]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/hugetlb.c
mm: keep page cache radix tree nodes in check
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
8382d914 25#include <linux/jhash.h>
d6606683 26
63551ae0
DG
27#include <asm/page.h>
28#include <asm/pgtable.h>
24669e58 29#include <asm/tlb.h>
63551ae0 30
24669e58 31#include <linux/io.h>
63551ae0 32#include <linux/hugetlb.h>
9dd540e2 33#include <linux/hugetlb_cgroup.h>
9a305230 34#include <linux/node.h>
7835e98b 35#include "internal.h"
1da177e4
LT
36
37const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03 38unsigned long hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
43
53ba51d2
JT
44__initdata LIST_HEAD(huge_boot_pages);
45
e5ff2159
AK
46/* for command line parsing */
47static struct hstate * __initdata parsed_hstate;
48static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 49static unsigned long __initdata default_hstate_size;
e5ff2159 50
3935baa9 51/*
31caf665
NH
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
3935baa9 54 */
c3f38a38 55DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 56
8382d914
DB
57/*
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
60 */
61static int num_fault_mutexes;
62static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
90481622
DG
64static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65{
66 bool free = (spool->count == 0) && (spool->used_hpages == 0);
67
68 spin_unlock(&spool->lock);
69
70 /* If no pages are used, and no other handles to the subpool
71 * remain, free the subpool the subpool remain */
72 if (free)
73 kfree(spool);
74}
75
76struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77{
78 struct hugepage_subpool *spool;
79
80 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81 if (!spool)
82 return NULL;
83
84 spin_lock_init(&spool->lock);
85 spool->count = 1;
86 spool->max_hpages = nr_blocks;
87 spool->used_hpages = 0;
88
89 return spool;
90}
91
92void hugepage_put_subpool(struct hugepage_subpool *spool)
93{
94 spin_lock(&spool->lock);
95 BUG_ON(!spool->count);
96 spool->count--;
97 unlock_or_release_subpool(spool);
98}
99
100static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101 long delta)
102{
103 int ret = 0;
104
105 if (!spool)
106 return 0;
107
108 spin_lock(&spool->lock);
109 if ((spool->used_hpages + delta) <= spool->max_hpages) {
110 spool->used_hpages += delta;
111 } else {
112 ret = -ENOMEM;
113 }
114 spin_unlock(&spool->lock);
115
116 return ret;
117}
118
119static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120 long delta)
121{
122 if (!spool)
123 return;
124
125 spin_lock(&spool->lock);
126 spool->used_hpages -= delta;
127 /* If hugetlbfs_put_super couldn't free spool due to
128 * an outstanding quota reference, free it now. */
129 unlock_or_release_subpool(spool);
130}
131
132static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133{
134 return HUGETLBFS_SB(inode->i_sb)->spool;
135}
136
137static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138{
496ad9aa 139 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
140}
141
96822904
AW
142/*
143 * Region tracking -- allows tracking of reservations and instantiated pages
144 * across the pages in a mapping.
84afd99b 145 *
7b24d861
DB
146 * The region data structures are embedded into a resv_map and
147 * protected by a resv_map's lock
96822904
AW
148 */
149struct file_region {
150 struct list_head link;
151 long from;
152 long to;
153};
154
1406ec9b 155static long region_add(struct resv_map *resv, long f, long t)
96822904 156{
1406ec9b 157 struct list_head *head = &resv->regions;
96822904
AW
158 struct file_region *rg, *nrg, *trg;
159
7b24d861 160 spin_lock(&resv->lock);
96822904
AW
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg, head, link)
163 if (f <= rg->to)
164 break;
165
166 /* Round our left edge to the current segment if it encloses us. */
167 if (f > rg->from)
168 f = rg->from;
169
170 /* Check for and consume any regions we now overlap with. */
171 nrg = rg;
172 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173 if (&rg->link == head)
174 break;
175 if (rg->from > t)
176 break;
177
178 /* If this area reaches higher then extend our area to
179 * include it completely. If this is not the first area
180 * which we intend to reuse, free it. */
181 if (rg->to > t)
182 t = rg->to;
183 if (rg != nrg) {
184 list_del(&rg->link);
185 kfree(rg);
186 }
187 }
188 nrg->from = f;
189 nrg->to = t;
7b24d861 190 spin_unlock(&resv->lock);
96822904
AW
191 return 0;
192}
193
1406ec9b 194static long region_chg(struct resv_map *resv, long f, long t)
96822904 195{
1406ec9b 196 struct list_head *head = &resv->regions;
7b24d861 197 struct file_region *rg, *nrg = NULL;
96822904
AW
198 long chg = 0;
199
7b24d861
DB
200retry:
201 spin_lock(&resv->lock);
96822904
AW
202 /* Locate the region we are before or in. */
203 list_for_each_entry(rg, head, link)
204 if (f <= rg->to)
205 break;
206
207 /* If we are below the current region then a new region is required.
208 * Subtle, allocate a new region at the position but make it zero
209 * size such that we can guarantee to record the reservation. */
210 if (&rg->link == head || t < rg->from) {
7b24d861
DB
211 if (!nrg) {
212 spin_unlock(&resv->lock);
213 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214 if (!nrg)
215 return -ENOMEM;
216
217 nrg->from = f;
218 nrg->to = f;
219 INIT_LIST_HEAD(&nrg->link);
220 goto retry;
221 }
96822904 222
7b24d861
DB
223 list_add(&nrg->link, rg->link.prev);
224 chg = t - f;
225 goto out_nrg;
96822904
AW
226 }
227
228 /* Round our left edge to the current segment if it encloses us. */
229 if (f > rg->from)
230 f = rg->from;
231 chg = t - f;
232
233 /* Check for and consume any regions we now overlap with. */
234 list_for_each_entry(rg, rg->link.prev, link) {
235 if (&rg->link == head)
236 break;
237 if (rg->from > t)
7b24d861 238 goto out;
96822904 239
25985edc 240 /* We overlap with this area, if it extends further than
96822904
AW
241 * us then we must extend ourselves. Account for its
242 * existing reservation. */
243 if (rg->to > t) {
244 chg += rg->to - t;
245 t = rg->to;
246 }
247 chg -= rg->to - rg->from;
248 }
7b24d861
DB
249
250out:
251 spin_unlock(&resv->lock);
252 /* We already know we raced and no longer need the new region */
253 kfree(nrg);
254 return chg;
255out_nrg:
256 spin_unlock(&resv->lock);
96822904
AW
257 return chg;
258}
259
1406ec9b 260static long region_truncate(struct resv_map *resv, long end)
96822904 261{
1406ec9b 262 struct list_head *head = &resv->regions;
96822904
AW
263 struct file_region *rg, *trg;
264 long chg = 0;
265
7b24d861 266 spin_lock(&resv->lock);
96822904
AW
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (end <= rg->to)
270 break;
271 if (&rg->link == head)
7b24d861 272 goto out;
96822904
AW
273
274 /* If we are in the middle of a region then adjust it. */
275 if (end > rg->from) {
276 chg = rg->to - end;
277 rg->to = end;
278 rg = list_entry(rg->link.next, typeof(*rg), link);
279 }
280
281 /* Drop any remaining regions. */
282 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283 if (&rg->link == head)
284 break;
285 chg += rg->to - rg->from;
286 list_del(&rg->link);
287 kfree(rg);
288 }
7b24d861
DB
289
290out:
291 spin_unlock(&resv->lock);
96822904
AW
292 return chg;
293}
294
1406ec9b 295static long region_count(struct resv_map *resv, long f, long t)
84afd99b 296{
1406ec9b 297 struct list_head *head = &resv->regions;
84afd99b
AW
298 struct file_region *rg;
299 long chg = 0;
300
7b24d861 301 spin_lock(&resv->lock);
84afd99b
AW
302 /* Locate each segment we overlap with, and count that overlap. */
303 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
304 long seg_from;
305 long seg_to;
84afd99b
AW
306
307 if (rg->to <= f)
308 continue;
309 if (rg->from >= t)
310 break;
311
312 seg_from = max(rg->from, f);
313 seg_to = min(rg->to, t);
314
315 chg += seg_to - seg_from;
316 }
7b24d861 317 spin_unlock(&resv->lock);
84afd99b
AW
318
319 return chg;
320}
321
e7c4b0bf
AW
322/*
323 * Convert the address within this vma to the page offset within
324 * the mapping, in pagecache page units; huge pages here.
325 */
a5516438
AK
326static pgoff_t vma_hugecache_offset(struct hstate *h,
327 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 328{
a5516438
AK
329 return ((address - vma->vm_start) >> huge_page_shift(h)) +
330 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
331}
332
0fe6e20b
NH
333pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334 unsigned long address)
335{
336 return vma_hugecache_offset(hstate_vma(vma), vma, address);
337}
338
08fba699
MG
339/*
340 * Return the size of the pages allocated when backing a VMA. In the majority
341 * cases this will be same size as used by the page table entries.
342 */
343unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344{
345 struct hstate *hstate;
346
347 if (!is_vm_hugetlb_page(vma))
348 return PAGE_SIZE;
349
350 hstate = hstate_vma(vma);
351
2415cf12 352 return 1UL << huge_page_shift(hstate);
08fba699 353}
f340ca0f 354EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 355
3340289d
MG
356/*
357 * Return the page size being used by the MMU to back a VMA. In the majority
358 * of cases, the page size used by the kernel matches the MMU size. On
359 * architectures where it differs, an architecture-specific version of this
360 * function is required.
361 */
362#ifndef vma_mmu_pagesize
363unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364{
365 return vma_kernel_pagesize(vma);
366}
367#endif
368
84afd99b
AW
369/*
370 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
371 * bits of the reservation map pointer, which are always clear due to
372 * alignment.
373 */
374#define HPAGE_RESV_OWNER (1UL << 0)
375#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 376#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 377
a1e78772
MG
378/*
379 * These helpers are used to track how many pages are reserved for
380 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381 * is guaranteed to have their future faults succeed.
382 *
383 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384 * the reserve counters are updated with the hugetlb_lock held. It is safe
385 * to reset the VMA at fork() time as it is not in use yet and there is no
386 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
387 *
388 * The private mapping reservation is represented in a subtly different
389 * manner to a shared mapping. A shared mapping has a region map associated
390 * with the underlying file, this region map represents the backing file
391 * pages which have ever had a reservation assigned which this persists even
392 * after the page is instantiated. A private mapping has a region map
393 * associated with the original mmap which is attached to all VMAs which
394 * reference it, this region map represents those offsets which have consumed
395 * reservation ie. where pages have been instantiated.
a1e78772 396 */
e7c4b0bf
AW
397static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398{
399 return (unsigned long)vma->vm_private_data;
400}
401
402static void set_vma_private_data(struct vm_area_struct *vma,
403 unsigned long value)
404{
405 vma->vm_private_data = (void *)value;
406}
407
9119a41e 408struct resv_map *resv_map_alloc(void)
84afd99b
AW
409{
410 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411 if (!resv_map)
412 return NULL;
413
414 kref_init(&resv_map->refs);
7b24d861 415 spin_lock_init(&resv_map->lock);
84afd99b
AW
416 INIT_LIST_HEAD(&resv_map->regions);
417
418 return resv_map;
419}
420
9119a41e 421void resv_map_release(struct kref *ref)
84afd99b
AW
422{
423 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424
425 /* Clear out any active regions before we release the map. */
1406ec9b 426 region_truncate(resv_map, 0);
84afd99b
AW
427 kfree(resv_map);
428}
429
4e35f483
JK
430static inline struct resv_map *inode_resv_map(struct inode *inode)
431{
432 return inode->i_mapping->private_data;
433}
434
84afd99b 435static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
436{
437 VM_BUG_ON(!is_vm_hugetlb_page(vma));
4e35f483
JK
438 if (vma->vm_flags & VM_MAYSHARE) {
439 struct address_space *mapping = vma->vm_file->f_mapping;
440 struct inode *inode = mapping->host;
441
442 return inode_resv_map(inode);
443
444 } else {
84afd99b
AW
445 return (struct resv_map *)(get_vma_private_data(vma) &
446 ~HPAGE_RESV_MASK);
4e35f483 447 }
a1e78772
MG
448}
449
84afd99b 450static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
451{
452 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 453 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 454
84afd99b
AW
455 set_vma_private_data(vma, (get_vma_private_data(vma) &
456 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
457}
458
459static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460{
04f2cbe3 461 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 462 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
463
464 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
465}
466
467static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468{
469 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
470
471 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
472}
473
04f2cbe3 474/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
475void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476{
477 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 478 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
479 vma->vm_private_data = (void *)0;
480}
481
482/* Returns true if the VMA has associated reserve pages */
af0ed73e 483static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 484{
af0ed73e
JK
485 if (vma->vm_flags & VM_NORESERVE) {
486 /*
487 * This address is already reserved by other process(chg == 0),
488 * so, we should decrement reserved count. Without decrementing,
489 * reserve count remains after releasing inode, because this
490 * allocated page will go into page cache and is regarded as
491 * coming from reserved pool in releasing step. Currently, we
492 * don't have any other solution to deal with this situation
493 * properly, so add work-around here.
494 */
495 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496 return 1;
497 else
498 return 0;
499 }
a63884e9
JK
500
501 /* Shared mappings always use reserves */
f83a275d 502 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 503 return 1;
a63884e9
JK
504
505 /*
506 * Only the process that called mmap() has reserves for
507 * private mappings.
508 */
7f09ca51
MG
509 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510 return 1;
a63884e9 511
7f09ca51 512 return 0;
a1e78772
MG
513}
514
a5516438 515static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
516{
517 int nid = page_to_nid(page);
0edaecfa 518 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
519 h->free_huge_pages++;
520 h->free_huge_pages_node[nid]++;
1da177e4
LT
521}
522
bf50bab2
NH
523static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524{
525 struct page *page;
526
c8721bbb
NH
527 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528 if (!is_migrate_isolate_page(page))
529 break;
530 /*
531 * if 'non-isolated free hugepage' not found on the list,
532 * the allocation fails.
533 */
534 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 535 return NULL;
0edaecfa 536 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 537 set_page_refcounted(page);
bf50bab2
NH
538 h->free_huge_pages--;
539 h->free_huge_pages_node[nid]--;
540 return page;
541}
542
86cdb465
NH
543/* Movability of hugepages depends on migration support. */
544static inline gfp_t htlb_alloc_mask(struct hstate *h)
545{
546 if (hugepages_treat_as_movable || hugepage_migration_support(h))
547 return GFP_HIGHUSER_MOVABLE;
548 else
549 return GFP_HIGHUSER;
550}
551
a5516438
AK
552static struct page *dequeue_huge_page_vma(struct hstate *h,
553 struct vm_area_struct *vma,
af0ed73e
JK
554 unsigned long address, int avoid_reserve,
555 long chg)
1da177e4 556{
b1c12cbc 557 struct page *page = NULL;
480eccf9 558 struct mempolicy *mpol;
19770b32 559 nodemask_t *nodemask;
c0ff7453 560 struct zonelist *zonelist;
dd1a239f
MG
561 struct zone *zone;
562 struct zoneref *z;
cc9a6c87 563 unsigned int cpuset_mems_cookie;
1da177e4 564
a1e78772
MG
565 /*
566 * A child process with MAP_PRIVATE mappings created by their parent
567 * have no page reserves. This check ensures that reservations are
568 * not "stolen". The child may still get SIGKILLed
569 */
af0ed73e 570 if (!vma_has_reserves(vma, chg) &&
a5516438 571 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 572 goto err;
a1e78772 573
04f2cbe3 574 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 575 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 576 goto err;
04f2cbe3 577
9966c4bb 578retry_cpuset:
d26914d1 579 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 580 zonelist = huge_zonelist(vma, address,
86cdb465 581 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 582
19770b32
MG
583 for_each_zone_zonelist_nodemask(zone, z, zonelist,
584 MAX_NR_ZONES - 1, nodemask) {
86cdb465 585 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
586 page = dequeue_huge_page_node(h, zone_to_nid(zone));
587 if (page) {
af0ed73e
JK
588 if (avoid_reserve)
589 break;
590 if (!vma_has_reserves(vma, chg))
591 break;
592
07443a85 593 SetPagePrivate(page);
af0ed73e 594 h->resv_huge_pages--;
bf50bab2
NH
595 break;
596 }
3abf7afd 597 }
1da177e4 598 }
cc9a6c87 599
52cd3b07 600 mpol_cond_put(mpol);
d26914d1 601 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 602 goto retry_cpuset;
1da177e4 603 return page;
cc9a6c87
MG
604
605err:
cc9a6c87 606 return NULL;
1da177e4
LT
607}
608
a5516438 609static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
610{
611 int i;
a5516438 612
18229df5
AW
613 VM_BUG_ON(h->order >= MAX_ORDER);
614
a5516438
AK
615 h->nr_huge_pages--;
616 h->nr_huge_pages_node[page_to_nid(page)]--;
617 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
618 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
619 1 << PG_referenced | 1 << PG_dirty |
620 1 << PG_active | 1 << PG_reserved |
621 1 << PG_private | 1 << PG_writeback);
6af2acb6 622 }
309381fe 623 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
624 set_compound_page_dtor(page, NULL);
625 set_page_refcounted(page);
7f2e9525 626 arch_release_hugepage(page);
a5516438 627 __free_pages(page, huge_page_order(h));
6af2acb6
AL
628}
629
e5ff2159
AK
630struct hstate *size_to_hstate(unsigned long size)
631{
632 struct hstate *h;
633
634 for_each_hstate(h) {
635 if (huge_page_size(h) == size)
636 return h;
637 }
638 return NULL;
639}
640
27a85ef1
DG
641static void free_huge_page(struct page *page)
642{
a5516438
AK
643 /*
644 * Can't pass hstate in here because it is called from the
645 * compound page destructor.
646 */
e5ff2159 647 struct hstate *h = page_hstate(page);
7893d1d5 648 int nid = page_to_nid(page);
90481622
DG
649 struct hugepage_subpool *spool =
650 (struct hugepage_subpool *)page_private(page);
07443a85 651 bool restore_reserve;
27a85ef1 652
e5df70ab 653 set_page_private(page, 0);
23be7468 654 page->mapping = NULL;
7893d1d5 655 BUG_ON(page_count(page));
0fe6e20b 656 BUG_ON(page_mapcount(page));
07443a85 657 restore_reserve = PagePrivate(page);
16c794b4 658 ClearPagePrivate(page);
27a85ef1
DG
659
660 spin_lock(&hugetlb_lock);
6d76dcf4
AK
661 hugetlb_cgroup_uncharge_page(hstate_index(h),
662 pages_per_huge_page(h), page);
07443a85
JK
663 if (restore_reserve)
664 h->resv_huge_pages++;
665
aa888a74 666 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
667 /* remove the page from active list */
668 list_del(&page->lru);
a5516438
AK
669 update_and_free_page(h, page);
670 h->surplus_huge_pages--;
671 h->surplus_huge_pages_node[nid]--;
7893d1d5 672 } else {
5d3a551c 673 arch_clear_hugepage_flags(page);
a5516438 674 enqueue_huge_page(h, page);
7893d1d5 675 }
27a85ef1 676 spin_unlock(&hugetlb_lock);
90481622 677 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
678}
679
a5516438 680static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 681{
0edaecfa 682 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
683 set_compound_page_dtor(page, free_huge_page);
684 spin_lock(&hugetlb_lock);
9dd540e2 685 set_hugetlb_cgroup(page, NULL);
a5516438
AK
686 h->nr_huge_pages++;
687 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
688 spin_unlock(&hugetlb_lock);
689 put_page(page); /* free it into the hugepage allocator */
690}
691
20a0307c
WF
692static void prep_compound_gigantic_page(struct page *page, unsigned long order)
693{
694 int i;
695 int nr_pages = 1 << order;
696 struct page *p = page + 1;
697
698 /* we rely on prep_new_huge_page to set the destructor */
699 set_compound_order(page, order);
700 __SetPageHead(page);
ef5a22be 701 __ClearPageReserved(page);
20a0307c
WF
702 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
703 __SetPageTail(p);
ef5a22be
AA
704 /*
705 * For gigantic hugepages allocated through bootmem at
706 * boot, it's safer to be consistent with the not-gigantic
707 * hugepages and clear the PG_reserved bit from all tail pages
708 * too. Otherwse drivers using get_user_pages() to access tail
709 * pages may get the reference counting wrong if they see
710 * PG_reserved set on a tail page (despite the head page not
711 * having PG_reserved set). Enforcing this consistency between
712 * head and tail pages allows drivers to optimize away a check
713 * on the head page when they need know if put_page() is needed
714 * after get_user_pages().
715 */
716 __ClearPageReserved(p);
58a84aa9 717 set_page_count(p, 0);
20a0307c
WF
718 p->first_page = page;
719 }
720}
721
7795912c
AM
722/*
723 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
724 * transparent huge pages. See the PageTransHuge() documentation for more
725 * details.
726 */
20a0307c
WF
727int PageHuge(struct page *page)
728{
20a0307c
WF
729 if (!PageCompound(page))
730 return 0;
731
732 page = compound_head(page);
758f66a2 733 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 734}
43131e14
NH
735EXPORT_SYMBOL_GPL(PageHuge);
736
27c73ae7
AA
737/*
738 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
739 * normal or transparent huge pages.
740 */
741int PageHeadHuge(struct page *page_head)
742{
27c73ae7
AA
743 if (!PageHead(page_head))
744 return 0;
745
758f66a2 746 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 747}
27c73ae7 748
13d60f4b
ZY
749pgoff_t __basepage_index(struct page *page)
750{
751 struct page *page_head = compound_head(page);
752 pgoff_t index = page_index(page_head);
753 unsigned long compound_idx;
754
755 if (!PageHuge(page_head))
756 return page_index(page);
757
758 if (compound_order(page_head) >= MAX_ORDER)
759 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
760 else
761 compound_idx = page - page_head;
762
763 return (index << compound_order(page_head)) + compound_idx;
764}
765
a5516438 766static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 767{
1da177e4 768 struct page *page;
f96efd58 769
aa888a74
AK
770 if (h->order >= MAX_ORDER)
771 return NULL;
772
6484eb3e 773 page = alloc_pages_exact_node(nid,
86cdb465 774 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 775 __GFP_REPEAT|__GFP_NOWARN,
a5516438 776 huge_page_order(h));
1da177e4 777 if (page) {
7f2e9525 778 if (arch_prepare_hugepage(page)) {
caff3a2c 779 __free_pages(page, huge_page_order(h));
7b8ee84d 780 return NULL;
7f2e9525 781 }
a5516438 782 prep_new_huge_page(h, page, nid);
1da177e4 783 }
63b4613c
NA
784
785 return page;
786}
787
9a76db09 788/*
6ae11b27
LS
789 * common helper functions for hstate_next_node_to_{alloc|free}.
790 * We may have allocated or freed a huge page based on a different
791 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
792 * be outside of *nodes_allowed. Ensure that we use an allowed
793 * node for alloc or free.
9a76db09 794 */
6ae11b27 795static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 796{
6ae11b27 797 nid = next_node(nid, *nodes_allowed);
9a76db09 798 if (nid == MAX_NUMNODES)
6ae11b27 799 nid = first_node(*nodes_allowed);
9a76db09
LS
800 VM_BUG_ON(nid >= MAX_NUMNODES);
801
802 return nid;
803}
804
6ae11b27
LS
805static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
806{
807 if (!node_isset(nid, *nodes_allowed))
808 nid = next_node_allowed(nid, nodes_allowed);
809 return nid;
810}
811
5ced66c9 812/*
6ae11b27
LS
813 * returns the previously saved node ["this node"] from which to
814 * allocate a persistent huge page for the pool and advance the
815 * next node from which to allocate, handling wrap at end of node
816 * mask.
5ced66c9 817 */
6ae11b27
LS
818static int hstate_next_node_to_alloc(struct hstate *h,
819 nodemask_t *nodes_allowed)
5ced66c9 820{
6ae11b27
LS
821 int nid;
822
823 VM_BUG_ON(!nodes_allowed);
824
825 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
826 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 827
9a76db09 828 return nid;
5ced66c9
AK
829}
830
e8c5c824 831/*
6ae11b27
LS
832 * helper for free_pool_huge_page() - return the previously saved
833 * node ["this node"] from which to free a huge page. Advance the
834 * next node id whether or not we find a free huge page to free so
835 * that the next attempt to free addresses the next node.
e8c5c824 836 */
6ae11b27 837static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 838{
6ae11b27
LS
839 int nid;
840
841 VM_BUG_ON(!nodes_allowed);
842
843 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
844 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 845
9a76db09 846 return nid;
e8c5c824
LS
847}
848
b2261026
JK
849#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
850 for (nr_nodes = nodes_weight(*mask); \
851 nr_nodes > 0 && \
852 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
853 nr_nodes--)
854
855#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
856 for (nr_nodes = nodes_weight(*mask); \
857 nr_nodes > 0 && \
858 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
859 nr_nodes--)
860
861static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
862{
863 struct page *page;
864 int nr_nodes, node;
865 int ret = 0;
866
867 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
868 page = alloc_fresh_huge_page_node(h, node);
869 if (page) {
870 ret = 1;
871 break;
872 }
873 }
874
875 if (ret)
876 count_vm_event(HTLB_BUDDY_PGALLOC);
877 else
878 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
879
880 return ret;
881}
882
e8c5c824
LS
883/*
884 * Free huge page from pool from next node to free.
885 * Attempt to keep persistent huge pages more or less
886 * balanced over allowed nodes.
887 * Called with hugetlb_lock locked.
888 */
6ae11b27
LS
889static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
890 bool acct_surplus)
e8c5c824 891{
b2261026 892 int nr_nodes, node;
e8c5c824
LS
893 int ret = 0;
894
b2261026 895 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
896 /*
897 * If we're returning unused surplus pages, only examine
898 * nodes with surplus pages.
899 */
b2261026
JK
900 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
901 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 902 struct page *page =
b2261026 903 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
904 struct page, lru);
905 list_del(&page->lru);
906 h->free_huge_pages--;
b2261026 907 h->free_huge_pages_node[node]--;
685f3457
LS
908 if (acct_surplus) {
909 h->surplus_huge_pages--;
b2261026 910 h->surplus_huge_pages_node[node]--;
685f3457 911 }
e8c5c824
LS
912 update_and_free_page(h, page);
913 ret = 1;
9a76db09 914 break;
e8c5c824 915 }
b2261026 916 }
e8c5c824
LS
917
918 return ret;
919}
920
c8721bbb
NH
921/*
922 * Dissolve a given free hugepage into free buddy pages. This function does
923 * nothing for in-use (including surplus) hugepages.
924 */
925static void dissolve_free_huge_page(struct page *page)
926{
927 spin_lock(&hugetlb_lock);
928 if (PageHuge(page) && !page_count(page)) {
929 struct hstate *h = page_hstate(page);
930 int nid = page_to_nid(page);
931 list_del(&page->lru);
932 h->free_huge_pages--;
933 h->free_huge_pages_node[nid]--;
934 update_and_free_page(h, page);
935 }
936 spin_unlock(&hugetlb_lock);
937}
938
939/*
940 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
941 * make specified memory blocks removable from the system.
942 * Note that start_pfn should aligned with (minimum) hugepage size.
943 */
944void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
945{
946 unsigned int order = 8 * sizeof(void *);
947 unsigned long pfn;
948 struct hstate *h;
949
950 /* Set scan step to minimum hugepage size */
951 for_each_hstate(h)
952 if (order > huge_page_order(h))
953 order = huge_page_order(h);
954 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
955 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
956 dissolve_free_huge_page(pfn_to_page(pfn));
957}
958
bf50bab2 959static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
960{
961 struct page *page;
bf50bab2 962 unsigned int r_nid;
7893d1d5 963
aa888a74
AK
964 if (h->order >= MAX_ORDER)
965 return NULL;
966
d1c3fb1f
NA
967 /*
968 * Assume we will successfully allocate the surplus page to
969 * prevent racing processes from causing the surplus to exceed
970 * overcommit
971 *
972 * This however introduces a different race, where a process B
973 * tries to grow the static hugepage pool while alloc_pages() is
974 * called by process A. B will only examine the per-node
975 * counters in determining if surplus huge pages can be
976 * converted to normal huge pages in adjust_pool_surplus(). A
977 * won't be able to increment the per-node counter, until the
978 * lock is dropped by B, but B doesn't drop hugetlb_lock until
979 * no more huge pages can be converted from surplus to normal
980 * state (and doesn't try to convert again). Thus, we have a
981 * case where a surplus huge page exists, the pool is grown, and
982 * the surplus huge page still exists after, even though it
983 * should just have been converted to a normal huge page. This
984 * does not leak memory, though, as the hugepage will be freed
985 * once it is out of use. It also does not allow the counters to
986 * go out of whack in adjust_pool_surplus() as we don't modify
987 * the node values until we've gotten the hugepage and only the
988 * per-node value is checked there.
989 */
990 spin_lock(&hugetlb_lock);
a5516438 991 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
992 spin_unlock(&hugetlb_lock);
993 return NULL;
994 } else {
a5516438
AK
995 h->nr_huge_pages++;
996 h->surplus_huge_pages++;
d1c3fb1f
NA
997 }
998 spin_unlock(&hugetlb_lock);
999
bf50bab2 1000 if (nid == NUMA_NO_NODE)
86cdb465 1001 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
1002 __GFP_REPEAT|__GFP_NOWARN,
1003 huge_page_order(h));
1004 else
1005 page = alloc_pages_exact_node(nid,
86cdb465 1006 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 1007 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 1008
caff3a2c
GS
1009 if (page && arch_prepare_hugepage(page)) {
1010 __free_pages(page, huge_page_order(h));
ea5768c7 1011 page = NULL;
caff3a2c
GS
1012 }
1013
d1c3fb1f 1014 spin_lock(&hugetlb_lock);
7893d1d5 1015 if (page) {
0edaecfa 1016 INIT_LIST_HEAD(&page->lru);
bf50bab2 1017 r_nid = page_to_nid(page);
7893d1d5 1018 set_compound_page_dtor(page, free_huge_page);
9dd540e2 1019 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1020 /*
1021 * We incremented the global counters already
1022 */
bf50bab2
NH
1023 h->nr_huge_pages_node[r_nid]++;
1024 h->surplus_huge_pages_node[r_nid]++;
3b116300 1025 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1026 } else {
a5516438
AK
1027 h->nr_huge_pages--;
1028 h->surplus_huge_pages--;
3b116300 1029 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1030 }
d1c3fb1f 1031 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1032
1033 return page;
1034}
1035
bf50bab2
NH
1036/*
1037 * This allocation function is useful in the context where vma is irrelevant.
1038 * E.g. soft-offlining uses this function because it only cares physical
1039 * address of error page.
1040 */
1041struct page *alloc_huge_page_node(struct hstate *h, int nid)
1042{
4ef91848 1043 struct page *page = NULL;
bf50bab2
NH
1044
1045 spin_lock(&hugetlb_lock);
4ef91848
JK
1046 if (h->free_huge_pages - h->resv_huge_pages > 0)
1047 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1048 spin_unlock(&hugetlb_lock);
1049
94ae8ba7 1050 if (!page)
bf50bab2
NH
1051 page = alloc_buddy_huge_page(h, nid);
1052
1053 return page;
1054}
1055
e4e574b7 1056/*
25985edc 1057 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1058 * of size 'delta'.
1059 */
a5516438 1060static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1061{
1062 struct list_head surplus_list;
1063 struct page *page, *tmp;
1064 int ret, i;
1065 int needed, allocated;
28073b02 1066 bool alloc_ok = true;
e4e574b7 1067
a5516438 1068 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1069 if (needed <= 0) {
a5516438 1070 h->resv_huge_pages += delta;
e4e574b7 1071 return 0;
ac09b3a1 1072 }
e4e574b7
AL
1073
1074 allocated = 0;
1075 INIT_LIST_HEAD(&surplus_list);
1076
1077 ret = -ENOMEM;
1078retry:
1079 spin_unlock(&hugetlb_lock);
1080 for (i = 0; i < needed; i++) {
bf50bab2 1081 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1082 if (!page) {
1083 alloc_ok = false;
1084 break;
1085 }
e4e574b7
AL
1086 list_add(&page->lru, &surplus_list);
1087 }
28073b02 1088 allocated += i;
e4e574b7
AL
1089
1090 /*
1091 * After retaking hugetlb_lock, we need to recalculate 'needed'
1092 * because either resv_huge_pages or free_huge_pages may have changed.
1093 */
1094 spin_lock(&hugetlb_lock);
a5516438
AK
1095 needed = (h->resv_huge_pages + delta) -
1096 (h->free_huge_pages + allocated);
28073b02
HD
1097 if (needed > 0) {
1098 if (alloc_ok)
1099 goto retry;
1100 /*
1101 * We were not able to allocate enough pages to
1102 * satisfy the entire reservation so we free what
1103 * we've allocated so far.
1104 */
1105 goto free;
1106 }
e4e574b7
AL
1107 /*
1108 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1109 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1110 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1111 * allocator. Commit the entire reservation here to prevent another
1112 * process from stealing the pages as they are added to the pool but
1113 * before they are reserved.
e4e574b7
AL
1114 */
1115 needed += allocated;
a5516438 1116 h->resv_huge_pages += delta;
e4e574b7 1117 ret = 0;
a9869b83 1118
19fc3f0a 1119 /* Free the needed pages to the hugetlb pool */
e4e574b7 1120 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1121 if ((--needed) < 0)
1122 break;
a9869b83
NH
1123 /*
1124 * This page is now managed by the hugetlb allocator and has
1125 * no users -- drop the buddy allocator's reference.
1126 */
1127 put_page_testzero(page);
309381fe 1128 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1129 enqueue_huge_page(h, page);
19fc3f0a 1130 }
28073b02 1131free:
b0365c8d 1132 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1133
1134 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1135 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1136 put_page(page);
a9869b83 1137 spin_lock(&hugetlb_lock);
e4e574b7
AL
1138
1139 return ret;
1140}
1141
1142/*
1143 * When releasing a hugetlb pool reservation, any surplus pages that were
1144 * allocated to satisfy the reservation must be explicitly freed if they were
1145 * never used.
685f3457 1146 * Called with hugetlb_lock held.
e4e574b7 1147 */
a5516438
AK
1148static void return_unused_surplus_pages(struct hstate *h,
1149 unsigned long unused_resv_pages)
e4e574b7 1150{
e4e574b7
AL
1151 unsigned long nr_pages;
1152
ac09b3a1 1153 /* Uncommit the reservation */
a5516438 1154 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1155
aa888a74
AK
1156 /* Cannot return gigantic pages currently */
1157 if (h->order >= MAX_ORDER)
1158 return;
1159
a5516438 1160 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1161
685f3457
LS
1162 /*
1163 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1164 * evenly across all nodes with memory. Iterate across these nodes
1165 * until we can no longer free unreserved surplus pages. This occurs
1166 * when the nodes with surplus pages have no free pages.
1167 * free_pool_huge_page() will balance the the freed pages across the
1168 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1169 */
1170 while (nr_pages--) {
8cebfcd0 1171 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1172 break;
e4e574b7
AL
1173 }
1174}
1175
c37f9fb1
AW
1176/*
1177 * Determine if the huge page at addr within the vma has an associated
1178 * reservation. Where it does not we will need to logically increase
90481622
DG
1179 * reservation and actually increase subpool usage before an allocation
1180 * can occur. Where any new reservation would be required the
1181 * reservation change is prepared, but not committed. Once the page
1182 * has been allocated from the subpool and instantiated the change should
1183 * be committed via vma_commit_reservation. No action is required on
1184 * failure.
c37f9fb1 1185 */
e2f17d94 1186static long vma_needs_reservation(struct hstate *h,
a5516438 1187 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1188{
4e35f483
JK
1189 struct resv_map *resv;
1190 pgoff_t idx;
1191 long chg;
c37f9fb1 1192
4e35f483
JK
1193 resv = vma_resv_map(vma);
1194 if (!resv)
84afd99b 1195 return 1;
c37f9fb1 1196
4e35f483
JK
1197 idx = vma_hugecache_offset(h, vma, addr);
1198 chg = region_chg(resv, idx, idx + 1);
84afd99b 1199
4e35f483
JK
1200 if (vma->vm_flags & VM_MAYSHARE)
1201 return chg;
1202 else
1203 return chg < 0 ? chg : 0;
c37f9fb1 1204}
a5516438
AK
1205static void vma_commit_reservation(struct hstate *h,
1206 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1207{
4e35f483
JK
1208 struct resv_map *resv;
1209 pgoff_t idx;
84afd99b 1210
4e35f483
JK
1211 resv = vma_resv_map(vma);
1212 if (!resv)
1213 return;
84afd99b 1214
4e35f483
JK
1215 idx = vma_hugecache_offset(h, vma, addr);
1216 region_add(resv, idx, idx + 1);
c37f9fb1
AW
1217}
1218
a1e78772 1219static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1220 unsigned long addr, int avoid_reserve)
1da177e4 1221{
90481622 1222 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1223 struct hstate *h = hstate_vma(vma);
348ea204 1224 struct page *page;
e2f17d94 1225 long chg;
6d76dcf4
AK
1226 int ret, idx;
1227 struct hugetlb_cgroup *h_cg;
a1e78772 1228
6d76dcf4 1229 idx = hstate_index(h);
a1e78772 1230 /*
90481622
DG
1231 * Processes that did not create the mapping will have no
1232 * reserves and will not have accounted against subpool
1233 * limit. Check that the subpool limit can be made before
1234 * satisfying the allocation MAP_NORESERVE mappings may also
1235 * need pages and subpool limit allocated allocated if no reserve
1236 * mapping overlaps.
a1e78772 1237 */
a5516438 1238 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1239 if (chg < 0)
76dcee75 1240 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1241 if (chg || avoid_reserve)
1242 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1243 return ERR_PTR(-ENOSPC);
1da177e4 1244
6d76dcf4
AK
1245 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1246 if (ret) {
8bb3f12e
JK
1247 if (chg || avoid_reserve)
1248 hugepage_subpool_put_pages(spool, 1);
6d76dcf4
AK
1249 return ERR_PTR(-ENOSPC);
1250 }
1da177e4 1251 spin_lock(&hugetlb_lock);
af0ed73e 1252 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1253 if (!page) {
94ae8ba7 1254 spin_unlock(&hugetlb_lock);
bf50bab2 1255 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1256 if (!page) {
6d76dcf4
AK
1257 hugetlb_cgroup_uncharge_cgroup(idx,
1258 pages_per_huge_page(h),
1259 h_cg);
8bb3f12e
JK
1260 if (chg || avoid_reserve)
1261 hugepage_subpool_put_pages(spool, 1);
76dcee75 1262 return ERR_PTR(-ENOSPC);
68842c9b 1263 }
79dbb236
AK
1264 spin_lock(&hugetlb_lock);
1265 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1266 /* Fall through */
68842c9b 1267 }
81a6fcae
JK
1268 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1269 spin_unlock(&hugetlb_lock);
348ea204 1270
90481622 1271 set_page_private(page, (unsigned long)spool);
90d8b7e6 1272
a5516438 1273 vma_commit_reservation(h, vma, addr);
90d8b7e6 1274 return page;
b45b5bd6
DG
1275}
1276
74060e4d
NH
1277/*
1278 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1279 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1280 * where no ERR_VALUE is expected to be returned.
1281 */
1282struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1283 unsigned long addr, int avoid_reserve)
1284{
1285 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1286 if (IS_ERR(page))
1287 page = NULL;
1288 return page;
1289}
1290
91f47662 1291int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1292{
1293 struct huge_bootmem_page *m;
b2261026 1294 int nr_nodes, node;
aa888a74 1295
b2261026 1296 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1297 void *addr;
1298
8b89a116
GS
1299 addr = memblock_virt_alloc_try_nid_nopanic(
1300 huge_page_size(h), huge_page_size(h),
1301 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1302 if (addr) {
1303 /*
1304 * Use the beginning of the huge page to store the
1305 * huge_bootmem_page struct (until gather_bootmem
1306 * puts them into the mem_map).
1307 */
1308 m = addr;
91f47662 1309 goto found;
aa888a74 1310 }
aa888a74
AK
1311 }
1312 return 0;
1313
1314found:
1315 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1316 /* Put them into a private list first because mem_map is not up yet */
1317 list_add(&m->list, &huge_boot_pages);
1318 m->hstate = h;
1319 return 1;
1320}
1321
18229df5
AW
1322static void prep_compound_huge_page(struct page *page, int order)
1323{
1324 if (unlikely(order > (MAX_ORDER - 1)))
1325 prep_compound_gigantic_page(page, order);
1326 else
1327 prep_compound_page(page, order);
1328}
1329
aa888a74
AK
1330/* Put bootmem huge pages into the standard lists after mem_map is up */
1331static void __init gather_bootmem_prealloc(void)
1332{
1333 struct huge_bootmem_page *m;
1334
1335 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1336 struct hstate *h = m->hstate;
ee8f248d
BB
1337 struct page *page;
1338
1339#ifdef CONFIG_HIGHMEM
1340 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1341 memblock_free_late(__pa(m),
1342 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1343#else
1344 page = virt_to_page(m);
1345#endif
aa888a74 1346 WARN_ON(page_count(page) != 1);
18229df5 1347 prep_compound_huge_page(page, h->order);
ef5a22be 1348 WARN_ON(PageReserved(page));
aa888a74 1349 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1350 /*
1351 * If we had gigantic hugepages allocated at boot time, we need
1352 * to restore the 'stolen' pages to totalram_pages in order to
1353 * fix confusing memory reports from free(1) and another
1354 * side-effects, like CommitLimit going negative.
1355 */
1356 if (h->order > (MAX_ORDER - 1))
3dcc0571 1357 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1358 }
1359}
1360
8faa8b07 1361static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1362{
1363 unsigned long i;
a5516438 1364
e5ff2159 1365 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1366 if (h->order >= MAX_ORDER) {
1367 if (!alloc_bootmem_huge_page(h))
1368 break;
9b5e5d0f 1369 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1370 &node_states[N_MEMORY]))
1da177e4 1371 break;
1da177e4 1372 }
8faa8b07 1373 h->max_huge_pages = i;
e5ff2159
AK
1374}
1375
1376static void __init hugetlb_init_hstates(void)
1377{
1378 struct hstate *h;
1379
1380 for_each_hstate(h) {
8faa8b07
AK
1381 /* oversize hugepages were init'ed in early boot */
1382 if (h->order < MAX_ORDER)
1383 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1384 }
1385}
1386
4abd32db
AK
1387static char * __init memfmt(char *buf, unsigned long n)
1388{
1389 if (n >= (1UL << 30))
1390 sprintf(buf, "%lu GB", n >> 30);
1391 else if (n >= (1UL << 20))
1392 sprintf(buf, "%lu MB", n >> 20);
1393 else
1394 sprintf(buf, "%lu KB", n >> 10);
1395 return buf;
1396}
1397
e5ff2159
AK
1398static void __init report_hugepages(void)
1399{
1400 struct hstate *h;
1401
1402 for_each_hstate(h) {
4abd32db 1403 char buf[32];
ffb22af5 1404 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1405 memfmt(buf, huge_page_size(h)),
1406 h->free_huge_pages);
e5ff2159
AK
1407 }
1408}
1409
1da177e4 1410#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1411static void try_to_free_low(struct hstate *h, unsigned long count,
1412 nodemask_t *nodes_allowed)
1da177e4 1413{
4415cc8d
CL
1414 int i;
1415
aa888a74
AK
1416 if (h->order >= MAX_ORDER)
1417 return;
1418
6ae11b27 1419 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1420 struct page *page, *next;
a5516438
AK
1421 struct list_head *freel = &h->hugepage_freelists[i];
1422 list_for_each_entry_safe(page, next, freel, lru) {
1423 if (count >= h->nr_huge_pages)
6b0c880d 1424 return;
1da177e4
LT
1425 if (PageHighMem(page))
1426 continue;
1427 list_del(&page->lru);
e5ff2159 1428 update_and_free_page(h, page);
a5516438
AK
1429 h->free_huge_pages--;
1430 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1431 }
1432 }
1433}
1434#else
6ae11b27
LS
1435static inline void try_to_free_low(struct hstate *h, unsigned long count,
1436 nodemask_t *nodes_allowed)
1da177e4
LT
1437{
1438}
1439#endif
1440
20a0307c
WF
1441/*
1442 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1443 * balanced by operating on them in a round-robin fashion.
1444 * Returns 1 if an adjustment was made.
1445 */
6ae11b27
LS
1446static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1447 int delta)
20a0307c 1448{
b2261026 1449 int nr_nodes, node;
20a0307c
WF
1450
1451 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1452
b2261026
JK
1453 if (delta < 0) {
1454 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1455 if (h->surplus_huge_pages_node[node])
1456 goto found;
e8c5c824 1457 }
b2261026
JK
1458 } else {
1459 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1460 if (h->surplus_huge_pages_node[node] <
1461 h->nr_huge_pages_node[node])
1462 goto found;
e8c5c824 1463 }
b2261026
JK
1464 }
1465 return 0;
20a0307c 1466
b2261026
JK
1467found:
1468 h->surplus_huge_pages += delta;
1469 h->surplus_huge_pages_node[node] += delta;
1470 return 1;
20a0307c
WF
1471}
1472
a5516438 1473#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1474static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1475 nodemask_t *nodes_allowed)
1da177e4 1476{
7893d1d5 1477 unsigned long min_count, ret;
1da177e4 1478
aa888a74
AK
1479 if (h->order >= MAX_ORDER)
1480 return h->max_huge_pages;
1481
7893d1d5
AL
1482 /*
1483 * Increase the pool size
1484 * First take pages out of surplus state. Then make up the
1485 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1486 *
1487 * We might race with alloc_buddy_huge_page() here and be unable
1488 * to convert a surplus huge page to a normal huge page. That is
1489 * not critical, though, it just means the overall size of the
1490 * pool might be one hugepage larger than it needs to be, but
1491 * within all the constraints specified by the sysctls.
7893d1d5 1492 */
1da177e4 1493 spin_lock(&hugetlb_lock);
a5516438 1494 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1495 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1496 break;
1497 }
1498
a5516438 1499 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1500 /*
1501 * If this allocation races such that we no longer need the
1502 * page, free_huge_page will handle it by freeing the page
1503 * and reducing the surplus.
1504 */
1505 spin_unlock(&hugetlb_lock);
6ae11b27 1506 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1507 spin_lock(&hugetlb_lock);
1508 if (!ret)
1509 goto out;
1510
536240f2
MG
1511 /* Bail for signals. Probably ctrl-c from user */
1512 if (signal_pending(current))
1513 goto out;
7893d1d5 1514 }
7893d1d5
AL
1515
1516 /*
1517 * Decrease the pool size
1518 * First return free pages to the buddy allocator (being careful
1519 * to keep enough around to satisfy reservations). Then place
1520 * pages into surplus state as needed so the pool will shrink
1521 * to the desired size as pages become free.
d1c3fb1f
NA
1522 *
1523 * By placing pages into the surplus state independent of the
1524 * overcommit value, we are allowing the surplus pool size to
1525 * exceed overcommit. There are few sane options here. Since
1526 * alloc_buddy_huge_page() is checking the global counter,
1527 * though, we'll note that we're not allowed to exceed surplus
1528 * and won't grow the pool anywhere else. Not until one of the
1529 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1530 */
a5516438 1531 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1532 min_count = max(count, min_count);
6ae11b27 1533 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1534 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1535 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1536 break;
1da177e4 1537 }
a5516438 1538 while (count < persistent_huge_pages(h)) {
6ae11b27 1539 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1540 break;
1541 }
1542out:
a5516438 1543 ret = persistent_huge_pages(h);
1da177e4 1544 spin_unlock(&hugetlb_lock);
7893d1d5 1545 return ret;
1da177e4
LT
1546}
1547
a3437870
NA
1548#define HSTATE_ATTR_RO(_name) \
1549 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1550
1551#define HSTATE_ATTR(_name) \
1552 static struct kobj_attribute _name##_attr = \
1553 __ATTR(_name, 0644, _name##_show, _name##_store)
1554
1555static struct kobject *hugepages_kobj;
1556static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1557
9a305230
LS
1558static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1559
1560static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1561{
1562 int i;
9a305230 1563
a3437870 1564 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1565 if (hstate_kobjs[i] == kobj) {
1566 if (nidp)
1567 *nidp = NUMA_NO_NODE;
a3437870 1568 return &hstates[i];
9a305230
LS
1569 }
1570
1571 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1572}
1573
06808b08 1574static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1575 struct kobj_attribute *attr, char *buf)
1576{
9a305230
LS
1577 struct hstate *h;
1578 unsigned long nr_huge_pages;
1579 int nid;
1580
1581 h = kobj_to_hstate(kobj, &nid);
1582 if (nid == NUMA_NO_NODE)
1583 nr_huge_pages = h->nr_huge_pages;
1584 else
1585 nr_huge_pages = h->nr_huge_pages_node[nid];
1586
1587 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1588}
adbe8726 1589
06808b08
LS
1590static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1591 struct kobject *kobj, struct kobj_attribute *attr,
1592 const char *buf, size_t len)
a3437870
NA
1593{
1594 int err;
9a305230 1595 int nid;
06808b08 1596 unsigned long count;
9a305230 1597 struct hstate *h;
bad44b5b 1598 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1599
3dbb95f7 1600 err = kstrtoul(buf, 10, &count);
73ae31e5 1601 if (err)
adbe8726 1602 goto out;
a3437870 1603
9a305230 1604 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1605 if (h->order >= MAX_ORDER) {
1606 err = -EINVAL;
1607 goto out;
1608 }
1609
9a305230
LS
1610 if (nid == NUMA_NO_NODE) {
1611 /*
1612 * global hstate attribute
1613 */
1614 if (!(obey_mempolicy &&
1615 init_nodemask_of_mempolicy(nodes_allowed))) {
1616 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1617 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1618 }
1619 } else if (nodes_allowed) {
1620 /*
1621 * per node hstate attribute: adjust count to global,
1622 * but restrict alloc/free to the specified node.
1623 */
1624 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1625 init_nodemask_of_node(nodes_allowed, nid);
1626 } else
8cebfcd0 1627 nodes_allowed = &node_states[N_MEMORY];
9a305230 1628
06808b08 1629 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1630
8cebfcd0 1631 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1632 NODEMASK_FREE(nodes_allowed);
1633
1634 return len;
adbe8726
EM
1635out:
1636 NODEMASK_FREE(nodes_allowed);
1637 return err;
06808b08
LS
1638}
1639
1640static ssize_t nr_hugepages_show(struct kobject *kobj,
1641 struct kobj_attribute *attr, char *buf)
1642{
1643 return nr_hugepages_show_common(kobj, attr, buf);
1644}
1645
1646static ssize_t nr_hugepages_store(struct kobject *kobj,
1647 struct kobj_attribute *attr, const char *buf, size_t len)
1648{
1649 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1650}
1651HSTATE_ATTR(nr_hugepages);
1652
06808b08
LS
1653#ifdef CONFIG_NUMA
1654
1655/*
1656 * hstate attribute for optionally mempolicy-based constraint on persistent
1657 * huge page alloc/free.
1658 */
1659static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1660 struct kobj_attribute *attr, char *buf)
1661{
1662 return nr_hugepages_show_common(kobj, attr, buf);
1663}
1664
1665static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1666 struct kobj_attribute *attr, const char *buf, size_t len)
1667{
1668 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1669}
1670HSTATE_ATTR(nr_hugepages_mempolicy);
1671#endif
1672
1673
a3437870
NA
1674static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1675 struct kobj_attribute *attr, char *buf)
1676{
9a305230 1677 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1678 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1679}
adbe8726 1680
a3437870
NA
1681static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1682 struct kobj_attribute *attr, const char *buf, size_t count)
1683{
1684 int err;
1685 unsigned long input;
9a305230 1686 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1687
adbe8726
EM
1688 if (h->order >= MAX_ORDER)
1689 return -EINVAL;
1690
3dbb95f7 1691 err = kstrtoul(buf, 10, &input);
a3437870 1692 if (err)
73ae31e5 1693 return err;
a3437870
NA
1694
1695 spin_lock(&hugetlb_lock);
1696 h->nr_overcommit_huge_pages = input;
1697 spin_unlock(&hugetlb_lock);
1698
1699 return count;
1700}
1701HSTATE_ATTR(nr_overcommit_hugepages);
1702
1703static ssize_t free_hugepages_show(struct kobject *kobj,
1704 struct kobj_attribute *attr, char *buf)
1705{
9a305230
LS
1706 struct hstate *h;
1707 unsigned long free_huge_pages;
1708 int nid;
1709
1710 h = kobj_to_hstate(kobj, &nid);
1711 if (nid == NUMA_NO_NODE)
1712 free_huge_pages = h->free_huge_pages;
1713 else
1714 free_huge_pages = h->free_huge_pages_node[nid];
1715
1716 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1717}
1718HSTATE_ATTR_RO(free_hugepages);
1719
1720static ssize_t resv_hugepages_show(struct kobject *kobj,
1721 struct kobj_attribute *attr, char *buf)
1722{
9a305230 1723 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1724 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1725}
1726HSTATE_ATTR_RO(resv_hugepages);
1727
1728static ssize_t surplus_hugepages_show(struct kobject *kobj,
1729 struct kobj_attribute *attr, char *buf)
1730{
9a305230
LS
1731 struct hstate *h;
1732 unsigned long surplus_huge_pages;
1733 int nid;
1734
1735 h = kobj_to_hstate(kobj, &nid);
1736 if (nid == NUMA_NO_NODE)
1737 surplus_huge_pages = h->surplus_huge_pages;
1738 else
1739 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1740
1741 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1742}
1743HSTATE_ATTR_RO(surplus_hugepages);
1744
1745static struct attribute *hstate_attrs[] = {
1746 &nr_hugepages_attr.attr,
1747 &nr_overcommit_hugepages_attr.attr,
1748 &free_hugepages_attr.attr,
1749 &resv_hugepages_attr.attr,
1750 &surplus_hugepages_attr.attr,
06808b08
LS
1751#ifdef CONFIG_NUMA
1752 &nr_hugepages_mempolicy_attr.attr,
1753#endif
a3437870
NA
1754 NULL,
1755};
1756
1757static struct attribute_group hstate_attr_group = {
1758 .attrs = hstate_attrs,
1759};
1760
094e9539
JM
1761static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1762 struct kobject **hstate_kobjs,
1763 struct attribute_group *hstate_attr_group)
a3437870
NA
1764{
1765 int retval;
972dc4de 1766 int hi = hstate_index(h);
a3437870 1767
9a305230
LS
1768 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1769 if (!hstate_kobjs[hi])
a3437870
NA
1770 return -ENOMEM;
1771
9a305230 1772 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1773 if (retval)
9a305230 1774 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1775
1776 return retval;
1777}
1778
1779static void __init hugetlb_sysfs_init(void)
1780{
1781 struct hstate *h;
1782 int err;
1783
1784 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1785 if (!hugepages_kobj)
1786 return;
1787
1788 for_each_hstate(h) {
9a305230
LS
1789 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1790 hstate_kobjs, &hstate_attr_group);
a3437870 1791 if (err)
ffb22af5 1792 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1793 }
1794}
1795
9a305230
LS
1796#ifdef CONFIG_NUMA
1797
1798/*
1799 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1800 * with node devices in node_devices[] using a parallel array. The array
1801 * index of a node device or _hstate == node id.
1802 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1803 * the base kernel, on the hugetlb module.
1804 */
1805struct node_hstate {
1806 struct kobject *hugepages_kobj;
1807 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1808};
1809struct node_hstate node_hstates[MAX_NUMNODES];
1810
1811/*
10fbcf4c 1812 * A subset of global hstate attributes for node devices
9a305230
LS
1813 */
1814static struct attribute *per_node_hstate_attrs[] = {
1815 &nr_hugepages_attr.attr,
1816 &free_hugepages_attr.attr,
1817 &surplus_hugepages_attr.attr,
1818 NULL,
1819};
1820
1821static struct attribute_group per_node_hstate_attr_group = {
1822 .attrs = per_node_hstate_attrs,
1823};
1824
1825/*
10fbcf4c 1826 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1827 * Returns node id via non-NULL nidp.
1828 */
1829static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1830{
1831 int nid;
1832
1833 for (nid = 0; nid < nr_node_ids; nid++) {
1834 struct node_hstate *nhs = &node_hstates[nid];
1835 int i;
1836 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1837 if (nhs->hstate_kobjs[i] == kobj) {
1838 if (nidp)
1839 *nidp = nid;
1840 return &hstates[i];
1841 }
1842 }
1843
1844 BUG();
1845 return NULL;
1846}
1847
1848/*
10fbcf4c 1849 * Unregister hstate attributes from a single node device.
9a305230
LS
1850 * No-op if no hstate attributes attached.
1851 */
3cd8b44f 1852static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1853{
1854 struct hstate *h;
10fbcf4c 1855 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1856
1857 if (!nhs->hugepages_kobj)
9b5e5d0f 1858 return; /* no hstate attributes */
9a305230 1859
972dc4de
AK
1860 for_each_hstate(h) {
1861 int idx = hstate_index(h);
1862 if (nhs->hstate_kobjs[idx]) {
1863 kobject_put(nhs->hstate_kobjs[idx]);
1864 nhs->hstate_kobjs[idx] = NULL;
9a305230 1865 }
972dc4de 1866 }
9a305230
LS
1867
1868 kobject_put(nhs->hugepages_kobj);
1869 nhs->hugepages_kobj = NULL;
1870}
1871
1872/*
10fbcf4c 1873 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1874 * that have them.
1875 */
1876static void hugetlb_unregister_all_nodes(void)
1877{
1878 int nid;
1879
1880 /*
10fbcf4c 1881 * disable node device registrations.
9a305230
LS
1882 */
1883 register_hugetlbfs_with_node(NULL, NULL);
1884
1885 /*
1886 * remove hstate attributes from any nodes that have them.
1887 */
1888 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1889 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1890}
1891
1892/*
10fbcf4c 1893 * Register hstate attributes for a single node device.
9a305230
LS
1894 * No-op if attributes already registered.
1895 */
3cd8b44f 1896static void hugetlb_register_node(struct node *node)
9a305230
LS
1897{
1898 struct hstate *h;
10fbcf4c 1899 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1900 int err;
1901
1902 if (nhs->hugepages_kobj)
1903 return; /* already allocated */
1904
1905 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1906 &node->dev.kobj);
9a305230
LS
1907 if (!nhs->hugepages_kobj)
1908 return;
1909
1910 for_each_hstate(h) {
1911 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1912 nhs->hstate_kobjs,
1913 &per_node_hstate_attr_group);
1914 if (err) {
ffb22af5
AM
1915 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1916 h->name, node->dev.id);
9a305230
LS
1917 hugetlb_unregister_node(node);
1918 break;
1919 }
1920 }
1921}
1922
1923/*
9b5e5d0f 1924 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1925 * devices of nodes that have memory. All on-line nodes should have
1926 * registered their associated device by this time.
9a305230
LS
1927 */
1928static void hugetlb_register_all_nodes(void)
1929{
1930 int nid;
1931
8cebfcd0 1932 for_each_node_state(nid, N_MEMORY) {
8732794b 1933 struct node *node = node_devices[nid];
10fbcf4c 1934 if (node->dev.id == nid)
9a305230
LS
1935 hugetlb_register_node(node);
1936 }
1937
1938 /*
10fbcf4c 1939 * Let the node device driver know we're here so it can
9a305230
LS
1940 * [un]register hstate attributes on node hotplug.
1941 */
1942 register_hugetlbfs_with_node(hugetlb_register_node,
1943 hugetlb_unregister_node);
1944}
1945#else /* !CONFIG_NUMA */
1946
1947static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1948{
1949 BUG();
1950 if (nidp)
1951 *nidp = -1;
1952 return NULL;
1953}
1954
1955static void hugetlb_unregister_all_nodes(void) { }
1956
1957static void hugetlb_register_all_nodes(void) { }
1958
1959#endif
1960
a3437870
NA
1961static void __exit hugetlb_exit(void)
1962{
1963 struct hstate *h;
1964
9a305230
LS
1965 hugetlb_unregister_all_nodes();
1966
a3437870 1967 for_each_hstate(h) {
972dc4de 1968 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1969 }
1970
1971 kobject_put(hugepages_kobj);
8382d914 1972 kfree(htlb_fault_mutex_table);
a3437870
NA
1973}
1974module_exit(hugetlb_exit);
1975
1976static int __init hugetlb_init(void)
1977{
8382d914
DB
1978 int i;
1979
0ef89d25
BH
1980 /* Some platform decide whether they support huge pages at boot
1981 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1982 * there is no such support
1983 */
1984 if (HPAGE_SHIFT == 0)
1985 return 0;
a3437870 1986
e11bfbfc
NP
1987 if (!size_to_hstate(default_hstate_size)) {
1988 default_hstate_size = HPAGE_SIZE;
1989 if (!size_to_hstate(default_hstate_size))
1990 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1991 }
972dc4de 1992 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1993 if (default_hstate_max_huge_pages)
1994 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1995
1996 hugetlb_init_hstates();
aa888a74 1997 gather_bootmem_prealloc();
a3437870
NA
1998 report_hugepages();
1999
2000 hugetlb_sysfs_init();
9a305230 2001 hugetlb_register_all_nodes();
7179e7bf 2002 hugetlb_cgroup_file_init();
9a305230 2003
8382d914
DB
2004#ifdef CONFIG_SMP
2005 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2006#else
2007 num_fault_mutexes = 1;
2008#endif
2009 htlb_fault_mutex_table =
2010 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2011 BUG_ON(!htlb_fault_mutex_table);
2012
2013 for (i = 0; i < num_fault_mutexes; i++)
2014 mutex_init(&htlb_fault_mutex_table[i]);
a3437870
NA
2015 return 0;
2016}
2017module_init(hugetlb_init);
2018
2019/* Should be called on processing a hugepagesz=... option */
2020void __init hugetlb_add_hstate(unsigned order)
2021{
2022 struct hstate *h;
8faa8b07
AK
2023 unsigned long i;
2024
a3437870 2025 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2026 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2027 return;
2028 }
47d38344 2029 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2030 BUG_ON(order == 0);
47d38344 2031 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2032 h->order = order;
2033 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2034 h->nr_huge_pages = 0;
2035 h->free_huge_pages = 0;
2036 for (i = 0; i < MAX_NUMNODES; ++i)
2037 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2038 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2039 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2040 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2041 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2042 huge_page_size(h)/1024);
8faa8b07 2043
a3437870
NA
2044 parsed_hstate = h;
2045}
2046
e11bfbfc 2047static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2048{
2049 unsigned long *mhp;
8faa8b07 2050 static unsigned long *last_mhp;
a3437870
NA
2051
2052 /*
47d38344 2053 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2054 * so this hugepages= parameter goes to the "default hstate".
2055 */
47d38344 2056 if (!hugetlb_max_hstate)
a3437870
NA
2057 mhp = &default_hstate_max_huge_pages;
2058 else
2059 mhp = &parsed_hstate->max_huge_pages;
2060
8faa8b07 2061 if (mhp == last_mhp) {
ffb22af5
AM
2062 pr_warning("hugepages= specified twice without "
2063 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2064 return 1;
2065 }
2066
a3437870
NA
2067 if (sscanf(s, "%lu", mhp) <= 0)
2068 *mhp = 0;
2069
8faa8b07
AK
2070 /*
2071 * Global state is always initialized later in hugetlb_init.
2072 * But we need to allocate >= MAX_ORDER hstates here early to still
2073 * use the bootmem allocator.
2074 */
47d38344 2075 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2076 hugetlb_hstate_alloc_pages(parsed_hstate);
2077
2078 last_mhp = mhp;
2079
a3437870
NA
2080 return 1;
2081}
e11bfbfc
NP
2082__setup("hugepages=", hugetlb_nrpages_setup);
2083
2084static int __init hugetlb_default_setup(char *s)
2085{
2086 default_hstate_size = memparse(s, &s);
2087 return 1;
2088}
2089__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2090
8a213460
NA
2091static unsigned int cpuset_mems_nr(unsigned int *array)
2092{
2093 int node;
2094 unsigned int nr = 0;
2095
2096 for_each_node_mask(node, cpuset_current_mems_allowed)
2097 nr += array[node];
2098
2099 return nr;
2100}
2101
2102#ifdef CONFIG_SYSCTL
06808b08
LS
2103static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2104 struct ctl_table *table, int write,
2105 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2106{
e5ff2159
AK
2107 struct hstate *h = &default_hstate;
2108 unsigned long tmp;
08d4a246 2109 int ret;
e5ff2159 2110
c033a93c 2111 tmp = h->max_huge_pages;
e5ff2159 2112
adbe8726
EM
2113 if (write && h->order >= MAX_ORDER)
2114 return -EINVAL;
2115
e5ff2159
AK
2116 table->data = &tmp;
2117 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2118 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2119 if (ret)
2120 goto out;
e5ff2159 2121
06808b08 2122 if (write) {
bad44b5b
DR
2123 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2124 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2125 if (!(obey_mempolicy &&
2126 init_nodemask_of_mempolicy(nodes_allowed))) {
2127 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2128 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2129 }
2130 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2131
8cebfcd0 2132 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2133 NODEMASK_FREE(nodes_allowed);
2134 }
08d4a246
MH
2135out:
2136 return ret;
1da177e4 2137}
396faf03 2138
06808b08
LS
2139int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2140 void __user *buffer, size_t *length, loff_t *ppos)
2141{
2142
2143 return hugetlb_sysctl_handler_common(false, table, write,
2144 buffer, length, ppos);
2145}
2146
2147#ifdef CONFIG_NUMA
2148int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2149 void __user *buffer, size_t *length, loff_t *ppos)
2150{
2151 return hugetlb_sysctl_handler_common(true, table, write,
2152 buffer, length, ppos);
2153}
2154#endif /* CONFIG_NUMA */
2155
a3d0c6aa 2156int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2157 void __user *buffer,
a3d0c6aa
NA
2158 size_t *length, loff_t *ppos)
2159{
a5516438 2160 struct hstate *h = &default_hstate;
e5ff2159 2161 unsigned long tmp;
08d4a246 2162 int ret;
e5ff2159 2163
c033a93c 2164 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2165
adbe8726
EM
2166 if (write && h->order >= MAX_ORDER)
2167 return -EINVAL;
2168
e5ff2159
AK
2169 table->data = &tmp;
2170 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2171 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2172 if (ret)
2173 goto out;
e5ff2159
AK
2174
2175 if (write) {
2176 spin_lock(&hugetlb_lock);
2177 h->nr_overcommit_huge_pages = tmp;
2178 spin_unlock(&hugetlb_lock);
2179 }
08d4a246
MH
2180out:
2181 return ret;
a3d0c6aa
NA
2182}
2183
1da177e4
LT
2184#endif /* CONFIG_SYSCTL */
2185
e1759c21 2186void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2187{
a5516438 2188 struct hstate *h = &default_hstate;
e1759c21 2189 seq_printf(m,
4f98a2fe
RR
2190 "HugePages_Total: %5lu\n"
2191 "HugePages_Free: %5lu\n"
2192 "HugePages_Rsvd: %5lu\n"
2193 "HugePages_Surp: %5lu\n"
2194 "Hugepagesize: %8lu kB\n",
a5516438
AK
2195 h->nr_huge_pages,
2196 h->free_huge_pages,
2197 h->resv_huge_pages,
2198 h->surplus_huge_pages,
2199 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2200}
2201
2202int hugetlb_report_node_meminfo(int nid, char *buf)
2203{
a5516438 2204 struct hstate *h = &default_hstate;
1da177e4
LT
2205 return sprintf(buf,
2206 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2207 "Node %d HugePages_Free: %5u\n"
2208 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2209 nid, h->nr_huge_pages_node[nid],
2210 nid, h->free_huge_pages_node[nid],
2211 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2212}
2213
949f7ec5
DR
2214void hugetlb_show_meminfo(void)
2215{
2216 struct hstate *h;
2217 int nid;
2218
2219 for_each_node_state(nid, N_MEMORY)
2220 for_each_hstate(h)
2221 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2222 nid,
2223 h->nr_huge_pages_node[nid],
2224 h->free_huge_pages_node[nid],
2225 h->surplus_huge_pages_node[nid],
2226 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2227}
2228
1da177e4
LT
2229/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2230unsigned long hugetlb_total_pages(void)
2231{
d0028588
WL
2232 struct hstate *h;
2233 unsigned long nr_total_pages = 0;
2234
2235 for_each_hstate(h)
2236 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2237 return nr_total_pages;
1da177e4 2238}
1da177e4 2239
a5516438 2240static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2241{
2242 int ret = -ENOMEM;
2243
2244 spin_lock(&hugetlb_lock);
2245 /*
2246 * When cpuset is configured, it breaks the strict hugetlb page
2247 * reservation as the accounting is done on a global variable. Such
2248 * reservation is completely rubbish in the presence of cpuset because
2249 * the reservation is not checked against page availability for the
2250 * current cpuset. Application can still potentially OOM'ed by kernel
2251 * with lack of free htlb page in cpuset that the task is in.
2252 * Attempt to enforce strict accounting with cpuset is almost
2253 * impossible (or too ugly) because cpuset is too fluid that
2254 * task or memory node can be dynamically moved between cpusets.
2255 *
2256 * The change of semantics for shared hugetlb mapping with cpuset is
2257 * undesirable. However, in order to preserve some of the semantics,
2258 * we fall back to check against current free page availability as
2259 * a best attempt and hopefully to minimize the impact of changing
2260 * semantics that cpuset has.
2261 */
2262 if (delta > 0) {
a5516438 2263 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2264 goto out;
2265
a5516438
AK
2266 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2267 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2268 goto out;
2269 }
2270 }
2271
2272 ret = 0;
2273 if (delta < 0)
a5516438 2274 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2275
2276out:
2277 spin_unlock(&hugetlb_lock);
2278 return ret;
2279}
2280
84afd99b
AW
2281static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2282{
f522c3ac 2283 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2284
2285 /*
2286 * This new VMA should share its siblings reservation map if present.
2287 * The VMA will only ever have a valid reservation map pointer where
2288 * it is being copied for another still existing VMA. As that VMA
25985edc 2289 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2290 * after this open call completes. It is therefore safe to take a
2291 * new reference here without additional locking.
2292 */
4e35f483 2293 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2294 kref_get(&resv->refs);
84afd99b
AW
2295}
2296
a1e78772
MG
2297static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2298{
a5516438 2299 struct hstate *h = hstate_vma(vma);
f522c3ac 2300 struct resv_map *resv = vma_resv_map(vma);
90481622 2301 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2302 unsigned long reserve, start, end;
84afd99b 2303
4e35f483
JK
2304 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2305 return;
84afd99b 2306
4e35f483
JK
2307 start = vma_hugecache_offset(h, vma, vma->vm_start);
2308 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2309
4e35f483 2310 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2311
4e35f483
JK
2312 kref_put(&resv->refs, resv_map_release);
2313
2314 if (reserve) {
2315 hugetlb_acct_memory(h, -reserve);
2316 hugepage_subpool_put_pages(spool, reserve);
84afd99b 2317 }
a1e78772
MG
2318}
2319
1da177e4
LT
2320/*
2321 * We cannot handle pagefaults against hugetlb pages at all. They cause
2322 * handle_mm_fault() to try to instantiate regular-sized pages in the
2323 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2324 * this far.
2325 */
d0217ac0 2326static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2327{
2328 BUG();
d0217ac0 2329 return 0;
1da177e4
LT
2330}
2331
f0f37e2f 2332const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2333 .fault = hugetlb_vm_op_fault,
84afd99b 2334 .open = hugetlb_vm_op_open,
a1e78772 2335 .close = hugetlb_vm_op_close,
1da177e4
LT
2336};
2337
1e8f889b
DG
2338static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2339 int writable)
63551ae0
DG
2340{
2341 pte_t entry;
2342
1e8f889b 2343 if (writable) {
106c992a
GS
2344 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2345 vma->vm_page_prot)));
63551ae0 2346 } else {
106c992a
GS
2347 entry = huge_pte_wrprotect(mk_huge_pte(page,
2348 vma->vm_page_prot));
63551ae0
DG
2349 }
2350 entry = pte_mkyoung(entry);
2351 entry = pte_mkhuge(entry);
d9ed9faa 2352 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2353
2354 return entry;
2355}
2356
1e8f889b
DG
2357static void set_huge_ptep_writable(struct vm_area_struct *vma,
2358 unsigned long address, pte_t *ptep)
2359{
2360 pte_t entry;
2361
106c992a 2362 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2363 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2364 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2365}
2366
2367
63551ae0
DG
2368int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2369 struct vm_area_struct *vma)
2370{
2371 pte_t *src_pte, *dst_pte, entry;
2372 struct page *ptepage;
1c59827d 2373 unsigned long addr;
1e8f889b 2374 int cow;
a5516438
AK
2375 struct hstate *h = hstate_vma(vma);
2376 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2377 unsigned long mmun_start; /* For mmu_notifiers */
2378 unsigned long mmun_end; /* For mmu_notifiers */
2379 int ret = 0;
1e8f889b
DG
2380
2381 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2382
e8569dd2
AS
2383 mmun_start = vma->vm_start;
2384 mmun_end = vma->vm_end;
2385 if (cow)
2386 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2387
a5516438 2388 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2389 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2390 src_pte = huge_pte_offset(src, addr);
2391 if (!src_pte)
2392 continue;
a5516438 2393 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2394 if (!dst_pte) {
2395 ret = -ENOMEM;
2396 break;
2397 }
c5c99429
LW
2398
2399 /* If the pagetables are shared don't copy or take references */
2400 if (dst_pte == src_pte)
2401 continue;
2402
cb900f41
KS
2403 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2404 src_ptl = huge_pte_lockptr(h, src, src_pte);
2405 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
7f2e9525 2406 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2407 if (cow)
7f2e9525
GS
2408 huge_ptep_set_wrprotect(src, addr, src_pte);
2409 entry = huge_ptep_get(src_pte);
1c59827d
HD
2410 ptepage = pte_page(entry);
2411 get_page(ptepage);
0fe6e20b 2412 page_dup_rmap(ptepage);
1c59827d
HD
2413 set_huge_pte_at(dst, addr, dst_pte, entry);
2414 }
cb900f41
KS
2415 spin_unlock(src_ptl);
2416 spin_unlock(dst_ptl);
63551ae0 2417 }
63551ae0 2418
e8569dd2
AS
2419 if (cow)
2420 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2421
2422 return ret;
63551ae0
DG
2423}
2424
290408d4
NH
2425static int is_hugetlb_entry_migration(pte_t pte)
2426{
2427 swp_entry_t swp;
2428
2429 if (huge_pte_none(pte) || pte_present(pte))
2430 return 0;
2431 swp = pte_to_swp_entry(pte);
32f84528 2432 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2433 return 1;
32f84528 2434 else
290408d4
NH
2435 return 0;
2436}
2437
fd6a03ed
NH
2438static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2439{
2440 swp_entry_t swp;
2441
2442 if (huge_pte_none(pte) || pte_present(pte))
2443 return 0;
2444 swp = pte_to_swp_entry(pte);
32f84528 2445 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2446 return 1;
32f84528 2447 else
fd6a03ed
NH
2448 return 0;
2449}
2450
24669e58
AK
2451void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2452 unsigned long start, unsigned long end,
2453 struct page *ref_page)
63551ae0 2454{
24669e58 2455 int force_flush = 0;
63551ae0
DG
2456 struct mm_struct *mm = vma->vm_mm;
2457 unsigned long address;
c7546f8f 2458 pte_t *ptep;
63551ae0 2459 pte_t pte;
cb900f41 2460 spinlock_t *ptl;
63551ae0 2461 struct page *page;
a5516438
AK
2462 struct hstate *h = hstate_vma(vma);
2463 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2464 const unsigned long mmun_start = start; /* For mmu_notifiers */
2465 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2466
63551ae0 2467 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2468 BUG_ON(start & ~huge_page_mask(h));
2469 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2470
24669e58 2471 tlb_start_vma(tlb, vma);
2ec74c3e 2472 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2473again:
a5516438 2474 for (address = start; address < end; address += sz) {
c7546f8f 2475 ptep = huge_pte_offset(mm, address);
4c887265 2476 if (!ptep)
c7546f8f
DG
2477 continue;
2478
cb900f41 2479 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2480 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2481 goto unlock;
39dde65c 2482
6629326b
HD
2483 pte = huge_ptep_get(ptep);
2484 if (huge_pte_none(pte))
cb900f41 2485 goto unlock;
6629326b
HD
2486
2487 /*
2488 * HWPoisoned hugepage is already unmapped and dropped reference
2489 */
8c4894c6 2490 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2491 huge_pte_clear(mm, address, ptep);
cb900f41 2492 goto unlock;
8c4894c6 2493 }
6629326b
HD
2494
2495 page = pte_page(pte);
04f2cbe3
MG
2496 /*
2497 * If a reference page is supplied, it is because a specific
2498 * page is being unmapped, not a range. Ensure the page we
2499 * are about to unmap is the actual page of interest.
2500 */
2501 if (ref_page) {
04f2cbe3 2502 if (page != ref_page)
cb900f41 2503 goto unlock;
04f2cbe3
MG
2504
2505 /*
2506 * Mark the VMA as having unmapped its page so that
2507 * future faults in this VMA will fail rather than
2508 * looking like data was lost
2509 */
2510 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2511 }
2512
c7546f8f 2513 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2514 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2515 if (huge_pte_dirty(pte))
6649a386 2516 set_page_dirty(page);
9e81130b 2517
24669e58
AK
2518 page_remove_rmap(page);
2519 force_flush = !__tlb_remove_page(tlb, page);
cb900f41
KS
2520 if (force_flush) {
2521 spin_unlock(ptl);
24669e58 2522 break;
cb900f41 2523 }
9e81130b 2524 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2525 if (ref_page) {
2526 spin_unlock(ptl);
9e81130b 2527 break;
cb900f41
KS
2528 }
2529unlock:
2530 spin_unlock(ptl);
63551ae0 2531 }
24669e58
AK
2532 /*
2533 * mmu_gather ran out of room to batch pages, we break out of
2534 * the PTE lock to avoid doing the potential expensive TLB invalidate
2535 * and page-free while holding it.
2536 */
2537 if (force_flush) {
2538 force_flush = 0;
2539 tlb_flush_mmu(tlb);
2540 if (address < end && !ref_page)
2541 goto again;
fe1668ae 2542 }
2ec74c3e 2543 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2544 tlb_end_vma(tlb, vma);
1da177e4 2545}
63551ae0 2546
d833352a
MG
2547void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2548 struct vm_area_struct *vma, unsigned long start,
2549 unsigned long end, struct page *ref_page)
2550{
2551 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2552
2553 /*
2554 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2555 * test will fail on a vma being torn down, and not grab a page table
2556 * on its way out. We're lucky that the flag has such an appropriate
2557 * name, and can in fact be safely cleared here. We could clear it
2558 * before the __unmap_hugepage_range above, but all that's necessary
2559 * is to clear it before releasing the i_mmap_mutex. This works
2560 * because in the context this is called, the VMA is about to be
2561 * destroyed and the i_mmap_mutex is held.
2562 */
2563 vma->vm_flags &= ~VM_MAYSHARE;
2564}
2565
502717f4 2566void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2567 unsigned long end, struct page *ref_page)
502717f4 2568{
24669e58
AK
2569 struct mm_struct *mm;
2570 struct mmu_gather tlb;
2571
2572 mm = vma->vm_mm;
2573
2b047252 2574 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2575 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2576 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2577}
2578
04f2cbe3
MG
2579/*
2580 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2581 * mappping it owns the reserve page for. The intention is to unmap the page
2582 * from other VMAs and let the children be SIGKILLed if they are faulting the
2583 * same region.
2584 */
2a4b3ded
HH
2585static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2586 struct page *page, unsigned long address)
04f2cbe3 2587{
7526674d 2588 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2589 struct vm_area_struct *iter_vma;
2590 struct address_space *mapping;
04f2cbe3
MG
2591 pgoff_t pgoff;
2592
2593 /*
2594 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2595 * from page cache lookup which is in HPAGE_SIZE units.
2596 */
7526674d 2597 address = address & huge_page_mask(h);
36e4f20a
MH
2598 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2599 vma->vm_pgoff;
496ad9aa 2600 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2601
4eb2b1dc
MG
2602 /*
2603 * Take the mapping lock for the duration of the table walk. As
2604 * this mapping should be shared between all the VMAs,
2605 * __unmap_hugepage_range() is called as the lock is already held
2606 */
3d48ae45 2607 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2608 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2609 /* Do not unmap the current VMA */
2610 if (iter_vma == vma)
2611 continue;
2612
2613 /*
2614 * Unmap the page from other VMAs without their own reserves.
2615 * They get marked to be SIGKILLed if they fault in these
2616 * areas. This is because a future no-page fault on this VMA
2617 * could insert a zeroed page instead of the data existing
2618 * from the time of fork. This would look like data corruption
2619 */
2620 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2621 unmap_hugepage_range(iter_vma, address,
2622 address + huge_page_size(h), page);
04f2cbe3 2623 }
3d48ae45 2624 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2625
2626 return 1;
2627}
2628
0fe6e20b
NH
2629/*
2630 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2631 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2632 * cannot race with other handlers or page migration.
2633 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2634 */
1e8f889b 2635static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2636 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2637 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2638{
a5516438 2639 struct hstate *h = hstate_vma(vma);
1e8f889b 2640 struct page *old_page, *new_page;
04f2cbe3 2641 int outside_reserve = 0;
2ec74c3e
SG
2642 unsigned long mmun_start; /* For mmu_notifiers */
2643 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2644
2645 old_page = pte_page(pte);
2646
04f2cbe3 2647retry_avoidcopy:
1e8f889b
DG
2648 /* If no-one else is actually using this page, avoid the copy
2649 * and just make the page writable */
37a2140d
JK
2650 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2651 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2652 set_huge_ptep_writable(vma, address, ptep);
83c54070 2653 return 0;
1e8f889b
DG
2654 }
2655
04f2cbe3
MG
2656 /*
2657 * If the process that created a MAP_PRIVATE mapping is about to
2658 * perform a COW due to a shared page count, attempt to satisfy
2659 * the allocation without using the existing reserves. The pagecache
2660 * page is used to determine if the reserve at this address was
2661 * consumed or not. If reserves were used, a partial faulted mapping
2662 * at the time of fork() could consume its reserves on COW instead
2663 * of the full address range.
2664 */
5944d011 2665 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2666 old_page != pagecache_page)
2667 outside_reserve = 1;
2668
1e8f889b 2669 page_cache_get(old_page);
b76c8cfb 2670
cb900f41
KS
2671 /* Drop page table lock as buddy allocator may be called */
2672 spin_unlock(ptl);
04f2cbe3 2673 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2674
2fc39cec 2675 if (IS_ERR(new_page)) {
76dcee75 2676 long err = PTR_ERR(new_page);
1e8f889b 2677 page_cache_release(old_page);
04f2cbe3
MG
2678
2679 /*
2680 * If a process owning a MAP_PRIVATE mapping fails to COW,
2681 * it is due to references held by a child and an insufficient
2682 * huge page pool. To guarantee the original mappers
2683 * reliability, unmap the page from child processes. The child
2684 * may get SIGKILLed if it later faults.
2685 */
2686 if (outside_reserve) {
2687 BUG_ON(huge_pte_none(pte));
2688 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2689 BUG_ON(huge_pte_none(pte));
cb900f41 2690 spin_lock(ptl);
a734bcc8
HD
2691 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2692 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2693 goto retry_avoidcopy;
2694 /*
cb900f41
KS
2695 * race occurs while re-acquiring page table
2696 * lock, and our job is done.
a734bcc8
HD
2697 */
2698 return 0;
04f2cbe3
MG
2699 }
2700 WARN_ON_ONCE(1);
2701 }
2702
b76c8cfb 2703 /* Caller expects lock to be held */
cb900f41 2704 spin_lock(ptl);
76dcee75
AK
2705 if (err == -ENOMEM)
2706 return VM_FAULT_OOM;
2707 else
2708 return VM_FAULT_SIGBUS;
1e8f889b
DG
2709 }
2710
0fe6e20b
NH
2711 /*
2712 * When the original hugepage is shared one, it does not have
2713 * anon_vma prepared.
2714 */
44e2aa93 2715 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2716 page_cache_release(new_page);
2717 page_cache_release(old_page);
44e2aa93 2718 /* Caller expects lock to be held */
cb900f41 2719 spin_lock(ptl);
0fe6e20b 2720 return VM_FAULT_OOM;
44e2aa93 2721 }
0fe6e20b 2722
47ad8475
AA
2723 copy_user_huge_page(new_page, old_page, address, vma,
2724 pages_per_huge_page(h));
0ed361de 2725 __SetPageUptodate(new_page);
1e8f889b 2726
2ec74c3e
SG
2727 mmun_start = address & huge_page_mask(h);
2728 mmun_end = mmun_start + huge_page_size(h);
2729 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb 2730 /*
cb900f41 2731 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2732 * before the page tables are altered
2733 */
cb900f41 2734 spin_lock(ptl);
a5516438 2735 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2736 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2737 ClearPagePrivate(new_page);
2738
1e8f889b 2739 /* Break COW */
8fe627ec 2740 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2741 set_huge_pte_at(mm, address, ptep,
2742 make_huge_pte(vma, new_page, 1));
0fe6e20b 2743 page_remove_rmap(old_page);
cd67f0d2 2744 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2745 /* Make the old page be freed below */
2746 new_page = old_page;
2747 }
cb900f41 2748 spin_unlock(ptl);
2ec74c3e 2749 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1e8f889b
DG
2750 page_cache_release(new_page);
2751 page_cache_release(old_page);
8312034f
JK
2752
2753 /* Caller expects lock to be held */
cb900f41 2754 spin_lock(ptl);
83c54070 2755 return 0;
1e8f889b
DG
2756}
2757
04f2cbe3 2758/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2759static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2760 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2761{
2762 struct address_space *mapping;
e7c4b0bf 2763 pgoff_t idx;
04f2cbe3
MG
2764
2765 mapping = vma->vm_file->f_mapping;
a5516438 2766 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2767
2768 return find_lock_page(mapping, idx);
2769}
2770
3ae77f43
HD
2771/*
2772 * Return whether there is a pagecache page to back given address within VMA.
2773 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2774 */
2775static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2776 struct vm_area_struct *vma, unsigned long address)
2777{
2778 struct address_space *mapping;
2779 pgoff_t idx;
2780 struct page *page;
2781
2782 mapping = vma->vm_file->f_mapping;
2783 idx = vma_hugecache_offset(h, vma, address);
2784
2785 page = find_get_page(mapping, idx);
2786 if (page)
2787 put_page(page);
2788 return page != NULL;
2789}
2790
a1ed3dda 2791static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
2792 struct address_space *mapping, pgoff_t idx,
2793 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2794{
a5516438 2795 struct hstate *h = hstate_vma(vma);
ac9b9c66 2796 int ret = VM_FAULT_SIGBUS;
409eb8c2 2797 int anon_rmap = 0;
4c887265 2798 unsigned long size;
4c887265 2799 struct page *page;
1e8f889b 2800 pte_t new_pte;
cb900f41 2801 spinlock_t *ptl;
4c887265 2802
04f2cbe3
MG
2803 /*
2804 * Currently, we are forced to kill the process in the event the
2805 * original mapper has unmapped pages from the child due to a failed
25985edc 2806 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2807 */
2808 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2809 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2810 current->pid);
04f2cbe3
MG
2811 return ret;
2812 }
2813
4c887265
AL
2814 /*
2815 * Use page lock to guard against racing truncation
2816 * before we get page_table_lock.
2817 */
6bda666a
CL
2818retry:
2819 page = find_lock_page(mapping, idx);
2820 if (!page) {
a5516438 2821 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2822 if (idx >= size)
2823 goto out;
04f2cbe3 2824 page = alloc_huge_page(vma, address, 0);
2fc39cec 2825 if (IS_ERR(page)) {
76dcee75
AK
2826 ret = PTR_ERR(page);
2827 if (ret == -ENOMEM)
2828 ret = VM_FAULT_OOM;
2829 else
2830 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2831 goto out;
2832 }
47ad8475 2833 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2834 __SetPageUptodate(page);
ac9b9c66 2835
f83a275d 2836 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2837 int err;
45c682a6 2838 struct inode *inode = mapping->host;
6bda666a
CL
2839
2840 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2841 if (err) {
2842 put_page(page);
6bda666a
CL
2843 if (err == -EEXIST)
2844 goto retry;
2845 goto out;
2846 }
07443a85 2847 ClearPagePrivate(page);
45c682a6
KC
2848
2849 spin_lock(&inode->i_lock);
a5516438 2850 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2851 spin_unlock(&inode->i_lock);
23be7468 2852 } else {
6bda666a 2853 lock_page(page);
0fe6e20b
NH
2854 if (unlikely(anon_vma_prepare(vma))) {
2855 ret = VM_FAULT_OOM;
2856 goto backout_unlocked;
2857 }
409eb8c2 2858 anon_rmap = 1;
23be7468 2859 }
0fe6e20b 2860 } else {
998b4382
NH
2861 /*
2862 * If memory error occurs between mmap() and fault, some process
2863 * don't have hwpoisoned swap entry for errored virtual address.
2864 * So we need to block hugepage fault by PG_hwpoison bit check.
2865 */
2866 if (unlikely(PageHWPoison(page))) {
32f84528 2867 ret = VM_FAULT_HWPOISON |
972dc4de 2868 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2869 goto backout_unlocked;
2870 }
6bda666a 2871 }
1e8f889b 2872
57303d80
AW
2873 /*
2874 * If we are going to COW a private mapping later, we examine the
2875 * pending reservations for this page now. This will ensure that
2876 * any allocations necessary to record that reservation occur outside
2877 * the spinlock.
2878 */
788c7df4 2879 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2880 if (vma_needs_reservation(h, vma, address) < 0) {
2881 ret = VM_FAULT_OOM;
2882 goto backout_unlocked;
2883 }
57303d80 2884
cb900f41
KS
2885 ptl = huge_pte_lockptr(h, mm, ptep);
2886 spin_lock(ptl);
a5516438 2887 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2888 if (idx >= size)
2889 goto backout;
2890
83c54070 2891 ret = 0;
7f2e9525 2892 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2893 goto backout;
2894
07443a85
JK
2895 if (anon_rmap) {
2896 ClearPagePrivate(page);
409eb8c2 2897 hugepage_add_new_anon_rmap(page, vma, address);
07443a85 2898 }
409eb8c2
HD
2899 else
2900 page_dup_rmap(page);
1e8f889b
DG
2901 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2902 && (vma->vm_flags & VM_SHARED)));
2903 set_huge_pte_at(mm, address, ptep, new_pte);
2904
788c7df4 2905 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2906 /* Optimization, do the COW without a second fault */
cb900f41 2907 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
2908 }
2909
cb900f41 2910 spin_unlock(ptl);
4c887265
AL
2911 unlock_page(page);
2912out:
ac9b9c66 2913 return ret;
4c887265
AL
2914
2915backout:
cb900f41 2916 spin_unlock(ptl);
2b26736c 2917backout_unlocked:
4c887265
AL
2918 unlock_page(page);
2919 put_page(page);
2920 goto out;
ac9b9c66
HD
2921}
2922
8382d914
DB
2923#ifdef CONFIG_SMP
2924static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2925 struct vm_area_struct *vma,
2926 struct address_space *mapping,
2927 pgoff_t idx, unsigned long address)
2928{
2929 unsigned long key[2];
2930 u32 hash;
2931
2932 if (vma->vm_flags & VM_SHARED) {
2933 key[0] = (unsigned long) mapping;
2934 key[1] = idx;
2935 } else {
2936 key[0] = (unsigned long) mm;
2937 key[1] = address >> huge_page_shift(h);
2938 }
2939
2940 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2941
2942 return hash & (num_fault_mutexes - 1);
2943}
2944#else
2945/*
2946 * For uniprocesor systems we always use a single mutex, so just
2947 * return 0 and avoid the hashing overhead.
2948 */
2949static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2950 struct vm_area_struct *vma,
2951 struct address_space *mapping,
2952 pgoff_t idx, unsigned long address)
2953{
2954 return 0;
2955}
2956#endif
2957
86e5216f 2958int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2959 unsigned long address, unsigned int flags)
86e5216f 2960{
8382d914 2961 pte_t *ptep, entry;
cb900f41 2962 spinlock_t *ptl;
1e8f889b 2963 int ret;
8382d914
DB
2964 u32 hash;
2965 pgoff_t idx;
0fe6e20b 2966 struct page *page = NULL;
57303d80 2967 struct page *pagecache_page = NULL;
a5516438 2968 struct hstate *h = hstate_vma(vma);
8382d914 2969 struct address_space *mapping;
86e5216f 2970
1e16a539
KH
2971 address &= huge_page_mask(h);
2972
fd6a03ed
NH
2973 ptep = huge_pte_offset(mm, address);
2974 if (ptep) {
2975 entry = huge_ptep_get(ptep);
290408d4 2976 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 2977 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
2978 return 0;
2979 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2980 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2981 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2982 }
2983
a5516438 2984 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2985 if (!ptep)
2986 return VM_FAULT_OOM;
2987
8382d914
DB
2988 mapping = vma->vm_file->f_mapping;
2989 idx = vma_hugecache_offset(h, vma, address);
2990
3935baa9
DG
2991 /*
2992 * Serialize hugepage allocation and instantiation, so that we don't
2993 * get spurious allocation failures if two CPUs race to instantiate
2994 * the same page in the page cache.
2995 */
8382d914
DB
2996 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
2997 mutex_lock(&htlb_fault_mutex_table[hash]);
2998
7f2e9525
GS
2999 entry = huge_ptep_get(ptep);
3000 if (huge_pte_none(entry)) {
8382d914 3001 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3002 goto out_mutex;
3935baa9 3003 }
86e5216f 3004
83c54070 3005 ret = 0;
1e8f889b 3006
57303d80
AW
3007 /*
3008 * If we are going to COW the mapping later, we examine the pending
3009 * reservations for this page now. This will ensure that any
3010 * allocations necessary to record that reservation occur outside the
3011 * spinlock. For private mappings, we also lookup the pagecache
3012 * page now as it is used to determine if a reservation has been
3013 * consumed.
3014 */
106c992a 3015 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3016 if (vma_needs_reservation(h, vma, address) < 0) {
3017 ret = VM_FAULT_OOM;
b4d1d99f 3018 goto out_mutex;
2b26736c 3019 }
57303d80 3020
f83a275d 3021 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3022 pagecache_page = hugetlbfs_pagecache_page(h,
3023 vma, address);
3024 }
3025
56c9cfb1
NH
3026 /*
3027 * hugetlb_cow() requires page locks of pte_page(entry) and
3028 * pagecache_page, so here we need take the former one
3029 * when page != pagecache_page or !pagecache_page.
3030 * Note that locking order is always pagecache_page -> page,
3031 * so no worry about deadlock.
3032 */
3033 page = pte_page(entry);
66aebce7 3034 get_page(page);
56c9cfb1 3035 if (page != pagecache_page)
0fe6e20b 3036 lock_page(page);
0fe6e20b 3037
cb900f41
KS
3038 ptl = huge_pte_lockptr(h, mm, ptep);
3039 spin_lock(ptl);
1e8f889b 3040 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f 3041 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
cb900f41 3042 goto out_ptl;
b4d1d99f
DG
3043
3044
788c7df4 3045 if (flags & FAULT_FLAG_WRITE) {
106c992a 3046 if (!huge_pte_write(entry)) {
57303d80 3047 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41
KS
3048 pagecache_page, ptl);
3049 goto out_ptl;
b4d1d99f 3050 }
106c992a 3051 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3052 }
3053 entry = pte_mkyoung(entry);
788c7df4
HD
3054 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3055 flags & FAULT_FLAG_WRITE))
4b3073e1 3056 update_mmu_cache(vma, address, ptep);
b4d1d99f 3057
cb900f41
KS
3058out_ptl:
3059 spin_unlock(ptl);
57303d80
AW
3060
3061 if (pagecache_page) {
3062 unlock_page(pagecache_page);
3063 put_page(pagecache_page);
3064 }
1f64d69c
DN
3065 if (page != pagecache_page)
3066 unlock_page(page);
66aebce7 3067 put_page(page);
57303d80 3068
b4d1d99f 3069out_mutex:
8382d914 3070 mutex_unlock(&htlb_fault_mutex_table[hash]);
1e8f889b 3071 return ret;
86e5216f
AL
3072}
3073
28a35716
ML
3074long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3075 struct page **pages, struct vm_area_struct **vmas,
3076 unsigned long *position, unsigned long *nr_pages,
3077 long i, unsigned int flags)
63551ae0 3078{
d5d4b0aa
KC
3079 unsigned long pfn_offset;
3080 unsigned long vaddr = *position;
28a35716 3081 unsigned long remainder = *nr_pages;
a5516438 3082 struct hstate *h = hstate_vma(vma);
63551ae0 3083
63551ae0 3084 while (vaddr < vma->vm_end && remainder) {
4c887265 3085 pte_t *pte;
cb900f41 3086 spinlock_t *ptl = NULL;
2a15efc9 3087 int absent;
4c887265 3088 struct page *page;
63551ae0 3089
4c887265
AL
3090 /*
3091 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3092 * each hugepage. We have to make sure we get the
4c887265 3093 * first, for the page indexing below to work.
cb900f41
KS
3094 *
3095 * Note that page table lock is not held when pte is null.
4c887265 3096 */
a5516438 3097 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3098 if (pte)
3099 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3100 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3101
3102 /*
3103 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3104 * an error where there's an empty slot with no huge pagecache
3105 * to back it. This way, we avoid allocating a hugepage, and
3106 * the sparse dumpfile avoids allocating disk blocks, but its
3107 * huge holes still show up with zeroes where they need to be.
2a15efc9 3108 */
3ae77f43
HD
3109 if (absent && (flags & FOLL_DUMP) &&
3110 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3111 if (pte)
3112 spin_unlock(ptl);
2a15efc9
HD
3113 remainder = 0;
3114 break;
3115 }
63551ae0 3116
9cc3a5bd
NH
3117 /*
3118 * We need call hugetlb_fault for both hugepages under migration
3119 * (in which case hugetlb_fault waits for the migration,) and
3120 * hwpoisoned hugepages (in which case we need to prevent the
3121 * caller from accessing to them.) In order to do this, we use
3122 * here is_swap_pte instead of is_hugetlb_entry_migration and
3123 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3124 * both cases, and because we can't follow correct pages
3125 * directly from any kind of swap entries.
3126 */
3127 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3128 ((flags & FOLL_WRITE) &&
3129 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3130 int ret;
63551ae0 3131
cb900f41
KS
3132 if (pte)
3133 spin_unlock(ptl);
2a15efc9
HD
3134 ret = hugetlb_fault(mm, vma, vaddr,
3135 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3136 if (!(ret & VM_FAULT_ERROR))
4c887265 3137 continue;
63551ae0 3138
4c887265 3139 remainder = 0;
4c887265
AL
3140 break;
3141 }
3142
a5516438 3143 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3144 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3145same_page:
d6692183 3146 if (pages) {
2a15efc9 3147 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3148 get_page_foll(pages[i]);
d6692183 3149 }
63551ae0
DG
3150
3151 if (vmas)
3152 vmas[i] = vma;
3153
3154 vaddr += PAGE_SIZE;
d5d4b0aa 3155 ++pfn_offset;
63551ae0
DG
3156 --remainder;
3157 ++i;
d5d4b0aa 3158 if (vaddr < vma->vm_end && remainder &&
a5516438 3159 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3160 /*
3161 * We use pfn_offset to avoid touching the pageframes
3162 * of this compound page.
3163 */
3164 goto same_page;
3165 }
cb900f41 3166 spin_unlock(ptl);
63551ae0 3167 }
28a35716 3168 *nr_pages = remainder;
63551ae0
DG
3169 *position = vaddr;
3170
2a15efc9 3171 return i ? i : -EFAULT;
63551ae0 3172}
8f860591 3173
7da4d641 3174unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3175 unsigned long address, unsigned long end, pgprot_t newprot)
3176{
3177 struct mm_struct *mm = vma->vm_mm;
3178 unsigned long start = address;
3179 pte_t *ptep;
3180 pte_t pte;
a5516438 3181 struct hstate *h = hstate_vma(vma);
7da4d641 3182 unsigned long pages = 0;
8f860591
ZY
3183
3184 BUG_ON(address >= end);
3185 flush_cache_range(vma, address, end);
3186
3d48ae45 3187 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5516438 3188 for (; address < end; address += huge_page_size(h)) {
cb900f41 3189 spinlock_t *ptl;
8f860591
ZY
3190 ptep = huge_pte_offset(mm, address);
3191 if (!ptep)
3192 continue;
cb900f41 3193 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3194 if (huge_pmd_unshare(mm, &address, ptep)) {
3195 pages++;
cb900f41 3196 spin_unlock(ptl);
39dde65c 3197 continue;
7da4d641 3198 }
7f2e9525 3199 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3200 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3201 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3202 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3203 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3204 pages++;
8f860591 3205 }
cb900f41 3206 spin_unlock(ptl);
8f860591 3207 }
d833352a
MG
3208 /*
3209 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3210 * may have cleared our pud entry and done put_page on the page table:
3211 * once we release i_mmap_mutex, another task can do the final put_page
3212 * and that page table be reused and filled with junk.
3213 */
8f860591 3214 flush_tlb_range(vma, start, end);
d833352a 3215 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3216
3217 return pages << h->order;
8f860591
ZY
3218}
3219
a1e78772
MG
3220int hugetlb_reserve_pages(struct inode *inode,
3221 long from, long to,
5a6fe125 3222 struct vm_area_struct *vma,
ca16d140 3223 vm_flags_t vm_flags)
e4e574b7 3224{
17c9d12e 3225 long ret, chg;
a5516438 3226 struct hstate *h = hstate_inode(inode);
90481622 3227 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3228 struct resv_map *resv_map;
e4e574b7 3229
17c9d12e
MG
3230 /*
3231 * Only apply hugepage reservation if asked. At fault time, an
3232 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3233 * without using reserves
17c9d12e 3234 */
ca16d140 3235 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3236 return 0;
3237
a1e78772
MG
3238 /*
3239 * Shared mappings base their reservation on the number of pages that
3240 * are already allocated on behalf of the file. Private mappings need
3241 * to reserve the full area even if read-only as mprotect() may be
3242 * called to make the mapping read-write. Assume !vma is a shm mapping
3243 */
9119a41e 3244 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 3245 resv_map = inode_resv_map(inode);
9119a41e 3246
1406ec9b 3247 chg = region_chg(resv_map, from, to);
9119a41e
JK
3248
3249 } else {
3250 resv_map = resv_map_alloc();
17c9d12e
MG
3251 if (!resv_map)
3252 return -ENOMEM;
3253
a1e78772 3254 chg = to - from;
84afd99b 3255
17c9d12e
MG
3256 set_vma_resv_map(vma, resv_map);
3257 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3258 }
3259
c50ac050
DH
3260 if (chg < 0) {
3261 ret = chg;
3262 goto out_err;
3263 }
8a630112 3264
90481622 3265 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3266 if (hugepage_subpool_get_pages(spool, chg)) {
3267 ret = -ENOSPC;
3268 goto out_err;
3269 }
5a6fe125
MG
3270
3271 /*
17c9d12e 3272 * Check enough hugepages are available for the reservation.
90481622 3273 * Hand the pages back to the subpool if there are not
5a6fe125 3274 */
a5516438 3275 ret = hugetlb_acct_memory(h, chg);
68842c9b 3276 if (ret < 0) {
90481622 3277 hugepage_subpool_put_pages(spool, chg);
c50ac050 3278 goto out_err;
68842c9b 3279 }
17c9d12e
MG
3280
3281 /*
3282 * Account for the reservations made. Shared mappings record regions
3283 * that have reservations as they are shared by multiple VMAs.
3284 * When the last VMA disappears, the region map says how much
3285 * the reservation was and the page cache tells how much of
3286 * the reservation was consumed. Private mappings are per-VMA and
3287 * only the consumed reservations are tracked. When the VMA
3288 * disappears, the original reservation is the VMA size and the
3289 * consumed reservations are stored in the map. Hence, nothing
3290 * else has to be done for private mappings here
3291 */
f83a275d 3292 if (!vma || vma->vm_flags & VM_MAYSHARE)
1406ec9b 3293 region_add(resv_map, from, to);
a43a8c39 3294 return 0;
c50ac050 3295out_err:
f031dd27
JK
3296 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3297 kref_put(&resv_map->refs, resv_map_release);
c50ac050 3298 return ret;
a43a8c39
KC
3299}
3300
3301void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3302{
a5516438 3303 struct hstate *h = hstate_inode(inode);
4e35f483 3304 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 3305 long chg = 0;
90481622 3306 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6 3307
9119a41e 3308 if (resv_map)
1406ec9b 3309 chg = region_truncate(resv_map, offset);
45c682a6 3310 spin_lock(&inode->i_lock);
e4c6f8be 3311 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3312 spin_unlock(&inode->i_lock);
3313
90481622 3314 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3315 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3316}
93f70f90 3317
3212b535
SC
3318#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3319static unsigned long page_table_shareable(struct vm_area_struct *svma,
3320 struct vm_area_struct *vma,
3321 unsigned long addr, pgoff_t idx)
3322{
3323 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3324 svma->vm_start;
3325 unsigned long sbase = saddr & PUD_MASK;
3326 unsigned long s_end = sbase + PUD_SIZE;
3327
3328 /* Allow segments to share if only one is marked locked */
3329 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3330 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3331
3332 /*
3333 * match the virtual addresses, permission and the alignment of the
3334 * page table page.
3335 */
3336 if (pmd_index(addr) != pmd_index(saddr) ||
3337 vm_flags != svm_flags ||
3338 sbase < svma->vm_start || svma->vm_end < s_end)
3339 return 0;
3340
3341 return saddr;
3342}
3343
3344static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3345{
3346 unsigned long base = addr & PUD_MASK;
3347 unsigned long end = base + PUD_SIZE;
3348
3349 /*
3350 * check on proper vm_flags and page table alignment
3351 */
3352 if (vma->vm_flags & VM_MAYSHARE &&
3353 vma->vm_start <= base && end <= vma->vm_end)
3354 return 1;
3355 return 0;
3356}
3357
3358/*
3359 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3360 * and returns the corresponding pte. While this is not necessary for the
3361 * !shared pmd case because we can allocate the pmd later as well, it makes the
3362 * code much cleaner. pmd allocation is essential for the shared case because
3363 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3364 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3365 * bad pmd for sharing.
3366 */
3367pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3368{
3369 struct vm_area_struct *vma = find_vma(mm, addr);
3370 struct address_space *mapping = vma->vm_file->f_mapping;
3371 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3372 vma->vm_pgoff;
3373 struct vm_area_struct *svma;
3374 unsigned long saddr;
3375 pte_t *spte = NULL;
3376 pte_t *pte;
cb900f41 3377 spinlock_t *ptl;
3212b535
SC
3378
3379 if (!vma_shareable(vma, addr))
3380 return (pte_t *)pmd_alloc(mm, pud, addr);
3381
3382 mutex_lock(&mapping->i_mmap_mutex);
3383 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3384 if (svma == vma)
3385 continue;
3386
3387 saddr = page_table_shareable(svma, vma, addr, idx);
3388 if (saddr) {
3389 spte = huge_pte_offset(svma->vm_mm, saddr);
3390 if (spte) {
3391 get_page(virt_to_page(spte));
3392 break;
3393 }
3394 }
3395 }
3396
3397 if (!spte)
3398 goto out;
3399
cb900f41
KS
3400 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3401 spin_lock(ptl);
3212b535
SC
3402 if (pud_none(*pud))
3403 pud_populate(mm, pud,
3404 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3405 else
3406 put_page(virt_to_page(spte));
cb900f41 3407 spin_unlock(ptl);
3212b535
SC
3408out:
3409 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3410 mutex_unlock(&mapping->i_mmap_mutex);
3411 return pte;
3412}
3413
3414/*
3415 * unmap huge page backed by shared pte.
3416 *
3417 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3418 * indicated by page_count > 1, unmap is achieved by clearing pud and
3419 * decrementing the ref count. If count == 1, the pte page is not shared.
3420 *
cb900f41 3421 * called with page table lock held.
3212b535
SC
3422 *
3423 * returns: 1 successfully unmapped a shared pte page
3424 * 0 the underlying pte page is not shared, or it is the last user
3425 */
3426int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3427{
3428 pgd_t *pgd = pgd_offset(mm, *addr);
3429 pud_t *pud = pud_offset(pgd, *addr);
3430
3431 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3432 if (page_count(virt_to_page(ptep)) == 1)
3433 return 0;
3434
3435 pud_clear(pud);
3436 put_page(virt_to_page(ptep));
3437 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3438 return 1;
3439}
9e5fc74c
SC
3440#define want_pmd_share() (1)
3441#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3442pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3443{
3444 return NULL;
3445}
3446#define want_pmd_share() (0)
3212b535
SC
3447#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3448
9e5fc74c
SC
3449#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3450pte_t *huge_pte_alloc(struct mm_struct *mm,
3451 unsigned long addr, unsigned long sz)
3452{
3453 pgd_t *pgd;
3454 pud_t *pud;
3455 pte_t *pte = NULL;
3456
3457 pgd = pgd_offset(mm, addr);
3458 pud = pud_alloc(mm, pgd, addr);
3459 if (pud) {
3460 if (sz == PUD_SIZE) {
3461 pte = (pte_t *)pud;
3462 } else {
3463 BUG_ON(sz != PMD_SIZE);
3464 if (want_pmd_share() && pud_none(*pud))
3465 pte = huge_pmd_share(mm, addr, pud);
3466 else
3467 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3468 }
3469 }
3470 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3471
3472 return pte;
3473}
3474
3475pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3476{
3477 pgd_t *pgd;
3478 pud_t *pud;
3479 pmd_t *pmd = NULL;
3480
3481 pgd = pgd_offset(mm, addr);
3482 if (pgd_present(*pgd)) {
3483 pud = pud_offset(pgd, addr);
3484 if (pud_present(*pud)) {
3485 if (pud_huge(*pud))
3486 return (pte_t *)pud;
3487 pmd = pmd_offset(pud, addr);
3488 }
3489 }
3490 return (pte_t *) pmd;
3491}
3492
3493struct page *
3494follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3495 pmd_t *pmd, int write)
3496{
3497 struct page *page;
3498
3499 page = pte_page(*(pte_t *)pmd);
3500 if (page)
3501 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3502 return page;
3503}
3504
3505struct page *
3506follow_huge_pud(struct mm_struct *mm, unsigned long address,
3507 pud_t *pud, int write)
3508{
3509 struct page *page;
3510
3511 page = pte_page(*(pte_t *)pud);
3512 if (page)
3513 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3514 return page;
3515}
3516
3517#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3518
3519/* Can be overriden by architectures */
3520__attribute__((weak)) struct page *
3521follow_huge_pud(struct mm_struct *mm, unsigned long address,
3522 pud_t *pud, int write)
3523{
3524 BUG();
3525 return NULL;
3526}
3527
3528#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3529
d5bd9106
AK
3530#ifdef CONFIG_MEMORY_FAILURE
3531
6de2b1aa
NH
3532/* Should be called in hugetlb_lock */
3533static int is_hugepage_on_freelist(struct page *hpage)
3534{
3535 struct page *page;
3536 struct page *tmp;
3537 struct hstate *h = page_hstate(hpage);
3538 int nid = page_to_nid(hpage);
3539
3540 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3541 if (page == hpage)
3542 return 1;
3543 return 0;
3544}
3545
93f70f90
NH
3546/*
3547 * This function is called from memory failure code.
3548 * Assume the caller holds page lock of the head page.
3549 */
6de2b1aa 3550int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3551{
3552 struct hstate *h = page_hstate(hpage);
3553 int nid = page_to_nid(hpage);
6de2b1aa 3554 int ret = -EBUSY;
93f70f90
NH
3555
3556 spin_lock(&hugetlb_lock);
6de2b1aa 3557 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3558 /*
3559 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3560 * but dangling hpage->lru can trigger list-debug warnings
3561 * (this happens when we call unpoison_memory() on it),
3562 * so let it point to itself with list_del_init().
3563 */
3564 list_del_init(&hpage->lru);
8c6c2ecb 3565 set_page_refcounted(hpage);
6de2b1aa
NH
3566 h->free_huge_pages--;
3567 h->free_huge_pages_node[nid]--;
3568 ret = 0;
3569 }
93f70f90 3570 spin_unlock(&hugetlb_lock);
6de2b1aa 3571 return ret;
93f70f90 3572}
6de2b1aa 3573#endif
31caf665
NH
3574
3575bool isolate_huge_page(struct page *page, struct list_head *list)
3576{
309381fe 3577 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3578 if (!get_page_unless_zero(page))
3579 return false;
3580 spin_lock(&hugetlb_lock);
3581 list_move_tail(&page->lru, list);
3582 spin_unlock(&hugetlb_lock);
3583 return true;
3584}
3585
3586void putback_active_hugepage(struct page *page)
3587{
309381fe 3588 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3589 spin_lock(&hugetlb_lock);
3590 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3591 spin_unlock(&hugetlb_lock);
3592 put_page(page);
3593}
c8721bbb
NH
3594
3595bool is_hugepage_active(struct page *page)
3596{
309381fe 3597 VM_BUG_ON_PAGE(!PageHuge(page), page);
c8721bbb
NH
3598 /*
3599 * This function can be called for a tail page because the caller,
3600 * scan_movable_pages, scans through a given pfn-range which typically
3601 * covers one memory block. In systems using gigantic hugepage (1GB
3602 * for x86_64,) a hugepage is larger than a memory block, and we don't
3603 * support migrating such large hugepages for now, so return false
3604 * when called for tail pages.
3605 */
3606 if (PageTail(page))
3607 return false;
3608 /*
3609 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3610 * so we should return false for them.
3611 */
3612 if (unlikely(PageHWPoison(page)))
3613 return false;
3614 return page_count(page) > 0;
3615}