]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
hugetlbfs: clean up command line processing
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
63489f8e 22#include <linux/mmdebug.h>
174cd4b1 23#include <linux/sched/signal.h>
0fe6e20b 24#include <linux/rmap.h>
c6247f72 25#include <linux/string_helpers.h>
fd6a03ed
NH
26#include <linux/swap.h>
27#include <linux/swapops.h>
8382d914 28#include <linux/jhash.h>
98fa15f3 29#include <linux/numa.h>
c77c0a8a 30#include <linux/llist.h>
cf11e85f 31#include <linux/cma.h>
d6606683 32
63551ae0
DG
33#include <asm/page.h>
34#include <asm/pgtable.h>
24669e58 35#include <asm/tlb.h>
63551ae0 36
24669e58 37#include <linux/io.h>
63551ae0 38#include <linux/hugetlb.h>
9dd540e2 39#include <linux/hugetlb_cgroup.h>
9a305230 40#include <linux/node.h>
1a1aad8a 41#include <linux/userfaultfd_k.h>
ab5ac90a 42#include <linux/page_owner.h>
7835e98b 43#include "internal.h"
1da177e4 44
c3f38a38 45int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
46unsigned int default_hstate_idx;
47struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f
RG
48
49static struct cma *hugetlb_cma[MAX_NUMNODES];
50
641844f5
NH
51/*
52 * Minimum page order among possible hugepage sizes, set to a proper value
53 * at boot time.
54 */
55static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 56
53ba51d2
JT
57__initdata LIST_HEAD(huge_boot_pages);
58
e5ff2159
AK
59/* for command line parsing */
60static struct hstate * __initdata parsed_hstate;
61static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 62static bool __initdata parsed_valid_hugepagesz = true;
282f4214 63static bool __initdata parsed_default_hugepagesz;
e5ff2159 64
3935baa9 65/*
31caf665
NH
66 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
67 * free_huge_pages, and surplus_huge_pages.
3935baa9 68 */
c3f38a38 69DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 70
8382d914
DB
71/*
72 * Serializes faults on the same logical page. This is used to
73 * prevent spurious OOMs when the hugepage pool is fully utilized.
74 */
75static int num_fault_mutexes;
c672c7f2 76struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 77
7ca02d0a
MK
78/* Forward declaration */
79static int hugetlb_acct_memory(struct hstate *h, long delta);
80
90481622
DG
81static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
82{
83 bool free = (spool->count == 0) && (spool->used_hpages == 0);
84
85 spin_unlock(&spool->lock);
86
87 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
88 * remain, give up any reservations mased on minimum size and
89 * free the subpool */
90 if (free) {
91 if (spool->min_hpages != -1)
92 hugetlb_acct_memory(spool->hstate,
93 -spool->min_hpages);
90481622 94 kfree(spool);
7ca02d0a 95 }
90481622
DG
96}
97
7ca02d0a
MK
98struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
99 long min_hpages)
90481622
DG
100{
101 struct hugepage_subpool *spool;
102
c6a91820 103 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
104 if (!spool)
105 return NULL;
106
107 spin_lock_init(&spool->lock);
108 spool->count = 1;
7ca02d0a
MK
109 spool->max_hpages = max_hpages;
110 spool->hstate = h;
111 spool->min_hpages = min_hpages;
112
113 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
114 kfree(spool);
115 return NULL;
116 }
117 spool->rsv_hpages = min_hpages;
90481622
DG
118
119 return spool;
120}
121
122void hugepage_put_subpool(struct hugepage_subpool *spool)
123{
124 spin_lock(&spool->lock);
125 BUG_ON(!spool->count);
126 spool->count--;
127 unlock_or_release_subpool(spool);
128}
129
1c5ecae3
MK
130/*
131 * Subpool accounting for allocating and reserving pages.
132 * Return -ENOMEM if there are not enough resources to satisfy the
133 * the request. Otherwise, return the number of pages by which the
134 * global pools must be adjusted (upward). The returned value may
135 * only be different than the passed value (delta) in the case where
136 * a subpool minimum size must be manitained.
137 */
138static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
139 long delta)
140{
1c5ecae3 141 long ret = delta;
90481622
DG
142
143 if (!spool)
1c5ecae3 144 return ret;
90481622
DG
145
146 spin_lock(&spool->lock);
1c5ecae3
MK
147
148 if (spool->max_hpages != -1) { /* maximum size accounting */
149 if ((spool->used_hpages + delta) <= spool->max_hpages)
150 spool->used_hpages += delta;
151 else {
152 ret = -ENOMEM;
153 goto unlock_ret;
154 }
90481622 155 }
90481622 156
09a95e29
MK
157 /* minimum size accounting */
158 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
159 if (delta > spool->rsv_hpages) {
160 /*
161 * Asking for more reserves than those already taken on
162 * behalf of subpool. Return difference.
163 */
164 ret = delta - spool->rsv_hpages;
165 spool->rsv_hpages = 0;
166 } else {
167 ret = 0; /* reserves already accounted for */
168 spool->rsv_hpages -= delta;
169 }
170 }
171
172unlock_ret:
173 spin_unlock(&spool->lock);
90481622
DG
174 return ret;
175}
176
1c5ecae3
MK
177/*
178 * Subpool accounting for freeing and unreserving pages.
179 * Return the number of global page reservations that must be dropped.
180 * The return value may only be different than the passed value (delta)
181 * in the case where a subpool minimum size must be maintained.
182 */
183static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
184 long delta)
185{
1c5ecae3
MK
186 long ret = delta;
187
90481622 188 if (!spool)
1c5ecae3 189 return delta;
90481622
DG
190
191 spin_lock(&spool->lock);
1c5ecae3
MK
192
193 if (spool->max_hpages != -1) /* maximum size accounting */
194 spool->used_hpages -= delta;
195
09a95e29
MK
196 /* minimum size accounting */
197 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
198 if (spool->rsv_hpages + delta <= spool->min_hpages)
199 ret = 0;
200 else
201 ret = spool->rsv_hpages + delta - spool->min_hpages;
202
203 spool->rsv_hpages += delta;
204 if (spool->rsv_hpages > spool->min_hpages)
205 spool->rsv_hpages = spool->min_hpages;
206 }
207
208 /*
209 * If hugetlbfs_put_super couldn't free spool due to an outstanding
210 * quota reference, free it now.
211 */
90481622 212 unlock_or_release_subpool(spool);
1c5ecae3
MK
213
214 return ret;
90481622
DG
215}
216
217static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
218{
219 return HUGETLBFS_SB(inode->i_sb)->spool;
220}
221
222static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
223{
496ad9aa 224 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
225}
226
0db9d74e
MA
227/* Helper that removes a struct file_region from the resv_map cache and returns
228 * it for use.
229 */
230static struct file_region *
231get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
232{
233 struct file_region *nrg = NULL;
234
235 VM_BUG_ON(resv->region_cache_count <= 0);
236
237 resv->region_cache_count--;
238 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
239 VM_BUG_ON(!nrg);
240 list_del(&nrg->link);
241
242 nrg->from = from;
243 nrg->to = to;
244
245 return nrg;
246}
247
075a61d0
MA
248static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
249 struct file_region *rg)
250{
251#ifdef CONFIG_CGROUP_HUGETLB
252 nrg->reservation_counter = rg->reservation_counter;
253 nrg->css = rg->css;
254 if (rg->css)
255 css_get(rg->css);
256#endif
257}
258
259/* Helper that records hugetlb_cgroup uncharge info. */
260static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
261 struct hstate *h,
262 struct resv_map *resv,
263 struct file_region *nrg)
264{
265#ifdef CONFIG_CGROUP_HUGETLB
266 if (h_cg) {
267 nrg->reservation_counter =
268 &h_cg->rsvd_hugepage[hstate_index(h)];
269 nrg->css = &h_cg->css;
270 if (!resv->pages_per_hpage)
271 resv->pages_per_hpage = pages_per_huge_page(h);
272 /* pages_per_hpage should be the same for all entries in
273 * a resv_map.
274 */
275 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
276 } else {
277 nrg->reservation_counter = NULL;
278 nrg->css = NULL;
279 }
280#endif
281}
282
a9b3f867
MA
283static bool has_same_uncharge_info(struct file_region *rg,
284 struct file_region *org)
285{
286#ifdef CONFIG_CGROUP_HUGETLB
287 return rg && org &&
288 rg->reservation_counter == org->reservation_counter &&
289 rg->css == org->css;
290
291#else
292 return true;
293#endif
294}
295
296static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
297{
298 struct file_region *nrg = NULL, *prg = NULL;
299
300 prg = list_prev_entry(rg, link);
301 if (&prg->link != &resv->regions && prg->to == rg->from &&
302 has_same_uncharge_info(prg, rg)) {
303 prg->to = rg->to;
304
305 list_del(&rg->link);
306 kfree(rg);
307
308 coalesce_file_region(resv, prg);
309 return;
310 }
311
312 nrg = list_next_entry(rg, link);
313 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
314 has_same_uncharge_info(nrg, rg)) {
315 nrg->from = rg->from;
316
317 list_del(&rg->link);
318 kfree(rg);
319
320 coalesce_file_region(resv, nrg);
321 return;
322 }
323}
324
d75c6af9
MA
325/* Must be called with resv->lock held. Calling this with count_only == true
326 * will count the number of pages to be added but will not modify the linked
0db9d74e
MA
327 * list. If regions_needed != NULL and count_only == true, then regions_needed
328 * will indicate the number of file_regions needed in the cache to carry out to
329 * add the regions for this range.
d75c6af9
MA
330 */
331static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0
MA
332 struct hugetlb_cgroup *h_cg,
333 struct hstate *h, long *regions_needed,
334 bool count_only)
d75c6af9 335{
0db9d74e 336 long add = 0;
d75c6af9 337 struct list_head *head = &resv->regions;
0db9d74e 338 long last_accounted_offset = f;
d75c6af9
MA
339 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
340
0db9d74e
MA
341 if (regions_needed)
342 *regions_needed = 0;
d75c6af9 343
0db9d74e
MA
344 /* In this loop, we essentially handle an entry for the range
345 * [last_accounted_offset, rg->from), at every iteration, with some
346 * bounds checking.
347 */
348 list_for_each_entry_safe(rg, trg, head, link) {
349 /* Skip irrelevant regions that start before our range. */
350 if (rg->from < f) {
351 /* If this region ends after the last accounted offset,
352 * then we need to update last_accounted_offset.
353 */
354 if (rg->to > last_accounted_offset)
355 last_accounted_offset = rg->to;
356 continue;
357 }
d75c6af9 358
0db9d74e
MA
359 /* When we find a region that starts beyond our range, we've
360 * finished.
361 */
d75c6af9
MA
362 if (rg->from > t)
363 break;
364
0db9d74e
MA
365 /* Add an entry for last_accounted_offset -> rg->from, and
366 * update last_accounted_offset.
367 */
368 if (rg->from > last_accounted_offset) {
369 add += rg->from - last_accounted_offset;
370 if (!count_only) {
371 nrg = get_file_region_entry_from_cache(
372 resv, last_accounted_offset, rg->from);
075a61d0
MA
373 record_hugetlb_cgroup_uncharge_info(h_cg, h,
374 resv, nrg);
0db9d74e 375 list_add(&nrg->link, rg->link.prev);
a9b3f867 376 coalesce_file_region(resv, nrg);
0db9d74e
MA
377 } else if (regions_needed)
378 *regions_needed += 1;
379 }
380
381 last_accounted_offset = rg->to;
382 }
383
384 /* Handle the case where our range extends beyond
385 * last_accounted_offset.
386 */
387 if (last_accounted_offset < t) {
388 add += t - last_accounted_offset;
389 if (!count_only) {
390 nrg = get_file_region_entry_from_cache(
391 resv, last_accounted_offset, t);
075a61d0 392 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
0db9d74e 393 list_add(&nrg->link, rg->link.prev);
a9b3f867 394 coalesce_file_region(resv, nrg);
0db9d74e
MA
395 } else if (regions_needed)
396 *regions_needed += 1;
397 }
398
399 VM_BUG_ON(add < 0);
400 return add;
401}
402
403/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
404 */
405static int allocate_file_region_entries(struct resv_map *resv,
406 int regions_needed)
407 __must_hold(&resv->lock)
408{
409 struct list_head allocated_regions;
410 int to_allocate = 0, i = 0;
411 struct file_region *trg = NULL, *rg = NULL;
412
413 VM_BUG_ON(regions_needed < 0);
414
415 INIT_LIST_HEAD(&allocated_regions);
416
417 /*
418 * Check for sufficient descriptors in the cache to accommodate
419 * the number of in progress add operations plus regions_needed.
420 *
421 * This is a while loop because when we drop the lock, some other call
422 * to region_add or region_del may have consumed some region_entries,
423 * so we keep looping here until we finally have enough entries for
424 * (adds_in_progress + regions_needed).
425 */
426 while (resv->region_cache_count <
427 (resv->adds_in_progress + regions_needed)) {
428 to_allocate = resv->adds_in_progress + regions_needed -
429 resv->region_cache_count;
430
431 /* At this point, we should have enough entries in the cache
432 * for all the existings adds_in_progress. We should only be
433 * needing to allocate for regions_needed.
d75c6af9 434 */
0db9d74e
MA
435 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
436
437 spin_unlock(&resv->lock);
438 for (i = 0; i < to_allocate; i++) {
439 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
440 if (!trg)
441 goto out_of_memory;
442 list_add(&trg->link, &allocated_regions);
d75c6af9 443 }
d75c6af9 444
0db9d74e
MA
445 spin_lock(&resv->lock);
446
447 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
d75c6af9 448 list_del(&rg->link);
0db9d74e
MA
449 list_add(&rg->link, &resv->region_cache);
450 resv->region_cache_count++;
d75c6af9
MA
451 }
452 }
453
0db9d74e 454 return 0;
d75c6af9 455
0db9d74e
MA
456out_of_memory:
457 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
458 list_del(&rg->link);
459 kfree(rg);
460 }
461 return -ENOMEM;
d75c6af9
MA
462}
463
1dd308a7
MK
464/*
465 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
466 * map. Regions will be taken from the cache to fill in this range.
467 * Sufficient regions should exist in the cache due to the previous
468 * call to region_chg with the same range, but in some cases the cache will not
469 * have sufficient entries due to races with other code doing region_add or
470 * region_del. The extra needed entries will be allocated.
cf3ad20b 471 *
0db9d74e
MA
472 * regions_needed is the out value provided by a previous call to region_chg.
473 *
474 * Return the number of new huge pages added to the map. This number is greater
475 * than or equal to zero. If file_region entries needed to be allocated for
476 * this operation and we were not able to allocate, it ruturns -ENOMEM.
477 * region_add of regions of length 1 never allocate file_regions and cannot
478 * fail; region_chg will always allocate at least 1 entry and a region_add for
479 * 1 page will only require at most 1 entry.
1dd308a7 480 */
0db9d74e 481static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
482 long in_regions_needed, struct hstate *h,
483 struct hugetlb_cgroup *h_cg)
96822904 484{
0db9d74e 485 long add = 0, actual_regions_needed = 0;
96822904 486
7b24d861 487 spin_lock(&resv->lock);
0db9d74e
MA
488retry:
489
490 /* Count how many regions are actually needed to execute this add. */
075a61d0
MA
491 add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
492 true);
96822904 493
5e911373 494 /*
0db9d74e
MA
495 * Check for sufficient descriptors in the cache to accommodate
496 * this add operation. Note that actual_regions_needed may be greater
497 * than in_regions_needed, as the resv_map may have been modified since
498 * the region_chg call. In this case, we need to make sure that we
499 * allocate extra entries, such that we have enough for all the
500 * existing adds_in_progress, plus the excess needed for this
501 * operation.
5e911373 502 */
0db9d74e
MA
503 if (actual_regions_needed > in_regions_needed &&
504 resv->region_cache_count <
505 resv->adds_in_progress +
506 (actual_regions_needed - in_regions_needed)) {
507 /* region_add operation of range 1 should never need to
508 * allocate file_region entries.
509 */
510 VM_BUG_ON(t - f <= 1);
5e911373 511
0db9d74e
MA
512 if (allocate_file_region_entries(
513 resv, actual_regions_needed - in_regions_needed)) {
514 return -ENOMEM;
515 }
5e911373 516
0db9d74e 517 goto retry;
5e911373
MK
518 }
519
075a61d0 520 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
0db9d74e
MA
521
522 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 523
7b24d861 524 spin_unlock(&resv->lock);
cf3ad20b
MK
525 VM_BUG_ON(add < 0);
526 return add;
96822904
AW
527}
528
1dd308a7
MK
529/*
530 * Examine the existing reserve map and determine how many
531 * huge pages in the specified range [f, t) are NOT currently
532 * represented. This routine is called before a subsequent
533 * call to region_add that will actually modify the reserve
534 * map to add the specified range [f, t). region_chg does
535 * not change the number of huge pages represented by the
0db9d74e
MA
536 * map. A number of new file_region structures is added to the cache as a
537 * placeholder, for the subsequent region_add call to use. At least 1
538 * file_region structure is added.
539 *
540 * out_regions_needed is the number of regions added to the
541 * resv->adds_in_progress. This value needs to be provided to a follow up call
542 * to region_add or region_abort for proper accounting.
5e911373
MK
543 *
544 * Returns the number of huge pages that need to be added to the existing
545 * reservation map for the range [f, t). This number is greater or equal to
546 * zero. -ENOMEM is returned if a new file_region structure or cache entry
547 * is needed and can not be allocated.
1dd308a7 548 */
0db9d74e
MA
549static long region_chg(struct resv_map *resv, long f, long t,
550 long *out_regions_needed)
96822904 551{
96822904
AW
552 long chg = 0;
553
7b24d861 554 spin_lock(&resv->lock);
5e911373 555
0db9d74e 556 /* Count how many hugepages in this range are NOT respresented. */
075a61d0
MA
557 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
558 out_regions_needed, true);
5e911373 559
0db9d74e
MA
560 if (*out_regions_needed == 0)
561 *out_regions_needed = 1;
5e911373 562
0db9d74e
MA
563 if (allocate_file_region_entries(resv, *out_regions_needed))
564 return -ENOMEM;
5e911373 565
0db9d74e 566 resv->adds_in_progress += *out_regions_needed;
7b24d861 567
7b24d861 568 spin_unlock(&resv->lock);
96822904
AW
569 return chg;
570}
571
5e911373
MK
572/*
573 * Abort the in progress add operation. The adds_in_progress field
574 * of the resv_map keeps track of the operations in progress between
575 * calls to region_chg and region_add. Operations are sometimes
576 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
577 * is called to decrement the adds_in_progress counter. regions_needed
578 * is the value returned by the region_chg call, it is used to decrement
579 * the adds_in_progress counter.
5e911373
MK
580 *
581 * NOTE: The range arguments [f, t) are not needed or used in this
582 * routine. They are kept to make reading the calling code easier as
583 * arguments will match the associated region_chg call.
584 */
0db9d74e
MA
585static void region_abort(struct resv_map *resv, long f, long t,
586 long regions_needed)
5e911373
MK
587{
588 spin_lock(&resv->lock);
589 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 590 resv->adds_in_progress -= regions_needed;
5e911373
MK
591 spin_unlock(&resv->lock);
592}
593
1dd308a7 594/*
feba16e2
MK
595 * Delete the specified range [f, t) from the reserve map. If the
596 * t parameter is LONG_MAX, this indicates that ALL regions after f
597 * should be deleted. Locate the regions which intersect [f, t)
598 * and either trim, delete or split the existing regions.
599 *
600 * Returns the number of huge pages deleted from the reserve map.
601 * In the normal case, the return value is zero or more. In the
602 * case where a region must be split, a new region descriptor must
603 * be allocated. If the allocation fails, -ENOMEM will be returned.
604 * NOTE: If the parameter t == LONG_MAX, then we will never split
605 * a region and possibly return -ENOMEM. Callers specifying
606 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 607 */
feba16e2 608static long region_del(struct resv_map *resv, long f, long t)
96822904 609{
1406ec9b 610 struct list_head *head = &resv->regions;
96822904 611 struct file_region *rg, *trg;
feba16e2
MK
612 struct file_region *nrg = NULL;
613 long del = 0;
96822904 614
feba16e2 615retry:
7b24d861 616 spin_lock(&resv->lock);
feba16e2 617 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
618 /*
619 * Skip regions before the range to be deleted. file_region
620 * ranges are normally of the form [from, to). However, there
621 * may be a "placeholder" entry in the map which is of the form
622 * (from, to) with from == to. Check for placeholder entries
623 * at the beginning of the range to be deleted.
624 */
625 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 626 continue;
dbe409e4 627
feba16e2 628 if (rg->from >= t)
96822904 629 break;
96822904 630
feba16e2
MK
631 if (f > rg->from && t < rg->to) { /* Must split region */
632 /*
633 * Check for an entry in the cache before dropping
634 * lock and attempting allocation.
635 */
636 if (!nrg &&
637 resv->region_cache_count > resv->adds_in_progress) {
638 nrg = list_first_entry(&resv->region_cache,
639 struct file_region,
640 link);
641 list_del(&nrg->link);
642 resv->region_cache_count--;
643 }
96822904 644
feba16e2
MK
645 if (!nrg) {
646 spin_unlock(&resv->lock);
647 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
648 if (!nrg)
649 return -ENOMEM;
650 goto retry;
651 }
652
653 del += t - f;
654
655 /* New entry for end of split region */
656 nrg->from = t;
657 nrg->to = rg->to;
075a61d0
MA
658
659 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
660
feba16e2
MK
661 INIT_LIST_HEAD(&nrg->link);
662
663 /* Original entry is trimmed */
664 rg->to = f;
665
075a61d0
MA
666 hugetlb_cgroup_uncharge_file_region(
667 resv, rg, nrg->to - nrg->from);
668
feba16e2
MK
669 list_add(&nrg->link, &rg->link);
670 nrg = NULL;
96822904 671 break;
feba16e2
MK
672 }
673
674 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
675 del += rg->to - rg->from;
075a61d0
MA
676 hugetlb_cgroup_uncharge_file_region(resv, rg,
677 rg->to - rg->from);
feba16e2
MK
678 list_del(&rg->link);
679 kfree(rg);
680 continue;
681 }
682
683 if (f <= rg->from) { /* Trim beginning of region */
684 del += t - rg->from;
685 rg->from = t;
075a61d0
MA
686
687 hugetlb_cgroup_uncharge_file_region(resv, rg,
688 t - rg->from);
feba16e2
MK
689 } else { /* Trim end of region */
690 del += rg->to - f;
691 rg->to = f;
075a61d0
MA
692
693 hugetlb_cgroup_uncharge_file_region(resv, rg,
694 rg->to - f);
feba16e2 695 }
96822904 696 }
7b24d861 697
7b24d861 698 spin_unlock(&resv->lock);
feba16e2
MK
699 kfree(nrg);
700 return del;
96822904
AW
701}
702
b5cec28d
MK
703/*
704 * A rare out of memory error was encountered which prevented removal of
705 * the reserve map region for a page. The huge page itself was free'ed
706 * and removed from the page cache. This routine will adjust the subpool
707 * usage count, and the global reserve count if needed. By incrementing
708 * these counts, the reserve map entry which could not be deleted will
709 * appear as a "reserved" entry instead of simply dangling with incorrect
710 * counts.
711 */
72e2936c 712void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
713{
714 struct hugepage_subpool *spool = subpool_inode(inode);
715 long rsv_adjust;
716
717 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 718 if (rsv_adjust) {
b5cec28d
MK
719 struct hstate *h = hstate_inode(inode);
720
721 hugetlb_acct_memory(h, 1);
722 }
723}
724
1dd308a7
MK
725/*
726 * Count and return the number of huge pages in the reserve map
727 * that intersect with the range [f, t).
728 */
1406ec9b 729static long region_count(struct resv_map *resv, long f, long t)
84afd99b 730{
1406ec9b 731 struct list_head *head = &resv->regions;
84afd99b
AW
732 struct file_region *rg;
733 long chg = 0;
734
7b24d861 735 spin_lock(&resv->lock);
84afd99b
AW
736 /* Locate each segment we overlap with, and count that overlap. */
737 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
738 long seg_from;
739 long seg_to;
84afd99b
AW
740
741 if (rg->to <= f)
742 continue;
743 if (rg->from >= t)
744 break;
745
746 seg_from = max(rg->from, f);
747 seg_to = min(rg->to, t);
748
749 chg += seg_to - seg_from;
750 }
7b24d861 751 spin_unlock(&resv->lock);
84afd99b
AW
752
753 return chg;
754}
755
e7c4b0bf
AW
756/*
757 * Convert the address within this vma to the page offset within
758 * the mapping, in pagecache page units; huge pages here.
759 */
a5516438
AK
760static pgoff_t vma_hugecache_offset(struct hstate *h,
761 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 762{
a5516438
AK
763 return ((address - vma->vm_start) >> huge_page_shift(h)) +
764 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
765}
766
0fe6e20b
NH
767pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
768 unsigned long address)
769{
770 return vma_hugecache_offset(hstate_vma(vma), vma, address);
771}
dee41079 772EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 773
08fba699
MG
774/*
775 * Return the size of the pages allocated when backing a VMA. In the majority
776 * cases this will be same size as used by the page table entries.
777 */
778unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
779{
05ea8860
DW
780 if (vma->vm_ops && vma->vm_ops->pagesize)
781 return vma->vm_ops->pagesize(vma);
782 return PAGE_SIZE;
08fba699 783}
f340ca0f 784EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 785
3340289d
MG
786/*
787 * Return the page size being used by the MMU to back a VMA. In the majority
788 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
789 * architectures where it differs, an architecture-specific 'strong'
790 * version of this symbol is required.
3340289d 791 */
09135cc5 792__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
793{
794 return vma_kernel_pagesize(vma);
795}
3340289d 796
84afd99b
AW
797/*
798 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
799 * bits of the reservation map pointer, which are always clear due to
800 * alignment.
801 */
802#define HPAGE_RESV_OWNER (1UL << 0)
803#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 804#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 805
a1e78772
MG
806/*
807 * These helpers are used to track how many pages are reserved for
808 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
809 * is guaranteed to have their future faults succeed.
810 *
811 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
812 * the reserve counters are updated with the hugetlb_lock held. It is safe
813 * to reset the VMA at fork() time as it is not in use yet and there is no
814 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
815 *
816 * The private mapping reservation is represented in a subtly different
817 * manner to a shared mapping. A shared mapping has a region map associated
818 * with the underlying file, this region map represents the backing file
819 * pages which have ever had a reservation assigned which this persists even
820 * after the page is instantiated. A private mapping has a region map
821 * associated with the original mmap which is attached to all VMAs which
822 * reference it, this region map represents those offsets which have consumed
823 * reservation ie. where pages have been instantiated.
a1e78772 824 */
e7c4b0bf
AW
825static unsigned long get_vma_private_data(struct vm_area_struct *vma)
826{
827 return (unsigned long)vma->vm_private_data;
828}
829
830static void set_vma_private_data(struct vm_area_struct *vma,
831 unsigned long value)
832{
833 vma->vm_private_data = (void *)value;
834}
835
e9fe92ae
MA
836static void
837resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
838 struct hugetlb_cgroup *h_cg,
839 struct hstate *h)
840{
841#ifdef CONFIG_CGROUP_HUGETLB
842 if (!h_cg || !h) {
843 resv_map->reservation_counter = NULL;
844 resv_map->pages_per_hpage = 0;
845 resv_map->css = NULL;
846 } else {
847 resv_map->reservation_counter =
848 &h_cg->rsvd_hugepage[hstate_index(h)];
849 resv_map->pages_per_hpage = pages_per_huge_page(h);
850 resv_map->css = &h_cg->css;
851 }
852#endif
853}
854
9119a41e 855struct resv_map *resv_map_alloc(void)
84afd99b
AW
856{
857 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
858 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
859
860 if (!resv_map || !rg) {
861 kfree(resv_map);
862 kfree(rg);
84afd99b 863 return NULL;
5e911373 864 }
84afd99b
AW
865
866 kref_init(&resv_map->refs);
7b24d861 867 spin_lock_init(&resv_map->lock);
84afd99b
AW
868 INIT_LIST_HEAD(&resv_map->regions);
869
5e911373 870 resv_map->adds_in_progress = 0;
e9fe92ae
MA
871 /*
872 * Initialize these to 0. On shared mappings, 0's here indicate these
873 * fields don't do cgroup accounting. On private mappings, these will be
874 * re-initialized to the proper values, to indicate that hugetlb cgroup
875 * reservations are to be un-charged from here.
876 */
877 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
878
879 INIT_LIST_HEAD(&resv_map->region_cache);
880 list_add(&rg->link, &resv_map->region_cache);
881 resv_map->region_cache_count = 1;
882
84afd99b
AW
883 return resv_map;
884}
885
9119a41e 886void resv_map_release(struct kref *ref)
84afd99b
AW
887{
888 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
889 struct list_head *head = &resv_map->region_cache;
890 struct file_region *rg, *trg;
84afd99b
AW
891
892 /* Clear out any active regions before we release the map. */
feba16e2 893 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
894
895 /* ... and any entries left in the cache */
896 list_for_each_entry_safe(rg, trg, head, link) {
897 list_del(&rg->link);
898 kfree(rg);
899 }
900
901 VM_BUG_ON(resv_map->adds_in_progress);
902
84afd99b
AW
903 kfree(resv_map);
904}
905
4e35f483
JK
906static inline struct resv_map *inode_resv_map(struct inode *inode)
907{
f27a5136
MK
908 /*
909 * At inode evict time, i_mapping may not point to the original
910 * address space within the inode. This original address space
911 * contains the pointer to the resv_map. So, always use the
912 * address space embedded within the inode.
913 * The VERY common case is inode->mapping == &inode->i_data but,
914 * this may not be true for device special inodes.
915 */
916 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
917}
918
84afd99b 919static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 920{
81d1b09c 921 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
922 if (vma->vm_flags & VM_MAYSHARE) {
923 struct address_space *mapping = vma->vm_file->f_mapping;
924 struct inode *inode = mapping->host;
925
926 return inode_resv_map(inode);
927
928 } else {
84afd99b
AW
929 return (struct resv_map *)(get_vma_private_data(vma) &
930 ~HPAGE_RESV_MASK);
4e35f483 931 }
a1e78772
MG
932}
933
84afd99b 934static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 935{
81d1b09c
SL
936 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
937 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 938
84afd99b
AW
939 set_vma_private_data(vma, (get_vma_private_data(vma) &
940 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
941}
942
943static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
944{
81d1b09c
SL
945 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
946 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
947
948 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
949}
950
951static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
952{
81d1b09c 953 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
954
955 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
956}
957
04f2cbe3 958/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
959void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
960{
81d1b09c 961 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 962 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
963 vma->vm_private_data = (void *)0;
964}
965
966/* Returns true if the VMA has associated reserve pages */
559ec2f8 967static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 968{
af0ed73e
JK
969 if (vma->vm_flags & VM_NORESERVE) {
970 /*
971 * This address is already reserved by other process(chg == 0),
972 * so, we should decrement reserved count. Without decrementing,
973 * reserve count remains after releasing inode, because this
974 * allocated page will go into page cache and is regarded as
975 * coming from reserved pool in releasing step. Currently, we
976 * don't have any other solution to deal with this situation
977 * properly, so add work-around here.
978 */
979 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 980 return true;
af0ed73e 981 else
559ec2f8 982 return false;
af0ed73e 983 }
a63884e9
JK
984
985 /* Shared mappings always use reserves */
1fb1b0e9
MK
986 if (vma->vm_flags & VM_MAYSHARE) {
987 /*
988 * We know VM_NORESERVE is not set. Therefore, there SHOULD
989 * be a region map for all pages. The only situation where
990 * there is no region map is if a hole was punched via
991 * fallocate. In this case, there really are no reverves to
992 * use. This situation is indicated if chg != 0.
993 */
994 if (chg)
995 return false;
996 else
997 return true;
998 }
a63884e9
JK
999
1000 /*
1001 * Only the process that called mmap() has reserves for
1002 * private mappings.
1003 */
67961f9d
MK
1004 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1005 /*
1006 * Like the shared case above, a hole punch or truncate
1007 * could have been performed on the private mapping.
1008 * Examine the value of chg to determine if reserves
1009 * actually exist or were previously consumed.
1010 * Very Subtle - The value of chg comes from a previous
1011 * call to vma_needs_reserves(). The reserve map for
1012 * private mappings has different (opposite) semantics
1013 * than that of shared mappings. vma_needs_reserves()
1014 * has already taken this difference in semantics into
1015 * account. Therefore, the meaning of chg is the same
1016 * as in the shared case above. Code could easily be
1017 * combined, but keeping it separate draws attention to
1018 * subtle differences.
1019 */
1020 if (chg)
1021 return false;
1022 else
1023 return true;
1024 }
a63884e9 1025
559ec2f8 1026 return false;
a1e78772
MG
1027}
1028
a5516438 1029static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1030{
1031 int nid = page_to_nid(page);
0edaecfa 1032 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1033 h->free_huge_pages++;
1034 h->free_huge_pages_node[nid]++;
1da177e4
LT
1035}
1036
94310cbc 1037static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1038{
1039 struct page *page;
1040
c8721bbb 1041 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 1042 if (!PageHWPoison(page))
c8721bbb
NH
1043 break;
1044 /*
1045 * if 'non-isolated free hugepage' not found on the list,
1046 * the allocation fails.
1047 */
1048 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 1049 return NULL;
0edaecfa 1050 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 1051 set_page_refcounted(page);
bf50bab2
NH
1052 h->free_huge_pages--;
1053 h->free_huge_pages_node[nid]--;
1054 return page;
1055}
1056
3e59fcb0
MH
1057static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1058 nodemask_t *nmask)
94310cbc 1059{
3e59fcb0
MH
1060 unsigned int cpuset_mems_cookie;
1061 struct zonelist *zonelist;
1062 struct zone *zone;
1063 struct zoneref *z;
98fa15f3 1064 int node = NUMA_NO_NODE;
94310cbc 1065
3e59fcb0
MH
1066 zonelist = node_zonelist(nid, gfp_mask);
1067
1068retry_cpuset:
1069 cpuset_mems_cookie = read_mems_allowed_begin();
1070 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1071 struct page *page;
1072
1073 if (!cpuset_zone_allowed(zone, gfp_mask))
1074 continue;
1075 /*
1076 * no need to ask again on the same node. Pool is node rather than
1077 * zone aware
1078 */
1079 if (zone_to_nid(zone) == node)
1080 continue;
1081 node = zone_to_nid(zone);
94310cbc 1082
94310cbc
AK
1083 page = dequeue_huge_page_node_exact(h, node);
1084 if (page)
1085 return page;
1086 }
3e59fcb0
MH
1087 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1088 goto retry_cpuset;
1089
94310cbc
AK
1090 return NULL;
1091}
1092
86cdb465
NH
1093/* Movability of hugepages depends on migration support. */
1094static inline gfp_t htlb_alloc_mask(struct hstate *h)
1095{
7ed2c31d 1096 if (hugepage_movable_supported(h))
86cdb465
NH
1097 return GFP_HIGHUSER_MOVABLE;
1098 else
1099 return GFP_HIGHUSER;
1100}
1101
a5516438
AK
1102static struct page *dequeue_huge_page_vma(struct hstate *h,
1103 struct vm_area_struct *vma,
af0ed73e
JK
1104 unsigned long address, int avoid_reserve,
1105 long chg)
1da177e4 1106{
3e59fcb0 1107 struct page *page;
480eccf9 1108 struct mempolicy *mpol;
04ec6264 1109 gfp_t gfp_mask;
3e59fcb0 1110 nodemask_t *nodemask;
04ec6264 1111 int nid;
1da177e4 1112
a1e78772
MG
1113 /*
1114 * A child process with MAP_PRIVATE mappings created by their parent
1115 * have no page reserves. This check ensures that reservations are
1116 * not "stolen". The child may still get SIGKILLed
1117 */
af0ed73e 1118 if (!vma_has_reserves(vma, chg) &&
a5516438 1119 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1120 goto err;
a1e78772 1121
04f2cbe3 1122 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1123 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1124 goto err;
04f2cbe3 1125
04ec6264
VB
1126 gfp_mask = htlb_alloc_mask(h);
1127 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1128 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1129 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1130 SetPagePrivate(page);
1131 h->resv_huge_pages--;
1da177e4 1132 }
cc9a6c87 1133
52cd3b07 1134 mpol_cond_put(mpol);
1da177e4 1135 return page;
cc9a6c87
MG
1136
1137err:
cc9a6c87 1138 return NULL;
1da177e4
LT
1139}
1140
1cac6f2c
LC
1141/*
1142 * common helper functions for hstate_next_node_to_{alloc|free}.
1143 * We may have allocated or freed a huge page based on a different
1144 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1145 * be outside of *nodes_allowed. Ensure that we use an allowed
1146 * node for alloc or free.
1147 */
1148static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1149{
0edaf86c 1150 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1151 VM_BUG_ON(nid >= MAX_NUMNODES);
1152
1153 return nid;
1154}
1155
1156static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1157{
1158 if (!node_isset(nid, *nodes_allowed))
1159 nid = next_node_allowed(nid, nodes_allowed);
1160 return nid;
1161}
1162
1163/*
1164 * returns the previously saved node ["this node"] from which to
1165 * allocate a persistent huge page for the pool and advance the
1166 * next node from which to allocate, handling wrap at end of node
1167 * mask.
1168 */
1169static int hstate_next_node_to_alloc(struct hstate *h,
1170 nodemask_t *nodes_allowed)
1171{
1172 int nid;
1173
1174 VM_BUG_ON(!nodes_allowed);
1175
1176 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1177 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1178
1179 return nid;
1180}
1181
1182/*
1183 * helper for free_pool_huge_page() - return the previously saved
1184 * node ["this node"] from which to free a huge page. Advance the
1185 * next node id whether or not we find a free huge page to free so
1186 * that the next attempt to free addresses the next node.
1187 */
1188static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1189{
1190 int nid;
1191
1192 VM_BUG_ON(!nodes_allowed);
1193
1194 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1195 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1196
1197 return nid;
1198}
1199
1200#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1201 for (nr_nodes = nodes_weight(*mask); \
1202 nr_nodes > 0 && \
1203 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1204 nr_nodes--)
1205
1206#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1207 for (nr_nodes = nodes_weight(*mask); \
1208 nr_nodes > 0 && \
1209 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1210 nr_nodes--)
1211
e1073d1e 1212#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1213static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1214 unsigned int order)
944d9fec
LC
1215{
1216 int i;
1217 int nr_pages = 1 << order;
1218 struct page *p = page + 1;
1219
c8cc708a 1220 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1221 if (hpage_pincount_available(page))
1222 atomic_set(compound_pincount_ptr(page), 0);
1223
944d9fec 1224 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1225 clear_compound_head(p);
944d9fec 1226 set_page_refcounted(p);
944d9fec
LC
1227 }
1228
1229 set_compound_order(page, 0);
1230 __ClearPageHead(page);
1231}
1232
d00181b9 1233static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1234{
cf11e85f
RG
1235 /*
1236 * If the page isn't allocated using the cma allocator,
1237 * cma_release() returns false.
1238 */
1239 if (IS_ENABLED(CONFIG_CMA) &&
1240 cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1241 return;
1242
944d9fec
LC
1243 free_contig_range(page_to_pfn(page), 1 << order);
1244}
1245
4eb0716e 1246#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1247static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1248 int nid, nodemask_t *nodemask)
944d9fec 1249{
5e27a2df 1250 unsigned long nr_pages = 1UL << huge_page_order(h);
944d9fec 1251
cf11e85f
RG
1252 if (IS_ENABLED(CONFIG_CMA)) {
1253 struct page *page;
1254 int node;
1255
1256 for_each_node_mask(node, *nodemask) {
1257 if (!hugetlb_cma[node])
1258 continue;
1259
1260 page = cma_alloc(hugetlb_cma[node], nr_pages,
1261 huge_page_order(h), true);
1262 if (page)
1263 return page;
1264 }
1265 }
1266
5e27a2df 1267 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1268}
1269
1270static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1271static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1272#else /* !CONFIG_CONTIG_ALLOC */
1273static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1274 int nid, nodemask_t *nodemask)
1275{
1276 return NULL;
1277}
1278#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1279
e1073d1e 1280#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1281static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1282 int nid, nodemask_t *nodemask)
1283{
1284 return NULL;
1285}
d00181b9 1286static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1287static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1288 unsigned int order) { }
944d9fec
LC
1289#endif
1290
a5516438 1291static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1292{
1293 int i;
a5516438 1294
4eb0716e 1295 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1296 return;
18229df5 1297
a5516438
AK
1298 h->nr_huge_pages--;
1299 h->nr_huge_pages_node[page_to_nid(page)]--;
1300 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1301 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1302 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1303 1 << PG_active | 1 << PG_private |
1304 1 << PG_writeback);
6af2acb6 1305 }
309381fe 1306 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1adc4d41 1307 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
f1e61557 1308 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1309 set_page_refcounted(page);
944d9fec 1310 if (hstate_is_gigantic(h)) {
cf11e85f
RG
1311 /*
1312 * Temporarily drop the hugetlb_lock, because
1313 * we might block in free_gigantic_page().
1314 */
1315 spin_unlock(&hugetlb_lock);
944d9fec
LC
1316 destroy_compound_gigantic_page(page, huge_page_order(h));
1317 free_gigantic_page(page, huge_page_order(h));
cf11e85f 1318 spin_lock(&hugetlb_lock);
944d9fec 1319 } else {
944d9fec
LC
1320 __free_pages(page, huge_page_order(h));
1321 }
6af2acb6
AL
1322}
1323
e5ff2159
AK
1324struct hstate *size_to_hstate(unsigned long size)
1325{
1326 struct hstate *h;
1327
1328 for_each_hstate(h) {
1329 if (huge_page_size(h) == size)
1330 return h;
1331 }
1332 return NULL;
1333}
1334
bcc54222
NH
1335/*
1336 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1337 * to hstate->hugepage_activelist.)
1338 *
1339 * This function can be called for tail pages, but never returns true for them.
1340 */
1341bool page_huge_active(struct page *page)
1342{
1343 VM_BUG_ON_PAGE(!PageHuge(page), page);
1344 return PageHead(page) && PagePrivate(&page[1]);
1345}
1346
1347/* never called for tail page */
1348static void set_page_huge_active(struct page *page)
1349{
1350 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1351 SetPagePrivate(&page[1]);
1352}
1353
1354static void clear_page_huge_active(struct page *page)
1355{
1356 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1357 ClearPagePrivate(&page[1]);
1358}
1359
ab5ac90a
MH
1360/*
1361 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1362 * code
1363 */
1364static inline bool PageHugeTemporary(struct page *page)
1365{
1366 if (!PageHuge(page))
1367 return false;
1368
1369 return (unsigned long)page[2].mapping == -1U;
1370}
1371
1372static inline void SetPageHugeTemporary(struct page *page)
1373{
1374 page[2].mapping = (void *)-1U;
1375}
1376
1377static inline void ClearPageHugeTemporary(struct page *page)
1378{
1379 page[2].mapping = NULL;
1380}
1381
c77c0a8a 1382static void __free_huge_page(struct page *page)
27a85ef1 1383{
a5516438
AK
1384 /*
1385 * Can't pass hstate in here because it is called from the
1386 * compound page destructor.
1387 */
e5ff2159 1388 struct hstate *h = page_hstate(page);
7893d1d5 1389 int nid = page_to_nid(page);
90481622
DG
1390 struct hugepage_subpool *spool =
1391 (struct hugepage_subpool *)page_private(page);
07443a85 1392 bool restore_reserve;
27a85ef1 1393
b4330afb
MK
1394 VM_BUG_ON_PAGE(page_count(page), page);
1395 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1396
1397 set_page_private(page, 0);
1398 page->mapping = NULL;
07443a85 1399 restore_reserve = PagePrivate(page);
16c794b4 1400 ClearPagePrivate(page);
27a85ef1 1401
1c5ecae3 1402 /*
0919e1b6
MK
1403 * If PagePrivate() was set on page, page allocation consumed a
1404 * reservation. If the page was associated with a subpool, there
1405 * would have been a page reserved in the subpool before allocation
1406 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1407 * reservtion, do not call hugepage_subpool_put_pages() as this will
1408 * remove the reserved page from the subpool.
1c5ecae3 1409 */
0919e1b6
MK
1410 if (!restore_reserve) {
1411 /*
1412 * A return code of zero implies that the subpool will be
1413 * under its minimum size if the reservation is not restored
1414 * after page is free. Therefore, force restore_reserve
1415 * operation.
1416 */
1417 if (hugepage_subpool_put_pages(spool, 1) == 0)
1418 restore_reserve = true;
1419 }
1c5ecae3 1420
27a85ef1 1421 spin_lock(&hugetlb_lock);
bcc54222 1422 clear_page_huge_active(page);
6d76dcf4
AK
1423 hugetlb_cgroup_uncharge_page(hstate_index(h),
1424 pages_per_huge_page(h), page);
08cf9faf
MA
1425 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1426 pages_per_huge_page(h), page);
07443a85
JK
1427 if (restore_reserve)
1428 h->resv_huge_pages++;
1429
ab5ac90a
MH
1430 if (PageHugeTemporary(page)) {
1431 list_del(&page->lru);
1432 ClearPageHugeTemporary(page);
1433 update_and_free_page(h, page);
1434 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1435 /* remove the page from active list */
1436 list_del(&page->lru);
a5516438
AK
1437 update_and_free_page(h, page);
1438 h->surplus_huge_pages--;
1439 h->surplus_huge_pages_node[nid]--;
7893d1d5 1440 } else {
5d3a551c 1441 arch_clear_hugepage_flags(page);
a5516438 1442 enqueue_huge_page(h, page);
7893d1d5 1443 }
27a85ef1
DG
1444 spin_unlock(&hugetlb_lock);
1445}
1446
c77c0a8a
WL
1447/*
1448 * As free_huge_page() can be called from a non-task context, we have
1449 * to defer the actual freeing in a workqueue to prevent potential
1450 * hugetlb_lock deadlock.
1451 *
1452 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1453 * be freed and frees them one-by-one. As the page->mapping pointer is
1454 * going to be cleared in __free_huge_page() anyway, it is reused as the
1455 * llist_node structure of a lockless linked list of huge pages to be freed.
1456 */
1457static LLIST_HEAD(hpage_freelist);
1458
1459static void free_hpage_workfn(struct work_struct *work)
1460{
1461 struct llist_node *node;
1462 struct page *page;
1463
1464 node = llist_del_all(&hpage_freelist);
1465
1466 while (node) {
1467 page = container_of((struct address_space **)node,
1468 struct page, mapping);
1469 node = node->next;
1470 __free_huge_page(page);
1471 }
1472}
1473static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1474
1475void free_huge_page(struct page *page)
1476{
1477 /*
1478 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1479 */
1480 if (!in_task()) {
1481 /*
1482 * Only call schedule_work() if hpage_freelist is previously
1483 * empty. Otherwise, schedule_work() had been called but the
1484 * workfn hasn't retrieved the list yet.
1485 */
1486 if (llist_add((struct llist_node *)&page->mapping,
1487 &hpage_freelist))
1488 schedule_work(&free_hpage_work);
1489 return;
1490 }
1491
1492 __free_huge_page(page);
1493}
1494
a5516438 1495static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1496{
0edaecfa 1497 INIT_LIST_HEAD(&page->lru);
f1e61557 1498 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1499 spin_lock(&hugetlb_lock);
9dd540e2 1500 set_hugetlb_cgroup(page, NULL);
1adc4d41 1501 set_hugetlb_cgroup_rsvd(page, NULL);
a5516438
AK
1502 h->nr_huge_pages++;
1503 h->nr_huge_pages_node[nid]++;
b7ba30c6 1504 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1505}
1506
d00181b9 1507static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1508{
1509 int i;
1510 int nr_pages = 1 << order;
1511 struct page *p = page + 1;
1512
1513 /* we rely on prep_new_huge_page to set the destructor */
1514 set_compound_order(page, order);
ef5a22be 1515 __ClearPageReserved(page);
de09d31d 1516 __SetPageHead(page);
20a0307c 1517 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1518 /*
1519 * For gigantic hugepages allocated through bootmem at
1520 * boot, it's safer to be consistent with the not-gigantic
1521 * hugepages and clear the PG_reserved bit from all tail pages
1522 * too. Otherwse drivers using get_user_pages() to access tail
1523 * pages may get the reference counting wrong if they see
1524 * PG_reserved set on a tail page (despite the head page not
1525 * having PG_reserved set). Enforcing this consistency between
1526 * head and tail pages allows drivers to optimize away a check
1527 * on the head page when they need know if put_page() is needed
1528 * after get_user_pages().
1529 */
1530 __ClearPageReserved(p);
58a84aa9 1531 set_page_count(p, 0);
1d798ca3 1532 set_compound_head(p, page);
20a0307c 1533 }
b4330afb 1534 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
1535
1536 if (hpage_pincount_available(page))
1537 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1538}
1539
7795912c
AM
1540/*
1541 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1542 * transparent huge pages. See the PageTransHuge() documentation for more
1543 * details.
1544 */
20a0307c
WF
1545int PageHuge(struct page *page)
1546{
20a0307c
WF
1547 if (!PageCompound(page))
1548 return 0;
1549
1550 page = compound_head(page);
f1e61557 1551 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1552}
43131e14
NH
1553EXPORT_SYMBOL_GPL(PageHuge);
1554
27c73ae7
AA
1555/*
1556 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1557 * normal or transparent huge pages.
1558 */
1559int PageHeadHuge(struct page *page_head)
1560{
27c73ae7
AA
1561 if (!PageHead(page_head))
1562 return 0;
1563
d4af73e3 1564 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1565}
27c73ae7 1566
c0d0381a
MK
1567/*
1568 * Find address_space associated with hugetlbfs page.
1569 * Upon entry page is locked and page 'was' mapped although mapped state
1570 * could change. If necessary, use anon_vma to find vma and associated
1571 * address space. The returned mapping may be stale, but it can not be
1572 * invalid as page lock (which is held) is required to destroy mapping.
1573 */
1574static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1575{
1576 struct anon_vma *anon_vma;
1577 pgoff_t pgoff_start, pgoff_end;
1578 struct anon_vma_chain *avc;
1579 struct address_space *mapping = page_mapping(hpage);
1580
1581 /* Simple file based mapping */
1582 if (mapping)
1583 return mapping;
1584
1585 /*
1586 * Even anonymous hugetlbfs mappings are associated with an
1587 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1588 * code). Find a vma associated with the anonymous vma, and
1589 * use the file pointer to get address_space.
1590 */
1591 anon_vma = page_lock_anon_vma_read(hpage);
1592 if (!anon_vma)
1593 return mapping; /* NULL */
1594
1595 /* Use first found vma */
1596 pgoff_start = page_to_pgoff(hpage);
1597 pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
1598 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1599 pgoff_start, pgoff_end) {
1600 struct vm_area_struct *vma = avc->vma;
1601
1602 mapping = vma->vm_file->f_mapping;
1603 break;
1604 }
1605
1606 anon_vma_unlock_read(anon_vma);
1607 return mapping;
1608}
1609
1610/*
1611 * Find and lock address space (mapping) in write mode.
1612 *
1613 * Upon entry, the page is locked which allows us to find the mapping
1614 * even in the case of an anon page. However, locking order dictates
1615 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
1616 * specific. So, we first try to lock the sema while still holding the
1617 * page lock. If this works, great! If not, then we need to drop the
1618 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
1619 * course, need to revalidate state along the way.
1620 */
1621struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1622{
1623 struct address_space *mapping, *mapping2;
1624
1625 mapping = _get_hugetlb_page_mapping(hpage);
1626retry:
1627 if (!mapping)
1628 return mapping;
1629
1630 /*
1631 * If no contention, take lock and return
1632 */
1633 if (i_mmap_trylock_write(mapping))
1634 return mapping;
1635
1636 /*
1637 * Must drop page lock and wait on mapping sema.
1638 * Note: Once page lock is dropped, mapping could become invalid.
1639 * As a hack, increase map count until we lock page again.
1640 */
1641 atomic_inc(&hpage->_mapcount);
1642 unlock_page(hpage);
1643 i_mmap_lock_write(mapping);
1644 lock_page(hpage);
1645 atomic_add_negative(-1, &hpage->_mapcount);
1646
1647 /* verify page is still mapped */
1648 if (!page_mapped(hpage)) {
1649 i_mmap_unlock_write(mapping);
1650 return NULL;
1651 }
1652
1653 /*
1654 * Get address space again and verify it is the same one
1655 * we locked. If not, drop lock and retry.
1656 */
1657 mapping2 = _get_hugetlb_page_mapping(hpage);
1658 if (mapping2 != mapping) {
1659 i_mmap_unlock_write(mapping);
1660 mapping = mapping2;
1661 goto retry;
1662 }
1663
1664 return mapping;
1665}
1666
13d60f4b
ZY
1667pgoff_t __basepage_index(struct page *page)
1668{
1669 struct page *page_head = compound_head(page);
1670 pgoff_t index = page_index(page_head);
1671 unsigned long compound_idx;
1672
1673 if (!PageHuge(page_head))
1674 return page_index(page);
1675
1676 if (compound_order(page_head) >= MAX_ORDER)
1677 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1678 else
1679 compound_idx = page - page_head;
1680
1681 return (index << compound_order(page_head)) + compound_idx;
1682}
1683
0c397dae 1684static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1685 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1686 nodemask_t *node_alloc_noretry)
1da177e4 1687{
af0fb9df 1688 int order = huge_page_order(h);
1da177e4 1689 struct page *page;
f60858f9 1690 bool alloc_try_hard = true;
f96efd58 1691
f60858f9
MK
1692 /*
1693 * By default we always try hard to allocate the page with
1694 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1695 * a loop (to adjust global huge page counts) and previous allocation
1696 * failed, do not continue to try hard on the same node. Use the
1697 * node_alloc_noretry bitmap to manage this state information.
1698 */
1699 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1700 alloc_try_hard = false;
1701 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1702 if (alloc_try_hard)
1703 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1704 if (nid == NUMA_NO_NODE)
1705 nid = numa_mem_id();
1706 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1707 if (page)
1708 __count_vm_event(HTLB_BUDDY_PGALLOC);
1709 else
1710 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1711
f60858f9
MK
1712 /*
1713 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1714 * indicates an overall state change. Clear bit so that we resume
1715 * normal 'try hard' allocations.
1716 */
1717 if (node_alloc_noretry && page && !alloc_try_hard)
1718 node_clear(nid, *node_alloc_noretry);
1719
1720 /*
1721 * If we tried hard to get a page but failed, set bit so that
1722 * subsequent attempts will not try as hard until there is an
1723 * overall state change.
1724 */
1725 if (node_alloc_noretry && !page && alloc_try_hard)
1726 node_set(nid, *node_alloc_noretry);
1727
63b4613c
NA
1728 return page;
1729}
1730
0c397dae
MH
1731/*
1732 * Common helper to allocate a fresh hugetlb page. All specific allocators
1733 * should use this function to get new hugetlb pages
1734 */
1735static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1736 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1737 nodemask_t *node_alloc_noretry)
0c397dae
MH
1738{
1739 struct page *page;
1740
1741 if (hstate_is_gigantic(h))
1742 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1743 else
1744 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1745 nid, nmask, node_alloc_noretry);
0c397dae
MH
1746 if (!page)
1747 return NULL;
1748
1749 if (hstate_is_gigantic(h))
1750 prep_compound_gigantic_page(page, huge_page_order(h));
1751 prep_new_huge_page(h, page, page_to_nid(page));
1752
1753 return page;
1754}
1755
af0fb9df
MH
1756/*
1757 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1758 * manner.
1759 */
f60858f9
MK
1760static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1761 nodemask_t *node_alloc_noretry)
b2261026
JK
1762{
1763 struct page *page;
1764 int nr_nodes, node;
af0fb9df 1765 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1766
1767 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1768 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1769 node_alloc_noretry);
af0fb9df 1770 if (page)
b2261026 1771 break;
b2261026
JK
1772 }
1773
af0fb9df
MH
1774 if (!page)
1775 return 0;
b2261026 1776
af0fb9df
MH
1777 put_page(page); /* free it into the hugepage allocator */
1778
1779 return 1;
b2261026
JK
1780}
1781
e8c5c824
LS
1782/*
1783 * Free huge page from pool from next node to free.
1784 * Attempt to keep persistent huge pages more or less
1785 * balanced over allowed nodes.
1786 * Called with hugetlb_lock locked.
1787 */
6ae11b27
LS
1788static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1789 bool acct_surplus)
e8c5c824 1790{
b2261026 1791 int nr_nodes, node;
e8c5c824
LS
1792 int ret = 0;
1793
b2261026 1794 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1795 /*
1796 * If we're returning unused surplus pages, only examine
1797 * nodes with surplus pages.
1798 */
b2261026
JK
1799 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1800 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1801 struct page *page =
b2261026 1802 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1803 struct page, lru);
1804 list_del(&page->lru);
1805 h->free_huge_pages--;
b2261026 1806 h->free_huge_pages_node[node]--;
685f3457
LS
1807 if (acct_surplus) {
1808 h->surplus_huge_pages--;
b2261026 1809 h->surplus_huge_pages_node[node]--;
685f3457 1810 }
e8c5c824
LS
1811 update_and_free_page(h, page);
1812 ret = 1;
9a76db09 1813 break;
e8c5c824 1814 }
b2261026 1815 }
e8c5c824
LS
1816
1817 return ret;
1818}
1819
c8721bbb
NH
1820/*
1821 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1822 * nothing for in-use hugepages and non-hugepages.
1823 * This function returns values like below:
1824 *
1825 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1826 * (allocated or reserved.)
1827 * 0: successfully dissolved free hugepages or the page is not a
1828 * hugepage (considered as already dissolved)
c8721bbb 1829 */
c3114a84 1830int dissolve_free_huge_page(struct page *page)
c8721bbb 1831{
6bc9b564 1832 int rc = -EBUSY;
082d5b6b 1833
faf53def
NH
1834 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1835 if (!PageHuge(page))
1836 return 0;
1837
c8721bbb 1838 spin_lock(&hugetlb_lock);
faf53def
NH
1839 if (!PageHuge(page)) {
1840 rc = 0;
1841 goto out;
1842 }
1843
1844 if (!page_count(page)) {
2247bb33
GS
1845 struct page *head = compound_head(page);
1846 struct hstate *h = page_hstate(head);
1847 int nid = page_to_nid(head);
6bc9b564 1848 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1849 goto out;
c3114a84
AK
1850 /*
1851 * Move PageHWPoison flag from head page to the raw error page,
1852 * which makes any subpages rather than the error page reusable.
1853 */
1854 if (PageHWPoison(head) && page != head) {
1855 SetPageHWPoison(page);
1856 ClearPageHWPoison(head);
1857 }
2247bb33 1858 list_del(&head->lru);
c8721bbb
NH
1859 h->free_huge_pages--;
1860 h->free_huge_pages_node[nid]--;
c1470b33 1861 h->max_huge_pages--;
2247bb33 1862 update_and_free_page(h, head);
6bc9b564 1863 rc = 0;
c8721bbb 1864 }
082d5b6b 1865out:
c8721bbb 1866 spin_unlock(&hugetlb_lock);
082d5b6b 1867 return rc;
c8721bbb
NH
1868}
1869
1870/*
1871 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1872 * make specified memory blocks removable from the system.
2247bb33
GS
1873 * Note that this will dissolve a free gigantic hugepage completely, if any
1874 * part of it lies within the given range.
082d5b6b
GS
1875 * Also note that if dissolve_free_huge_page() returns with an error, all
1876 * free hugepages that were dissolved before that error are lost.
c8721bbb 1877 */
082d5b6b 1878int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1879{
c8721bbb 1880 unsigned long pfn;
eb03aa00 1881 struct page *page;
082d5b6b 1882 int rc = 0;
c8721bbb 1883
d0177639 1884 if (!hugepages_supported())
082d5b6b 1885 return rc;
d0177639 1886
eb03aa00
GS
1887 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1888 page = pfn_to_page(pfn);
faf53def
NH
1889 rc = dissolve_free_huge_page(page);
1890 if (rc)
1891 break;
eb03aa00 1892 }
082d5b6b
GS
1893
1894 return rc;
c8721bbb
NH
1895}
1896
ab5ac90a
MH
1897/*
1898 * Allocates a fresh surplus page from the page allocator.
1899 */
0c397dae 1900static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1901 int nid, nodemask_t *nmask)
7893d1d5 1902{
9980d744 1903 struct page *page = NULL;
7893d1d5 1904
bae7f4ae 1905 if (hstate_is_gigantic(h))
aa888a74
AK
1906 return NULL;
1907
d1c3fb1f 1908 spin_lock(&hugetlb_lock);
9980d744
MH
1909 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1910 goto out_unlock;
d1c3fb1f
NA
1911 spin_unlock(&hugetlb_lock);
1912
f60858f9 1913 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1914 if (!page)
0c397dae 1915 return NULL;
d1c3fb1f
NA
1916
1917 spin_lock(&hugetlb_lock);
9980d744
MH
1918 /*
1919 * We could have raced with the pool size change.
1920 * Double check that and simply deallocate the new page
1921 * if we would end up overcommiting the surpluses. Abuse
1922 * temporary page to workaround the nasty free_huge_page
1923 * codeflow
1924 */
1925 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1926 SetPageHugeTemporary(page);
2bf753e6 1927 spin_unlock(&hugetlb_lock);
9980d744 1928 put_page(page);
2bf753e6 1929 return NULL;
9980d744 1930 } else {
9980d744 1931 h->surplus_huge_pages++;
4704dea3 1932 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1933 }
9980d744
MH
1934
1935out_unlock:
d1c3fb1f 1936 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1937
1938 return page;
1939}
1940
9a4e9f3b
AK
1941struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1942 int nid, nodemask_t *nmask)
ab5ac90a
MH
1943{
1944 struct page *page;
1945
1946 if (hstate_is_gigantic(h))
1947 return NULL;
1948
f60858f9 1949 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1950 if (!page)
1951 return NULL;
1952
1953 /*
1954 * We do not account these pages as surplus because they are only
1955 * temporary and will be released properly on the last reference
1956 */
ab5ac90a
MH
1957 SetPageHugeTemporary(page);
1958
1959 return page;
1960}
1961
099730d6
DH
1962/*
1963 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1964 */
e0ec90ee 1965static
0c397dae 1966struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1967 struct vm_area_struct *vma, unsigned long addr)
1968{
aaf14e40
MH
1969 struct page *page;
1970 struct mempolicy *mpol;
1971 gfp_t gfp_mask = htlb_alloc_mask(h);
1972 int nid;
1973 nodemask_t *nodemask;
1974
1975 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1976 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1977 mpol_cond_put(mpol);
1978
1979 return page;
099730d6
DH
1980}
1981
ab5ac90a 1982/* page migration callback function */
bf50bab2
NH
1983struct page *alloc_huge_page_node(struct hstate *h, int nid)
1984{
aaf14e40 1985 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1986 struct page *page = NULL;
bf50bab2 1987
aaf14e40
MH
1988 if (nid != NUMA_NO_NODE)
1989 gfp_mask |= __GFP_THISNODE;
1990
bf50bab2 1991 spin_lock(&hugetlb_lock);
4ef91848 1992 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1993 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1994 spin_unlock(&hugetlb_lock);
1995
94ae8ba7 1996 if (!page)
0c397dae 1997 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1998
1999 return page;
2000}
2001
ab5ac90a 2002/* page migration callback function */
3e59fcb0
MH
2003struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2004 nodemask_t *nmask)
4db9b2ef 2005{
aaf14e40 2006 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
2007
2008 spin_lock(&hugetlb_lock);
2009 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
2010 struct page *page;
2011
2012 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2013 if (page) {
2014 spin_unlock(&hugetlb_lock);
2015 return page;
4db9b2ef
MH
2016 }
2017 }
2018 spin_unlock(&hugetlb_lock);
4db9b2ef 2019
0c397dae 2020 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2021}
2022
ebd63723 2023/* mempolicy aware migration callback */
389c8178
MH
2024struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2025 unsigned long address)
ebd63723
MH
2026{
2027 struct mempolicy *mpol;
2028 nodemask_t *nodemask;
2029 struct page *page;
ebd63723
MH
2030 gfp_t gfp_mask;
2031 int node;
2032
ebd63723
MH
2033 gfp_mask = htlb_alloc_mask(h);
2034 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2035 page = alloc_huge_page_nodemask(h, node, nodemask);
2036 mpol_cond_put(mpol);
2037
2038 return page;
2039}
2040
e4e574b7 2041/*
25985edc 2042 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2043 * of size 'delta'.
2044 */
a5516438 2045static int gather_surplus_pages(struct hstate *h, int delta)
1b2a1e7b 2046 __must_hold(&hugetlb_lock)
e4e574b7
AL
2047{
2048 struct list_head surplus_list;
2049 struct page *page, *tmp;
2050 int ret, i;
2051 int needed, allocated;
28073b02 2052 bool alloc_ok = true;
e4e574b7 2053
a5516438 2054 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2055 if (needed <= 0) {
a5516438 2056 h->resv_huge_pages += delta;
e4e574b7 2057 return 0;
ac09b3a1 2058 }
e4e574b7
AL
2059
2060 allocated = 0;
2061 INIT_LIST_HEAD(&surplus_list);
2062
2063 ret = -ENOMEM;
2064retry:
2065 spin_unlock(&hugetlb_lock);
2066 for (i = 0; i < needed; i++) {
0c397dae 2067 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 2068 NUMA_NO_NODE, NULL);
28073b02
HD
2069 if (!page) {
2070 alloc_ok = false;
2071 break;
2072 }
e4e574b7 2073 list_add(&page->lru, &surplus_list);
69ed779a 2074 cond_resched();
e4e574b7 2075 }
28073b02 2076 allocated += i;
e4e574b7
AL
2077
2078 /*
2079 * After retaking hugetlb_lock, we need to recalculate 'needed'
2080 * because either resv_huge_pages or free_huge_pages may have changed.
2081 */
2082 spin_lock(&hugetlb_lock);
a5516438
AK
2083 needed = (h->resv_huge_pages + delta) -
2084 (h->free_huge_pages + allocated);
28073b02
HD
2085 if (needed > 0) {
2086 if (alloc_ok)
2087 goto retry;
2088 /*
2089 * We were not able to allocate enough pages to
2090 * satisfy the entire reservation so we free what
2091 * we've allocated so far.
2092 */
2093 goto free;
2094 }
e4e574b7
AL
2095 /*
2096 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2097 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2098 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2099 * allocator. Commit the entire reservation here to prevent another
2100 * process from stealing the pages as they are added to the pool but
2101 * before they are reserved.
e4e574b7
AL
2102 */
2103 needed += allocated;
a5516438 2104 h->resv_huge_pages += delta;
e4e574b7 2105 ret = 0;
a9869b83 2106
19fc3f0a 2107 /* Free the needed pages to the hugetlb pool */
e4e574b7 2108 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
2109 if ((--needed) < 0)
2110 break;
a9869b83
NH
2111 /*
2112 * This page is now managed by the hugetlb allocator and has
2113 * no users -- drop the buddy allocator's reference.
2114 */
2115 put_page_testzero(page);
309381fe 2116 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 2117 enqueue_huge_page(h, page);
19fc3f0a 2118 }
28073b02 2119free:
b0365c8d 2120 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
2121
2122 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2123 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2124 put_page(page);
a9869b83 2125 spin_lock(&hugetlb_lock);
e4e574b7
AL
2126
2127 return ret;
2128}
2129
2130/*
e5bbc8a6
MK
2131 * This routine has two main purposes:
2132 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2133 * in unused_resv_pages. This corresponds to the prior adjustments made
2134 * to the associated reservation map.
2135 * 2) Free any unused surplus pages that may have been allocated to satisfy
2136 * the reservation. As many as unused_resv_pages may be freed.
2137 *
2138 * Called with hugetlb_lock held. However, the lock could be dropped (and
2139 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2140 * we must make sure nobody else can claim pages we are in the process of
2141 * freeing. Do this by ensuring resv_huge_page always is greater than the
2142 * number of huge pages we plan to free when dropping the lock.
e4e574b7 2143 */
a5516438
AK
2144static void return_unused_surplus_pages(struct hstate *h,
2145 unsigned long unused_resv_pages)
e4e574b7 2146{
e4e574b7
AL
2147 unsigned long nr_pages;
2148
aa888a74 2149 /* Cannot return gigantic pages currently */
bae7f4ae 2150 if (hstate_is_gigantic(h))
e5bbc8a6 2151 goto out;
aa888a74 2152
e5bbc8a6
MK
2153 /*
2154 * Part (or even all) of the reservation could have been backed
2155 * by pre-allocated pages. Only free surplus pages.
2156 */
a5516438 2157 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2158
685f3457
LS
2159 /*
2160 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2161 * evenly across all nodes with memory. Iterate across these nodes
2162 * until we can no longer free unreserved surplus pages. This occurs
2163 * when the nodes with surplus pages have no free pages.
2164 * free_pool_huge_page() will balance the the freed pages across the
2165 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
2166 *
2167 * Note that we decrement resv_huge_pages as we free the pages. If
2168 * we drop the lock, resv_huge_pages will still be sufficiently large
2169 * to cover subsequent pages we may free.
685f3457
LS
2170 */
2171 while (nr_pages--) {
e5bbc8a6
MK
2172 h->resv_huge_pages--;
2173 unused_resv_pages--;
8cebfcd0 2174 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 2175 goto out;
7848a4bf 2176 cond_resched_lock(&hugetlb_lock);
e4e574b7 2177 }
e5bbc8a6
MK
2178
2179out:
2180 /* Fully uncommit the reservation */
2181 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
2182}
2183
5e911373 2184
c37f9fb1 2185/*
feba16e2 2186 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2187 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2188 *
2189 * vma_needs_reservation is called to determine if the huge page at addr
2190 * within the vma has an associated reservation. If a reservation is
2191 * needed, the value 1 is returned. The caller is then responsible for
2192 * managing the global reservation and subpool usage counts. After
2193 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2194 * to add the page to the reservation map. If the page allocation fails,
2195 * the reservation must be ended instead of committed. vma_end_reservation
2196 * is called in such cases.
cf3ad20b
MK
2197 *
2198 * In the normal case, vma_commit_reservation returns the same value
2199 * as the preceding vma_needs_reservation call. The only time this
2200 * is not the case is if a reserve map was changed between calls. It
2201 * is the responsibility of the caller to notice the difference and
2202 * take appropriate action.
96b96a96
MK
2203 *
2204 * vma_add_reservation is used in error paths where a reservation must
2205 * be restored when a newly allocated huge page must be freed. It is
2206 * to be called after calling vma_needs_reservation to determine if a
2207 * reservation exists.
c37f9fb1 2208 */
5e911373
MK
2209enum vma_resv_mode {
2210 VMA_NEEDS_RESV,
2211 VMA_COMMIT_RESV,
feba16e2 2212 VMA_END_RESV,
96b96a96 2213 VMA_ADD_RESV,
5e911373 2214};
cf3ad20b
MK
2215static long __vma_reservation_common(struct hstate *h,
2216 struct vm_area_struct *vma, unsigned long addr,
5e911373 2217 enum vma_resv_mode mode)
c37f9fb1 2218{
4e35f483
JK
2219 struct resv_map *resv;
2220 pgoff_t idx;
cf3ad20b 2221 long ret;
0db9d74e 2222 long dummy_out_regions_needed;
c37f9fb1 2223
4e35f483
JK
2224 resv = vma_resv_map(vma);
2225 if (!resv)
84afd99b 2226 return 1;
c37f9fb1 2227
4e35f483 2228 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2229 switch (mode) {
2230 case VMA_NEEDS_RESV:
0db9d74e
MA
2231 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2232 /* We assume that vma_reservation_* routines always operate on
2233 * 1 page, and that adding to resv map a 1 page entry can only
2234 * ever require 1 region.
2235 */
2236 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2237 break;
2238 case VMA_COMMIT_RESV:
075a61d0 2239 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2240 /* region_add calls of range 1 should never fail. */
2241 VM_BUG_ON(ret < 0);
5e911373 2242 break;
feba16e2 2243 case VMA_END_RESV:
0db9d74e 2244 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2245 ret = 0;
2246 break;
96b96a96 2247 case VMA_ADD_RESV:
0db9d74e 2248 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2249 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2250 /* region_add calls of range 1 should never fail. */
2251 VM_BUG_ON(ret < 0);
2252 } else {
2253 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2254 ret = region_del(resv, idx, idx + 1);
2255 }
2256 break;
5e911373
MK
2257 default:
2258 BUG();
2259 }
84afd99b 2260
4e35f483 2261 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2262 return ret;
67961f9d
MK
2263 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2264 /*
2265 * In most cases, reserves always exist for private mappings.
2266 * However, a file associated with mapping could have been
2267 * hole punched or truncated after reserves were consumed.
2268 * As subsequent fault on such a range will not use reserves.
2269 * Subtle - The reserve map for private mappings has the
2270 * opposite meaning than that of shared mappings. If NO
2271 * entry is in the reserve map, it means a reservation exists.
2272 * If an entry exists in the reserve map, it means the
2273 * reservation has already been consumed. As a result, the
2274 * return value of this routine is the opposite of the
2275 * value returned from reserve map manipulation routines above.
2276 */
2277 if (ret)
2278 return 0;
2279 else
2280 return 1;
2281 }
4e35f483 2282 else
cf3ad20b 2283 return ret < 0 ? ret : 0;
c37f9fb1 2284}
cf3ad20b
MK
2285
2286static long vma_needs_reservation(struct hstate *h,
a5516438 2287 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2288{
5e911373 2289 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2290}
84afd99b 2291
cf3ad20b
MK
2292static long vma_commit_reservation(struct hstate *h,
2293 struct vm_area_struct *vma, unsigned long addr)
2294{
5e911373
MK
2295 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2296}
2297
feba16e2 2298static void vma_end_reservation(struct hstate *h,
5e911373
MK
2299 struct vm_area_struct *vma, unsigned long addr)
2300{
feba16e2 2301 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2302}
2303
96b96a96
MK
2304static long vma_add_reservation(struct hstate *h,
2305 struct vm_area_struct *vma, unsigned long addr)
2306{
2307 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2308}
2309
2310/*
2311 * This routine is called to restore a reservation on error paths. In the
2312 * specific error paths, a huge page was allocated (via alloc_huge_page)
2313 * and is about to be freed. If a reservation for the page existed,
2314 * alloc_huge_page would have consumed the reservation and set PagePrivate
2315 * in the newly allocated page. When the page is freed via free_huge_page,
2316 * the global reservation count will be incremented if PagePrivate is set.
2317 * However, free_huge_page can not adjust the reserve map. Adjust the
2318 * reserve map here to be consistent with global reserve count adjustments
2319 * to be made by free_huge_page.
2320 */
2321static void restore_reserve_on_error(struct hstate *h,
2322 struct vm_area_struct *vma, unsigned long address,
2323 struct page *page)
2324{
2325 if (unlikely(PagePrivate(page))) {
2326 long rc = vma_needs_reservation(h, vma, address);
2327
2328 if (unlikely(rc < 0)) {
2329 /*
2330 * Rare out of memory condition in reserve map
2331 * manipulation. Clear PagePrivate so that
2332 * global reserve count will not be incremented
2333 * by free_huge_page. This will make it appear
2334 * as though the reservation for this page was
2335 * consumed. This may prevent the task from
2336 * faulting in the page at a later time. This
2337 * is better than inconsistent global huge page
2338 * accounting of reserve counts.
2339 */
2340 ClearPagePrivate(page);
2341 } else if (rc) {
2342 rc = vma_add_reservation(h, vma, address);
2343 if (unlikely(rc < 0))
2344 /*
2345 * See above comment about rare out of
2346 * memory condition.
2347 */
2348 ClearPagePrivate(page);
2349 } else
2350 vma_end_reservation(h, vma, address);
2351 }
2352}
2353
70c3547e 2354struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2355 unsigned long addr, int avoid_reserve)
1da177e4 2356{
90481622 2357 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2358 struct hstate *h = hstate_vma(vma);
348ea204 2359 struct page *page;
d85f69b0
MK
2360 long map_chg, map_commit;
2361 long gbl_chg;
6d76dcf4
AK
2362 int ret, idx;
2363 struct hugetlb_cgroup *h_cg;
08cf9faf 2364 bool deferred_reserve;
a1e78772 2365
6d76dcf4 2366 idx = hstate_index(h);
a1e78772 2367 /*
d85f69b0
MK
2368 * Examine the region/reserve map to determine if the process
2369 * has a reservation for the page to be allocated. A return
2370 * code of zero indicates a reservation exists (no change).
a1e78772 2371 */
d85f69b0
MK
2372 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2373 if (map_chg < 0)
76dcee75 2374 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2375
2376 /*
2377 * Processes that did not create the mapping will have no
2378 * reserves as indicated by the region/reserve map. Check
2379 * that the allocation will not exceed the subpool limit.
2380 * Allocations for MAP_NORESERVE mappings also need to be
2381 * checked against any subpool limit.
2382 */
2383 if (map_chg || avoid_reserve) {
2384 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2385 if (gbl_chg < 0) {
feba16e2 2386 vma_end_reservation(h, vma, addr);
76dcee75 2387 return ERR_PTR(-ENOSPC);
5e911373 2388 }
1da177e4 2389
d85f69b0
MK
2390 /*
2391 * Even though there was no reservation in the region/reserve
2392 * map, there could be reservations associated with the
2393 * subpool that can be used. This would be indicated if the
2394 * return value of hugepage_subpool_get_pages() is zero.
2395 * However, if avoid_reserve is specified we still avoid even
2396 * the subpool reservations.
2397 */
2398 if (avoid_reserve)
2399 gbl_chg = 1;
2400 }
2401
08cf9faf
MA
2402 /* If this allocation is not consuming a reservation, charge it now.
2403 */
2404 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2405 if (deferred_reserve) {
2406 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2407 idx, pages_per_huge_page(h), &h_cg);
2408 if (ret)
2409 goto out_subpool_put;
2410 }
2411
6d76dcf4 2412 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2413 if (ret)
08cf9faf 2414 goto out_uncharge_cgroup_reservation;
8f34af6f 2415
1da177e4 2416 spin_lock(&hugetlb_lock);
d85f69b0
MK
2417 /*
2418 * glb_chg is passed to indicate whether or not a page must be taken
2419 * from the global free pool (global change). gbl_chg == 0 indicates
2420 * a reservation exists for the allocation.
2421 */
2422 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2423 if (!page) {
94ae8ba7 2424 spin_unlock(&hugetlb_lock);
0c397dae 2425 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2426 if (!page)
2427 goto out_uncharge_cgroup;
a88c7695
NH
2428 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2429 SetPagePrivate(page);
2430 h->resv_huge_pages--;
2431 }
79dbb236
AK
2432 spin_lock(&hugetlb_lock);
2433 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2434 /* Fall through */
68842c9b 2435 }
81a6fcae 2436 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2437 /* If allocation is not consuming a reservation, also store the
2438 * hugetlb_cgroup pointer on the page.
2439 */
2440 if (deferred_reserve) {
2441 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2442 h_cg, page);
2443 }
2444
81a6fcae 2445 spin_unlock(&hugetlb_lock);
348ea204 2446
90481622 2447 set_page_private(page, (unsigned long)spool);
90d8b7e6 2448
d85f69b0
MK
2449 map_commit = vma_commit_reservation(h, vma, addr);
2450 if (unlikely(map_chg > map_commit)) {
33039678
MK
2451 /*
2452 * The page was added to the reservation map between
2453 * vma_needs_reservation and vma_commit_reservation.
2454 * This indicates a race with hugetlb_reserve_pages.
2455 * Adjust for the subpool count incremented above AND
2456 * in hugetlb_reserve_pages for the same page. Also,
2457 * the reservation count added in hugetlb_reserve_pages
2458 * no longer applies.
2459 */
2460 long rsv_adjust;
2461
2462 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2463 hugetlb_acct_memory(h, -rsv_adjust);
2464 }
90d8b7e6 2465 return page;
8f34af6f
JZ
2466
2467out_uncharge_cgroup:
2468 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2469out_uncharge_cgroup_reservation:
2470 if (deferred_reserve)
2471 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2472 h_cg);
8f34af6f 2473out_subpool_put:
d85f69b0 2474 if (map_chg || avoid_reserve)
8f34af6f 2475 hugepage_subpool_put_pages(spool, 1);
feba16e2 2476 vma_end_reservation(h, vma, addr);
8f34af6f 2477 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2478}
2479
e24a1307
AK
2480int alloc_bootmem_huge_page(struct hstate *h)
2481 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2482int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2483{
2484 struct huge_bootmem_page *m;
b2261026 2485 int nr_nodes, node;
aa888a74 2486
b2261026 2487 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2488 void *addr;
2489
eb31d559 2490 addr = memblock_alloc_try_nid_raw(
8b89a116 2491 huge_page_size(h), huge_page_size(h),
97ad1087 2492 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2493 if (addr) {
2494 /*
2495 * Use the beginning of the huge page to store the
2496 * huge_bootmem_page struct (until gather_bootmem
2497 * puts them into the mem_map).
2498 */
2499 m = addr;
91f47662 2500 goto found;
aa888a74 2501 }
aa888a74
AK
2502 }
2503 return 0;
2504
2505found:
df994ead 2506 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2507 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2508 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2509 list_add(&m->list, &huge_boot_pages);
2510 m->hstate = h;
2511 return 1;
2512}
2513
d00181b9
KS
2514static void __init prep_compound_huge_page(struct page *page,
2515 unsigned int order)
18229df5
AW
2516{
2517 if (unlikely(order > (MAX_ORDER - 1)))
2518 prep_compound_gigantic_page(page, order);
2519 else
2520 prep_compound_page(page, order);
2521}
2522
aa888a74
AK
2523/* Put bootmem huge pages into the standard lists after mem_map is up */
2524static void __init gather_bootmem_prealloc(void)
2525{
2526 struct huge_bootmem_page *m;
2527
2528 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2529 struct page *page = virt_to_page(m);
aa888a74 2530 struct hstate *h = m->hstate;
ee8f248d 2531
aa888a74 2532 WARN_ON(page_count(page) != 1);
18229df5 2533 prep_compound_huge_page(page, h->order);
ef5a22be 2534 WARN_ON(PageReserved(page));
aa888a74 2535 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2536 put_page(page); /* free it into the hugepage allocator */
2537
b0320c7b
RA
2538 /*
2539 * If we had gigantic hugepages allocated at boot time, we need
2540 * to restore the 'stolen' pages to totalram_pages in order to
2541 * fix confusing memory reports from free(1) and another
2542 * side-effects, like CommitLimit going negative.
2543 */
bae7f4ae 2544 if (hstate_is_gigantic(h))
3dcc0571 2545 adjust_managed_page_count(page, 1 << h->order);
520495fe 2546 cond_resched();
aa888a74
AK
2547 }
2548}
2549
8faa8b07 2550static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2551{
2552 unsigned long i;
f60858f9
MK
2553 nodemask_t *node_alloc_noretry;
2554
2555 if (!hstate_is_gigantic(h)) {
2556 /*
2557 * Bit mask controlling how hard we retry per-node allocations.
2558 * Ignore errors as lower level routines can deal with
2559 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2560 * time, we are likely in bigger trouble.
2561 */
2562 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2563 GFP_KERNEL);
2564 } else {
2565 /* allocations done at boot time */
2566 node_alloc_noretry = NULL;
2567 }
2568
2569 /* bit mask controlling how hard we retry per-node allocations */
2570 if (node_alloc_noretry)
2571 nodes_clear(*node_alloc_noretry);
a5516438 2572
e5ff2159 2573 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2574 if (hstate_is_gigantic(h)) {
cf11e85f
RG
2575 if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) {
2576 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2577 break;
2578 }
aa888a74
AK
2579 if (!alloc_bootmem_huge_page(h))
2580 break;
0c397dae 2581 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2582 &node_states[N_MEMORY],
2583 node_alloc_noretry))
1da177e4 2584 break;
69ed779a 2585 cond_resched();
1da177e4 2586 }
d715cf80
LH
2587 if (i < h->max_huge_pages) {
2588 char buf[32];
2589
c6247f72 2590 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2591 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2592 h->max_huge_pages, buf, i);
2593 h->max_huge_pages = i;
2594 }
f60858f9
MK
2595
2596 kfree(node_alloc_noretry);
e5ff2159
AK
2597}
2598
2599static void __init hugetlb_init_hstates(void)
2600{
2601 struct hstate *h;
2602
2603 for_each_hstate(h) {
641844f5
NH
2604 if (minimum_order > huge_page_order(h))
2605 minimum_order = huge_page_order(h);
2606
8faa8b07 2607 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2608 if (!hstate_is_gigantic(h))
8faa8b07 2609 hugetlb_hstate_alloc_pages(h);
e5ff2159 2610 }
641844f5 2611 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2612}
2613
2614static void __init report_hugepages(void)
2615{
2616 struct hstate *h;
2617
2618 for_each_hstate(h) {
4abd32db 2619 char buf[32];
c6247f72
MW
2620
2621 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2622 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2623 buf, h->free_huge_pages);
e5ff2159
AK
2624 }
2625}
2626
1da177e4 2627#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2628static void try_to_free_low(struct hstate *h, unsigned long count,
2629 nodemask_t *nodes_allowed)
1da177e4 2630{
4415cc8d
CL
2631 int i;
2632
bae7f4ae 2633 if (hstate_is_gigantic(h))
aa888a74
AK
2634 return;
2635
6ae11b27 2636 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2637 struct page *page, *next;
a5516438
AK
2638 struct list_head *freel = &h->hugepage_freelists[i];
2639 list_for_each_entry_safe(page, next, freel, lru) {
2640 if (count >= h->nr_huge_pages)
6b0c880d 2641 return;
1da177e4
LT
2642 if (PageHighMem(page))
2643 continue;
2644 list_del(&page->lru);
e5ff2159 2645 update_and_free_page(h, page);
a5516438
AK
2646 h->free_huge_pages--;
2647 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2648 }
2649 }
2650}
2651#else
6ae11b27
LS
2652static inline void try_to_free_low(struct hstate *h, unsigned long count,
2653 nodemask_t *nodes_allowed)
1da177e4
LT
2654{
2655}
2656#endif
2657
20a0307c
WF
2658/*
2659 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2660 * balanced by operating on them in a round-robin fashion.
2661 * Returns 1 if an adjustment was made.
2662 */
6ae11b27
LS
2663static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2664 int delta)
20a0307c 2665{
b2261026 2666 int nr_nodes, node;
20a0307c
WF
2667
2668 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2669
b2261026
JK
2670 if (delta < 0) {
2671 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2672 if (h->surplus_huge_pages_node[node])
2673 goto found;
e8c5c824 2674 }
b2261026
JK
2675 } else {
2676 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2677 if (h->surplus_huge_pages_node[node] <
2678 h->nr_huge_pages_node[node])
2679 goto found;
e8c5c824 2680 }
b2261026
JK
2681 }
2682 return 0;
20a0307c 2683
b2261026
JK
2684found:
2685 h->surplus_huge_pages += delta;
2686 h->surplus_huge_pages_node[node] += delta;
2687 return 1;
20a0307c
WF
2688}
2689
a5516438 2690#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2691static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2692 nodemask_t *nodes_allowed)
1da177e4 2693{
7893d1d5 2694 unsigned long min_count, ret;
f60858f9
MK
2695 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2696
2697 /*
2698 * Bit mask controlling how hard we retry per-node allocations.
2699 * If we can not allocate the bit mask, do not attempt to allocate
2700 * the requested huge pages.
2701 */
2702 if (node_alloc_noretry)
2703 nodes_clear(*node_alloc_noretry);
2704 else
2705 return -ENOMEM;
1da177e4 2706
4eb0716e
AG
2707 spin_lock(&hugetlb_lock);
2708
fd875dca
MK
2709 /*
2710 * Check for a node specific request.
2711 * Changing node specific huge page count may require a corresponding
2712 * change to the global count. In any case, the passed node mask
2713 * (nodes_allowed) will restrict alloc/free to the specified node.
2714 */
2715 if (nid != NUMA_NO_NODE) {
2716 unsigned long old_count = count;
2717
2718 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2719 /*
2720 * User may have specified a large count value which caused the
2721 * above calculation to overflow. In this case, they wanted
2722 * to allocate as many huge pages as possible. Set count to
2723 * largest possible value to align with their intention.
2724 */
2725 if (count < old_count)
2726 count = ULONG_MAX;
2727 }
2728
4eb0716e
AG
2729 /*
2730 * Gigantic pages runtime allocation depend on the capability for large
2731 * page range allocation.
2732 * If the system does not provide this feature, return an error when
2733 * the user tries to allocate gigantic pages but let the user free the
2734 * boottime allocated gigantic pages.
2735 */
2736 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2737 if (count > persistent_huge_pages(h)) {
2738 spin_unlock(&hugetlb_lock);
f60858f9 2739 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2740 return -EINVAL;
2741 }
2742 /* Fall through to decrease pool */
2743 }
aa888a74 2744
7893d1d5
AL
2745 /*
2746 * Increase the pool size
2747 * First take pages out of surplus state. Then make up the
2748 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2749 *
0c397dae 2750 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2751 * to convert a surplus huge page to a normal huge page. That is
2752 * not critical, though, it just means the overall size of the
2753 * pool might be one hugepage larger than it needs to be, but
2754 * within all the constraints specified by the sysctls.
7893d1d5 2755 */
a5516438 2756 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2757 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2758 break;
2759 }
2760
a5516438 2761 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2762 /*
2763 * If this allocation races such that we no longer need the
2764 * page, free_huge_page will handle it by freeing the page
2765 * and reducing the surplus.
2766 */
2767 spin_unlock(&hugetlb_lock);
649920c6
JH
2768
2769 /* yield cpu to avoid soft lockup */
2770 cond_resched();
2771
f60858f9
MK
2772 ret = alloc_pool_huge_page(h, nodes_allowed,
2773 node_alloc_noretry);
7893d1d5
AL
2774 spin_lock(&hugetlb_lock);
2775 if (!ret)
2776 goto out;
2777
536240f2
MG
2778 /* Bail for signals. Probably ctrl-c from user */
2779 if (signal_pending(current))
2780 goto out;
7893d1d5 2781 }
7893d1d5
AL
2782
2783 /*
2784 * Decrease the pool size
2785 * First return free pages to the buddy allocator (being careful
2786 * to keep enough around to satisfy reservations). Then place
2787 * pages into surplus state as needed so the pool will shrink
2788 * to the desired size as pages become free.
d1c3fb1f
NA
2789 *
2790 * By placing pages into the surplus state independent of the
2791 * overcommit value, we are allowing the surplus pool size to
2792 * exceed overcommit. There are few sane options here. Since
0c397dae 2793 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2794 * though, we'll note that we're not allowed to exceed surplus
2795 * and won't grow the pool anywhere else. Not until one of the
2796 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2797 */
a5516438 2798 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2799 min_count = max(count, min_count);
6ae11b27 2800 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2801 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2802 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2803 break;
55f67141 2804 cond_resched_lock(&hugetlb_lock);
1da177e4 2805 }
a5516438 2806 while (count < persistent_huge_pages(h)) {
6ae11b27 2807 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2808 break;
2809 }
2810out:
4eb0716e 2811 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2812 spin_unlock(&hugetlb_lock);
4eb0716e 2813
f60858f9
MK
2814 NODEMASK_FREE(node_alloc_noretry);
2815
4eb0716e 2816 return 0;
1da177e4
LT
2817}
2818
a3437870
NA
2819#define HSTATE_ATTR_RO(_name) \
2820 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2821
2822#define HSTATE_ATTR(_name) \
2823 static struct kobj_attribute _name##_attr = \
2824 __ATTR(_name, 0644, _name##_show, _name##_store)
2825
2826static struct kobject *hugepages_kobj;
2827static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2828
9a305230
LS
2829static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2830
2831static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2832{
2833 int i;
9a305230 2834
a3437870 2835 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2836 if (hstate_kobjs[i] == kobj) {
2837 if (nidp)
2838 *nidp = NUMA_NO_NODE;
a3437870 2839 return &hstates[i];
9a305230
LS
2840 }
2841
2842 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2843}
2844
06808b08 2845static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2846 struct kobj_attribute *attr, char *buf)
2847{
9a305230
LS
2848 struct hstate *h;
2849 unsigned long nr_huge_pages;
2850 int nid;
2851
2852 h = kobj_to_hstate(kobj, &nid);
2853 if (nid == NUMA_NO_NODE)
2854 nr_huge_pages = h->nr_huge_pages;
2855 else
2856 nr_huge_pages = h->nr_huge_pages_node[nid];
2857
2858 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2859}
adbe8726 2860
238d3c13
DR
2861static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2862 struct hstate *h, int nid,
2863 unsigned long count, size_t len)
a3437870
NA
2864{
2865 int err;
2d0adf7e 2866 nodemask_t nodes_allowed, *n_mask;
a3437870 2867
2d0adf7e
OS
2868 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2869 return -EINVAL;
adbe8726 2870
9a305230
LS
2871 if (nid == NUMA_NO_NODE) {
2872 /*
2873 * global hstate attribute
2874 */
2875 if (!(obey_mempolicy &&
2d0adf7e
OS
2876 init_nodemask_of_mempolicy(&nodes_allowed)))
2877 n_mask = &node_states[N_MEMORY];
2878 else
2879 n_mask = &nodes_allowed;
2880 } else {
9a305230 2881 /*
fd875dca
MK
2882 * Node specific request. count adjustment happens in
2883 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2884 */
2d0adf7e
OS
2885 init_nodemask_of_node(&nodes_allowed, nid);
2886 n_mask = &nodes_allowed;
fd875dca 2887 }
9a305230 2888
2d0adf7e 2889 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2890
4eb0716e 2891 return err ? err : len;
06808b08
LS
2892}
2893
238d3c13
DR
2894static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2895 struct kobject *kobj, const char *buf,
2896 size_t len)
2897{
2898 struct hstate *h;
2899 unsigned long count;
2900 int nid;
2901 int err;
2902
2903 err = kstrtoul(buf, 10, &count);
2904 if (err)
2905 return err;
2906
2907 h = kobj_to_hstate(kobj, &nid);
2908 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2909}
2910
06808b08
LS
2911static ssize_t nr_hugepages_show(struct kobject *kobj,
2912 struct kobj_attribute *attr, char *buf)
2913{
2914 return nr_hugepages_show_common(kobj, attr, buf);
2915}
2916
2917static ssize_t nr_hugepages_store(struct kobject *kobj,
2918 struct kobj_attribute *attr, const char *buf, size_t len)
2919{
238d3c13 2920 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2921}
2922HSTATE_ATTR(nr_hugepages);
2923
06808b08
LS
2924#ifdef CONFIG_NUMA
2925
2926/*
2927 * hstate attribute for optionally mempolicy-based constraint on persistent
2928 * huge page alloc/free.
2929 */
2930static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2931 struct kobj_attribute *attr, char *buf)
2932{
2933 return nr_hugepages_show_common(kobj, attr, buf);
2934}
2935
2936static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2937 struct kobj_attribute *attr, const char *buf, size_t len)
2938{
238d3c13 2939 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2940}
2941HSTATE_ATTR(nr_hugepages_mempolicy);
2942#endif
2943
2944
a3437870
NA
2945static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2946 struct kobj_attribute *attr, char *buf)
2947{
9a305230 2948 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2949 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2950}
adbe8726 2951
a3437870
NA
2952static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2953 struct kobj_attribute *attr, const char *buf, size_t count)
2954{
2955 int err;
2956 unsigned long input;
9a305230 2957 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2958
bae7f4ae 2959 if (hstate_is_gigantic(h))
adbe8726
EM
2960 return -EINVAL;
2961
3dbb95f7 2962 err = kstrtoul(buf, 10, &input);
a3437870 2963 if (err)
73ae31e5 2964 return err;
a3437870
NA
2965
2966 spin_lock(&hugetlb_lock);
2967 h->nr_overcommit_huge_pages = input;
2968 spin_unlock(&hugetlb_lock);
2969
2970 return count;
2971}
2972HSTATE_ATTR(nr_overcommit_hugepages);
2973
2974static ssize_t free_hugepages_show(struct kobject *kobj,
2975 struct kobj_attribute *attr, char *buf)
2976{
9a305230
LS
2977 struct hstate *h;
2978 unsigned long free_huge_pages;
2979 int nid;
2980
2981 h = kobj_to_hstate(kobj, &nid);
2982 if (nid == NUMA_NO_NODE)
2983 free_huge_pages = h->free_huge_pages;
2984 else
2985 free_huge_pages = h->free_huge_pages_node[nid];
2986
2987 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2988}
2989HSTATE_ATTR_RO(free_hugepages);
2990
2991static ssize_t resv_hugepages_show(struct kobject *kobj,
2992 struct kobj_attribute *attr, char *buf)
2993{
9a305230 2994 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2995 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2996}
2997HSTATE_ATTR_RO(resv_hugepages);
2998
2999static ssize_t surplus_hugepages_show(struct kobject *kobj,
3000 struct kobj_attribute *attr, char *buf)
3001{
9a305230
LS
3002 struct hstate *h;
3003 unsigned long surplus_huge_pages;
3004 int nid;
3005
3006 h = kobj_to_hstate(kobj, &nid);
3007 if (nid == NUMA_NO_NODE)
3008 surplus_huge_pages = h->surplus_huge_pages;
3009 else
3010 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3011
3012 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3013}
3014HSTATE_ATTR_RO(surplus_hugepages);
3015
3016static struct attribute *hstate_attrs[] = {
3017 &nr_hugepages_attr.attr,
3018 &nr_overcommit_hugepages_attr.attr,
3019 &free_hugepages_attr.attr,
3020 &resv_hugepages_attr.attr,
3021 &surplus_hugepages_attr.attr,
06808b08
LS
3022#ifdef CONFIG_NUMA
3023 &nr_hugepages_mempolicy_attr.attr,
3024#endif
a3437870
NA
3025 NULL,
3026};
3027
67e5ed96 3028static const struct attribute_group hstate_attr_group = {
a3437870
NA
3029 .attrs = hstate_attrs,
3030};
3031
094e9539
JM
3032static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3033 struct kobject **hstate_kobjs,
67e5ed96 3034 const struct attribute_group *hstate_attr_group)
a3437870
NA
3035{
3036 int retval;
972dc4de 3037 int hi = hstate_index(h);
a3437870 3038
9a305230
LS
3039 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3040 if (!hstate_kobjs[hi])
a3437870
NA
3041 return -ENOMEM;
3042
9a305230 3043 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 3044 if (retval)
9a305230 3045 kobject_put(hstate_kobjs[hi]);
a3437870
NA
3046
3047 return retval;
3048}
3049
3050static void __init hugetlb_sysfs_init(void)
3051{
3052 struct hstate *h;
3053 int err;
3054
3055 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3056 if (!hugepages_kobj)
3057 return;
3058
3059 for_each_hstate(h) {
9a305230
LS
3060 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3061 hstate_kobjs, &hstate_attr_group);
a3437870 3062 if (err)
282f4214 3063 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3064 }
3065}
3066
9a305230
LS
3067#ifdef CONFIG_NUMA
3068
3069/*
3070 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3071 * with node devices in node_devices[] using a parallel array. The array
3072 * index of a node device or _hstate == node id.
3073 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3074 * the base kernel, on the hugetlb module.
3075 */
3076struct node_hstate {
3077 struct kobject *hugepages_kobj;
3078 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3079};
b4e289a6 3080static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3081
3082/*
10fbcf4c 3083 * A subset of global hstate attributes for node devices
9a305230
LS
3084 */
3085static struct attribute *per_node_hstate_attrs[] = {
3086 &nr_hugepages_attr.attr,
3087 &free_hugepages_attr.attr,
3088 &surplus_hugepages_attr.attr,
3089 NULL,
3090};
3091
67e5ed96 3092static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3093 .attrs = per_node_hstate_attrs,
3094};
3095
3096/*
10fbcf4c 3097 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3098 * Returns node id via non-NULL nidp.
3099 */
3100static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3101{
3102 int nid;
3103
3104 for (nid = 0; nid < nr_node_ids; nid++) {
3105 struct node_hstate *nhs = &node_hstates[nid];
3106 int i;
3107 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3108 if (nhs->hstate_kobjs[i] == kobj) {
3109 if (nidp)
3110 *nidp = nid;
3111 return &hstates[i];
3112 }
3113 }
3114
3115 BUG();
3116 return NULL;
3117}
3118
3119/*
10fbcf4c 3120 * Unregister hstate attributes from a single node device.
9a305230
LS
3121 * No-op if no hstate attributes attached.
3122 */
3cd8b44f 3123static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3124{
3125 struct hstate *h;
10fbcf4c 3126 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3127
3128 if (!nhs->hugepages_kobj)
9b5e5d0f 3129 return; /* no hstate attributes */
9a305230 3130
972dc4de
AK
3131 for_each_hstate(h) {
3132 int idx = hstate_index(h);
3133 if (nhs->hstate_kobjs[idx]) {
3134 kobject_put(nhs->hstate_kobjs[idx]);
3135 nhs->hstate_kobjs[idx] = NULL;
9a305230 3136 }
972dc4de 3137 }
9a305230
LS
3138
3139 kobject_put(nhs->hugepages_kobj);
3140 nhs->hugepages_kobj = NULL;
3141}
3142
9a305230
LS
3143
3144/*
10fbcf4c 3145 * Register hstate attributes for a single node device.
9a305230
LS
3146 * No-op if attributes already registered.
3147 */
3cd8b44f 3148static void hugetlb_register_node(struct node *node)
9a305230
LS
3149{
3150 struct hstate *h;
10fbcf4c 3151 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3152 int err;
3153
3154 if (nhs->hugepages_kobj)
3155 return; /* already allocated */
3156
3157 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3158 &node->dev.kobj);
9a305230
LS
3159 if (!nhs->hugepages_kobj)
3160 return;
3161
3162 for_each_hstate(h) {
3163 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3164 nhs->hstate_kobjs,
3165 &per_node_hstate_attr_group);
3166 if (err) {
282f4214 3167 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3168 h->name, node->dev.id);
9a305230
LS
3169 hugetlb_unregister_node(node);
3170 break;
3171 }
3172 }
3173}
3174
3175/*
9b5e5d0f 3176 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3177 * devices of nodes that have memory. All on-line nodes should have
3178 * registered their associated device by this time.
9a305230 3179 */
7d9ca000 3180static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3181{
3182 int nid;
3183
8cebfcd0 3184 for_each_node_state(nid, N_MEMORY) {
8732794b 3185 struct node *node = node_devices[nid];
10fbcf4c 3186 if (node->dev.id == nid)
9a305230
LS
3187 hugetlb_register_node(node);
3188 }
3189
3190 /*
10fbcf4c 3191 * Let the node device driver know we're here so it can
9a305230
LS
3192 * [un]register hstate attributes on node hotplug.
3193 */
3194 register_hugetlbfs_with_node(hugetlb_register_node,
3195 hugetlb_unregister_node);
3196}
3197#else /* !CONFIG_NUMA */
3198
3199static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3200{
3201 BUG();
3202 if (nidp)
3203 *nidp = -1;
3204 return NULL;
3205}
3206
9a305230
LS
3207static void hugetlb_register_all_nodes(void) { }
3208
3209#endif
3210
a3437870
NA
3211static int __init hugetlb_init(void)
3212{
8382d914
DB
3213 int i;
3214
457c1b27 3215 if (!hugepages_supported())
0ef89d25 3216 return 0;
a3437870 3217
282f4214
MK
3218 /*
3219 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3220 * architectures depend on setup being done here.
3221 */
3222 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3223 if (!parsed_default_hugepagesz) {
3224 /*
3225 * If we did not parse a default huge page size, set
3226 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3227 * number of huge pages for this default size was implicitly
3228 * specified, set that here as well.
3229 * Note that the implicit setting will overwrite an explicit
3230 * setting. A warning will be printed in this case.
3231 */
3232 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3233 if (default_hstate_max_huge_pages) {
3234 if (default_hstate.max_huge_pages) {
3235 char buf[32];
3236
3237 string_get_size(huge_page_size(&default_hstate),
3238 1, STRING_UNITS_2, buf, 32);
3239 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3240 default_hstate.max_huge_pages, buf);
3241 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3242 default_hstate_max_huge_pages);
3243 }
3244 default_hstate.max_huge_pages =
3245 default_hstate_max_huge_pages;
d715cf80 3246 }
f8b74815 3247 }
a3437870 3248
cf11e85f 3249 hugetlb_cma_check();
a3437870 3250 hugetlb_init_hstates();
aa888a74 3251 gather_bootmem_prealloc();
a3437870
NA
3252 report_hugepages();
3253
3254 hugetlb_sysfs_init();
9a305230 3255 hugetlb_register_all_nodes();
7179e7bf 3256 hugetlb_cgroup_file_init();
9a305230 3257
8382d914
DB
3258#ifdef CONFIG_SMP
3259 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3260#else
3261 num_fault_mutexes = 1;
3262#endif
c672c7f2 3263 hugetlb_fault_mutex_table =
6da2ec56
KC
3264 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3265 GFP_KERNEL);
c672c7f2 3266 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3267
3268 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3269 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3270 return 0;
3271}
3e89e1c5 3272subsys_initcall(hugetlb_init);
a3437870 3273
ae94da89
MK
3274/* Overwritten by architectures with more huge page sizes */
3275bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3276{
3277 return size == HPAGE_SIZE;
3278}
3279
d00181b9 3280void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3281{
3282 struct hstate *h;
8faa8b07
AK
3283 unsigned long i;
3284
a3437870 3285 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3286 return;
3287 }
47d38344 3288 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3289 BUG_ON(order == 0);
47d38344 3290 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
3291 h->order = order;
3292 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
3293 h->nr_huge_pages = 0;
3294 h->free_huge_pages = 0;
3295 for (i = 0; i < MAX_NUMNODES; ++i)
3296 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3297 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3298 h->next_nid_to_alloc = first_memory_node;
3299 h->next_nid_to_free = first_memory_node;
a3437870
NA
3300 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3301 huge_page_size(h)/1024);
8faa8b07 3302
a3437870
NA
3303 parsed_hstate = h;
3304}
3305
282f4214
MK
3306/*
3307 * hugepages command line processing
3308 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3309 * specification. If not, ignore the hugepages value. hugepages can also
3310 * be the first huge page command line option in which case it implicitly
3311 * specifies the number of huge pages for the default size.
3312 */
3313static int __init hugepages_setup(char *s)
a3437870
NA
3314{
3315 unsigned long *mhp;
8faa8b07 3316 static unsigned long *last_mhp;
a3437870 3317
282f4214
MK
3318 if (!hugepages_supported()) {
3319 pr_warn("HugeTLB: huge pages not supported, ignoring hugepages = %s\n", s);
3320 return 0;
3321 }
3322
9fee021d 3323 if (!parsed_valid_hugepagesz) {
282f4214 3324 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3325 parsed_valid_hugepagesz = true;
282f4214 3326 return 0;
9fee021d 3327 }
282f4214 3328
a3437870 3329 /*
282f4214
MK
3330 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3331 * yet, so this hugepages= parameter goes to the "default hstate".
3332 * Otherwise, it goes with the previously parsed hugepagesz or
3333 * default_hugepagesz.
a3437870 3334 */
9fee021d 3335 else if (!hugetlb_max_hstate)
a3437870
NA
3336 mhp = &default_hstate_max_huge_pages;
3337 else
3338 mhp = &parsed_hstate->max_huge_pages;
3339
8faa8b07 3340 if (mhp == last_mhp) {
282f4214
MK
3341 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3342 return 0;
8faa8b07
AK
3343 }
3344
a3437870
NA
3345 if (sscanf(s, "%lu", mhp) <= 0)
3346 *mhp = 0;
3347
8faa8b07
AK
3348 /*
3349 * Global state is always initialized later in hugetlb_init.
3350 * But we need to allocate >= MAX_ORDER hstates here early to still
3351 * use the bootmem allocator.
3352 */
47d38344 3353 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
3354 hugetlb_hstate_alloc_pages(parsed_hstate);
3355
3356 last_mhp = mhp;
3357
a3437870
NA
3358 return 1;
3359}
282f4214 3360__setup("hugepages=", hugepages_setup);
e11bfbfc 3361
282f4214
MK
3362/*
3363 * hugepagesz command line processing
3364 * A specific huge page size can only be specified once with hugepagesz.
3365 * hugepagesz is followed by hugepages on the command line. The global
3366 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3367 * hugepagesz argument was valid.
3368 */
359f2544
MK
3369static int __init hugepagesz_setup(char *s)
3370{
3371 unsigned long size;
282f4214
MK
3372 struct hstate *h;
3373
3374 parsed_valid_hugepagesz = false;
3375 if (!hugepages_supported()) {
3376 pr_warn("HugeTLB: huge pages not supported, ignoring hugepagesz = %s\n", s);
3377 return 0;
3378 }
359f2544
MK
3379
3380 size = (unsigned long)memparse(s, NULL);
3381
3382 if (!arch_hugetlb_valid_size(size)) {
282f4214 3383 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3384 return 0;
3385 }
3386
282f4214
MK
3387 h = size_to_hstate(size);
3388 if (h) {
3389 /*
3390 * hstate for this size already exists. This is normally
3391 * an error, but is allowed if the existing hstate is the
3392 * default hstate. More specifically, it is only allowed if
3393 * the number of huge pages for the default hstate was not
3394 * previously specified.
3395 */
3396 if (!parsed_default_hugepagesz || h != &default_hstate ||
3397 default_hstate.max_huge_pages) {
3398 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3399 return 0;
3400 }
3401
3402 /*
3403 * No need to call hugetlb_add_hstate() as hstate already
3404 * exists. But, do set parsed_hstate so that a following
3405 * hugepages= parameter will be applied to this hstate.
3406 */
3407 parsed_hstate = h;
3408 parsed_valid_hugepagesz = true;
3409 return 1;
38237830
MK
3410 }
3411
359f2544 3412 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3413 parsed_valid_hugepagesz = true;
359f2544
MK
3414 return 1;
3415}
3416__setup("hugepagesz=", hugepagesz_setup);
3417
282f4214
MK
3418/*
3419 * default_hugepagesz command line input
3420 * Only one instance of default_hugepagesz allowed on command line.
3421 */
ae94da89 3422static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3423{
ae94da89
MK
3424 unsigned long size;
3425
282f4214
MK
3426 parsed_valid_hugepagesz = false;
3427 if (!hugepages_supported()) {
3428 pr_warn("HugeTLB: huge pages not supported, ignoring default_hugepagesz = %s\n", s);
3429 return 0;
3430 }
3431
3432 if (parsed_default_hugepagesz) {
3433 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3434 return 0;
3435 }
3436
ae94da89
MK
3437 size = (unsigned long)memparse(s, NULL);
3438
3439 if (!arch_hugetlb_valid_size(size)) {
282f4214 3440 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3441 return 0;
3442 }
3443
282f4214
MK
3444 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3445 parsed_valid_hugepagesz = true;
3446 parsed_default_hugepagesz = true;
3447 default_hstate_idx = hstate_index(size_to_hstate(size));
3448
3449 /*
3450 * The number of default huge pages (for this size) could have been
3451 * specified as the first hugetlb parameter: hugepages=X. If so,
3452 * then default_hstate_max_huge_pages is set. If the default huge
3453 * page size is gigantic (>= MAX_ORDER), then the pages must be
3454 * allocated here from bootmem allocator.
3455 */
3456 if (default_hstate_max_huge_pages) {
3457 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3458 if (hstate_is_gigantic(&default_hstate))
3459 hugetlb_hstate_alloc_pages(&default_hstate);
3460 default_hstate_max_huge_pages = 0;
3461 }
3462
e11bfbfc
NP
3463 return 1;
3464}
ae94da89 3465__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3466
8a213460
NA
3467static unsigned int cpuset_mems_nr(unsigned int *array)
3468{
3469 int node;
3470 unsigned int nr = 0;
3471
3472 for_each_node_mask(node, cpuset_current_mems_allowed)
3473 nr += array[node];
3474
3475 return nr;
3476}
3477
3478#ifdef CONFIG_SYSCTL
06808b08
LS
3479static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3480 struct ctl_table *table, int write,
3481 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 3482{
e5ff2159 3483 struct hstate *h = &default_hstate;
238d3c13 3484 unsigned long tmp = h->max_huge_pages;
08d4a246 3485 int ret;
e5ff2159 3486
457c1b27 3487 if (!hugepages_supported())
86613628 3488 return -EOPNOTSUPP;
457c1b27 3489
e5ff2159
AK
3490 table->data = &tmp;
3491 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3492 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3493 if (ret)
3494 goto out;
e5ff2159 3495
238d3c13
DR
3496 if (write)
3497 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3498 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3499out:
3500 return ret;
1da177e4 3501}
396faf03 3502
06808b08
LS
3503int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3504 void __user *buffer, size_t *length, loff_t *ppos)
3505{
3506
3507 return hugetlb_sysctl_handler_common(false, table, write,
3508 buffer, length, ppos);
3509}
3510
3511#ifdef CONFIG_NUMA
3512int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3513 void __user *buffer, size_t *length, loff_t *ppos)
3514{
3515 return hugetlb_sysctl_handler_common(true, table, write,
3516 buffer, length, ppos);
3517}
3518#endif /* CONFIG_NUMA */
3519
a3d0c6aa 3520int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 3521 void __user *buffer,
a3d0c6aa
NA
3522 size_t *length, loff_t *ppos)
3523{
a5516438 3524 struct hstate *h = &default_hstate;
e5ff2159 3525 unsigned long tmp;
08d4a246 3526 int ret;
e5ff2159 3527
457c1b27 3528 if (!hugepages_supported())
86613628 3529 return -EOPNOTSUPP;
457c1b27 3530
c033a93c 3531 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3532
bae7f4ae 3533 if (write && hstate_is_gigantic(h))
adbe8726
EM
3534 return -EINVAL;
3535
e5ff2159
AK
3536 table->data = &tmp;
3537 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3538 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3539 if (ret)
3540 goto out;
e5ff2159
AK
3541
3542 if (write) {
3543 spin_lock(&hugetlb_lock);
3544 h->nr_overcommit_huge_pages = tmp;
3545 spin_unlock(&hugetlb_lock);
3546 }
08d4a246
MH
3547out:
3548 return ret;
a3d0c6aa
NA
3549}
3550
1da177e4
LT
3551#endif /* CONFIG_SYSCTL */
3552
e1759c21 3553void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3554{
fcb2b0c5
RG
3555 struct hstate *h;
3556 unsigned long total = 0;
3557
457c1b27
NA
3558 if (!hugepages_supported())
3559 return;
fcb2b0c5
RG
3560
3561 for_each_hstate(h) {
3562 unsigned long count = h->nr_huge_pages;
3563
3564 total += (PAGE_SIZE << huge_page_order(h)) * count;
3565
3566 if (h == &default_hstate)
3567 seq_printf(m,
3568 "HugePages_Total: %5lu\n"
3569 "HugePages_Free: %5lu\n"
3570 "HugePages_Rsvd: %5lu\n"
3571 "HugePages_Surp: %5lu\n"
3572 "Hugepagesize: %8lu kB\n",
3573 count,
3574 h->free_huge_pages,
3575 h->resv_huge_pages,
3576 h->surplus_huge_pages,
3577 (PAGE_SIZE << huge_page_order(h)) / 1024);
3578 }
3579
3580 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3581}
3582
3583int hugetlb_report_node_meminfo(int nid, char *buf)
3584{
a5516438 3585 struct hstate *h = &default_hstate;
457c1b27
NA
3586 if (!hugepages_supported())
3587 return 0;
1da177e4
LT
3588 return sprintf(buf,
3589 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3590 "Node %d HugePages_Free: %5u\n"
3591 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3592 nid, h->nr_huge_pages_node[nid],
3593 nid, h->free_huge_pages_node[nid],
3594 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3595}
3596
949f7ec5
DR
3597void hugetlb_show_meminfo(void)
3598{
3599 struct hstate *h;
3600 int nid;
3601
457c1b27
NA
3602 if (!hugepages_supported())
3603 return;
3604
949f7ec5
DR
3605 for_each_node_state(nid, N_MEMORY)
3606 for_each_hstate(h)
3607 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3608 nid,
3609 h->nr_huge_pages_node[nid],
3610 h->free_huge_pages_node[nid],
3611 h->surplus_huge_pages_node[nid],
3612 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3613}
3614
5d317b2b
NH
3615void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3616{
3617 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3618 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3619}
3620
1da177e4
LT
3621/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3622unsigned long hugetlb_total_pages(void)
3623{
d0028588
WL
3624 struct hstate *h;
3625 unsigned long nr_total_pages = 0;
3626
3627 for_each_hstate(h)
3628 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3629 return nr_total_pages;
1da177e4 3630}
1da177e4 3631
a5516438 3632static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3633{
3634 int ret = -ENOMEM;
3635
3636 spin_lock(&hugetlb_lock);
3637 /*
3638 * When cpuset is configured, it breaks the strict hugetlb page
3639 * reservation as the accounting is done on a global variable. Such
3640 * reservation is completely rubbish in the presence of cpuset because
3641 * the reservation is not checked against page availability for the
3642 * current cpuset. Application can still potentially OOM'ed by kernel
3643 * with lack of free htlb page in cpuset that the task is in.
3644 * Attempt to enforce strict accounting with cpuset is almost
3645 * impossible (or too ugly) because cpuset is too fluid that
3646 * task or memory node can be dynamically moved between cpusets.
3647 *
3648 * The change of semantics for shared hugetlb mapping with cpuset is
3649 * undesirable. However, in order to preserve some of the semantics,
3650 * we fall back to check against current free page availability as
3651 * a best attempt and hopefully to minimize the impact of changing
3652 * semantics that cpuset has.
3653 */
3654 if (delta > 0) {
a5516438 3655 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3656 goto out;
3657
a5516438
AK
3658 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3659 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3660 goto out;
3661 }
3662 }
3663
3664 ret = 0;
3665 if (delta < 0)
a5516438 3666 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3667
3668out:
3669 spin_unlock(&hugetlb_lock);
3670 return ret;
3671}
3672
84afd99b
AW
3673static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3674{
f522c3ac 3675 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3676
3677 /*
3678 * This new VMA should share its siblings reservation map if present.
3679 * The VMA will only ever have a valid reservation map pointer where
3680 * it is being copied for another still existing VMA. As that VMA
25985edc 3681 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3682 * after this open call completes. It is therefore safe to take a
3683 * new reference here without additional locking.
3684 */
4e35f483 3685 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3686 kref_get(&resv->refs);
84afd99b
AW
3687}
3688
a1e78772
MG
3689static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3690{
a5516438 3691 struct hstate *h = hstate_vma(vma);
f522c3ac 3692 struct resv_map *resv = vma_resv_map(vma);
90481622 3693 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3694 unsigned long reserve, start, end;
1c5ecae3 3695 long gbl_reserve;
84afd99b 3696
4e35f483
JK
3697 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3698 return;
84afd99b 3699
4e35f483
JK
3700 start = vma_hugecache_offset(h, vma, vma->vm_start);
3701 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3702
4e35f483 3703 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3704 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3705 if (reserve) {
1c5ecae3
MK
3706 /*
3707 * Decrement reserve counts. The global reserve count may be
3708 * adjusted if the subpool has a minimum size.
3709 */
3710 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3711 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3712 }
e9fe92ae
MA
3713
3714 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3715}
3716
31383c68
DW
3717static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3718{
3719 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3720 return -EINVAL;
3721 return 0;
3722}
3723
05ea8860
DW
3724static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3725{
3726 struct hstate *hstate = hstate_vma(vma);
3727
3728 return 1UL << huge_page_shift(hstate);
3729}
3730
1da177e4
LT
3731/*
3732 * We cannot handle pagefaults against hugetlb pages at all. They cause
3733 * handle_mm_fault() to try to instantiate regular-sized pages in the
3734 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3735 * this far.
3736 */
b3ec9f33 3737static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3738{
3739 BUG();
d0217ac0 3740 return 0;
1da177e4
LT
3741}
3742
eec3636a
JC
3743/*
3744 * When a new function is introduced to vm_operations_struct and added
3745 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3746 * This is because under System V memory model, mappings created via
3747 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3748 * their original vm_ops are overwritten with shm_vm_ops.
3749 */
f0f37e2f 3750const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3751 .fault = hugetlb_vm_op_fault,
84afd99b 3752 .open = hugetlb_vm_op_open,
a1e78772 3753 .close = hugetlb_vm_op_close,
31383c68 3754 .split = hugetlb_vm_op_split,
05ea8860 3755 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3756};
3757
1e8f889b
DG
3758static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3759 int writable)
63551ae0
DG
3760{
3761 pte_t entry;
3762
1e8f889b 3763 if (writable) {
106c992a
GS
3764 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3765 vma->vm_page_prot)));
63551ae0 3766 } else {
106c992a
GS
3767 entry = huge_pte_wrprotect(mk_huge_pte(page,
3768 vma->vm_page_prot));
63551ae0
DG
3769 }
3770 entry = pte_mkyoung(entry);
3771 entry = pte_mkhuge(entry);
d9ed9faa 3772 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3773
3774 return entry;
3775}
3776
1e8f889b
DG
3777static void set_huge_ptep_writable(struct vm_area_struct *vma,
3778 unsigned long address, pte_t *ptep)
3779{
3780 pte_t entry;
3781
106c992a 3782 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3783 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3784 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3785}
3786
d5ed7444 3787bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3788{
3789 swp_entry_t swp;
3790
3791 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3792 return false;
4a705fef
NH
3793 swp = pte_to_swp_entry(pte);
3794 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3795 return true;
4a705fef 3796 else
d5ed7444 3797 return false;
4a705fef
NH
3798}
3799
3800static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3801{
3802 swp_entry_t swp;
3803
3804 if (huge_pte_none(pte) || pte_present(pte))
3805 return 0;
3806 swp = pte_to_swp_entry(pte);
3807 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3808 return 1;
3809 else
3810 return 0;
3811}
1e8f889b 3812
63551ae0
DG
3813int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3814 struct vm_area_struct *vma)
3815{
5e41540c 3816 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3817 struct page *ptepage;
1c59827d 3818 unsigned long addr;
1e8f889b 3819 int cow;
a5516438
AK
3820 struct hstate *h = hstate_vma(vma);
3821 unsigned long sz = huge_page_size(h);
c0d0381a 3822 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3823 struct mmu_notifier_range range;
e8569dd2 3824 int ret = 0;
1e8f889b
DG
3825
3826 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3827
ac46d4f3 3828 if (cow) {
7269f999 3829 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3830 vma->vm_start,
ac46d4f3
JG
3831 vma->vm_end);
3832 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3833 } else {
3834 /*
3835 * For shared mappings i_mmap_rwsem must be held to call
3836 * huge_pte_alloc, otherwise the returned ptep could go
3837 * away if part of a shared pmd and another thread calls
3838 * huge_pmd_unshare.
3839 */
3840 i_mmap_lock_read(mapping);
ac46d4f3 3841 }
e8569dd2 3842
a5516438 3843 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3844 spinlock_t *src_ptl, *dst_ptl;
7868a208 3845 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3846 if (!src_pte)
3847 continue;
a5516438 3848 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3849 if (!dst_pte) {
3850 ret = -ENOMEM;
3851 break;
3852 }
c5c99429 3853
5e41540c
MK
3854 /*
3855 * If the pagetables are shared don't copy or take references.
3856 * dst_pte == src_pte is the common case of src/dest sharing.
3857 *
3858 * However, src could have 'unshared' and dst shares with
3859 * another vma. If dst_pte !none, this implies sharing.
3860 * Check here before taking page table lock, and once again
3861 * after taking the lock below.
3862 */
3863 dst_entry = huge_ptep_get(dst_pte);
3864 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3865 continue;
3866
cb900f41
KS
3867 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3868 src_ptl = huge_pte_lockptr(h, src, src_pte);
3869 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3870 entry = huge_ptep_get(src_pte);
5e41540c
MK
3871 dst_entry = huge_ptep_get(dst_pte);
3872 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3873 /*
3874 * Skip if src entry none. Also, skip in the
3875 * unlikely case dst entry !none as this implies
3876 * sharing with another vma.
3877 */
4a705fef
NH
3878 ;
3879 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3880 is_hugetlb_entry_hwpoisoned(entry))) {
3881 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3882
3883 if (is_write_migration_entry(swp_entry) && cow) {
3884 /*
3885 * COW mappings require pages in both
3886 * parent and child to be set to read.
3887 */
3888 make_migration_entry_read(&swp_entry);
3889 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3890 set_huge_swap_pte_at(src, addr, src_pte,
3891 entry, sz);
4a705fef 3892 }
e5251fd4 3893 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3894 } else {
34ee645e 3895 if (cow) {
0f10851e
JG
3896 /*
3897 * No need to notify as we are downgrading page
3898 * table protection not changing it to point
3899 * to a new page.
3900 *
ad56b738 3901 * See Documentation/vm/mmu_notifier.rst
0f10851e 3902 */
7f2e9525 3903 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3904 }
0253d634 3905 entry = huge_ptep_get(src_pte);
1c59827d
HD
3906 ptepage = pte_page(entry);
3907 get_page(ptepage);
53f9263b 3908 page_dup_rmap(ptepage, true);
1c59827d 3909 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3910 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3911 }
cb900f41
KS
3912 spin_unlock(src_ptl);
3913 spin_unlock(dst_ptl);
63551ae0 3914 }
63551ae0 3915
e8569dd2 3916 if (cow)
ac46d4f3 3917 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3918 else
3919 i_mmap_unlock_read(mapping);
e8569dd2
AS
3920
3921 return ret;
63551ae0
DG
3922}
3923
24669e58
AK
3924void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3925 unsigned long start, unsigned long end,
3926 struct page *ref_page)
63551ae0
DG
3927{
3928 struct mm_struct *mm = vma->vm_mm;
3929 unsigned long address;
c7546f8f 3930 pte_t *ptep;
63551ae0 3931 pte_t pte;
cb900f41 3932 spinlock_t *ptl;
63551ae0 3933 struct page *page;
a5516438
AK
3934 struct hstate *h = hstate_vma(vma);
3935 unsigned long sz = huge_page_size(h);
ac46d4f3 3936 struct mmu_notifier_range range;
a5516438 3937
63551ae0 3938 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3939 BUG_ON(start & ~huge_page_mask(h));
3940 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3941
07e32661
AK
3942 /*
3943 * This is a hugetlb vma, all the pte entries should point
3944 * to huge page.
3945 */
ed6a7935 3946 tlb_change_page_size(tlb, sz);
24669e58 3947 tlb_start_vma(tlb, vma);
dff11abe
MK
3948
3949 /*
3950 * If sharing possible, alert mmu notifiers of worst case.
3951 */
6f4f13e8
JG
3952 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3953 end);
ac46d4f3
JG
3954 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3955 mmu_notifier_invalidate_range_start(&range);
569f48b8 3956 address = start;
569f48b8 3957 for (; address < end; address += sz) {
7868a208 3958 ptep = huge_pte_offset(mm, address, sz);
4c887265 3959 if (!ptep)
c7546f8f
DG
3960 continue;
3961
cb900f41 3962 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3963 if (huge_pmd_unshare(mm, &address, ptep)) {
3964 spin_unlock(ptl);
dff11abe
MK
3965 /*
3966 * We just unmapped a page of PMDs by clearing a PUD.
3967 * The caller's TLB flush range should cover this area.
3968 */
31d49da5
AK
3969 continue;
3970 }
39dde65c 3971
6629326b 3972 pte = huge_ptep_get(ptep);
31d49da5
AK
3973 if (huge_pte_none(pte)) {
3974 spin_unlock(ptl);
3975 continue;
3976 }
6629326b
HD
3977
3978 /*
9fbc1f63
NH
3979 * Migrating hugepage or HWPoisoned hugepage is already
3980 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3981 */
9fbc1f63 3982 if (unlikely(!pte_present(pte))) {
9386fac3 3983 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3984 spin_unlock(ptl);
3985 continue;
8c4894c6 3986 }
6629326b
HD
3987
3988 page = pte_page(pte);
04f2cbe3
MG
3989 /*
3990 * If a reference page is supplied, it is because a specific
3991 * page is being unmapped, not a range. Ensure the page we
3992 * are about to unmap is the actual page of interest.
3993 */
3994 if (ref_page) {
31d49da5
AK
3995 if (page != ref_page) {
3996 spin_unlock(ptl);
3997 continue;
3998 }
04f2cbe3
MG
3999 /*
4000 * Mark the VMA as having unmapped its page so that
4001 * future faults in this VMA will fail rather than
4002 * looking like data was lost
4003 */
4004 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4005 }
4006
c7546f8f 4007 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 4008 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 4009 if (huge_pte_dirty(pte))
6649a386 4010 set_page_dirty(page);
9e81130b 4011
5d317b2b 4012 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4013 page_remove_rmap(page, true);
31d49da5 4014
cb900f41 4015 spin_unlock(ptl);
e77b0852 4016 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4017 /*
4018 * Bail out after unmapping reference page if supplied
4019 */
4020 if (ref_page)
4021 break;
fe1668ae 4022 }
ac46d4f3 4023 mmu_notifier_invalidate_range_end(&range);
24669e58 4024 tlb_end_vma(tlb, vma);
1da177e4 4025}
63551ae0 4026
d833352a
MG
4027void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4028 struct vm_area_struct *vma, unsigned long start,
4029 unsigned long end, struct page *ref_page)
4030{
4031 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4032
4033 /*
4034 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4035 * test will fail on a vma being torn down, and not grab a page table
4036 * on its way out. We're lucky that the flag has such an appropriate
4037 * name, and can in fact be safely cleared here. We could clear it
4038 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4039 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4040 * because in the context this is called, the VMA is about to be
c8c06efa 4041 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4042 */
4043 vma->vm_flags &= ~VM_MAYSHARE;
4044}
4045
502717f4 4046void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4047 unsigned long end, struct page *ref_page)
502717f4 4048{
24669e58
AK
4049 struct mm_struct *mm;
4050 struct mmu_gather tlb;
dff11abe
MK
4051 unsigned long tlb_start = start;
4052 unsigned long tlb_end = end;
4053
4054 /*
4055 * If shared PMDs were possibly used within this vma range, adjust
4056 * start/end for worst case tlb flushing.
4057 * Note that we can not be sure if PMDs are shared until we try to
4058 * unmap pages. However, we want to make sure TLB flushing covers
4059 * the largest possible range.
4060 */
4061 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
4062
4063 mm = vma->vm_mm;
4064
dff11abe 4065 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 4066 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 4067 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
KC
4068}
4069
04f2cbe3
MG
4070/*
4071 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4072 * mappping it owns the reserve page for. The intention is to unmap the page
4073 * from other VMAs and let the children be SIGKILLed if they are faulting the
4074 * same region.
4075 */
2f4612af
DB
4076static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4077 struct page *page, unsigned long address)
04f2cbe3 4078{
7526674d 4079 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4080 struct vm_area_struct *iter_vma;
4081 struct address_space *mapping;
04f2cbe3
MG
4082 pgoff_t pgoff;
4083
4084 /*
4085 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4086 * from page cache lookup which is in HPAGE_SIZE units.
4087 */
7526674d 4088 address = address & huge_page_mask(h);
36e4f20a
MH
4089 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4090 vma->vm_pgoff;
93c76a3d 4091 mapping = vma->vm_file->f_mapping;
04f2cbe3 4092
4eb2b1dc
MG
4093 /*
4094 * Take the mapping lock for the duration of the table walk. As
4095 * this mapping should be shared between all the VMAs,
4096 * __unmap_hugepage_range() is called as the lock is already held
4097 */
83cde9e8 4098 i_mmap_lock_write(mapping);
6b2dbba8 4099 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4100 /* Do not unmap the current VMA */
4101 if (iter_vma == vma)
4102 continue;
4103
2f84a899
MG
4104 /*
4105 * Shared VMAs have their own reserves and do not affect
4106 * MAP_PRIVATE accounting but it is possible that a shared
4107 * VMA is using the same page so check and skip such VMAs.
4108 */
4109 if (iter_vma->vm_flags & VM_MAYSHARE)
4110 continue;
4111
04f2cbe3
MG
4112 /*
4113 * Unmap the page from other VMAs without their own reserves.
4114 * They get marked to be SIGKILLed if they fault in these
4115 * areas. This is because a future no-page fault on this VMA
4116 * could insert a zeroed page instead of the data existing
4117 * from the time of fork. This would look like data corruption
4118 */
4119 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4120 unmap_hugepage_range(iter_vma, address,
4121 address + huge_page_size(h), page);
04f2cbe3 4122 }
83cde9e8 4123 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4124}
4125
0fe6e20b
NH
4126/*
4127 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4128 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4129 * cannot race with other handlers or page migration.
4130 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4131 */
2b740303 4132static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4133 unsigned long address, pte_t *ptep,
3999f52e 4134 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4135{
3999f52e 4136 pte_t pte;
a5516438 4137 struct hstate *h = hstate_vma(vma);
1e8f889b 4138 struct page *old_page, *new_page;
2b740303
SJ
4139 int outside_reserve = 0;
4140 vm_fault_t ret = 0;
974e6d66 4141 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4142 struct mmu_notifier_range range;
1e8f889b 4143
3999f52e 4144 pte = huge_ptep_get(ptep);
1e8f889b
DG
4145 old_page = pte_page(pte);
4146
04f2cbe3 4147retry_avoidcopy:
1e8f889b
DG
4148 /* If no-one else is actually using this page, avoid the copy
4149 * and just make the page writable */
37a2140d 4150 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4151 page_move_anon_rmap(old_page, vma);
5b7a1d40 4152 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4153 return 0;
1e8f889b
DG
4154 }
4155
04f2cbe3
MG
4156 /*
4157 * If the process that created a MAP_PRIVATE mapping is about to
4158 * perform a COW due to a shared page count, attempt to satisfy
4159 * the allocation without using the existing reserves. The pagecache
4160 * page is used to determine if the reserve at this address was
4161 * consumed or not. If reserves were used, a partial faulted mapping
4162 * at the time of fork() could consume its reserves on COW instead
4163 * of the full address range.
4164 */
5944d011 4165 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4166 old_page != pagecache_page)
4167 outside_reserve = 1;
4168
09cbfeaf 4169 get_page(old_page);
b76c8cfb 4170
ad4404a2
DB
4171 /*
4172 * Drop page table lock as buddy allocator may be called. It will
4173 * be acquired again before returning to the caller, as expected.
4174 */
cb900f41 4175 spin_unlock(ptl);
5b7a1d40 4176 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4177
2fc39cec 4178 if (IS_ERR(new_page)) {
04f2cbe3
MG
4179 /*
4180 * If a process owning a MAP_PRIVATE mapping fails to COW,
4181 * it is due to references held by a child and an insufficient
4182 * huge page pool. To guarantee the original mappers
4183 * reliability, unmap the page from child processes. The child
4184 * may get SIGKILLed if it later faults.
4185 */
4186 if (outside_reserve) {
09cbfeaf 4187 put_page(old_page);
04f2cbe3 4188 BUG_ON(huge_pte_none(pte));
5b7a1d40 4189 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
4190 BUG_ON(huge_pte_none(pte));
4191 spin_lock(ptl);
5b7a1d40 4192 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4193 if (likely(ptep &&
4194 pte_same(huge_ptep_get(ptep), pte)))
4195 goto retry_avoidcopy;
4196 /*
4197 * race occurs while re-acquiring page table
4198 * lock, and our job is done.
4199 */
4200 return 0;
04f2cbe3
MG
4201 }
4202
2b740303 4203 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4204 goto out_release_old;
1e8f889b
DG
4205 }
4206
0fe6e20b
NH
4207 /*
4208 * When the original hugepage is shared one, it does not have
4209 * anon_vma prepared.
4210 */
44e2aa93 4211 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4212 ret = VM_FAULT_OOM;
4213 goto out_release_all;
44e2aa93 4214 }
0fe6e20b 4215
974e6d66 4216 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4217 pages_per_huge_page(h));
0ed361de 4218 __SetPageUptodate(new_page);
1e8f889b 4219
7269f999 4220 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4221 haddr + huge_page_size(h));
ac46d4f3 4222 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4223
b76c8cfb 4224 /*
cb900f41 4225 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4226 * before the page tables are altered
4227 */
cb900f41 4228 spin_lock(ptl);
5b7a1d40 4229 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4230 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
4231 ClearPagePrivate(new_page);
4232
1e8f889b 4233 /* Break COW */
5b7a1d40 4234 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4235 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4236 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4237 make_huge_pte(vma, new_page, 1));
d281ee61 4238 page_remove_rmap(old_page, true);
5b7a1d40 4239 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 4240 set_page_huge_active(new_page);
1e8f889b
DG
4241 /* Make the old page be freed below */
4242 new_page = old_page;
4243 }
cb900f41 4244 spin_unlock(ptl);
ac46d4f3 4245 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4246out_release_all:
5b7a1d40 4247 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4248 put_page(new_page);
ad4404a2 4249out_release_old:
09cbfeaf 4250 put_page(old_page);
8312034f 4251
ad4404a2
DB
4252 spin_lock(ptl); /* Caller expects lock to be held */
4253 return ret;
1e8f889b
DG
4254}
4255
04f2cbe3 4256/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4257static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4258 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4259{
4260 struct address_space *mapping;
e7c4b0bf 4261 pgoff_t idx;
04f2cbe3
MG
4262
4263 mapping = vma->vm_file->f_mapping;
a5516438 4264 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4265
4266 return find_lock_page(mapping, idx);
4267}
4268
3ae77f43
HD
4269/*
4270 * Return whether there is a pagecache page to back given address within VMA.
4271 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4272 */
4273static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4274 struct vm_area_struct *vma, unsigned long address)
4275{
4276 struct address_space *mapping;
4277 pgoff_t idx;
4278 struct page *page;
4279
4280 mapping = vma->vm_file->f_mapping;
4281 idx = vma_hugecache_offset(h, vma, address);
4282
4283 page = find_get_page(mapping, idx);
4284 if (page)
4285 put_page(page);
4286 return page != NULL;
4287}
4288
ab76ad54
MK
4289int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4290 pgoff_t idx)
4291{
4292 struct inode *inode = mapping->host;
4293 struct hstate *h = hstate_inode(inode);
4294 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4295
4296 if (err)
4297 return err;
4298 ClearPagePrivate(page);
4299
22146c3c
MK
4300 /*
4301 * set page dirty so that it will not be removed from cache/file
4302 * by non-hugetlbfs specific code paths.
4303 */
4304 set_page_dirty(page);
4305
ab76ad54
MK
4306 spin_lock(&inode->i_lock);
4307 inode->i_blocks += blocks_per_huge_page(h);
4308 spin_unlock(&inode->i_lock);
4309 return 0;
4310}
4311
2b740303
SJ
4312static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4313 struct vm_area_struct *vma,
4314 struct address_space *mapping, pgoff_t idx,
4315 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4316{
a5516438 4317 struct hstate *h = hstate_vma(vma);
2b740303 4318 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4319 int anon_rmap = 0;
4c887265 4320 unsigned long size;
4c887265 4321 struct page *page;
1e8f889b 4322 pte_t new_pte;
cb900f41 4323 spinlock_t *ptl;
285b8dca 4324 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4325 bool new_page = false;
4c887265 4326
04f2cbe3
MG
4327 /*
4328 * Currently, we are forced to kill the process in the event the
4329 * original mapper has unmapped pages from the child due to a failed
25985edc 4330 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4331 */
4332 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4333 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4334 current->pid);
04f2cbe3
MG
4335 return ret;
4336 }
4337
4c887265 4338 /*
87bf91d3
MK
4339 * We can not race with truncation due to holding i_mmap_rwsem.
4340 * i_size is modified when holding i_mmap_rwsem, so check here
4341 * once for faults beyond end of file.
4c887265 4342 */
87bf91d3
MK
4343 size = i_size_read(mapping->host) >> huge_page_shift(h);
4344 if (idx >= size)
4345 goto out;
4346
6bda666a
CL
4347retry:
4348 page = find_lock_page(mapping, idx);
4349 if (!page) {
1a1aad8a
MK
4350 /*
4351 * Check for page in userfault range
4352 */
4353 if (userfaultfd_missing(vma)) {
4354 u32 hash;
4355 struct vm_fault vmf = {
4356 .vma = vma,
285b8dca 4357 .address = haddr,
1a1aad8a
MK
4358 .flags = flags,
4359 /*
4360 * Hard to debug if it ends up being
4361 * used by a callee that assumes
4362 * something about the other
4363 * uninitialized fields... same as in
4364 * memory.c
4365 */
4366 };
4367
4368 /*
c0d0381a
MK
4369 * hugetlb_fault_mutex and i_mmap_rwsem must be
4370 * dropped before handling userfault. Reacquire
4371 * after handling fault to make calling code simpler.
1a1aad8a 4372 */
188b04a7 4373 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 4374 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4375 i_mmap_unlock_read(mapping);
1a1aad8a 4376 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 4377 i_mmap_lock_read(mapping);
1a1aad8a
MK
4378 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4379 goto out;
4380 }
4381
285b8dca 4382 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4383 if (IS_ERR(page)) {
4643d67e
MK
4384 /*
4385 * Returning error will result in faulting task being
4386 * sent SIGBUS. The hugetlb fault mutex prevents two
4387 * tasks from racing to fault in the same page which
4388 * could result in false unable to allocate errors.
4389 * Page migration does not take the fault mutex, but
4390 * does a clear then write of pte's under page table
4391 * lock. Page fault code could race with migration,
4392 * notice the clear pte and try to allocate a page
4393 * here. Before returning error, get ptl and make
4394 * sure there really is no pte entry.
4395 */
4396 ptl = huge_pte_lock(h, mm, ptep);
4397 if (!huge_pte_none(huge_ptep_get(ptep))) {
4398 ret = 0;
4399 spin_unlock(ptl);
4400 goto out;
4401 }
4402 spin_unlock(ptl);
2b740303 4403 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
4404 goto out;
4405 }
47ad8475 4406 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4407 __SetPageUptodate(page);
cb6acd01 4408 new_page = true;
ac9b9c66 4409
f83a275d 4410 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4411 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4412 if (err) {
4413 put_page(page);
6bda666a
CL
4414 if (err == -EEXIST)
4415 goto retry;
4416 goto out;
4417 }
23be7468 4418 } else {
6bda666a 4419 lock_page(page);
0fe6e20b
NH
4420 if (unlikely(anon_vma_prepare(vma))) {
4421 ret = VM_FAULT_OOM;
4422 goto backout_unlocked;
4423 }
409eb8c2 4424 anon_rmap = 1;
23be7468 4425 }
0fe6e20b 4426 } else {
998b4382
NH
4427 /*
4428 * If memory error occurs between mmap() and fault, some process
4429 * don't have hwpoisoned swap entry for errored virtual address.
4430 * So we need to block hugepage fault by PG_hwpoison bit check.
4431 */
4432 if (unlikely(PageHWPoison(page))) {
32f84528 4433 ret = VM_FAULT_HWPOISON |
972dc4de 4434 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4435 goto backout_unlocked;
4436 }
6bda666a 4437 }
1e8f889b 4438
57303d80
AW
4439 /*
4440 * If we are going to COW a private mapping later, we examine the
4441 * pending reservations for this page now. This will ensure that
4442 * any allocations necessary to record that reservation occur outside
4443 * the spinlock.
4444 */
5e911373 4445 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4446 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4447 ret = VM_FAULT_OOM;
4448 goto backout_unlocked;
4449 }
5e911373 4450 /* Just decrements count, does not deallocate */
285b8dca 4451 vma_end_reservation(h, vma, haddr);
5e911373 4452 }
57303d80 4453
8bea8052 4454 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4455 ret = 0;
7f2e9525 4456 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4457 goto backout;
4458
07443a85
JK
4459 if (anon_rmap) {
4460 ClearPagePrivate(page);
285b8dca 4461 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4462 } else
53f9263b 4463 page_dup_rmap(page, true);
1e8f889b
DG
4464 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4465 && (vma->vm_flags & VM_SHARED)));
285b8dca 4466 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4467
5d317b2b 4468 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4469 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4470 /* Optimization, do the COW without a second fault */
974e6d66 4471 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4472 }
4473
cb900f41 4474 spin_unlock(ptl);
cb6acd01
MK
4475
4476 /*
4477 * Only make newly allocated pages active. Existing pages found
4478 * in the pagecache could be !page_huge_active() if they have been
4479 * isolated for migration.
4480 */
4481 if (new_page)
4482 set_page_huge_active(page);
4483
4c887265
AL
4484 unlock_page(page);
4485out:
ac9b9c66 4486 return ret;
4c887265
AL
4487
4488backout:
cb900f41 4489 spin_unlock(ptl);
2b26736c 4490backout_unlocked:
4c887265 4491 unlock_page(page);
285b8dca 4492 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4493 put_page(page);
4494 goto out;
ac9b9c66
HD
4495}
4496
8382d914 4497#ifdef CONFIG_SMP
188b04a7 4498u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4499{
4500 unsigned long key[2];
4501 u32 hash;
4502
1b426bac
MK
4503 key[0] = (unsigned long) mapping;
4504 key[1] = idx;
8382d914 4505
55254636 4506 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4507
4508 return hash & (num_fault_mutexes - 1);
4509}
4510#else
4511/*
4512 * For uniprocesor systems we always use a single mutex, so just
4513 * return 0 and avoid the hashing overhead.
4514 */
188b04a7 4515u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4516{
4517 return 0;
4518}
4519#endif
4520
2b740303 4521vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4522 unsigned long address, unsigned int flags)
86e5216f 4523{
8382d914 4524 pte_t *ptep, entry;
cb900f41 4525 spinlock_t *ptl;
2b740303 4526 vm_fault_t ret;
8382d914
DB
4527 u32 hash;
4528 pgoff_t idx;
0fe6e20b 4529 struct page *page = NULL;
57303d80 4530 struct page *pagecache_page = NULL;
a5516438 4531 struct hstate *h = hstate_vma(vma);
8382d914 4532 struct address_space *mapping;
0f792cf9 4533 int need_wait_lock = 0;
285b8dca 4534 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4535
285b8dca 4536 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4537 if (ptep) {
c0d0381a
MK
4538 /*
4539 * Since we hold no locks, ptep could be stale. That is
4540 * OK as we are only making decisions based on content and
4541 * not actually modifying content here.
4542 */
fd6a03ed 4543 entry = huge_ptep_get(ptep);
290408d4 4544 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4545 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4546 return 0;
4547 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4548 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4549 VM_FAULT_SET_HINDEX(hstate_index(h));
ddeaab32
MK
4550 } else {
4551 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4552 if (!ptep)
4553 return VM_FAULT_OOM;
fd6a03ed
NH
4554 }
4555
c0d0381a
MK
4556 /*
4557 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4558 * until finished with ptep. This serves two purposes:
4559 * 1) It prevents huge_pmd_unshare from being called elsewhere
4560 * and making the ptep no longer valid.
4561 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4562 *
4563 * ptep could have already be assigned via huge_pte_offset. That
4564 * is OK, as huge_pte_alloc will return the same value unless
4565 * something has changed.
4566 */
8382d914 4567 mapping = vma->vm_file->f_mapping;
c0d0381a
MK
4568 i_mmap_lock_read(mapping);
4569 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4570 if (!ptep) {
4571 i_mmap_unlock_read(mapping);
4572 return VM_FAULT_OOM;
4573 }
8382d914 4574
3935baa9
DG
4575 /*
4576 * Serialize hugepage allocation and instantiation, so that we don't
4577 * get spurious allocation failures if two CPUs race to instantiate
4578 * the same page in the page cache.
4579 */
c0d0381a 4580 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4581 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4582 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4583
7f2e9525
GS
4584 entry = huge_ptep_get(ptep);
4585 if (huge_pte_none(entry)) {
8382d914 4586 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4587 goto out_mutex;
3935baa9 4588 }
86e5216f 4589
83c54070 4590 ret = 0;
1e8f889b 4591
0f792cf9
NH
4592 /*
4593 * entry could be a migration/hwpoison entry at this point, so this
4594 * check prevents the kernel from going below assuming that we have
4595 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4596 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4597 * handle it.
4598 */
4599 if (!pte_present(entry))
4600 goto out_mutex;
4601
57303d80
AW
4602 /*
4603 * If we are going to COW the mapping later, we examine the pending
4604 * reservations for this page now. This will ensure that any
4605 * allocations necessary to record that reservation occur outside the
4606 * spinlock. For private mappings, we also lookup the pagecache
4607 * page now as it is used to determine if a reservation has been
4608 * consumed.
4609 */
106c992a 4610 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4611 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4612 ret = VM_FAULT_OOM;
b4d1d99f 4613 goto out_mutex;
2b26736c 4614 }
5e911373 4615 /* Just decrements count, does not deallocate */
285b8dca 4616 vma_end_reservation(h, vma, haddr);
57303d80 4617
f83a275d 4618 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4619 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4620 vma, haddr);
57303d80
AW
4621 }
4622
0f792cf9
NH
4623 ptl = huge_pte_lock(h, mm, ptep);
4624
4625 /* Check for a racing update before calling hugetlb_cow */
4626 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4627 goto out_ptl;
4628
56c9cfb1
NH
4629 /*
4630 * hugetlb_cow() requires page locks of pte_page(entry) and
4631 * pagecache_page, so here we need take the former one
4632 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4633 */
4634 page = pte_page(entry);
4635 if (page != pagecache_page)
0f792cf9
NH
4636 if (!trylock_page(page)) {
4637 need_wait_lock = 1;
4638 goto out_ptl;
4639 }
b4d1d99f 4640
0f792cf9 4641 get_page(page);
b4d1d99f 4642
788c7df4 4643 if (flags & FAULT_FLAG_WRITE) {
106c992a 4644 if (!huge_pte_write(entry)) {
974e6d66 4645 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4646 pagecache_page, ptl);
0f792cf9 4647 goto out_put_page;
b4d1d99f 4648 }
106c992a 4649 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4650 }
4651 entry = pte_mkyoung(entry);
285b8dca 4652 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4653 flags & FAULT_FLAG_WRITE))
285b8dca 4654 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4655out_put_page:
4656 if (page != pagecache_page)
4657 unlock_page(page);
4658 put_page(page);
cb900f41
KS
4659out_ptl:
4660 spin_unlock(ptl);
57303d80
AW
4661
4662 if (pagecache_page) {
4663 unlock_page(pagecache_page);
4664 put_page(pagecache_page);
4665 }
b4d1d99f 4666out_mutex:
c672c7f2 4667 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4668 i_mmap_unlock_read(mapping);
0f792cf9
NH
4669 /*
4670 * Generally it's safe to hold refcount during waiting page lock. But
4671 * here we just wait to defer the next page fault to avoid busy loop and
4672 * the page is not used after unlocked before returning from the current
4673 * page fault. So we are safe from accessing freed page, even if we wait
4674 * here without taking refcount.
4675 */
4676 if (need_wait_lock)
4677 wait_on_page_locked(page);
1e8f889b 4678 return ret;
86e5216f
AL
4679}
4680
8fb5debc
MK
4681/*
4682 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4683 * modifications for huge pages.
4684 */
4685int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4686 pte_t *dst_pte,
4687 struct vm_area_struct *dst_vma,
4688 unsigned long dst_addr,
4689 unsigned long src_addr,
4690 struct page **pagep)
4691{
1e392147
AA
4692 struct address_space *mapping;
4693 pgoff_t idx;
4694 unsigned long size;
1c9e8def 4695 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4696 struct hstate *h = hstate_vma(dst_vma);
4697 pte_t _dst_pte;
4698 spinlock_t *ptl;
4699 int ret;
4700 struct page *page;
4701
4702 if (!*pagep) {
4703 ret = -ENOMEM;
4704 page = alloc_huge_page(dst_vma, dst_addr, 0);
4705 if (IS_ERR(page))
4706 goto out;
4707
4708 ret = copy_huge_page_from_user(page,
4709 (const void __user *) src_addr,
810a56b9 4710 pages_per_huge_page(h), false);
8fb5debc
MK
4711
4712 /* fallback to copy_from_user outside mmap_sem */
4713 if (unlikely(ret)) {
9e368259 4714 ret = -ENOENT;
8fb5debc
MK
4715 *pagep = page;
4716 /* don't free the page */
4717 goto out;
4718 }
4719 } else {
4720 page = *pagep;
4721 *pagep = NULL;
4722 }
4723
4724 /*
4725 * The memory barrier inside __SetPageUptodate makes sure that
4726 * preceding stores to the page contents become visible before
4727 * the set_pte_at() write.
4728 */
4729 __SetPageUptodate(page);
8fb5debc 4730
1e392147
AA
4731 mapping = dst_vma->vm_file->f_mapping;
4732 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4733
1c9e8def
MK
4734 /*
4735 * If shared, add to page cache
4736 */
4737 if (vm_shared) {
1e392147
AA
4738 size = i_size_read(mapping->host) >> huge_page_shift(h);
4739 ret = -EFAULT;
4740 if (idx >= size)
4741 goto out_release_nounlock;
1c9e8def 4742
1e392147
AA
4743 /*
4744 * Serialization between remove_inode_hugepages() and
4745 * huge_add_to_page_cache() below happens through the
4746 * hugetlb_fault_mutex_table that here must be hold by
4747 * the caller.
4748 */
1c9e8def
MK
4749 ret = huge_add_to_page_cache(page, mapping, idx);
4750 if (ret)
4751 goto out_release_nounlock;
4752 }
4753
8fb5debc
MK
4754 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4755 spin_lock(ptl);
4756
1e392147
AA
4757 /*
4758 * Recheck the i_size after holding PT lock to make sure not
4759 * to leave any page mapped (as page_mapped()) beyond the end
4760 * of the i_size (remove_inode_hugepages() is strict about
4761 * enforcing that). If we bail out here, we'll also leave a
4762 * page in the radix tree in the vm_shared case beyond the end
4763 * of the i_size, but remove_inode_hugepages() will take care
4764 * of it as soon as we drop the hugetlb_fault_mutex_table.
4765 */
4766 size = i_size_read(mapping->host) >> huge_page_shift(h);
4767 ret = -EFAULT;
4768 if (idx >= size)
4769 goto out_release_unlock;
4770
8fb5debc
MK
4771 ret = -EEXIST;
4772 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4773 goto out_release_unlock;
4774
1c9e8def
MK
4775 if (vm_shared) {
4776 page_dup_rmap(page, true);
4777 } else {
4778 ClearPagePrivate(page);
4779 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4780 }
8fb5debc
MK
4781
4782 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4783 if (dst_vma->vm_flags & VM_WRITE)
4784 _dst_pte = huge_pte_mkdirty(_dst_pte);
4785 _dst_pte = pte_mkyoung(_dst_pte);
4786
4787 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4788
4789 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4790 dst_vma->vm_flags & VM_WRITE);
4791 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4792
4793 /* No need to invalidate - it was non-present before */
4794 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4795
4796 spin_unlock(ptl);
cb6acd01 4797 set_page_huge_active(page);
1c9e8def
MK
4798 if (vm_shared)
4799 unlock_page(page);
8fb5debc
MK
4800 ret = 0;
4801out:
4802 return ret;
4803out_release_unlock:
4804 spin_unlock(ptl);
1c9e8def
MK
4805 if (vm_shared)
4806 unlock_page(page);
5af10dfd 4807out_release_nounlock:
8fb5debc
MK
4808 put_page(page);
4809 goto out;
4810}
4811
28a35716
ML
4812long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4813 struct page **pages, struct vm_area_struct **vmas,
4814 unsigned long *position, unsigned long *nr_pages,
4f6da934 4815 long i, unsigned int flags, int *locked)
63551ae0 4816{
d5d4b0aa
KC
4817 unsigned long pfn_offset;
4818 unsigned long vaddr = *position;
28a35716 4819 unsigned long remainder = *nr_pages;
a5516438 4820 struct hstate *h = hstate_vma(vma);
2be7cfed 4821 int err = -EFAULT;
63551ae0 4822
63551ae0 4823 while (vaddr < vma->vm_end && remainder) {
4c887265 4824 pte_t *pte;
cb900f41 4825 spinlock_t *ptl = NULL;
2a15efc9 4826 int absent;
4c887265 4827 struct page *page;
63551ae0 4828
02057967
DR
4829 /*
4830 * If we have a pending SIGKILL, don't keep faulting pages and
4831 * potentially allocating memory.
4832 */
fa45f116 4833 if (fatal_signal_pending(current)) {
02057967
DR
4834 remainder = 0;
4835 break;
4836 }
4837
4c887265
AL
4838 /*
4839 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4840 * each hugepage. We have to make sure we get the
4c887265 4841 * first, for the page indexing below to work.
cb900f41
KS
4842 *
4843 * Note that page table lock is not held when pte is null.
4c887265 4844 */
7868a208
PA
4845 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4846 huge_page_size(h));
cb900f41
KS
4847 if (pte)
4848 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4849 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4850
4851 /*
4852 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4853 * an error where there's an empty slot with no huge pagecache
4854 * to back it. This way, we avoid allocating a hugepage, and
4855 * the sparse dumpfile avoids allocating disk blocks, but its
4856 * huge holes still show up with zeroes where they need to be.
2a15efc9 4857 */
3ae77f43
HD
4858 if (absent && (flags & FOLL_DUMP) &&
4859 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4860 if (pte)
4861 spin_unlock(ptl);
2a15efc9
HD
4862 remainder = 0;
4863 break;
4864 }
63551ae0 4865
9cc3a5bd
NH
4866 /*
4867 * We need call hugetlb_fault for both hugepages under migration
4868 * (in which case hugetlb_fault waits for the migration,) and
4869 * hwpoisoned hugepages (in which case we need to prevent the
4870 * caller from accessing to them.) In order to do this, we use
4871 * here is_swap_pte instead of is_hugetlb_entry_migration and
4872 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4873 * both cases, and because we can't follow correct pages
4874 * directly from any kind of swap entries.
4875 */
4876 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4877 ((flags & FOLL_WRITE) &&
4878 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4879 vm_fault_t ret;
87ffc118 4880 unsigned int fault_flags = 0;
63551ae0 4881
cb900f41
KS
4882 if (pte)
4883 spin_unlock(ptl);
87ffc118
AA
4884 if (flags & FOLL_WRITE)
4885 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4886 if (locked)
71335f37
PX
4887 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4888 FAULT_FLAG_KILLABLE;
87ffc118
AA
4889 if (flags & FOLL_NOWAIT)
4890 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4891 FAULT_FLAG_RETRY_NOWAIT;
4892 if (flags & FOLL_TRIED) {
4426e945
PX
4893 /*
4894 * Note: FAULT_FLAG_ALLOW_RETRY and
4895 * FAULT_FLAG_TRIED can co-exist
4896 */
87ffc118
AA
4897 fault_flags |= FAULT_FLAG_TRIED;
4898 }
4899 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4900 if (ret & VM_FAULT_ERROR) {
2be7cfed 4901 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4902 remainder = 0;
4903 break;
4904 }
4905 if (ret & VM_FAULT_RETRY) {
4f6da934 4906 if (locked &&
1ac25013 4907 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4908 *locked = 0;
87ffc118
AA
4909 *nr_pages = 0;
4910 /*
4911 * VM_FAULT_RETRY must not return an
4912 * error, it will return zero
4913 * instead.
4914 *
4915 * No need to update "position" as the
4916 * caller will not check it after
4917 * *nr_pages is set to 0.
4918 */
4919 return i;
4920 }
4921 continue;
4c887265
AL
4922 }
4923
a5516438 4924 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4925 page = pte_page(huge_ptep_get(pte));
8fde12ca 4926
acbfb087
ZL
4927 /*
4928 * If subpage information not requested, update counters
4929 * and skip the same_page loop below.
4930 */
4931 if (!pages && !vmas && !pfn_offset &&
4932 (vaddr + huge_page_size(h) < vma->vm_end) &&
4933 (remainder >= pages_per_huge_page(h))) {
4934 vaddr += huge_page_size(h);
4935 remainder -= pages_per_huge_page(h);
4936 i += pages_per_huge_page(h);
4937 spin_unlock(ptl);
4938 continue;
4939 }
4940
d5d4b0aa 4941same_page:
d6692183 4942 if (pages) {
2a15efc9 4943 pages[i] = mem_map_offset(page, pfn_offset);
3faa52c0
JH
4944 /*
4945 * try_grab_page() should always succeed here, because:
4946 * a) we hold the ptl lock, and b) we've just checked
4947 * that the huge page is present in the page tables. If
4948 * the huge page is present, then the tail pages must
4949 * also be present. The ptl prevents the head page and
4950 * tail pages from being rearranged in any way. So this
4951 * page must be available at this point, unless the page
4952 * refcount overflowed:
4953 */
4954 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4955 spin_unlock(ptl);
4956 remainder = 0;
4957 err = -ENOMEM;
4958 break;
4959 }
d6692183 4960 }
63551ae0
DG
4961
4962 if (vmas)
4963 vmas[i] = vma;
4964
4965 vaddr += PAGE_SIZE;
d5d4b0aa 4966 ++pfn_offset;
63551ae0
DG
4967 --remainder;
4968 ++i;
d5d4b0aa 4969 if (vaddr < vma->vm_end && remainder &&
a5516438 4970 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4971 /*
4972 * We use pfn_offset to avoid touching the pageframes
4973 * of this compound page.
4974 */
4975 goto same_page;
4976 }
cb900f41 4977 spin_unlock(ptl);
63551ae0 4978 }
28a35716 4979 *nr_pages = remainder;
87ffc118
AA
4980 /*
4981 * setting position is actually required only if remainder is
4982 * not zero but it's faster not to add a "if (remainder)"
4983 * branch.
4984 */
63551ae0
DG
4985 *position = vaddr;
4986
2be7cfed 4987 return i ? i : err;
63551ae0 4988}
8f860591 4989
5491ae7b
AK
4990#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4991/*
4992 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4993 * implement this.
4994 */
4995#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4996#endif
4997
7da4d641 4998unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4999 unsigned long address, unsigned long end, pgprot_t newprot)
5000{
5001 struct mm_struct *mm = vma->vm_mm;
5002 unsigned long start = address;
5003 pte_t *ptep;
5004 pte_t pte;
a5516438 5005 struct hstate *h = hstate_vma(vma);
7da4d641 5006 unsigned long pages = 0;
dff11abe 5007 bool shared_pmd = false;
ac46d4f3 5008 struct mmu_notifier_range range;
dff11abe
MK
5009
5010 /*
5011 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5012 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5013 * range if PMD sharing is possible.
5014 */
7269f999
JG
5015 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5016 0, vma, mm, start, end);
ac46d4f3 5017 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5018
5019 BUG_ON(address >= end);
ac46d4f3 5020 flush_cache_range(vma, range.start, range.end);
8f860591 5021
ac46d4f3 5022 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5023 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5024 for (; address < end; address += huge_page_size(h)) {
cb900f41 5025 spinlock_t *ptl;
7868a208 5026 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5027 if (!ptep)
5028 continue;
cb900f41 5029 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
5030 if (huge_pmd_unshare(mm, &address, ptep)) {
5031 pages++;
cb900f41 5032 spin_unlock(ptl);
dff11abe 5033 shared_pmd = true;
39dde65c 5034 continue;
7da4d641 5035 }
a8bda28d
NH
5036 pte = huge_ptep_get(ptep);
5037 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5038 spin_unlock(ptl);
5039 continue;
5040 }
5041 if (unlikely(is_hugetlb_entry_migration(pte))) {
5042 swp_entry_t entry = pte_to_swp_entry(pte);
5043
5044 if (is_write_migration_entry(entry)) {
5045 pte_t newpte;
5046
5047 make_migration_entry_read(&entry);
5048 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5049 set_huge_swap_pte_at(mm, address, ptep,
5050 newpte, huge_page_size(h));
a8bda28d
NH
5051 pages++;
5052 }
5053 spin_unlock(ptl);
5054 continue;
5055 }
5056 if (!huge_pte_none(pte)) {
023bdd00
AK
5057 pte_t old_pte;
5058
5059 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5060 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5061 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5062 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5063 pages++;
8f860591 5064 }
cb900f41 5065 spin_unlock(ptl);
8f860591 5066 }
d833352a 5067 /*
c8c06efa 5068 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5069 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5070 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5071 * and that page table be reused and filled with junk. If we actually
5072 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5073 */
dff11abe 5074 if (shared_pmd)
ac46d4f3 5075 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5076 else
5077 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5078 /*
5079 * No need to call mmu_notifier_invalidate_range() we are downgrading
5080 * page table protection not changing it to point to a new page.
5081 *
ad56b738 5082 * See Documentation/vm/mmu_notifier.rst
0f10851e 5083 */
83cde9e8 5084 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5085 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5086
5087 return pages << h->order;
8f860591
ZY
5088}
5089
a1e78772
MG
5090int hugetlb_reserve_pages(struct inode *inode,
5091 long from, long to,
5a6fe125 5092 struct vm_area_struct *vma,
ca16d140 5093 vm_flags_t vm_flags)
e4e574b7 5094{
0db9d74e 5095 long ret, chg, add = -1;
a5516438 5096 struct hstate *h = hstate_inode(inode);
90481622 5097 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5098 struct resv_map *resv_map;
075a61d0 5099 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5100 long gbl_reserve, regions_needed = 0;
e4e574b7 5101
63489f8e
MK
5102 /* This should never happen */
5103 if (from > to) {
5104 VM_WARN(1, "%s called with a negative range\n", __func__);
5105 return -EINVAL;
5106 }
5107
17c9d12e
MG
5108 /*
5109 * Only apply hugepage reservation if asked. At fault time, an
5110 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5111 * without using reserves
17c9d12e 5112 */
ca16d140 5113 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
5114 return 0;
5115
a1e78772
MG
5116 /*
5117 * Shared mappings base their reservation on the number of pages that
5118 * are already allocated on behalf of the file. Private mappings need
5119 * to reserve the full area even if read-only as mprotect() may be
5120 * called to make the mapping read-write. Assume !vma is a shm mapping
5121 */
9119a41e 5122 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5123 /*
5124 * resv_map can not be NULL as hugetlb_reserve_pages is only
5125 * called for inodes for which resv_maps were created (see
5126 * hugetlbfs_get_inode).
5127 */
4e35f483 5128 resv_map = inode_resv_map(inode);
9119a41e 5129
0db9d74e 5130 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5131
5132 } else {
e9fe92ae 5133 /* Private mapping. */
9119a41e 5134 resv_map = resv_map_alloc();
17c9d12e
MG
5135 if (!resv_map)
5136 return -ENOMEM;
5137
a1e78772 5138 chg = to - from;
84afd99b 5139
17c9d12e
MG
5140 set_vma_resv_map(vma, resv_map);
5141 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5142 }
5143
c50ac050
DH
5144 if (chg < 0) {
5145 ret = chg;
5146 goto out_err;
5147 }
8a630112 5148
075a61d0
MA
5149 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5150 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5151
5152 if (ret < 0) {
5153 ret = -ENOMEM;
5154 goto out_err;
5155 }
5156
5157 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5158 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5159 * of the resv_map.
5160 */
5161 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5162 }
5163
1c5ecae3
MK
5164 /*
5165 * There must be enough pages in the subpool for the mapping. If
5166 * the subpool has a minimum size, there may be some global
5167 * reservations already in place (gbl_reserve).
5168 */
5169 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5170 if (gbl_reserve < 0) {
c50ac050 5171 ret = -ENOSPC;
075a61d0 5172 goto out_uncharge_cgroup;
c50ac050 5173 }
5a6fe125
MG
5174
5175 /*
17c9d12e 5176 * Check enough hugepages are available for the reservation.
90481622 5177 * Hand the pages back to the subpool if there are not
5a6fe125 5178 */
1c5ecae3 5179 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 5180 if (ret < 0) {
075a61d0 5181 goto out_put_pages;
68842c9b 5182 }
17c9d12e
MG
5183
5184 /*
5185 * Account for the reservations made. Shared mappings record regions
5186 * that have reservations as they are shared by multiple VMAs.
5187 * When the last VMA disappears, the region map says how much
5188 * the reservation was and the page cache tells how much of
5189 * the reservation was consumed. Private mappings are per-VMA and
5190 * only the consumed reservations are tracked. When the VMA
5191 * disappears, the original reservation is the VMA size and the
5192 * consumed reservations are stored in the map. Hence, nothing
5193 * else has to be done for private mappings here
5194 */
33039678 5195 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5196 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5197
5198 if (unlikely(add < 0)) {
5199 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5200 goto out_put_pages;
0db9d74e 5201 } else if (unlikely(chg > add)) {
33039678
MK
5202 /*
5203 * pages in this range were added to the reserve
5204 * map between region_chg and region_add. This
5205 * indicates a race with alloc_huge_page. Adjust
5206 * the subpool and reserve counts modified above
5207 * based on the difference.
5208 */
5209 long rsv_adjust;
5210
075a61d0
MA
5211 hugetlb_cgroup_uncharge_cgroup_rsvd(
5212 hstate_index(h),
5213 (chg - add) * pages_per_huge_page(h), h_cg);
5214
33039678
MK
5215 rsv_adjust = hugepage_subpool_put_pages(spool,
5216 chg - add);
5217 hugetlb_acct_memory(h, -rsv_adjust);
5218 }
5219 }
a43a8c39 5220 return 0;
075a61d0
MA
5221out_put_pages:
5222 /* put back original number of pages, chg */
5223 (void)hugepage_subpool_put_pages(spool, chg);
5224out_uncharge_cgroup:
5225 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5226 chg * pages_per_huge_page(h), h_cg);
c50ac050 5227out_err:
5e911373 5228 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5229 /* Only call region_abort if the region_chg succeeded but the
5230 * region_add failed or didn't run.
5231 */
5232 if (chg >= 0 && add < 0)
5233 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5234 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5235 kref_put(&resv_map->refs, resv_map_release);
c50ac050 5236 return ret;
a43a8c39
KC
5237}
5238
b5cec28d
MK
5239long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5240 long freed)
a43a8c39 5241{
a5516438 5242 struct hstate *h = hstate_inode(inode);
4e35f483 5243 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5244 long chg = 0;
90481622 5245 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5246 long gbl_reserve;
45c682a6 5247
f27a5136
MK
5248 /*
5249 * Since this routine can be called in the evict inode path for all
5250 * hugetlbfs inodes, resv_map could be NULL.
5251 */
b5cec28d
MK
5252 if (resv_map) {
5253 chg = region_del(resv_map, start, end);
5254 /*
5255 * region_del() can fail in the rare case where a region
5256 * must be split and another region descriptor can not be
5257 * allocated. If end == LONG_MAX, it will not fail.
5258 */
5259 if (chg < 0)
5260 return chg;
5261 }
5262
45c682a6 5263 spin_lock(&inode->i_lock);
e4c6f8be 5264 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5265 spin_unlock(&inode->i_lock);
5266
1c5ecae3
MK
5267 /*
5268 * If the subpool has a minimum size, the number of global
5269 * reservations to be released may be adjusted.
5270 */
5271 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5272 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5273
5274 return 0;
a43a8c39 5275}
93f70f90 5276
3212b535
SC
5277#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5278static unsigned long page_table_shareable(struct vm_area_struct *svma,
5279 struct vm_area_struct *vma,
5280 unsigned long addr, pgoff_t idx)
5281{
5282 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5283 svma->vm_start;
5284 unsigned long sbase = saddr & PUD_MASK;
5285 unsigned long s_end = sbase + PUD_SIZE;
5286
5287 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5288 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5289 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5290
5291 /*
5292 * match the virtual addresses, permission and the alignment of the
5293 * page table page.
5294 */
5295 if (pmd_index(addr) != pmd_index(saddr) ||
5296 vm_flags != svm_flags ||
5297 sbase < svma->vm_start || svma->vm_end < s_end)
5298 return 0;
5299
5300 return saddr;
5301}
5302
31aafb45 5303static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5304{
5305 unsigned long base = addr & PUD_MASK;
5306 unsigned long end = base + PUD_SIZE;
5307
5308 /*
5309 * check on proper vm_flags and page table alignment
5310 */
017b1660 5311 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5312 return true;
5313 return false;
3212b535
SC
5314}
5315
017b1660
MK
5316/*
5317 * Determine if start,end range within vma could be mapped by shared pmd.
5318 * If yes, adjust start and end to cover range associated with possible
5319 * shared pmd mappings.
5320 */
5321void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5322 unsigned long *start, unsigned long *end)
5323{
353b2de4 5324 unsigned long check_addr;
017b1660
MK
5325
5326 if (!(vma->vm_flags & VM_MAYSHARE))
5327 return;
5328
5329 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
5330 unsigned long a_start = check_addr & PUD_MASK;
5331 unsigned long a_end = a_start + PUD_SIZE;
5332
5333 /*
5334 * If sharing is possible, adjust start/end if necessary.
5335 */
5336 if (range_in_vma(vma, a_start, a_end)) {
5337 if (a_start < *start)
5338 *start = a_start;
5339 if (a_end > *end)
5340 *end = a_end;
5341 }
5342 }
5343}
5344
3212b535
SC
5345/*
5346 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5347 * and returns the corresponding pte. While this is not necessary for the
5348 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5349 * code much cleaner.
5350 *
5351 * This routine must be called with i_mmap_rwsem held in at least read mode.
5352 * For hugetlbfs, this prevents removal of any page table entries associated
5353 * with the address space. This is important as we are setting up sharing
5354 * based on existing page table entries (mappings).
3212b535
SC
5355 */
5356pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5357{
5358 struct vm_area_struct *vma = find_vma(mm, addr);
5359 struct address_space *mapping = vma->vm_file->f_mapping;
5360 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5361 vma->vm_pgoff;
5362 struct vm_area_struct *svma;
5363 unsigned long saddr;
5364 pte_t *spte = NULL;
5365 pte_t *pte;
cb900f41 5366 spinlock_t *ptl;
3212b535
SC
5367
5368 if (!vma_shareable(vma, addr))
5369 return (pte_t *)pmd_alloc(mm, pud, addr);
5370
3212b535
SC
5371 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5372 if (svma == vma)
5373 continue;
5374
5375 saddr = page_table_shareable(svma, vma, addr, idx);
5376 if (saddr) {
7868a208
PA
5377 spte = huge_pte_offset(svma->vm_mm, saddr,
5378 vma_mmu_pagesize(svma));
3212b535
SC
5379 if (spte) {
5380 get_page(virt_to_page(spte));
5381 break;
5382 }
5383 }
5384 }
5385
5386 if (!spte)
5387 goto out;
5388
8bea8052 5389 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5390 if (pud_none(*pud)) {
3212b535
SC
5391 pud_populate(mm, pud,
5392 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5393 mm_inc_nr_pmds(mm);
dc6c9a35 5394 } else {
3212b535 5395 put_page(virt_to_page(spte));
dc6c9a35 5396 }
cb900f41 5397 spin_unlock(ptl);
3212b535
SC
5398out:
5399 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5400 return pte;
5401}
5402
5403/*
5404 * unmap huge page backed by shared pte.
5405 *
5406 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5407 * indicated by page_count > 1, unmap is achieved by clearing pud and
5408 * decrementing the ref count. If count == 1, the pte page is not shared.
5409 *
c0d0381a 5410 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5411 *
5412 * returns: 1 successfully unmapped a shared pte page
5413 * 0 the underlying pte page is not shared, or it is the last user
5414 */
5415int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5416{
5417 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5418 p4d_t *p4d = p4d_offset(pgd, *addr);
5419 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
5420
5421 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5422 if (page_count(virt_to_page(ptep)) == 1)
5423 return 0;
5424
5425 pud_clear(pud);
5426 put_page(virt_to_page(ptep));
dc6c9a35 5427 mm_dec_nr_pmds(mm);
3212b535
SC
5428 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5429 return 1;
5430}
9e5fc74c
SC
5431#define want_pmd_share() (1)
5432#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5433pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5434{
5435 return NULL;
5436}
e81f2d22
ZZ
5437
5438int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5439{
5440 return 0;
5441}
017b1660
MK
5442
5443void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5444 unsigned long *start, unsigned long *end)
5445{
5446}
9e5fc74c 5447#define want_pmd_share() (0)
3212b535
SC
5448#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5449
9e5fc74c
SC
5450#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5451pte_t *huge_pte_alloc(struct mm_struct *mm,
5452 unsigned long addr, unsigned long sz)
5453{
5454 pgd_t *pgd;
c2febafc 5455 p4d_t *p4d;
9e5fc74c
SC
5456 pud_t *pud;
5457 pte_t *pte = NULL;
5458
5459 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5460 p4d = p4d_alloc(mm, pgd, addr);
5461 if (!p4d)
5462 return NULL;
c2febafc 5463 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5464 if (pud) {
5465 if (sz == PUD_SIZE) {
5466 pte = (pte_t *)pud;
5467 } else {
5468 BUG_ON(sz != PMD_SIZE);
5469 if (want_pmd_share() && pud_none(*pud))
5470 pte = huge_pmd_share(mm, addr, pud);
5471 else
5472 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5473 }
5474 }
4e666314 5475 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5476
5477 return pte;
5478}
5479
9b19df29
PA
5480/*
5481 * huge_pte_offset() - Walk the page table to resolve the hugepage
5482 * entry at address @addr
5483 *
5484 * Return: Pointer to page table or swap entry (PUD or PMD) for
5485 * address @addr, or NULL if a p*d_none() entry is encountered and the
5486 * size @sz doesn't match the hugepage size at this level of the page
5487 * table.
5488 */
7868a208
PA
5489pte_t *huge_pte_offset(struct mm_struct *mm,
5490 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5491{
5492 pgd_t *pgd;
c2febafc 5493 p4d_t *p4d;
3c1d7e6c
L
5494 pud_t *pud, pud_entry;
5495 pmd_t *pmd, pmd_entry;
9e5fc74c
SC
5496
5497 pgd = pgd_offset(mm, addr);
c2febafc
KS
5498 if (!pgd_present(*pgd))
5499 return NULL;
5500 p4d = p4d_offset(pgd, addr);
5501 if (!p4d_present(*p4d))
5502 return NULL;
9b19df29 5503
c2febafc 5504 pud = pud_offset(p4d, addr);
3c1d7e6c
L
5505 pud_entry = READ_ONCE(*pud);
5506 if (sz != PUD_SIZE && pud_none(pud_entry))
c2febafc 5507 return NULL;
9b19df29 5508 /* hugepage or swap? */
3c1d7e6c 5509 if (pud_huge(pud_entry) || !pud_present(pud_entry))
c2febafc 5510 return (pte_t *)pud;
9b19df29 5511
c2febafc 5512 pmd = pmd_offset(pud, addr);
3c1d7e6c
L
5513 pmd_entry = READ_ONCE(*pmd);
5514 if (sz != PMD_SIZE && pmd_none(pmd_entry))
9b19df29
PA
5515 return NULL;
5516 /* hugepage or swap? */
3c1d7e6c 5517 if (pmd_huge(pmd_entry) || !pmd_present(pmd_entry))
9b19df29
PA
5518 return (pte_t *)pmd;
5519
5520 return NULL;
9e5fc74c
SC
5521}
5522
61f77eda
NH
5523#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5524
5525/*
5526 * These functions are overwritable if your architecture needs its own
5527 * behavior.
5528 */
5529struct page * __weak
5530follow_huge_addr(struct mm_struct *mm, unsigned long address,
5531 int write)
5532{
5533 return ERR_PTR(-EINVAL);
5534}
5535
4dc71451
AK
5536struct page * __weak
5537follow_huge_pd(struct vm_area_struct *vma,
5538 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5539{
5540 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5541 return NULL;
5542}
5543
61f77eda 5544struct page * __weak
9e5fc74c 5545follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5546 pmd_t *pmd, int flags)
9e5fc74c 5547{
e66f17ff
NH
5548 struct page *page = NULL;
5549 spinlock_t *ptl;
c9d398fa 5550 pte_t pte;
3faa52c0
JH
5551
5552 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5553 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5554 (FOLL_PIN | FOLL_GET)))
5555 return NULL;
5556
e66f17ff
NH
5557retry:
5558 ptl = pmd_lockptr(mm, pmd);
5559 spin_lock(ptl);
5560 /*
5561 * make sure that the address range covered by this pmd is not
5562 * unmapped from other threads.
5563 */
5564 if (!pmd_huge(*pmd))
5565 goto out;
c9d398fa
NH
5566 pte = huge_ptep_get((pte_t *)pmd);
5567 if (pte_present(pte)) {
97534127 5568 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5569 /*
5570 * try_grab_page() should always succeed here, because: a) we
5571 * hold the pmd (ptl) lock, and b) we've just checked that the
5572 * huge pmd (head) page is present in the page tables. The ptl
5573 * prevents the head page and tail pages from being rearranged
5574 * in any way. So this page must be available at this point,
5575 * unless the page refcount overflowed:
5576 */
5577 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5578 page = NULL;
5579 goto out;
5580 }
e66f17ff 5581 } else {
c9d398fa 5582 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5583 spin_unlock(ptl);
5584 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5585 goto retry;
5586 }
5587 /*
5588 * hwpoisoned entry is treated as no_page_table in
5589 * follow_page_mask().
5590 */
5591 }
5592out:
5593 spin_unlock(ptl);
9e5fc74c
SC
5594 return page;
5595}
5596
61f77eda 5597struct page * __weak
9e5fc74c 5598follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5599 pud_t *pud, int flags)
9e5fc74c 5600{
3faa52c0 5601 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5602 return NULL;
9e5fc74c 5603
e66f17ff 5604 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5605}
5606
faaa5b62
AK
5607struct page * __weak
5608follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5609{
3faa52c0 5610 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5611 return NULL;
5612
5613 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5614}
5615
31caf665
NH
5616bool isolate_huge_page(struct page *page, struct list_head *list)
5617{
bcc54222
NH
5618 bool ret = true;
5619
309381fe 5620 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5621 spin_lock(&hugetlb_lock);
bcc54222
NH
5622 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5623 ret = false;
5624 goto unlock;
5625 }
5626 clear_page_huge_active(page);
31caf665 5627 list_move_tail(&page->lru, list);
bcc54222 5628unlock:
31caf665 5629 spin_unlock(&hugetlb_lock);
bcc54222 5630 return ret;
31caf665
NH
5631}
5632
5633void putback_active_hugepage(struct page *page)
5634{
309381fe 5635 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5636 spin_lock(&hugetlb_lock);
bcc54222 5637 set_page_huge_active(page);
31caf665
NH
5638 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5639 spin_unlock(&hugetlb_lock);
5640 put_page(page);
5641}
ab5ac90a
MH
5642
5643void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5644{
5645 struct hstate *h = page_hstate(oldpage);
5646
5647 hugetlb_cgroup_migrate(oldpage, newpage);
5648 set_page_owner_migrate_reason(newpage, reason);
5649
5650 /*
5651 * transfer temporary state of the new huge page. This is
5652 * reverse to other transitions because the newpage is going to
5653 * be final while the old one will be freed so it takes over
5654 * the temporary status.
5655 *
5656 * Also note that we have to transfer the per-node surplus state
5657 * here as well otherwise the global surplus count will not match
5658 * the per-node's.
5659 */
5660 if (PageHugeTemporary(newpage)) {
5661 int old_nid = page_to_nid(oldpage);
5662 int new_nid = page_to_nid(newpage);
5663
5664 SetPageHugeTemporary(oldpage);
5665 ClearPageHugeTemporary(newpage);
5666
5667 spin_lock(&hugetlb_lock);
5668 if (h->surplus_huge_pages_node[old_nid]) {
5669 h->surplus_huge_pages_node[old_nid]--;
5670 h->surplus_huge_pages_node[new_nid]++;
5671 }
5672 spin_unlock(&hugetlb_lock);
5673 }
5674}
cf11e85f
RG
5675
5676#ifdef CONFIG_CMA
5677static unsigned long hugetlb_cma_size __initdata;
5678static bool cma_reserve_called __initdata;
5679
5680static int __init cmdline_parse_hugetlb_cma(char *p)
5681{
5682 hugetlb_cma_size = memparse(p, &p);
5683 return 0;
5684}
5685
5686early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5687
5688void __init hugetlb_cma_reserve(int order)
5689{
5690 unsigned long size, reserved, per_node;
5691 int nid;
5692
5693 cma_reserve_called = true;
5694
5695 if (!hugetlb_cma_size)
5696 return;
5697
5698 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5699 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5700 (PAGE_SIZE << order) / SZ_1M);
5701 return;
5702 }
5703
5704 /*
5705 * If 3 GB area is requested on a machine with 4 numa nodes,
5706 * let's allocate 1 GB on first three nodes and ignore the last one.
5707 */
5708 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5709 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5710 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5711
5712 reserved = 0;
5713 for_each_node_state(nid, N_ONLINE) {
5714 int res;
5715
5716 size = min(per_node, hugetlb_cma_size - reserved);
5717 size = round_up(size, PAGE_SIZE << order);
5718
5719 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5720 0, false, "hugetlb",
5721 &hugetlb_cma[nid], nid);
5722 if (res) {
5723 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5724 res, nid);
5725 continue;
5726 }
5727
5728 reserved += size;
5729 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5730 size / SZ_1M, nid);
5731
5732 if (reserved >= hugetlb_cma_size)
5733 break;
5734 }
5735}
5736
5737void __init hugetlb_cma_check(void)
5738{
5739 if (!hugetlb_cma_size || cma_reserve_called)
5740 return;
5741
5742 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5743}
5744
5745#endif /* CONFIG_CMA */