802 * is not the case is if a reserve map was changed between calls. It
1803 * is the responsibility of the caller to notice the difference and
1804 * take appropriate action.
96b96a96
MK
1805 *
1806 * vma_add_reservation is used in error paths where a reservation must
1807 * be restored when a newly allocated huge page must be freed. It is
1808 * to be called after calling vma_needs_reservation to determine if a
1809 * reservation exists.
c37f9fb1 1810 */
5e911373
MK
1811enum vma_resv_mode {
1812 VMA_NEEDS_RESV,
1813 VMA_COMMIT_RESV,
feba16e2 1814 VMA_END_RESV,
96b96a96 1815 VMA_ADD_RESV,
5e911373 1816};
cf3ad20b
MK
1817static long __vma_reservation_common(struct hstate *h,
1818 struct vm_area_struct *vma, unsigned long addr,
5e911373 1819 enum vma_resv_mode mode)
c37f9fb1 1820{
4e35f483
JK
1821 struct resv_map *resv;
1822 pgoff_t idx;
cf3ad20b 1823 long ret;
c37f9fb1 1824
4e35f483
JK
1825 resv = vma_resv_map(vma);
1826 if (!resv)
84afd99b 1827 return 1;
c37f9fb1 1828
4e35f483 1829 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1830 switch (mode) {
1831 case VMA_NEEDS_RESV:
cf3ad20b 1832 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1833 break;
1834 case VMA_COMMIT_RESV:
1835 ret = region_add(resv, idx, idx + 1);
1836 break;
feba16e2 1837 case VMA_END_RESV:
5e911373
MK
1838 region_abort(resv, idx, idx + 1);
1839 ret = 0;
1840 break;
96b96a96
MK
1841 case VMA_ADD_RESV:
1842 if (vma->vm_flags & VM_MAYSHARE)
1843 ret = region_add(resv, idx, idx + 1);
1844 else {
1845 region_abort(resv, idx, idx + 1);
1846 ret = region_del(resv, idx, idx + 1);
1847 }
1848 break;
5e911373
MK
1849 default:
1850 BUG();
1851 }
84afd99b 1852
4e35f483 1853 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1854 return ret;
67961f9d
MK
1855 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1856 /*
1857 * In most cases, reserves always exist for private mappings.
1858 * However, a file associated with mapping could have been
1859 * hole punched or truncated after reserves were consumed.
1860 * As subsequent fault on such a range will not use reserves.
1861 * Subtle - The reserve map for private mappings has the
1862 * opposite meaning than that of shared mappings. If NO
1863 * entry is in the reserve map, it means a reservation exists.
1864 * If an entry exists in the reserve map, it means the
1865 * reservation has already been consumed. As a result, the
1866 * return value of this routine is the opposite of the
1867 * value returned from reserve map manipulation routines above.
1868 */
1869 if (ret)
1870 return 0;
1871 else
1872 return 1;
1873 }
4e35f483 1874 else
cf3ad20b 1875 return ret < 0 ? ret : 0;
c37f9fb1 1876}
cf3ad20b
MK
1877
1878static long vma_needs_reservation(struct hstate *h,
a5516438 1879 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1880{
5e911373 1881 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1882}
84afd99b 1883
cf3ad20b
MK
1884static long vma_commit_reservation(struct hstate *h,
1885 struct vm_area_struct *vma, unsigned long addr)
1886{
5e911373
MK
1887 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1888}
1889
feba16e2 1890static void vma_end_reservation(struct hstate *h,
5e911373
MK
1891 struct vm_area_struct *vma, unsigned long addr)
1892{
feba16e2 1893 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1894}
1895
96b96a96
MK
1896static long vma_add_reservation(struct hstate *h,
1897 struct vm_area_struct *vma, unsigned long addr)
1898{
1899 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1900}
1901
1902/*
1903 * This routine is called to restore a reservation on error paths. In the
1904 * specific error paths, a huge page was allocated (via alloc_huge_page)
1905 * and is about to be freed. If a reservation for the page existed,
1906 * alloc_huge_page would have consumed the reservation and set PagePrivate
1907 * in the newly allocated page. When the page is freed via free_huge_page,
1908 * the global reservation count will be incremented if PagePrivate is set.
1909 * However, free_huge_page can not adjust the reserve map. Adjust the
1910 * reserve map here to be consistent with global reserve count adjustments
1911 * to be made by free_huge_page.
1912 */
1913static void restore_reserve_on_error(struct hstate *h,
1914 struct vm_area_struct *vma, unsigned long address,
1915 struct page *page)
1916{
1917 if (unlikely(PagePrivate(page))) {
1918 long rc = vma_needs_reservation(h, vma, address);
1919
1920 if (unlikely(rc < 0)) {
1921 /*
1922 * Rare out of memory condition in reserve map
1923 * manipulation. Clear PagePrivate so that
1924 * global reserve count will not be incremented
1925 * by free_huge_page. This will make it appear
1926 * as though the reservation for this page was
1927 * consumed. This may prevent the task from
1928 * faulting in the page at a later time. This
1929 * is better than inconsistent global huge page
1930 * accounting of reserve counts.
1931 */
1932 ClearPagePrivate(page);
1933 } else if (rc) {
1934 rc = vma_add_reservation(h, vma, address);
1935 if (unlikely(rc < 0))
1936 /*
1937 * See above comment about rare out of
1938 * memory condition.
1939 */
1940 ClearPagePrivate(page);
1941 } else
1942 vma_end_reservation(h, vma, address);
1943 }
1944}
1945
70c3547e 1946struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1947 unsigned long addr, int avoid_reserve)
1da177e4 1948{
90481622 1949 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1950 struct hstate *h = hstate_vma(vma);
348ea204 1951 struct page *page;
d85f69b0
MK
1952 long map_chg, map_commit;
1953 long gbl_chg;
6d76dcf4
AK
1954 int ret, idx;
1955 struct hugetlb_cgroup *h_cg;
a1e78772 1956
6d76dcf4 1957 idx = hstate_index(h);
a1e78772 1958 /*
d85f69b0
MK
1959 * Examine the region/reserve map to determine if the process
1960 * has a reservation for the page to be allocated. A return
1961 * code of zero indicates a reservation exists (no change).
a1e78772 1962 */
d85f69b0
MK
1963 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1964 if (map_chg < 0)
76dcee75 1965 return ERR_PTR(-ENOMEM);
d85f69b0
MK
1966
1967 /*
1968 * Processes that did not create the mapping will have no
1969 * reserves as indicated by the region/reserve map. Check
1970 * that the allocation will not exceed the subpool limit.
1971 * Allocations for MAP_NORESERVE mappings also need to be
1972 * checked against any subpool limit.
1973 */
1974 if (map_chg || avoid_reserve) {
1975 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1976 if (gbl_chg < 0) {
feba16e2 1977 vma_end_reservation(h, vma, addr);
76dcee75 1978 return ERR_PTR(-ENOSPC);
5e911373 1979 }
1da177e4 1980
d85f69b0
MK
1981 /*
1982 * Even though there was no reservation in the region/reserve
1983 * map, there could be reservations associated with the
1984 * subpool that can be used. This would be indicated if the
1985 * return value of hugepage_subpool_get_pages() is zero.
1986 * However, if avoid_reserve is specified we still avoid even
1987 * the subpool reservations.
1988 */
1989 if (avoid_reserve)
1990 gbl_chg = 1;
1991 }
1992
6d76dcf4 1993 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1994 if (ret)
1995 goto out_subpool_put;
1996
1da177e4 1997 spin_lock(&hugetlb_lock);
d85f69b0
MK
1998 /*
1999 * glb_chg is passed to indicate whether or not a page must be taken
2000 * from the global free pool (global change). gbl_chg == 0 indicates
2001 * a reservation exists for the allocation.
2002 */
2003 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2004 if (!page) {
94ae8ba7 2005 spin_unlock(&hugetlb_lock);
0c397dae 2006 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2007 if (!page)
2008 goto out_uncharge_cgroup;
a88c7695
NH
2009 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2010 SetPagePrivate(page);
2011 h->resv_huge_pages--;
2012 }
79dbb236
AK
2013 spin_lock(&hugetlb_lock);
2014 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2015 /* Fall through */
68842c9b 2016 }
81a6fcae
JK
2017 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2018 spin_unlock(&hugetlb_lock);
348ea204 2019
90481622 2020 set_page_private(page, (unsigned long)spool);
90d8b7e6 2021
d85f69b0
MK
2022 map_commit = vma_commit_reservation(h, vma, addr);
2023 if (unlikely(map_chg > map_commit)) {
33039678
MK
2024 /*
2025 * The page was added to the reservation map between
2026 * vma_needs_reservation and vma_commit_reservation.
2027 * This indicates a race with hugetlb_reserve_pages.
2028 * Adjust for the subpool count incremented above AND
2029 * in hugetlb_reserve_pages for the same page. Also,
2030 * the reservation count added in hugetlb_reserve_pages
2031 * no longer applies.
2032 */
2033 long rsv_adjust;
2034
2035 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2036 hugetlb_acct_memory(h, -rsv_adjust);
2037 }
90d8b7e6 2038 return page;
8f34af6f
JZ
2039
2040out_uncharge_cgroup:
2041 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2042out_subpool_put:
d85f69b0 2043 if (map_chg || avoid_reserve)
8f34af6f 2044 hugepage_subpool_put_pages(spool, 1);
feba16e2 2045 vma_end_reservation(h, vma, addr);
8f34af6f 2046 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2047}
2048
e24a1307
AK
2049int alloc_bootmem_huge_page(struct hstate *h)
2050 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2051int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2052{
2053 struct huge_bootmem_page *m;
b2261026 2054 int nr_nodes, node;
aa888a74 2055
b2261026 2056 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2057 void *addr;
2058
eb31d559 2059 addr = memblock_alloc_try_nid_raw(
8b89a116 2060 huge_page_size(h), huge_page_size(h),
97ad1087 2061 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2062 if (addr) {
2063 /*
2064 * Use the beginning of the huge page to store the
2065 * huge_bootmem_page struct (until gather_bootmem
2066 * puts them into the mem_map).
2067 */
2068 m = addr;
91f47662 2069 goto found;
aa888a74 2070 }
aa888a74
AK
2071 }
2072 return 0;
2073
2074found:
df994ead 2075 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2076 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2077 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2078 list_add(&m->list, &huge_boot_pages);
2079 m->hstate = h;
2080 return 1;
2081}
2082
d00181b9
KS
2083static void __init prep_compound_huge_page(struct page *page,
2084 unsigned int order)
18229df5
AW
2085{
2086 if (unlikely(order > (MAX_ORDER - 1)))
2087 prep_compound_gigantic_page(page, order);
2088 else
2089 prep_compound_page(page, order);
2090}
2091
aa888a74
AK
2092/* Put bootmem huge pages into the standard lists after mem_map is up */
2093static void __init gather_bootmem_prealloc(void)
2094{
2095 struct huge_bootmem_page *m;
2096
2097 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2098 struct page *page = virt_to_page(m);
aa888a74 2099 struct hstate *h = m->hstate;
ee8f248d 2100
aa888a74 2101 WARN_ON(page_count(page) != 1);
18229df5 2102 prep_compound_huge_page(page, h->order);
ef5a22be 2103 WARN_ON(PageReserved(page));
aa888a74 2104 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2105 put_page(page); /* free it into the hugepage allocator */
2106
b0320c7b
RA
2107 /*
2108 * If we had gigantic hugepages allocated at boot time, we need
2109 * to restore the 'stolen' pages to totalram_pages in order to
2110 * fix confusing memory reports from free(1) and another
2111 * side-effects, like CommitLimit going negative.
2112 */
bae7f4ae 2113 if (hstate_is_gigantic(h))
3dcc0571 2114 adjust_managed_page_count(page, 1 << h->order);
520495fe 2115 cond_resched();
aa888a74
AK
2116 }
2117}
2118
8faa8b07 2119static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2120{
2121 unsigned long i;
f60858f9
MK
2122 nodemask_t *node_alloc_noretry;
2123
2124 if (!hstate_is_gigantic(h)) {
2125 /*
2126 * Bit mask controlling how hard we retry per-node allocations.
2127 * Ignore errors as lower level routines can deal with
2128 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2129 * time, we are likely in bigger trouble.
2130 */
2131 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2132 GFP_KERNEL);
2133 } else {
2134 /* allocations done at boot time */
2135 node_alloc_noretry = NULL;
2136 }
2137
2138 /* bit mask controlling how hard we retry per-node allocations */
2139 if (node_alloc_noretry)
2140 nodes_clear(*node_alloc_noretry);
a5516438 2141
e5ff2159 2142 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2143 if (hstate_is_gigantic(h)) {
aa888a74
AK
2144 if (!alloc_bootmem_huge_page(h))
2145 break;
0c397dae 2146 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2147 &node_states[N_MEMORY],
2148 node_alloc_noretry))
1da177e4 2149 break;
69ed779a 2150 cond_resched();
1da177e4 2151 }
d715cf80
LH
2152 if (i < h->max_huge_pages) {
2153 char buf[32];
2154
c6247f72 2155 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2156 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2157 h->max_huge_pages, buf, i);
2158 h->max_huge_pages = i;
2159 }
f60858f9
MK
2160
2161 kfree(node_alloc_noretry);
e5ff2159
AK
2162}
2163
2164static void __init hugetlb_init_hstates(void)
2165{
2166 struct hstate *h;
2167
2168 for_each_hstate(h) {
641844f5
NH
2169 if (minimum_order > huge_page_order(h))
2170 minimum_order = huge_page_order(h);
2171
8faa8b07 2172 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2173 if (!hstate_is_gigantic(h))
8faa8b07 2174 hugetlb_hstate_alloc_pages(h);
e5ff2159 2175 }
641844f5 2176 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2177}
2178
2179static void __init report_hugepages(void)
2180{
2181 struct hstate *h;
2182
2183 for_each_hstate(h) {
4abd32db 2184 char buf[32];
c6247f72
MW
2185
2186 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2187 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2188 buf, h->free_huge_pages);
e5ff2159
AK
2189 }
2190}
2191
1da177e4 2192#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2193static void try_to_free_low(struct hstate *h, unsigned long count,
2194 nodemask_t *nodes_allowed)
1da177e4 2195{
4415cc8d
CL
2196 int i;
2197
bae7f4ae 2198 if (hstate_is_gigantic(h))
aa888a74
AK
2199 return;
2200
6ae11b27 2201 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2202 struct page *page, *next;
a5516438
AK
2203 struct list_head *freel = &h->hugepage_freelists[i];
2204 list_for_each_entry_safe(page, next, freel, lru) {
2205 if (count >= h->nr_huge_pages)
6b0c880d 2206 return;
1da177e4
LT
2207 if (PageHighMem(page))
2208 continue;
2209 list_del(&page->lru);
e5ff2159 2210 update_and_free_page(h, page);
a5516438
AK
2211 h->free_huge_pages--;
2212 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2213 }
2214 }
2215}
2216#else
6ae11b27
LS
2217static inline void try_to_free_low(struct hstate *h, unsigned long count,
2218 nodemask_t *nodes_allowed)
1da177e4
LT
2219{
2220}
2221#endif
2222
20a0307c
WF
2223/*
2224 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2225 * balanced by operating on them in a round-robin fashion.
2226 * Returns 1 if an adjustment was made.
2227 */
6ae11b27
LS
2228static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2229 int delta)
20a0307c 2230{
b2261026 2231 int nr_nodes, node;
20a0307c
WF
2232
2233 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2234
b2261026
JK
2235 if (delta < 0) {
2236 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2237 if (h->surplus_huge_pages_node[node])
2238 goto found;
e8c5c824 2239 }
b2261026
JK
2240 } else {
2241 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2242 if (h->surplus_huge_pages_node[node] <
2243 h->nr_huge_pages_node[node])
2244 goto found;
e8c5c824 2245 }
b2261026
JK
2246 }
2247 return 0;
20a0307c 2248
b2261026
JK
2249found:
2250 h->surplus_huge_pages += delta;
2251 h->surplus_huge_pages_node[node] += delta;
2252 return 1;
20a0307c
WF
2253}
2254
a5516438 2255#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2256static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2257 nodemask_t *nodes_allowed)
1da177e4 2258{
7893d1d5 2259 unsigned long min_count, ret;
f60858f9
MK
2260 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2261
2262 /*
2263 * Bit mask controlling how hard we retry per-node allocations.
2264 * If we can not allocate the bit mask, do not attempt to allocate
2265 * the requested huge pages.
2266 */
2267 if (node_alloc_noretry)
2268 nodes_clear(*node_alloc_noretry);
2269 else
2270 return -ENOMEM;
1da177e4 2271
4eb0716e
AG
2272 spin_lock(&hugetlb_lock);
2273
fd875dca
MK
2274 /*
2275 * Check for a node specific request.
2276 * Changing node specific huge page count may require a corresponding
2277 * change to the global count. In any case, the passed node mask
2278 * (nodes_allowed) will restrict alloc/free to the specified node.
2279 */
2280 if (nid != NUMA_NO_NODE) {
2281 unsigned long old_count = count;
2282
2283 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2284 /*
2285 * User may have specified a large count value which caused the
2286 * above calculation to overflow. In this case, they wanted
2287 * to allocate as many huge pages as possible. Set count to
2288 * largest possible value to align with their intention.
2289 */
2290 if (count < old_count)
2291 count = ULONG_MAX;
2292 }
2293
4eb0716e
AG
2294 /*
2295 * Gigantic pages runtime allocation depend on the capability for large
2296 * page range allocation.
2297 * If the system does not provide this feature, return an error when
2298 * the user tries to allocate gigantic pages but let the user free the
2299 * boottime allocated gigantic pages.
2300 */
2301 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2302 if (count > persistent_huge_pages(h)) {
2303 spin_unlock(&hugetlb_lock);
f60858f9 2304 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2305 return -EINVAL;
2306 }
2307 /* Fall through to decrease pool */
2308 }
aa888a74 2309
7893d1d5
AL
2310 /*
2311 * Increase the pool size
2312 * First take pages out of surplus state. Then make up the
2313 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2314 *
0c397dae 2315 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2316 * to convert a surplus huge page to a normal huge page. That is
2317 * not critical, though, it just means the overall size of the
2318 * pool might be one hugepage larger than it needs to be, but
2319 * within all the constraints specified by the sysctls.
7893d1d5 2320 */
a5516438 2321 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2322 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2323 break;
2324 }
2325
a5516438 2326 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2327 /*
2328 * If this allocation races such that we no longer need the
2329 * page, free_huge_page will handle it by freeing the page
2330 * and reducing the surplus.
2331 */
2332 spin_unlock(&hugetlb_lock);
649920c6
JH
2333
2334 /* yield cpu to avoid soft lockup */
2335 cond_resched();
2336
f60858f9
MK
2337 ret = alloc_pool_huge_page(h, nodes_allowed,
2338 node_alloc_noretry);
7893d1d5
AL
2339 spin_lock(&hugetlb_lock);
2340 if (!ret)
2341 goto out;
2342
536240f2
MG
2343 /* Bail for signals. Probably ctrl-c from user */
2344 if (signal_pending(current))
2345 goto out;
7893d1d5 2346 }
7893d1d5
AL
2347
2348 /*
2349 * Decrease the pool size
2350 * First return free pages to the buddy allocator (being careful
2351 * to keep enough around to satisfy reservations). Then place
2352 * pages into surplus state as needed so the pool will shrink
2353 * to the desired size as pages become free.
d1c3fb1f
NA
2354 *
2355 * By placing pages into the surplus state independent of the
2356 * overcommit value, we are allowing the surplus pool size to
2357 * exceed overcommit. There are few sane options here. Since
0c397dae 2358 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2359 * though, we'll note that we're not allowed to exceed surplus
2360 * and won't grow the pool anywhere else. Not until one of the
2361 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2362 */
a5516438 2363 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2364 min_count = max(count, min_count);
6ae11b27 2365 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2366 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2367 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2368 break;
55f67141 2369 cond_resched_lock(&hugetlb_lock);
1da177e4 2370 }
a5516438 2371 while (count < persistent_huge_pages(h)) {
6ae11b27 2372 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2373 break;
2374 }
2375out:
4eb0716e 2376 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2377 spin_unlock(&hugetlb_lock);
4eb0716e 2378
f60858f9
MK
2379 NODEMASK_FREE(node_alloc_noretry);
2380
4eb0716e 2381 return 0;
1da177e4
LT
2382}
2383
a3437870
NA
2384#define HSTATE_ATTR_RO(_name) \
2385 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2386
2387#define HSTATE_ATTR(_name) \
2388 static struct kobj_attribute _name##_attr = \
2389 __ATTR(_name, 0644, _name##_show, _name##_store)
2390
2391static struct kobject *hugepages_kobj;
2392static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2393
9a305230
LS
2394static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2395
2396static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2397{
2398 int i;
9a305230 2399
a3437870 2400 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2401 if (hstate_kobjs[i] == kobj) {
2402 if (nidp)
2403 *nidp = NUMA_NO_NODE;
a3437870 2404 return &hstates[i];
9a305230
LS
2405 }
2406
2407 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2408}
2409
06808b08 2410static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2411 struct kobj_attribute *attr, char *buf)
2412{
9a305230
LS
2413 struct hstate *h;
2414 unsigned long nr_huge_pages;
2415 int nid;
2416
2417 h = kobj_to_hstate(kobj, &nid);
2418 if (nid == NUMA_NO_NODE)
2419 nr_huge_pages = h->nr_huge_pages;
2420 else
2421 nr_huge_pages = h->nr_huge_pages_node[nid];
2422
2423 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2424}
adbe8726 2425
238d3c13
DR
2426static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2427 struct hstate *h, int nid,
2428 unsigned long count, size_t len)
a3437870
NA
2429{
2430 int err;
2d0adf7e 2431 nodemask_t nodes_allowed, *n_mask;
a3437870 2432
2d0adf7e
OS
2433 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2434 return -EINVAL;
adbe8726 2435
9a305230
LS
2436 if (nid == NUMA_NO_NODE) {
2437 /*
2438 * global hstate attribute
2439 */
2440 if (!(obey_mempolicy &&
2d0adf7e
OS
2441 init_nodemask_of_mempolicy(&nodes_allowed)))
2442 n_mask = &node_states[N_MEMORY];
2443 else
2444 n_mask = &nodes_allowed;
2445 } else {
9a305230 2446 /*
fd875dca
MK
2447 * Node specific request. count adjustment happens in
2448 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2449 */
2d0adf7e
OS
2450 init_nodemask_of_node(&nodes_allowed, nid);
2451 n_mask = &nodes_allowed;
fd875dca 2452 }
9a305230 2453
2d0adf7e 2454 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2455
4eb0716e 2456 return err ? err : len;
06808b08
LS
2457}
2458
238d3c13
DR
2459static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2460 struct kobject *kobj, const char *buf,
2461 size_t len)
2462{
2463 struct hstate *h;
2464 unsigned long count;
2465 int nid;
2466 int err;
2467
2468 err = kstrtoul(buf, 10, &count);
2469 if (err)
2470 return err;
2471
2472 h = kobj_to_hstate(kobj, &nid);
2473 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2474}
2475
06808b08
LS
2476static ssize_t nr_hugepages_show(struct kobject *kobj,
2477 struct kobj_attribute *attr, char *buf)
2478{
2479 return nr_hugepages_show_common(kobj, attr, buf);
2480}
2481
2482static ssize_t nr_hugepages_store(struct kobject *kobj,
2483 struct kobj_attribute *attr, const char *buf, size_t len)
2484{
238d3c13 2485 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2486}
2487HSTATE_ATTR(nr_hugepages);
2488
06808b08
LS
2489#ifdef CONFIG_NUMA
2490
2491/*
2492 * hstate attribute for optionally mempolicy-based constraint on persistent
2493 * huge page alloc/free.
2494 */
2495static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2496 struct kobj_attribute *attr, char *buf)
2497{
2498 return nr_hugepages_show_common(kobj, attr, buf);
2499}
2500
2501static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2502 struct kobj_attribute *attr, const char *buf, size_t len)
2503{
238d3c13 2504 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2505}
2506HSTATE_ATTR(nr_hugepages_mempolicy);
2507#endif
2508
2509
a3437870
NA
2510static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2511 struct kobj_attribute *attr, char *buf)
2512{
9a305230 2513 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2514 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2515}
adbe8726 2516
a3437870
NA
2517static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2518 struct kobj_attribute *attr, const char *buf, size_t count)
2519{
2520 int err;
2521 unsigned long input;
9a305230 2522 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2523
bae7f4ae 2524 if (hstate_is_gigantic(h))
adbe8726
EM
2525 return -EINVAL;
2526
3dbb95f7 2527 err = kstrtoul(buf, 10, &input);
a3437870 2528 if (err)
73ae31e5 2529 return err;
a3437870
NA
2530
2531 spin_lock(&hugetlb_lock);
2532 h->nr_overcommit_huge_pages = input;
2533 spin_unlock(&hugetlb_lock);
2534
2535 return count;
2536}
2537HSTATE_ATTR(nr_overcommit_hugepages);
2538
2539static ssize_t free_hugepages_show(struct kobject *kobj,
2540 struct kobj_attribute *attr, char *buf)
2541{
9a305230
LS
2542 struct hstate *h;
2543 unsigned long free_huge_pages;
2544 int nid;
2545
2546 h = kobj_to_hstate(kobj, &nid);
2547 if (nid == NUMA_NO_NODE)
2548 free_huge_pages = h->free_huge_pages;
2549 else
2550 free_huge_pages = h->free_huge_pages_node[nid];
2551
2552 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2553}
2554HSTATE_ATTR_RO(free_hugepages);
2555
2556static ssize_t resv_hugepages_show(struct kobject *kobj,
2557 struct kobj_attribute *attr, char *buf)
2558{
9a305230 2559 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2560 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2561}
2562HSTATE_ATTR_RO(resv_hugepages);
2563
2564static ssize_t surplus_hugepages_show(struct kobject *kobj,
2565 struct kobj_attribute *attr, char *buf)
2566{
9a305230
LS
2567 struct hstate *h;
2568 unsigned long surplus_huge_pages;
2569 int nid;
2570
2571 h = kobj_to_hstate(kobj, &nid);
2572 if (nid == NUMA_NO_NODE)
2573 surplus_huge_pages = h->surplus_huge_pages;
2574 else
2575 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2576
2577 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2578}
2579HSTATE_ATTR_RO(surplus_hugepages);
2580
2581static struct attribute *hstate_attrs[] = {
2582 &nr_hugepages_attr.attr,
2583 &nr_overcommit_hugepages_attr.attr,
2584 &free_hugepages_attr.attr,
2585 &resv_hugepages_attr.attr,
2586 &surplus_hugepages_attr.attr,
06808b08
LS
2587#ifdef CONFIG_NUMA
2588 &nr_hugepages_mempolicy_attr.attr,
2589#endif
a3437870
NA
2590 NULL,
2591};
2592
67e5ed96 2593static const struct attribute_group hstate_attr_group = {
a3437870
NA
2594 .attrs = hstate_attrs,
2595};
2596
094e9539
JM
2597static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2598 struct kobject **hstate_kobjs,
67e5ed96 2599 const struct attribute_group *hstate_attr_group)
a3437870
NA
2600{
2601 int retval;
972dc4de 2602 int hi = hstate_index(h);
a3437870 2603
9a305230
LS
2604 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2605 if (!hstate_kobjs[hi])
a3437870
NA
2606 return -ENOMEM;
2607
9a305230 2608 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2609 if (retval)
9a305230 2610 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2611
2612 return retval;
2613}
2614
2615static void __init hugetlb_sysfs_init(void)
2616{
2617 struct hstate *h;
2618 int err;
2619
2620 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2621 if (!hugepages_kobj)
2622 return;
2623
2624 for_each_hstate(h) {
9a305230
LS
2625 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2626 hstate_kobjs, &hstate_attr_group);
a3437870 2627 if (err)
ffb22af5 2628 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2629 }
2630}
2631
9a305230
LS
2632#ifdef CONFIG_NUMA
2633
2634/*
2635 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2636 * with node devices in node_devices[] using a parallel array. The array
2637 * index of a node device or _hstate == node id.
2638 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2639 * the base kernel, on the hugetlb module.
2640 */
2641struct node_hstate {
2642 struct kobject *hugepages_kobj;
2643 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2644};
b4e289a6 2645static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2646
2647/*
10fbcf4c 2648 * A subset of global hstate attributes for node devices
9a305230
LS
2649 */
2650static struct attribute *per_node_hstate_attrs[] = {
2651 &nr_hugepages_attr.attr,
2652 &free_hugepages_attr.attr,
2653 &surplus_hugepages_attr.attr,
2654 NULL,
2655};
2656
67e5ed96 2657static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2658 .attrs = per_node_hstate_attrs,
2659};
2660
2661/*
10fbcf4c 2662 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2663 * Returns node id via non-NULL nidp.
2664 */
2665static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2666{
2667 int nid;
2668
2669 for (nid = 0; nid < nr_node_ids; nid++) {
2670 struct node_hstate *nhs = &node_hstates[nid];
2671 int i;
2672 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2673 if (nhs->hstate_kobjs[i] == kobj) {
2674 if (nidp)
2675 *nidp = nid;
2676 return &hstates[i];
2677 }
2678 }
2679
2680 BUG();
2681 return NULL;
2682}
2683
2684/*
10fbcf4c 2685 * Unregister hstate attributes from a single node device.
9a305230
LS
2686 * No-op if no hstate attributes attached.
2687 */
3cd8b44f 2688static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2689{
2690 struct hstate *h;
10fbcf4c 2691 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2692
2693 if (!nhs->hugepages_kobj)
9b5e5d0f 2694 return; /* no hstate attributes */
9a305230 2695
972dc4de
AK
2696 for_each_hstate(h) {
2697 int idx = hstate_index(h);
2698 if (nhs->hstate_kobjs[idx]) {
2699 kobject_put(nhs->hstate_kobjs[idx]);
2700 nhs->hstate_kobjs[idx] = NULL;
9a305230 2701 }
972dc4de 2702 }
9a305230
LS
2703
2704 kobject_put(nhs->hugepages_kobj);
2705 nhs->hugepages_kobj = NULL;
2706}
2707
9a305230
LS
2708
2709/*
10fbcf4c 2710 * Register hstate attributes for a single node device.
9a305230
LS
2711 * No-op if attributes already registered.
2712 */
3cd8b44f 2713static void hugetlb_register_node(struct node *node)
9a305230
LS
2714{
2715 struct hstate *h;
10fbcf4c 2716 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2717 int err;
2718
2719 if (nhs->hugepages_kobj)
2720 return; /* already allocated */
2721
2722 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2723 &node->dev.kobj);
9a305230
LS
2724 if (!nhs->hugepages_kobj)
2725 return;
2726
2727 for_each_hstate(h) {
2728 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2729 nhs->hstate_kobjs,
2730 &per_node_hstate_attr_group);
2731 if (err) {
ffb22af5
AM
2732 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2733 h->name, node->dev.id);
9a305230
LS
2734 hugetlb_unregister_node(node);
2735 break;
2736 }
2737 }
2738}
2739
2740/*
9b5e5d0f 2741 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2742 * devices of nodes that have memory. All on-line nodes should have
2743 * registered their associated device by this time.
9a305230 2744 */
7d9ca000 2745static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2746{
2747 int nid;
2748
8cebfcd0 2749 for_each_node_state(nid, N_MEMORY) {
8732794b 2750 struct node *node = node_devices[nid];
10fbcf4c 2751 if (node->dev.id == nid)
9a305230
LS
2752 hugetlb_register_node(node);
2753 }
2754
2755 /*
10fbcf4c 2756 * Let the node device driver know we're here so it can
9a305230
LS
2757 * [un]register hstate attributes on node hotplug.
2758 */
2759 register_hugetlbfs_with_node(hugetlb_register_node,
2760 hugetlb_unregister_node);
2761}
2762#else /* !CONFIG_NUMA */
2763
2764static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2765{
2766 BUG();
2767 if (nidp)
2768 *nidp = -1;
2769 return NULL;
2770}
2771
9a305230
LS
2772static void hugetlb_register_all_nodes(void) { }
2773
2774#endif
2775
a3437870
NA
2776static int __init hugetlb_init(void)
2777{
8382d914
DB
2778 int i;
2779
457c1b27 2780 if (!hugepages_supported())
0ef89d25 2781 return 0;
a3437870 2782
e11bfbfc 2783 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2784 if (default_hstate_size != 0) {
2785 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2786 default_hstate_size, HPAGE_SIZE);
2787 }
2788
e11bfbfc
NP
2789 default_hstate_size = HPAGE_SIZE;
2790 if (!size_to_hstate(default_hstate_size))
2791 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2792 }
972dc4de 2793 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2794 if (default_hstate_max_huge_pages) {
2795 if (!default_hstate.max_huge_pages)
2796 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2797 }
a3437870
NA
2798
2799 hugetlb_init_hstates();
aa888a74 2800 gather_bootmem_prealloc();
a3437870
NA
2801 report_hugepages();
2802
2803 hugetlb_sysfs_init();
9a305230 2804 hugetlb_register_all_nodes();
7179e7bf 2805 hugetlb_cgroup_file_init();
9a305230 2806
8382d914
DB
2807#ifdef CONFIG_SMP
2808 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2809#else
2810 num_fault_mutexes = 1;
2811#endif
c672c7f2 2812 hugetlb_fault_mutex_table =
6da2ec56
KC
2813 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2814 GFP_KERNEL);
c672c7f2 2815 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2816
2817 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2818 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2819 return 0;
2820}
3e89e1c5 2821subsys_initcall(hugetlb_init);
a3437870
NA
2822
2823/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2824void __init hugetlb_bad_size(void)
2825{
2826 parsed_valid_hugepagesz = false;
2827}
2828
d00181b9 2829void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2830{
2831 struct hstate *h;
8faa8b07
AK
2832 unsigned long i;
2833
a3437870 2834 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2835 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2836 return;
2837 }
47d38344 2838 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2839 BUG_ON(order == 0);
47d38344 2840 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2841 h->order = order;
2842 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2843 h->nr_huge_pages = 0;
2844 h->free_huge_pages = 0;
2845 for (i = 0; i < MAX_NUMNODES; ++i)
2846 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2847 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2848 h->next_nid_to_alloc = first_memory_node;
2849 h->next_nid_to_free = first_memory_node;
a3437870
NA
2850 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2851 huge_page_size(h)/1024);
8faa8b07 2852
a3437870
NA
2853 parsed_hstate = h;
2854}
2855
e11bfbfc 2856static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2857{
2858 unsigned long *mhp;
8faa8b07 2859 static unsigned long *last_mhp;
a3437870 2860
9fee021d
VT
2861 if (!parsed_valid_hugepagesz) {
2862 pr_warn("hugepages = %s preceded by "
2863 "an unsupported hugepagesz, ignoring\n", s);
2864 parsed_valid_hugepagesz = true;
2865 return 1;
2866 }
a3437870 2867 /*
47d38344 2868 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2869 * so this hugepages= parameter goes to the "default hstate".
2870 */
9fee021d 2871 else if (!hugetlb_max_hstate)
a3437870
NA
2872 mhp = &default_hstate_max_huge_pages;
2873 else
2874 mhp = &parsed_hstate->max_huge_pages;
2875
8faa8b07 2876 if (mhp == last_mhp) {
598d8091 2877 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2878 return 1;
2879 }
2880
a3437870
NA
2881 if (sscanf(s, "%lu", mhp) <= 0)
2882 *mhp = 0;
2883
8faa8b07
AK
2884 /*
2885 * Global state is always initialized later in hugetlb_init.
2886 * But we need to allocate >= MAX_ORDER hstates here early to still
2887 * use the bootmem allocator.
2888 */
47d38344 2889 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2890 hugetlb_hstate_alloc_pages(parsed_hstate);
2891
2892 last_mhp = mhp;
2893
a3437870
NA
2894 return 1;
2895}
e11bfbfc
NP
2896__setup("hugepages=", hugetlb_nrpages_setup);
2897
2898static int __init hugetlb_default_setup(char *s)
2899{
2900 default_hstate_size = memparse(s, &s);
2901 return 1;
2902}
2903__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2904
8a213460
NA
2905static unsigned int cpuset_mems_nr(unsigned int *array)
2906{
2907 int node;
2908 unsigned int nr = 0;
2909
2910 for_each_node_mask(node, cpuset_current_mems_allowed)
2911 nr += array[node];
2912
2913 return nr;
2914}
2915
2916#ifdef CONFIG_SYSCTL
06808b08
LS
2917static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2918 struct ctl_table *table, int write,
2919 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2920{
e5ff2159 2921 struct hstate *h = &default_hstate;
238d3c13 2922 unsigned long tmp = h->max_huge_pages;
08d4a246 2923 int ret;
e5ff2159 2924
457c1b27 2925 if (!hugepages_supported())
86613628 2926 return -EOPNOTSUPP;
457c1b27 2927
e5ff2159
AK
2928 table->data = &tmp;
2929 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2930 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2931 if (ret)
2932 goto out;
e5ff2159 2933
238d3c13
DR
2934 if (write)
2935 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2936 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2937out:
2938 return ret;
1da177e4 2939}
396faf03 2940
06808b08
LS
2941int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2942 void __user *buffer, size_t *length, loff_t *ppos)
2943{
2944
2945 return hugetlb_sysctl_handler_common(false, table, write,
2946 buffer, length, ppos);
2947}
2948
2949#ifdef CONFIG_NUMA
2950int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2951 void __user *buffer, size_t *length, loff_t *ppos)
2952{
2953 return hugetlb_sysctl_handler_common(true, table, write,
2954 buffer, length, ppos);
2955}
2956#endif /* CONFIG_NUMA */
2957
a3d0c6aa 2958int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2959 void __user *buffer,
a3d0c6aa
NA
2960 size_t *length, loff_t *ppos)
2961{
a5516438 2962 struct hstate *h = &default_hstate;
e5ff2159 2963 unsigned long tmp;
08d4a246 2964 int ret;
e5ff2159 2965
457c1b27 2966 if (!hugepages_supported())
86613628 2967 return -EOPNOTSUPP;
457c1b27 2968
c033a93c 2969 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2970
bae7f4ae 2971 if (write && hstate_is_gigantic(h))
adbe8726
EM
2972 return -EINVAL;
2973
e5ff2159
AK
2974 table->data = &tmp;
2975 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2976 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2977 if (ret)
2978 goto out;
e5ff2159
AK
2979
2980 if (write) {
2981 spin_lock(&hugetlb_lock);
2982 h->nr_overcommit_huge_pages = tmp;
2983 spin_unlock(&hugetlb_lock);
2984 }
08d4a246
MH
2985out:
2986 return ret;
a3d0c6aa
NA
2987}
2988
1da177e4
LT
2989#endif /* CONFIG_SYSCTL */
2990
e1759c21 2991void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2992{
fcb2b0c5
RG
2993 struct hstate *h;
2994 unsigned long total = 0;
2995
457c1b27
NA
2996 if (!hugepages_supported())
2997 return;
fcb2b0c5
RG
2998
2999 for_each_hstate(h) {
3000 unsigned long count = h->nr_huge_pages;
3001
3002 total += (PAGE_SIZE << huge_page_order(h)) * count;
3003
3004 if (h == &default_hstate)
3005 seq_printf(m,
3006 "HugePages_Total: %5lu\n"
3007 "HugePages_Free: %5lu\n"
3008 "HugePages_Rsvd: %5lu\n"
3009 "HugePages_Surp: %5lu\n"
3010 "Hugepagesize: %8lu kB\n",
3011 count,
3012 h->free_huge_pages,
3013 h->resv_huge_pages,
3014 h->surplus_huge_pages,
3015 (PAGE_SIZE << huge_page_order(h)) / 1024);
3016 }
3017
3018 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3019}
3020
3021int hugetlb_report_node_meminfo(int nid, char *buf)
3022{
a5516438 3023 struct hstate *h = &default_hstate;
457c1b27
NA
3024 if (!hugepages_supported())
3025 return 0;
1da177e4
LT
3026 return sprintf(buf,
3027 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3028 "Node %d HugePages_Free: %5u\n"
3029 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3030 nid, h->nr_huge_pages_node[nid],
3031 nid, h->free_huge_pages_node[nid],
3032 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3033}
3034
949f7ec5
DR
3035void hugetlb_show_meminfo(void)
3036{
3037 struct hstate *h;
3038 int nid;
3039
457c1b27
NA
3040 if (!hugepages_supported())
3041 return;
3042
949f7ec5
DR
3043 for_each_node_state(nid, N_MEMORY)
3044 for_each_hstate(h)
3045 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3046 nid,
3047 h->nr_huge_pages_node[nid],
3048 h->free_huge_pages_node[nid],
3049 h->surplus_huge_pages_node[nid],
3050 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3051}
3052
5d317b2b
NH
3053void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3054{
3055 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3056 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3057}
3058
1da177e4
LT
3059/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3060unsigned long hugetlb_total_pages(void)
3061{
d0028588
WL
3062 struct hstate *h;
3063 unsigned long nr_total_pages = 0;
3064
3065 for_each_hstate(h)
3066 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3067 return nr_total_pages;
1da177e4 3068}
1da177e4 3069
a5516438 3070static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3071{
3072 int ret = -ENOMEM;
3073
3074 spin_lock(&hugetlb_lock);
3075 /*
3076 * When cpuset is configured, it breaks the strict hugetlb page
3077 * reservation as the accounting is done on a global variable. Such
3078 * reservation is completely rubbish in the presence of cpuset because
3079 * the reservation is not checked against page availability for the
3080 * current cpuset. Application can still potentially OOM'ed by kernel
3081 * with lack of free htlb page in cpuset that the task is in.
3082 * Attempt to enforce strict accounting with cpuset is almost
3083 * impossible (or too ugly) because cpuset is too fluid that
3084 * task or memory node can be dynamically moved between cpusets.
3085 *
3086 * The change of semantics for shared hugetlb mapping with cpuset is
3087 * undesirable. However, in order to preserve some of the semantics,
3088 * we fall back to check against current free page availability as
3089 * a best attempt and hopefully to minimize the impact of changing
3090 * semantics that cpuset has.
3091 */
3092 if (delta > 0) {
a5516438 3093 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3094 goto out;
3095
a5516438
AK
3096 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3097 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3098 goto out;
3099 }
3100 }
3101
3102 ret = 0;
3103 if (delta < 0)
a5516438 3104 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3105
3106out:
3107 spin_unlock(&hugetlb_lock);
3108 return ret;
3109}
3110
84afd99b
AW
3111static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3112{
f522c3ac 3113 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3114
3115 /*
3116 * This new VMA should share its siblings reservation map if present.
3117 * The VMA will only ever have a valid reservation map pointer where
3118 * it is being copied for another still existing VMA. As that VMA
25985edc 3119 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3120 * after this open call completes. It is therefore safe to take a
3121 * new reference here without additional locking.
3122 */
4e35f483 3123 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3124 kref_get(&resv->refs);
84afd99b
AW
3125}
3126
a1e78772
MG
3127static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3128{
a5516438 3129 struct hstate *h = hstate_vma(vma);
f522c3ac 3130 struct resv_map *resv = vma_resv_map(vma);
90481622 3131 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3132 unsigned long reserve, start, end;
1c5ecae3 3133 long gbl_reserve;
84afd99b 3134
4e35f483
JK
3135 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3136 return;
84afd99b 3137
4e35f483
JK
3138 start = vma_hugecache_offset(h, vma, vma->vm_start);
3139 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3140
4e35f483 3141 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3142
4e35f483
JK
3143 kref_put(&resv->refs, resv_map_release);
3144
3145 if (reserve) {
1c5ecae3
MK
3146 /*
3147 * Decrement reserve counts. The global reserve count may be
3148 * adjusted if the subpool has a minimum size.
3149 */
3150 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3151 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3152 }
a1e78772
MG
3153}
3154
31383c68
DW
3155static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3156{
3157 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3158 return -EINVAL;
3159 return 0;
3160}
3161
05ea8860
DW
3162static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3163{
3164 struct hstate *hstate = hstate_vma(vma);
3165
3166 return 1UL << huge_page_shift(hstate);
3167}
3168
1da177e4
LT
3169/*
3170 * We cannot handle pagefaults against hugetlb pages at all. They cause
3171 * handle_mm_fault() to try to instantiate regular-sized pages in the
3172 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3173 * this far.
3174 */
b3ec9f33 3175static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3176{
3177 BUG();
d0217ac0 3178 return 0;
1da177e4
LT
3179}
3180
eec3636a
JC
3181/*
3182 * When a new function is introduced to vm_operations_struct and added
3183 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3184 * This is because under System V memory model, mappings created via
3185 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3186 * their original vm_ops are overwritten with shm_vm_ops.
3187 */
f0f37e2f 3188const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3189 .fault = hugetlb_vm_op_fault,
84afd99b 3190 .open = hugetlb_vm_op_open,
a1e78772 3191 .close = hugetlb_vm_op_close,
31383c68 3192 .split = hugetlb_vm_op_split,
05ea8860 3193 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3194};
3195
1e8f889b
DG
3196static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3197 int writable)
63551ae0
DG
3198{
3199 pte_t entry;
3200
1e8f889b 3201 if (writable) {
106c992a
GS
3202 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3203 vma->vm_page_prot)));
63551ae0 3204 } else {
106c992a
GS
3205 entry = huge_pte_wrprotect(mk_huge_pte(page,
3206 vma->vm_page_prot));
63551ae0
DG
3207 }
3208 entry = pte_mkyoung(entry);
3209 entry = pte_mkhuge(entry);
d9ed9faa 3210 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3211
3212 return entry;
3213}
3214
1e8f889b
DG
3215static void set_huge_ptep_writable(struct vm_area_struct *vma,
3216 unsigned long address, pte_t *ptep)
3217{
3218 pte_t entry;
3219
106c992a 3220 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3221 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3222 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3223}
3224
d5ed7444 3225bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3226{
3227 swp_entry_t swp;
3228
3229 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3230 return false;
4a705fef
NH
3231 swp = pte_to_swp_entry(pte);
3232 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3233 return true;
4a705fef 3234 else
d5ed7444 3235 return false;
4a705fef
NH
3236}
3237
3238static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3239{
3240 swp_entry_t swp;
3241
3242 if (huge_pte_none(pte) || pte_present(pte))
3243 return 0;
3244 swp = pte_to_swp_entry(pte);
3245 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3246 return 1;
3247 else
3248 return 0;
3249}
1e8f889b 3250
63551ae0
DG
3251int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3252 struct vm_area_struct *vma)
3253{
5e41540c 3254 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3255 struct page *ptepage;
1c59827d 3256 unsigned long addr;
1e8f889b 3257 int cow;
a5516438
AK
3258 struct hstate *h = hstate_vma(vma);
3259 unsigned long sz = huge_page_size(h);
ac46d4f3 3260 struct mmu_notifier_range range;
e8569dd2 3261 int ret = 0;
1e8f889b
DG
3262
3263 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3264
ac46d4f3 3265 if (cow) {
7269f999 3266 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3267 vma->vm_start,
ac46d4f3
JG
3268 vma->vm_end);
3269 mmu_notifier_invalidate_range_start(&range);
3270 }
e8569dd2 3271
a5516438 3272 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3273 spinlock_t *src_ptl, *dst_ptl;
7868a208 3274 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3275 if (!src_pte)
3276 continue;
a5516438 3277 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3278 if (!dst_pte) {
3279 ret = -ENOMEM;
3280 break;
3281 }
c5c99429 3282
5e41540c
MK
3283 /*
3284 * If the pagetables are shared don't copy or take references.
3285 * dst_pte == src_pte is the common case of src/dest sharing.
3286 *
3287 * However, src could have 'unshared' and dst shares with
3288 * another vma. If dst_pte !none, this implies sharing.
3289 * Check here before taking page table lock, and once again
3290 * after taking the lock below.
3291 */
3292 dst_entry = huge_ptep_get(dst_pte);
3293 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3294 continue;
3295
cb900f41
KS
3296 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3297 src_ptl = huge_pte_lockptr(h, src, src_pte);
3298 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3299 entry = huge_ptep_get(src_pte);
5e41540c
MK
3300 dst_entry = huge_ptep_get(dst_pte);
3301 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3302 /*
3303 * Skip if src entry none. Also, skip in the
3304 * unlikely case dst entry !none as this implies
3305 * sharing with another vma.
3306 */
4a705fef
NH
3307 ;
3308 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3309 is_hugetlb_entry_hwpoisoned(entry))) {
3310 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3311
3312 if (is_write_migration_entry(swp_entry) && cow) {
3313 /*
3314 * COW mappings require pages in both
3315 * parent and child to be set to read.
3316 */
3317 make_migration_entry_read(&swp_entry);
3318 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3319 set_huge_swap_pte_at(src, addr, src_pte,
3320 entry, sz);
4a705fef 3321 }
e5251fd4 3322 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3323 } else {
34ee645e 3324 if (cow) {
0f10851e
JG
3325 /*
3326 * No need to notify as we are downgrading page
3327 * table protection not changing it to point
3328 * to a new page.
3329 *
ad56b738 3330 * See Documentation/vm/mmu_notifier.rst
0f10851e 3331 */
7f2e9525 3332 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3333 }
0253d634 3334 entry = huge_ptep_get(src_pte);
1c59827d
HD
3335 ptepage = pte_page(entry);
3336 get_page(ptepage);
53f9263b 3337 page_dup_rmap(ptepage, true);
1c59827d 3338 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3339 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3340 }
cb900f41
KS
3341 spin_unlock(src_ptl);
3342 spin_unlock(dst_ptl);
63551ae0 3343 }
63551ae0 3344
e8569dd2 3345 if (cow)
ac46d4f3 3346 mmu_notifier_invalidate_range_end(&range);
e8569dd2
AS
3347
3348 return ret;
63551ae0
DG
3349}
3350
24669e58
AK
3351void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3352 unsigned long start, unsigned long end,
3353 struct page *ref_page)
63551ae0
DG
3354{
3355 struct mm_struct *mm = vma->vm_mm;
3356 unsigned long address;
c7546f8f 3357 pte_t *ptep;
63551ae0 3358 pte_t pte;
cb900f41 3359 spinlock_t *ptl;
63551ae0 3360 struct page *page;
a5516438
AK
3361 struct hstate *h = hstate_vma(vma);
3362 unsigned long sz = huge_page_size(h);
ac46d4f3 3363 struct mmu_notifier_range range;
a5516438 3364
63551ae0 3365 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3366 BUG_ON(start & ~huge_page_mask(h));
3367 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3368
07e32661
AK
3369 /*
3370 * This is a hugetlb vma, all the pte entries should point
3371 * to huge page.
3372 */
ed6a7935 3373 tlb_change_page_size(tlb, sz);
24669e58 3374 tlb_start_vma(tlb, vma);
dff11abe
MK
3375
3376 /*
3377 * If sharing possible, alert mmu notifiers of worst case.
3378 */
6f4f13e8
JG
3379 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3380 end);
ac46d4f3
JG
3381 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3382 mmu_notifier_invalidate_range_start(&range);
569f48b8 3383 address = start;
569f48b8 3384 for (; address < end; address += sz) {
7868a208 3385 ptep = huge_pte_offset(mm, address, sz);
4c887265 3386 if (!ptep)
c7546f8f
DG
3387 continue;
3388
cb900f41 3389 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3390 if (huge_pmd_unshare(mm, &address, ptep)) {
3391 spin_unlock(ptl);
dff11abe
MK
3392 /*
3393 * We just unmapped a page of PMDs by clearing a PUD.
3394 * The caller's TLB flush range should cover this area.
3395 */
31d49da5
AK
3396 continue;
3397 }
39dde65c 3398
6629326b 3399 pte = huge_ptep_get(ptep);
31d49da5
AK
3400 if (huge_pte_none(pte)) {
3401 spin_unlock(ptl);
3402 continue;
3403 }
6629326b
HD
3404
3405 /*
9fbc1f63
NH
3406 * Migrating hugepage or HWPoisoned hugepage is already
3407 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3408 */
9fbc1f63 3409 if (unlikely(!pte_present(pte))) {
9386fac3 3410 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3411 spin_unlock(ptl);
3412 continue;
8c4894c6 3413 }
6629326b
HD
3414
3415 page = pte_page(pte);
04f2cbe3
MG
3416 /*
3417 * If a reference page is supplied, it is because a specific
3418 * page is being unmapped, not a range. Ensure the page we
3419 * are about to unmap is the actual page of interest.
3420 */
3421 if (ref_page) {
31d49da5
AK
3422 if (page != ref_page) {
3423 spin_unlock(ptl);
3424 continue;
3425 }
04f2cbe3
MG
3426 /*
3427 * Mark the VMA as having unmapped its page so that
3428 * future faults in this VMA will fail rather than
3429 * looking like data was lost
3430 */
3431 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3432 }
3433
c7546f8f 3434 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3435 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3436 if (huge_pte_dirty(pte))
6649a386 3437 set_page_dirty(page);
9e81130b 3438
5d317b2b 3439 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3440 page_remove_rmap(page, true);
31d49da5 3441
cb900f41 3442 spin_unlock(ptl);
e77b0852 3443 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3444 /*
3445 * Bail out after unmapping reference page if supplied
3446 */
3447 if (ref_page)
3448 break;
fe1668ae 3449 }
ac46d4f3 3450 mmu_notifier_invalidate_range_end(&range);
24669e58 3451 tlb_end_vma(tlb, vma);
1da177e4 3452}
63551ae0 3453
d833352a
MG
3454void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3455 struct vm_area_struct *vma, unsigned long start,
3456 unsigned long end, struct page *ref_page)
3457{
3458 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3459
3460 /*
3461 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3462 * test will fail on a vma being torn down, and not grab a page table
3463 * on its way out. We're lucky that the flag has such an appropriate
3464 * name, and can in fact be safely cleared here. We could clear it
3465 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3466 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3467 * because in the context this is called, the VMA is about to be
c8c06efa 3468 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3469 */
3470 vma->vm_flags &= ~VM_MAYSHARE;
3471}
3472
502717f4 3473void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3474 unsigned long end, struct page *ref_page)
502717f4 3475{
24669e58
AK
3476 struct mm_struct *mm;
3477 struct mmu_gather tlb;
dff11abe
MK
3478 unsigned long tlb_start = start;
3479 unsigned long tlb_end = end;
3480
3481 /*
3482 * If shared PMDs were possibly used within this vma range, adjust
3483 * start/end for worst case tlb flushing.
3484 * Note that we can not be sure if PMDs are shared until we try to
3485 * unmap pages. However, we want to make sure TLB flushing covers
3486 * the largest possible range.
3487 */
3488 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
3489
3490 mm = vma->vm_mm;
3491
dff11abe 3492 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 3493 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 3494 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
KC
3495}
3496
04f2cbe3
MG
3497/*
3498 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3499 * mappping it owns the reserve page for. The intention is to unmap the page
3500 * from other VMAs and let the children be SIGKILLed if they are faulting the
3501 * same region.
3502 */
2f4612af
DB
3503static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3504 struct page *page, unsigned long address)
04f2cbe3 3505{
7526674d 3506 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3507 struct vm_area_struct *iter_vma;
3508 struct address_space *mapping;
04f2cbe3
MG
3509 pgoff_t pgoff;
3510
3511 /*
3512 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3513 * from page cache lookup which is in HPAGE_SIZE units.
3514 */
7526674d 3515 address = address & huge_page_mask(h);
36e4f20a
MH
3516 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3517 vma->vm_pgoff;
93c76a3d 3518 mapping = vma->vm_file->f_mapping;
04f2cbe3 3519
4eb2b1dc
MG
3520 /*
3521 * Take the mapping lock for the duration of the table walk. As
3522 * this mapping should be shared between all the VMAs,
3523 * __unmap_hugepage_range() is called as the lock is already held
3524 */
83cde9e8 3525 i_mmap_lock_write(mapping);
6b2dbba8 3526 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3527 /* Do not unmap the current VMA */
3528 if (iter_vma == vma)
3529 continue;
3530
2f84a899
MG
3531 /*
3532 * Shared VMAs have their own reserves and do not affect
3533 * MAP_PRIVATE accounting but it is possible that a shared
3534 * VMA is using the same page so check and skip such VMAs.
3535 */
3536 if (iter_vma->vm_flags & VM_MAYSHARE)
3537 continue;
3538
04f2cbe3
MG
3539 /*
3540 * Unmap the page from other VMAs without their own reserves.
3541 * They get marked to be SIGKILLed if they fault in these
3542 * areas. This is because a future no-page fault on this VMA
3543 * could insert a zeroed page instead of the data existing
3544 * from the time of fork. This would look like data corruption
3545 */
3546 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3547 unmap_hugepage_range(iter_vma, address,
3548 address + huge_page_size(h), page);
04f2cbe3 3549 }
83cde9e8 3550 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3551}
3552
0fe6e20b
NH
3553/*
3554 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3555 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3556 * cannot race with other handlers or page migration.
3557 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3558 */
2b740303 3559static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3560 unsigned long address, pte_t *ptep,
3999f52e 3561 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3562{
3999f52e 3563 pte_t pte;
a5516438 3564 struct hstate *h = hstate_vma(vma);
1e8f889b 3565 struct page *old_page, *new_page;
2b740303
SJ
3566 int outside_reserve = 0;
3567 vm_fault_t ret = 0;
974e6d66 3568 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 3569 struct mmu_notifier_range range;
1e8f889b 3570
3999f52e 3571 pte = huge_ptep_get(ptep);
1e8f889b
DG
3572 old_page = pte_page(pte);
3573
04f2cbe3 3574retry_avoidcopy:
1e8f889b
DG
3575 /* If no-one else is actually using this page, avoid the copy
3576 * and just make the page writable */
37a2140d 3577 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3578 page_move_anon_rmap(old_page, vma);
5b7a1d40 3579 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3580 return 0;
1e8f889b
DG
3581 }
3582
04f2cbe3
MG
3583 /*
3584 * If the process that created a MAP_PRIVATE mapping is about to
3585 * perform a COW due to a shared page count, attempt to satisfy
3586 * the allocation without using the existing reserves. The pagecache
3587 * page is used to determine if the reserve at this address was
3588 * consumed or not. If reserves were used, a partial faulted mapping
3589 * at the time of fork() could consume its reserves on COW instead
3590 * of the full address range.
3591 */
5944d011 3592 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3593 old_page != pagecache_page)
3594 outside_reserve = 1;
3595
09cbfeaf 3596 get_page(old_page);
b76c8cfb 3597
ad4404a2
DB
3598 /*
3599 * Drop page table lock as buddy allocator may be called. It will
3600 * be acquired again before returning to the caller, as expected.
3601 */
cb900f41 3602 spin_unlock(ptl);
5b7a1d40 3603 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 3604
2fc39cec 3605 if (IS_ERR(new_page)) {
04f2cbe3
MG
3606 /*
3607 * If a process owning a MAP_PRIVATE mapping fails to COW,
3608 * it is due to references held by a child and an insufficient
3609 * huge page pool. To guarantee the original mappers
3610 * reliability, unmap the page from child processes. The child
3611 * may get SIGKILLed if it later faults.
3612 */
3613 if (outside_reserve) {
09cbfeaf 3614 put_page(old_page);
04f2cbe3 3615 BUG_ON(huge_pte_none(pte));
5b7a1d40 3616 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
3617 BUG_ON(huge_pte_none(pte));
3618 spin_lock(ptl);
5b7a1d40 3619 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
3620 if (likely(ptep &&
3621 pte_same(huge_ptep_get(ptep), pte)))
3622 goto retry_avoidcopy;
3623 /*
3624 * race occurs while re-acquiring page table
3625 * lock, and our job is done.
3626 */
3627 return 0;
04f2cbe3
MG
3628 }
3629
2b740303 3630 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 3631 goto out_release_old;
1e8f889b
DG
3632 }
3633
0fe6e20b
NH
3634 /*
3635 * When the original hugepage is shared one, it does not have
3636 * anon_vma prepared.
3637 */
44e2aa93 3638 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3639 ret = VM_FAULT_OOM;
3640 goto out_release_all;
44e2aa93 3641 }
0fe6e20b 3642
974e6d66 3643 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 3644 pages_per_huge_page(h));
0ed361de 3645 __SetPageUptodate(new_page);
1e8f889b 3646
7269f999 3647 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 3648 haddr + huge_page_size(h));
ac46d4f3 3649 mmu_notifier_invalidate_range_start(&range);
ad4404a2 3650
b76c8cfb 3651 /*
cb900f41 3652 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3653 * before the page tables are altered
3654 */
cb900f41 3655 spin_lock(ptl);
5b7a1d40 3656 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 3657 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3658 ClearPagePrivate(new_page);
3659
1e8f889b 3660 /* Break COW */
5b7a1d40 3661 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 3662 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 3663 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 3664 make_huge_pte(vma, new_page, 1));
d281ee61 3665 page_remove_rmap(old_page, true);
5b7a1d40 3666 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 3667 set_page_huge_active(new_page);
1e8f889b
DG
3668 /* Make the old page be freed below */
3669 new_page = old_page;
3670 }
cb900f41 3671 spin_unlock(ptl);
ac46d4f3 3672 mmu_notifier_invalidate_range_end(&range);
ad4404a2 3673out_release_all:
5b7a1d40 3674 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 3675 put_page(new_page);
ad4404a2 3676out_release_old:
09cbfeaf 3677 put_page(old_page);
8312034f 3678
ad4404a2
DB
3679 spin_lock(ptl); /* Caller expects lock to be held */
3680 return ret;
1e8f889b
DG
3681}
3682
04f2cbe3 3683/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3684static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3685 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3686{
3687 struct address_space *mapping;
e7c4b0bf 3688 pgoff_t idx;
04f2cbe3
MG
3689
3690 mapping = vma->vm_file->f_mapping;
a5516438 3691 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3692
3693 return find_lock_page(mapping, idx);
3694}
3695
3ae77f43
HD
3696/*
3697 * Return whether there is a pagecache page to back given address within VMA.
3698 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3699 */
3700static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3701 struct vm_area_struct *vma, unsigned long address)
3702{
3703 struct address_space *mapping;
3704 pgoff_t idx;
3705 struct page *page;
3706
3707 mapping = vma->vm_file->f_mapping;
3708 idx = vma_hugecache_offset(h, vma, address);
3709
3710 page = find_get_page(mapping, idx);
3711 if (page)
3712 put_page(page);
3713 return page != NULL;
3714}
3715
ab76ad54
MK
3716int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3717 pgoff_t idx)
3718{
3719 struct inode *inode = mapping->host;
3720 struct hstate *h = hstate_inode(inode);
3721 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3722
3723 if (err)
3724 return err;
3725 ClearPagePrivate(page);
3726
22146c3c
MK
3727 /*
3728 * set page dirty so that it will not be removed from cache/file
3729 * by non-hugetlbfs specific code paths.
3730 */
3731 set_page_dirty(page);
3732
ab76ad54
MK
3733 spin_lock(&inode->i_lock);
3734 inode->i_blocks += blocks_per_huge_page(h);
3735 spin_unlock(&inode->i_lock);
3736 return 0;
3737}
3738
2b740303
SJ
3739static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3740 struct vm_area_struct *vma,
3741 struct address_space *mapping, pgoff_t idx,
3742 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3743{
a5516438 3744 struct hstate *h = hstate_vma(vma);
2b740303 3745 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 3746 int anon_rmap = 0;
4c887265 3747 unsigned long size;
4c887265 3748 struct page *page;
1e8f889b 3749 pte_t new_pte;
cb900f41 3750 spinlock_t *ptl;
285b8dca 3751 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 3752 bool new_page = false;
4c887265 3753
04f2cbe3
MG
3754 /*
3755 * Currently, we are forced to kill the process in the event the
3756 * original mapper has unmapped pages from the child due to a failed
25985edc 3757 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3758 */
3759 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3760 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3761 current->pid);
04f2cbe3
MG
3762 return ret;
3763 }
3764
4c887265 3765 /*
e7c58097
MK
3766 * Use page lock to guard against racing truncation
3767 * before we get page_table_lock.
4c887265 3768 */
6bda666a
CL
3769retry:
3770 page = find_lock_page(mapping, idx);
3771 if (!page) {
e7c58097
MK
3772 size = i_size_read(mapping->host) >> huge_page_shift(h);
3773 if (idx >= size)
3774 goto out;
3775
1a1aad8a
MK
3776 /*
3777 * Check for page in userfault range
3778 */
3779 if (userfaultfd_missing(vma)) {
3780 u32 hash;
3781 struct vm_fault vmf = {
3782 .vma = vma,
285b8dca 3783 .address = haddr,
1a1aad8a
MK
3784 .flags = flags,
3785 /*
3786 * Hard to debug if it ends up being
3787 * used by a callee that assumes
3788 * something about the other
3789 * uninitialized fields... same as in
3790 * memory.c
3791 */
3792 };
3793
3794 /*
ddeaab32
MK
3795 * hugetlb_fault_mutex must be dropped before
3796 * handling userfault. Reacquire after handling
3797 * fault to make calling code simpler.
1a1aad8a 3798 */
188b04a7 3799 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a
MK
3800 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3801 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3802 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3803 goto out;
3804 }
3805
285b8dca 3806 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 3807 if (IS_ERR(page)) {
4643d67e
MK
3808 /*
3809 * Returning error will result in faulting task being
3810 * sent SIGBUS. The hugetlb fault mutex prevents two
3811 * tasks from racing to fault in the same page which
3812 * could result in false unable to allocate errors.
3813 * Page migration does not take the fault mutex, but
3814 * does a clear then write of pte's under page table
3815 * lock. Page fault code could race with migration,
3816 * notice the clear pte and try to allocate a page
3817 * here. Before returning error, get ptl and make
3818 * sure there really is no pte entry.
3819 */
3820 ptl = huge_pte_lock(h, mm, ptep);
3821 if (!huge_pte_none(huge_ptep_get(ptep))) {
3822 ret = 0;
3823 spin_unlock(ptl);
3824 goto out;
3825 }
3826 spin_unlock(ptl);
2b740303 3827 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
3828 goto out;
3829 }
47ad8475 3830 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3831 __SetPageUptodate(page);
cb6acd01 3832 new_page = true;
ac9b9c66 3833
f83a275d 3834 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3835 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3836 if (err) {
3837 put_page(page);
6bda666a
CL
3838 if (err == -EEXIST)
3839 goto retry;
3840 goto out;
3841 }
23be7468 3842 } else {
6bda666a 3843 lock_page(page);
0fe6e20b
NH
3844 if (unlikely(anon_vma_prepare(vma))) {
3845 ret = VM_FAULT_OOM;
3846 goto backout_unlocked;
3847 }
409eb8c2 3848 anon_rmap = 1;
23be7468 3849 }
0fe6e20b 3850 } else {
998b4382
NH
3851 /*
3852 * If memory error occurs between mmap() and fault, some process
3853 * don't have hwpoisoned swap entry for errored virtual address.
3854 * So we need to block hugepage fault by PG_hwpoison bit check.
3855 */
3856 if (unlikely(PageHWPoison(page))) {
32f84528 3857 ret = VM_FAULT_HWPOISON |
972dc4de 3858 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3859 goto backout_unlocked;
3860 }
6bda666a 3861 }
1e8f889b 3862
57303d80
AW
3863 /*
3864 * If we are going to COW a private mapping later, we examine the
3865 * pending reservations for this page now. This will ensure that
3866 * any allocations necessary to record that reservation occur outside
3867 * the spinlock.
3868 */
5e911373 3869 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 3870 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
3871 ret = VM_FAULT_OOM;
3872 goto backout_unlocked;
3873 }
5e911373 3874 /* Just decrements count, does not deallocate */
285b8dca 3875 vma_end_reservation(h, vma, haddr);
5e911373 3876 }
57303d80 3877
8bea8052 3878 ptl = huge_pte_lock(h, mm, ptep);
e7c58097
MK
3879 size = i_size_read(mapping->host) >> huge_page_shift(h);
3880 if (idx >= size)
3881 goto backout;
4c887265 3882
83c54070 3883 ret = 0;
7f2e9525 3884 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3885 goto backout;
3886
07443a85
JK
3887 if (anon_rmap) {
3888 ClearPagePrivate(page);
285b8dca 3889 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 3890 } else
53f9263b 3891 page_dup_rmap(page, true);
1e8f889b
DG
3892 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3893 && (vma->vm_flags & VM_SHARED)));
285b8dca 3894 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 3895
5d317b2b 3896 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3897 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3898 /* Optimization, do the COW without a second fault */
974e6d66 3899 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3900 }
3901
cb900f41 3902 spin_unlock(ptl);
cb6acd01
MK
3903
3904 /*
3905 * Only make newly allocated pages active. Existing pages found
3906 * in the pagecache could be !page_huge_active() if they have been
3907 * isolated for migration.
3908 */
3909 if (new_page)
3910 set_page_huge_active(page);
3911
4c887265
AL
3912 unlock_page(page);
3913out:
ac9b9c66 3914 return ret;
4c887265
AL
3915
3916backout:
cb900f41 3917 spin_unlock(ptl);
2b26736c 3918backout_unlocked:
4c887265 3919 unlock_page(page);
285b8dca 3920 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
3921 put_page(page);
3922 goto out;
ac9b9c66
HD
3923}
3924
8382d914 3925#ifdef CONFIG_SMP
188b04a7 3926u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
3927{
3928 unsigned long key[2];
3929 u32 hash;
3930
1b426bac
MK
3931 key[0] = (unsigned long) mapping;
3932 key[1] = idx;
8382d914 3933
55254636 3934 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
3935
3936 return hash & (num_fault_mutexes - 1);
3937}
3938#else
3939/*
3940 * For uniprocesor systems we always use a single mutex, so just
3941 * return 0 and avoid the hashing overhead.
3942 */
188b04a7 3943u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
3944{
3945 return 0;
3946}
3947#endif
3948
2b740303 3949vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3950 unsigned long address, unsigned int flags)
86e5216f 3951{
8382d914 3952 pte_t *ptep, entry;
cb900f41 3953 spinlock_t *ptl;
2b740303 3954 vm_fault_t ret;
8382d914
DB
3955 u32 hash;
3956 pgoff_t idx;
0fe6e20b 3957 struct page *page = NULL;
57303d80 3958 struct page *pagecache_page = NULL;
a5516438 3959 struct hstate *h = hstate_vma(vma);
8382d914 3960 struct address_space *mapping;
0f792cf9 3961 int need_wait_lock = 0;
285b8dca 3962 unsigned long haddr = address & huge_page_mask(h);
86e5216f 3963
285b8dca 3964 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed
NH
3965 if (ptep) {
3966 entry = huge_ptep_get(ptep);
290408d4 3967 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3968 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3969 return 0;
3970 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3971 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3972 VM_FAULT_SET_HINDEX(hstate_index(h));
ddeaab32
MK
3973 } else {
3974 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3975 if (!ptep)
3976 return VM_FAULT_OOM;
fd6a03ed
NH
3977 }
3978
8382d914 3979 mapping = vma->vm_file->f_mapping;
ddeaab32 3980 idx = vma_hugecache_offset(h, vma, haddr);
8382d914 3981
3935baa9
DG
3982 /*
3983 * Serialize hugepage allocation and instantiation, so that we don't
3984 * get spurious allocation failures if two CPUs race to instantiate
3985 * the same page in the page cache.
3986 */
188b04a7 3987 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 3988 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3989
7f2e9525
GS
3990 entry = huge_ptep_get(ptep);
3991 if (huge_pte_none(entry)) {
8382d914 3992 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3993 goto out_mutex;
3935baa9 3994 }
86e5216f 3995
83c54070 3996 ret = 0;
1e8f889b 3997
0f792cf9
NH
3998 /*
3999 * entry could be a migration/hwpoison entry at this point, so this
4000 * check prevents the kernel from going below assuming that we have
4001 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4002 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4003 * handle it.
4004 */
4005 if (!pte_present(entry))
4006 goto out_mutex;
4007
57303d80
AW
4008 /*
4009 * If we are going to COW the mapping later, we examine the pending
4010 * reservations for this page now. This will ensure that any
4011 * allocations necessary to record that reservation occur outside the
4012 * spinlock. For private mappings, we also lookup the pagecache
4013 * page now as it is used to determine if a reservation has been
4014 * consumed.
4015 */
106c992a 4016 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4017 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4018 ret = VM_FAULT_OOM;
b4d1d99f 4019 goto out_mutex;
2b26736c 4020 }
5e911373 4021 /* Just decrements count, does not deallocate */
285b8dca 4022 vma_end_reservation(h, vma, haddr);
57303d80 4023
f83a275d 4024 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4025 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4026 vma, haddr);
57303d80
AW
4027 }
4028
0f792cf9
NH
4029 ptl = huge_pte_lock(h, mm, ptep);
4030
4031 /* Check for a racing update before calling hugetlb_cow */
4032 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4033 goto out_ptl;
4034
56c9cfb1
NH
4035 /*
4036 * hugetlb_cow() requires page locks of pte_page(entry) and
4037 * pagecache_page, so here we need take the former one
4038 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4039 */
4040 page = pte_page(entry);
4041 if (page != pagecache_page)
0f792cf9
NH
4042 if (!trylock_page(page)) {
4043 need_wait_lock = 1;
4044 goto out_ptl;
4045 }
b4d1d99f 4046
0f792cf9 4047 get_page(page);
b4d1d99f 4048
788c7df4 4049 if (flags & FAULT_FLAG_WRITE) {
106c992a 4050 if (!huge_pte_write(entry)) {
974e6d66 4051 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4052 pagecache_page, ptl);
0f792cf9 4053 goto out_put_page;
b4d1d99f 4054 }
106c992a 4055 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4056 }
4057 entry = pte_mkyoung(entry);
285b8dca 4058 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4059 flags & FAULT_FLAG_WRITE))
285b8dca 4060 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4061out_put_page:
4062 if (page != pagecache_page)
4063 unlock_page(page);
4064 put_page(page);
cb900f41
KS
4065out_ptl:
4066 spin_unlock(ptl);
57303d80
AW
4067
4068 if (pagecache_page) {
4069 unlock_page(pagecache_page);
4070 put_page(pagecache_page);
4071 }
b4d1d99f 4072out_mutex:
c672c7f2 4073 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4074 /*
4075 * Generally it's safe to hold refcount during waiting page lock. But
4076 * here we just wait to defer the next page fault to avoid busy loop and
4077 * the page is not used after unlocked before returning from the current
4078 * page fault. So we are safe from accessing freed page, even if we wait
4079 * here without taking refcount.
4080 */
4081 if (need_wait_lock)
4082 wait_on_page_locked(page);
1e8f889b 4083 return ret;
86e5216f
AL
4084}
4085
8fb5debc
MK
4086/*
4087 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4088 * modifications for huge pages.
4089 */
4090int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4091 pte_t *dst_pte,
4092 struct vm_area_struct *dst_vma,
4093 unsigned long dst_addr,
4094 unsigned long src_addr,
4095 struct page **pagep)
4096{
1e392147
AA
4097 struct address_space *mapping;
4098 pgoff_t idx;
4099 unsigned long size;
1c9e8def 4100 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4101 struct hstate *h = hstate_vma(dst_vma);
4102 pte_t _dst_pte;
4103 spinlock_t *ptl;
4104 int ret;
4105 struct page *page;
4106
4107 if (!*pagep) {
4108 ret = -ENOMEM;
4109 page = alloc_huge_page(dst_vma, dst_addr, 0);
4110 if (IS_ERR(page))
4111 goto out;
4112
4113 ret = copy_huge_page_from_user(page,
4114 (const void __user *) src_addr,
810a56b9 4115 pages_per_huge_page(h), false);
8fb5debc
MK
4116
4117 /* fallback to copy_from_user outside mmap_sem */
4118 if (unlikely(ret)) {
9e368259 4119 ret = -ENOENT;
8fb5debc
MK
4120 *pagep = page;
4121 /* don't free the page */
4122 goto out;
4123 }
4124 } else {
4125 page = *pagep;
4126 *pagep = NULL;
4127 }
4128
4129 /*
4130 * The memory barrier inside __SetPageUptodate makes sure that
4131 * preceding stores to the page contents become visible before
4132 * the set_pte_at() write.
4133 */
4134 __SetPageUptodate(page);
8fb5debc 4135
1e392147
AA
4136 mapping = dst_vma->vm_file->f_mapping;
4137 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4138
1c9e8def
MK
4139 /*
4140 * If shared, add to page cache
4141 */
4142 if (vm_shared) {
1e392147
AA
4143 size = i_size_read(mapping->host) >> huge_page_shift(h);
4144 ret = -EFAULT;
4145 if (idx >= size)
4146 goto out_release_nounlock;
1c9e8def 4147
1e392147
AA
4148 /*
4149 * Serialization between remove_inode_hugepages() and
4150 * huge_add_to_page_cache() below happens through the
4151 * hugetlb_fault_mutex_table that here must be hold by
4152 * the caller.
4153 */
1c9e8def
MK
4154 ret = huge_add_to_page_cache(page, mapping, idx);
4155 if (ret)
4156 goto out_release_nounlock;
4157 }
4158
8fb5debc
MK
4159 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4160 spin_lock(ptl);
4161
1e392147
AA
4162 /*
4163 * Recheck the i_size after holding PT lock to make sure not
4164 * to leave any page mapped (as page_mapped()) beyond the end
4165 * of the i_size (remove_inode_hugepages() is strict about
4166 * enforcing that). If we bail out here, we'll also leave a
4167 * page in the radix tree in the vm_shared case beyond the end
4168 * of the i_size, but remove_inode_hugepages() will take care
4169 * of it as soon as we drop the hugetlb_fault_mutex_table.
4170 */
4171 size = i_size_read(mapping->host) >> huge_page_shift(h);
4172 ret = -EFAULT;
4173 if (idx >= size)
4174 goto out_release_unlock;
4175
8fb5debc
MK
4176 ret = -EEXIST;
4177 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4178 goto out_release_unlock;
4179
1c9e8def
MK
4180 if (vm_shared) {
4181 page_dup_rmap(page, true);
4182 } else {
4183 ClearPagePrivate(page);
4184 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4185 }
8fb5debc
MK
4186
4187 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4188 if (dst_vma->vm_flags & VM_WRITE)
4189 _dst_pte = huge_pte_mkdirty(_dst_pte);
4190 _dst_pte = pte_mkyoung(_dst_pte);
4191
4192 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4193
4194 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4195 dst_vma->vm_flags & VM_WRITE);
4196 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4197
4198 /* No need to invalidate - it was non-present before */
4199 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4200
4201 spin_unlock(ptl);
cb6acd01 4202 set_page_huge_active(page);
1c9e8def
MK
4203 if (vm_shared)
4204 unlock_page(page);
8fb5debc
MK
4205 ret = 0;
4206out:
4207 return ret;
4208out_release_unlock:
4209 spin_unlock(ptl);
1c9e8def
MK
4210 if (vm_shared)
4211 unlock_page(page);
5af10dfd 4212out_release_nounlock:
8fb5debc
MK
4213 put_page(page);
4214 goto out;
4215}
4216
28a35716
ML
4217long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4218 struct page **pages, struct vm_area_struct **vmas,
4219 unsigned long *position, unsigned long *nr_pages,
87ffc118 4220 long i, unsigned int flags, int *nonblocking)
63551ae0 4221{
d5d4b0aa
KC
4222 unsigned long pfn_offset;
4223 unsigned long vaddr = *position;
28a35716 4224 unsigned long remainder = *nr_pages;
a5516438 4225 struct hstate *h = hstate_vma(vma);
2be7cfed 4226 int err = -EFAULT;
63551ae0 4227
63551ae0 4228 while (vaddr < vma->vm_end && remainder) {
4c887265 4229 pte_t *pte;
cb900f41 4230 spinlock_t *ptl = NULL;
2a15efc9 4231 int absent;
4c887265 4232 struct page *page;
63551ae0 4233
02057967
DR
4234 /*
4235 * If we have a pending SIGKILL, don't keep faulting pages and
4236 * potentially allocating memory.
4237 */
fa45f116 4238 if (fatal_signal_pending(current)) {
02057967
DR
4239 remainder = 0;
4240 break;
4241 }
4242
4c887265
AL
4243 /*
4244 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4245 * each hugepage. We have to make sure we get the
4c887265 4246 * first, for the page indexing below to work.
cb900f41
KS
4247 *
4248 * Note that page table lock is not held when pte is null.
4c887265 4249 */
7868a208
PA
4250 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4251 huge_page_size(h));
cb900f41
KS
4252 if (pte)
4253 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4254 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4255
4256 /*
4257 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4258 * an error where there's an empty slot with no huge pagecache
4259 * to back it. This way, we avoid allocating a hugepage, and
4260 * the sparse dumpfile avoids allocating disk blocks, but its
4261 * huge holes still show up with zeroes where they need to be.
2a15efc9 4262 */
3ae77f43
HD
4263 if (absent && (flags & FOLL_DUMP) &&
4264 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4265 if (pte)
4266 spin_unlock(ptl);
2a15efc9
HD
4267 remainder = 0;
4268 break;
4269 }
63551ae0 4270
9cc3a5bd
NH
4271 /*
4272 * We need call hugetlb_fault for both hugepages under migration
4273 * (in which case hugetlb_fault waits for the migration,) and
4274 * hwpoisoned hugepages (in which case we need to prevent the
4275 * caller from accessing to them.) In order to do this, we use
4276 * here is_swap_pte instead of is_hugetlb_entry_migration and
4277 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4278 * both cases, and because we can't follow correct pages
4279 * directly from any kind of swap entries.
4280 */
4281 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4282 ((flags & FOLL_WRITE) &&
4283 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4284 vm_fault_t ret;
87ffc118 4285 unsigned int fault_flags = 0;
63551ae0 4286
cb900f41
KS
4287 if (pte)
4288 spin_unlock(ptl);
87ffc118
AA
4289 if (flags & FOLL_WRITE)
4290 fault_flags |= FAULT_FLAG_WRITE;
4291 if (nonblocking)
4292 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4293 if (flags & FOLL_NOWAIT)
4294 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4295 FAULT_FLAG_RETRY_NOWAIT;
4296 if (flags & FOLL_TRIED) {
4297 VM_WARN_ON_ONCE(fault_flags &
4298 FAULT_FLAG_ALLOW_RETRY);
4299 fault_flags |= FAULT_FLAG_TRIED;
4300 }
4301 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4302 if (ret & VM_FAULT_ERROR) {
2be7cfed 4303 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4304 remainder = 0;
4305 break;
4306 }
4307 if (ret & VM_FAULT_RETRY) {
1ac25013
AA
4308 if (nonblocking &&
4309 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
87ffc118
AA
4310 *nonblocking = 0;
4311 *nr_pages = 0;
4312 /*
4313 * VM_FAULT_RETRY must not return an
4314 * error, it will return zero
4315 * instead.
4316 *
4317 * No need to update "position" as the
4318 * caller will not check it after
4319 * *nr_pages is set to 0.
4320 */
4321 return i;
4322 }
4323 continue;
4c887265
AL
4324 }
4325
a5516438 4326 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4327 page = pte_page(huge_ptep_get(pte));
8fde12ca
LT
4328
4329 /*
4330 * Instead of doing 'try_get_page()' below in the same_page
4331 * loop, just check the count once here.
4332 */
4333 if (unlikely(page_count(page) <= 0)) {
4334 if (pages) {
4335 spin_unlock(ptl);
4336 remainder = 0;
4337 err = -ENOMEM;
4338 break;
4339 }
4340 }
d5d4b0aa 4341same_page:
d6692183 4342 if (pages) {
2a15efc9 4343 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4344 get_page(pages[i]);
d6692183 4345 }
63551ae0
DG
4346
4347 if (vmas)
4348 vmas[i] = vma;
4349
4350 vaddr += PAGE_SIZE;
d5d4b0aa 4351 ++pfn_offset;
63551ae0
DG
4352 --remainder;
4353 ++i;
d5d4b0aa 4354 if (vaddr < vma->vm_end && remainder &&
a5516438 4355 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4356 /*
4357 * We use pfn_offset to avoid touching the pageframes
4358 * of this compound page.
4359 */
4360 goto same_page;
4361 }
cb900f41 4362 spin_unlock(ptl);
63551ae0 4363 }
28a35716 4364 *nr_pages = remainder;
87ffc118
AA
4365 /*
4366 * setting position is actually required only if remainder is
4367 * not zero but it's faster not to add a "if (remainder)"
4368 * branch.
4369 */
63551ae0
DG
4370 *position = vaddr;
4371
2be7cfed 4372 return i ? i : err;
63551ae0 4373}
8f860591 4374
5491ae7b
AK
4375#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4376/*
4377 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4378 * implement this.
4379 */
4380#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4381#endif
4382
7da4d641 4383unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4384 unsigned long address, unsigned long end, pgprot_t newprot)
4385{
4386 struct mm_struct *mm = vma->vm_mm;
4387 unsigned long start = address;
4388 pte_t *ptep;
4389 pte_t pte;
a5516438 4390 struct hstate *h = hstate_vma(vma);
7da4d641 4391 unsigned long pages = 0;
dff11abe 4392 bool shared_pmd = false;
ac46d4f3 4393 struct mmu_notifier_range range;
dff11abe
MK
4394
4395 /*
4396 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4397 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
4398 * range if PMD sharing is possible.
4399 */
7269f999
JG
4400 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4401 0, vma, mm, start, end);
ac46d4f3 4402 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
4403
4404 BUG_ON(address >= end);
ac46d4f3 4405 flush_cache_range(vma, range.start, range.end);
8f860591 4406
ac46d4f3 4407 mmu_notifier_invalidate_range_start(&range);
83cde9e8 4408 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4409 for (; address < end; address += huge_page_size(h)) {
cb900f41 4410 spinlock_t *ptl;
7868a208 4411 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4412 if (!ptep)
4413 continue;
cb900f41 4414 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4415 if (huge_pmd_unshare(mm, &address, ptep)) {
4416 pages++;
cb900f41 4417 spin_unlock(ptl);
dff11abe 4418 shared_pmd = true;
39dde65c 4419 continue;
7da4d641 4420 }
a8bda28d
NH
4421 pte = huge_ptep_get(ptep);
4422 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4423 spin_unlock(ptl);
4424 continue;
4425 }
4426 if (unlikely(is_hugetlb_entry_migration(pte))) {
4427 swp_entry_t entry = pte_to_swp_entry(pte);
4428
4429 if (is_write_migration_entry(entry)) {
4430 pte_t newpte;
4431
4432 make_migration_entry_read(&entry);
4433 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4434 set_huge_swap_pte_at(mm, address, ptep,
4435 newpte, huge_page_size(h));
a8bda28d
NH
4436 pages++;
4437 }
4438 spin_unlock(ptl);
4439 continue;
4440 }
4441 if (!huge_pte_none(pte)) {
023bdd00
AK
4442 pte_t old_pte;
4443
4444 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4445 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 4446 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 4447 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 4448 pages++;
8f860591 4449 }
cb900f41 4450 spin_unlock(ptl);
8f860591 4451 }
d833352a 4452 /*
c8c06efa 4453 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4454 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4455 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
4456 * and that page table be reused and filled with junk. If we actually
4457 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 4458 */
dff11abe 4459 if (shared_pmd)
ac46d4f3 4460 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
4461 else
4462 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4463 /*
4464 * No need to call mmu_notifier_invalidate_range() we are downgrading
4465 * page table protection not changing it to point to a new page.
4466 *
ad56b738 4467 * See Documentation/vm/mmu_notifier.rst
0f10851e 4468 */
83cde9e8 4469 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 4470 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
4471
4472 return pages << h->order;
8f860591
ZY
4473}
4474
a1e78772
MG
4475int hugetlb_reserve_pages(struct inode *inode,
4476 long from, long to,
5a6fe125 4477 struct vm_area_struct *vma,
ca16d140 4478 vm_flags_t vm_flags)
e4e574b7 4479{
17c9d12e 4480 long ret, chg;
a5516438 4481 struct hstate *h = hstate_inode(inode);
90481622 4482 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4483 struct resv_map *resv_map;
1c5ecae3 4484 long gbl_reserve;
e4e574b7 4485
63489f8e
MK
4486 /* This should never happen */
4487 if (from > to) {
4488 VM_WARN(1, "%s called with a negative range\n", __func__);
4489 return -EINVAL;
4490 }
4491
17c9d12e
MG
4492 /*
4493 * Only apply hugepage reservation if asked. At fault time, an
4494 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4495 * without using reserves
17c9d12e 4496 */
ca16d140 4497 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4498 return 0;
4499
a1e78772
MG
4500 /*
4501 * Shared mappings base their reservation on the number of pages that
4502 * are already allocated on behalf of the file. Private mappings need
4503 * to reserve the full area even if read-only as mprotect() may be
4504 * called to make the mapping read-write. Assume !vma is a shm mapping
4505 */
9119a41e 4506 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
4507 /*
4508 * resv_map can not be NULL as hugetlb_reserve_pages is only
4509 * called for inodes for which resv_maps were created (see
4510 * hugetlbfs_get_inode).
4511 */
4e35f483 4512 resv_map = inode_resv_map(inode);
9119a41e 4513
1406ec9b 4514 chg = region_chg(resv_map, from, to);
9119a41e
JK
4515
4516 } else {
4517 resv_map = resv_map_alloc();
17c9d12e
MG
4518 if (!resv_map)
4519 return -ENOMEM;
4520
a1e78772 4521 chg = to - from;
84afd99b 4522
17c9d12e
MG
4523 set_vma_resv_map(vma, resv_map);
4524 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4525 }
4526
c50ac050
DH
4527 if (chg < 0) {
4528 ret = chg;
4529 goto out_err;
4530 }
8a630112 4531
1c5ecae3
MK
4532 /*
4533 * There must be enough pages in the subpool for the mapping. If
4534 * the subpool has a minimum size, there may be some global
4535 * reservations already in place (gbl_reserve).
4536 */
4537 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4538 if (gbl_reserve < 0) {
c50ac050
DH
4539 ret = -ENOSPC;
4540 goto out_err;
4541 }
5a6fe125
MG
4542
4543 /*
17c9d12e 4544 * Check enough hugepages are available for the reservation.
90481622 4545 * Hand the pages back to the subpool if there are not
5a6fe125 4546 */
1c5ecae3 4547 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4548 if (ret < 0) {
1c5ecae3
MK
4549 /* put back original number of pages, chg */
4550 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4551 goto out_err;
68842c9b 4552 }
17c9d12e
MG
4553
4554 /*
4555 * Account for the reservations made. Shared mappings record regions
4556 * that have reservations as they are shared by multiple VMAs.
4557 * When the last VMA disappears, the region map says how much
4558 * the reservation was and the page cache tells how much of
4559 * the reservation was consumed. Private mappings are per-VMA and
4560 * only the consumed reservations are tracked. When the VMA
4561 * disappears, the original reservation is the VMA size and the
4562 * consumed reservations are stored in the map. Hence, nothing
4563 * else has to be done for private mappings here
4564 */
33039678
MK
4565 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4566 long add = region_add(resv_map, from, to);
4567
4568 if (unlikely(chg > add)) {
4569 /*
4570 * pages in this range were added to the reserve
4571 * map between region_chg and region_add. This
4572 * indicates a race with alloc_huge_page. Adjust
4573 * the subpool and reserve counts modified above
4574 * based on the difference.
4575 */
4576 long rsv_adjust;
4577
4578 rsv_adjust = hugepage_subpool_put_pages(spool,
4579 chg - add);
4580 hugetlb_acct_memory(h, -rsv_adjust);
4581 }
4582 }
a43a8c39 4583 return 0;
c50ac050 4584out_err:
5e911373 4585 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4586 /* Don't call region_abort if region_chg failed */
4587 if (chg >= 0)
4588 region_abort(resv_map, from, to);
f031dd27
JK
4589 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4590 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4591 return ret;
a43a8c39
KC
4592}
4593
b5cec28d
MK
4594long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4595 long freed)
a43a8c39 4596{
a5516438 4597 struct hstate *h = hstate_inode(inode);
4e35f483 4598 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4599 long chg = 0;
90481622 4600 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4601 long gbl_reserve;
45c682a6 4602
f27a5136
MK
4603 /*
4604 * Since this routine can be called in the evict inode path for all
4605 * hugetlbfs inodes, resv_map could be NULL.
4606 */
b5cec28d
MK
4607 if (resv_map) {
4608 chg = region_del(resv_map, start, end);
4609 /*
4610 * region_del() can fail in the rare case where a region
4611 * must be split and another region descriptor can not be
4612 * allocated. If end == LONG_MAX, it will not fail.
4613 */
4614 if (chg < 0)
4615 return chg;
4616 }
4617
45c682a6 4618 spin_lock(&inode->i_lock);
e4c6f8be 4619 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4620 spin_unlock(&inode->i_lock);
4621
1c5ecae3
MK
4622 /*
4623 * If the subpool has a minimum size, the number of global
4624 * reservations to be released may be adjusted.
4625 */
4626 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4627 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4628
4629 return 0;
a43a8c39 4630}
93f70f90 4631
3212b535
SC
4632#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4633static unsigned long page_table_shareable(struct vm_area_struct *svma,
4634 struct vm_area_struct *vma,
4635 unsigned long addr, pgoff_t idx)
4636{
4637 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4638 svma->vm_start;
4639 unsigned long sbase = saddr & PUD_MASK;
4640 unsigned long s_end = sbase + PUD_SIZE;
4641
4642 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4643 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4644 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4645
4646 /*
4647 * match the virtual addresses, permission and the alignment of the
4648 * page table page.
4649 */
4650 if (pmd_index(addr) != pmd_index(saddr) ||
4651 vm_flags != svm_flags ||
4652 sbase < svma->vm_start || svma->vm_end < s_end)
4653 return 0;
4654
4655 return saddr;
4656}
4657
31aafb45 4658static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4659{
4660 unsigned long base = addr & PUD_MASK;
4661 unsigned long end = base + PUD_SIZE;
4662
4663 /*
4664 * check on proper vm_flags and page table alignment
4665 */
017b1660 4666 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
4667 return true;
4668 return false;
3212b535
SC
4669}
4670
017b1660
MK
4671/*
4672 * Determine if start,end range within vma could be mapped by shared pmd.
4673 * If yes, adjust start and end to cover range associated with possible
4674 * shared pmd mappings.
4675 */
4676void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4677 unsigned long *start, unsigned long *end)
4678{
4679 unsigned long check_addr = *start;
4680
4681 if (!(vma->vm_flags & VM_MAYSHARE))
4682 return;
4683
4684 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4685 unsigned long a_start = check_addr & PUD_MASK;
4686 unsigned long a_end = a_start + PUD_SIZE;
4687
4688 /*
4689 * If sharing is possible, adjust start/end if necessary.
4690 */
4691 if (range_in_vma(vma, a_start, a_end)) {
4692 if (a_start < *start)
4693 *start = a_start;
4694 if (a_end > *end)
4695 *end = a_end;
4696 }
4697 }
4698}
4699
3212b535
SC
4700/*
4701 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4702 * and returns the corresponding pte. While this is not necessary for the
4703 * !shared pmd case because we can allocate the pmd later as well, it makes the
ddeaab32
MK
4704 * code much cleaner. pmd allocation is essential for the shared case because
4705 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4706 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4707 * bad pmd for sharing.
3212b535
SC
4708 */
4709pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4710{
4711 struct vm_area_struct *vma = find_vma(mm, addr);
4712 struct address_space *mapping = vma->vm_file->f_mapping;
4713 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4714 vma->vm_pgoff;
4715 struct vm_area_struct *svma;
4716 unsigned long saddr;
4717 pte_t *spte = NULL;
4718 pte_t *pte;
cb900f41 4719 spinlock_t *ptl;
3212b535
SC
4720
4721 if (!vma_shareable(vma, addr))
4722 return (pte_t *)pmd_alloc(mm, pud, addr);
4723
930668c3 4724 i_mmap_lock_read(mapping);
3212b535
SC
4725 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4726 if (svma == vma)
4727 continue;
4728
4729 saddr = page_table_shareable(svma, vma, addr, idx);
4730 if (saddr) {
7868a208
PA
4731 spte = huge_pte_offset(svma->vm_mm, saddr,
4732 vma_mmu_pagesize(svma));
3212b535
SC
4733 if (spte) {
4734 get_page(virt_to_page(spte));
4735 break;
4736 }
4737 }
4738 }
4739
4740 if (!spte)
4741 goto out;
4742
8bea8052 4743 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4744 if (pud_none(*pud)) {
3212b535
SC
4745 pud_populate(mm, pud,
4746 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4747 mm_inc_nr_pmds(mm);
dc6c9a35 4748 } else {
3212b535 4749 put_page(virt_to_page(spte));
dc6c9a35 4750 }
cb900f41 4751 spin_unlock(ptl);
3212b535
SC
4752out:
4753 pte = (pte_t *)pmd_alloc(mm, pud, addr);
930668c3 4754 i_mmap_unlock_read(mapping);
3212b535
SC
4755 return pte;
4756}
4757
4758/*
4759 * unmap huge page backed by shared pte.
4760 *
4761 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4762 * indicated by page_count > 1, unmap is achieved by clearing pud and
4763 * decrementing the ref count. If count == 1, the pte page is not shared.
4764 *
ddeaab32 4765 * called with page table lock held.
3212b535
SC
4766 *
4767 * returns: 1 successfully unmapped a shared pte page
4768 * 0 the underlying pte page is not shared, or it is the last user
4769 */
4770int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4771{
4772 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4773 p4d_t *p4d = p4d_offset(pgd, *addr);
4774 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4775
4776 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4777 if (page_count(virt_to_page(ptep)) == 1)
4778 return 0;
4779
4780 pud_clear(pud);
4781 put_page(virt_to_page(ptep));
dc6c9a35 4782 mm_dec_nr_pmds(mm);
3212b535
SC
4783 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4784 return 1;
4785}
9e5fc74c
SC
4786#define want_pmd_share() (1)
4787#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4788pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4789{
4790 return NULL;
4791}
e81f2d22
ZZ
4792
4793int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4794{
4795 return 0;
4796}
017b1660
MK
4797
4798void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4799 unsigned long *start, unsigned long *end)
4800{
4801}
9e5fc74c 4802#define want_pmd_share() (0)
3212b535
SC
4803#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4804
9e5fc74c
SC
4805#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4806pte_t *huge_pte_alloc(struct mm_struct *mm,
4807 unsigned long addr, unsigned long sz)
4808{
4809 pgd_t *pgd;
c2febafc 4810 p4d_t *p4d;
9e5fc74c
SC
4811 pud_t *pud;
4812 pte_t *pte = NULL;
4813
4814 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4815 p4d = p4d_alloc(mm, pgd, addr);
4816 if (!p4d)
4817 return NULL;
c2febafc 4818 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4819 if (pud) {
4820 if (sz == PUD_SIZE) {
4821 pte = (pte_t *)pud;
4822 } else {
4823 BUG_ON(sz != PMD_SIZE);
4824 if (want_pmd_share() && pud_none(*pud))
4825 pte = huge_pmd_share(mm, addr, pud);
4826 else
4827 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4828 }
4829 }
4e666314 4830 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4831
4832 return pte;
4833}
4834
9b19df29
PA
4835/*
4836 * huge_pte_offset() - Walk the page table to resolve the hugepage
4837 * entry at address @addr
4838 *
4839 * Return: Pointer to page table or swap entry (PUD or PMD) for
4840 * address @addr, or NULL if a p*d_none() entry is encountered and the
4841 * size @sz doesn't match the hugepage size at this level of the page
4842 * table.
4843 */
7868a208
PA
4844pte_t *huge_pte_offset(struct mm_struct *mm,
4845 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4846{
4847 pgd_t *pgd;
c2febafc 4848 p4d_t *p4d;
9e5fc74c 4849 pud_t *pud;
c2febafc 4850 pmd_t *pmd;
9e5fc74c
SC
4851
4852 pgd = pgd_offset(mm, addr);
c2febafc
KS
4853 if (!pgd_present(*pgd))
4854 return NULL;
4855 p4d = p4d_offset(pgd, addr);
4856 if (!p4d_present(*p4d))
4857 return NULL;
9b19df29 4858
c2febafc 4859 pud = pud_offset(p4d, addr);
9b19df29 4860 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4861 return NULL;
9b19df29
PA
4862 /* hugepage or swap? */
4863 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4864 return (pte_t *)pud;
9b19df29 4865
c2febafc 4866 pmd = pmd_offset(pud, addr);
9b19df29
PA
4867 if (sz != PMD_SIZE && pmd_none(*pmd))
4868 return NULL;
4869 /* hugepage or swap? */
4870 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4871 return (pte_t *)pmd;
4872
4873 return NULL;
9e5fc74c
SC
4874}
4875
61f77eda
NH
4876#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4877
4878/*
4879 * These functions are overwritable if your architecture needs its own
4880 * behavior.
4881 */
4882struct page * __weak
4883follow_huge_addr(struct mm_struct *mm, unsigned long address,
4884 int write)
4885{
4886 return ERR_PTR(-EINVAL);
4887}
4888
4dc71451
AK
4889struct page * __weak
4890follow_huge_pd(struct vm_area_struct *vma,
4891 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4892{
4893 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4894 return NULL;
4895}
4896
61f77eda 4897struct page * __weak
9e5fc74c 4898follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4899 pmd_t *pmd, int flags)
9e5fc74c 4900{
e66f17ff
NH
4901 struct page *page = NULL;
4902 spinlock_t *ptl;
c9d398fa 4903 pte_t pte;
e66f17ff
NH
4904retry:
4905 ptl = pmd_lockptr(mm, pmd);
4906 spin_lock(ptl);
4907 /*
4908 * make sure that the address range covered by this pmd is not
4909 * unmapped from other threads.
4910 */
4911 if (!pmd_huge(*pmd))
4912 goto out;
c9d398fa
NH
4913 pte = huge_ptep_get((pte_t *)pmd);
4914 if (pte_present(pte)) {
97534127 4915 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4916 if (flags & FOLL_GET)
4917 get_page(page);
4918 } else {
c9d398fa 4919 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4920 spin_unlock(ptl);
4921 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4922 goto retry;
4923 }
4924 /*
4925 * hwpoisoned entry is treated as no_page_table in
4926 * follow_page_mask().
4927 */
4928 }
4929out:
4930 spin_unlock(ptl);
9e5fc74c
SC
4931 return page;
4932}
4933
61f77eda 4934struct page * __weak
9e5fc74c 4935follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4936 pud_t *pud, int flags)
9e5fc74c 4937{
e66f17ff
NH
4938 if (flags & FOLL_GET)
4939 return NULL;
9e5fc74c 4940
e66f17ff 4941 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4942}
4943
faaa5b62
AK
4944struct page * __weak
4945follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4946{
4947 if (flags & FOLL_GET)
4948 return NULL;
4949
4950 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4951}
4952
31caf665
NH
4953bool isolate_huge_page(struct page *page, struct list_head *list)
4954{
bcc54222
NH
4955 bool ret = true;
4956
309381fe 4957 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4958 spin_lock(&hugetlb_lock);
bcc54222
NH
4959 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4960 ret = false;
4961 goto unlock;
4962 }
4963 clear_page_huge_active(page);
31caf665 4964 list_move_tail(&page->lru, list);
bcc54222 4965unlock:
31caf665 4966 spin_unlock(&hugetlb_lock);
bcc54222 4967 return ret;
31caf665
NH
4968}
4969
4970void putback_active_hugepage(struct page *page)
4971{
309381fe 4972 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4973 spin_lock(&hugetlb_lock);
bcc54222 4974 set_page_huge_active(page);
31caf665
NH
4975 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4976 spin_unlock(&hugetlb_lock);
4977 put_page(page);
4978}
ab5ac90a
MH
4979
4980void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4981{
4982 struct hstate *h = page_hstate(oldpage);
4983
4984 hugetlb_cgroup_migrate(oldpage, newpage);
4985 set_page_owner_migrate_reason(newpage, reason);
4986
4987 /*
4988 * transfer temporary state of the new huge page. This is
4989 * reverse to other transitions because the newpage is going to
4990 * be final while the old one will be freed so it takes over
4991 * the temporary status.
4992 *
4993 * Also note that we have to transfer the per-node surplus state
4994 * here as well otherwise the global surplus count will not match
4995 * the per-node's.
4996 */
4997 if (PageHugeTemporary(newpage)) {
4998 int old_nid = page_to_nid(oldpage);
4999 int new_nid = page_to_nid(newpage);
5000
5001 SetPageHugeTemporary(oldpage);
5002 ClearPageHugeTemporary(newpage);
5003
5004 spin_lock(&hugetlb_lock);
5005 if (h->surplus_huge_pages_node[old_nid]) {
5006 h->surplus_huge_pages_node[old_nid]--;
5007 h->surplus_huge_pages_node[new_nid]++;
5008 }
5009 spin_unlock(&hugetlb_lock);
5010 }
5011}