]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/hugetlb.c
fs/hugetlbfs/inode.c: fix pgoff alignment checking on 32-bit
[mirror_ubuntu-zesty-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
78a34ae2 27#include <asm/io.h>
63551ae0
DG
28
29#include <linux/hugetlb.h>
9a305230 30#include <linux/node.h>
7835e98b 31#include "internal.h"
1da177e4
LT
32
33const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
a5516438 36
e5ff2159
AK
37static int max_hstate;
38unsigned int default_hstate_idx;
39struct hstate hstates[HUGE_MAX_HSTATE];
40
53ba51d2
JT
41__initdata LIST_HEAD(huge_boot_pages);
42
e5ff2159
AK
43/* for command line parsing */
44static struct hstate * __initdata parsed_hstate;
45static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 46static unsigned long __initdata default_hstate_size;
e5ff2159
AK
47
48#define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
396faf03 50
3935baa9
DG
51/*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 55
96822904
AW
56/*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
84afd99b
AW
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
65 * down_write(&mm->mmap_sem);
66 * or
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
69 */
70struct file_region {
71 struct list_head link;
72 long from;
73 long to;
74};
75
76static long region_add(struct list_head *head, long f, long t)
77{
78 struct file_region *rg, *nrg, *trg;
79
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
84
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
88
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
96
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
105 }
106 }
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
110}
111
112static long region_chg(struct list_head *head, long f, long t)
113{
114 struct file_region *rg, *nrg;
115 long chg = 0;
116
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
121
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
133
134 return t - f;
135 }
136
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
141
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
148
25985edc 149 /* We overlap with this area, if it extends further than
96822904
AW
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
155 }
156 chg -= rg->to - rg->from;
157 }
158 return chg;
159}
160
161static long region_truncate(struct list_head *head, long end)
162{
163 struct file_region *rg, *trg;
164 long chg = 0;
165
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
172
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
178 }
179
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 return chg;
189}
190
84afd99b
AW
191static long region_count(struct list_head *head, long f, long t)
192{
193 struct file_region *rg;
194 long chg = 0;
195
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
200
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
205
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
208
209 chg += seg_to - seg_from;
210 }
211
212 return chg;
213}
214
e7c4b0bf
AW
215/*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
a5516438
AK
219static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 221{
a5516438
AK
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
224}
225
0fe6e20b
NH
226pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
228{
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
230}
231
08fba699
MG
232/*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237{
238 struct hstate *hstate;
239
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
242
243 hstate = hstate_vma(vma);
244
245 return 1UL << (hstate->order + PAGE_SHIFT);
246}
f340ca0f 247EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 248
3340289d
MG
249/*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255#ifndef vma_mmu_pagesize
256unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257{
258 return vma_kernel_pagesize(vma);
259}
260#endif
261
84afd99b
AW
262/*
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267#define HPAGE_RESV_OWNER (1UL << 0)
268#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 269#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 270
a1e78772
MG
271/*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
a1e78772 289 */
e7c4b0bf
AW
290static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291{
292 return (unsigned long)vma->vm_private_data;
293}
294
295static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
297{
298 vma->vm_private_data = (void *)value;
299}
300
84afd99b
AW
301struct resv_map {
302 struct kref refs;
303 struct list_head regions;
304};
305
2a4b3ded 306static struct resv_map *resv_map_alloc(void)
84afd99b
AW
307{
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
311
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
314
315 return resv_map;
316}
317
2a4b3ded 318static void resv_map_release(struct kref *ref)
84afd99b
AW
319{
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
325}
326
327static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
328{
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 330 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
2a4b3ded 333 return NULL;
a1e78772
MG
334}
335
84afd99b 336static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
337{
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 340
84afd99b
AW
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
343}
344
345static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346{
04f2cbe3 347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
349
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
351}
352
353static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354{
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
356
357 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
358}
359
360/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
361static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
a1e78772 363{
c37f9fb1
AW
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
366
f83a275d 367 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 368 /* Shared mappings always use reserves */
a5516438 369 h->resv_huge_pages--;
84afd99b 370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
371 /*
372 * Only the process that called mmap() has reserves for
373 * private mappings.
374 */
a5516438 375 h->resv_huge_pages--;
a1e78772
MG
376 }
377}
378
04f2cbe3 379/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
380void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381{
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 383 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
384 vma->vm_private_data = (void *)0;
385}
386
387/* Returns true if the VMA has associated reserve pages */
7f09ca51 388static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 389{
f83a275d 390 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
a1e78772
MG
395}
396
0ebabb41
NH
397static void copy_gigantic_page(struct page *dst, struct page *src)
398{
399 int i;
400 struct hstate *h = page_hstate(src);
401 struct page *dst_base = dst;
402 struct page *src_base = src;
403
404 for (i = 0; i < pages_per_huge_page(h); ) {
405 cond_resched();
406 copy_highpage(dst, src);
407
408 i++;
409 dst = mem_map_next(dst, dst_base, i);
410 src = mem_map_next(src, src_base, i);
411 }
412}
413
414void copy_huge_page(struct page *dst, struct page *src)
415{
416 int i;
417 struct hstate *h = page_hstate(src);
418
419 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420 copy_gigantic_page(dst, src);
421 return;
422 }
423
424 might_sleep();
425 for (i = 0; i < pages_per_huge_page(h); i++) {
426 cond_resched();
427 copy_highpage(dst + i, src + i);
428 }
429}
430
a5516438 431static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
432{
433 int nid = page_to_nid(page);
a5516438
AK
434 list_add(&page->lru, &h->hugepage_freelists[nid]);
435 h->free_huge_pages++;
436 h->free_huge_pages_node[nid]++;
1da177e4
LT
437}
438
bf50bab2
NH
439static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440{
441 struct page *page;
442
443 if (list_empty(&h->hugepage_freelists[nid]))
444 return NULL;
445 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446 list_del(&page->lru);
a9869b83 447 set_page_refcounted(page);
bf50bab2
NH
448 h->free_huge_pages--;
449 h->free_huge_pages_node[nid]--;
450 return page;
451}
452
a5516438
AK
453static struct page *dequeue_huge_page_vma(struct hstate *h,
454 struct vm_area_struct *vma,
04f2cbe3 455 unsigned long address, int avoid_reserve)
1da177e4 456{
1da177e4 457 struct page *page = NULL;
480eccf9 458 struct mempolicy *mpol;
19770b32 459 nodemask_t *nodemask;
c0ff7453 460 struct zonelist *zonelist;
dd1a239f
MG
461 struct zone *zone;
462 struct zoneref *z;
1da177e4 463
c0ff7453
MX
464 get_mems_allowed();
465 zonelist = huge_zonelist(vma, address,
466 htlb_alloc_mask, &mpol, &nodemask);
a1e78772
MG
467 /*
468 * A child process with MAP_PRIVATE mappings created by their parent
469 * have no page reserves. This check ensures that reservations are
470 * not "stolen". The child may still get SIGKILLed
471 */
7f09ca51 472 if (!vma_has_reserves(vma) &&
a5516438 473 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 474 goto err;
a1e78772 475
04f2cbe3 476 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 477 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 478 goto err;
04f2cbe3 479
19770b32
MG
480 for_each_zone_zonelist_nodemask(zone, z, zonelist,
481 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
482 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483 page = dequeue_huge_page_node(h, zone_to_nid(zone));
484 if (page) {
485 if (!avoid_reserve)
486 decrement_hugepage_resv_vma(h, vma);
487 break;
488 }
3abf7afd 489 }
1da177e4 490 }
c0ff7453 491err:
52cd3b07 492 mpol_cond_put(mpol);
c0ff7453 493 put_mems_allowed();
1da177e4
LT
494 return page;
495}
496
a5516438 497static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
498{
499 int i;
a5516438 500
18229df5
AW
501 VM_BUG_ON(h->order >= MAX_ORDER);
502
a5516438
AK
503 h->nr_huge_pages--;
504 h->nr_huge_pages_node[page_to_nid(page)]--;
505 for (i = 0; i < pages_per_huge_page(h); i++) {
6af2acb6
AL
506 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
507 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
508 1 << PG_private | 1<< PG_writeback);
509 }
510 set_compound_page_dtor(page, NULL);
511 set_page_refcounted(page);
7f2e9525 512 arch_release_hugepage(page);
a5516438 513 __free_pages(page, huge_page_order(h));
6af2acb6
AL
514}
515
e5ff2159
AK
516struct hstate *size_to_hstate(unsigned long size)
517{
518 struct hstate *h;
519
520 for_each_hstate(h) {
521 if (huge_page_size(h) == size)
522 return h;
523 }
524 return NULL;
525}
526
27a85ef1
DG
527static void free_huge_page(struct page *page)
528{
a5516438
AK
529 /*
530 * Can't pass hstate in here because it is called from the
531 * compound page destructor.
532 */
e5ff2159 533 struct hstate *h = page_hstate(page);
7893d1d5 534 int nid = page_to_nid(page);
c79fb75e 535 struct address_space *mapping;
27a85ef1 536
c79fb75e 537 mapping = (struct address_space *) page_private(page);
e5df70ab 538 set_page_private(page, 0);
23be7468 539 page->mapping = NULL;
7893d1d5 540 BUG_ON(page_count(page));
0fe6e20b 541 BUG_ON(page_mapcount(page));
27a85ef1
DG
542 INIT_LIST_HEAD(&page->lru);
543
544 spin_lock(&hugetlb_lock);
aa888a74 545 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
a5516438
AK
546 update_and_free_page(h, page);
547 h->surplus_huge_pages--;
548 h->surplus_huge_pages_node[nid]--;
7893d1d5 549 } else {
a5516438 550 enqueue_huge_page(h, page);
7893d1d5 551 }
27a85ef1 552 spin_unlock(&hugetlb_lock);
c79fb75e 553 if (mapping)
9a119c05 554 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
555}
556
a5516438 557static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6
AK
558{
559 set_compound_page_dtor(page, free_huge_page);
560 spin_lock(&hugetlb_lock);
a5516438
AK
561 h->nr_huge_pages++;
562 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
563 spin_unlock(&hugetlb_lock);
564 put_page(page); /* free it into the hugepage allocator */
565}
566
20a0307c
WF
567static void prep_compound_gigantic_page(struct page *page, unsigned long order)
568{
569 int i;
570 int nr_pages = 1 << order;
571 struct page *p = page + 1;
572
573 /* we rely on prep_new_huge_page to set the destructor */
574 set_compound_order(page, order);
575 __SetPageHead(page);
576 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
577 __SetPageTail(p);
578 p->first_page = page;
579 }
580}
581
582int PageHuge(struct page *page)
583{
584 compound_page_dtor *dtor;
585
586 if (!PageCompound(page))
587 return 0;
588
589 page = compound_head(page);
590 dtor = get_compound_page_dtor(page);
591
592 return dtor == free_huge_page;
593}
594
43131e14
NH
595EXPORT_SYMBOL_GPL(PageHuge);
596
a5516438 597static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 598{
1da177e4 599 struct page *page;
f96efd58 600
aa888a74
AK
601 if (h->order >= MAX_ORDER)
602 return NULL;
603
6484eb3e 604 page = alloc_pages_exact_node(nid,
551883ae
NA
605 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
606 __GFP_REPEAT|__GFP_NOWARN,
a5516438 607 huge_page_order(h));
1da177e4 608 if (page) {
7f2e9525 609 if (arch_prepare_hugepage(page)) {
caff3a2c 610 __free_pages(page, huge_page_order(h));
7b8ee84d 611 return NULL;
7f2e9525 612 }
a5516438 613 prep_new_huge_page(h, page, nid);
1da177e4 614 }
63b4613c
NA
615
616 return page;
617}
618
9a76db09 619/*
6ae11b27
LS
620 * common helper functions for hstate_next_node_to_{alloc|free}.
621 * We may have allocated or freed a huge page based on a different
622 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
623 * be outside of *nodes_allowed. Ensure that we use an allowed
624 * node for alloc or free.
9a76db09 625 */
6ae11b27 626static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 627{
6ae11b27 628 nid = next_node(nid, *nodes_allowed);
9a76db09 629 if (nid == MAX_NUMNODES)
6ae11b27 630 nid = first_node(*nodes_allowed);
9a76db09
LS
631 VM_BUG_ON(nid >= MAX_NUMNODES);
632
633 return nid;
634}
635
6ae11b27
LS
636static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
637{
638 if (!node_isset(nid, *nodes_allowed))
639 nid = next_node_allowed(nid, nodes_allowed);
640 return nid;
641}
642
5ced66c9 643/*
6ae11b27
LS
644 * returns the previously saved node ["this node"] from which to
645 * allocate a persistent huge page for the pool and advance the
646 * next node from which to allocate, handling wrap at end of node
647 * mask.
5ced66c9 648 */
6ae11b27
LS
649static int hstate_next_node_to_alloc(struct hstate *h,
650 nodemask_t *nodes_allowed)
5ced66c9 651{
6ae11b27
LS
652 int nid;
653
654 VM_BUG_ON(!nodes_allowed);
655
656 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
657 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 658
9a76db09 659 return nid;
5ced66c9
AK
660}
661
6ae11b27 662static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
663{
664 struct page *page;
665 int start_nid;
666 int next_nid;
667 int ret = 0;
668
6ae11b27 669 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 670 next_nid = start_nid;
63b4613c
NA
671
672 do {
e8c5c824 673 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 674 if (page) {
63b4613c 675 ret = 1;
9a76db09
LS
676 break;
677 }
6ae11b27 678 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 679 } while (next_nid != start_nid);
63b4613c 680
3b116300
AL
681 if (ret)
682 count_vm_event(HTLB_BUDDY_PGALLOC);
683 else
684 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
685
63b4613c 686 return ret;
1da177e4
LT
687}
688
e8c5c824 689/*
6ae11b27
LS
690 * helper for free_pool_huge_page() - return the previously saved
691 * node ["this node"] from which to free a huge page. Advance the
692 * next node id whether or not we find a free huge page to free so
693 * that the next attempt to free addresses the next node.
e8c5c824 694 */
6ae11b27 695static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 696{
6ae11b27
LS
697 int nid;
698
699 VM_BUG_ON(!nodes_allowed);
700
701 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
702 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 703
9a76db09 704 return nid;
e8c5c824
LS
705}
706
707/*
708 * Free huge page from pool from next node to free.
709 * Attempt to keep persistent huge pages more or less
710 * balanced over allowed nodes.
711 * Called with hugetlb_lock locked.
712 */
6ae11b27
LS
713static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
714 bool acct_surplus)
e8c5c824
LS
715{
716 int start_nid;
717 int next_nid;
718 int ret = 0;
719
6ae11b27 720 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
721 next_nid = start_nid;
722
723 do {
685f3457
LS
724 /*
725 * If we're returning unused surplus pages, only examine
726 * nodes with surplus pages.
727 */
728 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
729 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
730 struct page *page =
731 list_entry(h->hugepage_freelists[next_nid].next,
732 struct page, lru);
733 list_del(&page->lru);
734 h->free_huge_pages--;
735 h->free_huge_pages_node[next_nid]--;
685f3457
LS
736 if (acct_surplus) {
737 h->surplus_huge_pages--;
738 h->surplus_huge_pages_node[next_nid]--;
739 }
e8c5c824
LS
740 update_and_free_page(h, page);
741 ret = 1;
9a76db09 742 break;
e8c5c824 743 }
6ae11b27 744 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 745 } while (next_nid != start_nid);
e8c5c824
LS
746
747 return ret;
748}
749
bf50bab2 750static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
751{
752 struct page *page;
bf50bab2 753 unsigned int r_nid;
7893d1d5 754
aa888a74
AK
755 if (h->order >= MAX_ORDER)
756 return NULL;
757
d1c3fb1f
NA
758 /*
759 * Assume we will successfully allocate the surplus page to
760 * prevent racing processes from causing the surplus to exceed
761 * overcommit
762 *
763 * This however introduces a different race, where a process B
764 * tries to grow the static hugepage pool while alloc_pages() is
765 * called by process A. B will only examine the per-node
766 * counters in determining if surplus huge pages can be
767 * converted to normal huge pages in adjust_pool_surplus(). A
768 * won't be able to increment the per-node counter, until the
769 * lock is dropped by B, but B doesn't drop hugetlb_lock until
770 * no more huge pages can be converted from surplus to normal
771 * state (and doesn't try to convert again). Thus, we have a
772 * case where a surplus huge page exists, the pool is grown, and
773 * the surplus huge page still exists after, even though it
774 * should just have been converted to a normal huge page. This
775 * does not leak memory, though, as the hugepage will be freed
776 * once it is out of use. It also does not allow the counters to
777 * go out of whack in adjust_pool_surplus() as we don't modify
778 * the node values until we've gotten the hugepage and only the
779 * per-node value is checked there.
780 */
781 spin_lock(&hugetlb_lock);
a5516438 782 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
783 spin_unlock(&hugetlb_lock);
784 return NULL;
785 } else {
a5516438
AK
786 h->nr_huge_pages++;
787 h->surplus_huge_pages++;
d1c3fb1f
NA
788 }
789 spin_unlock(&hugetlb_lock);
790
bf50bab2
NH
791 if (nid == NUMA_NO_NODE)
792 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
793 __GFP_REPEAT|__GFP_NOWARN,
794 huge_page_order(h));
795 else
796 page = alloc_pages_exact_node(nid,
797 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
798 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 799
caff3a2c
GS
800 if (page && arch_prepare_hugepage(page)) {
801 __free_pages(page, huge_page_order(h));
802 return NULL;
803 }
804
d1c3fb1f 805 spin_lock(&hugetlb_lock);
7893d1d5 806 if (page) {
bf50bab2 807 r_nid = page_to_nid(page);
7893d1d5 808 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
809 /*
810 * We incremented the global counters already
811 */
bf50bab2
NH
812 h->nr_huge_pages_node[r_nid]++;
813 h->surplus_huge_pages_node[r_nid]++;
3b116300 814 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 815 } else {
a5516438
AK
816 h->nr_huge_pages--;
817 h->surplus_huge_pages--;
3b116300 818 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 819 }
d1c3fb1f 820 spin_unlock(&hugetlb_lock);
7893d1d5
AL
821
822 return page;
823}
824
bf50bab2
NH
825/*
826 * This allocation function is useful in the context where vma is irrelevant.
827 * E.g. soft-offlining uses this function because it only cares physical
828 * address of error page.
829 */
830struct page *alloc_huge_page_node(struct hstate *h, int nid)
831{
832 struct page *page;
833
834 spin_lock(&hugetlb_lock);
835 page = dequeue_huge_page_node(h, nid);
836 spin_unlock(&hugetlb_lock);
837
838 if (!page)
839 page = alloc_buddy_huge_page(h, nid);
840
841 return page;
842}
843
e4e574b7 844/*
25985edc 845 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
846 * of size 'delta'.
847 */
a5516438 848static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
849{
850 struct list_head surplus_list;
851 struct page *page, *tmp;
852 int ret, i;
853 int needed, allocated;
854
a5516438 855 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 856 if (needed <= 0) {
a5516438 857 h->resv_huge_pages += delta;
e4e574b7 858 return 0;
ac09b3a1 859 }
e4e574b7
AL
860
861 allocated = 0;
862 INIT_LIST_HEAD(&surplus_list);
863
864 ret = -ENOMEM;
865retry:
866 spin_unlock(&hugetlb_lock);
867 for (i = 0; i < needed; i++) {
bf50bab2 868 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
a9869b83 869 if (!page)
e4e574b7
AL
870 /*
871 * We were not able to allocate enough pages to
872 * satisfy the entire reservation so we free what
873 * we've allocated so far.
874 */
e4e574b7 875 goto free;
e4e574b7
AL
876
877 list_add(&page->lru, &surplus_list);
878 }
879 allocated += needed;
880
881 /*
882 * After retaking hugetlb_lock, we need to recalculate 'needed'
883 * because either resv_huge_pages or free_huge_pages may have changed.
884 */
885 spin_lock(&hugetlb_lock);
a5516438
AK
886 needed = (h->resv_huge_pages + delta) -
887 (h->free_huge_pages + allocated);
e4e574b7
AL
888 if (needed > 0)
889 goto retry;
890
891 /*
892 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 893 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 894 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
895 * allocator. Commit the entire reservation here to prevent another
896 * process from stealing the pages as they are added to the pool but
897 * before they are reserved.
e4e574b7
AL
898 */
899 needed += allocated;
a5516438 900 h->resv_huge_pages += delta;
e4e574b7 901 ret = 0;
a9869b83
NH
902
903 spin_unlock(&hugetlb_lock);
19fc3f0a 904 /* Free the needed pages to the hugetlb pool */
e4e574b7 905 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
906 if ((--needed) < 0)
907 break;
e4e574b7 908 list_del(&page->lru);
a9869b83
NH
909 /*
910 * This page is now managed by the hugetlb allocator and has
911 * no users -- drop the buddy allocator's reference.
912 */
913 put_page_testzero(page);
914 VM_BUG_ON(page_count(page));
a5516438 915 enqueue_huge_page(h, page);
19fc3f0a
AL
916 }
917
918 /* Free unnecessary surplus pages to the buddy allocator */
a9869b83 919free:
19fc3f0a 920 if (!list_empty(&surplus_list)) {
19fc3f0a
AL
921 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
922 list_del(&page->lru);
a9869b83 923 put_page(page);
af767cbd 924 }
e4e574b7 925 }
a9869b83 926 spin_lock(&hugetlb_lock);
e4e574b7
AL
927
928 return ret;
929}
930
931/*
932 * When releasing a hugetlb pool reservation, any surplus pages that were
933 * allocated to satisfy the reservation must be explicitly freed if they were
934 * never used.
685f3457 935 * Called with hugetlb_lock held.
e4e574b7 936 */
a5516438
AK
937static void return_unused_surplus_pages(struct hstate *h,
938 unsigned long unused_resv_pages)
e4e574b7 939{
e4e574b7
AL
940 unsigned long nr_pages;
941
ac09b3a1 942 /* Uncommit the reservation */
a5516438 943 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 944
aa888a74
AK
945 /* Cannot return gigantic pages currently */
946 if (h->order >= MAX_ORDER)
947 return;
948
a5516438 949 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 950
685f3457
LS
951 /*
952 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
953 * evenly across all nodes with memory. Iterate across these nodes
954 * until we can no longer free unreserved surplus pages. This occurs
955 * when the nodes with surplus pages have no free pages.
956 * free_pool_huge_page() will balance the the freed pages across the
957 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
958 */
959 while (nr_pages--) {
9b5e5d0f 960 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
685f3457 961 break;
e4e574b7
AL
962 }
963}
964
c37f9fb1
AW
965/*
966 * Determine if the huge page at addr within the vma has an associated
967 * reservation. Where it does not we will need to logically increase
968 * reservation and actually increase quota before an allocation can occur.
969 * Where any new reservation would be required the reservation change is
970 * prepared, but not committed. Once the page has been quota'd allocated
971 * an instantiated the change should be committed via vma_commit_reservation.
972 * No action is required on failure.
973 */
e2f17d94 974static long vma_needs_reservation(struct hstate *h,
a5516438 975 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
976{
977 struct address_space *mapping = vma->vm_file->f_mapping;
978 struct inode *inode = mapping->host;
979
f83a275d 980 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 981 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
982 return region_chg(&inode->i_mapping->private_list,
983 idx, idx + 1);
984
84afd99b
AW
985 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
986 return 1;
c37f9fb1 987
84afd99b 988 } else {
e2f17d94 989 long err;
a5516438 990 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
991 struct resv_map *reservations = vma_resv_map(vma);
992
993 err = region_chg(&reservations->regions, idx, idx + 1);
994 if (err < 0)
995 return err;
996 return 0;
997 }
c37f9fb1 998}
a5516438
AK
999static void vma_commit_reservation(struct hstate *h,
1000 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1001{
1002 struct address_space *mapping = vma->vm_file->f_mapping;
1003 struct inode *inode = mapping->host;
1004
f83a275d 1005 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1006 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1007 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1008
1009 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1010 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1011 struct resv_map *reservations = vma_resv_map(vma);
1012
1013 /* Mark this page used in the map. */
1014 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1015 }
1016}
1017
a1e78772 1018static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1019 unsigned long addr, int avoid_reserve)
1da177e4 1020{
a5516438 1021 struct hstate *h = hstate_vma(vma);
348ea204 1022 struct page *page;
a1e78772
MG
1023 struct address_space *mapping = vma->vm_file->f_mapping;
1024 struct inode *inode = mapping->host;
e2f17d94 1025 long chg;
a1e78772
MG
1026
1027 /*
1028 * Processes that did not create the mapping will have no reserves and
1029 * will not have accounted against quota. Check that the quota can be
1030 * made before satisfying the allocation
c37f9fb1
AW
1031 * MAP_NORESERVE mappings may also need pages and quota allocated
1032 * if no reserve mapping overlaps.
a1e78772 1033 */
a5516438 1034 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1035 if (chg < 0)
e0dcd8a0 1036 return ERR_PTR(-VM_FAULT_OOM);
c37f9fb1 1037 if (chg)
a1e78772 1038 if (hugetlb_get_quota(inode->i_mapping, chg))
e0dcd8a0 1039 return ERR_PTR(-VM_FAULT_SIGBUS);
1da177e4
LT
1040
1041 spin_lock(&hugetlb_lock);
a5516438 1042 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1da177e4 1043 spin_unlock(&hugetlb_lock);
b45b5bd6 1044
68842c9b 1045 if (!page) {
bf50bab2 1046 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1047 if (!page) {
a1e78772 1048 hugetlb_put_quota(inode->i_mapping, chg);
4a6018f7 1049 return ERR_PTR(-VM_FAULT_SIGBUS);
68842c9b
KC
1050 }
1051 }
348ea204 1052
a1e78772 1053 set_page_private(page, (unsigned long) mapping);
90d8b7e6 1054
a5516438 1055 vma_commit_reservation(h, vma, addr);
c37f9fb1 1056
90d8b7e6 1057 return page;
b45b5bd6
DG
1058}
1059
91f47662 1060int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1061{
1062 struct huge_bootmem_page *m;
9b5e5d0f 1063 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
aa888a74
AK
1064
1065 while (nr_nodes) {
1066 void *addr;
1067
1068 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1069 NODE_DATA(hstate_next_node_to_alloc(h,
9b5e5d0f 1070 &node_states[N_HIGH_MEMORY])),
aa888a74
AK
1071 huge_page_size(h), huge_page_size(h), 0);
1072
1073 if (addr) {
1074 /*
1075 * Use the beginning of the huge page to store the
1076 * huge_bootmem_page struct (until gather_bootmem
1077 * puts them into the mem_map).
1078 */
1079 m = addr;
91f47662 1080 goto found;
aa888a74 1081 }
aa888a74
AK
1082 nr_nodes--;
1083 }
1084 return 0;
1085
1086found:
1087 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1088 /* Put them into a private list first because mem_map is not up yet */
1089 list_add(&m->list, &huge_boot_pages);
1090 m->hstate = h;
1091 return 1;
1092}
1093
18229df5
AW
1094static void prep_compound_huge_page(struct page *page, int order)
1095{
1096 if (unlikely(order > (MAX_ORDER - 1)))
1097 prep_compound_gigantic_page(page, order);
1098 else
1099 prep_compound_page(page, order);
1100}
1101
aa888a74
AK
1102/* Put bootmem huge pages into the standard lists after mem_map is up */
1103static void __init gather_bootmem_prealloc(void)
1104{
1105 struct huge_bootmem_page *m;
1106
1107 list_for_each_entry(m, &huge_boot_pages, list) {
1108 struct page *page = virt_to_page(m);
1109 struct hstate *h = m->hstate;
1110 __ClearPageReserved(page);
1111 WARN_ON(page_count(page) != 1);
18229df5 1112 prep_compound_huge_page(page, h->order);
aa888a74 1113 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1114 /*
1115 * If we had gigantic hugepages allocated at boot time, we need
1116 * to restore the 'stolen' pages to totalram_pages in order to
1117 * fix confusing memory reports from free(1) and another
1118 * side-effects, like CommitLimit going negative.
1119 */
1120 if (h->order > (MAX_ORDER - 1))
1121 totalram_pages += 1 << h->order;
aa888a74
AK
1122 }
1123}
1124
8faa8b07 1125static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1126{
1127 unsigned long i;
a5516438 1128
e5ff2159 1129 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1130 if (h->order >= MAX_ORDER) {
1131 if (!alloc_bootmem_huge_page(h))
1132 break;
9b5e5d0f
LS
1133 } else if (!alloc_fresh_huge_page(h,
1134 &node_states[N_HIGH_MEMORY]))
1da177e4 1135 break;
1da177e4 1136 }
8faa8b07 1137 h->max_huge_pages = i;
e5ff2159
AK
1138}
1139
1140static void __init hugetlb_init_hstates(void)
1141{
1142 struct hstate *h;
1143
1144 for_each_hstate(h) {
8faa8b07
AK
1145 /* oversize hugepages were init'ed in early boot */
1146 if (h->order < MAX_ORDER)
1147 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1148 }
1149}
1150
4abd32db
AK
1151static char * __init memfmt(char *buf, unsigned long n)
1152{
1153 if (n >= (1UL << 30))
1154 sprintf(buf, "%lu GB", n >> 30);
1155 else if (n >= (1UL << 20))
1156 sprintf(buf, "%lu MB", n >> 20);
1157 else
1158 sprintf(buf, "%lu KB", n >> 10);
1159 return buf;
1160}
1161
e5ff2159
AK
1162static void __init report_hugepages(void)
1163{
1164 struct hstate *h;
1165
1166 for_each_hstate(h) {
4abd32db
AK
1167 char buf[32];
1168 printk(KERN_INFO "HugeTLB registered %s page size, "
1169 "pre-allocated %ld pages\n",
1170 memfmt(buf, huge_page_size(h)),
1171 h->free_huge_pages);
e5ff2159
AK
1172 }
1173}
1174
1da177e4 1175#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1176static void try_to_free_low(struct hstate *h, unsigned long count,
1177 nodemask_t *nodes_allowed)
1da177e4 1178{
4415cc8d
CL
1179 int i;
1180
aa888a74
AK
1181 if (h->order >= MAX_ORDER)
1182 return;
1183
6ae11b27 1184 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1185 struct page *page, *next;
a5516438
AK
1186 struct list_head *freel = &h->hugepage_freelists[i];
1187 list_for_each_entry_safe(page, next, freel, lru) {
1188 if (count >= h->nr_huge_pages)
6b0c880d 1189 return;
1da177e4
LT
1190 if (PageHighMem(page))
1191 continue;
1192 list_del(&page->lru);
e5ff2159 1193 update_and_free_page(h, page);
a5516438
AK
1194 h->free_huge_pages--;
1195 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1196 }
1197 }
1198}
1199#else
6ae11b27
LS
1200static inline void try_to_free_low(struct hstate *h, unsigned long count,
1201 nodemask_t *nodes_allowed)
1da177e4
LT
1202{
1203}
1204#endif
1205
20a0307c
WF
1206/*
1207 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1208 * balanced by operating on them in a round-robin fashion.
1209 * Returns 1 if an adjustment was made.
1210 */
6ae11b27
LS
1211static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1212 int delta)
20a0307c 1213{
e8c5c824 1214 int start_nid, next_nid;
20a0307c
WF
1215 int ret = 0;
1216
1217 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1218
e8c5c824 1219 if (delta < 0)
6ae11b27 1220 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1221 else
6ae11b27 1222 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1223 next_nid = start_nid;
1224
1225 do {
1226 int nid = next_nid;
1227 if (delta < 0) {
e8c5c824
LS
1228 /*
1229 * To shrink on this node, there must be a surplus page
1230 */
9a76db09 1231 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1232 next_nid = hstate_next_node_to_alloc(h,
1233 nodes_allowed);
e8c5c824 1234 continue;
9a76db09 1235 }
e8c5c824
LS
1236 }
1237 if (delta > 0) {
e8c5c824
LS
1238 /*
1239 * Surplus cannot exceed the total number of pages
1240 */
1241 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1242 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1243 next_nid = hstate_next_node_to_free(h,
1244 nodes_allowed);
e8c5c824 1245 continue;
9a76db09 1246 }
e8c5c824 1247 }
20a0307c
WF
1248
1249 h->surplus_huge_pages += delta;
1250 h->surplus_huge_pages_node[nid] += delta;
1251 ret = 1;
1252 break;
e8c5c824 1253 } while (next_nid != start_nid);
20a0307c 1254
20a0307c
WF
1255 return ret;
1256}
1257
a5516438 1258#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1259static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1260 nodemask_t *nodes_allowed)
1da177e4 1261{
7893d1d5 1262 unsigned long min_count, ret;
1da177e4 1263
aa888a74
AK
1264 if (h->order >= MAX_ORDER)
1265 return h->max_huge_pages;
1266
7893d1d5
AL
1267 /*
1268 * Increase the pool size
1269 * First take pages out of surplus state. Then make up the
1270 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1271 *
1272 * We might race with alloc_buddy_huge_page() here and be unable
1273 * to convert a surplus huge page to a normal huge page. That is
1274 * not critical, though, it just means the overall size of the
1275 * pool might be one hugepage larger than it needs to be, but
1276 * within all the constraints specified by the sysctls.
7893d1d5 1277 */
1da177e4 1278 spin_lock(&hugetlb_lock);
a5516438 1279 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1280 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1281 break;
1282 }
1283
a5516438 1284 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1285 /*
1286 * If this allocation races such that we no longer need the
1287 * page, free_huge_page will handle it by freeing the page
1288 * and reducing the surplus.
1289 */
1290 spin_unlock(&hugetlb_lock);
6ae11b27 1291 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1292 spin_lock(&hugetlb_lock);
1293 if (!ret)
1294 goto out;
1295
536240f2
MG
1296 /* Bail for signals. Probably ctrl-c from user */
1297 if (signal_pending(current))
1298 goto out;
7893d1d5 1299 }
7893d1d5
AL
1300
1301 /*
1302 * Decrease the pool size
1303 * First return free pages to the buddy allocator (being careful
1304 * to keep enough around to satisfy reservations). Then place
1305 * pages into surplus state as needed so the pool will shrink
1306 * to the desired size as pages become free.
d1c3fb1f
NA
1307 *
1308 * By placing pages into the surplus state independent of the
1309 * overcommit value, we are allowing the surplus pool size to
1310 * exceed overcommit. There are few sane options here. Since
1311 * alloc_buddy_huge_page() is checking the global counter,
1312 * though, we'll note that we're not allowed to exceed surplus
1313 * and won't grow the pool anywhere else. Not until one of the
1314 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1315 */
a5516438 1316 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1317 min_count = max(count, min_count);
6ae11b27 1318 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1319 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1320 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1321 break;
1da177e4 1322 }
a5516438 1323 while (count < persistent_huge_pages(h)) {
6ae11b27 1324 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1325 break;
1326 }
1327out:
a5516438 1328 ret = persistent_huge_pages(h);
1da177e4 1329 spin_unlock(&hugetlb_lock);
7893d1d5 1330 return ret;
1da177e4
LT
1331}
1332
a3437870
NA
1333#define HSTATE_ATTR_RO(_name) \
1334 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1335
1336#define HSTATE_ATTR(_name) \
1337 static struct kobj_attribute _name##_attr = \
1338 __ATTR(_name, 0644, _name##_show, _name##_store)
1339
1340static struct kobject *hugepages_kobj;
1341static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1342
9a305230
LS
1343static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1344
1345static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1346{
1347 int i;
9a305230 1348
a3437870 1349 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1350 if (hstate_kobjs[i] == kobj) {
1351 if (nidp)
1352 *nidp = NUMA_NO_NODE;
a3437870 1353 return &hstates[i];
9a305230
LS
1354 }
1355
1356 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1357}
1358
06808b08 1359static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1360 struct kobj_attribute *attr, char *buf)
1361{
9a305230
LS
1362 struct hstate *h;
1363 unsigned long nr_huge_pages;
1364 int nid;
1365
1366 h = kobj_to_hstate(kobj, &nid);
1367 if (nid == NUMA_NO_NODE)
1368 nr_huge_pages = h->nr_huge_pages;
1369 else
1370 nr_huge_pages = h->nr_huge_pages_node[nid];
1371
1372 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1373}
adbe8726 1374
06808b08
LS
1375static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1376 struct kobject *kobj, struct kobj_attribute *attr,
1377 const char *buf, size_t len)
a3437870
NA
1378{
1379 int err;
9a305230 1380 int nid;
06808b08 1381 unsigned long count;
9a305230 1382 struct hstate *h;
bad44b5b 1383 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1384
06808b08 1385 err = strict_strtoul(buf, 10, &count);
73ae31e5 1386 if (err)
adbe8726 1387 goto out;
a3437870 1388
9a305230 1389 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1390 if (h->order >= MAX_ORDER) {
1391 err = -EINVAL;
1392 goto out;
1393 }
1394
9a305230
LS
1395 if (nid == NUMA_NO_NODE) {
1396 /*
1397 * global hstate attribute
1398 */
1399 if (!(obey_mempolicy &&
1400 init_nodemask_of_mempolicy(nodes_allowed))) {
1401 NODEMASK_FREE(nodes_allowed);
1402 nodes_allowed = &node_states[N_HIGH_MEMORY];
1403 }
1404 } else if (nodes_allowed) {
1405 /*
1406 * per node hstate attribute: adjust count to global,
1407 * but restrict alloc/free to the specified node.
1408 */
1409 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1410 init_nodemask_of_node(nodes_allowed, nid);
1411 } else
1412 nodes_allowed = &node_states[N_HIGH_MEMORY];
1413
06808b08 1414 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1415
9b5e5d0f 1416 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
06808b08
LS
1417 NODEMASK_FREE(nodes_allowed);
1418
1419 return len;
adbe8726
EM
1420out:
1421 NODEMASK_FREE(nodes_allowed);
1422 return err;
06808b08
LS
1423}
1424
1425static ssize_t nr_hugepages_show(struct kobject *kobj,
1426 struct kobj_attribute *attr, char *buf)
1427{
1428 return nr_hugepages_show_common(kobj, attr, buf);
1429}
1430
1431static ssize_t nr_hugepages_store(struct kobject *kobj,
1432 struct kobj_attribute *attr, const char *buf, size_t len)
1433{
1434 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1435}
1436HSTATE_ATTR(nr_hugepages);
1437
06808b08
LS
1438#ifdef CONFIG_NUMA
1439
1440/*
1441 * hstate attribute for optionally mempolicy-based constraint on persistent
1442 * huge page alloc/free.
1443 */
1444static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1445 struct kobj_attribute *attr, char *buf)
1446{
1447 return nr_hugepages_show_common(kobj, attr, buf);
1448}
1449
1450static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1451 struct kobj_attribute *attr, const char *buf, size_t len)
1452{
1453 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1454}
1455HSTATE_ATTR(nr_hugepages_mempolicy);
1456#endif
1457
1458
a3437870
NA
1459static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1460 struct kobj_attribute *attr, char *buf)
1461{
9a305230 1462 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1463 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1464}
adbe8726 1465
a3437870
NA
1466static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1467 struct kobj_attribute *attr, const char *buf, size_t count)
1468{
1469 int err;
1470 unsigned long input;
9a305230 1471 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1472
adbe8726
EM
1473 if (h->order >= MAX_ORDER)
1474 return -EINVAL;
1475
a3437870
NA
1476 err = strict_strtoul(buf, 10, &input);
1477 if (err)
73ae31e5 1478 return err;
a3437870
NA
1479
1480 spin_lock(&hugetlb_lock);
1481 h->nr_overcommit_huge_pages = input;
1482 spin_unlock(&hugetlb_lock);
1483
1484 return count;
1485}
1486HSTATE_ATTR(nr_overcommit_hugepages);
1487
1488static ssize_t free_hugepages_show(struct kobject *kobj,
1489 struct kobj_attribute *attr, char *buf)
1490{
9a305230
LS
1491 struct hstate *h;
1492 unsigned long free_huge_pages;
1493 int nid;
1494
1495 h = kobj_to_hstate(kobj, &nid);
1496 if (nid == NUMA_NO_NODE)
1497 free_huge_pages = h->free_huge_pages;
1498 else
1499 free_huge_pages = h->free_huge_pages_node[nid];
1500
1501 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1502}
1503HSTATE_ATTR_RO(free_hugepages);
1504
1505static ssize_t resv_hugepages_show(struct kobject *kobj,
1506 struct kobj_attribute *attr, char *buf)
1507{
9a305230 1508 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1509 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1510}
1511HSTATE_ATTR_RO(resv_hugepages);
1512
1513static ssize_t surplus_hugepages_show(struct kobject *kobj,
1514 struct kobj_attribute *attr, char *buf)
1515{
9a305230
LS
1516 struct hstate *h;
1517 unsigned long surplus_huge_pages;
1518 int nid;
1519
1520 h = kobj_to_hstate(kobj, &nid);
1521 if (nid == NUMA_NO_NODE)
1522 surplus_huge_pages = h->surplus_huge_pages;
1523 else
1524 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1525
1526 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1527}
1528HSTATE_ATTR_RO(surplus_hugepages);
1529
1530static struct attribute *hstate_attrs[] = {
1531 &nr_hugepages_attr.attr,
1532 &nr_overcommit_hugepages_attr.attr,
1533 &free_hugepages_attr.attr,
1534 &resv_hugepages_attr.attr,
1535 &surplus_hugepages_attr.attr,
06808b08
LS
1536#ifdef CONFIG_NUMA
1537 &nr_hugepages_mempolicy_attr.attr,
1538#endif
a3437870
NA
1539 NULL,
1540};
1541
1542static struct attribute_group hstate_attr_group = {
1543 .attrs = hstate_attrs,
1544};
1545
094e9539
JM
1546static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1547 struct kobject **hstate_kobjs,
1548 struct attribute_group *hstate_attr_group)
a3437870
NA
1549{
1550 int retval;
9a305230 1551 int hi = h - hstates;
a3437870 1552
9a305230
LS
1553 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1554 if (!hstate_kobjs[hi])
a3437870
NA
1555 return -ENOMEM;
1556
9a305230 1557 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1558 if (retval)
9a305230 1559 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1560
1561 return retval;
1562}
1563
1564static void __init hugetlb_sysfs_init(void)
1565{
1566 struct hstate *h;
1567 int err;
1568
1569 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1570 if (!hugepages_kobj)
1571 return;
1572
1573 for_each_hstate(h) {
9a305230
LS
1574 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1575 hstate_kobjs, &hstate_attr_group);
a3437870
NA
1576 if (err)
1577 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1578 h->name);
1579 }
1580}
1581
9a305230
LS
1582#ifdef CONFIG_NUMA
1583
1584/*
1585 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1586 * with node sysdevs in node_devices[] using a parallel array. The array
1587 * index of a node sysdev or _hstate == node id.
1588 * This is here to avoid any static dependency of the node sysdev driver, in
1589 * the base kernel, on the hugetlb module.
1590 */
1591struct node_hstate {
1592 struct kobject *hugepages_kobj;
1593 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1594};
1595struct node_hstate node_hstates[MAX_NUMNODES];
1596
1597/*
1598 * A subset of global hstate attributes for node sysdevs
1599 */
1600static struct attribute *per_node_hstate_attrs[] = {
1601 &nr_hugepages_attr.attr,
1602 &free_hugepages_attr.attr,
1603 &surplus_hugepages_attr.attr,
1604 NULL,
1605};
1606
1607static struct attribute_group per_node_hstate_attr_group = {
1608 .attrs = per_node_hstate_attrs,
1609};
1610
1611/*
1612 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1613 * Returns node id via non-NULL nidp.
1614 */
1615static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1616{
1617 int nid;
1618
1619 for (nid = 0; nid < nr_node_ids; nid++) {
1620 struct node_hstate *nhs = &node_hstates[nid];
1621 int i;
1622 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1623 if (nhs->hstate_kobjs[i] == kobj) {
1624 if (nidp)
1625 *nidp = nid;
1626 return &hstates[i];
1627 }
1628 }
1629
1630 BUG();
1631 return NULL;
1632}
1633
1634/*
1635 * Unregister hstate attributes from a single node sysdev.
1636 * No-op if no hstate attributes attached.
1637 */
1638void hugetlb_unregister_node(struct node *node)
1639{
1640 struct hstate *h;
1641 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1642
1643 if (!nhs->hugepages_kobj)
9b5e5d0f 1644 return; /* no hstate attributes */
9a305230
LS
1645
1646 for_each_hstate(h)
1647 if (nhs->hstate_kobjs[h - hstates]) {
1648 kobject_put(nhs->hstate_kobjs[h - hstates]);
1649 nhs->hstate_kobjs[h - hstates] = NULL;
1650 }
1651
1652 kobject_put(nhs->hugepages_kobj);
1653 nhs->hugepages_kobj = NULL;
1654}
1655
1656/*
1657 * hugetlb module exit: unregister hstate attributes from node sysdevs
1658 * that have them.
1659 */
1660static void hugetlb_unregister_all_nodes(void)
1661{
1662 int nid;
1663
1664 /*
1665 * disable node sysdev registrations.
1666 */
1667 register_hugetlbfs_with_node(NULL, NULL);
1668
1669 /*
1670 * remove hstate attributes from any nodes that have them.
1671 */
1672 for (nid = 0; nid < nr_node_ids; nid++)
1673 hugetlb_unregister_node(&node_devices[nid]);
1674}
1675
1676/*
1677 * Register hstate attributes for a single node sysdev.
1678 * No-op if attributes already registered.
1679 */
1680void hugetlb_register_node(struct node *node)
1681{
1682 struct hstate *h;
1683 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1684 int err;
1685
1686 if (nhs->hugepages_kobj)
1687 return; /* already allocated */
1688
1689 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1690 &node->sysdev.kobj);
1691 if (!nhs->hugepages_kobj)
1692 return;
1693
1694 for_each_hstate(h) {
1695 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1696 nhs->hstate_kobjs,
1697 &per_node_hstate_attr_group);
1698 if (err) {
1699 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1700 " for node %d\n",
1701 h->name, node->sysdev.id);
1702 hugetlb_unregister_node(node);
1703 break;
1704 }
1705 }
1706}
1707
1708/*
9b5e5d0f
LS
1709 * hugetlb init time: register hstate attributes for all registered node
1710 * sysdevs of nodes that have memory. All on-line nodes should have
1711 * registered their associated sysdev by this time.
9a305230
LS
1712 */
1713static void hugetlb_register_all_nodes(void)
1714{
1715 int nid;
1716
9b5e5d0f 1717 for_each_node_state(nid, N_HIGH_MEMORY) {
9a305230
LS
1718 struct node *node = &node_devices[nid];
1719 if (node->sysdev.id == nid)
1720 hugetlb_register_node(node);
1721 }
1722
1723 /*
1724 * Let the node sysdev driver know we're here so it can
1725 * [un]register hstate attributes on node hotplug.
1726 */
1727 register_hugetlbfs_with_node(hugetlb_register_node,
1728 hugetlb_unregister_node);
1729}
1730#else /* !CONFIG_NUMA */
1731
1732static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1733{
1734 BUG();
1735 if (nidp)
1736 *nidp = -1;
1737 return NULL;
1738}
1739
1740static void hugetlb_unregister_all_nodes(void) { }
1741
1742static void hugetlb_register_all_nodes(void) { }
1743
1744#endif
1745
a3437870
NA
1746static void __exit hugetlb_exit(void)
1747{
1748 struct hstate *h;
1749
9a305230
LS
1750 hugetlb_unregister_all_nodes();
1751
a3437870
NA
1752 for_each_hstate(h) {
1753 kobject_put(hstate_kobjs[h - hstates]);
1754 }
1755
1756 kobject_put(hugepages_kobj);
1757}
1758module_exit(hugetlb_exit);
1759
1760static int __init hugetlb_init(void)
1761{
0ef89d25
BH
1762 /* Some platform decide whether they support huge pages at boot
1763 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1764 * there is no such support
1765 */
1766 if (HPAGE_SHIFT == 0)
1767 return 0;
a3437870 1768
e11bfbfc
NP
1769 if (!size_to_hstate(default_hstate_size)) {
1770 default_hstate_size = HPAGE_SIZE;
1771 if (!size_to_hstate(default_hstate_size))
1772 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1773 }
e11bfbfc
NP
1774 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1775 if (default_hstate_max_huge_pages)
1776 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1777
1778 hugetlb_init_hstates();
1779
aa888a74
AK
1780 gather_bootmem_prealloc();
1781
a3437870
NA
1782 report_hugepages();
1783
1784 hugetlb_sysfs_init();
1785
9a305230
LS
1786 hugetlb_register_all_nodes();
1787
a3437870
NA
1788 return 0;
1789}
1790module_init(hugetlb_init);
1791
1792/* Should be called on processing a hugepagesz=... option */
1793void __init hugetlb_add_hstate(unsigned order)
1794{
1795 struct hstate *h;
8faa8b07
AK
1796 unsigned long i;
1797
a3437870
NA
1798 if (size_to_hstate(PAGE_SIZE << order)) {
1799 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1800 return;
1801 }
1802 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1803 BUG_ON(order == 0);
1804 h = &hstates[max_hstate++];
1805 h->order = order;
1806 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1807 h->nr_huge_pages = 0;
1808 h->free_huge_pages = 0;
1809 for (i = 0; i < MAX_NUMNODES; ++i)
1810 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
9b5e5d0f
LS
1811 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1812 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
a3437870
NA
1813 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1814 huge_page_size(h)/1024);
8faa8b07 1815
a3437870
NA
1816 parsed_hstate = h;
1817}
1818
e11bfbfc 1819static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1820{
1821 unsigned long *mhp;
8faa8b07 1822 static unsigned long *last_mhp;
a3437870
NA
1823
1824 /*
1825 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1826 * so this hugepages= parameter goes to the "default hstate".
1827 */
1828 if (!max_hstate)
1829 mhp = &default_hstate_max_huge_pages;
1830 else
1831 mhp = &parsed_hstate->max_huge_pages;
1832
8faa8b07
AK
1833 if (mhp == last_mhp) {
1834 printk(KERN_WARNING "hugepages= specified twice without "
1835 "interleaving hugepagesz=, ignoring\n");
1836 return 1;
1837 }
1838
a3437870
NA
1839 if (sscanf(s, "%lu", mhp) <= 0)
1840 *mhp = 0;
1841
8faa8b07
AK
1842 /*
1843 * Global state is always initialized later in hugetlb_init.
1844 * But we need to allocate >= MAX_ORDER hstates here early to still
1845 * use the bootmem allocator.
1846 */
1847 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1848 hugetlb_hstate_alloc_pages(parsed_hstate);
1849
1850 last_mhp = mhp;
1851
a3437870
NA
1852 return 1;
1853}
e11bfbfc
NP
1854__setup("hugepages=", hugetlb_nrpages_setup);
1855
1856static int __init hugetlb_default_setup(char *s)
1857{
1858 default_hstate_size = memparse(s, &s);
1859 return 1;
1860}
1861__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1862
8a213460
NA
1863static unsigned int cpuset_mems_nr(unsigned int *array)
1864{
1865 int node;
1866 unsigned int nr = 0;
1867
1868 for_each_node_mask(node, cpuset_current_mems_allowed)
1869 nr += array[node];
1870
1871 return nr;
1872}
1873
1874#ifdef CONFIG_SYSCTL
06808b08
LS
1875static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1876 struct ctl_table *table, int write,
1877 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1878{
e5ff2159
AK
1879 struct hstate *h = &default_hstate;
1880 unsigned long tmp;
08d4a246 1881 int ret;
e5ff2159 1882
c033a93c 1883 tmp = h->max_huge_pages;
e5ff2159 1884
adbe8726
EM
1885 if (write && h->order >= MAX_ORDER)
1886 return -EINVAL;
1887
e5ff2159
AK
1888 table->data = &tmp;
1889 table->maxlen = sizeof(unsigned long);
08d4a246
MH
1890 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1891 if (ret)
1892 goto out;
e5ff2159 1893
06808b08 1894 if (write) {
bad44b5b
DR
1895 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1896 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
1897 if (!(obey_mempolicy &&
1898 init_nodemask_of_mempolicy(nodes_allowed))) {
1899 NODEMASK_FREE(nodes_allowed);
1900 nodes_allowed = &node_states[N_HIGH_MEMORY];
1901 }
1902 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1903
1904 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1905 NODEMASK_FREE(nodes_allowed);
1906 }
08d4a246
MH
1907out:
1908 return ret;
1da177e4 1909}
396faf03 1910
06808b08
LS
1911int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1912 void __user *buffer, size_t *length, loff_t *ppos)
1913{
1914
1915 return hugetlb_sysctl_handler_common(false, table, write,
1916 buffer, length, ppos);
1917}
1918
1919#ifdef CONFIG_NUMA
1920int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1921 void __user *buffer, size_t *length, loff_t *ppos)
1922{
1923 return hugetlb_sysctl_handler_common(true, table, write,
1924 buffer, length, ppos);
1925}
1926#endif /* CONFIG_NUMA */
1927
396faf03 1928int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 1929 void __user *buffer,
396faf03
MG
1930 size_t *length, loff_t *ppos)
1931{
8d65af78 1932 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
1933 if (hugepages_treat_as_movable)
1934 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1935 else
1936 htlb_alloc_mask = GFP_HIGHUSER;
1937 return 0;
1938}
1939
a3d0c6aa 1940int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 1941 void __user *buffer,
a3d0c6aa
NA
1942 size_t *length, loff_t *ppos)
1943{
a5516438 1944 struct hstate *h = &default_hstate;
e5ff2159 1945 unsigned long tmp;
08d4a246 1946 int ret;
e5ff2159 1947
c033a93c 1948 tmp = h->nr_overcommit_huge_pages;
e5ff2159 1949
adbe8726
EM
1950 if (write && h->order >= MAX_ORDER)
1951 return -EINVAL;
1952
e5ff2159
AK
1953 table->data = &tmp;
1954 table->maxlen = sizeof(unsigned long);
08d4a246
MH
1955 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1956 if (ret)
1957 goto out;
e5ff2159
AK
1958
1959 if (write) {
1960 spin_lock(&hugetlb_lock);
1961 h->nr_overcommit_huge_pages = tmp;
1962 spin_unlock(&hugetlb_lock);
1963 }
08d4a246
MH
1964out:
1965 return ret;
a3d0c6aa
NA
1966}
1967
1da177e4
LT
1968#endif /* CONFIG_SYSCTL */
1969
e1759c21 1970void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 1971{
a5516438 1972 struct hstate *h = &default_hstate;
e1759c21 1973 seq_printf(m,
4f98a2fe
RR
1974 "HugePages_Total: %5lu\n"
1975 "HugePages_Free: %5lu\n"
1976 "HugePages_Rsvd: %5lu\n"
1977 "HugePages_Surp: %5lu\n"
1978 "Hugepagesize: %8lu kB\n",
a5516438
AK
1979 h->nr_huge_pages,
1980 h->free_huge_pages,
1981 h->resv_huge_pages,
1982 h->surplus_huge_pages,
1983 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
1984}
1985
1986int hugetlb_report_node_meminfo(int nid, char *buf)
1987{
a5516438 1988 struct hstate *h = &default_hstate;
1da177e4
LT
1989 return sprintf(buf,
1990 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
1991 "Node %d HugePages_Free: %5u\n"
1992 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
1993 nid, h->nr_huge_pages_node[nid],
1994 nid, h->free_huge_pages_node[nid],
1995 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
1996}
1997
1da177e4
LT
1998/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1999unsigned long hugetlb_total_pages(void)
2000{
a5516438
AK
2001 struct hstate *h = &default_hstate;
2002 return h->nr_huge_pages * pages_per_huge_page(h);
1da177e4 2003}
1da177e4 2004
a5516438 2005static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2006{
2007 int ret = -ENOMEM;
2008
2009 spin_lock(&hugetlb_lock);
2010 /*
2011 * When cpuset is configured, it breaks the strict hugetlb page
2012 * reservation as the accounting is done on a global variable. Such
2013 * reservation is completely rubbish in the presence of cpuset because
2014 * the reservation is not checked against page availability for the
2015 * current cpuset. Application can still potentially OOM'ed by kernel
2016 * with lack of free htlb page in cpuset that the task is in.
2017 * Attempt to enforce strict accounting with cpuset is almost
2018 * impossible (or too ugly) because cpuset is too fluid that
2019 * task or memory node can be dynamically moved between cpusets.
2020 *
2021 * The change of semantics for shared hugetlb mapping with cpuset is
2022 * undesirable. However, in order to preserve some of the semantics,
2023 * we fall back to check against current free page availability as
2024 * a best attempt and hopefully to minimize the impact of changing
2025 * semantics that cpuset has.
2026 */
2027 if (delta > 0) {
a5516438 2028 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2029 goto out;
2030
a5516438
AK
2031 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2032 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2033 goto out;
2034 }
2035 }
2036
2037 ret = 0;
2038 if (delta < 0)
a5516438 2039 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2040
2041out:
2042 spin_unlock(&hugetlb_lock);
2043 return ret;
2044}
2045
84afd99b
AW
2046static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2047{
2048 struct resv_map *reservations = vma_resv_map(vma);
2049
2050 /*
2051 * This new VMA should share its siblings reservation map if present.
2052 * The VMA will only ever have a valid reservation map pointer where
2053 * it is being copied for another still existing VMA. As that VMA
25985edc 2054 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2055 * after this open call completes. It is therefore safe to take a
2056 * new reference here without additional locking.
2057 */
2058 if (reservations)
2059 kref_get(&reservations->refs);
2060}
2061
a1e78772
MG
2062static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2063{
a5516438 2064 struct hstate *h = hstate_vma(vma);
84afd99b
AW
2065 struct resv_map *reservations = vma_resv_map(vma);
2066 unsigned long reserve;
2067 unsigned long start;
2068 unsigned long end;
2069
2070 if (reservations) {
a5516438
AK
2071 start = vma_hugecache_offset(h, vma, vma->vm_start);
2072 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2073
2074 reserve = (end - start) -
2075 region_count(&reservations->regions, start, end);
2076
2077 kref_put(&reservations->refs, resv_map_release);
2078
7251ff78 2079 if (reserve) {
a5516438 2080 hugetlb_acct_memory(h, -reserve);
7251ff78
AL
2081 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2082 }
84afd99b 2083 }
a1e78772
MG
2084}
2085
1da177e4
LT
2086/*
2087 * We cannot handle pagefaults against hugetlb pages at all. They cause
2088 * handle_mm_fault() to try to instantiate regular-sized pages in the
2089 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2090 * this far.
2091 */
d0217ac0 2092static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2093{
2094 BUG();
d0217ac0 2095 return 0;
1da177e4
LT
2096}
2097
f0f37e2f 2098const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2099 .fault = hugetlb_vm_op_fault,
84afd99b 2100 .open = hugetlb_vm_op_open,
a1e78772 2101 .close = hugetlb_vm_op_close,
1da177e4
LT
2102};
2103
1e8f889b
DG
2104static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2105 int writable)
63551ae0
DG
2106{
2107 pte_t entry;
2108
1e8f889b 2109 if (writable) {
63551ae0
DG
2110 entry =
2111 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2112 } else {
7f2e9525 2113 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
2114 }
2115 entry = pte_mkyoung(entry);
2116 entry = pte_mkhuge(entry);
2117
2118 return entry;
2119}
2120
1e8f889b
DG
2121static void set_huge_ptep_writable(struct vm_area_struct *vma,
2122 unsigned long address, pte_t *ptep)
2123{
2124 pte_t entry;
2125
7f2e9525
GS
2126 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2127 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
4b3073e1 2128 update_mmu_cache(vma, address, ptep);
8dab5241 2129 }
1e8f889b
DG
2130}
2131
2132
63551ae0
DG
2133int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2134 struct vm_area_struct *vma)
2135{
2136 pte_t *src_pte, *dst_pte, entry;
2137 struct page *ptepage;
1c59827d 2138 unsigned long addr;
1e8f889b 2139 int cow;
a5516438
AK
2140 struct hstate *h = hstate_vma(vma);
2141 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2142
2143 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2144
a5516438 2145 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2146 src_pte = huge_pte_offset(src, addr);
2147 if (!src_pte)
2148 continue;
a5516438 2149 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2150 if (!dst_pte)
2151 goto nomem;
c5c99429
LW
2152
2153 /* If the pagetables are shared don't copy or take references */
2154 if (dst_pte == src_pte)
2155 continue;
2156
c74df32c 2157 spin_lock(&dst->page_table_lock);
46478758 2158 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2159 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2160 if (cow)
7f2e9525
GS
2161 huge_ptep_set_wrprotect(src, addr, src_pte);
2162 entry = huge_ptep_get(src_pte);
1c59827d
HD
2163 ptepage = pte_page(entry);
2164 get_page(ptepage);
0fe6e20b 2165 page_dup_rmap(ptepage);
1c59827d
HD
2166 set_huge_pte_at(dst, addr, dst_pte, entry);
2167 }
2168 spin_unlock(&src->page_table_lock);
c74df32c 2169 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2170 }
2171 return 0;
2172
2173nomem:
2174 return -ENOMEM;
2175}
2176
290408d4
NH
2177static int is_hugetlb_entry_migration(pte_t pte)
2178{
2179 swp_entry_t swp;
2180
2181 if (huge_pte_none(pte) || pte_present(pte))
2182 return 0;
2183 swp = pte_to_swp_entry(pte);
2184 if (non_swap_entry(swp) && is_migration_entry(swp)) {
2185 return 1;
2186 } else
2187 return 0;
2188}
2189
fd6a03ed
NH
2190static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2191{
2192 swp_entry_t swp;
2193
2194 if (huge_pte_none(pte) || pte_present(pte))
2195 return 0;
2196 swp = pte_to_swp_entry(pte);
2197 if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2198 return 1;
2199 } else
2200 return 0;
2201}
2202
502717f4 2203void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2204 unsigned long end, struct page *ref_page)
63551ae0
DG
2205{
2206 struct mm_struct *mm = vma->vm_mm;
2207 unsigned long address;
c7546f8f 2208 pte_t *ptep;
63551ae0
DG
2209 pte_t pte;
2210 struct page *page;
fe1668ae 2211 struct page *tmp;
a5516438
AK
2212 struct hstate *h = hstate_vma(vma);
2213 unsigned long sz = huge_page_size(h);
2214
c0a499c2 2215 /*
3d48ae45 2216 * A page gathering list, protected by per file i_mmap_mutex. The
c0a499c2
KC
2217 * lock is used to avoid list corruption from multiple unmapping
2218 * of the same page since we are using page->lru.
2219 */
fe1668ae 2220 LIST_HEAD(page_list);
63551ae0
DG
2221
2222 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2223 BUG_ON(start & ~huge_page_mask(h));
2224 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2225
cddb8a5c 2226 mmu_notifier_invalidate_range_start(mm, start, end);
508034a3 2227 spin_lock(&mm->page_table_lock);
a5516438 2228 for (address = start; address < end; address += sz) {
c7546f8f 2229 ptep = huge_pte_offset(mm, address);
4c887265 2230 if (!ptep)
c7546f8f
DG
2231 continue;
2232
39dde65c
KC
2233 if (huge_pmd_unshare(mm, &address, ptep))
2234 continue;
2235
04f2cbe3
MG
2236 /*
2237 * If a reference page is supplied, it is because a specific
2238 * page is being unmapped, not a range. Ensure the page we
2239 * are about to unmap is the actual page of interest.
2240 */
2241 if (ref_page) {
2242 pte = huge_ptep_get(ptep);
2243 if (huge_pte_none(pte))
2244 continue;
2245 page = pte_page(pte);
2246 if (page != ref_page)
2247 continue;
2248
2249 /*
2250 * Mark the VMA as having unmapped its page so that
2251 * future faults in this VMA will fail rather than
2252 * looking like data was lost
2253 */
2254 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2255 }
2256
c7546f8f 2257 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 2258 if (huge_pte_none(pte))
63551ae0 2259 continue;
c7546f8f 2260
fd6a03ed
NH
2261 /*
2262 * HWPoisoned hugepage is already unmapped and dropped reference
2263 */
2264 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2265 continue;
2266
63551ae0 2267 page = pte_page(pte);
6649a386
KC
2268 if (pte_dirty(pte))
2269 set_page_dirty(page);
fe1668ae 2270 list_add(&page->lru, &page_list);
63551ae0 2271 }
1da177e4 2272 spin_unlock(&mm->page_table_lock);
508034a3 2273 flush_tlb_range(vma, start, end);
cddb8a5c 2274 mmu_notifier_invalidate_range_end(mm, start, end);
fe1668ae 2275 list_for_each_entry_safe(page, tmp, &page_list, lru) {
0fe6e20b 2276 page_remove_rmap(page);
fe1668ae
KC
2277 list_del(&page->lru);
2278 put_page(page);
2279 }
1da177e4 2280}
63551ae0 2281
502717f4 2282void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2283 unsigned long end, struct page *ref_page)
502717f4 2284{
3d48ae45 2285 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
a137e1cc 2286 __unmap_hugepage_range(vma, start, end, ref_page);
3d48ae45 2287 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
502717f4
KC
2288}
2289
04f2cbe3
MG
2290/*
2291 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2292 * mappping it owns the reserve page for. The intention is to unmap the page
2293 * from other VMAs and let the children be SIGKILLed if they are faulting the
2294 * same region.
2295 */
2a4b3ded
HH
2296static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2297 struct page *page, unsigned long address)
04f2cbe3 2298{
7526674d 2299 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2300 struct vm_area_struct *iter_vma;
2301 struct address_space *mapping;
2302 struct prio_tree_iter iter;
2303 pgoff_t pgoff;
2304
2305 /*
2306 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2307 * from page cache lookup which is in HPAGE_SIZE units.
2308 */
7526674d 2309 address = address & huge_page_mask(h);
04f2cbe3
MG
2310 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2311 + (vma->vm_pgoff >> PAGE_SHIFT);
2312 mapping = (struct address_space *)page_private(page);
2313
4eb2b1dc
MG
2314 /*
2315 * Take the mapping lock for the duration of the table walk. As
2316 * this mapping should be shared between all the VMAs,
2317 * __unmap_hugepage_range() is called as the lock is already held
2318 */
3d48ae45 2319 mutex_lock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2320 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2321 /* Do not unmap the current VMA */
2322 if (iter_vma == vma)
2323 continue;
2324
2325 /*
2326 * Unmap the page from other VMAs without their own reserves.
2327 * They get marked to be SIGKILLed if they fault in these
2328 * areas. This is because a future no-page fault on this VMA
2329 * could insert a zeroed page instead of the data existing
2330 * from the time of fork. This would look like data corruption
2331 */
2332 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4eb2b1dc 2333 __unmap_hugepage_range(iter_vma,
7526674d 2334 address, address + huge_page_size(h),
04f2cbe3
MG
2335 page);
2336 }
3d48ae45 2337 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2338
2339 return 1;
2340}
2341
0fe6e20b
NH
2342/*
2343 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2344 */
1e8f889b 2345static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2346 unsigned long address, pte_t *ptep, pte_t pte,
2347 struct page *pagecache_page)
1e8f889b 2348{
a5516438 2349 struct hstate *h = hstate_vma(vma);
1e8f889b 2350 struct page *old_page, *new_page;
79ac6ba4 2351 int avoidcopy;
04f2cbe3 2352 int outside_reserve = 0;
1e8f889b
DG
2353
2354 old_page = pte_page(pte);
2355
04f2cbe3 2356retry_avoidcopy:
1e8f889b
DG
2357 /* If no-one else is actually using this page, avoid the copy
2358 * and just make the page writable */
0fe6e20b 2359 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2360 if (avoidcopy) {
56c9cfb1
NH
2361 if (PageAnon(old_page))
2362 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2363 set_huge_ptep_writable(vma, address, ptep);
83c54070 2364 return 0;
1e8f889b
DG
2365 }
2366
04f2cbe3
MG
2367 /*
2368 * If the process that created a MAP_PRIVATE mapping is about to
2369 * perform a COW due to a shared page count, attempt to satisfy
2370 * the allocation without using the existing reserves. The pagecache
2371 * page is used to determine if the reserve at this address was
2372 * consumed or not. If reserves were used, a partial faulted mapping
2373 * at the time of fork() could consume its reserves on COW instead
2374 * of the full address range.
2375 */
f83a275d 2376 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2377 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2378 old_page != pagecache_page)
2379 outside_reserve = 1;
2380
1e8f889b 2381 page_cache_get(old_page);
b76c8cfb
LW
2382
2383 /* Drop page_table_lock as buddy allocator may be called */
2384 spin_unlock(&mm->page_table_lock);
04f2cbe3 2385 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2386
2fc39cec 2387 if (IS_ERR(new_page)) {
1e8f889b 2388 page_cache_release(old_page);
04f2cbe3
MG
2389
2390 /*
2391 * If a process owning a MAP_PRIVATE mapping fails to COW,
2392 * it is due to references held by a child and an insufficient
2393 * huge page pool. To guarantee the original mappers
2394 * reliability, unmap the page from child processes. The child
2395 * may get SIGKILLed if it later faults.
2396 */
2397 if (outside_reserve) {
2398 BUG_ON(huge_pte_none(pte));
2399 if (unmap_ref_private(mm, vma, old_page, address)) {
2400 BUG_ON(page_count(old_page) != 1);
2401 BUG_ON(huge_pte_none(pte));
b76c8cfb 2402 spin_lock(&mm->page_table_lock);
04f2cbe3
MG
2403 goto retry_avoidcopy;
2404 }
2405 WARN_ON_ONCE(1);
2406 }
2407
b76c8cfb
LW
2408 /* Caller expects lock to be held */
2409 spin_lock(&mm->page_table_lock);
2fc39cec 2410 return -PTR_ERR(new_page);
1e8f889b
DG
2411 }
2412
0fe6e20b
NH
2413 /*
2414 * When the original hugepage is shared one, it does not have
2415 * anon_vma prepared.
2416 */
44e2aa93
DN
2417 if (unlikely(anon_vma_prepare(vma))) {
2418 /* Caller expects lock to be held */
2419 spin_lock(&mm->page_table_lock);
0fe6e20b 2420 return VM_FAULT_OOM;
44e2aa93 2421 }
0fe6e20b 2422
47ad8475
AA
2423 copy_user_huge_page(new_page, old_page, address, vma,
2424 pages_per_huge_page(h));
0ed361de 2425 __SetPageUptodate(new_page);
1e8f889b 2426
b76c8cfb
LW
2427 /*
2428 * Retake the page_table_lock to check for racing updates
2429 * before the page tables are altered
2430 */
2431 spin_lock(&mm->page_table_lock);
a5516438 2432 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2433 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2434 /* Break COW */
3edd4fc9
DD
2435 mmu_notifier_invalidate_range_start(mm,
2436 address & huge_page_mask(h),
2437 (address & huge_page_mask(h)) + huge_page_size(h));
8fe627ec 2438 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2439 set_huge_pte_at(mm, address, ptep,
2440 make_huge_pte(vma, new_page, 1));
0fe6e20b 2441 page_remove_rmap(old_page);
cd67f0d2 2442 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2443 /* Make the old page be freed below */
2444 new_page = old_page;
3edd4fc9
DD
2445 mmu_notifier_invalidate_range_end(mm,
2446 address & huge_page_mask(h),
2447 (address & huge_page_mask(h)) + huge_page_size(h));
1e8f889b
DG
2448 }
2449 page_cache_release(new_page);
2450 page_cache_release(old_page);
83c54070 2451 return 0;
1e8f889b
DG
2452}
2453
04f2cbe3 2454/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2455static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2456 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2457{
2458 struct address_space *mapping;
e7c4b0bf 2459 pgoff_t idx;
04f2cbe3
MG
2460
2461 mapping = vma->vm_file->f_mapping;
a5516438 2462 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2463
2464 return find_lock_page(mapping, idx);
2465}
2466
3ae77f43
HD
2467/*
2468 * Return whether there is a pagecache page to back given address within VMA.
2469 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2470 */
2471static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2472 struct vm_area_struct *vma, unsigned long address)
2473{
2474 struct address_space *mapping;
2475 pgoff_t idx;
2476 struct page *page;
2477
2478 mapping = vma->vm_file->f_mapping;
2479 idx = vma_hugecache_offset(h, vma, address);
2480
2481 page = find_get_page(mapping, idx);
2482 if (page)
2483 put_page(page);
2484 return page != NULL;
2485}
2486
a1ed3dda 2487static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2488 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2489{
a5516438 2490 struct hstate *h = hstate_vma(vma);
ac9b9c66 2491 int ret = VM_FAULT_SIGBUS;
e7c4b0bf 2492 pgoff_t idx;
4c887265 2493 unsigned long size;
4c887265
AL
2494 struct page *page;
2495 struct address_space *mapping;
1e8f889b 2496 pte_t new_pte;
4c887265 2497
04f2cbe3
MG
2498 /*
2499 * Currently, we are forced to kill the process in the event the
2500 * original mapper has unmapped pages from the child due to a failed
25985edc 2501 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2502 */
2503 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2504 printk(KERN_WARNING
2505 "PID %d killed due to inadequate hugepage pool\n",
2506 current->pid);
2507 return ret;
2508 }
2509
4c887265 2510 mapping = vma->vm_file->f_mapping;
a5516438 2511 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2512
2513 /*
2514 * Use page lock to guard against racing truncation
2515 * before we get page_table_lock.
2516 */
6bda666a
CL
2517retry:
2518 page = find_lock_page(mapping, idx);
2519 if (!page) {
a5516438 2520 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2521 if (idx >= size)
2522 goto out;
04f2cbe3 2523 page = alloc_huge_page(vma, address, 0);
2fc39cec
AL
2524 if (IS_ERR(page)) {
2525 ret = -PTR_ERR(page);
6bda666a
CL
2526 goto out;
2527 }
47ad8475 2528 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2529 __SetPageUptodate(page);
ac9b9c66 2530
f83a275d 2531 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2532 int err;
45c682a6 2533 struct inode *inode = mapping->host;
6bda666a
CL
2534
2535 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2536 if (err) {
2537 put_page(page);
6bda666a
CL
2538 if (err == -EEXIST)
2539 goto retry;
2540 goto out;
2541 }
45c682a6
KC
2542
2543 spin_lock(&inode->i_lock);
a5516438 2544 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2545 spin_unlock(&inode->i_lock);
0fe6e20b 2546 page_dup_rmap(page);
23be7468 2547 } else {
6bda666a 2548 lock_page(page);
0fe6e20b
NH
2549 if (unlikely(anon_vma_prepare(vma))) {
2550 ret = VM_FAULT_OOM;
2551 goto backout_unlocked;
2552 }
2553 hugepage_add_new_anon_rmap(page, vma, address);
23be7468 2554 }
0fe6e20b 2555 } else {
998b4382
NH
2556 /*
2557 * If memory error occurs between mmap() and fault, some process
2558 * don't have hwpoisoned swap entry for errored virtual address.
2559 * So we need to block hugepage fault by PG_hwpoison bit check.
2560 */
2561 if (unlikely(PageHWPoison(page))) {
aa50d3a7
AK
2562 ret = VM_FAULT_HWPOISON |
2563 VM_FAULT_SET_HINDEX(h - hstates);
998b4382
NH
2564 goto backout_unlocked;
2565 }
0fe6e20b 2566 page_dup_rmap(page);
6bda666a 2567 }
1e8f889b 2568
57303d80
AW
2569 /*
2570 * If we are going to COW a private mapping later, we examine the
2571 * pending reservations for this page now. This will ensure that
2572 * any allocations necessary to record that reservation occur outside
2573 * the spinlock.
2574 */
788c7df4 2575 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2576 if (vma_needs_reservation(h, vma, address) < 0) {
2577 ret = VM_FAULT_OOM;
2578 goto backout_unlocked;
2579 }
57303d80 2580
ac9b9c66 2581 spin_lock(&mm->page_table_lock);
a5516438 2582 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2583 if (idx >= size)
2584 goto backout;
2585
83c54070 2586 ret = 0;
7f2e9525 2587 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2588 goto backout;
2589
1e8f889b
DG
2590 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2591 && (vma->vm_flags & VM_SHARED)));
2592 set_huge_pte_at(mm, address, ptep, new_pte);
2593
788c7df4 2594 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2595 /* Optimization, do the COW without a second fault */
04f2cbe3 2596 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2597 }
2598
ac9b9c66 2599 spin_unlock(&mm->page_table_lock);
4c887265
AL
2600 unlock_page(page);
2601out:
ac9b9c66 2602 return ret;
4c887265
AL
2603
2604backout:
2605 spin_unlock(&mm->page_table_lock);
2b26736c 2606backout_unlocked:
4c887265
AL
2607 unlock_page(page);
2608 put_page(page);
2609 goto out;
ac9b9c66
HD
2610}
2611
86e5216f 2612int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2613 unsigned long address, unsigned int flags)
86e5216f
AL
2614{
2615 pte_t *ptep;
2616 pte_t entry;
1e8f889b 2617 int ret;
0fe6e20b 2618 struct page *page = NULL;
57303d80 2619 struct page *pagecache_page = NULL;
3935baa9 2620 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2621 struct hstate *h = hstate_vma(vma);
86e5216f 2622
fd6a03ed
NH
2623 ptep = huge_pte_offset(mm, address);
2624 if (ptep) {
2625 entry = huge_ptep_get(ptep);
290408d4
NH
2626 if (unlikely(is_hugetlb_entry_migration(entry))) {
2627 migration_entry_wait(mm, (pmd_t *)ptep, address);
2628 return 0;
2629 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
aa50d3a7
AK
2630 return VM_FAULT_HWPOISON_LARGE |
2631 VM_FAULT_SET_HINDEX(h - hstates);
fd6a03ed
NH
2632 }
2633
a5516438 2634 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2635 if (!ptep)
2636 return VM_FAULT_OOM;
2637
3935baa9
DG
2638 /*
2639 * Serialize hugepage allocation and instantiation, so that we don't
2640 * get spurious allocation failures if two CPUs race to instantiate
2641 * the same page in the page cache.
2642 */
2643 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2644 entry = huge_ptep_get(ptep);
2645 if (huge_pte_none(entry)) {
788c7df4 2646 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2647 goto out_mutex;
3935baa9 2648 }
86e5216f 2649
83c54070 2650 ret = 0;
1e8f889b 2651
57303d80
AW
2652 /*
2653 * If we are going to COW the mapping later, we examine the pending
2654 * reservations for this page now. This will ensure that any
2655 * allocations necessary to record that reservation occur outside the
2656 * spinlock. For private mappings, we also lookup the pagecache
2657 * page now as it is used to determine if a reservation has been
2658 * consumed.
2659 */
788c7df4 2660 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2b26736c
AW
2661 if (vma_needs_reservation(h, vma, address) < 0) {
2662 ret = VM_FAULT_OOM;
b4d1d99f 2663 goto out_mutex;
2b26736c 2664 }
57303d80 2665
f83a275d 2666 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2667 pagecache_page = hugetlbfs_pagecache_page(h,
2668 vma, address);
2669 }
2670
56c9cfb1
NH
2671 /*
2672 * hugetlb_cow() requires page locks of pte_page(entry) and
2673 * pagecache_page, so here we need take the former one
2674 * when page != pagecache_page or !pagecache_page.
2675 * Note that locking order is always pagecache_page -> page,
2676 * so no worry about deadlock.
2677 */
2678 page = pte_page(entry);
2679 if (page != pagecache_page)
0fe6e20b 2680 lock_page(page);
0fe6e20b 2681
1e8f889b
DG
2682 spin_lock(&mm->page_table_lock);
2683 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2684 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2685 goto out_page_table_lock;
2686
2687
788c7df4 2688 if (flags & FAULT_FLAG_WRITE) {
b4d1d99f 2689 if (!pte_write(entry)) {
57303d80
AW
2690 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2691 pagecache_page);
b4d1d99f
DG
2692 goto out_page_table_lock;
2693 }
2694 entry = pte_mkdirty(entry);
2695 }
2696 entry = pte_mkyoung(entry);
788c7df4
HD
2697 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2698 flags & FAULT_FLAG_WRITE))
4b3073e1 2699 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2700
2701out_page_table_lock:
1e8f889b 2702 spin_unlock(&mm->page_table_lock);
57303d80
AW
2703
2704 if (pagecache_page) {
2705 unlock_page(pagecache_page);
2706 put_page(pagecache_page);
2707 }
1f64d69c
DN
2708 if (page != pagecache_page)
2709 unlock_page(page);
57303d80 2710
b4d1d99f 2711out_mutex:
3935baa9 2712 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2713
2714 return ret;
86e5216f
AL
2715}
2716
ceb86879
AK
2717/* Can be overriden by architectures */
2718__attribute__((weak)) struct page *
2719follow_huge_pud(struct mm_struct *mm, unsigned long address,
2720 pud_t *pud, int write)
2721{
2722 BUG();
2723 return NULL;
2724}
2725
63551ae0
DG
2726int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2727 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8 2728 unsigned long *position, int *length, int i,
2a15efc9 2729 unsigned int flags)
63551ae0 2730{
d5d4b0aa
KC
2731 unsigned long pfn_offset;
2732 unsigned long vaddr = *position;
63551ae0 2733 int remainder = *length;
a5516438 2734 struct hstate *h = hstate_vma(vma);
63551ae0 2735
1c59827d 2736 spin_lock(&mm->page_table_lock);
63551ae0 2737 while (vaddr < vma->vm_end && remainder) {
4c887265 2738 pte_t *pte;
2a15efc9 2739 int absent;
4c887265 2740 struct page *page;
63551ae0 2741
4c887265
AL
2742 /*
2743 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2744 * each hugepage. We have to make sure we get the
4c887265
AL
2745 * first, for the page indexing below to work.
2746 */
a5516438 2747 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2748 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2749
2750 /*
2751 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2752 * an error where there's an empty slot with no huge pagecache
2753 * to back it. This way, we avoid allocating a hugepage, and
2754 * the sparse dumpfile avoids allocating disk blocks, but its
2755 * huge holes still show up with zeroes where they need to be.
2a15efc9 2756 */
3ae77f43
HD
2757 if (absent && (flags & FOLL_DUMP) &&
2758 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2759 remainder = 0;
2760 break;
2761 }
63551ae0 2762
2a15efc9
HD
2763 if (absent ||
2764 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
4c887265 2765 int ret;
63551ae0 2766
4c887265 2767 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2768 ret = hugetlb_fault(mm, vma, vaddr,
2769 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2770 spin_lock(&mm->page_table_lock);
a89182c7 2771 if (!(ret & VM_FAULT_ERROR))
4c887265 2772 continue;
63551ae0 2773
4c887265 2774 remainder = 0;
4c887265
AL
2775 break;
2776 }
2777
a5516438 2778 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2779 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2780same_page:
d6692183 2781 if (pages) {
2a15efc9 2782 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2783 get_page(pages[i]);
d6692183 2784 }
63551ae0
DG
2785
2786 if (vmas)
2787 vmas[i] = vma;
2788
2789 vaddr += PAGE_SIZE;
d5d4b0aa 2790 ++pfn_offset;
63551ae0
DG
2791 --remainder;
2792 ++i;
d5d4b0aa 2793 if (vaddr < vma->vm_end && remainder &&
a5516438 2794 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
2795 /*
2796 * We use pfn_offset to avoid touching the pageframes
2797 * of this compound page.
2798 */
2799 goto same_page;
2800 }
63551ae0 2801 }
1c59827d 2802 spin_unlock(&mm->page_table_lock);
63551ae0
DG
2803 *length = remainder;
2804 *position = vaddr;
2805
2a15efc9 2806 return i ? i : -EFAULT;
63551ae0 2807}
8f860591
ZY
2808
2809void hugetlb_change_protection(struct vm_area_struct *vma,
2810 unsigned long address, unsigned long end, pgprot_t newprot)
2811{
2812 struct mm_struct *mm = vma->vm_mm;
2813 unsigned long start = address;
2814 pte_t *ptep;
2815 pte_t pte;
a5516438 2816 struct hstate *h = hstate_vma(vma);
8f860591
ZY
2817
2818 BUG_ON(address >= end);
2819 flush_cache_range(vma, address, end);
2820
3d48ae45 2821 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 2822 spin_lock(&mm->page_table_lock);
a5516438 2823 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
2824 ptep = huge_pte_offset(mm, address);
2825 if (!ptep)
2826 continue;
39dde65c
KC
2827 if (huge_pmd_unshare(mm, &address, ptep))
2828 continue;
7f2e9525 2829 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
2830 pte = huge_ptep_get_and_clear(mm, address, ptep);
2831 pte = pte_mkhuge(pte_modify(pte, newprot));
2832 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
2833 }
2834 }
2835 spin_unlock(&mm->page_table_lock);
3d48ae45 2836 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591
ZY
2837
2838 flush_tlb_range(vma, start, end);
2839}
2840
a1e78772
MG
2841int hugetlb_reserve_pages(struct inode *inode,
2842 long from, long to,
5a6fe125 2843 struct vm_area_struct *vma,
ca16d140 2844 vm_flags_t vm_flags)
e4e574b7 2845{
17c9d12e 2846 long ret, chg;
a5516438 2847 struct hstate *h = hstate_inode(inode);
e4e574b7 2848
17c9d12e
MG
2849 /*
2850 * Only apply hugepage reservation if asked. At fault time, an
2851 * attempt will be made for VM_NORESERVE to allocate a page
2852 * and filesystem quota without using reserves
2853 */
ca16d140 2854 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
2855 return 0;
2856
a1e78772
MG
2857 /*
2858 * Shared mappings base their reservation on the number of pages that
2859 * are already allocated on behalf of the file. Private mappings need
2860 * to reserve the full area even if read-only as mprotect() may be
2861 * called to make the mapping read-write. Assume !vma is a shm mapping
2862 */
f83a275d 2863 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2864 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
2865 else {
2866 struct resv_map *resv_map = resv_map_alloc();
2867 if (!resv_map)
2868 return -ENOMEM;
2869
a1e78772 2870 chg = to - from;
84afd99b 2871
17c9d12e
MG
2872 set_vma_resv_map(vma, resv_map);
2873 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2874 }
2875
e4e574b7
AL
2876 if (chg < 0)
2877 return chg;
8a630112 2878
17c9d12e 2879 /* There must be enough filesystem quota for the mapping */
90d8b7e6
AL
2880 if (hugetlb_get_quota(inode->i_mapping, chg))
2881 return -ENOSPC;
5a6fe125
MG
2882
2883 /*
17c9d12e
MG
2884 * Check enough hugepages are available for the reservation.
2885 * Hand back the quota if there are not
5a6fe125 2886 */
a5516438 2887 ret = hugetlb_acct_memory(h, chg);
68842c9b
KC
2888 if (ret < 0) {
2889 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 2890 return ret;
68842c9b 2891 }
17c9d12e
MG
2892
2893 /*
2894 * Account for the reservations made. Shared mappings record regions
2895 * that have reservations as they are shared by multiple VMAs.
2896 * When the last VMA disappears, the region map says how much
2897 * the reservation was and the page cache tells how much of
2898 * the reservation was consumed. Private mappings are per-VMA and
2899 * only the consumed reservations are tracked. When the VMA
2900 * disappears, the original reservation is the VMA size and the
2901 * consumed reservations are stored in the map. Hence, nothing
2902 * else has to be done for private mappings here
2903 */
f83a275d 2904 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 2905 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39
KC
2906 return 0;
2907}
2908
2909void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2910{
a5516438 2911 struct hstate *h = hstate_inode(inode);
a43a8c39 2912 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
2913
2914 spin_lock(&inode->i_lock);
e4c6f8be 2915 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
2916 spin_unlock(&inode->i_lock);
2917
90d8b7e6 2918 hugetlb_put_quota(inode->i_mapping, (chg - freed));
a5516438 2919 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 2920}
93f70f90 2921
d5bd9106
AK
2922#ifdef CONFIG_MEMORY_FAILURE
2923
6de2b1aa
NH
2924/* Should be called in hugetlb_lock */
2925static int is_hugepage_on_freelist(struct page *hpage)
2926{
2927 struct page *page;
2928 struct page *tmp;
2929 struct hstate *h = page_hstate(hpage);
2930 int nid = page_to_nid(hpage);
2931
2932 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2933 if (page == hpage)
2934 return 1;
2935 return 0;
2936}
2937
93f70f90
NH
2938/*
2939 * This function is called from memory failure code.
2940 * Assume the caller holds page lock of the head page.
2941 */
6de2b1aa 2942int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
2943{
2944 struct hstate *h = page_hstate(hpage);
2945 int nid = page_to_nid(hpage);
6de2b1aa 2946 int ret = -EBUSY;
93f70f90
NH
2947
2948 spin_lock(&hugetlb_lock);
6de2b1aa
NH
2949 if (is_hugepage_on_freelist(hpage)) {
2950 list_del(&hpage->lru);
8c6c2ecb 2951 set_page_refcounted(hpage);
6de2b1aa
NH
2952 h->free_huge_pages--;
2953 h->free_huge_pages_node[nid]--;
2954 ret = 0;
2955 }
93f70f90 2956 spin_unlock(&hugetlb_lock);
6de2b1aa 2957 return ret;
93f70f90 2958}
6de2b1aa 2959#endif