]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
mm/z3fold.c: support page migration
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
97ad1087 18#include <linux/memblock.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
63489f8e 21#include <linux/mmdebug.h>
174cd4b1 22#include <linux/sched/signal.h>
0fe6e20b 23#include <linux/rmap.h>
c6247f72 24#include <linux/string_helpers.h>
fd6a03ed
NH
25#include <linux/swap.h>
26#include <linux/swapops.h>
8382d914 27#include <linux/jhash.h>
98fa15f3 28#include <linux/numa.h>
d6606683 29
63551ae0
DG
30#include <asm/page.h>
31#include <asm/pgtable.h>
24669e58 32#include <asm/tlb.h>
63551ae0 33
24669e58 34#include <linux/io.h>
63551ae0 35#include <linux/hugetlb.h>
9dd540e2 36#include <linux/hugetlb_cgroup.h>
9a305230 37#include <linux/node.h>
1a1aad8a 38#include <linux/userfaultfd_k.h>
ab5ac90a 39#include <linux/page_owner.h>
7835e98b 40#include "internal.h"
1da177e4 41
c3f38a38 42int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
43unsigned int default_hstate_idx;
44struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
45/*
46 * Minimum page order among possible hugepage sizes, set to a proper value
47 * at boot time.
48 */
49static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 50
53ba51d2
JT
51__initdata LIST_HEAD(huge_boot_pages);
52
e5ff2159
AK
53/* for command line parsing */
54static struct hstate * __initdata parsed_hstate;
55static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 56static unsigned long __initdata default_hstate_size;
9fee021d 57static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 58
3935baa9 59/*
31caf665
NH
60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61 * free_huge_pages, and surplus_huge_pages.
3935baa9 62 */
c3f38a38 63DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 64
8382d914
DB
65/*
66 * Serializes faults on the same logical page. This is used to
67 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 */
69static int num_fault_mutexes;
c672c7f2 70struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 71
7ca02d0a
MK
72/* Forward declaration */
73static int hugetlb_acct_memory(struct hstate *h, long delta);
74
90481622
DG
75static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76{
77 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79 spin_unlock(&spool->lock);
80
81 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
82 * remain, give up any reservations mased on minimum size and
83 * free the subpool */
84 if (free) {
85 if (spool->min_hpages != -1)
86 hugetlb_acct_memory(spool->hstate,
87 -spool->min_hpages);
90481622 88 kfree(spool);
7ca02d0a 89 }
90481622
DG
90}
91
7ca02d0a
MK
92struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 long min_hpages)
90481622
DG
94{
95 struct hugepage_subpool *spool;
96
c6a91820 97 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
98 if (!spool)
99 return NULL;
100
101 spin_lock_init(&spool->lock);
102 spool->count = 1;
7ca02d0a
MK
103 spool->max_hpages = max_hpages;
104 spool->hstate = h;
105 spool->min_hpages = min_hpages;
106
107 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 kfree(spool);
109 return NULL;
110 }
111 spool->rsv_hpages = min_hpages;
90481622
DG
112
113 return spool;
114}
115
116void hugepage_put_subpool(struct hugepage_subpool *spool)
117{
118 spin_lock(&spool->lock);
119 BUG_ON(!spool->count);
120 spool->count--;
121 unlock_or_release_subpool(spool);
122}
123
1c5ecae3
MK
124/*
125 * Subpool accounting for allocating and reserving pages.
126 * Return -ENOMEM if there are not enough resources to satisfy the
127 * the request. Otherwise, return the number of pages by which the
128 * global pools must be adjusted (upward). The returned value may
129 * only be different than the passed value (delta) in the case where
130 * a subpool minimum size must be manitained.
131 */
132static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
133 long delta)
134{
1c5ecae3 135 long ret = delta;
90481622
DG
136
137 if (!spool)
1c5ecae3 138 return ret;
90481622
DG
139
140 spin_lock(&spool->lock);
1c5ecae3
MK
141
142 if (spool->max_hpages != -1) { /* maximum size accounting */
143 if ((spool->used_hpages + delta) <= spool->max_hpages)
144 spool->used_hpages += delta;
145 else {
146 ret = -ENOMEM;
147 goto unlock_ret;
148 }
90481622 149 }
90481622 150
09a95e29
MK
151 /* minimum size accounting */
152 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
153 if (delta > spool->rsv_hpages) {
154 /*
155 * Asking for more reserves than those already taken on
156 * behalf of subpool. Return difference.
157 */
158 ret = delta - spool->rsv_hpages;
159 spool->rsv_hpages = 0;
160 } else {
161 ret = 0; /* reserves already accounted for */
162 spool->rsv_hpages -= delta;
163 }
164 }
165
166unlock_ret:
167 spin_unlock(&spool->lock);
90481622
DG
168 return ret;
169}
170
1c5ecae3
MK
171/*
172 * Subpool accounting for freeing and unreserving pages.
173 * Return the number of global page reservations that must be dropped.
174 * The return value may only be different than the passed value (delta)
175 * in the case where a subpool minimum size must be maintained.
176 */
177static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
178 long delta)
179{
1c5ecae3
MK
180 long ret = delta;
181
90481622 182 if (!spool)
1c5ecae3 183 return delta;
90481622
DG
184
185 spin_lock(&spool->lock);
1c5ecae3
MK
186
187 if (spool->max_hpages != -1) /* maximum size accounting */
188 spool->used_hpages -= delta;
189
09a95e29
MK
190 /* minimum size accounting */
191 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
192 if (spool->rsv_hpages + delta <= spool->min_hpages)
193 ret = 0;
194 else
195 ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197 spool->rsv_hpages += delta;
198 if (spool->rsv_hpages > spool->min_hpages)
199 spool->rsv_hpages = spool->min_hpages;
200 }
201
202 /*
203 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 * quota reference, free it now.
205 */
90481622 206 unlock_or_release_subpool(spool);
1c5ecae3
MK
207
208 return ret;
90481622
DG
209}
210
211static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212{
213 return HUGETLBFS_SB(inode->i_sb)->spool;
214}
215
216static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217{
496ad9aa 218 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
219}
220
96822904
AW
221/*
222 * Region tracking -- allows tracking of reservations and instantiated pages
223 * across the pages in a mapping.
84afd99b 224 *
1dd308a7
MK
225 * The region data structures are embedded into a resv_map and protected
226 * by a resv_map's lock. The set of regions within the resv_map represent
227 * reservations for huge pages, or huge pages that have already been
228 * instantiated within the map. The from and to elements are huge page
229 * indicies into the associated mapping. from indicates the starting index
230 * of the region. to represents the first index past the end of the region.
231 *
232 * For example, a file region structure with from == 0 and to == 4 represents
233 * four huge pages in a mapping. It is important to note that the to element
234 * represents the first element past the end of the region. This is used in
235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 *
237 * Interval notation of the form [from, to) will be used to indicate that
238 * the endpoint from is inclusive and to is exclusive.
96822904
AW
239 */
240struct file_region {
241 struct list_head link;
242 long from;
243 long to;
244};
245
1dd308a7
MK
246/*
247 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
248 * map. In the normal case, existing regions will be expanded
249 * to accommodate the specified range. Sufficient regions should
250 * exist for expansion due to the previous call to region_chg
251 * with the same range. However, it is possible that region_del
252 * could have been called after region_chg and modifed the map
253 * in such a way that no region exists to be expanded. In this
254 * case, pull a region descriptor from the cache associated with
255 * the map and use that for the new range.
cf3ad20b
MK
256 *
257 * Return the number of new huge pages added to the map. This
258 * number is greater than or equal to zero.
1dd308a7 259 */
1406ec9b 260static long region_add(struct resv_map *resv, long f, long t)
96822904 261{
1406ec9b 262 struct list_head *head = &resv->regions;
96822904 263 struct file_region *rg, *nrg, *trg;
cf3ad20b 264 long add = 0;
96822904 265
7b24d861 266 spin_lock(&resv->lock);
96822904
AW
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (f <= rg->to)
270 break;
271
5e911373
MK
272 /*
273 * If no region exists which can be expanded to include the
274 * specified range, the list must have been modified by an
275 * interleving call to region_del(). Pull a region descriptor
276 * from the cache and use it for this range.
277 */
278 if (&rg->link == head || t < rg->from) {
279 VM_BUG_ON(resv->region_cache_count <= 0);
280
281 resv->region_cache_count--;
282 nrg = list_first_entry(&resv->region_cache, struct file_region,
283 link);
284 list_del(&nrg->link);
285
286 nrg->from = f;
287 nrg->to = t;
288 list_add(&nrg->link, rg->link.prev);
289
290 add += t - f;
291 goto out_locked;
292 }
293
96822904
AW
294 /* Round our left edge to the current segment if it encloses us. */
295 if (f > rg->from)
296 f = rg->from;
297
298 /* Check for and consume any regions we now overlap with. */
299 nrg = rg;
300 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301 if (&rg->link == head)
302 break;
303 if (rg->from > t)
304 break;
305
306 /* If this area reaches higher then extend our area to
307 * include it completely. If this is not the first area
308 * which we intend to reuse, free it. */
309 if (rg->to > t)
310 t = rg->to;
311 if (rg != nrg) {
cf3ad20b
MK
312 /* Decrement return value by the deleted range.
313 * Another range will span this area so that by
314 * end of routine add will be >= zero
315 */
316 add -= (rg->to - rg->from);
96822904
AW
317 list_del(&rg->link);
318 kfree(rg);
319 }
320 }
cf3ad20b
MK
321
322 add += (nrg->from - f); /* Added to beginning of region */
96822904 323 nrg->from = f;
cf3ad20b 324 add += t - nrg->to; /* Added to end of region */
96822904 325 nrg->to = t;
cf3ad20b 326
5e911373
MK
327out_locked:
328 resv->adds_in_progress--;
7b24d861 329 spin_unlock(&resv->lock);
cf3ad20b
MK
330 VM_BUG_ON(add < 0);
331 return add;
96822904
AW
332}
333
1dd308a7
MK
334/*
335 * Examine the existing reserve map and determine how many
336 * huge pages in the specified range [f, t) are NOT currently
337 * represented. This routine is called before a subsequent
338 * call to region_add that will actually modify the reserve
339 * map to add the specified range [f, t). region_chg does
340 * not change the number of huge pages represented by the
341 * map. However, if the existing regions in the map can not
342 * be expanded to represent the new range, a new file_region
343 * structure is added to the map as a placeholder. This is
344 * so that the subsequent region_add call will have all the
345 * regions it needs and will not fail.
346 *
5e911373
MK
347 * Upon entry, region_chg will also examine the cache of region descriptors
348 * associated with the map. If there are not enough descriptors cached, one
349 * will be allocated for the in progress add operation.
350 *
351 * Returns the number of huge pages that need to be added to the existing
352 * reservation map for the range [f, t). This number is greater or equal to
353 * zero. -ENOMEM is returned if a new file_region structure or cache entry
354 * is needed and can not be allocated.
1dd308a7 355 */
1406ec9b 356static long region_chg(struct resv_map *resv, long f, long t)
96822904 357{
1406ec9b 358 struct list_head *head = &resv->regions;
7b24d861 359 struct file_region *rg, *nrg = NULL;
96822904
AW
360 long chg = 0;
361
7b24d861
DB
362retry:
363 spin_lock(&resv->lock);
5e911373
MK
364retry_locked:
365 resv->adds_in_progress++;
366
367 /*
368 * Check for sufficient descriptors in the cache to accommodate
369 * the number of in progress add operations.
370 */
371 if (resv->adds_in_progress > resv->region_cache_count) {
372 struct file_region *trg;
373
374 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375 /* Must drop lock to allocate a new descriptor. */
376 resv->adds_in_progress--;
377 spin_unlock(&resv->lock);
378
379 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
380 if (!trg) {
381 kfree(nrg);
5e911373 382 return -ENOMEM;
dbe409e4 383 }
5e911373
MK
384
385 spin_lock(&resv->lock);
386 list_add(&trg->link, &resv->region_cache);
387 resv->region_cache_count++;
388 goto retry_locked;
389 }
390
96822904
AW
391 /* Locate the region we are before or in. */
392 list_for_each_entry(rg, head, link)
393 if (f <= rg->to)
394 break;
395
396 /* If we are below the current region then a new region is required.
397 * Subtle, allocate a new region at the position but make it zero
398 * size such that we can guarantee to record the reservation. */
399 if (&rg->link == head || t < rg->from) {
7b24d861 400 if (!nrg) {
5e911373 401 resv->adds_in_progress--;
7b24d861
DB
402 spin_unlock(&resv->lock);
403 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404 if (!nrg)
405 return -ENOMEM;
406
407 nrg->from = f;
408 nrg->to = f;
409 INIT_LIST_HEAD(&nrg->link);
410 goto retry;
411 }
96822904 412
7b24d861
DB
413 list_add(&nrg->link, rg->link.prev);
414 chg = t - f;
415 goto out_nrg;
96822904
AW
416 }
417
418 /* Round our left edge to the current segment if it encloses us. */
419 if (f > rg->from)
420 f = rg->from;
421 chg = t - f;
422
423 /* Check for and consume any regions we now overlap with. */
424 list_for_each_entry(rg, rg->link.prev, link) {
425 if (&rg->link == head)
426 break;
427 if (rg->from > t)
7b24d861 428 goto out;
96822904 429
25985edc 430 /* We overlap with this area, if it extends further than
96822904
AW
431 * us then we must extend ourselves. Account for its
432 * existing reservation. */
433 if (rg->to > t) {
434 chg += rg->to - t;
435 t = rg->to;
436 }
437 chg -= rg->to - rg->from;
438 }
7b24d861
DB
439
440out:
441 spin_unlock(&resv->lock);
442 /* We already know we raced and no longer need the new region */
443 kfree(nrg);
444 return chg;
445out_nrg:
446 spin_unlock(&resv->lock);
96822904
AW
447 return chg;
448}
449
5e911373
MK
450/*
451 * Abort the in progress add operation. The adds_in_progress field
452 * of the resv_map keeps track of the operations in progress between
453 * calls to region_chg and region_add. Operations are sometimes
454 * aborted after the call to region_chg. In such cases, region_abort
455 * is called to decrement the adds_in_progress counter.
456 *
457 * NOTE: The range arguments [f, t) are not needed or used in this
458 * routine. They are kept to make reading the calling code easier as
459 * arguments will match the associated region_chg call.
460 */
461static void region_abort(struct resv_map *resv, long f, long t)
462{
463 spin_lock(&resv->lock);
464 VM_BUG_ON(!resv->region_cache_count);
465 resv->adds_in_progress--;
466 spin_unlock(&resv->lock);
467}
468
1dd308a7 469/*
feba16e2
MK
470 * Delete the specified range [f, t) from the reserve map. If the
471 * t parameter is LONG_MAX, this indicates that ALL regions after f
472 * should be deleted. Locate the regions which intersect [f, t)
473 * and either trim, delete or split the existing regions.
474 *
475 * Returns the number of huge pages deleted from the reserve map.
476 * In the normal case, the return value is zero or more. In the
477 * case where a region must be split, a new region descriptor must
478 * be allocated. If the allocation fails, -ENOMEM will be returned.
479 * NOTE: If the parameter t == LONG_MAX, then we will never split
480 * a region and possibly return -ENOMEM. Callers specifying
481 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 482 */
feba16e2 483static long region_del(struct resv_map *resv, long f, long t)
96822904 484{
1406ec9b 485 struct list_head *head = &resv->regions;
96822904 486 struct file_region *rg, *trg;
feba16e2
MK
487 struct file_region *nrg = NULL;
488 long del = 0;
96822904 489
feba16e2 490retry:
7b24d861 491 spin_lock(&resv->lock);
feba16e2 492 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
493 /*
494 * Skip regions before the range to be deleted. file_region
495 * ranges are normally of the form [from, to). However, there
496 * may be a "placeholder" entry in the map which is of the form
497 * (from, to) with from == to. Check for placeholder entries
498 * at the beginning of the range to be deleted.
499 */
500 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 501 continue;
dbe409e4 502
feba16e2 503 if (rg->from >= t)
96822904 504 break;
96822904 505
feba16e2
MK
506 if (f > rg->from && t < rg->to) { /* Must split region */
507 /*
508 * Check for an entry in the cache before dropping
509 * lock and attempting allocation.
510 */
511 if (!nrg &&
512 resv->region_cache_count > resv->adds_in_progress) {
513 nrg = list_first_entry(&resv->region_cache,
514 struct file_region,
515 link);
516 list_del(&nrg->link);
517 resv->region_cache_count--;
518 }
96822904 519
feba16e2
MK
520 if (!nrg) {
521 spin_unlock(&resv->lock);
522 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523 if (!nrg)
524 return -ENOMEM;
525 goto retry;
526 }
527
528 del += t - f;
529
530 /* New entry for end of split region */
531 nrg->from = t;
532 nrg->to = rg->to;
533 INIT_LIST_HEAD(&nrg->link);
534
535 /* Original entry is trimmed */
536 rg->to = f;
537
538 list_add(&nrg->link, &rg->link);
539 nrg = NULL;
96822904 540 break;
feba16e2
MK
541 }
542
543 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544 del += rg->to - rg->from;
545 list_del(&rg->link);
546 kfree(rg);
547 continue;
548 }
549
550 if (f <= rg->from) { /* Trim beginning of region */
551 del += t - rg->from;
552 rg->from = t;
553 } else { /* Trim end of region */
554 del += rg->to - f;
555 rg->to = f;
556 }
96822904 557 }
7b24d861 558
7b24d861 559 spin_unlock(&resv->lock);
feba16e2
MK
560 kfree(nrg);
561 return del;
96822904
AW
562}
563
b5cec28d
MK
564/*
565 * A rare out of memory error was encountered which prevented removal of
566 * the reserve map region for a page. The huge page itself was free'ed
567 * and removed from the page cache. This routine will adjust the subpool
568 * usage count, and the global reserve count if needed. By incrementing
569 * these counts, the reserve map entry which could not be deleted will
570 * appear as a "reserved" entry instead of simply dangling with incorrect
571 * counts.
572 */
72e2936c 573void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
574{
575 struct hugepage_subpool *spool = subpool_inode(inode);
576 long rsv_adjust;
577
578 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 579 if (rsv_adjust) {
b5cec28d
MK
580 struct hstate *h = hstate_inode(inode);
581
582 hugetlb_acct_memory(h, 1);
583 }
584}
585
1dd308a7
MK
586/*
587 * Count and return the number of huge pages in the reserve map
588 * that intersect with the range [f, t).
589 */
1406ec9b 590static long region_count(struct resv_map *resv, long f, long t)
84afd99b 591{
1406ec9b 592 struct list_head *head = &resv->regions;
84afd99b
AW
593 struct file_region *rg;
594 long chg = 0;
595
7b24d861 596 spin_lock(&resv->lock);
84afd99b
AW
597 /* Locate each segment we overlap with, and count that overlap. */
598 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
599 long seg_from;
600 long seg_to;
84afd99b
AW
601
602 if (rg->to <= f)
603 continue;
604 if (rg->from >= t)
605 break;
606
607 seg_from = max(rg->from, f);
608 seg_to = min(rg->to, t);
609
610 chg += seg_to - seg_from;
611 }
7b24d861 612 spin_unlock(&resv->lock);
84afd99b
AW
613
614 return chg;
615}
616
e7c4b0bf
AW
617/*
618 * Convert the address within this vma to the page offset within
619 * the mapping, in pagecache page units; huge pages here.
620 */
a5516438
AK
621static pgoff_t vma_hugecache_offset(struct hstate *h,
622 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 623{
a5516438
AK
624 return ((address - vma->vm_start) >> huge_page_shift(h)) +
625 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
626}
627
0fe6e20b
NH
628pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629 unsigned long address)
630{
631 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632}
dee41079 633EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 634
08fba699
MG
635/*
636 * Return the size of the pages allocated when backing a VMA. In the majority
637 * cases this will be same size as used by the page table entries.
638 */
639unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640{
05ea8860
DW
641 if (vma->vm_ops && vma->vm_ops->pagesize)
642 return vma->vm_ops->pagesize(vma);
643 return PAGE_SIZE;
08fba699 644}
f340ca0f 645EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 646
3340289d
MG
647/*
648 * Return the page size being used by the MMU to back a VMA. In the majority
649 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
650 * architectures where it differs, an architecture-specific 'strong'
651 * version of this symbol is required.
3340289d 652 */
09135cc5 653__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
654{
655 return vma_kernel_pagesize(vma);
656}
3340289d 657
84afd99b
AW
658/*
659 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
660 * bits of the reservation map pointer, which are always clear due to
661 * alignment.
662 */
663#define HPAGE_RESV_OWNER (1UL << 0)
664#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 665#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 666
a1e78772
MG
667/*
668 * These helpers are used to track how many pages are reserved for
669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670 * is guaranteed to have their future faults succeed.
671 *
672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673 * the reserve counters are updated with the hugetlb_lock held. It is safe
674 * to reset the VMA at fork() time as it is not in use yet and there is no
675 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
676 *
677 * The private mapping reservation is represented in a subtly different
678 * manner to a shared mapping. A shared mapping has a region map associated
679 * with the underlying file, this region map represents the backing file
680 * pages which have ever had a reservation assigned which this persists even
681 * after the page is instantiated. A private mapping has a region map
682 * associated with the original mmap which is attached to all VMAs which
683 * reference it, this region map represents those offsets which have consumed
684 * reservation ie. where pages have been instantiated.
a1e78772 685 */
e7c4b0bf
AW
686static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687{
688 return (unsigned long)vma->vm_private_data;
689}
690
691static void set_vma_private_data(struct vm_area_struct *vma,
692 unsigned long value)
693{
694 vma->vm_private_data = (void *)value;
695}
696
9119a41e 697struct resv_map *resv_map_alloc(void)
84afd99b
AW
698{
699 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
700 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702 if (!resv_map || !rg) {
703 kfree(resv_map);
704 kfree(rg);
84afd99b 705 return NULL;
5e911373 706 }
84afd99b
AW
707
708 kref_init(&resv_map->refs);
7b24d861 709 spin_lock_init(&resv_map->lock);
84afd99b
AW
710 INIT_LIST_HEAD(&resv_map->regions);
711
5e911373
MK
712 resv_map->adds_in_progress = 0;
713
714 INIT_LIST_HEAD(&resv_map->region_cache);
715 list_add(&rg->link, &resv_map->region_cache);
716 resv_map->region_cache_count = 1;
717
84afd99b
AW
718 return resv_map;
719}
720
9119a41e 721void resv_map_release(struct kref *ref)
84afd99b
AW
722{
723 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
724 struct list_head *head = &resv_map->region_cache;
725 struct file_region *rg, *trg;
84afd99b
AW
726
727 /* Clear out any active regions before we release the map. */
feba16e2 728 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
729
730 /* ... and any entries left in the cache */
731 list_for_each_entry_safe(rg, trg, head, link) {
732 list_del(&rg->link);
733 kfree(rg);
734 }
735
736 VM_BUG_ON(resv_map->adds_in_progress);
737
84afd99b
AW
738 kfree(resv_map);
739}
740
4e35f483
JK
741static inline struct resv_map *inode_resv_map(struct inode *inode)
742{
743 return inode->i_mapping->private_data;
744}
745
84afd99b 746static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 747{
81d1b09c 748 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
749 if (vma->vm_flags & VM_MAYSHARE) {
750 struct address_space *mapping = vma->vm_file->f_mapping;
751 struct inode *inode = mapping->host;
752
753 return inode_resv_map(inode);
754
755 } else {
84afd99b
AW
756 return (struct resv_map *)(get_vma_private_data(vma) &
757 ~HPAGE_RESV_MASK);
4e35f483 758 }
a1e78772
MG
759}
760
84afd99b 761static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 762{
81d1b09c
SL
763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 765
84afd99b
AW
766 set_vma_private_data(vma, (get_vma_private_data(vma) &
767 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
768}
769
770static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771{
81d1b09c
SL
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
774
775 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
776}
777
778static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779{
81d1b09c 780 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
781
782 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
783}
784
04f2cbe3 785/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
786void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787{
81d1b09c 788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 789 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
790 vma->vm_private_data = (void *)0;
791}
792
793/* Returns true if the VMA has associated reserve pages */
559ec2f8 794static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 795{
af0ed73e
JK
796 if (vma->vm_flags & VM_NORESERVE) {
797 /*
798 * This address is already reserved by other process(chg == 0),
799 * so, we should decrement reserved count. Without decrementing,
800 * reserve count remains after releasing inode, because this
801 * allocated page will go into page cache and is regarded as
802 * coming from reserved pool in releasing step. Currently, we
803 * don't have any other solution to deal with this situation
804 * properly, so add work-around here.
805 */
806 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 807 return true;
af0ed73e 808 else
559ec2f8 809 return false;
af0ed73e 810 }
a63884e9
JK
811
812 /* Shared mappings always use reserves */
1fb1b0e9
MK
813 if (vma->vm_flags & VM_MAYSHARE) {
814 /*
815 * We know VM_NORESERVE is not set. Therefore, there SHOULD
816 * be a region map for all pages. The only situation where
817 * there is no region map is if a hole was punched via
818 * fallocate. In this case, there really are no reverves to
819 * use. This situation is indicated if chg != 0.
820 */
821 if (chg)
822 return false;
823 else
824 return true;
825 }
a63884e9
JK
826
827 /*
828 * Only the process that called mmap() has reserves for
829 * private mappings.
830 */
67961f9d
MK
831 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832 /*
833 * Like the shared case above, a hole punch or truncate
834 * could have been performed on the private mapping.
835 * Examine the value of chg to determine if reserves
836 * actually exist or were previously consumed.
837 * Very Subtle - The value of chg comes from a previous
838 * call to vma_needs_reserves(). The reserve map for
839 * private mappings has different (opposite) semantics
840 * than that of shared mappings. vma_needs_reserves()
841 * has already taken this difference in semantics into
842 * account. Therefore, the meaning of chg is the same
843 * as in the shared case above. Code could easily be
844 * combined, but keeping it separate draws attention to
845 * subtle differences.
846 */
847 if (chg)
848 return false;
849 else
850 return true;
851 }
a63884e9 852
559ec2f8 853 return false;
a1e78772
MG
854}
855
a5516438 856static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
857{
858 int nid = page_to_nid(page);
0edaecfa 859 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
860 h->free_huge_pages++;
861 h->free_huge_pages_node[nid]++;
1da177e4
LT
862}
863
94310cbc 864static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
865{
866 struct page *page;
867
c8721bbb 868 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 869 if (!PageHWPoison(page))
c8721bbb
NH
870 break;
871 /*
872 * if 'non-isolated free hugepage' not found on the list,
873 * the allocation fails.
874 */
875 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 876 return NULL;
0edaecfa 877 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 878 set_page_refcounted(page);
bf50bab2
NH
879 h->free_huge_pages--;
880 h->free_huge_pages_node[nid]--;
881 return page;
882}
883
3e59fcb0
MH
884static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
885 nodemask_t *nmask)
94310cbc 886{
3e59fcb0
MH
887 unsigned int cpuset_mems_cookie;
888 struct zonelist *zonelist;
889 struct zone *zone;
890 struct zoneref *z;
98fa15f3 891 int node = NUMA_NO_NODE;
94310cbc 892
3e59fcb0
MH
893 zonelist = node_zonelist(nid, gfp_mask);
894
895retry_cpuset:
896 cpuset_mems_cookie = read_mems_allowed_begin();
897 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
898 struct page *page;
899
900 if (!cpuset_zone_allowed(zone, gfp_mask))
901 continue;
902 /*
903 * no need to ask again on the same node. Pool is node rather than
904 * zone aware
905 */
906 if (zone_to_nid(zone) == node)
907 continue;
908 node = zone_to_nid(zone);
94310cbc 909
94310cbc
AK
910 page = dequeue_huge_page_node_exact(h, node);
911 if (page)
912 return page;
913 }
3e59fcb0
MH
914 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
915 goto retry_cpuset;
916
94310cbc
AK
917 return NULL;
918}
919
86cdb465
NH
920/* Movability of hugepages depends on migration support. */
921static inline gfp_t htlb_alloc_mask(struct hstate *h)
922{
7ed2c31d 923 if (hugepage_movable_supported(h))
86cdb465
NH
924 return GFP_HIGHUSER_MOVABLE;
925 else
926 return GFP_HIGHUSER;
927}
928
a5516438
AK
929static struct page *dequeue_huge_page_vma(struct hstate *h,
930 struct vm_area_struct *vma,
af0ed73e
JK
931 unsigned long address, int avoid_reserve,
932 long chg)
1da177e4 933{
3e59fcb0 934 struct page *page;
480eccf9 935 struct mempolicy *mpol;
04ec6264 936 gfp_t gfp_mask;
3e59fcb0 937 nodemask_t *nodemask;
04ec6264 938 int nid;
1da177e4 939
a1e78772
MG
940 /*
941 * A child process with MAP_PRIVATE mappings created by their parent
942 * have no page reserves. This check ensures that reservations are
943 * not "stolen". The child may still get SIGKILLed
944 */
af0ed73e 945 if (!vma_has_reserves(vma, chg) &&
a5516438 946 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 947 goto err;
a1e78772 948
04f2cbe3 949 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 950 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 951 goto err;
04f2cbe3 952
04ec6264
VB
953 gfp_mask = htlb_alloc_mask(h);
954 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
955 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
956 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
957 SetPagePrivate(page);
958 h->resv_huge_pages--;
1da177e4 959 }
cc9a6c87 960
52cd3b07 961 mpol_cond_put(mpol);
1da177e4 962 return page;
cc9a6c87
MG
963
964err:
cc9a6c87 965 return NULL;
1da177e4
LT
966}
967
1cac6f2c
LC
968/*
969 * common helper functions for hstate_next_node_to_{alloc|free}.
970 * We may have allocated or freed a huge page based on a different
971 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
972 * be outside of *nodes_allowed. Ensure that we use an allowed
973 * node for alloc or free.
974 */
975static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976{
0edaf86c 977 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
978 VM_BUG_ON(nid >= MAX_NUMNODES);
979
980 return nid;
981}
982
983static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984{
985 if (!node_isset(nid, *nodes_allowed))
986 nid = next_node_allowed(nid, nodes_allowed);
987 return nid;
988}
989
990/*
991 * returns the previously saved node ["this node"] from which to
992 * allocate a persistent huge page for the pool and advance the
993 * next node from which to allocate, handling wrap at end of node
994 * mask.
995 */
996static int hstate_next_node_to_alloc(struct hstate *h,
997 nodemask_t *nodes_allowed)
998{
999 int nid;
1000
1001 VM_BUG_ON(!nodes_allowed);
1002
1003 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1004 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1005
1006 return nid;
1007}
1008
1009/*
1010 * helper for free_pool_huge_page() - return the previously saved
1011 * node ["this node"] from which to free a huge page. Advance the
1012 * next node id whether or not we find a free huge page to free so
1013 * that the next attempt to free addresses the next node.
1014 */
1015static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1016{
1017 int nid;
1018
1019 VM_BUG_ON(!nodes_allowed);
1020
1021 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1022 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1023
1024 return nid;
1025}
1026
1027#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1028 for (nr_nodes = nodes_weight(*mask); \
1029 nr_nodes > 0 && \
1030 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1031 nr_nodes--)
1032
1033#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1034 for (nr_nodes = nodes_weight(*mask); \
1035 nr_nodes > 0 && \
1036 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1037 nr_nodes--)
1038
e1073d1e 1039#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1040static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1041 unsigned int order)
944d9fec
LC
1042{
1043 int i;
1044 int nr_pages = 1 << order;
1045 struct page *p = page + 1;
1046
c8cc708a 1047 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1048 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1049 clear_compound_head(p);
944d9fec 1050 set_page_refcounted(p);
944d9fec
LC
1051 }
1052
1053 set_compound_order(page, 0);
1054 __ClearPageHead(page);
1055}
1056
d00181b9 1057static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1058{
1059 free_contig_range(page_to_pfn(page), 1 << order);
1060}
1061
4eb0716e 1062#ifdef CONFIG_CONTIG_ALLOC
944d9fec 1063static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1064 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1065{
1066 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1067 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1068 gfp_mask);
944d9fec
LC
1069}
1070
f44b2dda
JK
1071static bool pfn_range_valid_gigantic(struct zone *z,
1072 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1073{
1074 unsigned long i, end_pfn = start_pfn + nr_pages;
1075 struct page *page;
1076
1077 for (i = start_pfn; i < end_pfn; i++) {
1078 if (!pfn_valid(i))
1079 return false;
1080
1081 page = pfn_to_page(i);
1082
f44b2dda
JK
1083 if (page_zone(page) != z)
1084 return false;
1085
944d9fec
LC
1086 if (PageReserved(page))
1087 return false;
1088
1089 if (page_count(page) > 0)
1090 return false;
1091
1092 if (PageHuge(page))
1093 return false;
1094 }
1095
1096 return true;
1097}
1098
1099static bool zone_spans_last_pfn(const struct zone *zone,
1100 unsigned long start_pfn, unsigned long nr_pages)
1101{
1102 unsigned long last_pfn = start_pfn + nr_pages - 1;
1103 return zone_spans_pfn(zone, last_pfn);
1104}
1105
d9cc948f
MH
1106static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1107 int nid, nodemask_t *nodemask)
944d9fec 1108{
79b63f12 1109 unsigned int order = huge_page_order(h);
944d9fec
LC
1110 unsigned long nr_pages = 1 << order;
1111 unsigned long ret, pfn, flags;
79b63f12
MH
1112 struct zonelist *zonelist;
1113 struct zone *zone;
1114 struct zoneref *z;
944d9fec 1115
79b63f12 1116 zonelist = node_zonelist(nid, gfp_mask);
d9cc948f 1117 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
79b63f12 1118 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1119
79b63f12
MH
1120 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1121 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1122 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1123 /*
1124 * We release the zone lock here because
1125 * alloc_contig_range() will also lock the zone
1126 * at some point. If there's an allocation
1127 * spinning on this lock, it may win the race
1128 * and cause alloc_contig_range() to fail...
1129 */
79b63f12
MH
1130 spin_unlock_irqrestore(&zone->lock, flags);
1131 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1132 if (!ret)
1133 return pfn_to_page(pfn);
79b63f12 1134 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1135 }
1136 pfn += nr_pages;
1137 }
1138
79b63f12 1139 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1140 }
1141
1142 return NULL;
1143}
1144
1145static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1146static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1147#else /* !CONFIG_CONTIG_ALLOC */
1148static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149 int nid, nodemask_t *nodemask)
1150{
1151 return NULL;
1152}
1153#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1154
e1073d1e 1155#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1156static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1157 int nid, nodemask_t *nodemask)
1158{
1159 return NULL;
1160}
d00181b9 1161static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1162static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1163 unsigned int order) { }
944d9fec
LC
1164#endif
1165
a5516438 1166static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1167{
1168 int i;
a5516438 1169
4eb0716e 1170 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1171 return;
18229df5 1172
a5516438
AK
1173 h->nr_huge_pages--;
1174 h->nr_huge_pages_node[page_to_nid(page)]--;
1175 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1176 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1177 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1178 1 << PG_active | 1 << PG_private |
1179 1 << PG_writeback);
6af2acb6 1180 }
309381fe 1181 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1182 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1183 set_page_refcounted(page);
944d9fec
LC
1184 if (hstate_is_gigantic(h)) {
1185 destroy_compound_gigantic_page(page, huge_page_order(h));
1186 free_gigantic_page(page, huge_page_order(h));
1187 } else {
944d9fec
LC
1188 __free_pages(page, huge_page_order(h));
1189 }
6af2acb6
AL
1190}
1191
e5ff2159
AK
1192struct hstate *size_to_hstate(unsigned long size)
1193{
1194 struct hstate *h;
1195
1196 for_each_hstate(h) {
1197 if (huge_page_size(h) == size)
1198 return h;
1199 }
1200 return NULL;
1201}
1202
bcc54222
NH
1203/*
1204 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1205 * to hstate->hugepage_activelist.)
1206 *
1207 * This function can be called for tail pages, but never returns true for them.
1208 */
1209bool page_huge_active(struct page *page)
1210{
1211 VM_BUG_ON_PAGE(!PageHuge(page), page);
1212 return PageHead(page) && PagePrivate(&page[1]);
1213}
1214
1215/* never called for tail page */
1216static void set_page_huge_active(struct page *page)
1217{
1218 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1219 SetPagePrivate(&page[1]);
1220}
1221
1222static void clear_page_huge_active(struct page *page)
1223{
1224 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1225 ClearPagePrivate(&page[1]);
1226}
1227
ab5ac90a
MH
1228/*
1229 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1230 * code
1231 */
1232static inline bool PageHugeTemporary(struct page *page)
1233{
1234 if (!PageHuge(page))
1235 return false;
1236
1237 return (unsigned long)page[2].mapping == -1U;
1238}
1239
1240static inline void SetPageHugeTemporary(struct page *page)
1241{
1242 page[2].mapping = (void *)-1U;
1243}
1244
1245static inline void ClearPageHugeTemporary(struct page *page)
1246{
1247 page[2].mapping = NULL;
1248}
1249
8f1d26d0 1250void free_huge_page(struct page *page)
27a85ef1 1251{
a5516438
AK
1252 /*
1253 * Can't pass hstate in here because it is called from the
1254 * compound page destructor.
1255 */
e5ff2159 1256 struct hstate *h = page_hstate(page);
7893d1d5 1257 int nid = page_to_nid(page);
90481622
DG
1258 struct hugepage_subpool *spool =
1259 (struct hugepage_subpool *)page_private(page);
07443a85 1260 bool restore_reserve;
27a85ef1 1261
b4330afb
MK
1262 VM_BUG_ON_PAGE(page_count(page), page);
1263 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1264
1265 set_page_private(page, 0);
1266 page->mapping = NULL;
07443a85 1267 restore_reserve = PagePrivate(page);
16c794b4 1268 ClearPagePrivate(page);
27a85ef1 1269
1c5ecae3 1270 /*
0919e1b6
MK
1271 * If PagePrivate() was set on page, page allocation consumed a
1272 * reservation. If the page was associated with a subpool, there
1273 * would have been a page reserved in the subpool before allocation
1274 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1275 * reservtion, do not call hugepage_subpool_put_pages() as this will
1276 * remove the reserved page from the subpool.
1c5ecae3 1277 */
0919e1b6
MK
1278 if (!restore_reserve) {
1279 /*
1280 * A return code of zero implies that the subpool will be
1281 * under its minimum size if the reservation is not restored
1282 * after page is free. Therefore, force restore_reserve
1283 * operation.
1284 */
1285 if (hugepage_subpool_put_pages(spool, 1) == 0)
1286 restore_reserve = true;
1287 }
1c5ecae3 1288
27a85ef1 1289 spin_lock(&hugetlb_lock);
bcc54222 1290 clear_page_huge_active(page);
6d76dcf4
AK
1291 hugetlb_cgroup_uncharge_page(hstate_index(h),
1292 pages_per_huge_page(h), page);
07443a85
JK
1293 if (restore_reserve)
1294 h->resv_huge_pages++;
1295
ab5ac90a
MH
1296 if (PageHugeTemporary(page)) {
1297 list_del(&page->lru);
1298 ClearPageHugeTemporary(page);
1299 update_and_free_page(h, page);
1300 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1301 /* remove the page from active list */
1302 list_del(&page->lru);
a5516438
AK
1303 update_and_free_page(h, page);
1304 h->surplus_huge_pages--;
1305 h->surplus_huge_pages_node[nid]--;
7893d1d5 1306 } else {
5d3a551c 1307 arch_clear_hugepage_flags(page);
a5516438 1308 enqueue_huge_page(h, page);
7893d1d5 1309 }
27a85ef1
DG
1310 spin_unlock(&hugetlb_lock);
1311}
1312
a5516438 1313static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1314{
0edaecfa 1315 INIT_LIST_HEAD(&page->lru);
f1e61557 1316 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1317 spin_lock(&hugetlb_lock);
9dd540e2 1318 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1319 h->nr_huge_pages++;
1320 h->nr_huge_pages_node[nid]++;
b7ba30c6 1321 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1322}
1323
d00181b9 1324static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1325{
1326 int i;
1327 int nr_pages = 1 << order;
1328 struct page *p = page + 1;
1329
1330 /* we rely on prep_new_huge_page to set the destructor */
1331 set_compound_order(page, order);
ef5a22be 1332 __ClearPageReserved(page);
de09d31d 1333 __SetPageHead(page);
20a0307c 1334 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1335 /*
1336 * For gigantic hugepages allocated through bootmem at
1337 * boot, it's safer to be consistent with the not-gigantic
1338 * hugepages and clear the PG_reserved bit from all tail pages
1339 * too. Otherwse drivers using get_user_pages() to access tail
1340 * pages may get the reference counting wrong if they see
1341 * PG_reserved set on a tail page (despite the head page not
1342 * having PG_reserved set). Enforcing this consistency between
1343 * head and tail pages allows drivers to optimize away a check
1344 * on the head page when they need know if put_page() is needed
1345 * after get_user_pages().
1346 */
1347 __ClearPageReserved(p);
58a84aa9 1348 set_page_count(p, 0);
1d798ca3 1349 set_compound_head(p, page);
20a0307c 1350 }
b4330afb 1351 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1352}
1353
7795912c
AM
1354/*
1355 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1356 * transparent huge pages. See the PageTransHuge() documentation for more
1357 * details.
1358 */
20a0307c
WF
1359int PageHuge(struct page *page)
1360{
20a0307c
WF
1361 if (!PageCompound(page))
1362 return 0;
1363
1364 page = compound_head(page);
f1e61557 1365 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1366}
43131e14
NH
1367EXPORT_SYMBOL_GPL(PageHuge);
1368
27c73ae7
AA
1369/*
1370 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1371 * normal or transparent huge pages.
1372 */
1373int PageHeadHuge(struct page *page_head)
1374{
27c73ae7
AA
1375 if (!PageHead(page_head))
1376 return 0;
1377
758f66a2 1378 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1379}
27c73ae7 1380
13d60f4b
ZY
1381pgoff_t __basepage_index(struct page *page)
1382{
1383 struct page *page_head = compound_head(page);
1384 pgoff_t index = page_index(page_head);
1385 unsigned long compound_idx;
1386
1387 if (!PageHuge(page_head))
1388 return page_index(page);
1389
1390 if (compound_order(page_head) >= MAX_ORDER)
1391 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1392 else
1393 compound_idx = page - page_head;
1394
1395 return (index << compound_order(page_head)) + compound_idx;
1396}
1397
0c397dae 1398static struct page *alloc_buddy_huge_page(struct hstate *h,
af0fb9df 1399 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1da177e4 1400{
af0fb9df 1401 int order = huge_page_order(h);
1da177e4 1402 struct page *page;
f96efd58 1403
af0fb9df
MH
1404 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1405 if (nid == NUMA_NO_NODE)
1406 nid = numa_mem_id();
1407 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1408 if (page)
1409 __count_vm_event(HTLB_BUDDY_PGALLOC);
1410 else
1411 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c
NA
1412
1413 return page;
1414}
1415
0c397dae
MH
1416/*
1417 * Common helper to allocate a fresh hugetlb page. All specific allocators
1418 * should use this function to get new hugetlb pages
1419 */
1420static struct page *alloc_fresh_huge_page(struct hstate *h,
1421 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1422{
1423 struct page *page;
1424
1425 if (hstate_is_gigantic(h))
1426 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1427 else
1428 page = alloc_buddy_huge_page(h, gfp_mask,
1429 nid, nmask);
1430 if (!page)
1431 return NULL;
1432
1433 if (hstate_is_gigantic(h))
1434 prep_compound_gigantic_page(page, huge_page_order(h));
1435 prep_new_huge_page(h, page, page_to_nid(page));
1436
1437 return page;
1438}
1439
af0fb9df
MH
1440/*
1441 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1442 * manner.
1443 */
0c397dae 1444static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
b2261026
JK
1445{
1446 struct page *page;
1447 int nr_nodes, node;
af0fb9df 1448 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1449
1450 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
0c397dae 1451 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
af0fb9df 1452 if (page)
b2261026 1453 break;
b2261026
JK
1454 }
1455
af0fb9df
MH
1456 if (!page)
1457 return 0;
b2261026 1458
af0fb9df
MH
1459 put_page(page); /* free it into the hugepage allocator */
1460
1461 return 1;
b2261026
JK
1462}
1463
e8c5c824
LS
1464/*
1465 * Free huge page from pool from next node to free.
1466 * Attempt to keep persistent huge pages more or less
1467 * balanced over allowed nodes.
1468 * Called with hugetlb_lock locked.
1469 */
6ae11b27
LS
1470static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1471 bool acct_surplus)
e8c5c824 1472{
b2261026 1473 int nr_nodes, node;
e8c5c824
LS
1474 int ret = 0;
1475
b2261026 1476 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1477 /*
1478 * If we're returning unused surplus pages, only examine
1479 * nodes with surplus pages.
1480 */
b2261026
JK
1481 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1482 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1483 struct page *page =
b2261026 1484 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1485 struct page, lru);
1486 list_del(&page->lru);
1487 h->free_huge_pages--;
b2261026 1488 h->free_huge_pages_node[node]--;
685f3457
LS
1489 if (acct_surplus) {
1490 h->surplus_huge_pages--;
b2261026 1491 h->surplus_huge_pages_node[node]--;
685f3457 1492 }
e8c5c824
LS
1493 update_and_free_page(h, page);
1494 ret = 1;
9a76db09 1495 break;
e8c5c824 1496 }
b2261026 1497 }
e8c5c824
LS
1498
1499 return ret;
1500}
1501
c8721bbb
NH
1502/*
1503 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b 1504 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
6bc9b564
NH
1505 * dissolution fails because a give page is not a free hugepage, or because
1506 * free hugepages are fully reserved.
c8721bbb 1507 */
c3114a84 1508int dissolve_free_huge_page(struct page *page)
c8721bbb 1509{
6bc9b564 1510 int rc = -EBUSY;
082d5b6b 1511
c8721bbb
NH
1512 spin_lock(&hugetlb_lock);
1513 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1514 struct page *head = compound_head(page);
1515 struct hstate *h = page_hstate(head);
1516 int nid = page_to_nid(head);
6bc9b564 1517 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1518 goto out;
c3114a84
AK
1519 /*
1520 * Move PageHWPoison flag from head page to the raw error page,
1521 * which makes any subpages rather than the error page reusable.
1522 */
1523 if (PageHWPoison(head) && page != head) {
1524 SetPageHWPoison(page);
1525 ClearPageHWPoison(head);
1526 }
2247bb33 1527 list_del(&head->lru);
c8721bbb
NH
1528 h->free_huge_pages--;
1529 h->free_huge_pages_node[nid]--;
c1470b33 1530 h->max_huge_pages--;
2247bb33 1531 update_and_free_page(h, head);
6bc9b564 1532 rc = 0;
c8721bbb 1533 }
082d5b6b 1534out:
c8721bbb 1535 spin_unlock(&hugetlb_lock);
082d5b6b 1536 return rc;
c8721bbb
NH
1537}
1538
1539/*
1540 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1541 * make specified memory blocks removable from the system.
2247bb33
GS
1542 * Note that this will dissolve a free gigantic hugepage completely, if any
1543 * part of it lies within the given range.
082d5b6b
GS
1544 * Also note that if dissolve_free_huge_page() returns with an error, all
1545 * free hugepages that were dissolved before that error are lost.
c8721bbb 1546 */
082d5b6b 1547int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1548{
c8721bbb 1549 unsigned long pfn;
eb03aa00 1550 struct page *page;
082d5b6b 1551 int rc = 0;
c8721bbb 1552
d0177639 1553 if (!hugepages_supported())
082d5b6b 1554 return rc;
d0177639 1555
eb03aa00
GS
1556 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1557 page = pfn_to_page(pfn);
1558 if (PageHuge(page) && !page_count(page)) {
1559 rc = dissolve_free_huge_page(page);
1560 if (rc)
1561 break;
1562 }
1563 }
082d5b6b
GS
1564
1565 return rc;
c8721bbb
NH
1566}
1567
ab5ac90a
MH
1568/*
1569 * Allocates a fresh surplus page from the page allocator.
1570 */
0c397dae 1571static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1572 int nid, nodemask_t *nmask)
7893d1d5 1573{
9980d744 1574 struct page *page = NULL;
7893d1d5 1575
bae7f4ae 1576 if (hstate_is_gigantic(h))
aa888a74
AK
1577 return NULL;
1578
d1c3fb1f 1579 spin_lock(&hugetlb_lock);
9980d744
MH
1580 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1581 goto out_unlock;
d1c3fb1f
NA
1582 spin_unlock(&hugetlb_lock);
1583
0c397dae 1584 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
9980d744 1585 if (!page)
0c397dae 1586 return NULL;
d1c3fb1f
NA
1587
1588 spin_lock(&hugetlb_lock);
9980d744
MH
1589 /*
1590 * We could have raced with the pool size change.
1591 * Double check that and simply deallocate the new page
1592 * if we would end up overcommiting the surpluses. Abuse
1593 * temporary page to workaround the nasty free_huge_page
1594 * codeflow
1595 */
1596 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1597 SetPageHugeTemporary(page);
2bf753e6 1598 spin_unlock(&hugetlb_lock);
9980d744 1599 put_page(page);
2bf753e6 1600 return NULL;
9980d744 1601 } else {
9980d744 1602 h->surplus_huge_pages++;
4704dea3 1603 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1604 }
9980d744
MH
1605
1606out_unlock:
d1c3fb1f 1607 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1608
1609 return page;
1610}
1611
9a4e9f3b
AK
1612struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1613 int nid, nodemask_t *nmask)
ab5ac90a
MH
1614{
1615 struct page *page;
1616
1617 if (hstate_is_gigantic(h))
1618 return NULL;
1619
0c397dae 1620 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
ab5ac90a
MH
1621 if (!page)
1622 return NULL;
1623
1624 /*
1625 * We do not account these pages as surplus because they are only
1626 * temporary and will be released properly on the last reference
1627 */
ab5ac90a
MH
1628 SetPageHugeTemporary(page);
1629
1630 return page;
1631}
1632
099730d6
DH
1633/*
1634 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1635 */
e0ec90ee 1636static
0c397dae 1637struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1638 struct vm_area_struct *vma, unsigned long addr)
1639{
aaf14e40
MH
1640 struct page *page;
1641 struct mempolicy *mpol;
1642 gfp_t gfp_mask = htlb_alloc_mask(h);
1643 int nid;
1644 nodemask_t *nodemask;
1645
1646 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1647 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1648 mpol_cond_put(mpol);
1649
1650 return page;
099730d6
DH
1651}
1652
ab5ac90a 1653/* page migration callback function */
bf50bab2
NH
1654struct page *alloc_huge_page_node(struct hstate *h, int nid)
1655{
aaf14e40 1656 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1657 struct page *page = NULL;
bf50bab2 1658
aaf14e40
MH
1659 if (nid != NUMA_NO_NODE)
1660 gfp_mask |= __GFP_THISNODE;
1661
bf50bab2 1662 spin_lock(&hugetlb_lock);
4ef91848 1663 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1664 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1665 spin_unlock(&hugetlb_lock);
1666
94ae8ba7 1667 if (!page)
0c397dae 1668 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1669
1670 return page;
1671}
1672
ab5ac90a 1673/* page migration callback function */
3e59fcb0
MH
1674struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1675 nodemask_t *nmask)
4db9b2ef 1676{
aaf14e40 1677 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1678
1679 spin_lock(&hugetlb_lock);
1680 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1681 struct page *page;
1682
1683 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1684 if (page) {
1685 spin_unlock(&hugetlb_lock);
1686 return page;
4db9b2ef
MH
1687 }
1688 }
1689 spin_unlock(&hugetlb_lock);
4db9b2ef 1690
0c397dae 1691 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1692}
1693
ebd63723 1694/* mempolicy aware migration callback */
389c8178
MH
1695struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1696 unsigned long address)
ebd63723
MH
1697{
1698 struct mempolicy *mpol;
1699 nodemask_t *nodemask;
1700 struct page *page;
ebd63723
MH
1701 gfp_t gfp_mask;
1702 int node;
1703
ebd63723
MH
1704 gfp_mask = htlb_alloc_mask(h);
1705 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1706 page = alloc_huge_page_nodemask(h, node, nodemask);
1707 mpol_cond_put(mpol);
1708
1709 return page;
1710}
1711
e4e574b7 1712/*
25985edc 1713 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1714 * of size 'delta'.
1715 */
a5516438 1716static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1717{
1718 struct list_head surplus_list;
1719 struct page *page, *tmp;
1720 int ret, i;
1721 int needed, allocated;
28073b02 1722 bool alloc_ok = true;
e4e574b7 1723
a5516438 1724 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1725 if (needed <= 0) {
a5516438 1726 h->resv_huge_pages += delta;
e4e574b7 1727 return 0;
ac09b3a1 1728 }
e4e574b7
AL
1729
1730 allocated = 0;
1731 INIT_LIST_HEAD(&surplus_list);
1732
1733 ret = -ENOMEM;
1734retry:
1735 spin_unlock(&hugetlb_lock);
1736 for (i = 0; i < needed; i++) {
0c397dae 1737 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1738 NUMA_NO_NODE, NULL);
28073b02
HD
1739 if (!page) {
1740 alloc_ok = false;
1741 break;
1742 }
e4e574b7 1743 list_add(&page->lru, &surplus_list);
69ed779a 1744 cond_resched();
e4e574b7 1745 }
28073b02 1746 allocated += i;
e4e574b7
AL
1747
1748 /*
1749 * After retaking hugetlb_lock, we need to recalculate 'needed'
1750 * because either resv_huge_pages or free_huge_pages may have changed.
1751 */
1752 spin_lock(&hugetlb_lock);
a5516438
AK
1753 needed = (h->resv_huge_pages + delta) -
1754 (h->free_huge_pages + allocated);
28073b02
HD
1755 if (needed > 0) {
1756 if (alloc_ok)
1757 goto retry;
1758 /*
1759 * We were not able to allocate enough pages to
1760 * satisfy the entire reservation so we free what
1761 * we've allocated so far.
1762 */
1763 goto free;
1764 }
e4e574b7
AL
1765 /*
1766 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1767 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1768 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1769 * allocator. Commit the entire reservation here to prevent another
1770 * process from stealing the pages as they are added to the pool but
1771 * before they are reserved.
e4e574b7
AL
1772 */
1773 needed += allocated;
a5516438 1774 h->resv_huge_pages += delta;
e4e574b7 1775 ret = 0;
a9869b83 1776
19fc3f0a 1777 /* Free the needed pages to the hugetlb pool */
e4e574b7 1778 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1779 if ((--needed) < 0)
1780 break;
a9869b83
NH
1781 /*
1782 * This page is now managed by the hugetlb allocator and has
1783 * no users -- drop the buddy allocator's reference.
1784 */
1785 put_page_testzero(page);
309381fe 1786 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1787 enqueue_huge_page(h, page);
19fc3f0a 1788 }
28073b02 1789free:
b0365c8d 1790 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1791
1792 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1793 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1794 put_page(page);
a9869b83 1795 spin_lock(&hugetlb_lock);
e4e574b7
AL
1796
1797 return ret;
1798}
1799
1800/*
e5bbc8a6
MK
1801 * This routine has two main purposes:
1802 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1803 * in unused_resv_pages. This corresponds to the prior adjustments made
1804 * to the associated reservation map.
1805 * 2) Free any unused surplus pages that may have been allocated to satisfy
1806 * the reservation. As many as unused_resv_pages may be freed.
1807 *
1808 * Called with hugetlb_lock held. However, the lock could be dropped (and
1809 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1810 * we must make sure nobody else can claim pages we are in the process of
1811 * freeing. Do this by ensuring resv_huge_page always is greater than the
1812 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1813 */
a5516438
AK
1814static void return_unused_surplus_pages(struct hstate *h,
1815 unsigned long unused_resv_pages)
e4e574b7 1816{
e4e574b7
AL
1817 unsigned long nr_pages;
1818
aa888a74 1819 /* Cannot return gigantic pages currently */
bae7f4ae 1820 if (hstate_is_gigantic(h))
e5bbc8a6 1821 goto out;
aa888a74 1822
e5bbc8a6
MK
1823 /*
1824 * Part (or even all) of the reservation could have been backed
1825 * by pre-allocated pages. Only free surplus pages.
1826 */
a5516438 1827 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1828
685f3457
LS
1829 /*
1830 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1831 * evenly across all nodes with memory. Iterate across these nodes
1832 * until we can no longer free unreserved surplus pages. This occurs
1833 * when the nodes with surplus pages have no free pages.
1834 * free_pool_huge_page() will balance the the freed pages across the
1835 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1836 *
1837 * Note that we decrement resv_huge_pages as we free the pages. If
1838 * we drop the lock, resv_huge_pages will still be sufficiently large
1839 * to cover subsequent pages we may free.
685f3457
LS
1840 */
1841 while (nr_pages--) {
e5bbc8a6
MK
1842 h->resv_huge_pages--;
1843 unused_resv_pages--;
8cebfcd0 1844 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1845 goto out;
7848a4bf 1846 cond_resched_lock(&hugetlb_lock);
e4e574b7 1847 }
e5bbc8a6
MK
1848
1849out:
1850 /* Fully uncommit the reservation */
1851 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1852}
1853
5e911373 1854
c37f9fb1 1855/*
feba16e2 1856 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1857 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1858 *
1859 * vma_needs_reservation is called to determine if the huge page at addr
1860 * within the vma has an associated reservation. If a reservation is
1861 * needed, the value 1 is returned. The caller is then responsible for
1862 * managing the global reservation and subpool usage counts. After
1863 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1864 * to add the page to the reservation map. If the page allocation fails,
1865 * the reservation must be ended instead of committed. vma_end_reservation
1866 * is called in such cases.
cf3ad20b
MK
1867 *
1868 * In the normal case, vma_commit_reservation returns the same value
1869 * as the preceding vma_needs_reservation call. The only time this
1870 * is not the case is if a reserve map was changed between calls. It
1871 * is the responsibility of the caller to notice the difference and
1872 * take appropriate action.
96b96a96
MK
1873 *
1874 * vma_add_reservation is used in error paths where a reservation must
1875 * be restored when a newly allocated huge page must be freed. It is
1876 * to be called after calling vma_needs_reservation to determine if a
1877 * reservation exists.
c37f9fb1 1878 */
5e911373
MK
1879enum vma_resv_mode {
1880 VMA_NEEDS_RESV,
1881 VMA_COMMIT_RESV,
feba16e2 1882 VMA_END_RESV,
96b96a96 1883 VMA_ADD_RESV,
5e911373 1884};
cf3ad20b
MK
1885static long __vma_reservation_common(struct hstate *h,
1886 struct vm_area_struct *vma, unsigned long addr,
5e911373 1887 enum vma_resv_mode mode)
c37f9fb1 1888{
4e35f483
JK
1889 struct resv_map *resv;
1890 pgoff_t idx;
cf3ad20b 1891 long ret;
c37f9fb1 1892
4e35f483
JK
1893 resv = vma_resv_map(vma);
1894 if (!resv)
84afd99b 1895 return 1;
c37f9fb1 1896
4e35f483 1897 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1898 switch (mode) {
1899 case VMA_NEEDS_RESV:
cf3ad20b 1900 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1901 break;
1902 case VMA_COMMIT_RESV:
1903 ret = region_add(resv, idx, idx + 1);
1904 break;
feba16e2 1905 case VMA_END_RESV:
5e911373
MK
1906 region_abort(resv, idx, idx + 1);
1907 ret = 0;
1908 break;
96b96a96
MK
1909 case VMA_ADD_RESV:
1910 if (vma->vm_flags & VM_MAYSHARE)
1911 ret = region_add(resv, idx, idx + 1);
1912 else {
1913 region_abort(resv, idx, idx + 1);
1914 ret = region_del(resv, idx, idx + 1);
1915 }
1916 break;
5e911373
MK
1917 default:
1918 BUG();
1919 }
84afd99b 1920
4e35f483 1921 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1922 return ret;
67961f9d
MK
1923 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1924 /*
1925 * In most cases, reserves always exist for private mappings.
1926 * However, a file associated with mapping could have been
1927 * hole punched or truncated after reserves were consumed.
1928 * As subsequent fault on such a range will not use reserves.
1929 * Subtle - The reserve map for private mappings has the
1930 * opposite meaning than that of shared mappings. If NO
1931 * entry is in the reserve map, it means a reservation exists.
1932 * If an entry exists in the reserve map, it means the
1933 * reservation has already been consumed. As a result, the
1934 * return value of this routine is the opposite of the
1935 * value returned from reserve map manipulation routines above.
1936 */
1937 if (ret)
1938 return 0;
1939 else
1940 return 1;
1941 }
4e35f483 1942 else
cf3ad20b 1943 return ret < 0 ? ret : 0;
c37f9fb1 1944}
cf3ad20b
MK
1945
1946static long vma_needs_reservation(struct hstate *h,
a5516438 1947 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1948{
5e911373 1949 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1950}
84afd99b 1951
cf3ad20b
MK
1952static long vma_commit_reservation(struct hstate *h,
1953 struct vm_area_struct *vma, unsigned long addr)
1954{
5e911373
MK
1955 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1956}
1957
feba16e2 1958static void vma_end_reservation(struct hstate *h,
5e911373
MK
1959 struct vm_area_struct *vma, unsigned long addr)
1960{
feba16e2 1961 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1962}
1963
96b96a96
MK
1964static long vma_add_reservation(struct hstate *h,
1965 struct vm_area_struct *vma, unsigned long addr)
1966{
1967 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1968}
1969
1970/*
1971 * This routine is called to restore a reservation on error paths. In the
1972 * specific error paths, a huge page was allocated (via alloc_huge_page)
1973 * and is about to be freed. If a reservation for the page existed,
1974 * alloc_huge_page would have consumed the reservation and set PagePrivate
1975 * in the newly allocated page. When the page is freed via free_huge_page,
1976 * the global reservation count will be incremented if PagePrivate is set.
1977 * However, free_huge_page can not adjust the reserve map. Adjust the
1978 * reserve map here to be consistent with global reserve count adjustments
1979 * to be made by free_huge_page.
1980 */
1981static void restore_reserve_on_error(struct hstate *h,
1982 struct vm_area_struct *vma, unsigned long address,
1983 struct page *page)
1984{
1985 if (unlikely(PagePrivate(page))) {
1986 long rc = vma_needs_reservation(h, vma, address);
1987
1988 if (unlikely(rc < 0)) {
1989 /*
1990 * Rare out of memory condition in reserve map
1991 * manipulation. Clear PagePrivate so that
1992 * global reserve count will not be incremented
1993 * by free_huge_page. This will make it appear
1994 * as though the reservation for this page was
1995 * consumed. This may prevent the task from
1996 * faulting in the page at a later time. This
1997 * is better than inconsistent global huge page
1998 * accounting of reserve counts.
1999 */
2000 ClearPagePrivate(page);
2001 } else if (rc) {
2002 rc = vma_add_reservation(h, vma, address);
2003 if (unlikely(rc < 0))
2004 /*
2005 * See above comment about rare out of
2006 * memory condition.
2007 */
2008 ClearPagePrivate(page);
2009 } else
2010 vma_end_reservation(h, vma, address);
2011 }
2012}
2013
70c3547e 2014struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2015 unsigned long addr, int avoid_reserve)
1da177e4 2016{
90481622 2017 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2018 struct hstate *h = hstate_vma(vma);
348ea204 2019 struct page *page;
d85f69b0
MK
2020 long map_chg, map_commit;
2021 long gbl_chg;
6d76dcf4
AK
2022 int ret, idx;
2023 struct hugetlb_cgroup *h_cg;
a1e78772 2024
6d76dcf4 2025 idx = hstate_index(h);
a1e78772 2026 /*
d85f69b0
MK
2027 * Examine the region/reserve map to determine if the process
2028 * has a reservation for the page to be allocated. A return
2029 * code of zero indicates a reservation exists (no change).
a1e78772 2030 */
d85f69b0
MK
2031 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2032 if (map_chg < 0)
76dcee75 2033 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2034
2035 /*
2036 * Processes that did not create the mapping will have no
2037 * reserves as indicated by the region/reserve map. Check
2038 * that the allocation will not exceed the subpool limit.
2039 * Allocations for MAP_NORESERVE mappings also need to be
2040 * checked against any subpool limit.
2041 */
2042 if (map_chg || avoid_reserve) {
2043 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2044 if (gbl_chg < 0) {
feba16e2 2045 vma_end_reservation(h, vma, addr);
76dcee75 2046 return ERR_PTR(-ENOSPC);
5e911373 2047 }
1da177e4 2048
d85f69b0
MK
2049 /*
2050 * Even though there was no reservation in the region/reserve
2051 * map, there could be reservations associated with the
2052 * subpool that can be used. This would be indicated if the
2053 * return value of hugepage_subpool_get_pages() is zero.
2054 * However, if avoid_reserve is specified we still avoid even
2055 * the subpool reservations.
2056 */
2057 if (avoid_reserve)
2058 gbl_chg = 1;
2059 }
2060
6d76dcf4 2061 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2062 if (ret)
2063 goto out_subpool_put;
2064
1da177e4 2065 spin_lock(&hugetlb_lock);
d85f69b0
MK
2066 /*
2067 * glb_chg is passed to indicate whether or not a page must be taken
2068 * from the global free pool (global change). gbl_chg == 0 indicates
2069 * a reservation exists for the allocation.
2070 */
2071 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2072 if (!page) {
94ae8ba7 2073 spin_unlock(&hugetlb_lock);
0c397dae 2074 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2075 if (!page)
2076 goto out_uncharge_cgroup;
a88c7695
NH
2077 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2078 SetPagePrivate(page);
2079 h->resv_huge_pages--;
2080 }
79dbb236
AK
2081 spin_lock(&hugetlb_lock);
2082 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2083 /* Fall through */
68842c9b 2084 }
81a6fcae
JK
2085 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2086 spin_unlock(&hugetlb_lock);
348ea204 2087
90481622 2088 set_page_private(page, (unsigned long)spool);
90d8b7e6 2089
d85f69b0
MK
2090 map_commit = vma_commit_reservation(h, vma, addr);
2091 if (unlikely(map_chg > map_commit)) {
33039678
MK
2092 /*
2093 * The page was added to the reservation map between
2094 * vma_needs_reservation and vma_commit_reservation.
2095 * This indicates a race with hugetlb_reserve_pages.
2096 * Adjust for the subpool count incremented above AND
2097 * in hugetlb_reserve_pages for the same page. Also,
2098 * the reservation count added in hugetlb_reserve_pages
2099 * no longer applies.
2100 */
2101 long rsv_adjust;
2102
2103 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2104 hugetlb_acct_memory(h, -rsv_adjust);
2105 }
90d8b7e6 2106 return page;
8f34af6f
JZ
2107
2108out_uncharge_cgroup:
2109 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2110out_subpool_put:
d85f69b0 2111 if (map_chg || avoid_reserve)
8f34af6f 2112 hugepage_subpool_put_pages(spool, 1);
feba16e2 2113 vma_end_reservation(h, vma, addr);
8f34af6f 2114 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2115}
2116
e24a1307
AK
2117int alloc_bootmem_huge_page(struct hstate *h)
2118 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2119int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2120{
2121 struct huge_bootmem_page *m;
b2261026 2122 int nr_nodes, node;
aa888a74 2123
b2261026 2124 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2125 void *addr;
2126
eb31d559 2127 addr = memblock_alloc_try_nid_raw(
8b89a116 2128 huge_page_size(h), huge_page_size(h),
97ad1087 2129 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2130 if (addr) {
2131 /*
2132 * Use the beginning of the huge page to store the
2133 * huge_bootmem_page struct (until gather_bootmem
2134 * puts them into the mem_map).
2135 */
2136 m = addr;
91f47662 2137 goto found;
aa888a74 2138 }
aa888a74
AK
2139 }
2140 return 0;
2141
2142found:
df994ead 2143 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2144 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2145 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2146 list_add(&m->list, &huge_boot_pages);
2147 m->hstate = h;
2148 return 1;
2149}
2150
d00181b9
KS
2151static void __init prep_compound_huge_page(struct page *page,
2152 unsigned int order)
18229df5
AW
2153{
2154 if (unlikely(order > (MAX_ORDER - 1)))
2155 prep_compound_gigantic_page(page, order);
2156 else
2157 prep_compound_page(page, order);
2158}
2159
aa888a74
AK
2160/* Put bootmem huge pages into the standard lists after mem_map is up */
2161static void __init gather_bootmem_prealloc(void)
2162{
2163 struct huge_bootmem_page *m;
2164
2165 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2166 struct page *page = virt_to_page(m);
aa888a74 2167 struct hstate *h = m->hstate;
ee8f248d 2168
aa888a74 2169 WARN_ON(page_count(page) != 1);
18229df5 2170 prep_compound_huge_page(page, h->order);
ef5a22be 2171 WARN_ON(PageReserved(page));
aa888a74 2172 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2173 put_page(page); /* free it into the hugepage allocator */
2174
b0320c7b
RA
2175 /*
2176 * If we had gigantic hugepages allocated at boot time, we need
2177 * to restore the 'stolen' pages to totalram_pages in order to
2178 * fix confusing memory reports from free(1) and another
2179 * side-effects, like CommitLimit going negative.
2180 */
bae7f4ae 2181 if (hstate_is_gigantic(h))
3dcc0571 2182 adjust_managed_page_count(page, 1 << h->order);
520495fe 2183 cond_resched();
aa888a74
AK
2184 }
2185}
2186
8faa8b07 2187static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2188{
2189 unsigned long i;
a5516438 2190
e5ff2159 2191 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2192 if (hstate_is_gigantic(h)) {
aa888a74
AK
2193 if (!alloc_bootmem_huge_page(h))
2194 break;
0c397dae 2195 } else if (!alloc_pool_huge_page(h,
8cebfcd0 2196 &node_states[N_MEMORY]))
1da177e4 2197 break;
69ed779a 2198 cond_resched();
1da177e4 2199 }
d715cf80
LH
2200 if (i < h->max_huge_pages) {
2201 char buf[32];
2202
c6247f72 2203 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2204 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2205 h->max_huge_pages, buf, i);
2206 h->max_huge_pages = i;
2207 }
e5ff2159
AK
2208}
2209
2210static void __init hugetlb_init_hstates(void)
2211{
2212 struct hstate *h;
2213
2214 for_each_hstate(h) {
641844f5
NH
2215 if (minimum_order > huge_page_order(h))
2216 minimum_order = huge_page_order(h);
2217
8faa8b07 2218 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2219 if (!hstate_is_gigantic(h))
8faa8b07 2220 hugetlb_hstate_alloc_pages(h);
e5ff2159 2221 }
641844f5 2222 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2223}
2224
2225static void __init report_hugepages(void)
2226{
2227 struct hstate *h;
2228
2229 for_each_hstate(h) {
4abd32db 2230 char buf[32];
c6247f72
MW
2231
2232 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2233 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2234 buf, h->free_huge_pages);
e5ff2159
AK
2235 }
2236}
2237
1da177e4 2238#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2239static void try_to_free_low(struct hstate *h, unsigned long count,
2240 nodemask_t *nodes_allowed)
1da177e4 2241{
4415cc8d
CL
2242 int i;
2243
bae7f4ae 2244 if (hstate_is_gigantic(h))
aa888a74
AK
2245 return;
2246
6ae11b27 2247 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2248 struct page *page, *next;
a5516438
AK
2249 struct list_head *freel = &h->hugepage_freelists[i];
2250 list_for_each_entry_safe(page, next, freel, lru) {
2251 if (count >= h->nr_huge_pages)
6b0c880d 2252 return;
1da177e4
LT
2253 if (PageHighMem(page))
2254 continue;
2255 list_del(&page->lru);
e5ff2159 2256 update_and_free_page(h, page);
a5516438
AK
2257 h->free_huge_pages--;
2258 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2259 }
2260 }
2261}
2262#else
6ae11b27
LS
2263static inline void try_to_free_low(struct hstate *h, unsigned long count,
2264 nodemask_t *nodes_allowed)
1da177e4
LT
2265{
2266}
2267#endif
2268
20a0307c
WF
2269/*
2270 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2271 * balanced by operating on them in a round-robin fashion.
2272 * Returns 1 if an adjustment was made.
2273 */
6ae11b27
LS
2274static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2275 int delta)
20a0307c 2276{
b2261026 2277 int nr_nodes, node;
20a0307c
WF
2278
2279 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2280
b2261026
JK
2281 if (delta < 0) {
2282 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2283 if (h->surplus_huge_pages_node[node])
2284 goto found;
e8c5c824 2285 }
b2261026
JK
2286 } else {
2287 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2288 if (h->surplus_huge_pages_node[node] <
2289 h->nr_huge_pages_node[node])
2290 goto found;
e8c5c824 2291 }
b2261026
JK
2292 }
2293 return 0;
20a0307c 2294
b2261026
JK
2295found:
2296 h->surplus_huge_pages += delta;
2297 h->surplus_huge_pages_node[node] += delta;
2298 return 1;
20a0307c
WF
2299}
2300
a5516438 2301#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2302static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2303 nodemask_t *nodes_allowed)
1da177e4 2304{
7893d1d5 2305 unsigned long min_count, ret;
1da177e4 2306
4eb0716e
AG
2307 spin_lock(&hugetlb_lock);
2308
fd875dca
MK
2309 /*
2310 * Check for a node specific request.
2311 * Changing node specific huge page count may require a corresponding
2312 * change to the global count. In any case, the passed node mask
2313 * (nodes_allowed) will restrict alloc/free to the specified node.
2314 */
2315 if (nid != NUMA_NO_NODE) {
2316 unsigned long old_count = count;
2317
2318 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2319 /*
2320 * User may have specified a large count value which caused the
2321 * above calculation to overflow. In this case, they wanted
2322 * to allocate as many huge pages as possible. Set count to
2323 * largest possible value to align with their intention.
2324 */
2325 if (count < old_count)
2326 count = ULONG_MAX;
2327 }
2328
4eb0716e
AG
2329 /*
2330 * Gigantic pages runtime allocation depend on the capability for large
2331 * page range allocation.
2332 * If the system does not provide this feature, return an error when
2333 * the user tries to allocate gigantic pages but let the user free the
2334 * boottime allocated gigantic pages.
2335 */
2336 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2337 if (count > persistent_huge_pages(h)) {
2338 spin_unlock(&hugetlb_lock);
2339 return -EINVAL;
2340 }
2341 /* Fall through to decrease pool */
2342 }
aa888a74 2343
7893d1d5
AL
2344 /*
2345 * Increase the pool size
2346 * First take pages out of surplus state. Then make up the
2347 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2348 *
0c397dae 2349 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2350 * to convert a surplus huge page to a normal huge page. That is
2351 * not critical, though, it just means the overall size of the
2352 * pool might be one hugepage larger than it needs to be, but
2353 * within all the constraints specified by the sysctls.
7893d1d5 2354 */
a5516438 2355 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2356 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2357 break;
2358 }
2359
a5516438 2360 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2361 /*
2362 * If this allocation races such that we no longer need the
2363 * page, free_huge_page will handle it by freeing the page
2364 * and reducing the surplus.
2365 */
2366 spin_unlock(&hugetlb_lock);
649920c6
JH
2367
2368 /* yield cpu to avoid soft lockup */
2369 cond_resched();
2370
0c397dae 2371 ret = alloc_pool_huge_page(h, nodes_allowed);
7893d1d5
AL
2372 spin_lock(&hugetlb_lock);
2373 if (!ret)
2374 goto out;
2375
536240f2
MG
2376 /* Bail for signals. Probably ctrl-c from user */
2377 if (signal_pending(current))
2378 goto out;
7893d1d5 2379 }
7893d1d5
AL
2380
2381 /*
2382 * Decrease the pool size
2383 * First return free pages to the buddy allocator (being careful
2384 * to keep enough around to satisfy reservations). Then place
2385 * pages into surplus state as needed so the pool will shrink
2386 * to the desired size as pages become free.
d1c3fb1f
NA
2387 *
2388 * By placing pages into the surplus state independent of the
2389 * overcommit value, we are allowing the surplus pool size to
2390 * exceed overcommit. There are few sane options here. Since
0c397dae 2391 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2392 * though, we'll note that we're not allowed to exceed surplus
2393 * and won't grow the pool anywhere else. Not until one of the
2394 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2395 */
a5516438 2396 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2397 min_count = max(count, min_count);
6ae11b27 2398 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2399 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2400 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2401 break;
55f67141 2402 cond_resched_lock(&hugetlb_lock);
1da177e4 2403 }
a5516438 2404 while (count < persistent_huge_pages(h)) {
6ae11b27 2405 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2406 break;
2407 }
2408out:
4eb0716e 2409 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2410 spin_unlock(&hugetlb_lock);
4eb0716e
AG
2411
2412 return 0;
1da177e4
LT
2413}
2414
a3437870
NA
2415#define HSTATE_ATTR_RO(_name) \
2416 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2417
2418#define HSTATE_ATTR(_name) \
2419 static struct kobj_attribute _name##_attr = \
2420 __ATTR(_name, 0644, _name##_show, _name##_store)
2421
2422static struct kobject *hugepages_kobj;
2423static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2424
9a305230
LS
2425static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2426
2427static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2428{
2429 int i;
9a305230 2430
a3437870 2431 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2432 if (hstate_kobjs[i] == kobj) {
2433 if (nidp)
2434 *nidp = NUMA_NO_NODE;
a3437870 2435 return &hstates[i];
9a305230
LS
2436 }
2437
2438 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2439}
2440
06808b08 2441static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2442 struct kobj_attribute *attr, char *buf)
2443{
9a305230
LS
2444 struct hstate *h;
2445 unsigned long nr_huge_pages;
2446 int nid;
2447
2448 h = kobj_to_hstate(kobj, &nid);
2449 if (nid == NUMA_NO_NODE)
2450 nr_huge_pages = h->nr_huge_pages;
2451 else
2452 nr_huge_pages = h->nr_huge_pages_node[nid];
2453
2454 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2455}
adbe8726 2456
238d3c13
DR
2457static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2458 struct hstate *h, int nid,
2459 unsigned long count, size_t len)
a3437870
NA
2460{
2461 int err;
2d0adf7e 2462 nodemask_t nodes_allowed, *n_mask;
a3437870 2463
2d0adf7e
OS
2464 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2465 return -EINVAL;
adbe8726 2466
9a305230
LS
2467 if (nid == NUMA_NO_NODE) {
2468 /*
2469 * global hstate attribute
2470 */
2471 if (!(obey_mempolicy &&
2d0adf7e
OS
2472 init_nodemask_of_mempolicy(&nodes_allowed)))
2473 n_mask = &node_states[N_MEMORY];
2474 else
2475 n_mask = &nodes_allowed;
2476 } else {
9a305230 2477 /*
fd875dca
MK
2478 * Node specific request. count adjustment happens in
2479 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2480 */
2d0adf7e
OS
2481 init_nodemask_of_node(&nodes_allowed, nid);
2482 n_mask = &nodes_allowed;
fd875dca 2483 }
9a305230 2484
2d0adf7e 2485 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2486
4eb0716e 2487 return err ? err : len;
06808b08
LS
2488}
2489
238d3c13
DR
2490static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2491 struct kobject *kobj, const char *buf,
2492 size_t len)
2493{
2494 struct hstate *h;
2495 unsigned long count;
2496 int nid;
2497 int err;
2498
2499 err = kstrtoul(buf, 10, &count);
2500 if (err)
2501 return err;
2502
2503 h = kobj_to_hstate(kobj, &nid);
2504 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2505}
2506
06808b08
LS
2507static ssize_t nr_hugepages_show(struct kobject *kobj,
2508 struct kobj_attribute *attr, char *buf)
2509{
2510 return nr_hugepages_show_common(kobj, attr, buf);
2511}
2512
2513static ssize_t nr_hugepages_store(struct kobject *kobj,
2514 struct kobj_attribute *attr, const char *buf, size_t len)
2515{
238d3c13 2516 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2517}
2518HSTATE_ATTR(nr_hugepages);
2519
06808b08
LS
2520#ifdef CONFIG_NUMA
2521
2522/*
2523 * hstate attribute for optionally mempolicy-based constraint on persistent
2524 * huge page alloc/free.
2525 */
2526static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2527 struct kobj_attribute *attr, char *buf)
2528{
2529 return nr_hugepages_show_common(kobj, attr, buf);
2530}
2531
2532static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2533 struct kobj_attribute *attr, const char *buf, size_t len)
2534{
238d3c13 2535 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2536}
2537HSTATE_ATTR(nr_hugepages_mempolicy);
2538#endif
2539
2540
a3437870
NA
2541static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2542 struct kobj_attribute *attr, char *buf)
2543{
9a305230 2544 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2545 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2546}
adbe8726 2547
a3437870
NA
2548static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2549 struct kobj_attribute *attr, const char *buf, size_t count)
2550{
2551 int err;
2552 unsigned long input;
9a305230 2553 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2554
bae7f4ae 2555 if (hstate_is_gigantic(h))
adbe8726
EM
2556 return -EINVAL;
2557
3dbb95f7 2558 err = kstrtoul(buf, 10, &input);
a3437870 2559 if (err)
73ae31e5 2560 return err;
a3437870
NA
2561
2562 spin_lock(&hugetlb_lock);
2563 h->nr_overcommit_huge_pages = input;
2564 spin_unlock(&hugetlb_lock);
2565
2566 return count;
2567}
2568HSTATE_ATTR(nr_overcommit_hugepages);
2569
2570static ssize_t free_hugepages_show(struct kobject *kobj,
2571 struct kobj_attribute *attr, char *buf)
2572{
9a305230
LS
2573 struct hstate *h;
2574 unsigned long free_huge_pages;
2575 int nid;
2576
2577 h = kobj_to_hstate(kobj, &nid);
2578 if (nid == NUMA_NO_NODE)
2579 free_huge_pages = h->free_huge_pages;
2580 else
2581 free_huge_pages = h->free_huge_pages_node[nid];
2582
2583 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2584}
2585HSTATE_ATTR_RO(free_hugepages);
2586
2587static ssize_t resv_hugepages_show(struct kobject *kobj,
2588 struct kobj_attribute *attr, char *buf)
2589{
9a305230 2590 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2591 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2592}
2593HSTATE_ATTR_RO(resv_hugepages);
2594
2595static ssize_t surplus_hugepages_show(struct kobject *kobj,
2596 struct kobj_attribute *attr, char *buf)
2597{
9a305230
LS
2598 struct hstate *h;
2599 unsigned long surplus_huge_pages;
2600 int nid;
2601
2602 h = kobj_to_hstate(kobj, &nid);
2603 if (nid == NUMA_NO_NODE)
2604 surplus_huge_pages = h->surplus_huge_pages;
2605 else
2606 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2607
2608 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2609}
2610HSTATE_ATTR_RO(surplus_hugepages);
2611
2612static struct attribute *hstate_attrs[] = {
2613 &nr_hugepages_attr.attr,
2614 &nr_overcommit_hugepages_attr.attr,
2615 &free_hugepages_attr.attr,
2616 &resv_hugepages_attr.attr,
2617 &surplus_hugepages_attr.attr,
06808b08
LS
2618#ifdef CONFIG_NUMA
2619 &nr_hugepages_mempolicy_attr.attr,
2620#endif
a3437870
NA
2621 NULL,
2622};
2623
67e5ed96 2624static const struct attribute_group hstate_attr_group = {
a3437870
NA
2625 .attrs = hstate_attrs,
2626};
2627
094e9539
JM
2628static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2629 struct kobject **hstate_kobjs,
67e5ed96 2630 const struct attribute_group *hstate_attr_group)
a3437870
NA
2631{
2632 int retval;
972dc4de 2633 int hi = hstate_index(h);
a3437870 2634
9a305230
LS
2635 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2636 if (!hstate_kobjs[hi])
a3437870
NA
2637 return -ENOMEM;
2638
9a305230 2639 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2640 if (retval)
9a305230 2641 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2642
2643 return retval;
2644}
2645
2646static void __init hugetlb_sysfs_init(void)
2647{
2648 struct hstate *h;
2649 int err;
2650
2651 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2652 if (!hugepages_kobj)
2653 return;
2654
2655 for_each_hstate(h) {
9a305230
LS
2656 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2657 hstate_kobjs, &hstate_attr_group);
a3437870 2658 if (err)
ffb22af5 2659 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2660 }
2661}
2662
9a305230
LS
2663#ifdef CONFIG_NUMA
2664
2665/*
2666 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2667 * with node devices in node_devices[] using a parallel array. The array
2668 * index of a node device or _hstate == node id.
2669 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2670 * the base kernel, on the hugetlb module.
2671 */
2672struct node_hstate {
2673 struct kobject *hugepages_kobj;
2674 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2675};
b4e289a6 2676static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2677
2678/*
10fbcf4c 2679 * A subset of global hstate attributes for node devices
9a305230
LS
2680 */
2681static struct attribute *per_node_hstate_attrs[] = {
2682 &nr_hugepages_attr.attr,
2683 &free_hugepages_attr.attr,
2684 &surplus_hugepages_attr.attr,
2685 NULL,
2686};
2687
67e5ed96 2688static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2689 .attrs = per_node_hstate_attrs,
2690};
2691
2692/*
10fbcf4c 2693 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2694 * Returns node id via non-NULL nidp.
2695 */
2696static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2697{
2698 int nid;
2699
2700 for (nid = 0; nid < nr_node_ids; nid++) {
2701 struct node_hstate *nhs = &node_hstates[nid];
2702 int i;
2703 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2704 if (nhs->hstate_kobjs[i] == kobj) {
2705 if (nidp)
2706 *nidp = nid;
2707 return &hstates[i];
2708 }
2709 }
2710
2711 BUG();
2712 return NULL;
2713}
2714
2715/*
10fbcf4c 2716 * Unregister hstate attributes from a single node device.
9a305230
LS
2717 * No-op if no hstate attributes attached.
2718 */
3cd8b44f 2719static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2720{
2721 struct hstate *h;
10fbcf4c 2722 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2723
2724 if (!nhs->hugepages_kobj)
9b5e5d0f 2725 return; /* no hstate attributes */
9a305230 2726
972dc4de
AK
2727 for_each_hstate(h) {
2728 int idx = hstate_index(h);
2729 if (nhs->hstate_kobjs[idx]) {
2730 kobject_put(nhs->hstate_kobjs[idx]);
2731 nhs->hstate_kobjs[idx] = NULL;
9a305230 2732 }
972dc4de 2733 }
9a305230
LS
2734
2735 kobject_put(nhs->hugepages_kobj);
2736 nhs->hugepages_kobj = NULL;
2737}
2738
9a305230
LS
2739
2740/*
10fbcf4c 2741 * Register hstate attributes for a single node device.
9a305230
LS
2742 * No-op if attributes already registered.
2743 */
3cd8b44f 2744static void hugetlb_register_node(struct node *node)
9a305230
LS
2745{
2746 struct hstate *h;
10fbcf4c 2747 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2748 int err;
2749
2750 if (nhs->hugepages_kobj)
2751 return; /* already allocated */
2752
2753 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2754 &node->dev.kobj);
9a305230
LS
2755 if (!nhs->hugepages_kobj)
2756 return;
2757
2758 for_each_hstate(h) {
2759 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2760 nhs->hstate_kobjs,
2761 &per_node_hstate_attr_group);
2762 if (err) {
ffb22af5
AM
2763 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2764 h->name, node->dev.id);
9a305230
LS
2765 hugetlb_unregister_node(node);
2766 break;
2767 }
2768 }
2769}
2770
2771/*
9b5e5d0f 2772 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2773 * devices of nodes that have memory. All on-line nodes should have
2774 * registered their associated device by this time.
9a305230 2775 */
7d9ca000 2776static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2777{
2778 int nid;
2779
8cebfcd0 2780 for_each_node_state(nid, N_MEMORY) {
8732794b 2781 struct node *node = node_devices[nid];
10fbcf4c 2782 if (node->dev.id == nid)
9a305230
LS
2783 hugetlb_register_node(node);
2784 }
2785
2786 /*
10fbcf4c 2787 * Let the node device driver know we're here so it can
9a305230
LS
2788 * [un]register hstate attributes on node hotplug.
2789 */
2790 register_hugetlbfs_with_node(hugetlb_register_node,
2791 hugetlb_unregister_node);
2792}
2793#else /* !CONFIG_NUMA */
2794
2795static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2796{
2797 BUG();
2798 if (nidp)
2799 *nidp = -1;
2800 return NULL;
2801}
2802
9a305230
LS
2803static void hugetlb_register_all_nodes(void) { }
2804
2805#endif
2806
a3437870
NA
2807static int __init hugetlb_init(void)
2808{
8382d914
DB
2809 int i;
2810
457c1b27 2811 if (!hugepages_supported())
0ef89d25 2812 return 0;
a3437870 2813
e11bfbfc 2814 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2815 if (default_hstate_size != 0) {
2816 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2817 default_hstate_size, HPAGE_SIZE);
2818 }
2819
e11bfbfc
NP
2820 default_hstate_size = HPAGE_SIZE;
2821 if (!size_to_hstate(default_hstate_size))
2822 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2823 }
972dc4de 2824 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2825 if (default_hstate_max_huge_pages) {
2826 if (!default_hstate.max_huge_pages)
2827 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2828 }
a3437870
NA
2829
2830 hugetlb_init_hstates();
aa888a74 2831 gather_bootmem_prealloc();
a3437870
NA
2832 report_hugepages();
2833
2834 hugetlb_sysfs_init();
9a305230 2835 hugetlb_register_all_nodes();
7179e7bf 2836 hugetlb_cgroup_file_init();
9a305230 2837
8382d914
DB
2838#ifdef CONFIG_SMP
2839 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2840#else
2841 num_fault_mutexes = 1;
2842#endif
c672c7f2 2843 hugetlb_fault_mutex_table =
6da2ec56
KC
2844 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2845 GFP_KERNEL);
c672c7f2 2846 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2847
2848 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2849 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2850 return 0;
2851}
3e89e1c5 2852subsys_initcall(hugetlb_init);
a3437870
NA
2853
2854/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2855void __init hugetlb_bad_size(void)
2856{
2857 parsed_valid_hugepagesz = false;
2858}
2859
d00181b9 2860void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2861{
2862 struct hstate *h;
8faa8b07
AK
2863 unsigned long i;
2864
a3437870 2865 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2866 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2867 return;
2868 }
47d38344 2869 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2870 BUG_ON(order == 0);
47d38344 2871 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2872 h->order = order;
2873 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2874 h->nr_huge_pages = 0;
2875 h->free_huge_pages = 0;
2876 for (i = 0; i < MAX_NUMNODES; ++i)
2877 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2878 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2879 h->next_nid_to_alloc = first_memory_node;
2880 h->next_nid_to_free = first_memory_node;
a3437870
NA
2881 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2882 huge_page_size(h)/1024);
8faa8b07 2883
a3437870
NA
2884 parsed_hstate = h;
2885}
2886
e11bfbfc 2887static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2888{
2889 unsigned long *mhp;
8faa8b07 2890 static unsigned long *last_mhp;
a3437870 2891
9fee021d
VT
2892 if (!parsed_valid_hugepagesz) {
2893 pr_warn("hugepages = %s preceded by "
2894 "an unsupported hugepagesz, ignoring\n", s);
2895 parsed_valid_hugepagesz = true;
2896 return 1;
2897 }
a3437870 2898 /*
47d38344 2899 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2900 * so this hugepages= parameter goes to the "default hstate".
2901 */
9fee021d 2902 else if (!hugetlb_max_hstate)
a3437870
NA
2903 mhp = &default_hstate_max_huge_pages;
2904 else
2905 mhp = &parsed_hstate->max_huge_pages;
2906
8faa8b07 2907 if (mhp == last_mhp) {
598d8091 2908 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2909 return 1;
2910 }
2911
a3437870
NA
2912 if (sscanf(s, "%lu", mhp) <= 0)
2913 *mhp = 0;
2914
8faa8b07
AK
2915 /*
2916 * Global state is always initialized later in hugetlb_init.
2917 * But we need to allocate >= MAX_ORDER hstates here early to still
2918 * use the bootmem allocator.
2919 */
47d38344 2920 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2921 hugetlb_hstate_alloc_pages(parsed_hstate);
2922
2923 last_mhp = mhp;
2924
a3437870
NA
2925 return 1;
2926}
e11bfbfc
NP
2927__setup("hugepages=", hugetlb_nrpages_setup);
2928
2929static int __init hugetlb_default_setup(char *s)
2930{
2931 default_hstate_size = memparse(s, &s);
2932 return 1;
2933}
2934__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2935
8a213460
NA
2936static unsigned int cpuset_mems_nr(unsigned int *array)
2937{
2938 int node;
2939 unsigned int nr = 0;
2940
2941 for_each_node_mask(node, cpuset_current_mems_allowed)
2942 nr += array[node];
2943
2944 return nr;
2945}
2946
2947#ifdef CONFIG_SYSCTL
06808b08
LS
2948static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2949 struct ctl_table *table, int write,
2950 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2951{
e5ff2159 2952 struct hstate *h = &default_hstate;
238d3c13 2953 unsigned long tmp = h->max_huge_pages;
08d4a246 2954 int ret;
e5ff2159 2955
457c1b27 2956 if (!hugepages_supported())
86613628 2957 return -EOPNOTSUPP;
457c1b27 2958
e5ff2159
AK
2959 table->data = &tmp;
2960 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2961 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2962 if (ret)
2963 goto out;
e5ff2159 2964
238d3c13
DR
2965 if (write)
2966 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2967 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2968out:
2969 return ret;
1da177e4 2970}
396faf03 2971
06808b08
LS
2972int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2973 void __user *buffer, size_t *length, loff_t *ppos)
2974{
2975
2976 return hugetlb_sysctl_handler_common(false, table, write,
2977 buffer, length, ppos);
2978}
2979
2980#ifdef CONFIG_NUMA
2981int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2982 void __user *buffer, size_t *length, loff_t *ppos)
2983{
2984 return hugetlb_sysctl_handler_common(true, table, write,
2985 buffer, length, ppos);
2986}
2987#endif /* CONFIG_NUMA */
2988
a3d0c6aa 2989int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2990 void __user *buffer,
a3d0c6aa
NA
2991 size_t *length, loff_t *ppos)
2992{
a5516438 2993 struct hstate *h = &default_hstate;
e5ff2159 2994 unsigned long tmp;
08d4a246 2995 int ret;
e5ff2159 2996
457c1b27 2997 if (!hugepages_supported())
86613628 2998 return -EOPNOTSUPP;
457c1b27 2999
c033a93c 3000 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3001
bae7f4ae 3002 if (write && hstate_is_gigantic(h))
adbe8726
EM
3003 return -EINVAL;
3004
e5ff2159
AK
3005 table->data = &tmp;
3006 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3007 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3008 if (ret)
3009 goto out;
e5ff2159
AK
3010
3011 if (write) {
3012 spin_lock(&hugetlb_lock);
3013 h->nr_overcommit_huge_pages = tmp;
3014 spin_unlock(&hugetlb_lock);
3015 }
08d4a246
MH
3016out:
3017 return ret;
a3d0c6aa
NA
3018}
3019
1da177e4
LT
3020#endif /* CONFIG_SYSCTL */
3021
e1759c21 3022void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3023{
fcb2b0c5
RG
3024 struct hstate *h;
3025 unsigned long total = 0;
3026
457c1b27
NA
3027 if (!hugepages_supported())
3028 return;
fcb2b0c5
RG
3029
3030 for_each_hstate(h) {
3031 unsigned long count = h->nr_huge_pages;
3032
3033 total += (PAGE_SIZE << huge_page_order(h)) * count;
3034
3035 if (h == &default_hstate)
3036 seq_printf(m,
3037 "HugePages_Total: %5lu\n"
3038 "HugePages_Free: %5lu\n"
3039 "HugePages_Rsvd: %5lu\n"
3040 "HugePages_Surp: %5lu\n"
3041 "Hugepagesize: %8lu kB\n",
3042 count,
3043 h->free_huge_pages,
3044 h->resv_huge_pages,
3045 h->surplus_huge_pages,
3046 (PAGE_SIZE << huge_page_order(h)) / 1024);
3047 }
3048
3049 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3050}
3051
3052int hugetlb_report_node_meminfo(int nid, char *buf)
3053{
a5516438 3054 struct hstate *h = &default_hstate;
457c1b27
NA
3055 if (!hugepages_supported())
3056 return 0;
1da177e4
LT
3057 return sprintf(buf,
3058 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3059 "Node %d HugePages_Free: %5u\n"
3060 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3061 nid, h->nr_huge_pages_node[nid],
3062 nid, h->free_huge_pages_node[nid],
3063 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3064}
3065
949f7ec5
DR
3066void hugetlb_show_meminfo(void)
3067{
3068 struct hstate *h;
3069 int nid;
3070
457c1b27
NA
3071 if (!hugepages_supported())
3072 return;
3073
949f7ec5
DR
3074 for_each_node_state(nid, N_MEMORY)
3075 for_each_hstate(h)
3076 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3077 nid,
3078 h->nr_huge_pages_node[nid],
3079 h->free_huge_pages_node[nid],
3080 h->surplus_huge_pages_node[nid],
3081 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3082}
3083
5d317b2b
NH
3084void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3085{
3086 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3087 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3088}
3089
1da177e4
LT
3090/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3091unsigned long hugetlb_total_pages(void)
3092{
d0028588
WL
3093 struct hstate *h;
3094 unsigned long nr_total_pages = 0;
3095
3096 for_each_hstate(h)
3097 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3098 return nr_total_pages;
1da177e4 3099}
1da177e4 3100
a5516438 3101static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3102{
3103 int ret = -ENOMEM;
3104
3105 spin_lock(&hugetlb_lock);
3106 /*
3107 * When cpuset is configured, it breaks the strict hugetlb page
3108 * reservation as the accounting is done on a global variable. Such
3109 * reservation is completely rubbish in the presence of cpuset because
3110 * the reservation is not checked against page availability for the
3111 * current cpuset. Application can still potentially OOM'ed by kernel
3112 * with lack of free htlb page in cpuset that the task is in.
3113 * Attempt to enforce strict accounting with cpuset is almost
3114 * impossible (or too ugly) because cpuset is too fluid that
3115 * task or memory node can be dynamically moved between cpusets.
3116 *
3117 * The change of semantics for shared hugetlb mapping with cpuset is
3118 * undesirable. However, in order to preserve some of the semantics,
3119 * we fall back to check against current free page availability as
3120 * a best attempt and hopefully to minimize the impact of changing
3121 * semantics that cpuset has.
3122 */
3123 if (delta > 0) {
a5516438 3124 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3125 goto out;
3126
a5516438
AK
3127 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3128 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3129 goto out;
3130 }
3131 }
3132
3133 ret = 0;
3134 if (delta < 0)
a5516438 3135 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3136
3137out:
3138 spin_unlock(&hugetlb_lock);
3139 return ret;
3140}
3141
84afd99b
AW
3142static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3143{
f522c3ac 3144 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3145
3146 /*
3147 * This new VMA should share its siblings reservation map if present.
3148 * The VMA will only ever have a valid reservation map pointer where
3149 * it is being copied for another still existing VMA. As that VMA
25985edc 3150 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3151 * after this open call completes. It is therefore safe to take a
3152 * new reference here without additional locking.
3153 */
4e35f483 3154 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3155 kref_get(&resv->refs);
84afd99b
AW
3156}
3157
a1e78772
MG
3158static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3159{
a5516438 3160 struct hstate *h = hstate_vma(vma);
f522c3ac 3161 struct resv_map *resv = vma_resv_map(vma);
90481622 3162 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3163 unsigned long reserve, start, end;
1c5ecae3 3164 long gbl_reserve;
84afd99b 3165
4e35f483
JK
3166 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3167 return;
84afd99b 3168
4e35f483
JK
3169 start = vma_hugecache_offset(h, vma, vma->vm_start);
3170 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3171
4e35f483 3172 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3173
4e35f483
JK
3174 kref_put(&resv->refs, resv_map_release);
3175
3176 if (reserve) {
1c5ecae3
MK
3177 /*
3178 * Decrement reserve counts. The global reserve count may be
3179 * adjusted if the subpool has a minimum size.
3180 */
3181 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3182 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3183 }
a1e78772
MG
3184}
3185
31383c68
DW
3186static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3187{
3188 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3189 return -EINVAL;
3190 return 0;
3191}
3192
05ea8860
DW
3193static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3194{
3195 struct hstate *hstate = hstate_vma(vma);
3196
3197 return 1UL << huge_page_shift(hstate);
3198}
3199
1da177e4
LT
3200/*
3201 * We cannot handle pagefaults against hugetlb pages at all. They cause
3202 * handle_mm_fault() to try to instantiate regular-sized pages in the
3203 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3204 * this far.
3205 */
b3ec9f33 3206static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3207{
3208 BUG();
d0217ac0 3209 return 0;
1da177e4
LT
3210}
3211
eec3636a
JC
3212/*
3213 * When a new function is introduced to vm_operations_struct and added
3214 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3215 * This is because under System V memory model, mappings created via
3216 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3217 * their original vm_ops are overwritten with shm_vm_ops.
3218 */
f0f37e2f 3219const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3220 .fault = hugetlb_vm_op_fault,
84afd99b 3221 .open = hugetlb_vm_op_open,
a1e78772 3222 .close = hugetlb_vm_op_close,
31383c68 3223 .split = hugetlb_vm_op_split,
05ea8860 3224 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3225};
3226
1e8f889b
DG
3227static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3228 int writable)
63551ae0
DG
3229{
3230 pte_t entry;
3231
1e8f889b 3232 if (writable) {
106c992a
GS
3233 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3234 vma->vm_page_prot)));
63551ae0 3235 } else {
106c992a
GS
3236 entry = huge_pte_wrprotect(mk_huge_pte(page,
3237 vma->vm_page_prot));
63551ae0
DG
3238 }
3239 entry = pte_mkyoung(entry);
3240 entry = pte_mkhuge(entry);
d9ed9faa 3241 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3242
3243 return entry;
3244}
3245
1e8f889b
DG
3246static void set_huge_ptep_writable(struct vm_area_struct *vma,
3247 unsigned long address, pte_t *ptep)
3248{
3249 pte_t entry;
3250
106c992a 3251 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3252 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3253 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3254}
3255
d5ed7444 3256bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3257{
3258 swp_entry_t swp;
3259
3260 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3261 return false;
4a705fef
NH
3262 swp = pte_to_swp_entry(pte);
3263 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3264 return true;
4a705fef 3265 else
d5ed7444 3266 return false;
4a705fef
NH
3267}
3268
3269static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3270{
3271 swp_entry_t swp;
3272
3273 if (huge_pte_none(pte) || pte_present(pte))
3274 return 0;
3275 swp = pte_to_swp_entry(pte);
3276 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3277 return 1;
3278 else
3279 return 0;
3280}
1e8f889b 3281
63551ae0
DG
3282int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3283 struct vm_area_struct *vma)
3284{
5e41540c 3285 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3286 struct page *ptepage;
1c59827d 3287 unsigned long addr;
1e8f889b 3288 int cow;
a5516438
AK
3289 struct hstate *h = hstate_vma(vma);
3290 unsigned long sz = huge_page_size(h);
ac46d4f3 3291 struct mmu_notifier_range range;
e8569dd2 3292 int ret = 0;
1e8f889b
DG
3293
3294 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3295
ac46d4f3 3296 if (cow) {
7269f999 3297 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3298 vma->vm_start,
ac46d4f3
JG
3299 vma->vm_end);
3300 mmu_notifier_invalidate_range_start(&range);
3301 }
e8569dd2 3302
a5516438 3303 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3304 spinlock_t *src_ptl, *dst_ptl;
7868a208 3305 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3306 if (!src_pte)
3307 continue;
a5516438 3308 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3309 if (!dst_pte) {
3310 ret = -ENOMEM;
3311 break;
3312 }
c5c99429 3313
5e41540c
MK
3314 /*
3315 * If the pagetables are shared don't copy or take references.
3316 * dst_pte == src_pte is the common case of src/dest sharing.
3317 *
3318 * However, src could have 'unshared' and dst shares with
3319 * another vma. If dst_pte !none, this implies sharing.
3320 * Check here before taking page table lock, and once again
3321 * after taking the lock below.
3322 */
3323 dst_entry = huge_ptep_get(dst_pte);
3324 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3325 continue;
3326
cb900f41
KS
3327 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3328 src_ptl = huge_pte_lockptr(h, src, src_pte);
3329 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3330 entry = huge_ptep_get(src_pte);
5e41540c
MK
3331 dst_entry = huge_ptep_get(dst_pte);
3332 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3333 /*
3334 * Skip if src entry none. Also, skip in the
3335 * unlikely case dst entry !none as this implies
3336 * sharing with another vma.
3337 */
4a705fef
NH
3338 ;
3339 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3340 is_hugetlb_entry_hwpoisoned(entry))) {
3341 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3342
3343 if (is_write_migration_entry(swp_entry) && cow) {
3344 /*
3345 * COW mappings require pages in both
3346 * parent and child to be set to read.
3347 */
3348 make_migration_entry_read(&swp_entry);
3349 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3350 set_huge_swap_pte_at(src, addr, src_pte,
3351 entry, sz);
4a705fef 3352 }
e5251fd4 3353 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3354 } else {
34ee645e 3355 if (cow) {
0f10851e
JG
3356 /*
3357 * No need to notify as we are downgrading page
3358 * table protection not changing it to point
3359 * to a new page.
3360 *
ad56b738 3361 * See Documentation/vm/mmu_notifier.rst
0f10851e 3362 */
7f2e9525 3363 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3364 }
0253d634 3365 entry = huge_ptep_get(src_pte);
1c59827d
HD
3366 ptepage = pte_page(entry);
3367 get_page(ptepage);
53f9263b 3368 page_dup_rmap(ptepage, true);
1c59827d 3369 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3370 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3371 }
cb900f41
KS
3372 spin_unlock(src_ptl);
3373 spin_unlock(dst_ptl);
63551ae0 3374 }
63551ae0 3375
e8569dd2 3376 if (cow)
ac46d4f3 3377 mmu_notifier_invalidate_range_end(&range);
e8569dd2
AS
3378
3379 return ret;
63551ae0
DG
3380}
3381
24669e58
AK
3382void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3383 unsigned long start, unsigned long end,
3384 struct page *ref_page)
63551ae0
DG
3385{
3386 struct mm_struct *mm = vma->vm_mm;
3387 unsigned long address;
c7546f8f 3388 pte_t *ptep;
63551ae0 3389 pte_t pte;
cb900f41 3390 spinlock_t *ptl;
63551ae0 3391 struct page *page;
a5516438
AK
3392 struct hstate *h = hstate_vma(vma);
3393 unsigned long sz = huge_page_size(h);
ac46d4f3 3394 struct mmu_notifier_range range;
a5516438 3395
63551ae0 3396 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3397 BUG_ON(start & ~huge_page_mask(h));
3398 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3399
07e32661
AK
3400 /*
3401 * This is a hugetlb vma, all the pte entries should point
3402 * to huge page.
3403 */
ed6a7935 3404 tlb_change_page_size(tlb, sz);
24669e58 3405 tlb_start_vma(tlb, vma);
dff11abe
MK
3406
3407 /*
3408 * If sharing possible, alert mmu notifiers of worst case.
3409 */
6f4f13e8
JG
3410 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3411 end);
ac46d4f3
JG
3412 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3413 mmu_notifier_invalidate_range_start(&range);
569f48b8 3414 address = start;
569f48b8 3415 for (; address < end; address += sz) {
7868a208 3416 ptep = huge_pte_offset(mm, address, sz);
4c887265 3417 if (!ptep)
c7546f8f
DG
3418 continue;
3419
cb900f41 3420 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3421 if (huge_pmd_unshare(mm, &address, ptep)) {
3422 spin_unlock(ptl);
dff11abe
MK
3423 /*
3424 * We just unmapped a page of PMDs by clearing a PUD.
3425 * The caller's TLB flush range should cover this area.
3426 */
31d49da5
AK
3427 continue;
3428 }
39dde65c 3429
6629326b 3430 pte = huge_ptep_get(ptep);
31d49da5
AK
3431 if (huge_pte_none(pte)) {
3432 spin_unlock(ptl);
3433 continue;
3434 }
6629326b
HD
3435
3436 /*
9fbc1f63
NH
3437 * Migrating hugepage or HWPoisoned hugepage is already
3438 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3439 */
9fbc1f63 3440 if (unlikely(!pte_present(pte))) {
9386fac3 3441 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3442 spin_unlock(ptl);
3443 continue;
8c4894c6 3444 }
6629326b
HD
3445
3446 page = pte_page(pte);
04f2cbe3
MG
3447 /*
3448 * If a reference page is supplied, it is because a specific
3449 * page is being unmapped, not a range. Ensure the page we
3450 * are about to unmap is the actual page of interest.
3451 */
3452 if (ref_page) {
31d49da5
AK
3453 if (page != ref_page) {
3454 spin_unlock(ptl);
3455 continue;
3456 }
04f2cbe3
MG
3457 /*
3458 * Mark the VMA as having unmapped its page so that
3459 * future faults in this VMA will fail rather than
3460 * looking like data was lost
3461 */
3462 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3463 }
3464
c7546f8f 3465 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3466 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3467 if (huge_pte_dirty(pte))
6649a386 3468 set_page_dirty(page);
9e81130b 3469
5d317b2b 3470 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3471 page_remove_rmap(page, true);
31d49da5 3472
cb900f41 3473 spin_unlock(ptl);
e77b0852 3474 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3475 /*
3476 * Bail out after unmapping reference page if supplied
3477 */
3478 if (ref_page)
3479 break;
fe1668ae 3480 }
ac46d4f3 3481 mmu_notifier_invalidate_range_end(&range);
24669e58 3482 tlb_end_vma(tlb, vma);
1da177e4 3483}
63551ae0 3484
d833352a
MG
3485void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3486 struct vm_area_struct *vma, unsigned long start,
3487 unsigned long end, struct page *ref_page)
3488{
3489 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3490
3491 /*
3492 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3493 * test will fail on a vma being torn down, and not grab a page table
3494 * on its way out. We're lucky that the flag has such an appropriate
3495 * name, and can in fact be safely cleared here. We could clear it
3496 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3497 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3498 * because in the context this is called, the VMA is about to be
c8c06efa 3499 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3500 */
3501 vma->vm_flags &= ~VM_MAYSHARE;
3502}
3503
502717f4 3504void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3505 unsigned long end, struct page *ref_page)
502717f4 3506{
24669e58
AK
3507 struct mm_struct *mm;
3508 struct mmu_gather tlb;
dff11abe
MK
3509 unsigned long tlb_start = start;
3510 unsigned long tlb_end = end;
3511
3512 /*
3513 * If shared PMDs were possibly used within this vma range, adjust
3514 * start/end for worst case tlb flushing.
3515 * Note that we can not be sure if PMDs are shared until we try to
3516 * unmap pages. However, we want to make sure TLB flushing covers
3517 * the largest possible range.
3518 */
3519 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
3520
3521 mm = vma->vm_mm;
3522
dff11abe 3523 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 3524 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 3525 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
KC
3526}
3527
04f2cbe3
MG
3528/*
3529 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3530 * mappping it owns the reserve page for. The intention is to unmap the page
3531 * from other VMAs and let the children be SIGKILLed if they are faulting the
3532 * same region.
3533 */
2f4612af
DB
3534static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3535 struct page *page, unsigned long address)
04f2cbe3 3536{
7526674d 3537 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3538 struct vm_area_struct *iter_vma;
3539 struct address_space *mapping;
04f2cbe3
MG
3540 pgoff_t pgoff;
3541
3542 /*
3543 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3544 * from page cache lookup which is in HPAGE_SIZE units.
3545 */
7526674d 3546 address = address & huge_page_mask(h);
36e4f20a
MH
3547 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3548 vma->vm_pgoff;
93c76a3d 3549 mapping = vma->vm_file->f_mapping;
04f2cbe3 3550
4eb2b1dc
MG
3551 /*
3552 * Take the mapping lock for the duration of the table walk. As
3553 * this mapping should be shared between all the VMAs,
3554 * __unmap_hugepage_range() is called as the lock is already held
3555 */
83cde9e8 3556 i_mmap_lock_write(mapping);
6b2dbba8 3557 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3558 /* Do not unmap the current VMA */
3559 if (iter_vma == vma)
3560 continue;
3561
2f84a899
MG
3562 /*
3563 * Shared VMAs have their own reserves and do not affect
3564 * MAP_PRIVATE accounting but it is possible that a shared
3565 * VMA is using the same page so check and skip such VMAs.
3566 */
3567 if (iter_vma->vm_flags & VM_MAYSHARE)
3568 continue;
3569
04f2cbe3
MG
3570 /*
3571 * Unmap the page from other VMAs without their own reserves.
3572 * They get marked to be SIGKILLed if they fault in these
3573 * areas. This is because a future no-page fault on this VMA
3574 * could insert a zeroed page instead of the data existing
3575 * from the time of fork. This would look like data corruption
3576 */
3577 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3578 unmap_hugepage_range(iter_vma, address,
3579 address + huge_page_size(h), page);
04f2cbe3 3580 }
83cde9e8 3581 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3582}
3583
0fe6e20b
NH
3584/*
3585 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3586 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3587 * cannot race with other handlers or page migration.
3588 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3589 */
2b740303 3590static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3591 unsigned long address, pte_t *ptep,
3999f52e 3592 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3593{
3999f52e 3594 pte_t pte;
a5516438 3595 struct hstate *h = hstate_vma(vma);
1e8f889b 3596 struct page *old_page, *new_page;
2b740303
SJ
3597 int outside_reserve = 0;
3598 vm_fault_t ret = 0;
974e6d66 3599 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 3600 struct mmu_notifier_range range;
1e8f889b 3601
3999f52e 3602 pte = huge_ptep_get(ptep);
1e8f889b
DG
3603 old_page = pte_page(pte);
3604
04f2cbe3 3605retry_avoidcopy:
1e8f889b
DG
3606 /* If no-one else is actually using this page, avoid the copy
3607 * and just make the page writable */
37a2140d 3608 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3609 page_move_anon_rmap(old_page, vma);
5b7a1d40 3610 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3611 return 0;
1e8f889b
DG
3612 }
3613
04f2cbe3
MG
3614 /*
3615 * If the process that created a MAP_PRIVATE mapping is about to
3616 * perform a COW due to a shared page count, attempt to satisfy
3617 * the allocation without using the existing reserves. The pagecache
3618 * page is used to determine if the reserve at this address was
3619 * consumed or not. If reserves were used, a partial faulted mapping
3620 * at the time of fork() could consume its reserves on COW instead
3621 * of the full address range.
3622 */
5944d011 3623 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3624 old_page != pagecache_page)
3625 outside_reserve = 1;
3626
09cbfeaf 3627 get_page(old_page);
b76c8cfb 3628
ad4404a2
DB
3629 /*
3630 * Drop page table lock as buddy allocator may be called. It will
3631 * be acquired again before returning to the caller, as expected.
3632 */
cb900f41 3633 spin_unlock(ptl);
5b7a1d40 3634 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 3635
2fc39cec 3636 if (IS_ERR(new_page)) {
04f2cbe3
MG
3637 /*
3638 * If a process owning a MAP_PRIVATE mapping fails to COW,
3639 * it is due to references held by a child and an insufficient
3640 * huge page pool. To guarantee the original mappers
3641 * reliability, unmap the page from child processes. The child
3642 * may get SIGKILLed if it later faults.
3643 */
3644 if (outside_reserve) {
09cbfeaf 3645 put_page(old_page);
04f2cbe3 3646 BUG_ON(huge_pte_none(pte));
5b7a1d40 3647 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
3648 BUG_ON(huge_pte_none(pte));
3649 spin_lock(ptl);
5b7a1d40 3650 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
3651 if (likely(ptep &&
3652 pte_same(huge_ptep_get(ptep), pte)))
3653 goto retry_avoidcopy;
3654 /*
3655 * race occurs while re-acquiring page table
3656 * lock, and our job is done.
3657 */
3658 return 0;
04f2cbe3
MG
3659 }
3660
2b740303 3661 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 3662 goto out_release_old;
1e8f889b
DG
3663 }
3664
0fe6e20b
NH
3665 /*
3666 * When the original hugepage is shared one, it does not have
3667 * anon_vma prepared.
3668 */
44e2aa93 3669 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3670 ret = VM_FAULT_OOM;
3671 goto out_release_all;
44e2aa93 3672 }
0fe6e20b 3673
974e6d66 3674 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 3675 pages_per_huge_page(h));
0ed361de 3676 __SetPageUptodate(new_page);
1e8f889b 3677
7269f999 3678 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 3679 haddr + huge_page_size(h));
ac46d4f3 3680 mmu_notifier_invalidate_range_start(&range);
ad4404a2 3681
b76c8cfb 3682 /*
cb900f41 3683 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3684 * before the page tables are altered
3685 */
cb900f41 3686 spin_lock(ptl);
5b7a1d40 3687 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 3688 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3689 ClearPagePrivate(new_page);
3690
1e8f889b 3691 /* Break COW */
5b7a1d40 3692 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 3693 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 3694 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 3695 make_huge_pte(vma, new_page, 1));
d281ee61 3696 page_remove_rmap(old_page, true);
5b7a1d40 3697 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 3698 set_page_huge_active(new_page);
1e8f889b
DG
3699 /* Make the old page be freed below */
3700 new_page = old_page;
3701 }
cb900f41 3702 spin_unlock(ptl);
ac46d4f3 3703 mmu_notifier_invalidate_range_end(&range);
ad4404a2 3704out_release_all:
5b7a1d40 3705 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 3706 put_page(new_page);
ad4404a2 3707out_release_old:
09cbfeaf 3708 put_page(old_page);
8312034f 3709
ad4404a2
DB
3710 spin_lock(ptl); /* Caller expects lock to be held */
3711 return ret;
1e8f889b
DG
3712}
3713
04f2cbe3 3714/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3715static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3716 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3717{
3718 struct address_space *mapping;
e7c4b0bf 3719 pgoff_t idx;
04f2cbe3
MG
3720
3721 mapping = vma->vm_file->f_mapping;
a5516438 3722 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3723
3724 return find_lock_page(mapping, idx);
3725}
3726
3ae77f43
HD
3727/*
3728 * Return whether there is a pagecache page to back given address within VMA.
3729 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3730 */
3731static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3732 struct vm_area_struct *vma, unsigned long address)
3733{
3734 struct address_space *mapping;
3735 pgoff_t idx;
3736 struct page *page;
3737
3738 mapping = vma->vm_file->f_mapping;
3739 idx = vma_hugecache_offset(h, vma, address);
3740
3741 page = find_get_page(mapping, idx);
3742 if (page)
3743 put_page(page);
3744 return page != NULL;
3745}
3746
ab76ad54
MK
3747int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3748 pgoff_t idx)
3749{
3750 struct inode *inode = mapping->host;
3751 struct hstate *h = hstate_inode(inode);
3752 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3753
3754 if (err)
3755 return err;
3756 ClearPagePrivate(page);
3757
22146c3c
MK
3758 /*
3759 * set page dirty so that it will not be removed from cache/file
3760 * by non-hugetlbfs specific code paths.
3761 */
3762 set_page_dirty(page);
3763
ab76ad54
MK
3764 spin_lock(&inode->i_lock);
3765 inode->i_blocks += blocks_per_huge_page(h);
3766 spin_unlock(&inode->i_lock);
3767 return 0;
3768}
3769
2b740303
SJ
3770static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3771 struct vm_area_struct *vma,
3772 struct address_space *mapping, pgoff_t idx,
3773 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3774{
a5516438 3775 struct hstate *h = hstate_vma(vma);
2b740303 3776 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 3777 int anon_rmap = 0;
4c887265 3778 unsigned long size;
4c887265 3779 struct page *page;
1e8f889b 3780 pte_t new_pte;
cb900f41 3781 spinlock_t *ptl;
285b8dca 3782 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 3783 bool new_page = false;
4c887265 3784
04f2cbe3
MG
3785 /*
3786 * Currently, we are forced to kill the process in the event the
3787 * original mapper has unmapped pages from the child due to a failed
25985edc 3788 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3789 */
3790 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3791 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3792 current->pid);
04f2cbe3
MG
3793 return ret;
3794 }
3795
4c887265 3796 /*
e7c58097
MK
3797 * Use page lock to guard against racing truncation
3798 * before we get page_table_lock.
4c887265 3799 */
6bda666a
CL
3800retry:
3801 page = find_lock_page(mapping, idx);
3802 if (!page) {
e7c58097
MK
3803 size = i_size_read(mapping->host) >> huge_page_shift(h);
3804 if (idx >= size)
3805 goto out;
3806
1a1aad8a
MK
3807 /*
3808 * Check for page in userfault range
3809 */
3810 if (userfaultfd_missing(vma)) {
3811 u32 hash;
3812 struct vm_fault vmf = {
3813 .vma = vma,
285b8dca 3814 .address = haddr,
1a1aad8a
MK
3815 .flags = flags,
3816 /*
3817 * Hard to debug if it ends up being
3818 * used by a callee that assumes
3819 * something about the other
3820 * uninitialized fields... same as in
3821 * memory.c
3822 */
3823 };
3824
3825 /*
ddeaab32
MK
3826 * hugetlb_fault_mutex must be dropped before
3827 * handling userfault. Reacquire after handling
3828 * fault to make calling code simpler.
1a1aad8a 3829 */
1b426bac 3830 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
1a1aad8a
MK
3831 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3832 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3833 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3834 goto out;
3835 }
3836
285b8dca 3837 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 3838 if (IS_ERR(page)) {
2b740303 3839 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
3840 goto out;
3841 }
47ad8475 3842 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3843 __SetPageUptodate(page);
cb6acd01 3844 new_page = true;
ac9b9c66 3845
f83a275d 3846 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3847 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3848 if (err) {
3849 put_page(page);
6bda666a
CL
3850 if (err == -EEXIST)
3851 goto retry;
3852 goto out;
3853 }
23be7468 3854 } else {
6bda666a 3855 lock_page(page);
0fe6e20b
NH
3856 if (unlikely(anon_vma_prepare(vma))) {
3857 ret = VM_FAULT_OOM;
3858 goto backout_unlocked;
3859 }
409eb8c2 3860 anon_rmap = 1;
23be7468 3861 }
0fe6e20b 3862 } else {
998b4382
NH
3863 /*
3864 * If memory error occurs between mmap() and fault, some process
3865 * don't have hwpoisoned swap entry for errored virtual address.
3866 * So we need to block hugepage fault by PG_hwpoison bit check.
3867 */
3868 if (unlikely(PageHWPoison(page))) {
32f84528 3869 ret = VM_FAULT_HWPOISON |
972dc4de 3870 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3871 goto backout_unlocked;
3872 }
6bda666a 3873 }
1e8f889b 3874
57303d80
AW
3875 /*
3876 * If we are going to COW a private mapping later, we examine the
3877 * pending reservations for this page now. This will ensure that
3878 * any allocations necessary to record that reservation occur outside
3879 * the spinlock.
3880 */
5e911373 3881 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 3882 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
3883 ret = VM_FAULT_OOM;
3884 goto backout_unlocked;
3885 }
5e911373 3886 /* Just decrements count, does not deallocate */
285b8dca 3887 vma_end_reservation(h, vma, haddr);
5e911373 3888 }
57303d80 3889
8bea8052 3890 ptl = huge_pte_lock(h, mm, ptep);
e7c58097
MK
3891 size = i_size_read(mapping->host) >> huge_page_shift(h);
3892 if (idx >= size)
3893 goto backout;
4c887265 3894
83c54070 3895 ret = 0;
7f2e9525 3896 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3897 goto backout;
3898
07443a85
JK
3899 if (anon_rmap) {
3900 ClearPagePrivate(page);
285b8dca 3901 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 3902 } else
53f9263b 3903 page_dup_rmap(page, true);
1e8f889b
DG
3904 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3905 && (vma->vm_flags & VM_SHARED)));
285b8dca 3906 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 3907
5d317b2b 3908 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3909 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3910 /* Optimization, do the COW without a second fault */
974e6d66 3911 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3912 }
3913
cb900f41 3914 spin_unlock(ptl);
cb6acd01
MK
3915
3916 /*
3917 * Only make newly allocated pages active. Existing pages found
3918 * in the pagecache could be !page_huge_active() if they have been
3919 * isolated for migration.
3920 */
3921 if (new_page)
3922 set_page_huge_active(page);
3923
4c887265
AL
3924 unlock_page(page);
3925out:
ac9b9c66 3926 return ret;
4c887265
AL
3927
3928backout:
cb900f41 3929 spin_unlock(ptl);
2b26736c 3930backout_unlocked:
4c887265 3931 unlock_page(page);
285b8dca 3932 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
3933 put_page(page);
3934 goto out;
ac9b9c66
HD
3935}
3936
8382d914 3937#ifdef CONFIG_SMP
1b426bac 3938u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
3939 pgoff_t idx, unsigned long address)
3940{
3941 unsigned long key[2];
3942 u32 hash;
3943
1b426bac
MK
3944 key[0] = (unsigned long) mapping;
3945 key[1] = idx;
8382d914
DB
3946
3947 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3948
3949 return hash & (num_fault_mutexes - 1);
3950}
3951#else
3952/*
3953 * For uniprocesor systems we always use a single mutex, so just
3954 * return 0 and avoid the hashing overhead.
3955 */
1b426bac 3956u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
3957 pgoff_t idx, unsigned long address)
3958{
3959 return 0;
3960}
3961#endif
3962
2b740303 3963vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3964 unsigned long address, unsigned int flags)
86e5216f 3965{
8382d914 3966 pte_t *ptep, entry;
cb900f41 3967 spinlock_t *ptl;
2b740303 3968 vm_fault_t ret;
8382d914
DB
3969 u32 hash;
3970 pgoff_t idx;
0fe6e20b 3971 struct page *page = NULL;
57303d80 3972 struct page *pagecache_page = NULL;
a5516438 3973 struct hstate *h = hstate_vma(vma);
8382d914 3974 struct address_space *mapping;
0f792cf9 3975 int need_wait_lock = 0;
285b8dca 3976 unsigned long haddr = address & huge_page_mask(h);
86e5216f 3977
285b8dca 3978 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed
NH
3979 if (ptep) {
3980 entry = huge_ptep_get(ptep);
290408d4 3981 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3982 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3983 return 0;
3984 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3985 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3986 VM_FAULT_SET_HINDEX(hstate_index(h));
ddeaab32
MK
3987 } else {
3988 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3989 if (!ptep)
3990 return VM_FAULT_OOM;
fd6a03ed
NH
3991 }
3992
8382d914 3993 mapping = vma->vm_file->f_mapping;
ddeaab32 3994 idx = vma_hugecache_offset(h, vma, haddr);
8382d914 3995
3935baa9
DG
3996 /*
3997 * Serialize hugepage allocation and instantiation, so that we don't
3998 * get spurious allocation failures if two CPUs race to instantiate
3999 * the same page in the page cache.
4000 */
1b426bac 4001 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
c672c7f2 4002 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4003
7f2e9525
GS
4004 entry = huge_ptep_get(ptep);
4005 if (huge_pte_none(entry)) {
8382d914 4006 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4007 goto out_mutex;
3935baa9 4008 }
86e5216f 4009
83c54070 4010 ret = 0;
1e8f889b 4011
0f792cf9
NH
4012 /*
4013 * entry could be a migration/hwpoison entry at this point, so this
4014 * check prevents the kernel from going below assuming that we have
4015 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4016 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4017 * handle it.
4018 */
4019 if (!pte_present(entry))
4020 goto out_mutex;
4021
57303d80
AW
4022 /*
4023 * If we are going to COW the mapping later, we examine the pending
4024 * reservations for this page now. This will ensure that any
4025 * allocations necessary to record that reservation occur outside the
4026 * spinlock. For private mappings, we also lookup the pagecache
4027 * page now as it is used to determine if a reservation has been
4028 * consumed.
4029 */
106c992a 4030 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4031 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4032 ret = VM_FAULT_OOM;
b4d1d99f 4033 goto out_mutex;
2b26736c 4034 }
5e911373 4035 /* Just decrements count, does not deallocate */
285b8dca 4036 vma_end_reservation(h, vma, haddr);
57303d80 4037
f83a275d 4038 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4039 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4040 vma, haddr);
57303d80
AW
4041 }
4042
0f792cf9
NH
4043 ptl = huge_pte_lock(h, mm, ptep);
4044
4045 /* Check for a racing update before calling hugetlb_cow */
4046 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4047 goto out_ptl;
4048
56c9cfb1
NH
4049 /*
4050 * hugetlb_cow() requires page locks of pte_page(entry) and
4051 * pagecache_page, so here we need take the former one
4052 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4053 */
4054 page = pte_page(entry);
4055 if (page != pagecache_page)
0f792cf9
NH
4056 if (!trylock_page(page)) {
4057 need_wait_lock = 1;
4058 goto out_ptl;
4059 }
b4d1d99f 4060
0f792cf9 4061 get_page(page);
b4d1d99f 4062
788c7df4 4063 if (flags & FAULT_FLAG_WRITE) {
106c992a 4064 if (!huge_pte_write(entry)) {
974e6d66 4065 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4066 pagecache_page, ptl);
0f792cf9 4067 goto out_put_page;
b4d1d99f 4068 }
106c992a 4069 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4070 }
4071 entry = pte_mkyoung(entry);
285b8dca 4072 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4073 flags & FAULT_FLAG_WRITE))
285b8dca 4074 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4075out_put_page:
4076 if (page != pagecache_page)
4077 unlock_page(page);
4078 put_page(page);
cb900f41
KS
4079out_ptl:
4080 spin_unlock(ptl);
57303d80
AW
4081
4082 if (pagecache_page) {
4083 unlock_page(pagecache_page);
4084 put_page(pagecache_page);
4085 }
b4d1d99f 4086out_mutex:
c672c7f2 4087 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4088 /*
4089 * Generally it's safe to hold refcount during waiting page lock. But
4090 * here we just wait to defer the next page fault to avoid busy loop and
4091 * the page is not used after unlocked before returning from the current
4092 * page fault. So we are safe from accessing freed page, even if we wait
4093 * here without taking refcount.
4094 */
4095 if (need_wait_lock)
4096 wait_on_page_locked(page);
1e8f889b 4097 return ret;
86e5216f
AL
4098}
4099
8fb5debc
MK
4100/*
4101 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4102 * modifications for huge pages.
4103 */
4104int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4105 pte_t *dst_pte,
4106 struct vm_area_struct *dst_vma,
4107 unsigned long dst_addr,
4108 unsigned long src_addr,
4109 struct page **pagep)
4110{
1e392147
AA
4111 struct address_space *mapping;
4112 pgoff_t idx;
4113 unsigned long size;
1c9e8def 4114 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4115 struct hstate *h = hstate_vma(dst_vma);
4116 pte_t _dst_pte;
4117 spinlock_t *ptl;
4118 int ret;
4119 struct page *page;
4120
4121 if (!*pagep) {
4122 ret = -ENOMEM;
4123 page = alloc_huge_page(dst_vma, dst_addr, 0);
4124 if (IS_ERR(page))
4125 goto out;
4126
4127 ret = copy_huge_page_from_user(page,
4128 (const void __user *) src_addr,
810a56b9 4129 pages_per_huge_page(h), false);
8fb5debc
MK
4130
4131 /* fallback to copy_from_user outside mmap_sem */
4132 if (unlikely(ret)) {
9e368259 4133 ret = -ENOENT;
8fb5debc
MK
4134 *pagep = page;
4135 /* don't free the page */
4136 goto out;
4137 }
4138 } else {
4139 page = *pagep;
4140 *pagep = NULL;
4141 }
4142
4143 /*
4144 * The memory barrier inside __SetPageUptodate makes sure that
4145 * preceding stores to the page contents become visible before
4146 * the set_pte_at() write.
4147 */
4148 __SetPageUptodate(page);
8fb5debc 4149
1e392147
AA
4150 mapping = dst_vma->vm_file->f_mapping;
4151 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4152
1c9e8def
MK
4153 /*
4154 * If shared, add to page cache
4155 */
4156 if (vm_shared) {
1e392147
AA
4157 size = i_size_read(mapping->host) >> huge_page_shift(h);
4158 ret = -EFAULT;
4159 if (idx >= size)
4160 goto out_release_nounlock;
1c9e8def 4161
1e392147
AA
4162 /*
4163 * Serialization between remove_inode_hugepages() and
4164 * huge_add_to_page_cache() below happens through the
4165 * hugetlb_fault_mutex_table that here must be hold by
4166 * the caller.
4167 */
1c9e8def
MK
4168 ret = huge_add_to_page_cache(page, mapping, idx);
4169 if (ret)
4170 goto out_release_nounlock;
4171 }
4172
8fb5debc
MK
4173 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4174 spin_lock(ptl);
4175
1e392147
AA
4176 /*
4177 * Recheck the i_size after holding PT lock to make sure not
4178 * to leave any page mapped (as page_mapped()) beyond the end
4179 * of the i_size (remove_inode_hugepages() is strict about
4180 * enforcing that). If we bail out here, we'll also leave a
4181 * page in the radix tree in the vm_shared case beyond the end
4182 * of the i_size, but remove_inode_hugepages() will take care
4183 * of it as soon as we drop the hugetlb_fault_mutex_table.
4184 */
4185 size = i_size_read(mapping->host) >> huge_page_shift(h);
4186 ret = -EFAULT;
4187 if (idx >= size)
4188 goto out_release_unlock;
4189
8fb5debc
MK
4190 ret = -EEXIST;
4191 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4192 goto out_release_unlock;
4193
1c9e8def
MK
4194 if (vm_shared) {
4195 page_dup_rmap(page, true);
4196 } else {
4197 ClearPagePrivate(page);
4198 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4199 }
8fb5debc
MK
4200
4201 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4202 if (dst_vma->vm_flags & VM_WRITE)
4203 _dst_pte = huge_pte_mkdirty(_dst_pte);
4204 _dst_pte = pte_mkyoung(_dst_pte);
4205
4206 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4207
4208 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4209 dst_vma->vm_flags & VM_WRITE);
4210 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4211
4212 /* No need to invalidate - it was non-present before */
4213 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4214
4215 spin_unlock(ptl);
cb6acd01 4216 set_page_huge_active(page);
1c9e8def
MK
4217 if (vm_shared)
4218 unlock_page(page);
8fb5debc
MK
4219 ret = 0;
4220out:
4221 return ret;
4222out_release_unlock:
4223 spin_unlock(ptl);
1c9e8def
MK
4224 if (vm_shared)
4225 unlock_page(page);
5af10dfd 4226out_release_nounlock:
8fb5debc
MK
4227 put_page(page);
4228 goto out;
4229}
4230
28a35716
ML
4231long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4232 struct page **pages, struct vm_area_struct **vmas,
4233 unsigned long *position, unsigned long *nr_pages,
87ffc118 4234 long i, unsigned int flags, int *nonblocking)
63551ae0 4235{
d5d4b0aa
KC
4236 unsigned long pfn_offset;
4237 unsigned long vaddr = *position;
28a35716 4238 unsigned long remainder = *nr_pages;
a5516438 4239 struct hstate *h = hstate_vma(vma);
2be7cfed 4240 int err = -EFAULT;
63551ae0 4241
63551ae0 4242 while (vaddr < vma->vm_end && remainder) {
4c887265 4243 pte_t *pte;
cb900f41 4244 spinlock_t *ptl = NULL;
2a15efc9 4245 int absent;
4c887265 4246 struct page *page;
63551ae0 4247
02057967
DR
4248 /*
4249 * If we have a pending SIGKILL, don't keep faulting pages and
4250 * potentially allocating memory.
4251 */
fa45f116 4252 if (fatal_signal_pending(current)) {
02057967
DR
4253 remainder = 0;
4254 break;
4255 }
4256
4c887265
AL
4257 /*
4258 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4259 * each hugepage. We have to make sure we get the
4c887265 4260 * first, for the page indexing below to work.
cb900f41
KS
4261 *
4262 * Note that page table lock is not held when pte is null.
4c887265 4263 */
7868a208
PA
4264 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4265 huge_page_size(h));
cb900f41
KS
4266 if (pte)
4267 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4268 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4269
4270 /*
4271 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4272 * an error where there's an empty slot with no huge pagecache
4273 * to back it. This way, we avoid allocating a hugepage, and
4274 * the sparse dumpfile avoids allocating disk blocks, but its
4275 * huge holes still show up with zeroes where they need to be.
2a15efc9 4276 */
3ae77f43
HD
4277 if (absent && (flags & FOLL_DUMP) &&
4278 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4279 if (pte)
4280 spin_unlock(ptl);
2a15efc9
HD
4281 remainder = 0;
4282 break;
4283 }
63551ae0 4284
9cc3a5bd
NH
4285 /*
4286 * We need call hugetlb_fault for both hugepages under migration
4287 * (in which case hugetlb_fault waits for the migration,) and
4288 * hwpoisoned hugepages (in which case we need to prevent the
4289 * caller from accessing to them.) In order to do this, we use
4290 * here is_swap_pte instead of is_hugetlb_entry_migration and
4291 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4292 * both cases, and because we can't follow correct pages
4293 * directly from any kind of swap entries.
4294 */
4295 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4296 ((flags & FOLL_WRITE) &&
4297 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4298 vm_fault_t ret;
87ffc118 4299 unsigned int fault_flags = 0;
63551ae0 4300
cb900f41
KS
4301 if (pte)
4302 spin_unlock(ptl);
87ffc118
AA
4303 if (flags & FOLL_WRITE)
4304 fault_flags |= FAULT_FLAG_WRITE;
4305 if (nonblocking)
4306 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4307 if (flags & FOLL_NOWAIT)
4308 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4309 FAULT_FLAG_RETRY_NOWAIT;
4310 if (flags & FOLL_TRIED) {
4311 VM_WARN_ON_ONCE(fault_flags &
4312 FAULT_FLAG_ALLOW_RETRY);
4313 fault_flags |= FAULT_FLAG_TRIED;
4314 }
4315 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4316 if (ret & VM_FAULT_ERROR) {
2be7cfed 4317 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4318 remainder = 0;
4319 break;
4320 }
4321 if (ret & VM_FAULT_RETRY) {
1ac25013
AA
4322 if (nonblocking &&
4323 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
87ffc118
AA
4324 *nonblocking = 0;
4325 *nr_pages = 0;
4326 /*
4327 * VM_FAULT_RETRY must not return an
4328 * error, it will return zero
4329 * instead.
4330 *
4331 * No need to update "position" as the
4332 * caller will not check it after
4333 * *nr_pages is set to 0.
4334 */
4335 return i;
4336 }
4337 continue;
4c887265
AL
4338 }
4339
a5516438 4340 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4341 page = pte_page(huge_ptep_get(pte));
8fde12ca
LT
4342
4343 /*
4344 * Instead of doing 'try_get_page()' below in the same_page
4345 * loop, just check the count once here.
4346 */
4347 if (unlikely(page_count(page) <= 0)) {
4348 if (pages) {
4349 spin_unlock(ptl);
4350 remainder = 0;
4351 err = -ENOMEM;
4352 break;
4353 }
4354 }
d5d4b0aa 4355same_page:
d6692183 4356 if (pages) {
2a15efc9 4357 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4358 get_page(pages[i]);
d6692183 4359 }
63551ae0
DG
4360
4361 if (vmas)
4362 vmas[i] = vma;
4363
4364 vaddr += PAGE_SIZE;
d5d4b0aa 4365 ++pfn_offset;
63551ae0
DG
4366 --remainder;
4367 ++i;
d5d4b0aa 4368 if (vaddr < vma->vm_end && remainder &&
a5516438 4369 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4370 /*
4371 * We use pfn_offset to avoid touching the pageframes
4372 * of this compound page.
4373 */
4374 goto same_page;
4375 }
cb900f41 4376 spin_unlock(ptl);
63551ae0 4377 }
28a35716 4378 *nr_pages = remainder;
87ffc118
AA
4379 /*
4380 * setting position is actually required only if remainder is
4381 * not zero but it's faster not to add a "if (remainder)"
4382 * branch.
4383 */
63551ae0
DG
4384 *position = vaddr;
4385
2be7cfed 4386 return i ? i : err;
63551ae0 4387}
8f860591 4388
5491ae7b
AK
4389#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4390/*
4391 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4392 * implement this.
4393 */
4394#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4395#endif
4396
7da4d641 4397unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4398 unsigned long address, unsigned long end, pgprot_t newprot)
4399{
4400 struct mm_struct *mm = vma->vm_mm;
4401 unsigned long start = address;
4402 pte_t *ptep;
4403 pte_t pte;
a5516438 4404 struct hstate *h = hstate_vma(vma);
7da4d641 4405 unsigned long pages = 0;
dff11abe 4406 bool shared_pmd = false;
ac46d4f3 4407 struct mmu_notifier_range range;
dff11abe
MK
4408
4409 /*
4410 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4411 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
4412 * range if PMD sharing is possible.
4413 */
7269f999
JG
4414 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4415 0, vma, mm, start, end);
ac46d4f3 4416 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
4417
4418 BUG_ON(address >= end);
ac46d4f3 4419 flush_cache_range(vma, range.start, range.end);
8f860591 4420
ac46d4f3 4421 mmu_notifier_invalidate_range_start(&range);
83cde9e8 4422 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4423 for (; address < end; address += huge_page_size(h)) {
cb900f41 4424 spinlock_t *ptl;
7868a208 4425 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4426 if (!ptep)
4427 continue;
cb900f41 4428 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4429 if (huge_pmd_unshare(mm, &address, ptep)) {
4430 pages++;
cb900f41 4431 spin_unlock(ptl);
dff11abe 4432 shared_pmd = true;
39dde65c 4433 continue;
7da4d641 4434 }
a8bda28d
NH
4435 pte = huge_ptep_get(ptep);
4436 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4437 spin_unlock(ptl);
4438 continue;
4439 }
4440 if (unlikely(is_hugetlb_entry_migration(pte))) {
4441 swp_entry_t entry = pte_to_swp_entry(pte);
4442
4443 if (is_write_migration_entry(entry)) {
4444 pte_t newpte;
4445
4446 make_migration_entry_read(&entry);
4447 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4448 set_huge_swap_pte_at(mm, address, ptep,
4449 newpte, huge_page_size(h));
a8bda28d
NH
4450 pages++;
4451 }
4452 spin_unlock(ptl);
4453 continue;
4454 }
4455 if (!huge_pte_none(pte)) {
023bdd00
AK
4456 pte_t old_pte;
4457
4458 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4459 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 4460 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 4461 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 4462 pages++;
8f860591 4463 }
cb900f41 4464 spin_unlock(ptl);
8f860591 4465 }
d833352a 4466 /*
c8c06efa 4467 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4468 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4469 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
4470 * and that page table be reused and filled with junk. If we actually
4471 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 4472 */
dff11abe 4473 if (shared_pmd)
ac46d4f3 4474 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
4475 else
4476 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4477 /*
4478 * No need to call mmu_notifier_invalidate_range() we are downgrading
4479 * page table protection not changing it to point to a new page.
4480 *
ad56b738 4481 * See Documentation/vm/mmu_notifier.rst
0f10851e 4482 */
83cde9e8 4483 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 4484 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
4485
4486 return pages << h->order;
8f860591
ZY
4487}
4488
a1e78772
MG
4489int hugetlb_reserve_pages(struct inode *inode,
4490 long from, long to,
5a6fe125 4491 struct vm_area_struct *vma,
ca16d140 4492 vm_flags_t vm_flags)
e4e574b7 4493{
17c9d12e 4494 long ret, chg;
a5516438 4495 struct hstate *h = hstate_inode(inode);
90481622 4496 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4497 struct resv_map *resv_map;
1c5ecae3 4498 long gbl_reserve;
e4e574b7 4499
63489f8e
MK
4500 /* This should never happen */
4501 if (from > to) {
4502 VM_WARN(1, "%s called with a negative range\n", __func__);
4503 return -EINVAL;
4504 }
4505
17c9d12e
MG
4506 /*
4507 * Only apply hugepage reservation if asked. At fault time, an
4508 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4509 * without using reserves
17c9d12e 4510 */
ca16d140 4511 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4512 return 0;
4513
a1e78772
MG
4514 /*
4515 * Shared mappings base their reservation on the number of pages that
4516 * are already allocated on behalf of the file. Private mappings need
4517 * to reserve the full area even if read-only as mprotect() may be
4518 * called to make the mapping read-write. Assume !vma is a shm mapping
4519 */
9119a41e 4520 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4521 resv_map = inode_resv_map(inode);
9119a41e 4522
1406ec9b 4523 chg = region_chg(resv_map, from, to);
9119a41e
JK
4524
4525 } else {
4526 resv_map = resv_map_alloc();
17c9d12e
MG
4527 if (!resv_map)
4528 return -ENOMEM;
4529
a1e78772 4530 chg = to - from;
84afd99b 4531
17c9d12e
MG
4532 set_vma_resv_map(vma, resv_map);
4533 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4534 }
4535
c50ac050
DH
4536 if (chg < 0) {
4537 ret = chg;
4538 goto out_err;
4539 }
8a630112 4540
1c5ecae3
MK
4541 /*
4542 * There must be enough pages in the subpool for the mapping. If
4543 * the subpool has a minimum size, there may be some global
4544 * reservations already in place (gbl_reserve).
4545 */
4546 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4547 if (gbl_reserve < 0) {
c50ac050
DH
4548 ret = -ENOSPC;
4549 goto out_err;
4550 }
5a6fe125
MG
4551
4552 /*
17c9d12e 4553 * Check enough hugepages are available for the reservation.
90481622 4554 * Hand the pages back to the subpool if there are not
5a6fe125 4555 */
1c5ecae3 4556 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4557 if (ret < 0) {
1c5ecae3
MK
4558 /* put back original number of pages, chg */
4559 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4560 goto out_err;
68842c9b 4561 }
17c9d12e
MG
4562
4563 /*
4564 * Account for the reservations made. Shared mappings record regions
4565 * that have reservations as they are shared by multiple VMAs.
4566 * When the last VMA disappears, the region map says how much
4567 * the reservation was and the page cache tells how much of
4568 * the reservation was consumed. Private mappings are per-VMA and
4569 * only the consumed reservations are tracked. When the VMA
4570 * disappears, the original reservation is the VMA size and the
4571 * consumed reservations are stored in the map. Hence, nothing
4572 * else has to be done for private mappings here
4573 */
33039678
MK
4574 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4575 long add = region_add(resv_map, from, to);
4576
4577 if (unlikely(chg > add)) {
4578 /*
4579 * pages in this range were added to the reserve
4580 * map between region_chg and region_add. This
4581 * indicates a race with alloc_huge_page. Adjust
4582 * the subpool and reserve counts modified above
4583 * based on the difference.
4584 */
4585 long rsv_adjust;
4586
4587 rsv_adjust = hugepage_subpool_put_pages(spool,
4588 chg - add);
4589 hugetlb_acct_memory(h, -rsv_adjust);
4590 }
4591 }
a43a8c39 4592 return 0;
c50ac050 4593out_err:
5e911373 4594 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4595 /* Don't call region_abort if region_chg failed */
4596 if (chg >= 0)
4597 region_abort(resv_map, from, to);
f031dd27
JK
4598 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4599 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4600 return ret;
a43a8c39
KC
4601}
4602
b5cec28d
MK
4603long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4604 long freed)
a43a8c39 4605{
a5516438 4606 struct hstate *h = hstate_inode(inode);
4e35f483 4607 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4608 long chg = 0;
90481622 4609 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4610 long gbl_reserve;
45c682a6 4611
b5cec28d
MK
4612 if (resv_map) {
4613 chg = region_del(resv_map, start, end);
4614 /*
4615 * region_del() can fail in the rare case where a region
4616 * must be split and another region descriptor can not be
4617 * allocated. If end == LONG_MAX, it will not fail.
4618 */
4619 if (chg < 0)
4620 return chg;
4621 }
4622
45c682a6 4623 spin_lock(&inode->i_lock);
e4c6f8be 4624 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4625 spin_unlock(&inode->i_lock);
4626
1c5ecae3
MK
4627 /*
4628 * If the subpool has a minimum size, the number of global
4629 * reservations to be released may be adjusted.
4630 */
4631 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4632 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4633
4634 return 0;
a43a8c39 4635}
93f70f90 4636
3212b535
SC
4637#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4638static unsigned long page_table_shareable(struct vm_area_struct *svma,
4639 struct vm_area_struct *vma,
4640 unsigned long addr, pgoff_t idx)
4641{
4642 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4643 svma->vm_start;
4644 unsigned long sbase = saddr & PUD_MASK;
4645 unsigned long s_end = sbase + PUD_SIZE;
4646
4647 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4648 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4649 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4650
4651 /*
4652 * match the virtual addresses, permission and the alignment of the
4653 * page table page.
4654 */
4655 if (pmd_index(addr) != pmd_index(saddr) ||
4656 vm_flags != svm_flags ||
4657 sbase < svma->vm_start || svma->vm_end < s_end)
4658 return 0;
4659
4660 return saddr;
4661}
4662
31aafb45 4663static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4664{
4665 unsigned long base = addr & PUD_MASK;
4666 unsigned long end = base + PUD_SIZE;
4667
4668 /*
4669 * check on proper vm_flags and page table alignment
4670 */
017b1660 4671 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
4672 return true;
4673 return false;
3212b535
SC
4674}
4675
017b1660
MK
4676/*
4677 * Determine if start,end range within vma could be mapped by shared pmd.
4678 * If yes, adjust start and end to cover range associated with possible
4679 * shared pmd mappings.
4680 */
4681void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4682 unsigned long *start, unsigned long *end)
4683{
4684 unsigned long check_addr = *start;
4685
4686 if (!(vma->vm_flags & VM_MAYSHARE))
4687 return;
4688
4689 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4690 unsigned long a_start = check_addr & PUD_MASK;
4691 unsigned long a_end = a_start + PUD_SIZE;
4692
4693 /*
4694 * If sharing is possible, adjust start/end if necessary.
4695 */
4696 if (range_in_vma(vma, a_start, a_end)) {
4697 if (a_start < *start)
4698 *start = a_start;
4699 if (a_end > *end)
4700 *end = a_end;
4701 }
4702 }
4703}
4704
3212b535
SC
4705/*
4706 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4707 * and returns the corresponding pte. While this is not necessary for the
4708 * !shared pmd case because we can allocate the pmd later as well, it makes the
ddeaab32
MK
4709 * code much cleaner. pmd allocation is essential for the shared case because
4710 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4711 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4712 * bad pmd for sharing.
3212b535
SC
4713 */
4714pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4715{
4716 struct vm_area_struct *vma = find_vma(mm, addr);
4717 struct address_space *mapping = vma->vm_file->f_mapping;
4718 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4719 vma->vm_pgoff;
4720 struct vm_area_struct *svma;
4721 unsigned long saddr;
4722 pte_t *spte = NULL;
4723 pte_t *pte;
cb900f41 4724 spinlock_t *ptl;
3212b535
SC
4725
4726 if (!vma_shareable(vma, addr))
4727 return (pte_t *)pmd_alloc(mm, pud, addr);
4728
ddeaab32 4729 i_mmap_lock_write(mapping);
3212b535
SC
4730 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4731 if (svma == vma)
4732 continue;
4733
4734 saddr = page_table_shareable(svma, vma, addr, idx);
4735 if (saddr) {
7868a208
PA
4736 spte = huge_pte_offset(svma->vm_mm, saddr,
4737 vma_mmu_pagesize(svma));
3212b535
SC
4738 if (spte) {
4739 get_page(virt_to_page(spte));
4740 break;
4741 }
4742 }
4743 }
4744
4745 if (!spte)
4746 goto out;
4747
8bea8052 4748 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4749 if (pud_none(*pud)) {
3212b535
SC
4750 pud_populate(mm, pud,
4751 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4752 mm_inc_nr_pmds(mm);
dc6c9a35 4753 } else {
3212b535 4754 put_page(virt_to_page(spte));
dc6c9a35 4755 }
cb900f41 4756 spin_unlock(ptl);
3212b535
SC
4757out:
4758 pte = (pte_t *)pmd_alloc(mm, pud, addr);
ddeaab32 4759 i_mmap_unlock_write(mapping);
3212b535
SC
4760 return pte;
4761}
4762
4763/*
4764 * unmap huge page backed by shared pte.
4765 *
4766 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4767 * indicated by page_count > 1, unmap is achieved by clearing pud and
4768 * decrementing the ref count. If count == 1, the pte page is not shared.
4769 *
ddeaab32 4770 * called with page table lock held.
3212b535
SC
4771 *
4772 * returns: 1 successfully unmapped a shared pte page
4773 * 0 the underlying pte page is not shared, or it is the last user
4774 */
4775int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4776{
4777 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4778 p4d_t *p4d = p4d_offset(pgd, *addr);
4779 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4780
4781 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4782 if (page_count(virt_to_page(ptep)) == 1)
4783 return 0;
4784
4785 pud_clear(pud);
4786 put_page(virt_to_page(ptep));
dc6c9a35 4787 mm_dec_nr_pmds(mm);
3212b535
SC
4788 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4789 return 1;
4790}
9e5fc74c
SC
4791#define want_pmd_share() (1)
4792#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4793pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4794{
4795 return NULL;
4796}
e81f2d22
ZZ
4797
4798int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4799{
4800 return 0;
4801}
017b1660
MK
4802
4803void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4804 unsigned long *start, unsigned long *end)
4805{
4806}
9e5fc74c 4807#define want_pmd_share() (0)
3212b535
SC
4808#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4809
9e5fc74c
SC
4810#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4811pte_t *huge_pte_alloc(struct mm_struct *mm,
4812 unsigned long addr, unsigned long sz)
4813{
4814 pgd_t *pgd;
c2febafc 4815 p4d_t *p4d;
9e5fc74c
SC
4816 pud_t *pud;
4817 pte_t *pte = NULL;
4818
4819 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4820 p4d = p4d_alloc(mm, pgd, addr);
4821 if (!p4d)
4822 return NULL;
c2febafc 4823 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4824 if (pud) {
4825 if (sz == PUD_SIZE) {
4826 pte = (pte_t *)pud;
4827 } else {
4828 BUG_ON(sz != PMD_SIZE);
4829 if (want_pmd_share() && pud_none(*pud))
4830 pte = huge_pmd_share(mm, addr, pud);
4831 else
4832 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4833 }
4834 }
4e666314 4835 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4836
4837 return pte;
4838}
4839
9b19df29
PA
4840/*
4841 * huge_pte_offset() - Walk the page table to resolve the hugepage
4842 * entry at address @addr
4843 *
4844 * Return: Pointer to page table or swap entry (PUD or PMD) for
4845 * address @addr, or NULL if a p*d_none() entry is encountered and the
4846 * size @sz doesn't match the hugepage size at this level of the page
4847 * table.
4848 */
7868a208
PA
4849pte_t *huge_pte_offset(struct mm_struct *mm,
4850 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4851{
4852 pgd_t *pgd;
c2febafc 4853 p4d_t *p4d;
9e5fc74c 4854 pud_t *pud;
c2febafc 4855 pmd_t *pmd;
9e5fc74c
SC
4856
4857 pgd = pgd_offset(mm, addr);
c2febafc
KS
4858 if (!pgd_present(*pgd))
4859 return NULL;
4860 p4d = p4d_offset(pgd, addr);
4861 if (!p4d_present(*p4d))
4862 return NULL;
9b19df29 4863
c2febafc 4864 pud = pud_offset(p4d, addr);
9b19df29 4865 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4866 return NULL;
9b19df29
PA
4867 /* hugepage or swap? */
4868 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4869 return (pte_t *)pud;
9b19df29 4870
c2febafc 4871 pmd = pmd_offset(pud, addr);
9b19df29
PA
4872 if (sz != PMD_SIZE && pmd_none(*pmd))
4873 return NULL;
4874 /* hugepage or swap? */
4875 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4876 return (pte_t *)pmd;
4877
4878 return NULL;
9e5fc74c
SC
4879}
4880
61f77eda
NH
4881#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4882
4883/*
4884 * These functions are overwritable if your architecture needs its own
4885 * behavior.
4886 */
4887struct page * __weak
4888follow_huge_addr(struct mm_struct *mm, unsigned long address,
4889 int write)
4890{
4891 return ERR_PTR(-EINVAL);
4892}
4893
4dc71451
AK
4894struct page * __weak
4895follow_huge_pd(struct vm_area_struct *vma,
4896 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4897{
4898 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4899 return NULL;
4900}
4901
61f77eda 4902struct page * __weak
9e5fc74c 4903follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4904 pmd_t *pmd, int flags)
9e5fc74c 4905{
e66f17ff
NH
4906 struct page *page = NULL;
4907 spinlock_t *ptl;
c9d398fa 4908 pte_t pte;
e66f17ff
NH
4909retry:
4910 ptl = pmd_lockptr(mm, pmd);
4911 spin_lock(ptl);
4912 /*
4913 * make sure that the address range covered by this pmd is not
4914 * unmapped from other threads.
4915 */
4916 if (!pmd_huge(*pmd))
4917 goto out;
c9d398fa
NH
4918 pte = huge_ptep_get((pte_t *)pmd);
4919 if (pte_present(pte)) {
97534127 4920 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4921 if (flags & FOLL_GET)
4922 get_page(page);
4923 } else {
c9d398fa 4924 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4925 spin_unlock(ptl);
4926 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4927 goto retry;
4928 }
4929 /*
4930 * hwpoisoned entry is treated as no_page_table in
4931 * follow_page_mask().
4932 */
4933 }
4934out:
4935 spin_unlock(ptl);
9e5fc74c
SC
4936 return page;
4937}
4938
61f77eda 4939struct page * __weak
9e5fc74c 4940follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4941 pud_t *pud, int flags)
9e5fc74c 4942{
e66f17ff
NH
4943 if (flags & FOLL_GET)
4944 return NULL;
9e5fc74c 4945
e66f17ff 4946 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4947}
4948
faaa5b62
AK
4949struct page * __weak
4950follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4951{
4952 if (flags & FOLL_GET)
4953 return NULL;
4954
4955 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4956}
4957
31caf665
NH
4958bool isolate_huge_page(struct page *page, struct list_head *list)
4959{
bcc54222
NH
4960 bool ret = true;
4961
309381fe 4962 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4963 spin_lock(&hugetlb_lock);
bcc54222
NH
4964 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4965 ret = false;
4966 goto unlock;
4967 }
4968 clear_page_huge_active(page);
31caf665 4969 list_move_tail(&page->lru, list);
bcc54222 4970unlock:
31caf665 4971 spin_unlock(&hugetlb_lock);
bcc54222 4972 return ret;
31caf665
NH
4973}
4974
4975void putback_active_hugepage(struct page *page)
4976{
309381fe 4977 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4978 spin_lock(&hugetlb_lock);
bcc54222 4979 set_page_huge_active(page);
31caf665
NH
4980 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4981 spin_unlock(&hugetlb_lock);
4982 put_page(page);
4983}
ab5ac90a
MH
4984
4985void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4986{
4987 struct hstate *h = page_hstate(oldpage);
4988
4989 hugetlb_cgroup_migrate(oldpage, newpage);
4990 set_page_owner_migrate_reason(newpage, reason);
4991
4992 /*
4993 * transfer temporary state of the new huge page. This is
4994 * reverse to other transitions because the newpage is going to
4995 * be final while the old one will be freed so it takes over
4996 * the temporary status.
4997 *
4998 * Also note that we have to transfer the per-node surplus state
4999 * here as well otherwise the global surplus count will not match
5000 * the per-node's.
5001 */
5002 if (PageHugeTemporary(newpage)) {
5003 int old_nid = page_to_nid(oldpage);
5004 int new_nid = page_to_nid(newpage);
5005
5006 SetPageHugeTemporary(oldpage);
5007 ClearPageHugeTemporary(newpage);
5008
5009 spin_lock(&hugetlb_lock);
5010 if (h->surplus_huge_pages_node[old_nid]) {
5011 h->surplus_huge_pages_node[old_nid]--;
5012 h->surplus_huge_pages_node[new_nid]++;
5013 }
5014 spin_unlock(&hugetlb_lock);
5015 }
5016}