]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
mm/memplicy: add page allocation function for MPOL_PREFERRED_MANY policy
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
8cc5fcbb 33#include <linux/migrate.h>
d6606683 34
63551ae0 35#include <asm/page.h>
ca15ca40 36#include <asm/pgalloc.h>
24669e58 37#include <asm/tlb.h>
63551ae0 38
24669e58 39#include <linux/io.h>
63551ae0 40#include <linux/hugetlb.h>
9dd540e2 41#include <linux/hugetlb_cgroup.h>
9a305230 42#include <linux/node.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
f41f2ed4 45#include "hugetlb_vmemmap.h"
1da177e4 46
c3f38a38 47int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
48unsigned int default_hstate_idx;
49struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 50
dbda8fea 51#ifdef CONFIG_CMA
cf11e85f 52static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
53#endif
54static unsigned long hugetlb_cma_size __initdata;
cf11e85f 55
641844f5
NH
56/*
57 * Minimum page order among possible hugepage sizes, set to a proper value
58 * at boot time.
59 */
60static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 61
53ba51d2
JT
62__initdata LIST_HEAD(huge_boot_pages);
63
e5ff2159
AK
64/* for command line parsing */
65static struct hstate * __initdata parsed_hstate;
66static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 67static bool __initdata parsed_valid_hugepagesz = true;
282f4214 68static bool __initdata parsed_default_hugepagesz;
e5ff2159 69
3935baa9 70/*
31caf665
NH
71 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72 * free_huge_pages, and surplus_huge_pages.
3935baa9 73 */
c3f38a38 74DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 75
8382d914
DB
76/*
77 * Serializes faults on the same logical page. This is used to
78 * prevent spurious OOMs when the hugepage pool is fully utilized.
79 */
80static int num_fault_mutexes;
c672c7f2 81struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 82
7ca02d0a
MK
83/* Forward declaration */
84static int hugetlb_acct_memory(struct hstate *h, long delta);
85
1d88433b 86static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 87{
1d88433b
ML
88 if (spool->count)
89 return false;
90 if (spool->max_hpages != -1)
91 return spool->used_hpages == 0;
92 if (spool->min_hpages != -1)
93 return spool->rsv_hpages == spool->min_hpages;
94
95 return true;
96}
90481622 97
db71ef79
MK
98static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
99 unsigned long irq_flags)
1d88433b 100{
db71ef79 101 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
102
103 /* If no pages are used, and no other handles to the subpool
7c8de358 104 * remain, give up any reservations based on minimum size and
7ca02d0a 105 * free the subpool */
1d88433b 106 if (subpool_is_free(spool)) {
7ca02d0a
MK
107 if (spool->min_hpages != -1)
108 hugetlb_acct_memory(spool->hstate,
109 -spool->min_hpages);
90481622 110 kfree(spool);
7ca02d0a 111 }
90481622
DG
112}
113
7ca02d0a
MK
114struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
115 long min_hpages)
90481622
DG
116{
117 struct hugepage_subpool *spool;
118
c6a91820 119 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
120 if (!spool)
121 return NULL;
122
123 spin_lock_init(&spool->lock);
124 spool->count = 1;
7ca02d0a
MK
125 spool->max_hpages = max_hpages;
126 spool->hstate = h;
127 spool->min_hpages = min_hpages;
128
129 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
130 kfree(spool);
131 return NULL;
132 }
133 spool->rsv_hpages = min_hpages;
90481622
DG
134
135 return spool;
136}
137
138void hugepage_put_subpool(struct hugepage_subpool *spool)
139{
db71ef79
MK
140 unsigned long flags;
141
142 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
143 BUG_ON(!spool->count);
144 spool->count--;
db71ef79 145 unlock_or_release_subpool(spool, flags);
90481622
DG
146}
147
1c5ecae3
MK
148/*
149 * Subpool accounting for allocating and reserving pages.
150 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 151 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
152 * global pools must be adjusted (upward). The returned value may
153 * only be different than the passed value (delta) in the case where
7c8de358 154 * a subpool minimum size must be maintained.
1c5ecae3
MK
155 */
156static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
157 long delta)
158{
1c5ecae3 159 long ret = delta;
90481622
DG
160
161 if (!spool)
1c5ecae3 162 return ret;
90481622 163
db71ef79 164 spin_lock_irq(&spool->lock);
1c5ecae3
MK
165
166 if (spool->max_hpages != -1) { /* maximum size accounting */
167 if ((spool->used_hpages + delta) <= spool->max_hpages)
168 spool->used_hpages += delta;
169 else {
170 ret = -ENOMEM;
171 goto unlock_ret;
172 }
90481622 173 }
90481622 174
09a95e29
MK
175 /* minimum size accounting */
176 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
177 if (delta > spool->rsv_hpages) {
178 /*
179 * Asking for more reserves than those already taken on
180 * behalf of subpool. Return difference.
181 */
182 ret = delta - spool->rsv_hpages;
183 spool->rsv_hpages = 0;
184 } else {
185 ret = 0; /* reserves already accounted for */
186 spool->rsv_hpages -= delta;
187 }
188 }
189
190unlock_ret:
db71ef79 191 spin_unlock_irq(&spool->lock);
90481622
DG
192 return ret;
193}
194
1c5ecae3
MK
195/*
196 * Subpool accounting for freeing and unreserving pages.
197 * Return the number of global page reservations that must be dropped.
198 * The return value may only be different than the passed value (delta)
199 * in the case where a subpool minimum size must be maintained.
200 */
201static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
202 long delta)
203{
1c5ecae3 204 long ret = delta;
db71ef79 205 unsigned long flags;
1c5ecae3 206
90481622 207 if (!spool)
1c5ecae3 208 return delta;
90481622 209
db71ef79 210 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
211
212 if (spool->max_hpages != -1) /* maximum size accounting */
213 spool->used_hpages -= delta;
214
09a95e29
MK
215 /* minimum size accounting */
216 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
217 if (spool->rsv_hpages + delta <= spool->min_hpages)
218 ret = 0;
219 else
220 ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222 spool->rsv_hpages += delta;
223 if (spool->rsv_hpages > spool->min_hpages)
224 spool->rsv_hpages = spool->min_hpages;
225 }
226
227 /*
228 * If hugetlbfs_put_super couldn't free spool due to an outstanding
229 * quota reference, free it now.
230 */
db71ef79 231 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
232
233 return ret;
90481622
DG
234}
235
236static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237{
238 return HUGETLBFS_SB(inode->i_sb)->spool;
239}
240
241static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242{
496ad9aa 243 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
244}
245
0db9d74e
MA
246/* Helper that removes a struct file_region from the resv_map cache and returns
247 * it for use.
248 */
249static struct file_region *
250get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251{
252 struct file_region *nrg = NULL;
253
254 VM_BUG_ON(resv->region_cache_count <= 0);
255
256 resv->region_cache_count--;
257 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
258 list_del(&nrg->link);
259
260 nrg->from = from;
261 nrg->to = to;
262
263 return nrg;
264}
265
075a61d0
MA
266static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267 struct file_region *rg)
268{
269#ifdef CONFIG_CGROUP_HUGETLB
270 nrg->reservation_counter = rg->reservation_counter;
271 nrg->css = rg->css;
272 if (rg->css)
273 css_get(rg->css);
274#endif
275}
276
277/* Helper that records hugetlb_cgroup uncharge info. */
278static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279 struct hstate *h,
280 struct resv_map *resv,
281 struct file_region *nrg)
282{
283#ifdef CONFIG_CGROUP_HUGETLB
284 if (h_cg) {
285 nrg->reservation_counter =
286 &h_cg->rsvd_hugepage[hstate_index(h)];
287 nrg->css = &h_cg->css;
d85aecf2
ML
288 /*
289 * The caller will hold exactly one h_cg->css reference for the
290 * whole contiguous reservation region. But this area might be
291 * scattered when there are already some file_regions reside in
292 * it. As a result, many file_regions may share only one css
293 * reference. In order to ensure that one file_region must hold
294 * exactly one h_cg->css reference, we should do css_get for
295 * each file_region and leave the reference held by caller
296 * untouched.
297 */
298 css_get(&h_cg->css);
075a61d0
MA
299 if (!resv->pages_per_hpage)
300 resv->pages_per_hpage = pages_per_huge_page(h);
301 /* pages_per_hpage should be the same for all entries in
302 * a resv_map.
303 */
304 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305 } else {
306 nrg->reservation_counter = NULL;
307 nrg->css = NULL;
308 }
309#endif
310}
311
d85aecf2
ML
312static void put_uncharge_info(struct file_region *rg)
313{
314#ifdef CONFIG_CGROUP_HUGETLB
315 if (rg->css)
316 css_put(rg->css);
317#endif
318}
319
a9b3f867
MA
320static bool has_same_uncharge_info(struct file_region *rg,
321 struct file_region *org)
322{
323#ifdef CONFIG_CGROUP_HUGETLB
324 return rg && org &&
325 rg->reservation_counter == org->reservation_counter &&
326 rg->css == org->css;
327
328#else
329 return true;
330#endif
331}
332
333static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334{
335 struct file_region *nrg = NULL, *prg = NULL;
336
337 prg = list_prev_entry(rg, link);
338 if (&prg->link != &resv->regions && prg->to == rg->from &&
339 has_same_uncharge_info(prg, rg)) {
340 prg->to = rg->to;
341
342 list_del(&rg->link);
d85aecf2 343 put_uncharge_info(rg);
a9b3f867
MA
344 kfree(rg);
345
7db5e7b6 346 rg = prg;
a9b3f867
MA
347 }
348
349 nrg = list_next_entry(rg, link);
350 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351 has_same_uncharge_info(nrg, rg)) {
352 nrg->from = rg->from;
353
354 list_del(&rg->link);
d85aecf2 355 put_uncharge_info(rg);
a9b3f867 356 kfree(rg);
a9b3f867
MA
357 }
358}
359
2103cf9c
PX
360static inline long
361hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
362 long to, struct hstate *h, struct hugetlb_cgroup *cg,
363 long *regions_needed)
364{
365 struct file_region *nrg;
366
367 if (!regions_needed) {
368 nrg = get_file_region_entry_from_cache(map, from, to);
369 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
370 list_add(&nrg->link, rg->link.prev);
371 coalesce_file_region(map, nrg);
372 } else
373 *regions_needed += 1;
374
375 return to - from;
376}
377
972a3da3
WY
378/*
379 * Must be called with resv->lock held.
380 *
381 * Calling this with regions_needed != NULL will count the number of pages
382 * to be added but will not modify the linked list. And regions_needed will
383 * indicate the number of file_regions needed in the cache to carry out to add
384 * the regions for this range.
d75c6af9
MA
385 */
386static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 387 struct hugetlb_cgroup *h_cg,
972a3da3 388 struct hstate *h, long *regions_needed)
d75c6af9 389{
0db9d74e 390 long add = 0;
d75c6af9 391 struct list_head *head = &resv->regions;
0db9d74e 392 long last_accounted_offset = f;
2103cf9c 393 struct file_region *rg = NULL, *trg = NULL;
d75c6af9 394
0db9d74e
MA
395 if (regions_needed)
396 *regions_needed = 0;
d75c6af9 397
0db9d74e
MA
398 /* In this loop, we essentially handle an entry for the range
399 * [last_accounted_offset, rg->from), at every iteration, with some
400 * bounds checking.
401 */
402 list_for_each_entry_safe(rg, trg, head, link) {
403 /* Skip irrelevant regions that start before our range. */
404 if (rg->from < f) {
405 /* If this region ends after the last accounted offset,
406 * then we need to update last_accounted_offset.
407 */
408 if (rg->to > last_accounted_offset)
409 last_accounted_offset = rg->to;
410 continue;
411 }
d75c6af9 412
0db9d74e
MA
413 /* When we find a region that starts beyond our range, we've
414 * finished.
415 */
ca7e0457 416 if (rg->from >= t)
d75c6af9
MA
417 break;
418
0db9d74e
MA
419 /* Add an entry for last_accounted_offset -> rg->from, and
420 * update last_accounted_offset.
421 */
2103cf9c
PX
422 if (rg->from > last_accounted_offset)
423 add += hugetlb_resv_map_add(resv, rg,
424 last_accounted_offset,
425 rg->from, h, h_cg,
426 regions_needed);
0db9d74e
MA
427
428 last_accounted_offset = rg->to;
429 }
430
431 /* Handle the case where our range extends beyond
432 * last_accounted_offset.
433 */
2103cf9c
PX
434 if (last_accounted_offset < t)
435 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
436 t, h, h_cg, regions_needed);
0db9d74e
MA
437
438 VM_BUG_ON(add < 0);
439 return add;
440}
441
442/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
443 */
444static int allocate_file_region_entries(struct resv_map *resv,
445 int regions_needed)
446 __must_hold(&resv->lock)
447{
448 struct list_head allocated_regions;
449 int to_allocate = 0, i = 0;
450 struct file_region *trg = NULL, *rg = NULL;
451
452 VM_BUG_ON(regions_needed < 0);
453
454 INIT_LIST_HEAD(&allocated_regions);
455
456 /*
457 * Check for sufficient descriptors in the cache to accommodate
458 * the number of in progress add operations plus regions_needed.
459 *
460 * This is a while loop because when we drop the lock, some other call
461 * to region_add or region_del may have consumed some region_entries,
462 * so we keep looping here until we finally have enough entries for
463 * (adds_in_progress + regions_needed).
464 */
465 while (resv->region_cache_count <
466 (resv->adds_in_progress + regions_needed)) {
467 to_allocate = resv->adds_in_progress + regions_needed -
468 resv->region_cache_count;
469
470 /* At this point, we should have enough entries in the cache
f0953a1b 471 * for all the existing adds_in_progress. We should only be
0db9d74e 472 * needing to allocate for regions_needed.
d75c6af9 473 */
0db9d74e
MA
474 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
475
476 spin_unlock(&resv->lock);
477 for (i = 0; i < to_allocate; i++) {
478 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
479 if (!trg)
480 goto out_of_memory;
481 list_add(&trg->link, &allocated_regions);
d75c6af9 482 }
d75c6af9 483
0db9d74e
MA
484 spin_lock(&resv->lock);
485
d3ec7b6e
WY
486 list_splice(&allocated_regions, &resv->region_cache);
487 resv->region_cache_count += to_allocate;
d75c6af9
MA
488 }
489
0db9d74e 490 return 0;
d75c6af9 491
0db9d74e
MA
492out_of_memory:
493 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
494 list_del(&rg->link);
495 kfree(rg);
496 }
497 return -ENOMEM;
d75c6af9
MA
498}
499
1dd308a7
MK
500/*
501 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
502 * map. Regions will be taken from the cache to fill in this range.
503 * Sufficient regions should exist in the cache due to the previous
504 * call to region_chg with the same range, but in some cases the cache will not
505 * have sufficient entries due to races with other code doing region_add or
506 * region_del. The extra needed entries will be allocated.
cf3ad20b 507 *
0db9d74e
MA
508 * regions_needed is the out value provided by a previous call to region_chg.
509 *
510 * Return the number of new huge pages added to the map. This number is greater
511 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 512 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
513 * region_add of regions of length 1 never allocate file_regions and cannot
514 * fail; region_chg will always allocate at least 1 entry and a region_add for
515 * 1 page will only require at most 1 entry.
1dd308a7 516 */
0db9d74e 517static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
518 long in_regions_needed, struct hstate *h,
519 struct hugetlb_cgroup *h_cg)
96822904 520{
0db9d74e 521 long add = 0, actual_regions_needed = 0;
96822904 522
7b24d861 523 spin_lock(&resv->lock);
0db9d74e
MA
524retry:
525
526 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
527 add_reservation_in_range(resv, f, t, NULL, NULL,
528 &actual_regions_needed);
96822904 529
5e911373 530 /*
0db9d74e
MA
531 * Check for sufficient descriptors in the cache to accommodate
532 * this add operation. Note that actual_regions_needed may be greater
533 * than in_regions_needed, as the resv_map may have been modified since
534 * the region_chg call. In this case, we need to make sure that we
535 * allocate extra entries, such that we have enough for all the
536 * existing adds_in_progress, plus the excess needed for this
537 * operation.
5e911373 538 */
0db9d74e
MA
539 if (actual_regions_needed > in_regions_needed &&
540 resv->region_cache_count <
541 resv->adds_in_progress +
542 (actual_regions_needed - in_regions_needed)) {
543 /* region_add operation of range 1 should never need to
544 * allocate file_region entries.
545 */
546 VM_BUG_ON(t - f <= 1);
5e911373 547
0db9d74e
MA
548 if (allocate_file_region_entries(
549 resv, actual_regions_needed - in_regions_needed)) {
550 return -ENOMEM;
551 }
5e911373 552
0db9d74e 553 goto retry;
5e911373
MK
554 }
555
972a3da3 556 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
557
558 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 559
7b24d861 560 spin_unlock(&resv->lock);
cf3ad20b 561 return add;
96822904
AW
562}
563
1dd308a7
MK
564/*
565 * Examine the existing reserve map and determine how many
566 * huge pages in the specified range [f, t) are NOT currently
567 * represented. This routine is called before a subsequent
568 * call to region_add that will actually modify the reserve
569 * map to add the specified range [f, t). region_chg does
570 * not change the number of huge pages represented by the
0db9d74e
MA
571 * map. A number of new file_region structures is added to the cache as a
572 * placeholder, for the subsequent region_add call to use. At least 1
573 * file_region structure is added.
574 *
575 * out_regions_needed is the number of regions added to the
576 * resv->adds_in_progress. This value needs to be provided to a follow up call
577 * to region_add or region_abort for proper accounting.
5e911373
MK
578 *
579 * Returns the number of huge pages that need to be added to the existing
580 * reservation map for the range [f, t). This number is greater or equal to
581 * zero. -ENOMEM is returned if a new file_region structure or cache entry
582 * is needed and can not be allocated.
1dd308a7 583 */
0db9d74e
MA
584static long region_chg(struct resv_map *resv, long f, long t,
585 long *out_regions_needed)
96822904 586{
96822904
AW
587 long chg = 0;
588
7b24d861 589 spin_lock(&resv->lock);
5e911373 590
972a3da3 591 /* Count how many hugepages in this range are NOT represented. */
075a61d0 592 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 593 out_regions_needed);
5e911373 594
0db9d74e
MA
595 if (*out_regions_needed == 0)
596 *out_regions_needed = 1;
5e911373 597
0db9d74e
MA
598 if (allocate_file_region_entries(resv, *out_regions_needed))
599 return -ENOMEM;
5e911373 600
0db9d74e 601 resv->adds_in_progress += *out_regions_needed;
7b24d861 602
7b24d861 603 spin_unlock(&resv->lock);
96822904
AW
604 return chg;
605}
606
5e911373
MK
607/*
608 * Abort the in progress add operation. The adds_in_progress field
609 * of the resv_map keeps track of the operations in progress between
610 * calls to region_chg and region_add. Operations are sometimes
611 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
612 * is called to decrement the adds_in_progress counter. regions_needed
613 * is the value returned by the region_chg call, it is used to decrement
614 * the adds_in_progress counter.
5e911373
MK
615 *
616 * NOTE: The range arguments [f, t) are not needed or used in this
617 * routine. They are kept to make reading the calling code easier as
618 * arguments will match the associated region_chg call.
619 */
0db9d74e
MA
620static void region_abort(struct resv_map *resv, long f, long t,
621 long regions_needed)
5e911373
MK
622{
623 spin_lock(&resv->lock);
624 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 625 resv->adds_in_progress -= regions_needed;
5e911373
MK
626 spin_unlock(&resv->lock);
627}
628
1dd308a7 629/*
feba16e2
MK
630 * Delete the specified range [f, t) from the reserve map. If the
631 * t parameter is LONG_MAX, this indicates that ALL regions after f
632 * should be deleted. Locate the regions which intersect [f, t)
633 * and either trim, delete or split the existing regions.
634 *
635 * Returns the number of huge pages deleted from the reserve map.
636 * In the normal case, the return value is zero or more. In the
637 * case where a region must be split, a new region descriptor must
638 * be allocated. If the allocation fails, -ENOMEM will be returned.
639 * NOTE: If the parameter t == LONG_MAX, then we will never split
640 * a region and possibly return -ENOMEM. Callers specifying
641 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 642 */
feba16e2 643static long region_del(struct resv_map *resv, long f, long t)
96822904 644{
1406ec9b 645 struct list_head *head = &resv->regions;
96822904 646 struct file_region *rg, *trg;
feba16e2
MK
647 struct file_region *nrg = NULL;
648 long del = 0;
96822904 649
feba16e2 650retry:
7b24d861 651 spin_lock(&resv->lock);
feba16e2 652 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
653 /*
654 * Skip regions before the range to be deleted. file_region
655 * ranges are normally of the form [from, to). However, there
656 * may be a "placeholder" entry in the map which is of the form
657 * (from, to) with from == to. Check for placeholder entries
658 * at the beginning of the range to be deleted.
659 */
660 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 661 continue;
dbe409e4 662
feba16e2 663 if (rg->from >= t)
96822904 664 break;
96822904 665
feba16e2
MK
666 if (f > rg->from && t < rg->to) { /* Must split region */
667 /*
668 * Check for an entry in the cache before dropping
669 * lock and attempting allocation.
670 */
671 if (!nrg &&
672 resv->region_cache_count > resv->adds_in_progress) {
673 nrg = list_first_entry(&resv->region_cache,
674 struct file_region,
675 link);
676 list_del(&nrg->link);
677 resv->region_cache_count--;
678 }
96822904 679
feba16e2
MK
680 if (!nrg) {
681 spin_unlock(&resv->lock);
682 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
683 if (!nrg)
684 return -ENOMEM;
685 goto retry;
686 }
687
688 del += t - f;
79aa925b 689 hugetlb_cgroup_uncharge_file_region(
d85aecf2 690 resv, rg, t - f, false);
feba16e2
MK
691
692 /* New entry for end of split region */
693 nrg->from = t;
694 nrg->to = rg->to;
075a61d0
MA
695
696 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
697
feba16e2
MK
698 INIT_LIST_HEAD(&nrg->link);
699
700 /* Original entry is trimmed */
701 rg->to = f;
702
703 list_add(&nrg->link, &rg->link);
704 nrg = NULL;
96822904 705 break;
feba16e2
MK
706 }
707
708 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
709 del += rg->to - rg->from;
075a61d0 710 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 711 rg->to - rg->from, true);
feba16e2
MK
712 list_del(&rg->link);
713 kfree(rg);
714 continue;
715 }
716
717 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 718 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 719 t - rg->from, false);
075a61d0 720
79aa925b
MK
721 del += t - rg->from;
722 rg->from = t;
723 } else { /* Trim end of region */
075a61d0 724 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 725 rg->to - f, false);
79aa925b
MK
726
727 del += rg->to - f;
728 rg->to = f;
feba16e2 729 }
96822904 730 }
7b24d861 731
7b24d861 732 spin_unlock(&resv->lock);
feba16e2
MK
733 kfree(nrg);
734 return del;
96822904
AW
735}
736
b5cec28d
MK
737/*
738 * A rare out of memory error was encountered which prevented removal of
739 * the reserve map region for a page. The huge page itself was free'ed
740 * and removed from the page cache. This routine will adjust the subpool
741 * usage count, and the global reserve count if needed. By incrementing
742 * these counts, the reserve map entry which could not be deleted will
743 * appear as a "reserved" entry instead of simply dangling with incorrect
744 * counts.
745 */
72e2936c 746void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
747{
748 struct hugepage_subpool *spool = subpool_inode(inode);
749 long rsv_adjust;
da56388c 750 bool reserved = false;
b5cec28d
MK
751
752 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 753 if (rsv_adjust > 0) {
b5cec28d
MK
754 struct hstate *h = hstate_inode(inode);
755
da56388c
ML
756 if (!hugetlb_acct_memory(h, 1))
757 reserved = true;
758 } else if (!rsv_adjust) {
759 reserved = true;
b5cec28d 760 }
da56388c
ML
761
762 if (!reserved)
763 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
764}
765
1dd308a7
MK
766/*
767 * Count and return the number of huge pages in the reserve map
768 * that intersect with the range [f, t).
769 */
1406ec9b 770static long region_count(struct resv_map *resv, long f, long t)
84afd99b 771{
1406ec9b 772 struct list_head *head = &resv->regions;
84afd99b
AW
773 struct file_region *rg;
774 long chg = 0;
775
7b24d861 776 spin_lock(&resv->lock);
84afd99b
AW
777 /* Locate each segment we overlap with, and count that overlap. */
778 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
779 long seg_from;
780 long seg_to;
84afd99b
AW
781
782 if (rg->to <= f)
783 continue;
784 if (rg->from >= t)
785 break;
786
787 seg_from = max(rg->from, f);
788 seg_to = min(rg->to, t);
789
790 chg += seg_to - seg_from;
791 }
7b24d861 792 spin_unlock(&resv->lock);
84afd99b
AW
793
794 return chg;
795}
796
e7c4b0bf
AW
797/*
798 * Convert the address within this vma to the page offset within
799 * the mapping, in pagecache page units; huge pages here.
800 */
a5516438
AK
801static pgoff_t vma_hugecache_offset(struct hstate *h,
802 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 803{
a5516438
AK
804 return ((address - vma->vm_start) >> huge_page_shift(h)) +
805 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
806}
807
0fe6e20b
NH
808pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
809 unsigned long address)
810{
811 return vma_hugecache_offset(hstate_vma(vma), vma, address);
812}
dee41079 813EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 814
08fba699
MG
815/*
816 * Return the size of the pages allocated when backing a VMA. In the majority
817 * cases this will be same size as used by the page table entries.
818 */
819unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
820{
05ea8860
DW
821 if (vma->vm_ops && vma->vm_ops->pagesize)
822 return vma->vm_ops->pagesize(vma);
823 return PAGE_SIZE;
08fba699 824}
f340ca0f 825EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 826
3340289d
MG
827/*
828 * Return the page size being used by the MMU to back a VMA. In the majority
829 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
830 * architectures where it differs, an architecture-specific 'strong'
831 * version of this symbol is required.
3340289d 832 */
09135cc5 833__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
834{
835 return vma_kernel_pagesize(vma);
836}
3340289d 837
84afd99b
AW
838/*
839 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
840 * bits of the reservation map pointer, which are always clear due to
841 * alignment.
842 */
843#define HPAGE_RESV_OWNER (1UL << 0)
844#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 845#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 846
a1e78772
MG
847/*
848 * These helpers are used to track how many pages are reserved for
849 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
850 * is guaranteed to have their future faults succeed.
851 *
852 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
853 * the reserve counters are updated with the hugetlb_lock held. It is safe
854 * to reset the VMA at fork() time as it is not in use yet and there is no
855 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
856 *
857 * The private mapping reservation is represented in a subtly different
858 * manner to a shared mapping. A shared mapping has a region map associated
859 * with the underlying file, this region map represents the backing file
860 * pages which have ever had a reservation assigned which this persists even
861 * after the page is instantiated. A private mapping has a region map
862 * associated with the original mmap which is attached to all VMAs which
863 * reference it, this region map represents those offsets which have consumed
864 * reservation ie. where pages have been instantiated.
a1e78772 865 */
e7c4b0bf
AW
866static unsigned long get_vma_private_data(struct vm_area_struct *vma)
867{
868 return (unsigned long)vma->vm_private_data;
869}
870
871static void set_vma_private_data(struct vm_area_struct *vma,
872 unsigned long value)
873{
874 vma->vm_private_data = (void *)value;
875}
876
e9fe92ae
MA
877static void
878resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
879 struct hugetlb_cgroup *h_cg,
880 struct hstate *h)
881{
882#ifdef CONFIG_CGROUP_HUGETLB
883 if (!h_cg || !h) {
884 resv_map->reservation_counter = NULL;
885 resv_map->pages_per_hpage = 0;
886 resv_map->css = NULL;
887 } else {
888 resv_map->reservation_counter =
889 &h_cg->rsvd_hugepage[hstate_index(h)];
890 resv_map->pages_per_hpage = pages_per_huge_page(h);
891 resv_map->css = &h_cg->css;
892 }
893#endif
894}
895
9119a41e 896struct resv_map *resv_map_alloc(void)
84afd99b
AW
897{
898 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
899 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
900
901 if (!resv_map || !rg) {
902 kfree(resv_map);
903 kfree(rg);
84afd99b 904 return NULL;
5e911373 905 }
84afd99b
AW
906
907 kref_init(&resv_map->refs);
7b24d861 908 spin_lock_init(&resv_map->lock);
84afd99b
AW
909 INIT_LIST_HEAD(&resv_map->regions);
910
5e911373 911 resv_map->adds_in_progress = 0;
e9fe92ae
MA
912 /*
913 * Initialize these to 0. On shared mappings, 0's here indicate these
914 * fields don't do cgroup accounting. On private mappings, these will be
915 * re-initialized to the proper values, to indicate that hugetlb cgroup
916 * reservations are to be un-charged from here.
917 */
918 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
919
920 INIT_LIST_HEAD(&resv_map->region_cache);
921 list_add(&rg->link, &resv_map->region_cache);
922 resv_map->region_cache_count = 1;
923
84afd99b
AW
924 return resv_map;
925}
926
9119a41e 927void resv_map_release(struct kref *ref)
84afd99b
AW
928{
929 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
930 struct list_head *head = &resv_map->region_cache;
931 struct file_region *rg, *trg;
84afd99b
AW
932
933 /* Clear out any active regions before we release the map. */
feba16e2 934 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
935
936 /* ... and any entries left in the cache */
937 list_for_each_entry_safe(rg, trg, head, link) {
938 list_del(&rg->link);
939 kfree(rg);
940 }
941
942 VM_BUG_ON(resv_map->adds_in_progress);
943
84afd99b
AW
944 kfree(resv_map);
945}
946
4e35f483
JK
947static inline struct resv_map *inode_resv_map(struct inode *inode)
948{
f27a5136
MK
949 /*
950 * At inode evict time, i_mapping may not point to the original
951 * address space within the inode. This original address space
952 * contains the pointer to the resv_map. So, always use the
953 * address space embedded within the inode.
954 * The VERY common case is inode->mapping == &inode->i_data but,
955 * this may not be true for device special inodes.
956 */
957 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
958}
959
84afd99b 960static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 961{
81d1b09c 962 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
963 if (vma->vm_flags & VM_MAYSHARE) {
964 struct address_space *mapping = vma->vm_file->f_mapping;
965 struct inode *inode = mapping->host;
966
967 return inode_resv_map(inode);
968
969 } else {
84afd99b
AW
970 return (struct resv_map *)(get_vma_private_data(vma) &
971 ~HPAGE_RESV_MASK);
4e35f483 972 }
a1e78772
MG
973}
974
84afd99b 975static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 976{
81d1b09c
SL
977 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
978 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 979
84afd99b
AW
980 set_vma_private_data(vma, (get_vma_private_data(vma) &
981 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
982}
983
984static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
985{
81d1b09c
SL
986 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
987 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
988
989 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
990}
991
992static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
993{
81d1b09c 994 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
995
996 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
997}
998
04f2cbe3 999/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
1000void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1001{
81d1b09c 1002 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 1003 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
1004 vma->vm_private_data = (void *)0;
1005}
1006
1007/* Returns true if the VMA has associated reserve pages */
559ec2f8 1008static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1009{
af0ed73e
JK
1010 if (vma->vm_flags & VM_NORESERVE) {
1011 /*
1012 * This address is already reserved by other process(chg == 0),
1013 * so, we should decrement reserved count. Without decrementing,
1014 * reserve count remains after releasing inode, because this
1015 * allocated page will go into page cache and is regarded as
1016 * coming from reserved pool in releasing step. Currently, we
1017 * don't have any other solution to deal with this situation
1018 * properly, so add work-around here.
1019 */
1020 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1021 return true;
af0ed73e 1022 else
559ec2f8 1023 return false;
af0ed73e 1024 }
a63884e9
JK
1025
1026 /* Shared mappings always use reserves */
1fb1b0e9
MK
1027 if (vma->vm_flags & VM_MAYSHARE) {
1028 /*
1029 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1030 * be a region map for all pages. The only situation where
1031 * there is no region map is if a hole was punched via
7c8de358 1032 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1033 * use. This situation is indicated if chg != 0.
1034 */
1035 if (chg)
1036 return false;
1037 else
1038 return true;
1039 }
a63884e9
JK
1040
1041 /*
1042 * Only the process that called mmap() has reserves for
1043 * private mappings.
1044 */
67961f9d
MK
1045 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1046 /*
1047 * Like the shared case above, a hole punch or truncate
1048 * could have been performed on the private mapping.
1049 * Examine the value of chg to determine if reserves
1050 * actually exist or were previously consumed.
1051 * Very Subtle - The value of chg comes from a previous
1052 * call to vma_needs_reserves(). The reserve map for
1053 * private mappings has different (opposite) semantics
1054 * than that of shared mappings. vma_needs_reserves()
1055 * has already taken this difference in semantics into
1056 * account. Therefore, the meaning of chg is the same
1057 * as in the shared case above. Code could easily be
1058 * combined, but keeping it separate draws attention to
1059 * subtle differences.
1060 */
1061 if (chg)
1062 return false;
1063 else
1064 return true;
1065 }
a63884e9 1066
559ec2f8 1067 return false;
a1e78772
MG
1068}
1069
a5516438 1070static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1071{
1072 int nid = page_to_nid(page);
9487ca60
MK
1073
1074 lockdep_assert_held(&hugetlb_lock);
b65a4eda
MK
1075 VM_BUG_ON_PAGE(page_count(page), page);
1076
0edaecfa 1077 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1078 h->free_huge_pages++;
1079 h->free_huge_pages_node[nid]++;
6c037149 1080 SetHPageFreed(page);
1da177e4
LT
1081}
1082
94310cbc 1083static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1084{
1085 struct page *page;
1a08ae36 1086 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1087
9487ca60 1088 lockdep_assert_held(&hugetlb_lock);
bbe88753 1089 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
8e3560d9 1090 if (pin && !is_pinnable_page(page))
bbe88753 1091 continue;
bf50bab2 1092
6664bfc8
WY
1093 if (PageHWPoison(page))
1094 continue;
1095
1096 list_move(&page->lru, &h->hugepage_activelist);
1097 set_page_refcounted(page);
6c037149 1098 ClearHPageFreed(page);
6664bfc8
WY
1099 h->free_huge_pages--;
1100 h->free_huge_pages_node[nid]--;
1101 return page;
bbe88753
JK
1102 }
1103
6664bfc8 1104 return NULL;
bf50bab2
NH
1105}
1106
3e59fcb0
MH
1107static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1108 nodemask_t *nmask)
94310cbc 1109{
3e59fcb0
MH
1110 unsigned int cpuset_mems_cookie;
1111 struct zonelist *zonelist;
1112 struct zone *zone;
1113 struct zoneref *z;
98fa15f3 1114 int node = NUMA_NO_NODE;
94310cbc 1115
3e59fcb0
MH
1116 zonelist = node_zonelist(nid, gfp_mask);
1117
1118retry_cpuset:
1119 cpuset_mems_cookie = read_mems_allowed_begin();
1120 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1121 struct page *page;
1122
1123 if (!cpuset_zone_allowed(zone, gfp_mask))
1124 continue;
1125 /*
1126 * no need to ask again on the same node. Pool is node rather than
1127 * zone aware
1128 */
1129 if (zone_to_nid(zone) == node)
1130 continue;
1131 node = zone_to_nid(zone);
94310cbc 1132
94310cbc
AK
1133 page = dequeue_huge_page_node_exact(h, node);
1134 if (page)
1135 return page;
1136 }
3e59fcb0
MH
1137 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1138 goto retry_cpuset;
1139
94310cbc
AK
1140 return NULL;
1141}
1142
a5516438
AK
1143static struct page *dequeue_huge_page_vma(struct hstate *h,
1144 struct vm_area_struct *vma,
af0ed73e
JK
1145 unsigned long address, int avoid_reserve,
1146 long chg)
1da177e4 1147{
3e59fcb0 1148 struct page *page;
480eccf9 1149 struct mempolicy *mpol;
04ec6264 1150 gfp_t gfp_mask;
3e59fcb0 1151 nodemask_t *nodemask;
04ec6264 1152 int nid;
1da177e4 1153
a1e78772
MG
1154 /*
1155 * A child process with MAP_PRIVATE mappings created by their parent
1156 * have no page reserves. This check ensures that reservations are
1157 * not "stolen". The child may still get SIGKILLed
1158 */
af0ed73e 1159 if (!vma_has_reserves(vma, chg) &&
a5516438 1160 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1161 goto err;
a1e78772 1162
04f2cbe3 1163 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1164 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1165 goto err;
04f2cbe3 1166
04ec6264
VB
1167 gfp_mask = htlb_alloc_mask(h);
1168 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1169 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1170 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1171 SetHPageRestoreReserve(page);
3e59fcb0 1172 h->resv_huge_pages--;
1da177e4 1173 }
cc9a6c87 1174
52cd3b07 1175 mpol_cond_put(mpol);
1da177e4 1176 return page;
cc9a6c87
MG
1177
1178err:
cc9a6c87 1179 return NULL;
1da177e4
LT
1180}
1181
1cac6f2c
LC
1182/*
1183 * common helper functions for hstate_next_node_to_{alloc|free}.
1184 * We may have allocated or freed a huge page based on a different
1185 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1186 * be outside of *nodes_allowed. Ensure that we use an allowed
1187 * node for alloc or free.
1188 */
1189static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1190{
0edaf86c 1191 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1192 VM_BUG_ON(nid >= MAX_NUMNODES);
1193
1194 return nid;
1195}
1196
1197static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1198{
1199 if (!node_isset(nid, *nodes_allowed))
1200 nid = next_node_allowed(nid, nodes_allowed);
1201 return nid;
1202}
1203
1204/*
1205 * returns the previously saved node ["this node"] from which to
1206 * allocate a persistent huge page for the pool and advance the
1207 * next node from which to allocate, handling wrap at end of node
1208 * mask.
1209 */
1210static int hstate_next_node_to_alloc(struct hstate *h,
1211 nodemask_t *nodes_allowed)
1212{
1213 int nid;
1214
1215 VM_BUG_ON(!nodes_allowed);
1216
1217 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1218 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1219
1220 return nid;
1221}
1222
1223/*
10c6ec49 1224 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1225 * node ["this node"] from which to free a huge page. Advance the
1226 * next node id whether or not we find a free huge page to free so
1227 * that the next attempt to free addresses the next node.
1228 */
1229static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1230{
1231 int nid;
1232
1233 VM_BUG_ON(!nodes_allowed);
1234
1235 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1236 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1237
1238 return nid;
1239}
1240
1241#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1242 for (nr_nodes = nodes_weight(*mask); \
1243 nr_nodes > 0 && \
1244 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1245 nr_nodes--)
1246
1247#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1248 for (nr_nodes = nodes_weight(*mask); \
1249 nr_nodes > 0 && \
1250 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1251 nr_nodes--)
1252
e1073d1e 1253#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1254static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1255 unsigned int order)
944d9fec
LC
1256{
1257 int i;
1258 int nr_pages = 1 << order;
1259 struct page *p = page + 1;
1260
c8cc708a 1261 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1262 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1263
944d9fec 1264 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1265 clear_compound_head(p);
944d9fec 1266 set_page_refcounted(p);
944d9fec
LC
1267 }
1268
1269 set_compound_order(page, 0);
ba9c1201 1270 page[1].compound_nr = 0;
944d9fec
LC
1271 __ClearPageHead(page);
1272}
1273
d00181b9 1274static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1275{
cf11e85f
RG
1276 /*
1277 * If the page isn't allocated using the cma allocator,
1278 * cma_release() returns false.
1279 */
dbda8fea
BS
1280#ifdef CONFIG_CMA
1281 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1282 return;
dbda8fea 1283#endif
cf11e85f 1284
944d9fec
LC
1285 free_contig_range(page_to_pfn(page), 1 << order);
1286}
1287
4eb0716e 1288#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1289static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1290 int nid, nodemask_t *nodemask)
944d9fec 1291{
04adbc3f 1292 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1293 if (nid == NUMA_NO_NODE)
1294 nid = numa_mem_id();
944d9fec 1295
dbda8fea
BS
1296#ifdef CONFIG_CMA
1297 {
cf11e85f
RG
1298 struct page *page;
1299 int node;
1300
953f064a
LX
1301 if (hugetlb_cma[nid]) {
1302 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1303 huge_page_order(h), true);
cf11e85f
RG
1304 if (page)
1305 return page;
1306 }
953f064a
LX
1307
1308 if (!(gfp_mask & __GFP_THISNODE)) {
1309 for_each_node_mask(node, *nodemask) {
1310 if (node == nid || !hugetlb_cma[node])
1311 continue;
1312
1313 page = cma_alloc(hugetlb_cma[node], nr_pages,
1314 huge_page_order(h), true);
1315 if (page)
1316 return page;
1317 }
1318 }
cf11e85f 1319 }
dbda8fea 1320#endif
cf11e85f 1321
5e27a2df 1322 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1323}
1324
4eb0716e
AG
1325#else /* !CONFIG_CONTIG_ALLOC */
1326static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1327 int nid, nodemask_t *nodemask)
1328{
1329 return NULL;
1330}
1331#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1332
e1073d1e 1333#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1334static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1335 int nid, nodemask_t *nodemask)
1336{
1337 return NULL;
1338}
d00181b9 1339static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1340static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1341 unsigned int order) { }
944d9fec
LC
1342#endif
1343
6eb4e88a
MK
1344/*
1345 * Remove hugetlb page from lists, and update dtor so that page appears
1346 * as just a compound page. A reference is held on the page.
1347 *
1348 * Must be called with hugetlb lock held.
1349 */
1350static void remove_hugetlb_page(struct hstate *h, struct page *page,
1351 bool adjust_surplus)
1352{
1353 int nid = page_to_nid(page);
1354
1355 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1356 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1357
9487ca60 1358 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1359 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1360 return;
1361
1362 list_del(&page->lru);
1363
1364 if (HPageFreed(page)) {
1365 h->free_huge_pages--;
1366 h->free_huge_pages_node[nid]--;
1367 }
1368 if (adjust_surplus) {
1369 h->surplus_huge_pages--;
1370 h->surplus_huge_pages_node[nid]--;
1371 }
1372
e32d20c0
MK
1373 /*
1374 * Very subtle
1375 *
1376 * For non-gigantic pages set the destructor to the normal compound
1377 * page dtor. This is needed in case someone takes an additional
1378 * temporary ref to the page, and freeing is delayed until they drop
1379 * their reference.
1380 *
1381 * For gigantic pages set the destructor to the null dtor. This
1382 * destructor will never be called. Before freeing the gigantic
1383 * page destroy_compound_gigantic_page will turn the compound page
1384 * into a simple group of pages. After this the destructor does not
1385 * apply.
1386 *
1387 * This handles the case where more than one ref is held when and
1388 * after update_and_free_page is called.
1389 */
6eb4e88a 1390 set_page_refcounted(page);
e32d20c0
MK
1391 if (hstate_is_gigantic(h))
1392 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1393 else
1394 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
6eb4e88a
MK
1395
1396 h->nr_huge_pages--;
1397 h->nr_huge_pages_node[nid]--;
1398}
1399
ad2fa371
MS
1400static void add_hugetlb_page(struct hstate *h, struct page *page,
1401 bool adjust_surplus)
1402{
1403 int zeroed;
1404 int nid = page_to_nid(page);
1405
1406 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1407
1408 lockdep_assert_held(&hugetlb_lock);
1409
1410 INIT_LIST_HEAD(&page->lru);
1411 h->nr_huge_pages++;
1412 h->nr_huge_pages_node[nid]++;
1413
1414 if (adjust_surplus) {
1415 h->surplus_huge_pages++;
1416 h->surplus_huge_pages_node[nid]++;
1417 }
1418
1419 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1420 set_page_private(page, 0);
1421 SetHPageVmemmapOptimized(page);
1422
1423 /*
b65a4eda
MK
1424 * This page is about to be managed by the hugetlb allocator and
1425 * should have no users. Drop our reference, and check for others
1426 * just in case.
ad2fa371
MS
1427 */
1428 zeroed = put_page_testzero(page);
b65a4eda
MK
1429 if (!zeroed)
1430 /*
1431 * It is VERY unlikely soneone else has taken a ref on
1432 * the page. In this case, we simply return as the
1433 * hugetlb destructor (free_huge_page) will be called
1434 * when this other ref is dropped.
1435 */
1436 return;
1437
ad2fa371
MS
1438 arch_clear_hugepage_flags(page);
1439 enqueue_huge_page(h, page);
1440}
1441
b65d4adb 1442static void __update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1443{
1444 int i;
dbfee5ae 1445 struct page *subpage = page;
a5516438 1446
4eb0716e 1447 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1448 return;
18229df5 1449
ad2fa371
MS
1450 if (alloc_huge_page_vmemmap(h, page)) {
1451 spin_lock_irq(&hugetlb_lock);
1452 /*
1453 * If we cannot allocate vmemmap pages, just refuse to free the
1454 * page and put the page back on the hugetlb free list and treat
1455 * as a surplus page.
1456 */
1457 add_hugetlb_page(h, page, true);
1458 spin_unlock_irq(&hugetlb_lock);
1459 return;
1460 }
1461
dbfee5ae
MK
1462 for (i = 0; i < pages_per_huge_page(h);
1463 i++, subpage = mem_map_next(subpage, page, i)) {
1464 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1465 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1466 1 << PG_active | 1 << PG_private |
1467 1 << PG_writeback);
6af2acb6 1468 }
944d9fec
LC
1469 if (hstate_is_gigantic(h)) {
1470 destroy_compound_gigantic_page(page, huge_page_order(h));
1471 free_gigantic_page(page, huge_page_order(h));
1472 } else {
944d9fec
LC
1473 __free_pages(page, huge_page_order(h));
1474 }
6af2acb6
AL
1475}
1476
b65d4adb
MS
1477/*
1478 * As update_and_free_page() can be called under any context, so we cannot
1479 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1480 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1481 * the vmemmap pages.
1482 *
1483 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1484 * freed and frees them one-by-one. As the page->mapping pointer is going
1485 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1486 * structure of a lockless linked list of huge pages to be freed.
1487 */
1488static LLIST_HEAD(hpage_freelist);
1489
1490static void free_hpage_workfn(struct work_struct *work)
1491{
1492 struct llist_node *node;
1493
1494 node = llist_del_all(&hpage_freelist);
1495
1496 while (node) {
1497 struct page *page;
1498 struct hstate *h;
1499
1500 page = container_of((struct address_space **)node,
1501 struct page, mapping);
1502 node = node->next;
1503 page->mapping = NULL;
1504 /*
1505 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1506 * is going to trigger because a previous call to
1507 * remove_hugetlb_page() will set_compound_page_dtor(page,
1508 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1509 */
1510 h = size_to_hstate(page_size(page));
1511
1512 __update_and_free_page(h, page);
1513
1514 cond_resched();
1515 }
1516}
1517static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1518
1519static inline void flush_free_hpage_work(struct hstate *h)
1520{
1521 if (free_vmemmap_pages_per_hpage(h))
1522 flush_work(&free_hpage_work);
1523}
1524
1525static void update_and_free_page(struct hstate *h, struct page *page,
1526 bool atomic)
1527{
ad2fa371 1528 if (!HPageVmemmapOptimized(page) || !atomic) {
b65d4adb
MS
1529 __update_and_free_page(h, page);
1530 return;
1531 }
1532
1533 /*
1534 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1535 *
1536 * Only call schedule_work() if hpage_freelist is previously
1537 * empty. Otherwise, schedule_work() had been called but the workfn
1538 * hasn't retrieved the list yet.
1539 */
1540 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1541 schedule_work(&free_hpage_work);
1542}
1543
10c6ec49
MK
1544static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1545{
1546 struct page *page, *t_page;
1547
1548 list_for_each_entry_safe(page, t_page, list, lru) {
b65d4adb 1549 update_and_free_page(h, page, false);
10c6ec49
MK
1550 cond_resched();
1551 }
1552}
1553
e5ff2159
AK
1554struct hstate *size_to_hstate(unsigned long size)
1555{
1556 struct hstate *h;
1557
1558 for_each_hstate(h) {
1559 if (huge_page_size(h) == size)
1560 return h;
1561 }
1562 return NULL;
1563}
1564
db71ef79 1565void free_huge_page(struct page *page)
27a85ef1 1566{
a5516438
AK
1567 /*
1568 * Can't pass hstate in here because it is called from the
1569 * compound page destructor.
1570 */
e5ff2159 1571 struct hstate *h = page_hstate(page);
7893d1d5 1572 int nid = page_to_nid(page);
d6995da3 1573 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1574 bool restore_reserve;
db71ef79 1575 unsigned long flags;
27a85ef1 1576
b4330afb
MK
1577 VM_BUG_ON_PAGE(page_count(page), page);
1578 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1579
d6995da3 1580 hugetlb_set_page_subpool(page, NULL);
8ace22bc 1581 page->mapping = NULL;
d6995da3
MK
1582 restore_reserve = HPageRestoreReserve(page);
1583 ClearHPageRestoreReserve(page);
27a85ef1 1584
1c5ecae3 1585 /*
d6995da3 1586 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1587 * reservation. If the page was associated with a subpool, there
1588 * would have been a page reserved in the subpool before allocation
1589 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1590 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1591 * remove the reserved page from the subpool.
1c5ecae3 1592 */
0919e1b6
MK
1593 if (!restore_reserve) {
1594 /*
1595 * A return code of zero implies that the subpool will be
1596 * under its minimum size if the reservation is not restored
1597 * after page is free. Therefore, force restore_reserve
1598 * operation.
1599 */
1600 if (hugepage_subpool_put_pages(spool, 1) == 0)
1601 restore_reserve = true;
1602 }
1c5ecae3 1603
db71ef79 1604 spin_lock_irqsave(&hugetlb_lock, flags);
8f251a3d 1605 ClearHPageMigratable(page);
6d76dcf4
AK
1606 hugetlb_cgroup_uncharge_page(hstate_index(h),
1607 pages_per_huge_page(h), page);
08cf9faf
MA
1608 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1609 pages_per_huge_page(h), page);
07443a85
JK
1610 if (restore_reserve)
1611 h->resv_huge_pages++;
1612
9157c311 1613 if (HPageTemporary(page)) {
6eb4e88a 1614 remove_hugetlb_page(h, page, false);
db71ef79 1615 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1616 update_and_free_page(h, page, true);
ab5ac90a 1617 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1618 /* remove the page from active list */
6eb4e88a 1619 remove_hugetlb_page(h, page, true);
db71ef79 1620 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1621 update_and_free_page(h, page, true);
7893d1d5 1622 } else {
5d3a551c 1623 arch_clear_hugepage_flags(page);
a5516438 1624 enqueue_huge_page(h, page);
db71ef79 1625 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1626 }
c77c0a8a
WL
1627}
1628
d3d99fcc
OS
1629/*
1630 * Must be called with the hugetlb lock held
1631 */
1632static void __prep_account_new_huge_page(struct hstate *h, int nid)
1633{
1634 lockdep_assert_held(&hugetlb_lock);
1635 h->nr_huge_pages++;
1636 h->nr_huge_pages_node[nid]++;
1637}
1638
f41f2ed4 1639static void __prep_new_huge_page(struct hstate *h, struct page *page)
b7ba30c6 1640{
f41f2ed4 1641 free_huge_page_vmemmap(h, page);
0edaecfa 1642 INIT_LIST_HEAD(&page->lru);
f1e61557 1643 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1644 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1645 set_hugetlb_cgroup(page, NULL);
1adc4d41 1646 set_hugetlb_cgroup_rsvd(page, NULL);
d3d99fcc
OS
1647}
1648
1649static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1650{
f41f2ed4 1651 __prep_new_huge_page(h, page);
db71ef79 1652 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1653 __prep_account_new_huge_page(h, nid);
db71ef79 1654 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1655}
1656
7118fc29 1657static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c 1658{
7118fc29 1659 int i, j;
20a0307c
WF
1660 int nr_pages = 1 << order;
1661 struct page *p = page + 1;
1662
1663 /* we rely on prep_new_huge_page to set the destructor */
1664 set_compound_order(page, order);
ef5a22be 1665 __ClearPageReserved(page);
de09d31d 1666 __SetPageHead(page);
20a0307c 1667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1668 /*
1669 * For gigantic hugepages allocated through bootmem at
1670 * boot, it's safer to be consistent with the not-gigantic
1671 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1672 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1673 * pages may get the reference counting wrong if they see
1674 * PG_reserved set on a tail page (despite the head page not
1675 * having PG_reserved set). Enforcing this consistency between
1676 * head and tail pages allows drivers to optimize away a check
1677 * on the head page when they need know if put_page() is needed
1678 * after get_user_pages().
1679 */
1680 __ClearPageReserved(p);
7118fc29
MK
1681 /*
1682 * Subtle and very unlikely
1683 *
1684 * Gigantic 'page allocators' such as memblock or cma will
1685 * return a set of pages with each page ref counted. We need
1686 * to turn this set of pages into a compound page with tail
1687 * page ref counts set to zero. Code such as speculative page
1688 * cache adding could take a ref on a 'to be' tail page.
1689 * We need to respect any increased ref count, and only set
1690 * the ref count to zero if count is currently 1. If count
416d85ed
MK
1691 * is not 1, we return an error. An error return indicates
1692 * the set of pages can not be converted to a gigantic page.
1693 * The caller who allocated the pages should then discard the
1694 * pages using the appropriate free interface.
7118fc29
MK
1695 */
1696 if (!page_ref_freeze(p, 1)) {
416d85ed
MK
1697 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1698 goto out_error;
7118fc29 1699 }
58a84aa9 1700 set_page_count(p, 0);
1d798ca3 1701 set_compound_head(p, page);
20a0307c 1702 }
b4330afb 1703 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1704 atomic_set(compound_pincount_ptr(page), 0);
7118fc29
MK
1705 return true;
1706
1707out_error:
1708 /* undo tail page modifications made above */
1709 p = page + 1;
1710 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1711 clear_compound_head(p);
1712 set_page_refcounted(p);
1713 }
1714 /* need to clear PG_reserved on remaining tail pages */
1715 for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1716 __ClearPageReserved(p);
1717 set_compound_order(page, 0);
1718 page[1].compound_nr = 0;
1719 __ClearPageHead(page);
1720 return false;
20a0307c
WF
1721}
1722
7795912c
AM
1723/*
1724 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1725 * transparent huge pages. See the PageTransHuge() documentation for more
1726 * details.
1727 */
20a0307c
WF
1728int PageHuge(struct page *page)
1729{
20a0307c
WF
1730 if (!PageCompound(page))
1731 return 0;
1732
1733 page = compound_head(page);
f1e61557 1734 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1735}
43131e14
NH
1736EXPORT_SYMBOL_GPL(PageHuge);
1737
27c73ae7
AA
1738/*
1739 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1740 * normal or transparent huge pages.
1741 */
1742int PageHeadHuge(struct page *page_head)
1743{
27c73ae7
AA
1744 if (!PageHead(page_head))
1745 return 0;
1746
d4af73e3 1747 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1748}
27c73ae7 1749
c0d0381a
MK
1750/*
1751 * Find and lock address space (mapping) in write mode.
1752 *
336bf30e
MK
1753 * Upon entry, the page is locked which means that page_mapping() is
1754 * stable. Due to locking order, we can only trylock_write. If we can
1755 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1756 */
1757struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1758{
336bf30e 1759 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1760
c0d0381a
MK
1761 if (!mapping)
1762 return mapping;
1763
c0d0381a
MK
1764 if (i_mmap_trylock_write(mapping))
1765 return mapping;
1766
336bf30e 1767 return NULL;
c0d0381a
MK
1768}
1769
fe19bd3d 1770pgoff_t hugetlb_basepage_index(struct page *page)
13d60f4b
ZY
1771{
1772 struct page *page_head = compound_head(page);
1773 pgoff_t index = page_index(page_head);
1774 unsigned long compound_idx;
1775
13d60f4b
ZY
1776 if (compound_order(page_head) >= MAX_ORDER)
1777 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1778 else
1779 compound_idx = page - page_head;
1780
1781 return (index << compound_order(page_head)) + compound_idx;
1782}
1783
0c397dae 1784static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1785 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1786 nodemask_t *node_alloc_noretry)
1da177e4 1787{
af0fb9df 1788 int order = huge_page_order(h);
1da177e4 1789 struct page *page;
f60858f9 1790 bool alloc_try_hard = true;
f96efd58 1791
f60858f9
MK
1792 /*
1793 * By default we always try hard to allocate the page with
1794 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1795 * a loop (to adjust global huge page counts) and previous allocation
1796 * failed, do not continue to try hard on the same node. Use the
1797 * node_alloc_noretry bitmap to manage this state information.
1798 */
1799 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1800 alloc_try_hard = false;
1801 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1802 if (alloc_try_hard)
1803 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1804 if (nid == NUMA_NO_NODE)
1805 nid = numa_mem_id();
84172f4b 1806 page = __alloc_pages(gfp_mask, order, nid, nmask);
af0fb9df
MH
1807 if (page)
1808 __count_vm_event(HTLB_BUDDY_PGALLOC);
1809 else
1810 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1811
f60858f9
MK
1812 /*
1813 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1814 * indicates an overall state change. Clear bit so that we resume
1815 * normal 'try hard' allocations.
1816 */
1817 if (node_alloc_noretry && page && !alloc_try_hard)
1818 node_clear(nid, *node_alloc_noretry);
1819
1820 /*
1821 * If we tried hard to get a page but failed, set bit so that
1822 * subsequent attempts will not try as hard until there is an
1823 * overall state change.
1824 */
1825 if (node_alloc_noretry && !page && alloc_try_hard)
1826 node_set(nid, *node_alloc_noretry);
1827
63b4613c
NA
1828 return page;
1829}
1830
0c397dae
MH
1831/*
1832 * Common helper to allocate a fresh hugetlb page. All specific allocators
1833 * should use this function to get new hugetlb pages
1834 */
1835static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1836 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1837 nodemask_t *node_alloc_noretry)
0c397dae
MH
1838{
1839 struct page *page;
7118fc29 1840 bool retry = false;
0c397dae 1841
7118fc29 1842retry:
0c397dae
MH
1843 if (hstate_is_gigantic(h))
1844 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1845 else
1846 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1847 nid, nmask, node_alloc_noretry);
0c397dae
MH
1848 if (!page)
1849 return NULL;
1850
7118fc29
MK
1851 if (hstate_is_gigantic(h)) {
1852 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1853 /*
1854 * Rare failure to convert pages to compound page.
1855 * Free pages and try again - ONCE!
1856 */
1857 free_gigantic_page(page, huge_page_order(h));
1858 if (!retry) {
1859 retry = true;
1860 goto retry;
1861 }
7118fc29
MK
1862 return NULL;
1863 }
1864 }
0c397dae
MH
1865 prep_new_huge_page(h, page, page_to_nid(page));
1866
1867 return page;
1868}
1869
af0fb9df
MH
1870/*
1871 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1872 * manner.
1873 */
f60858f9
MK
1874static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1875 nodemask_t *node_alloc_noretry)
b2261026
JK
1876{
1877 struct page *page;
1878 int nr_nodes, node;
af0fb9df 1879 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1880
1881 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1882 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1883 node_alloc_noretry);
af0fb9df 1884 if (page)
b2261026 1885 break;
b2261026
JK
1886 }
1887
af0fb9df
MH
1888 if (!page)
1889 return 0;
b2261026 1890
af0fb9df
MH
1891 put_page(page); /* free it into the hugepage allocator */
1892
1893 return 1;
b2261026
JK
1894}
1895
e8c5c824 1896/*
10c6ec49
MK
1897 * Remove huge page from pool from next node to free. Attempt to keep
1898 * persistent huge pages more or less balanced over allowed nodes.
1899 * This routine only 'removes' the hugetlb page. The caller must make
1900 * an additional call to free the page to low level allocators.
e8c5c824
LS
1901 * Called with hugetlb_lock locked.
1902 */
10c6ec49
MK
1903static struct page *remove_pool_huge_page(struct hstate *h,
1904 nodemask_t *nodes_allowed,
1905 bool acct_surplus)
e8c5c824 1906{
b2261026 1907 int nr_nodes, node;
10c6ec49 1908 struct page *page = NULL;
e8c5c824 1909
9487ca60 1910 lockdep_assert_held(&hugetlb_lock);
b2261026 1911 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1912 /*
1913 * If we're returning unused surplus pages, only examine
1914 * nodes with surplus pages.
1915 */
b2261026
JK
1916 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1917 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 1918 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 1919 struct page, lru);
6eb4e88a 1920 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 1921 break;
e8c5c824 1922 }
b2261026 1923 }
e8c5c824 1924
10c6ec49 1925 return page;
e8c5c824
LS
1926}
1927
c8721bbb
NH
1928/*
1929 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1930 * nothing for in-use hugepages and non-hugepages.
1931 * This function returns values like below:
1932 *
ad2fa371
MS
1933 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1934 * when the system is under memory pressure and the feature of
1935 * freeing unused vmemmap pages associated with each hugetlb page
1936 * is enabled.
1937 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1938 * (allocated or reserved.)
1939 * 0: successfully dissolved free hugepages or the page is not a
1940 * hugepage (considered as already dissolved)
c8721bbb 1941 */
c3114a84 1942int dissolve_free_huge_page(struct page *page)
c8721bbb 1943{
6bc9b564 1944 int rc = -EBUSY;
082d5b6b 1945
7ffddd49 1946retry:
faf53def
NH
1947 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1948 if (!PageHuge(page))
1949 return 0;
1950
db71ef79 1951 spin_lock_irq(&hugetlb_lock);
faf53def
NH
1952 if (!PageHuge(page)) {
1953 rc = 0;
1954 goto out;
1955 }
1956
1957 if (!page_count(page)) {
2247bb33
GS
1958 struct page *head = compound_head(page);
1959 struct hstate *h = page_hstate(head);
6bc9b564 1960 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1961 goto out;
7ffddd49
MS
1962
1963 /*
1964 * We should make sure that the page is already on the free list
1965 * when it is dissolved.
1966 */
6c037149 1967 if (unlikely(!HPageFreed(head))) {
db71ef79 1968 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
1969 cond_resched();
1970
1971 /*
1972 * Theoretically, we should return -EBUSY when we
1973 * encounter this race. In fact, we have a chance
1974 * to successfully dissolve the page if we do a
1975 * retry. Because the race window is quite small.
1976 * If we seize this opportunity, it is an optimization
1977 * for increasing the success rate of dissolving page.
1978 */
1979 goto retry;
1980 }
1981
0c5da357 1982 remove_hugetlb_page(h, head, false);
c1470b33 1983 h->max_huge_pages--;
db71ef79 1984 spin_unlock_irq(&hugetlb_lock);
ad2fa371
MS
1985
1986 /*
1987 * Normally update_and_free_page will allocate required vmemmmap
1988 * before freeing the page. update_and_free_page will fail to
1989 * free the page if it can not allocate required vmemmap. We
1990 * need to adjust max_huge_pages if the page is not freed.
1991 * Attempt to allocate vmemmmap here so that we can take
1992 * appropriate action on failure.
1993 */
1994 rc = alloc_huge_page_vmemmap(h, head);
1995 if (!rc) {
1996 /*
1997 * Move PageHWPoison flag from head page to the raw
1998 * error page, which makes any subpages rather than
1999 * the error page reusable.
2000 */
2001 if (PageHWPoison(head) && page != head) {
2002 SetPageHWPoison(page);
2003 ClearPageHWPoison(head);
2004 }
2005 update_and_free_page(h, head, false);
2006 } else {
2007 spin_lock_irq(&hugetlb_lock);
2008 add_hugetlb_page(h, head, false);
2009 h->max_huge_pages++;
2010 spin_unlock_irq(&hugetlb_lock);
2011 }
2012
2013 return rc;
c8721bbb 2014 }
082d5b6b 2015out:
db71ef79 2016 spin_unlock_irq(&hugetlb_lock);
082d5b6b 2017 return rc;
c8721bbb
NH
2018}
2019
2020/*
2021 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2022 * make specified memory blocks removable from the system.
2247bb33
GS
2023 * Note that this will dissolve a free gigantic hugepage completely, if any
2024 * part of it lies within the given range.
082d5b6b
GS
2025 * Also note that if dissolve_free_huge_page() returns with an error, all
2026 * free hugepages that were dissolved before that error are lost.
c8721bbb 2027 */
082d5b6b 2028int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 2029{
c8721bbb 2030 unsigned long pfn;
eb03aa00 2031 struct page *page;
082d5b6b 2032 int rc = 0;
c8721bbb 2033
d0177639 2034 if (!hugepages_supported())
082d5b6b 2035 return rc;
d0177639 2036
eb03aa00
GS
2037 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2038 page = pfn_to_page(pfn);
faf53def
NH
2039 rc = dissolve_free_huge_page(page);
2040 if (rc)
2041 break;
eb03aa00 2042 }
082d5b6b
GS
2043
2044 return rc;
c8721bbb
NH
2045}
2046
ab5ac90a
MH
2047/*
2048 * Allocates a fresh surplus page from the page allocator.
2049 */
0c397dae 2050static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
b65a4eda 2051 int nid, nodemask_t *nmask, bool zero_ref)
7893d1d5 2052{
9980d744 2053 struct page *page = NULL;
b65a4eda 2054 bool retry = false;
7893d1d5 2055
bae7f4ae 2056 if (hstate_is_gigantic(h))
aa888a74
AK
2057 return NULL;
2058
db71ef79 2059 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2060 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2061 goto out_unlock;
db71ef79 2062 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 2063
b65a4eda 2064retry:
f60858f9 2065 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 2066 if (!page)
0c397dae 2067 return NULL;
d1c3fb1f 2068
db71ef79 2069 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2070 /*
2071 * We could have raced with the pool size change.
2072 * Double check that and simply deallocate the new page
2073 * if we would end up overcommiting the surpluses. Abuse
2074 * temporary page to workaround the nasty free_huge_page
2075 * codeflow
2076 */
2077 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 2078 SetHPageTemporary(page);
db71ef79 2079 spin_unlock_irq(&hugetlb_lock);
9980d744 2080 put_page(page);
2bf753e6 2081 return NULL;
7893d1d5 2082 }
9980d744 2083
b65a4eda
MK
2084 if (zero_ref) {
2085 /*
2086 * Caller requires a page with zero ref count.
2087 * We will drop ref count here. If someone else is holding
2088 * a ref, the page will be freed when they drop it. Abuse
2089 * temporary page flag to accomplish this.
2090 */
2091 SetHPageTemporary(page);
2092 if (!put_page_testzero(page)) {
2093 /*
2094 * Unexpected inflated ref count on freshly allocated
2095 * huge. Retry once.
2096 */
2097 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2098 spin_unlock_irq(&hugetlb_lock);
2099 if (retry)
2100 return NULL;
2101
2102 retry = true;
2103 goto retry;
2104 }
2105 ClearHPageTemporary(page);
2106 }
2107
2108 h->surplus_huge_pages++;
2109 h->surplus_huge_pages_node[page_to_nid(page)]++;
2110
9980d744 2111out_unlock:
db71ef79 2112 spin_unlock_irq(&hugetlb_lock);
7893d1d5
AL
2113
2114 return page;
2115}
2116
bbe88753 2117static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 2118 int nid, nodemask_t *nmask)
ab5ac90a
MH
2119{
2120 struct page *page;
2121
2122 if (hstate_is_gigantic(h))
2123 return NULL;
2124
f60858f9 2125 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
2126 if (!page)
2127 return NULL;
2128
2129 /*
2130 * We do not account these pages as surplus because they are only
2131 * temporary and will be released properly on the last reference
2132 */
9157c311 2133 SetHPageTemporary(page);
ab5ac90a
MH
2134
2135 return page;
2136}
2137
099730d6
DH
2138/*
2139 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2140 */
e0ec90ee 2141static
0c397dae 2142struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
2143 struct vm_area_struct *vma, unsigned long addr)
2144{
aaf14e40
MH
2145 struct page *page;
2146 struct mempolicy *mpol;
2147 gfp_t gfp_mask = htlb_alloc_mask(h);
2148 int nid;
2149 nodemask_t *nodemask;
2150
2151 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
b65a4eda 2152 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
aaf14e40
MH
2153 mpol_cond_put(mpol);
2154
2155 return page;
099730d6
DH
2156}
2157
ab5ac90a 2158/* page migration callback function */
3e59fcb0 2159struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 2160 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 2161{
db71ef79 2162 spin_lock_irq(&hugetlb_lock);
4db9b2ef 2163 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
2164 struct page *page;
2165
2166 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2167 if (page) {
db71ef79 2168 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 2169 return page;
4db9b2ef
MH
2170 }
2171 }
db71ef79 2172 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 2173
0c397dae 2174 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2175}
2176
ebd63723 2177/* mempolicy aware migration callback */
389c8178
MH
2178struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2179 unsigned long address)
ebd63723
MH
2180{
2181 struct mempolicy *mpol;
2182 nodemask_t *nodemask;
2183 struct page *page;
ebd63723
MH
2184 gfp_t gfp_mask;
2185 int node;
2186
ebd63723
MH
2187 gfp_mask = htlb_alloc_mask(h);
2188 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 2189 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
2190 mpol_cond_put(mpol);
2191
2192 return page;
2193}
2194
e4e574b7 2195/*
25985edc 2196 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2197 * of size 'delta'.
2198 */
0a4f3d1b 2199static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 2200 __must_hold(&hugetlb_lock)
e4e574b7
AL
2201{
2202 struct list_head surplus_list;
2203 struct page *page, *tmp;
0a4f3d1b
LX
2204 int ret;
2205 long i;
2206 long needed, allocated;
28073b02 2207 bool alloc_ok = true;
e4e574b7 2208
9487ca60 2209 lockdep_assert_held(&hugetlb_lock);
a5516438 2210 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2211 if (needed <= 0) {
a5516438 2212 h->resv_huge_pages += delta;
e4e574b7 2213 return 0;
ac09b3a1 2214 }
e4e574b7
AL
2215
2216 allocated = 0;
2217 INIT_LIST_HEAD(&surplus_list);
2218
2219 ret = -ENOMEM;
2220retry:
db71ef79 2221 spin_unlock_irq(&hugetlb_lock);
e4e574b7 2222 for (i = 0; i < needed; i++) {
0c397dae 2223 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
b65a4eda 2224 NUMA_NO_NODE, NULL, true);
28073b02
HD
2225 if (!page) {
2226 alloc_ok = false;
2227 break;
2228 }
e4e574b7 2229 list_add(&page->lru, &surplus_list);
69ed779a 2230 cond_resched();
e4e574b7 2231 }
28073b02 2232 allocated += i;
e4e574b7
AL
2233
2234 /*
2235 * After retaking hugetlb_lock, we need to recalculate 'needed'
2236 * because either resv_huge_pages or free_huge_pages may have changed.
2237 */
db71ef79 2238 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2239 needed = (h->resv_huge_pages + delta) -
2240 (h->free_huge_pages + allocated);
28073b02
HD
2241 if (needed > 0) {
2242 if (alloc_ok)
2243 goto retry;
2244 /*
2245 * We were not able to allocate enough pages to
2246 * satisfy the entire reservation so we free what
2247 * we've allocated so far.
2248 */
2249 goto free;
2250 }
e4e574b7
AL
2251 /*
2252 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2253 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2254 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2255 * allocator. Commit the entire reservation here to prevent another
2256 * process from stealing the pages as they are added to the pool but
2257 * before they are reserved.
e4e574b7
AL
2258 */
2259 needed += allocated;
a5516438 2260 h->resv_huge_pages += delta;
e4e574b7 2261 ret = 0;
a9869b83 2262
19fc3f0a 2263 /* Free the needed pages to the hugetlb pool */
e4e574b7 2264 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
2265 if ((--needed) < 0)
2266 break;
b65a4eda 2267 /* Add the page to the hugetlb allocator */
a5516438 2268 enqueue_huge_page(h, page);
19fc3f0a 2269 }
28073b02 2270free:
db71ef79 2271 spin_unlock_irq(&hugetlb_lock);
19fc3f0a 2272
b65a4eda
MK
2273 /*
2274 * Free unnecessary surplus pages to the buddy allocator.
2275 * Pages have no ref count, call free_huge_page directly.
2276 */
c0d934ba 2277 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
b65a4eda 2278 free_huge_page(page);
db71ef79 2279 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2280
2281 return ret;
2282}
2283
2284/*
e5bbc8a6
MK
2285 * This routine has two main purposes:
2286 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2287 * in unused_resv_pages. This corresponds to the prior adjustments made
2288 * to the associated reservation map.
2289 * 2) Free any unused surplus pages that may have been allocated to satisfy
2290 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2291 */
a5516438
AK
2292static void return_unused_surplus_pages(struct hstate *h,
2293 unsigned long unused_resv_pages)
e4e574b7 2294{
e4e574b7 2295 unsigned long nr_pages;
10c6ec49
MK
2296 struct page *page;
2297 LIST_HEAD(page_list);
2298
9487ca60 2299 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2300 /* Uncommit the reservation */
2301 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2302
aa888a74 2303 /* Cannot return gigantic pages currently */
bae7f4ae 2304 if (hstate_is_gigantic(h))
e5bbc8a6 2305 goto out;
aa888a74 2306
e5bbc8a6
MK
2307 /*
2308 * Part (or even all) of the reservation could have been backed
2309 * by pre-allocated pages. Only free surplus pages.
2310 */
a5516438 2311 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2312
685f3457
LS
2313 /*
2314 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2315 * evenly across all nodes with memory. Iterate across these nodes
2316 * until we can no longer free unreserved surplus pages. This occurs
2317 * when the nodes with surplus pages have no free pages.
10c6ec49 2318 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2319 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2320 */
2321 while (nr_pages--) {
10c6ec49
MK
2322 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2323 if (!page)
e5bbc8a6 2324 goto out;
10c6ec49
MK
2325
2326 list_add(&page->lru, &page_list);
e4e574b7 2327 }
e5bbc8a6
MK
2328
2329out:
db71ef79 2330 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2331 update_and_free_pages_bulk(h, &page_list);
db71ef79 2332 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2333}
2334
5e911373 2335
c37f9fb1 2336/*
feba16e2 2337 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2338 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2339 *
2340 * vma_needs_reservation is called to determine if the huge page at addr
2341 * within the vma has an associated reservation. If a reservation is
2342 * needed, the value 1 is returned. The caller is then responsible for
2343 * managing the global reservation and subpool usage counts. After
2344 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2345 * to add the page to the reservation map. If the page allocation fails,
2346 * the reservation must be ended instead of committed. vma_end_reservation
2347 * is called in such cases.
cf3ad20b
MK
2348 *
2349 * In the normal case, vma_commit_reservation returns the same value
2350 * as the preceding vma_needs_reservation call. The only time this
2351 * is not the case is if a reserve map was changed between calls. It
2352 * is the responsibility of the caller to notice the difference and
2353 * take appropriate action.
96b96a96
MK
2354 *
2355 * vma_add_reservation is used in error paths where a reservation must
2356 * be restored when a newly allocated huge page must be freed. It is
2357 * to be called after calling vma_needs_reservation to determine if a
2358 * reservation exists.
846be085
MK
2359 *
2360 * vma_del_reservation is used in error paths where an entry in the reserve
2361 * map was created during huge page allocation and must be removed. It is to
2362 * be called after calling vma_needs_reservation to determine if a reservation
2363 * exists.
c37f9fb1 2364 */
5e911373
MK
2365enum vma_resv_mode {
2366 VMA_NEEDS_RESV,
2367 VMA_COMMIT_RESV,
feba16e2 2368 VMA_END_RESV,
96b96a96 2369 VMA_ADD_RESV,
846be085 2370 VMA_DEL_RESV,
5e911373 2371};
cf3ad20b
MK
2372static long __vma_reservation_common(struct hstate *h,
2373 struct vm_area_struct *vma, unsigned long addr,
5e911373 2374 enum vma_resv_mode mode)
c37f9fb1 2375{
4e35f483
JK
2376 struct resv_map *resv;
2377 pgoff_t idx;
cf3ad20b 2378 long ret;
0db9d74e 2379 long dummy_out_regions_needed;
c37f9fb1 2380
4e35f483
JK
2381 resv = vma_resv_map(vma);
2382 if (!resv)
84afd99b 2383 return 1;
c37f9fb1 2384
4e35f483 2385 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2386 switch (mode) {
2387 case VMA_NEEDS_RESV:
0db9d74e
MA
2388 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2389 /* We assume that vma_reservation_* routines always operate on
2390 * 1 page, and that adding to resv map a 1 page entry can only
2391 * ever require 1 region.
2392 */
2393 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2394 break;
2395 case VMA_COMMIT_RESV:
075a61d0 2396 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2397 /* region_add calls of range 1 should never fail. */
2398 VM_BUG_ON(ret < 0);
5e911373 2399 break;
feba16e2 2400 case VMA_END_RESV:
0db9d74e 2401 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2402 ret = 0;
2403 break;
96b96a96 2404 case VMA_ADD_RESV:
0db9d74e 2405 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2406 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2407 /* region_add calls of range 1 should never fail. */
2408 VM_BUG_ON(ret < 0);
2409 } else {
2410 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2411 ret = region_del(resv, idx, idx + 1);
2412 }
2413 break;
846be085
MK
2414 case VMA_DEL_RESV:
2415 if (vma->vm_flags & VM_MAYSHARE) {
2416 region_abort(resv, idx, idx + 1, 1);
2417 ret = region_del(resv, idx, idx + 1);
2418 } else {
2419 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2420 /* region_add calls of range 1 should never fail. */
2421 VM_BUG_ON(ret < 0);
2422 }
2423 break;
5e911373
MK
2424 default:
2425 BUG();
2426 }
84afd99b 2427
846be085 2428 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
cf3ad20b 2429 return ret;
bf3d12b9
ML
2430 /*
2431 * We know private mapping must have HPAGE_RESV_OWNER set.
2432 *
2433 * In most cases, reserves always exist for private mappings.
2434 * However, a file associated with mapping could have been
2435 * hole punched or truncated after reserves were consumed.
2436 * As subsequent fault on such a range will not use reserves.
2437 * Subtle - The reserve map for private mappings has the
2438 * opposite meaning than that of shared mappings. If NO
2439 * entry is in the reserve map, it means a reservation exists.
2440 * If an entry exists in the reserve map, it means the
2441 * reservation has already been consumed. As a result, the
2442 * return value of this routine is the opposite of the
2443 * value returned from reserve map manipulation routines above.
2444 */
2445 if (ret > 0)
2446 return 0;
2447 if (ret == 0)
2448 return 1;
2449 return ret;
c37f9fb1 2450}
cf3ad20b
MK
2451
2452static long vma_needs_reservation(struct hstate *h,
a5516438 2453 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2454{
5e911373 2455 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2456}
84afd99b 2457
cf3ad20b
MK
2458static long vma_commit_reservation(struct hstate *h,
2459 struct vm_area_struct *vma, unsigned long addr)
2460{
5e911373
MK
2461 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2462}
2463
feba16e2 2464static void vma_end_reservation(struct hstate *h,
5e911373
MK
2465 struct vm_area_struct *vma, unsigned long addr)
2466{
feba16e2 2467 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2468}
2469
96b96a96
MK
2470static long vma_add_reservation(struct hstate *h,
2471 struct vm_area_struct *vma, unsigned long addr)
2472{
2473 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2474}
2475
846be085
MK
2476static long vma_del_reservation(struct hstate *h,
2477 struct vm_area_struct *vma, unsigned long addr)
2478{
2479 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2480}
2481
96b96a96 2482/*
846be085
MK
2483 * This routine is called to restore reservation information on error paths.
2484 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2485 * the hugetlb mutex should remain held when calling this routine.
2486 *
2487 * It handles two specific cases:
2488 * 1) A reservation was in place and the page consumed the reservation.
2489 * HPageRestoreReserve is set in the page.
2490 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2491 * not set. However, alloc_huge_page always updates the reserve map.
2492 *
2493 * In case 1, free_huge_page later in the error path will increment the
2494 * global reserve count. But, free_huge_page does not have enough context
2495 * to adjust the reservation map. This case deals primarily with private
2496 * mappings. Adjust the reserve map here to be consistent with global
2497 * reserve count adjustments to be made by free_huge_page. Make sure the
2498 * reserve map indicates there is a reservation present.
2499 *
2500 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
96b96a96 2501 */
846be085
MK
2502void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2503 unsigned long address, struct page *page)
96b96a96 2504{
846be085 2505 long rc = vma_needs_reservation(h, vma, address);
96b96a96 2506
846be085
MK
2507 if (HPageRestoreReserve(page)) {
2508 if (unlikely(rc < 0))
96b96a96
MK
2509 /*
2510 * Rare out of memory condition in reserve map
d6995da3 2511 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2512 * global reserve count will not be incremented
2513 * by free_huge_page. This will make it appear
2514 * as though the reservation for this page was
2515 * consumed. This may prevent the task from
2516 * faulting in the page at a later time. This
2517 * is better than inconsistent global huge page
2518 * accounting of reserve counts.
2519 */
d6995da3 2520 ClearHPageRestoreReserve(page);
846be085
MK
2521 else if (rc)
2522 (void)vma_add_reservation(h, vma, address);
2523 else
2524 vma_end_reservation(h, vma, address);
2525 } else {
2526 if (!rc) {
2527 /*
2528 * This indicates there is an entry in the reserve map
c7b1850d 2529 * not added by alloc_huge_page. We know it was added
846be085
MK
2530 * before the alloc_huge_page call, otherwise
2531 * HPageRestoreReserve would be set on the page.
2532 * Remove the entry so that a subsequent allocation
2533 * does not consume a reservation.
2534 */
2535 rc = vma_del_reservation(h, vma, address);
2536 if (rc < 0)
96b96a96 2537 /*
846be085
MK
2538 * VERY rare out of memory condition. Since
2539 * we can not delete the entry, set
2540 * HPageRestoreReserve so that the reserve
2541 * count will be incremented when the page
2542 * is freed. This reserve will be consumed
2543 * on a subsequent allocation.
96b96a96 2544 */
846be085
MK
2545 SetHPageRestoreReserve(page);
2546 } else if (rc < 0) {
2547 /*
2548 * Rare out of memory condition from
2549 * vma_needs_reservation call. Memory allocation is
2550 * only attempted if a new entry is needed. Therefore,
2551 * this implies there is not an entry in the
2552 * reserve map.
2553 *
2554 * For shared mappings, no entry in the map indicates
2555 * no reservation. We are done.
2556 */
2557 if (!(vma->vm_flags & VM_MAYSHARE))
2558 /*
2559 * For private mappings, no entry indicates
2560 * a reservation is present. Since we can
2561 * not add an entry, set SetHPageRestoreReserve
2562 * on the page so reserve count will be
2563 * incremented when freed. This reserve will
2564 * be consumed on a subsequent allocation.
2565 */
2566 SetHPageRestoreReserve(page);
96b96a96 2567 } else
846be085
MK
2568 /*
2569 * No reservation present, do nothing
2570 */
2571 vma_end_reservation(h, vma, address);
96b96a96
MK
2572 }
2573}
2574
369fa227
OS
2575/*
2576 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2577 * @h: struct hstate old page belongs to
2578 * @old_page: Old page to dissolve
ae37c7ff 2579 * @list: List to isolate the page in case we need to
369fa227
OS
2580 * Returns 0 on success, otherwise negated error.
2581 */
ae37c7ff
OS
2582static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2583 struct list_head *list)
369fa227
OS
2584{
2585 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2586 int nid = page_to_nid(old_page);
b65a4eda 2587 bool alloc_retry = false;
369fa227
OS
2588 struct page *new_page;
2589 int ret = 0;
2590
2591 /*
2592 * Before dissolving the page, we need to allocate a new one for the
f41f2ed4
MS
2593 * pool to remain stable. Here, we allocate the page and 'prep' it
2594 * by doing everything but actually updating counters and adding to
2595 * the pool. This simplifies and let us do most of the processing
2596 * under the lock.
369fa227 2597 */
b65a4eda 2598alloc_retry:
369fa227
OS
2599 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2600 if (!new_page)
2601 return -ENOMEM;
b65a4eda
MK
2602 /*
2603 * If all goes well, this page will be directly added to the free
2604 * list in the pool. For this the ref count needs to be zero.
2605 * Attempt to drop now, and retry once if needed. It is VERY
2606 * unlikely there is another ref on the page.
2607 *
2608 * If someone else has a reference to the page, it will be freed
2609 * when they drop their ref. Abuse temporary page flag to accomplish
2610 * this. Retry once if there is an inflated ref count.
2611 */
2612 SetHPageTemporary(new_page);
2613 if (!put_page_testzero(new_page)) {
2614 if (alloc_retry)
2615 return -EBUSY;
2616
2617 alloc_retry = true;
2618 goto alloc_retry;
2619 }
2620 ClearHPageTemporary(new_page);
2621
f41f2ed4 2622 __prep_new_huge_page(h, new_page);
369fa227
OS
2623
2624retry:
2625 spin_lock_irq(&hugetlb_lock);
2626 if (!PageHuge(old_page)) {
2627 /*
2628 * Freed from under us. Drop new_page too.
2629 */
2630 goto free_new;
2631 } else if (page_count(old_page)) {
2632 /*
ae37c7ff
OS
2633 * Someone has grabbed the page, try to isolate it here.
2634 * Fail with -EBUSY if not possible.
369fa227 2635 */
ae37c7ff
OS
2636 spin_unlock_irq(&hugetlb_lock);
2637 if (!isolate_huge_page(old_page, list))
2638 ret = -EBUSY;
2639 spin_lock_irq(&hugetlb_lock);
369fa227
OS
2640 goto free_new;
2641 } else if (!HPageFreed(old_page)) {
2642 /*
2643 * Page's refcount is 0 but it has not been enqueued in the
2644 * freelist yet. Race window is small, so we can succeed here if
2645 * we retry.
2646 */
2647 spin_unlock_irq(&hugetlb_lock);
2648 cond_resched();
2649 goto retry;
2650 } else {
2651 /*
2652 * Ok, old_page is still a genuine free hugepage. Remove it from
2653 * the freelist and decrease the counters. These will be
2654 * incremented again when calling __prep_account_new_huge_page()
2655 * and enqueue_huge_page() for new_page. The counters will remain
2656 * stable since this happens under the lock.
2657 */
2658 remove_hugetlb_page(h, old_page, false);
2659
2660 /*
b65a4eda
MK
2661 * Ref count on new page is already zero as it was dropped
2662 * earlier. It can be directly added to the pool free list.
369fa227 2663 */
369fa227 2664 __prep_account_new_huge_page(h, nid);
369fa227
OS
2665 enqueue_huge_page(h, new_page);
2666
2667 /*
2668 * Pages have been replaced, we can safely free the old one.
2669 */
2670 spin_unlock_irq(&hugetlb_lock);
b65d4adb 2671 update_and_free_page(h, old_page, false);
369fa227
OS
2672 }
2673
2674 return ret;
2675
2676free_new:
2677 spin_unlock_irq(&hugetlb_lock);
b65a4eda
MK
2678 /* Page has a zero ref count, but needs a ref to be freed */
2679 set_page_refcounted(new_page);
b65d4adb 2680 update_and_free_page(h, new_page, false);
369fa227
OS
2681
2682 return ret;
2683}
2684
ae37c7ff 2685int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2686{
2687 struct hstate *h;
2688 struct page *head;
ae37c7ff 2689 int ret = -EBUSY;
369fa227
OS
2690
2691 /*
2692 * The page might have been dissolved from under our feet, so make sure
2693 * to carefully check the state under the lock.
2694 * Return success when racing as if we dissolved the page ourselves.
2695 */
2696 spin_lock_irq(&hugetlb_lock);
2697 if (PageHuge(page)) {
2698 head = compound_head(page);
2699 h = page_hstate(head);
2700 } else {
2701 spin_unlock_irq(&hugetlb_lock);
2702 return 0;
2703 }
2704 spin_unlock_irq(&hugetlb_lock);
2705
2706 /*
2707 * Fence off gigantic pages as there is a cyclic dependency between
2708 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2709 * of bailing out right away without further retrying.
2710 */
2711 if (hstate_is_gigantic(h))
2712 return -ENOMEM;
2713
ae37c7ff
OS
2714 if (page_count(head) && isolate_huge_page(head, list))
2715 ret = 0;
2716 else if (!page_count(head))
2717 ret = alloc_and_dissolve_huge_page(h, head, list);
2718
2719 return ret;
369fa227
OS
2720}
2721
70c3547e 2722struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2723 unsigned long addr, int avoid_reserve)
1da177e4 2724{
90481622 2725 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2726 struct hstate *h = hstate_vma(vma);
348ea204 2727 struct page *page;
d85f69b0
MK
2728 long map_chg, map_commit;
2729 long gbl_chg;
6d76dcf4
AK
2730 int ret, idx;
2731 struct hugetlb_cgroup *h_cg;
08cf9faf 2732 bool deferred_reserve;
a1e78772 2733
6d76dcf4 2734 idx = hstate_index(h);
a1e78772 2735 /*
d85f69b0
MK
2736 * Examine the region/reserve map to determine if the process
2737 * has a reservation for the page to be allocated. A return
2738 * code of zero indicates a reservation exists (no change).
a1e78772 2739 */
d85f69b0
MK
2740 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2741 if (map_chg < 0)
76dcee75 2742 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2743
2744 /*
2745 * Processes that did not create the mapping will have no
2746 * reserves as indicated by the region/reserve map. Check
2747 * that the allocation will not exceed the subpool limit.
2748 * Allocations for MAP_NORESERVE mappings also need to be
2749 * checked against any subpool limit.
2750 */
2751 if (map_chg || avoid_reserve) {
2752 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2753 if (gbl_chg < 0) {
feba16e2 2754 vma_end_reservation(h, vma, addr);
76dcee75 2755 return ERR_PTR(-ENOSPC);
5e911373 2756 }
1da177e4 2757
d85f69b0
MK
2758 /*
2759 * Even though there was no reservation in the region/reserve
2760 * map, there could be reservations associated with the
2761 * subpool that can be used. This would be indicated if the
2762 * return value of hugepage_subpool_get_pages() is zero.
2763 * However, if avoid_reserve is specified we still avoid even
2764 * the subpool reservations.
2765 */
2766 if (avoid_reserve)
2767 gbl_chg = 1;
2768 }
2769
08cf9faf
MA
2770 /* If this allocation is not consuming a reservation, charge it now.
2771 */
6501fe5f 2772 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2773 if (deferred_reserve) {
2774 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2775 idx, pages_per_huge_page(h), &h_cg);
2776 if (ret)
2777 goto out_subpool_put;
2778 }
2779
6d76dcf4 2780 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2781 if (ret)
08cf9faf 2782 goto out_uncharge_cgroup_reservation;
8f34af6f 2783
db71ef79 2784 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
2785 /*
2786 * glb_chg is passed to indicate whether or not a page must be taken
2787 * from the global free pool (global change). gbl_chg == 0 indicates
2788 * a reservation exists for the allocation.
2789 */
2790 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2791 if (!page) {
db71ef79 2792 spin_unlock_irq(&hugetlb_lock);
0c397dae 2793 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2794 if (!page)
2795 goto out_uncharge_cgroup;
a88c7695 2796 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2797 SetHPageRestoreReserve(page);
a88c7695
NH
2798 h->resv_huge_pages--;
2799 }
db71ef79 2800 spin_lock_irq(&hugetlb_lock);
15a8d68e 2801 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2802 /* Fall through */
68842c9b 2803 }
81a6fcae 2804 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2805 /* If allocation is not consuming a reservation, also store the
2806 * hugetlb_cgroup pointer on the page.
2807 */
2808 if (deferred_reserve) {
2809 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2810 h_cg, page);
2811 }
2812
db71ef79 2813 spin_unlock_irq(&hugetlb_lock);
348ea204 2814
d6995da3 2815 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2816
d85f69b0
MK
2817 map_commit = vma_commit_reservation(h, vma, addr);
2818 if (unlikely(map_chg > map_commit)) {
33039678
MK
2819 /*
2820 * The page was added to the reservation map between
2821 * vma_needs_reservation and vma_commit_reservation.
2822 * This indicates a race with hugetlb_reserve_pages.
2823 * Adjust for the subpool count incremented above AND
2824 * in hugetlb_reserve_pages for the same page. Also,
2825 * the reservation count added in hugetlb_reserve_pages
2826 * no longer applies.
2827 */
2828 long rsv_adjust;
2829
2830 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2831 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2832 if (deferred_reserve)
2833 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2834 pages_per_huge_page(h), page);
33039678 2835 }
90d8b7e6 2836 return page;
8f34af6f
JZ
2837
2838out_uncharge_cgroup:
2839 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2840out_uncharge_cgroup_reservation:
2841 if (deferred_reserve)
2842 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2843 h_cg);
8f34af6f 2844out_subpool_put:
d85f69b0 2845 if (map_chg || avoid_reserve)
8f34af6f 2846 hugepage_subpool_put_pages(spool, 1);
feba16e2 2847 vma_end_reservation(h, vma, addr);
8f34af6f 2848 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2849}
2850
e24a1307
AK
2851int alloc_bootmem_huge_page(struct hstate *h)
2852 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2853int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2854{
2855 struct huge_bootmem_page *m;
b2261026 2856 int nr_nodes, node;
aa888a74 2857
b2261026 2858 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2859 void *addr;
2860
eb31d559 2861 addr = memblock_alloc_try_nid_raw(
8b89a116 2862 huge_page_size(h), huge_page_size(h),
97ad1087 2863 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2864 if (addr) {
2865 /*
2866 * Use the beginning of the huge page to store the
2867 * huge_bootmem_page struct (until gather_bootmem
2868 * puts them into the mem_map).
2869 */
2870 m = addr;
91f47662 2871 goto found;
aa888a74 2872 }
aa888a74
AK
2873 }
2874 return 0;
2875
2876found:
df994ead 2877 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2878 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2879 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2880 list_add(&m->list, &huge_boot_pages);
2881 m->hstate = h;
2882 return 1;
2883}
2884
48b8d744
MK
2885/*
2886 * Put bootmem huge pages into the standard lists after mem_map is up.
2887 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2888 */
aa888a74
AK
2889static void __init gather_bootmem_prealloc(void)
2890{
2891 struct huge_bootmem_page *m;
2892
2893 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2894 struct page *page = virt_to_page(m);
aa888a74 2895 struct hstate *h = m->hstate;
ee8f248d 2896
48b8d744 2897 VM_BUG_ON(!hstate_is_gigantic(h));
aa888a74 2898 WARN_ON(page_count(page) != 1);
7118fc29
MK
2899 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2900 WARN_ON(PageReserved(page));
2901 prep_new_huge_page(h, page, page_to_nid(page));
2902 put_page(page); /* add to the hugepage allocator */
2903 } else {
416d85ed 2904 /* VERY unlikely inflated ref count on a tail page */
7118fc29 2905 free_gigantic_page(page, huge_page_order(h));
7118fc29 2906 }
af0fb9df 2907
b0320c7b 2908 /*
48b8d744
MK
2909 * We need to restore the 'stolen' pages to totalram_pages
2910 * in order to fix confusing memory reports from free(1) and
2911 * other side-effects, like CommitLimit going negative.
b0320c7b 2912 */
48b8d744 2913 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 2914 cond_resched();
aa888a74
AK
2915 }
2916}
2917
8faa8b07 2918static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2919{
2920 unsigned long i;
f60858f9
MK
2921 nodemask_t *node_alloc_noretry;
2922
2923 if (!hstate_is_gigantic(h)) {
2924 /*
2925 * Bit mask controlling how hard we retry per-node allocations.
2926 * Ignore errors as lower level routines can deal with
2927 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2928 * time, we are likely in bigger trouble.
2929 */
2930 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2931 GFP_KERNEL);
2932 } else {
2933 /* allocations done at boot time */
2934 node_alloc_noretry = NULL;
2935 }
2936
2937 /* bit mask controlling how hard we retry per-node allocations */
2938 if (node_alloc_noretry)
2939 nodes_clear(*node_alloc_noretry);
a5516438 2940
e5ff2159 2941 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2942 if (hstate_is_gigantic(h)) {
dbda8fea 2943 if (hugetlb_cma_size) {
cf11e85f 2944 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
7ecc9565 2945 goto free;
cf11e85f 2946 }
aa888a74
AK
2947 if (!alloc_bootmem_huge_page(h))
2948 break;
0c397dae 2949 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2950 &node_states[N_MEMORY],
2951 node_alloc_noretry))
1da177e4 2952 break;
69ed779a 2953 cond_resched();
1da177e4 2954 }
d715cf80
LH
2955 if (i < h->max_huge_pages) {
2956 char buf[32];
2957
c6247f72 2958 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2959 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2960 h->max_huge_pages, buf, i);
2961 h->max_huge_pages = i;
2962 }
7ecc9565 2963free:
f60858f9 2964 kfree(node_alloc_noretry);
e5ff2159
AK
2965}
2966
2967static void __init hugetlb_init_hstates(void)
2968{
2969 struct hstate *h;
2970
2971 for_each_hstate(h) {
641844f5
NH
2972 if (minimum_order > huge_page_order(h))
2973 minimum_order = huge_page_order(h);
2974
8faa8b07 2975 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2976 if (!hstate_is_gigantic(h))
8faa8b07 2977 hugetlb_hstate_alloc_pages(h);
e5ff2159 2978 }
641844f5 2979 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2980}
2981
2982static void __init report_hugepages(void)
2983{
2984 struct hstate *h;
2985
2986 for_each_hstate(h) {
4abd32db 2987 char buf[32];
c6247f72
MW
2988
2989 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2990 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2991 buf, h->free_huge_pages);
e5ff2159
AK
2992 }
2993}
2994
1da177e4 2995#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2996static void try_to_free_low(struct hstate *h, unsigned long count,
2997 nodemask_t *nodes_allowed)
1da177e4 2998{
4415cc8d 2999 int i;
1121828a 3000 LIST_HEAD(page_list);
4415cc8d 3001
9487ca60 3002 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 3003 if (hstate_is_gigantic(h))
aa888a74
AK
3004 return;
3005
1121828a
MK
3006 /*
3007 * Collect pages to be freed on a list, and free after dropping lock
3008 */
6ae11b27 3009 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 3010 struct page *page, *next;
a5516438
AK
3011 struct list_head *freel = &h->hugepage_freelists[i];
3012 list_for_each_entry_safe(page, next, freel, lru) {
3013 if (count >= h->nr_huge_pages)
1121828a 3014 goto out;
1da177e4
LT
3015 if (PageHighMem(page))
3016 continue;
6eb4e88a 3017 remove_hugetlb_page(h, page, false);
1121828a 3018 list_add(&page->lru, &page_list);
1da177e4
LT
3019 }
3020 }
1121828a
MK
3021
3022out:
db71ef79 3023 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3024 update_and_free_pages_bulk(h, &page_list);
db71ef79 3025 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
3026}
3027#else
6ae11b27
LS
3028static inline void try_to_free_low(struct hstate *h, unsigned long count,
3029 nodemask_t *nodes_allowed)
1da177e4
LT
3030{
3031}
3032#endif
3033
20a0307c
WF
3034/*
3035 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3036 * balanced by operating on them in a round-robin fashion.
3037 * Returns 1 if an adjustment was made.
3038 */
6ae11b27
LS
3039static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3040 int delta)
20a0307c 3041{
b2261026 3042 int nr_nodes, node;
20a0307c 3043
9487ca60 3044 lockdep_assert_held(&hugetlb_lock);
20a0307c 3045 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 3046
b2261026
JK
3047 if (delta < 0) {
3048 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3049 if (h->surplus_huge_pages_node[node])
3050 goto found;
e8c5c824 3051 }
b2261026
JK
3052 } else {
3053 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3054 if (h->surplus_huge_pages_node[node] <
3055 h->nr_huge_pages_node[node])
3056 goto found;
e8c5c824 3057 }
b2261026
JK
3058 }
3059 return 0;
20a0307c 3060
b2261026
JK
3061found:
3062 h->surplus_huge_pages += delta;
3063 h->surplus_huge_pages_node[node] += delta;
3064 return 1;
20a0307c
WF
3065}
3066
a5516438 3067#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 3068static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 3069 nodemask_t *nodes_allowed)
1da177e4 3070{
7893d1d5 3071 unsigned long min_count, ret;
10c6ec49
MK
3072 struct page *page;
3073 LIST_HEAD(page_list);
f60858f9
MK
3074 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3075
3076 /*
3077 * Bit mask controlling how hard we retry per-node allocations.
3078 * If we can not allocate the bit mask, do not attempt to allocate
3079 * the requested huge pages.
3080 */
3081 if (node_alloc_noretry)
3082 nodes_clear(*node_alloc_noretry);
3083 else
3084 return -ENOMEM;
1da177e4 3085
29383967
MK
3086 /*
3087 * resize_lock mutex prevents concurrent adjustments to number of
3088 * pages in hstate via the proc/sysfs interfaces.
3089 */
3090 mutex_lock(&h->resize_lock);
b65d4adb 3091 flush_free_hpage_work(h);
db71ef79 3092 spin_lock_irq(&hugetlb_lock);
4eb0716e 3093
fd875dca
MK
3094 /*
3095 * Check for a node specific request.
3096 * Changing node specific huge page count may require a corresponding
3097 * change to the global count. In any case, the passed node mask
3098 * (nodes_allowed) will restrict alloc/free to the specified node.
3099 */
3100 if (nid != NUMA_NO_NODE) {
3101 unsigned long old_count = count;
3102
3103 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3104 /*
3105 * User may have specified a large count value which caused the
3106 * above calculation to overflow. In this case, they wanted
3107 * to allocate as many huge pages as possible. Set count to
3108 * largest possible value to align with their intention.
3109 */
3110 if (count < old_count)
3111 count = ULONG_MAX;
3112 }
3113
4eb0716e
AG
3114 /*
3115 * Gigantic pages runtime allocation depend on the capability for large
3116 * page range allocation.
3117 * If the system does not provide this feature, return an error when
3118 * the user tries to allocate gigantic pages but let the user free the
3119 * boottime allocated gigantic pages.
3120 */
3121 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3122 if (count > persistent_huge_pages(h)) {
db71ef79 3123 spin_unlock_irq(&hugetlb_lock);
29383967 3124 mutex_unlock(&h->resize_lock);
f60858f9 3125 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
3126 return -EINVAL;
3127 }
3128 /* Fall through to decrease pool */
3129 }
aa888a74 3130
7893d1d5
AL
3131 /*
3132 * Increase the pool size
3133 * First take pages out of surplus state. Then make up the
3134 * remaining difference by allocating fresh huge pages.
d1c3fb1f 3135 *
0c397dae 3136 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
3137 * to convert a surplus huge page to a normal huge page. That is
3138 * not critical, though, it just means the overall size of the
3139 * pool might be one hugepage larger than it needs to be, but
3140 * within all the constraints specified by the sysctls.
7893d1d5 3141 */
a5516438 3142 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 3143 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
3144 break;
3145 }
3146
a5516438 3147 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
3148 /*
3149 * If this allocation races such that we no longer need the
3150 * page, free_huge_page will handle it by freeing the page
3151 * and reducing the surplus.
3152 */
db71ef79 3153 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
3154
3155 /* yield cpu to avoid soft lockup */
3156 cond_resched();
3157
f60858f9
MK
3158 ret = alloc_pool_huge_page(h, nodes_allowed,
3159 node_alloc_noretry);
db71ef79 3160 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
3161 if (!ret)
3162 goto out;
3163
536240f2
MG
3164 /* Bail for signals. Probably ctrl-c from user */
3165 if (signal_pending(current))
3166 goto out;
7893d1d5 3167 }
7893d1d5
AL
3168
3169 /*
3170 * Decrease the pool size
3171 * First return free pages to the buddy allocator (being careful
3172 * to keep enough around to satisfy reservations). Then place
3173 * pages into surplus state as needed so the pool will shrink
3174 * to the desired size as pages become free.
d1c3fb1f
NA
3175 *
3176 * By placing pages into the surplus state independent of the
3177 * overcommit value, we are allowing the surplus pool size to
3178 * exceed overcommit. There are few sane options here. Since
0c397dae 3179 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
3180 * though, we'll note that we're not allowed to exceed surplus
3181 * and won't grow the pool anywhere else. Not until one of the
3182 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 3183 */
a5516438 3184 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 3185 min_count = max(count, min_count);
6ae11b27 3186 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
3187
3188 /*
3189 * Collect pages to be removed on list without dropping lock
3190 */
a5516438 3191 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
3192 page = remove_pool_huge_page(h, nodes_allowed, 0);
3193 if (!page)
1da177e4 3194 break;
10c6ec49
MK
3195
3196 list_add(&page->lru, &page_list);
1da177e4 3197 }
10c6ec49 3198 /* free the pages after dropping lock */
db71ef79 3199 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3200 update_and_free_pages_bulk(h, &page_list);
b65d4adb 3201 flush_free_hpage_work(h);
db71ef79 3202 spin_lock_irq(&hugetlb_lock);
10c6ec49 3203
a5516438 3204 while (count < persistent_huge_pages(h)) {
6ae11b27 3205 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
3206 break;
3207 }
3208out:
4eb0716e 3209 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 3210 spin_unlock_irq(&hugetlb_lock);
29383967 3211 mutex_unlock(&h->resize_lock);
4eb0716e 3212
f60858f9
MK
3213 NODEMASK_FREE(node_alloc_noretry);
3214
4eb0716e 3215 return 0;
1da177e4
LT
3216}
3217
a3437870
NA
3218#define HSTATE_ATTR_RO(_name) \
3219 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3220
3221#define HSTATE_ATTR(_name) \
3222 static struct kobj_attribute _name##_attr = \
3223 __ATTR(_name, 0644, _name##_show, _name##_store)
3224
3225static struct kobject *hugepages_kobj;
3226static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3227
9a305230
LS
3228static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3229
3230static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
3231{
3232 int i;
9a305230 3233
a3437870 3234 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
3235 if (hstate_kobjs[i] == kobj) {
3236 if (nidp)
3237 *nidp = NUMA_NO_NODE;
a3437870 3238 return &hstates[i];
9a305230
LS
3239 }
3240
3241 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
3242}
3243
06808b08 3244static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
3245 struct kobj_attribute *attr, char *buf)
3246{
9a305230
LS
3247 struct hstate *h;
3248 unsigned long nr_huge_pages;
3249 int nid;
3250
3251 h = kobj_to_hstate(kobj, &nid);
3252 if (nid == NUMA_NO_NODE)
3253 nr_huge_pages = h->nr_huge_pages;
3254 else
3255 nr_huge_pages = h->nr_huge_pages_node[nid];
3256
ae7a927d 3257 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 3258}
adbe8726 3259
238d3c13
DR
3260static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3261 struct hstate *h, int nid,
3262 unsigned long count, size_t len)
a3437870
NA
3263{
3264 int err;
2d0adf7e 3265 nodemask_t nodes_allowed, *n_mask;
a3437870 3266
2d0adf7e
OS
3267 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3268 return -EINVAL;
adbe8726 3269
9a305230
LS
3270 if (nid == NUMA_NO_NODE) {
3271 /*
3272 * global hstate attribute
3273 */
3274 if (!(obey_mempolicy &&
2d0adf7e
OS
3275 init_nodemask_of_mempolicy(&nodes_allowed)))
3276 n_mask = &node_states[N_MEMORY];
3277 else
3278 n_mask = &nodes_allowed;
3279 } else {
9a305230 3280 /*
fd875dca
MK
3281 * Node specific request. count adjustment happens in
3282 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 3283 */
2d0adf7e
OS
3284 init_nodemask_of_node(&nodes_allowed, nid);
3285 n_mask = &nodes_allowed;
fd875dca 3286 }
9a305230 3287
2d0adf7e 3288 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 3289
4eb0716e 3290 return err ? err : len;
06808b08
LS
3291}
3292
238d3c13
DR
3293static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3294 struct kobject *kobj, const char *buf,
3295 size_t len)
3296{
3297 struct hstate *h;
3298 unsigned long count;
3299 int nid;
3300 int err;
3301
3302 err = kstrtoul(buf, 10, &count);
3303 if (err)
3304 return err;
3305
3306 h = kobj_to_hstate(kobj, &nid);
3307 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3308}
3309
06808b08
LS
3310static ssize_t nr_hugepages_show(struct kobject *kobj,
3311 struct kobj_attribute *attr, char *buf)
3312{
3313 return nr_hugepages_show_common(kobj, attr, buf);
3314}
3315
3316static ssize_t nr_hugepages_store(struct kobject *kobj,
3317 struct kobj_attribute *attr, const char *buf, size_t len)
3318{
238d3c13 3319 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
3320}
3321HSTATE_ATTR(nr_hugepages);
3322
06808b08
LS
3323#ifdef CONFIG_NUMA
3324
3325/*
3326 * hstate attribute for optionally mempolicy-based constraint on persistent
3327 * huge page alloc/free.
3328 */
3329static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3330 struct kobj_attribute *attr,
3331 char *buf)
06808b08
LS
3332{
3333 return nr_hugepages_show_common(kobj, attr, buf);
3334}
3335
3336static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3337 struct kobj_attribute *attr, const char *buf, size_t len)
3338{
238d3c13 3339 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3340}
3341HSTATE_ATTR(nr_hugepages_mempolicy);
3342#endif
3343
3344
a3437870
NA
3345static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3346 struct kobj_attribute *attr, char *buf)
3347{
9a305230 3348 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3349 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3350}
adbe8726 3351
a3437870
NA
3352static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3353 struct kobj_attribute *attr, const char *buf, size_t count)
3354{
3355 int err;
3356 unsigned long input;
9a305230 3357 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3358
bae7f4ae 3359 if (hstate_is_gigantic(h))
adbe8726
EM
3360 return -EINVAL;
3361
3dbb95f7 3362 err = kstrtoul(buf, 10, &input);
a3437870 3363 if (err)
73ae31e5 3364 return err;
a3437870 3365
db71ef79 3366 spin_lock_irq(&hugetlb_lock);
a3437870 3367 h->nr_overcommit_huge_pages = input;
db71ef79 3368 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3369
3370 return count;
3371}
3372HSTATE_ATTR(nr_overcommit_hugepages);
3373
3374static ssize_t free_hugepages_show(struct kobject *kobj,
3375 struct kobj_attribute *attr, char *buf)
3376{
9a305230
LS
3377 struct hstate *h;
3378 unsigned long free_huge_pages;
3379 int nid;
3380
3381 h = kobj_to_hstate(kobj, &nid);
3382 if (nid == NUMA_NO_NODE)
3383 free_huge_pages = h->free_huge_pages;
3384 else
3385 free_huge_pages = h->free_huge_pages_node[nid];
3386
ae7a927d 3387 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3388}
3389HSTATE_ATTR_RO(free_hugepages);
3390
3391static ssize_t resv_hugepages_show(struct kobject *kobj,
3392 struct kobj_attribute *attr, char *buf)
3393{
9a305230 3394 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3395 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3396}
3397HSTATE_ATTR_RO(resv_hugepages);
3398
3399static ssize_t surplus_hugepages_show(struct kobject *kobj,
3400 struct kobj_attribute *attr, char *buf)
3401{
9a305230
LS
3402 struct hstate *h;
3403 unsigned long surplus_huge_pages;
3404 int nid;
3405
3406 h = kobj_to_hstate(kobj, &nid);
3407 if (nid == NUMA_NO_NODE)
3408 surplus_huge_pages = h->surplus_huge_pages;
3409 else
3410 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3411
ae7a927d 3412 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3413}
3414HSTATE_ATTR_RO(surplus_hugepages);
3415
3416static struct attribute *hstate_attrs[] = {
3417 &nr_hugepages_attr.attr,
3418 &nr_overcommit_hugepages_attr.attr,
3419 &free_hugepages_attr.attr,
3420 &resv_hugepages_attr.attr,
3421 &surplus_hugepages_attr.attr,
06808b08
LS
3422#ifdef CONFIG_NUMA
3423 &nr_hugepages_mempolicy_attr.attr,
3424#endif
a3437870
NA
3425 NULL,
3426};
3427
67e5ed96 3428static const struct attribute_group hstate_attr_group = {
a3437870
NA
3429 .attrs = hstate_attrs,
3430};
3431
094e9539
JM
3432static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3433 struct kobject **hstate_kobjs,
67e5ed96 3434 const struct attribute_group *hstate_attr_group)
a3437870
NA
3435{
3436 int retval;
972dc4de 3437 int hi = hstate_index(h);
a3437870 3438
9a305230
LS
3439 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3440 if (!hstate_kobjs[hi])
a3437870
NA
3441 return -ENOMEM;
3442
9a305230 3443 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 3444 if (retval) {
9a305230 3445 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
3446 hstate_kobjs[hi] = NULL;
3447 }
a3437870
NA
3448
3449 return retval;
3450}
3451
3452static void __init hugetlb_sysfs_init(void)
3453{
3454 struct hstate *h;
3455 int err;
3456
3457 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3458 if (!hugepages_kobj)
3459 return;
3460
3461 for_each_hstate(h) {
9a305230
LS
3462 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3463 hstate_kobjs, &hstate_attr_group);
a3437870 3464 if (err)
282f4214 3465 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3466 }
3467}
3468
9a305230
LS
3469#ifdef CONFIG_NUMA
3470
3471/*
3472 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3473 * with node devices in node_devices[] using a parallel array. The array
3474 * index of a node device or _hstate == node id.
3475 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3476 * the base kernel, on the hugetlb module.
3477 */
3478struct node_hstate {
3479 struct kobject *hugepages_kobj;
3480 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3481};
b4e289a6 3482static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3483
3484/*
10fbcf4c 3485 * A subset of global hstate attributes for node devices
9a305230
LS
3486 */
3487static struct attribute *per_node_hstate_attrs[] = {
3488 &nr_hugepages_attr.attr,
3489 &free_hugepages_attr.attr,
3490 &surplus_hugepages_attr.attr,
3491 NULL,
3492};
3493
67e5ed96 3494static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3495 .attrs = per_node_hstate_attrs,
3496};
3497
3498/*
10fbcf4c 3499 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3500 * Returns node id via non-NULL nidp.
3501 */
3502static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3503{
3504 int nid;
3505
3506 for (nid = 0; nid < nr_node_ids; nid++) {
3507 struct node_hstate *nhs = &node_hstates[nid];
3508 int i;
3509 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3510 if (nhs->hstate_kobjs[i] == kobj) {
3511 if (nidp)
3512 *nidp = nid;
3513 return &hstates[i];
3514 }
3515 }
3516
3517 BUG();
3518 return NULL;
3519}
3520
3521/*
10fbcf4c 3522 * Unregister hstate attributes from a single node device.
9a305230
LS
3523 * No-op if no hstate attributes attached.
3524 */
3cd8b44f 3525static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3526{
3527 struct hstate *h;
10fbcf4c 3528 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3529
3530 if (!nhs->hugepages_kobj)
9b5e5d0f 3531 return; /* no hstate attributes */
9a305230 3532
972dc4de
AK
3533 for_each_hstate(h) {
3534 int idx = hstate_index(h);
3535 if (nhs->hstate_kobjs[idx]) {
3536 kobject_put(nhs->hstate_kobjs[idx]);
3537 nhs->hstate_kobjs[idx] = NULL;
9a305230 3538 }
972dc4de 3539 }
9a305230
LS
3540
3541 kobject_put(nhs->hugepages_kobj);
3542 nhs->hugepages_kobj = NULL;
3543}
3544
9a305230
LS
3545
3546/*
10fbcf4c 3547 * Register hstate attributes for a single node device.
9a305230
LS
3548 * No-op if attributes already registered.
3549 */
3cd8b44f 3550static void hugetlb_register_node(struct node *node)
9a305230
LS
3551{
3552 struct hstate *h;
10fbcf4c 3553 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3554 int err;
3555
3556 if (nhs->hugepages_kobj)
3557 return; /* already allocated */
3558
3559 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3560 &node->dev.kobj);
9a305230
LS
3561 if (!nhs->hugepages_kobj)
3562 return;
3563
3564 for_each_hstate(h) {
3565 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3566 nhs->hstate_kobjs,
3567 &per_node_hstate_attr_group);
3568 if (err) {
282f4214 3569 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3570 h->name, node->dev.id);
9a305230
LS
3571 hugetlb_unregister_node(node);
3572 break;
3573 }
3574 }
3575}
3576
3577/*
9b5e5d0f 3578 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3579 * devices of nodes that have memory. All on-line nodes should have
3580 * registered their associated device by this time.
9a305230 3581 */
7d9ca000 3582static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3583{
3584 int nid;
3585
8cebfcd0 3586 for_each_node_state(nid, N_MEMORY) {
8732794b 3587 struct node *node = node_devices[nid];
10fbcf4c 3588 if (node->dev.id == nid)
9a305230
LS
3589 hugetlb_register_node(node);
3590 }
3591
3592 /*
10fbcf4c 3593 * Let the node device driver know we're here so it can
9a305230
LS
3594 * [un]register hstate attributes on node hotplug.
3595 */
3596 register_hugetlbfs_with_node(hugetlb_register_node,
3597 hugetlb_unregister_node);
3598}
3599#else /* !CONFIG_NUMA */
3600
3601static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3602{
3603 BUG();
3604 if (nidp)
3605 *nidp = -1;
3606 return NULL;
3607}
3608
9a305230
LS
3609static void hugetlb_register_all_nodes(void) { }
3610
3611#endif
3612
a3437870
NA
3613static int __init hugetlb_init(void)
3614{
8382d914
DB
3615 int i;
3616
d6995da3
MK
3617 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3618 __NR_HPAGEFLAGS);
3619
c2833a5b
MK
3620 if (!hugepages_supported()) {
3621 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3622 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3623 return 0;
c2833a5b 3624 }
a3437870 3625
282f4214
MK
3626 /*
3627 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3628 * architectures depend on setup being done here.
3629 */
3630 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3631 if (!parsed_default_hugepagesz) {
3632 /*
3633 * If we did not parse a default huge page size, set
3634 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3635 * number of huge pages for this default size was implicitly
3636 * specified, set that here as well.
3637 * Note that the implicit setting will overwrite an explicit
3638 * setting. A warning will be printed in this case.
3639 */
3640 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3641 if (default_hstate_max_huge_pages) {
3642 if (default_hstate.max_huge_pages) {
3643 char buf[32];
3644
3645 string_get_size(huge_page_size(&default_hstate),
3646 1, STRING_UNITS_2, buf, 32);
3647 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3648 default_hstate.max_huge_pages, buf);
3649 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3650 default_hstate_max_huge_pages);
3651 }
3652 default_hstate.max_huge_pages =
3653 default_hstate_max_huge_pages;
d715cf80 3654 }
f8b74815 3655 }
a3437870 3656
cf11e85f 3657 hugetlb_cma_check();
a3437870 3658 hugetlb_init_hstates();
aa888a74 3659 gather_bootmem_prealloc();
a3437870
NA
3660 report_hugepages();
3661
3662 hugetlb_sysfs_init();
9a305230 3663 hugetlb_register_all_nodes();
7179e7bf 3664 hugetlb_cgroup_file_init();
9a305230 3665
8382d914
DB
3666#ifdef CONFIG_SMP
3667 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3668#else
3669 num_fault_mutexes = 1;
3670#endif
c672c7f2 3671 hugetlb_fault_mutex_table =
6da2ec56
KC
3672 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3673 GFP_KERNEL);
c672c7f2 3674 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3675
3676 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3677 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3678 return 0;
3679}
3e89e1c5 3680subsys_initcall(hugetlb_init);
a3437870 3681
ae94da89
MK
3682/* Overwritten by architectures with more huge page sizes */
3683bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3684{
ae94da89 3685 return size == HPAGE_SIZE;
9fee021d
VT
3686}
3687
d00181b9 3688void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3689{
3690 struct hstate *h;
8faa8b07
AK
3691 unsigned long i;
3692
a3437870 3693 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3694 return;
3695 }
47d38344 3696 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3697 BUG_ON(order == 0);
47d38344 3698 h = &hstates[hugetlb_max_hstate++];
29383967 3699 mutex_init(&h->resize_lock);
a3437870 3700 h->order = order;
aca78307 3701 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
3702 for (i = 0; i < MAX_NUMNODES; ++i)
3703 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3704 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3705 h->next_nid_to_alloc = first_memory_node;
3706 h->next_nid_to_free = first_memory_node;
a3437870
NA
3707 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3708 huge_page_size(h)/1024);
77490587 3709 hugetlb_vmemmap_init(h);
8faa8b07 3710
a3437870
NA
3711 parsed_hstate = h;
3712}
3713
282f4214
MK
3714/*
3715 * hugepages command line processing
3716 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3717 * specification. If not, ignore the hugepages value. hugepages can also
3718 * be the first huge page command line option in which case it implicitly
3719 * specifies the number of huge pages for the default size.
3720 */
3721static int __init hugepages_setup(char *s)
a3437870
NA
3722{
3723 unsigned long *mhp;
8faa8b07 3724 static unsigned long *last_mhp;
a3437870 3725
9fee021d 3726 if (!parsed_valid_hugepagesz) {
282f4214 3727 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3728 parsed_valid_hugepagesz = true;
282f4214 3729 return 0;
9fee021d 3730 }
282f4214 3731
a3437870 3732 /*
282f4214
MK
3733 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3734 * yet, so this hugepages= parameter goes to the "default hstate".
3735 * Otherwise, it goes with the previously parsed hugepagesz or
3736 * default_hugepagesz.
a3437870 3737 */
9fee021d 3738 else if (!hugetlb_max_hstate)
a3437870
NA
3739 mhp = &default_hstate_max_huge_pages;
3740 else
3741 mhp = &parsed_hstate->max_huge_pages;
3742
8faa8b07 3743 if (mhp == last_mhp) {
282f4214
MK
3744 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3745 return 0;
8faa8b07
AK
3746 }
3747
a3437870
NA
3748 if (sscanf(s, "%lu", mhp) <= 0)
3749 *mhp = 0;
3750
8faa8b07
AK
3751 /*
3752 * Global state is always initialized later in hugetlb_init.
04adbc3f 3753 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
3754 * use the bootmem allocator.
3755 */
04adbc3f 3756 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
3757 hugetlb_hstate_alloc_pages(parsed_hstate);
3758
3759 last_mhp = mhp;
3760
a3437870
NA
3761 return 1;
3762}
282f4214 3763__setup("hugepages=", hugepages_setup);
e11bfbfc 3764
282f4214
MK
3765/*
3766 * hugepagesz command line processing
3767 * A specific huge page size can only be specified once with hugepagesz.
3768 * hugepagesz is followed by hugepages on the command line. The global
3769 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3770 * hugepagesz argument was valid.
3771 */
359f2544 3772static int __init hugepagesz_setup(char *s)
e11bfbfc 3773{
359f2544 3774 unsigned long size;
282f4214
MK
3775 struct hstate *h;
3776
3777 parsed_valid_hugepagesz = false;
359f2544
MK
3778 size = (unsigned long)memparse(s, NULL);
3779
3780 if (!arch_hugetlb_valid_size(size)) {
282f4214 3781 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3782 return 0;
3783 }
3784
282f4214
MK
3785 h = size_to_hstate(size);
3786 if (h) {
3787 /*
3788 * hstate for this size already exists. This is normally
3789 * an error, but is allowed if the existing hstate is the
3790 * default hstate. More specifically, it is only allowed if
3791 * the number of huge pages for the default hstate was not
3792 * previously specified.
3793 */
3794 if (!parsed_default_hugepagesz || h != &default_hstate ||
3795 default_hstate.max_huge_pages) {
3796 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3797 return 0;
3798 }
3799
3800 /*
3801 * No need to call hugetlb_add_hstate() as hstate already
3802 * exists. But, do set parsed_hstate so that a following
3803 * hugepages= parameter will be applied to this hstate.
3804 */
3805 parsed_hstate = h;
3806 parsed_valid_hugepagesz = true;
3807 return 1;
38237830
MK
3808 }
3809
359f2544 3810 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3811 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3812 return 1;
3813}
359f2544
MK
3814__setup("hugepagesz=", hugepagesz_setup);
3815
282f4214
MK
3816/*
3817 * default_hugepagesz command line input
3818 * Only one instance of default_hugepagesz allowed on command line.
3819 */
ae94da89 3820static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3821{
ae94da89
MK
3822 unsigned long size;
3823
282f4214 3824 parsed_valid_hugepagesz = false;
282f4214
MK
3825 if (parsed_default_hugepagesz) {
3826 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3827 return 0;
3828 }
3829
ae94da89
MK
3830 size = (unsigned long)memparse(s, NULL);
3831
3832 if (!arch_hugetlb_valid_size(size)) {
282f4214 3833 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3834 return 0;
3835 }
3836
282f4214
MK
3837 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3838 parsed_valid_hugepagesz = true;
3839 parsed_default_hugepagesz = true;
3840 default_hstate_idx = hstate_index(size_to_hstate(size));
3841
3842 /*
3843 * The number of default huge pages (for this size) could have been
3844 * specified as the first hugetlb parameter: hugepages=X. If so,
3845 * then default_hstate_max_huge_pages is set. If the default huge
3846 * page size is gigantic (>= MAX_ORDER), then the pages must be
3847 * allocated here from bootmem allocator.
3848 */
3849 if (default_hstate_max_huge_pages) {
3850 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3851 if (hstate_is_gigantic(&default_hstate))
3852 hugetlb_hstate_alloc_pages(&default_hstate);
3853 default_hstate_max_huge_pages = 0;
3854 }
3855
e11bfbfc
NP
3856 return 1;
3857}
ae94da89 3858__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3859
8ca39e68 3860static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3861{
3862 int node;
3863 unsigned int nr = 0;
8ca39e68
MS
3864 nodemask_t *mpol_allowed;
3865 unsigned int *array = h->free_huge_pages_node;
3866 gfp_t gfp_mask = htlb_alloc_mask(h);
3867
3868 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3869
8ca39e68 3870 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 3871 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
3872 nr += array[node];
3873 }
8a213460
NA
3874
3875 return nr;
3876}
3877
3878#ifdef CONFIG_SYSCTL
17743798
MS
3879static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3880 void *buffer, size_t *length,
3881 loff_t *ppos, unsigned long *out)
3882{
3883 struct ctl_table dup_table;
3884
3885 /*
3886 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3887 * can duplicate the @table and alter the duplicate of it.
3888 */
3889 dup_table = *table;
3890 dup_table.data = out;
3891
3892 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3893}
3894
06808b08
LS
3895static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3896 struct ctl_table *table, int write,
32927393 3897 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3898{
e5ff2159 3899 struct hstate *h = &default_hstate;
238d3c13 3900 unsigned long tmp = h->max_huge_pages;
08d4a246 3901 int ret;
e5ff2159 3902
457c1b27 3903 if (!hugepages_supported())
86613628 3904 return -EOPNOTSUPP;
457c1b27 3905
17743798
MS
3906 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3907 &tmp);
08d4a246
MH
3908 if (ret)
3909 goto out;
e5ff2159 3910
238d3c13
DR
3911 if (write)
3912 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3913 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3914out:
3915 return ret;
1da177e4 3916}
396faf03 3917
06808b08 3918int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3919 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3920{
3921
3922 return hugetlb_sysctl_handler_common(false, table, write,
3923 buffer, length, ppos);
3924}
3925
3926#ifdef CONFIG_NUMA
3927int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3928 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3929{
3930 return hugetlb_sysctl_handler_common(true, table, write,
3931 buffer, length, ppos);
3932}
3933#endif /* CONFIG_NUMA */
3934
a3d0c6aa 3935int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3936 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3937{
a5516438 3938 struct hstate *h = &default_hstate;
e5ff2159 3939 unsigned long tmp;
08d4a246 3940 int ret;
e5ff2159 3941
457c1b27 3942 if (!hugepages_supported())
86613628 3943 return -EOPNOTSUPP;
457c1b27 3944
c033a93c 3945 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3946
bae7f4ae 3947 if (write && hstate_is_gigantic(h))
adbe8726
EM
3948 return -EINVAL;
3949
17743798
MS
3950 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3951 &tmp);
08d4a246
MH
3952 if (ret)
3953 goto out;
e5ff2159
AK
3954
3955 if (write) {
db71ef79 3956 spin_lock_irq(&hugetlb_lock);
e5ff2159 3957 h->nr_overcommit_huge_pages = tmp;
db71ef79 3958 spin_unlock_irq(&hugetlb_lock);
e5ff2159 3959 }
08d4a246
MH
3960out:
3961 return ret;
a3d0c6aa
NA
3962}
3963
1da177e4
LT
3964#endif /* CONFIG_SYSCTL */
3965
e1759c21 3966void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3967{
fcb2b0c5
RG
3968 struct hstate *h;
3969 unsigned long total = 0;
3970
457c1b27
NA
3971 if (!hugepages_supported())
3972 return;
fcb2b0c5
RG
3973
3974 for_each_hstate(h) {
3975 unsigned long count = h->nr_huge_pages;
3976
aca78307 3977 total += huge_page_size(h) * count;
fcb2b0c5
RG
3978
3979 if (h == &default_hstate)
3980 seq_printf(m,
3981 "HugePages_Total: %5lu\n"
3982 "HugePages_Free: %5lu\n"
3983 "HugePages_Rsvd: %5lu\n"
3984 "HugePages_Surp: %5lu\n"
3985 "Hugepagesize: %8lu kB\n",
3986 count,
3987 h->free_huge_pages,
3988 h->resv_huge_pages,
3989 h->surplus_huge_pages,
aca78307 3990 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
3991 }
3992
aca78307 3993 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
3994}
3995
7981593b 3996int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3997{
a5516438 3998 struct hstate *h = &default_hstate;
7981593b 3999
457c1b27
NA
4000 if (!hugepages_supported())
4001 return 0;
7981593b
JP
4002
4003 return sysfs_emit_at(buf, len,
4004 "Node %d HugePages_Total: %5u\n"
4005 "Node %d HugePages_Free: %5u\n"
4006 "Node %d HugePages_Surp: %5u\n",
4007 nid, h->nr_huge_pages_node[nid],
4008 nid, h->free_huge_pages_node[nid],
4009 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
4010}
4011
949f7ec5
DR
4012void hugetlb_show_meminfo(void)
4013{
4014 struct hstate *h;
4015 int nid;
4016
457c1b27
NA
4017 if (!hugepages_supported())
4018 return;
4019
949f7ec5
DR
4020 for_each_node_state(nid, N_MEMORY)
4021 for_each_hstate(h)
4022 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4023 nid,
4024 h->nr_huge_pages_node[nid],
4025 h->free_huge_pages_node[nid],
4026 h->surplus_huge_pages_node[nid],
aca78307 4027 huge_page_size(h) / SZ_1K);
949f7ec5
DR
4028}
4029
5d317b2b
NH
4030void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4031{
4032 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4033 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4034}
4035
1da177e4
LT
4036/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4037unsigned long hugetlb_total_pages(void)
4038{
d0028588
WL
4039 struct hstate *h;
4040 unsigned long nr_total_pages = 0;
4041
4042 for_each_hstate(h)
4043 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4044 return nr_total_pages;
1da177e4 4045}
1da177e4 4046
a5516438 4047static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
4048{
4049 int ret = -ENOMEM;
4050
0aa7f354
ML
4051 if (!delta)
4052 return 0;
4053
db71ef79 4054 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
4055 /*
4056 * When cpuset is configured, it breaks the strict hugetlb page
4057 * reservation as the accounting is done on a global variable. Such
4058 * reservation is completely rubbish in the presence of cpuset because
4059 * the reservation is not checked against page availability for the
4060 * current cpuset. Application can still potentially OOM'ed by kernel
4061 * with lack of free htlb page in cpuset that the task is in.
4062 * Attempt to enforce strict accounting with cpuset is almost
4063 * impossible (or too ugly) because cpuset is too fluid that
4064 * task or memory node can be dynamically moved between cpusets.
4065 *
4066 * The change of semantics for shared hugetlb mapping with cpuset is
4067 * undesirable. However, in order to preserve some of the semantics,
4068 * we fall back to check against current free page availability as
4069 * a best attempt and hopefully to minimize the impact of changing
4070 * semantics that cpuset has.
8ca39e68
MS
4071 *
4072 * Apart from cpuset, we also have memory policy mechanism that
4073 * also determines from which node the kernel will allocate memory
4074 * in a NUMA system. So similar to cpuset, we also should consider
4075 * the memory policy of the current task. Similar to the description
4076 * above.
fc1b8a73
MG
4077 */
4078 if (delta > 0) {
a5516438 4079 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
4080 goto out;
4081
8ca39e68 4082 if (delta > allowed_mems_nr(h)) {
a5516438 4083 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
4084 goto out;
4085 }
4086 }
4087
4088 ret = 0;
4089 if (delta < 0)
a5516438 4090 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
4091
4092out:
db71ef79 4093 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
4094 return ret;
4095}
4096
84afd99b
AW
4097static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4098{
f522c3ac 4099 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
4100
4101 /*
4102 * This new VMA should share its siblings reservation map if present.
4103 * The VMA will only ever have a valid reservation map pointer where
4104 * it is being copied for another still existing VMA. As that VMA
25985edc 4105 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
4106 * after this open call completes. It is therefore safe to take a
4107 * new reference here without additional locking.
4108 */
09a26e83
MK
4109 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4110 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
f522c3ac 4111 kref_get(&resv->refs);
09a26e83 4112 }
84afd99b
AW
4113}
4114
a1e78772
MG
4115static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4116{
a5516438 4117 struct hstate *h = hstate_vma(vma);
f522c3ac 4118 struct resv_map *resv = vma_resv_map(vma);
90481622 4119 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 4120 unsigned long reserve, start, end;
1c5ecae3 4121 long gbl_reserve;
84afd99b 4122
4e35f483
JK
4123 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4124 return;
84afd99b 4125
4e35f483
JK
4126 start = vma_hugecache_offset(h, vma, vma->vm_start);
4127 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 4128
4e35f483 4129 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 4130 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 4131 if (reserve) {
1c5ecae3
MK
4132 /*
4133 * Decrement reserve counts. The global reserve count may be
4134 * adjusted if the subpool has a minimum size.
4135 */
4136 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4137 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 4138 }
e9fe92ae
MA
4139
4140 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
4141}
4142
31383c68
DW
4143static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4144{
4145 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4146 return -EINVAL;
4147 return 0;
4148}
4149
05ea8860
DW
4150static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4151{
aca78307 4152 return huge_page_size(hstate_vma(vma));
05ea8860
DW
4153}
4154
1da177e4
LT
4155/*
4156 * We cannot handle pagefaults against hugetlb pages at all. They cause
4157 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 4158 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
4159 * this far.
4160 */
b3ec9f33 4161static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
4162{
4163 BUG();
d0217ac0 4164 return 0;
1da177e4
LT
4165}
4166
eec3636a
JC
4167/*
4168 * When a new function is introduced to vm_operations_struct and added
4169 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4170 * This is because under System V memory model, mappings created via
4171 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4172 * their original vm_ops are overwritten with shm_vm_ops.
4173 */
f0f37e2f 4174const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 4175 .fault = hugetlb_vm_op_fault,
84afd99b 4176 .open = hugetlb_vm_op_open,
a1e78772 4177 .close = hugetlb_vm_op_close,
dd3b614f 4178 .may_split = hugetlb_vm_op_split,
05ea8860 4179 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
4180};
4181
1e8f889b
DG
4182static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4183 int writable)
63551ae0
DG
4184{
4185 pte_t entry;
79c1c594 4186 unsigned int shift = huge_page_shift(hstate_vma(vma));
63551ae0 4187
1e8f889b 4188 if (writable) {
106c992a
GS
4189 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4190 vma->vm_page_prot)));
63551ae0 4191 } else {
106c992a
GS
4192 entry = huge_pte_wrprotect(mk_huge_pte(page,
4193 vma->vm_page_prot));
63551ae0
DG
4194 }
4195 entry = pte_mkyoung(entry);
4196 entry = pte_mkhuge(entry);
79c1c594 4197 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
63551ae0
DG
4198
4199 return entry;
4200}
4201
1e8f889b
DG
4202static void set_huge_ptep_writable(struct vm_area_struct *vma,
4203 unsigned long address, pte_t *ptep)
4204{
4205 pte_t entry;
4206
106c992a 4207 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 4208 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 4209 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
4210}
4211
d5ed7444 4212bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
4213{
4214 swp_entry_t swp;
4215
4216 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 4217 return false;
4a705fef 4218 swp = pte_to_swp_entry(pte);
d79d176a 4219 if (is_migration_entry(swp))
d5ed7444 4220 return true;
4a705fef 4221 else
d5ed7444 4222 return false;
4a705fef
NH
4223}
4224
3e5c3600 4225static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
4226{
4227 swp_entry_t swp;
4228
4229 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 4230 return false;
4a705fef 4231 swp = pte_to_swp_entry(pte);
d79d176a 4232 if (is_hwpoison_entry(swp))
3e5c3600 4233 return true;
4a705fef 4234 else
3e5c3600 4235 return false;
4a705fef 4236}
1e8f889b 4237
4eae4efa
PX
4238static void
4239hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4240 struct page *new_page)
4241{
4242 __SetPageUptodate(new_page);
4243 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4244 hugepage_add_new_anon_rmap(new_page, vma, addr);
4245 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4246 ClearHPageRestoreReserve(new_page);
4247 SetHPageMigratable(new_page);
4248}
4249
63551ae0
DG
4250int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4251 struct vm_area_struct *vma)
4252{
5e41540c 4253 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 4254 struct page *ptepage;
1c59827d 4255 unsigned long addr;
ca6eb14d 4256 bool cow = is_cow_mapping(vma->vm_flags);
a5516438
AK
4257 struct hstate *h = hstate_vma(vma);
4258 unsigned long sz = huge_page_size(h);
4eae4efa 4259 unsigned long npages = pages_per_huge_page(h);
c0d0381a 4260 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 4261 struct mmu_notifier_range range;
e8569dd2 4262 int ret = 0;
1e8f889b 4263
ac46d4f3 4264 if (cow) {
7269f999 4265 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 4266 vma->vm_start,
ac46d4f3
JG
4267 vma->vm_end);
4268 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
4269 } else {
4270 /*
4271 * For shared mappings i_mmap_rwsem must be held to call
4272 * huge_pte_alloc, otherwise the returned ptep could go
4273 * away if part of a shared pmd and another thread calls
4274 * huge_pmd_unshare.
4275 */
4276 i_mmap_lock_read(mapping);
ac46d4f3 4277 }
e8569dd2 4278
a5516438 4279 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 4280 spinlock_t *src_ptl, *dst_ptl;
7868a208 4281 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
4282 if (!src_pte)
4283 continue;
aec44e0f 4284 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
e8569dd2
AS
4285 if (!dst_pte) {
4286 ret = -ENOMEM;
4287 break;
4288 }
c5c99429 4289
5e41540c
MK
4290 /*
4291 * If the pagetables are shared don't copy or take references.
4292 * dst_pte == src_pte is the common case of src/dest sharing.
4293 *
4294 * However, src could have 'unshared' and dst shares with
4295 * another vma. If dst_pte !none, this implies sharing.
4296 * Check here before taking page table lock, and once again
4297 * after taking the lock below.
4298 */
4299 dst_entry = huge_ptep_get(dst_pte);
4300 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
4301 continue;
4302
cb900f41
KS
4303 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4304 src_ptl = huge_pte_lockptr(h, src, src_pte);
4305 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 4306 entry = huge_ptep_get(src_pte);
5e41540c 4307 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 4308again:
5e41540c
MK
4309 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4310 /*
4311 * Skip if src entry none. Also, skip in the
4312 * unlikely case dst entry !none as this implies
4313 * sharing with another vma.
4314 */
4a705fef
NH
4315 ;
4316 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4317 is_hugetlb_entry_hwpoisoned(entry))) {
4318 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4319
4dd845b5 4320 if (is_writable_migration_entry(swp_entry) && cow) {
4a705fef
NH
4321 /*
4322 * COW mappings require pages in both
4323 * parent and child to be set to read.
4324 */
4dd845b5
AP
4325 swp_entry = make_readable_migration_entry(
4326 swp_offset(swp_entry));
4a705fef 4327 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
4328 set_huge_swap_pte_at(src, addr, src_pte,
4329 entry, sz);
4a705fef 4330 }
e5251fd4 4331 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 4332 } else {
4eae4efa
PX
4333 entry = huge_ptep_get(src_pte);
4334 ptepage = pte_page(entry);
4335 get_page(ptepage);
4336
4337 /*
4338 * This is a rare case where we see pinned hugetlb
4339 * pages while they're prone to COW. We need to do the
4340 * COW earlier during fork.
4341 *
4342 * When pre-allocating the page or copying data, we
4343 * need to be without the pgtable locks since we could
4344 * sleep during the process.
4345 */
4346 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4347 pte_t src_pte_old = entry;
4348 struct page *new;
4349
4350 spin_unlock(src_ptl);
4351 spin_unlock(dst_ptl);
4352 /* Do not use reserve as it's private owned */
4353 new = alloc_huge_page(vma, addr, 1);
4354 if (IS_ERR(new)) {
4355 put_page(ptepage);
4356 ret = PTR_ERR(new);
4357 break;
4358 }
4359 copy_user_huge_page(new, ptepage, addr, vma,
4360 npages);
4361 put_page(ptepage);
4362
4363 /* Install the new huge page if src pte stable */
4364 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4365 src_ptl = huge_pte_lockptr(h, src, src_pte);
4366 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4367 entry = huge_ptep_get(src_pte);
4368 if (!pte_same(src_pte_old, entry)) {
846be085
MK
4369 restore_reserve_on_error(h, vma, addr,
4370 new);
4eae4efa
PX
4371 put_page(new);
4372 /* dst_entry won't change as in child */
4373 goto again;
4374 }
4375 hugetlb_install_page(vma, dst_pte, addr, new);
4376 spin_unlock(src_ptl);
4377 spin_unlock(dst_ptl);
4378 continue;
4379 }
4380
34ee645e 4381 if (cow) {
0f10851e
JG
4382 /*
4383 * No need to notify as we are downgrading page
4384 * table protection not changing it to point
4385 * to a new page.
4386 *
ad56b738 4387 * See Documentation/vm/mmu_notifier.rst
0f10851e 4388 */
7f2e9525 4389 huge_ptep_set_wrprotect(src, addr, src_pte);
84894e1c 4390 entry = huge_pte_wrprotect(entry);
34ee645e 4391 }
4eae4efa 4392
53f9263b 4393 page_dup_rmap(ptepage, true);
1c59827d 4394 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 4395 hugetlb_count_add(npages, dst);
1c59827d 4396 }
cb900f41
KS
4397 spin_unlock(src_ptl);
4398 spin_unlock(dst_ptl);
63551ae0 4399 }
63551ae0 4400
e8569dd2 4401 if (cow)
ac46d4f3 4402 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
4403 else
4404 i_mmap_unlock_read(mapping);
e8569dd2
AS
4405
4406 return ret;
63551ae0
DG
4407}
4408
24669e58
AK
4409void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4410 unsigned long start, unsigned long end,
4411 struct page *ref_page)
63551ae0
DG
4412{
4413 struct mm_struct *mm = vma->vm_mm;
4414 unsigned long address;
c7546f8f 4415 pte_t *ptep;
63551ae0 4416 pte_t pte;
cb900f41 4417 spinlock_t *ptl;
63551ae0 4418 struct page *page;
a5516438
AK
4419 struct hstate *h = hstate_vma(vma);
4420 unsigned long sz = huge_page_size(h);
ac46d4f3 4421 struct mmu_notifier_range range;
a5516438 4422
63551ae0 4423 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
4424 BUG_ON(start & ~huge_page_mask(h));
4425 BUG_ON(end & ~huge_page_mask(h));
63551ae0 4426
07e32661
AK
4427 /*
4428 * This is a hugetlb vma, all the pte entries should point
4429 * to huge page.
4430 */
ed6a7935 4431 tlb_change_page_size(tlb, sz);
24669e58 4432 tlb_start_vma(tlb, vma);
dff11abe
MK
4433
4434 /*
4435 * If sharing possible, alert mmu notifiers of worst case.
4436 */
6f4f13e8
JG
4437 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4438 end);
ac46d4f3
JG
4439 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4440 mmu_notifier_invalidate_range_start(&range);
569f48b8 4441 address = start;
569f48b8 4442 for (; address < end; address += sz) {
7868a208 4443 ptep = huge_pte_offset(mm, address, sz);
4c887265 4444 if (!ptep)
c7546f8f
DG
4445 continue;
4446
cb900f41 4447 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 4448 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 4449 spin_unlock(ptl);
dff11abe
MK
4450 /*
4451 * We just unmapped a page of PMDs by clearing a PUD.
4452 * The caller's TLB flush range should cover this area.
4453 */
31d49da5
AK
4454 continue;
4455 }
39dde65c 4456
6629326b 4457 pte = huge_ptep_get(ptep);
31d49da5
AK
4458 if (huge_pte_none(pte)) {
4459 spin_unlock(ptl);
4460 continue;
4461 }
6629326b
HD
4462
4463 /*
9fbc1f63
NH
4464 * Migrating hugepage or HWPoisoned hugepage is already
4465 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 4466 */
9fbc1f63 4467 if (unlikely(!pte_present(pte))) {
9386fac3 4468 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
4469 spin_unlock(ptl);
4470 continue;
8c4894c6 4471 }
6629326b
HD
4472
4473 page = pte_page(pte);
04f2cbe3
MG
4474 /*
4475 * If a reference page is supplied, it is because a specific
4476 * page is being unmapped, not a range. Ensure the page we
4477 * are about to unmap is the actual page of interest.
4478 */
4479 if (ref_page) {
31d49da5
AK
4480 if (page != ref_page) {
4481 spin_unlock(ptl);
4482 continue;
4483 }
04f2cbe3
MG
4484 /*
4485 * Mark the VMA as having unmapped its page so that
4486 * future faults in this VMA will fail rather than
4487 * looking like data was lost
4488 */
4489 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4490 }
4491
c7546f8f 4492 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 4493 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 4494 if (huge_pte_dirty(pte))
6649a386 4495 set_page_dirty(page);
9e81130b 4496
5d317b2b 4497 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4498 page_remove_rmap(page, true);
31d49da5 4499
cb900f41 4500 spin_unlock(ptl);
e77b0852 4501 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4502 /*
4503 * Bail out after unmapping reference page if supplied
4504 */
4505 if (ref_page)
4506 break;
fe1668ae 4507 }
ac46d4f3 4508 mmu_notifier_invalidate_range_end(&range);
24669e58 4509 tlb_end_vma(tlb, vma);
1da177e4 4510}
63551ae0 4511
d833352a
MG
4512void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4513 struct vm_area_struct *vma, unsigned long start,
4514 unsigned long end, struct page *ref_page)
4515{
4516 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4517
4518 /*
4519 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4520 * test will fail on a vma being torn down, and not grab a page table
4521 * on its way out. We're lucky that the flag has such an appropriate
4522 * name, and can in fact be safely cleared here. We could clear it
4523 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4524 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4525 * because in the context this is called, the VMA is about to be
c8c06efa 4526 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4527 */
4528 vma->vm_flags &= ~VM_MAYSHARE;
4529}
4530
502717f4 4531void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4532 unsigned long end, struct page *ref_page)
502717f4 4533{
24669e58 4534 struct mmu_gather tlb;
dff11abe 4535
a72afd87 4536 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 4537 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 4538 tlb_finish_mmu(&tlb);
502717f4
KC
4539}
4540
04f2cbe3
MG
4541/*
4542 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 4543 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
4544 * from other VMAs and let the children be SIGKILLed if they are faulting the
4545 * same region.
4546 */
2f4612af
DB
4547static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4548 struct page *page, unsigned long address)
04f2cbe3 4549{
7526674d 4550 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4551 struct vm_area_struct *iter_vma;
4552 struct address_space *mapping;
04f2cbe3
MG
4553 pgoff_t pgoff;
4554
4555 /*
4556 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4557 * from page cache lookup which is in HPAGE_SIZE units.
4558 */
7526674d 4559 address = address & huge_page_mask(h);
36e4f20a
MH
4560 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4561 vma->vm_pgoff;
93c76a3d 4562 mapping = vma->vm_file->f_mapping;
04f2cbe3 4563
4eb2b1dc
MG
4564 /*
4565 * Take the mapping lock for the duration of the table walk. As
4566 * this mapping should be shared between all the VMAs,
4567 * __unmap_hugepage_range() is called as the lock is already held
4568 */
83cde9e8 4569 i_mmap_lock_write(mapping);
6b2dbba8 4570 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4571 /* Do not unmap the current VMA */
4572 if (iter_vma == vma)
4573 continue;
4574
2f84a899
MG
4575 /*
4576 * Shared VMAs have their own reserves and do not affect
4577 * MAP_PRIVATE accounting but it is possible that a shared
4578 * VMA is using the same page so check and skip such VMAs.
4579 */
4580 if (iter_vma->vm_flags & VM_MAYSHARE)
4581 continue;
4582
04f2cbe3
MG
4583 /*
4584 * Unmap the page from other VMAs without their own reserves.
4585 * They get marked to be SIGKILLed if they fault in these
4586 * areas. This is because a future no-page fault on this VMA
4587 * could insert a zeroed page instead of the data existing
4588 * from the time of fork. This would look like data corruption
4589 */
4590 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4591 unmap_hugepage_range(iter_vma, address,
4592 address + huge_page_size(h), page);
04f2cbe3 4593 }
83cde9e8 4594 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4595}
4596
0fe6e20b
NH
4597/*
4598 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4599 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4600 * cannot race with other handlers or page migration.
4601 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4602 */
2b740303 4603static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4604 unsigned long address, pte_t *ptep,
3999f52e 4605 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4606{
3999f52e 4607 pte_t pte;
a5516438 4608 struct hstate *h = hstate_vma(vma);
1e8f889b 4609 struct page *old_page, *new_page;
2b740303
SJ
4610 int outside_reserve = 0;
4611 vm_fault_t ret = 0;
974e6d66 4612 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4613 struct mmu_notifier_range range;
1e8f889b 4614
3999f52e 4615 pte = huge_ptep_get(ptep);
1e8f889b
DG
4616 old_page = pte_page(pte);
4617
04f2cbe3 4618retry_avoidcopy:
1e8f889b
DG
4619 /* If no-one else is actually using this page, avoid the copy
4620 * and just make the page writable */
37a2140d 4621 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4622 page_move_anon_rmap(old_page, vma);
5b7a1d40 4623 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4624 return 0;
1e8f889b
DG
4625 }
4626
04f2cbe3
MG
4627 /*
4628 * If the process that created a MAP_PRIVATE mapping is about to
4629 * perform a COW due to a shared page count, attempt to satisfy
4630 * the allocation without using the existing reserves. The pagecache
4631 * page is used to determine if the reserve at this address was
4632 * consumed or not. If reserves were used, a partial faulted mapping
4633 * at the time of fork() could consume its reserves on COW instead
4634 * of the full address range.
4635 */
5944d011 4636 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4637 old_page != pagecache_page)
4638 outside_reserve = 1;
4639
09cbfeaf 4640 get_page(old_page);
b76c8cfb 4641
ad4404a2
DB
4642 /*
4643 * Drop page table lock as buddy allocator may be called. It will
4644 * be acquired again before returning to the caller, as expected.
4645 */
cb900f41 4646 spin_unlock(ptl);
5b7a1d40 4647 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4648
2fc39cec 4649 if (IS_ERR(new_page)) {
04f2cbe3
MG
4650 /*
4651 * If a process owning a MAP_PRIVATE mapping fails to COW,
4652 * it is due to references held by a child and an insufficient
4653 * huge page pool. To guarantee the original mappers
4654 * reliability, unmap the page from child processes. The child
4655 * may get SIGKILLed if it later faults.
4656 */
4657 if (outside_reserve) {
e7dd91c4
MK
4658 struct address_space *mapping = vma->vm_file->f_mapping;
4659 pgoff_t idx;
4660 u32 hash;
4661
09cbfeaf 4662 put_page(old_page);
04f2cbe3 4663 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4664 /*
4665 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4666 * unmapping. unmapping needs to hold i_mmap_rwsem
4667 * in write mode. Dropping i_mmap_rwsem in read mode
4668 * here is OK as COW mappings do not interact with
4669 * PMD sharing.
4670 *
4671 * Reacquire both after unmap operation.
4672 */
4673 idx = vma_hugecache_offset(h, vma, haddr);
4674 hash = hugetlb_fault_mutex_hash(mapping, idx);
4675 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4676 i_mmap_unlock_read(mapping);
4677
5b7a1d40 4678 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4679
4680 i_mmap_lock_read(mapping);
4681 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4682 spin_lock(ptl);
5b7a1d40 4683 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4684 if (likely(ptep &&
4685 pte_same(huge_ptep_get(ptep), pte)))
4686 goto retry_avoidcopy;
4687 /*
4688 * race occurs while re-acquiring page table
4689 * lock, and our job is done.
4690 */
4691 return 0;
04f2cbe3
MG
4692 }
4693
2b740303 4694 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4695 goto out_release_old;
1e8f889b
DG
4696 }
4697
0fe6e20b
NH
4698 /*
4699 * When the original hugepage is shared one, it does not have
4700 * anon_vma prepared.
4701 */
44e2aa93 4702 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4703 ret = VM_FAULT_OOM;
4704 goto out_release_all;
44e2aa93 4705 }
0fe6e20b 4706
974e6d66 4707 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4708 pages_per_huge_page(h));
0ed361de 4709 __SetPageUptodate(new_page);
1e8f889b 4710
7269f999 4711 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4712 haddr + huge_page_size(h));
ac46d4f3 4713 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4714
b76c8cfb 4715 /*
cb900f41 4716 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4717 * before the page tables are altered
4718 */
cb900f41 4719 spin_lock(ptl);
5b7a1d40 4720 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4721 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 4722 ClearHPageRestoreReserve(new_page);
07443a85 4723
1e8f889b 4724 /* Break COW */
5b7a1d40 4725 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4726 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4727 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4728 make_huge_pte(vma, new_page, 1));
d281ee61 4729 page_remove_rmap(old_page, true);
5b7a1d40 4730 hugepage_add_new_anon_rmap(new_page, vma, haddr);
8f251a3d 4731 SetHPageMigratable(new_page);
1e8f889b
DG
4732 /* Make the old page be freed below */
4733 new_page = old_page;
4734 }
cb900f41 4735 spin_unlock(ptl);
ac46d4f3 4736 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4737out_release_all:
c7b1850d
MK
4738 /* No restore in case of successful pagetable update (Break COW) */
4739 if (new_page != old_page)
4740 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4741 put_page(new_page);
ad4404a2 4742out_release_old:
09cbfeaf 4743 put_page(old_page);
8312034f 4744
ad4404a2
DB
4745 spin_lock(ptl); /* Caller expects lock to be held */
4746 return ret;
1e8f889b
DG
4747}
4748
04f2cbe3 4749/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4750static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4751 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4752{
4753 struct address_space *mapping;
e7c4b0bf 4754 pgoff_t idx;
04f2cbe3
MG
4755
4756 mapping = vma->vm_file->f_mapping;
a5516438 4757 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4758
4759 return find_lock_page(mapping, idx);
4760}
4761
3ae77f43
HD
4762/*
4763 * Return whether there is a pagecache page to back given address within VMA.
4764 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4765 */
4766static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4767 struct vm_area_struct *vma, unsigned long address)
4768{
4769 struct address_space *mapping;
4770 pgoff_t idx;
4771 struct page *page;
4772
4773 mapping = vma->vm_file->f_mapping;
4774 idx = vma_hugecache_offset(h, vma, address);
4775
4776 page = find_get_page(mapping, idx);
4777 if (page)
4778 put_page(page);
4779 return page != NULL;
4780}
4781
ab76ad54
MK
4782int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4783 pgoff_t idx)
4784{
4785 struct inode *inode = mapping->host;
4786 struct hstate *h = hstate_inode(inode);
4787 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4788
4789 if (err)
4790 return err;
d6995da3 4791 ClearHPageRestoreReserve(page);
ab76ad54 4792
22146c3c
MK
4793 /*
4794 * set page dirty so that it will not be removed from cache/file
4795 * by non-hugetlbfs specific code paths.
4796 */
4797 set_page_dirty(page);
4798
ab76ad54
MK
4799 spin_lock(&inode->i_lock);
4800 inode->i_blocks += blocks_per_huge_page(h);
4801 spin_unlock(&inode->i_lock);
4802 return 0;
4803}
4804
7677f7fd
AR
4805static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4806 struct address_space *mapping,
4807 pgoff_t idx,
4808 unsigned int flags,
4809 unsigned long haddr,
4810 unsigned long reason)
4811{
4812 vm_fault_t ret;
4813 u32 hash;
4814 struct vm_fault vmf = {
4815 .vma = vma,
4816 .address = haddr,
4817 .flags = flags,
4818
4819 /*
4820 * Hard to debug if it ends up being
4821 * used by a callee that assumes
4822 * something about the other
4823 * uninitialized fields... same as in
4824 * memory.c
4825 */
4826 };
4827
4828 /*
4829 * hugetlb_fault_mutex and i_mmap_rwsem must be
4830 * dropped before handling userfault. Reacquire
4831 * after handling fault to make calling code simpler.
4832 */
4833 hash = hugetlb_fault_mutex_hash(mapping, idx);
4834 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4835 i_mmap_unlock_read(mapping);
4836 ret = handle_userfault(&vmf, reason);
4837 i_mmap_lock_read(mapping);
4838 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4839
4840 return ret;
4841}
4842
2b740303
SJ
4843static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4844 struct vm_area_struct *vma,
4845 struct address_space *mapping, pgoff_t idx,
4846 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4847{
a5516438 4848 struct hstate *h = hstate_vma(vma);
2b740303 4849 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4850 int anon_rmap = 0;
4c887265 4851 unsigned long size;
4c887265 4852 struct page *page;
1e8f889b 4853 pte_t new_pte;
cb900f41 4854 spinlock_t *ptl;
285b8dca 4855 unsigned long haddr = address & huge_page_mask(h);
c7b1850d 4856 bool new_page, new_pagecache_page = false;
4c887265 4857
04f2cbe3
MG
4858 /*
4859 * Currently, we are forced to kill the process in the event the
4860 * original mapper has unmapped pages from the child due to a failed
25985edc 4861 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4862 */
4863 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4864 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4865 current->pid);
04f2cbe3
MG
4866 return ret;
4867 }
4868
4c887265 4869 /*
87bf91d3
MK
4870 * We can not race with truncation due to holding i_mmap_rwsem.
4871 * i_size is modified when holding i_mmap_rwsem, so check here
4872 * once for faults beyond end of file.
4c887265 4873 */
87bf91d3
MK
4874 size = i_size_read(mapping->host) >> huge_page_shift(h);
4875 if (idx >= size)
4876 goto out;
4877
6bda666a 4878retry:
c7b1850d 4879 new_page = false;
6bda666a
CL
4880 page = find_lock_page(mapping, idx);
4881 if (!page) {
7677f7fd 4882 /* Check for page in userfault range */
1a1aad8a 4883 if (userfaultfd_missing(vma)) {
7677f7fd
AR
4884 ret = hugetlb_handle_userfault(vma, mapping, idx,
4885 flags, haddr,
4886 VM_UFFD_MISSING);
1a1aad8a
MK
4887 goto out;
4888 }
4889
285b8dca 4890 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4891 if (IS_ERR(page)) {
4643d67e
MK
4892 /*
4893 * Returning error will result in faulting task being
4894 * sent SIGBUS. The hugetlb fault mutex prevents two
4895 * tasks from racing to fault in the same page which
4896 * could result in false unable to allocate errors.
4897 * Page migration does not take the fault mutex, but
4898 * does a clear then write of pte's under page table
4899 * lock. Page fault code could race with migration,
4900 * notice the clear pte and try to allocate a page
4901 * here. Before returning error, get ptl and make
4902 * sure there really is no pte entry.
4903 */
4904 ptl = huge_pte_lock(h, mm, ptep);
d83e6c8a
ML
4905 ret = 0;
4906 if (huge_pte_none(huge_ptep_get(ptep)))
4907 ret = vmf_error(PTR_ERR(page));
4643d67e 4908 spin_unlock(ptl);
6bda666a
CL
4909 goto out;
4910 }
47ad8475 4911 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4912 __SetPageUptodate(page);
cb6acd01 4913 new_page = true;
ac9b9c66 4914
f83a275d 4915 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4916 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4917 if (err) {
4918 put_page(page);
6bda666a
CL
4919 if (err == -EEXIST)
4920 goto retry;
4921 goto out;
4922 }
c7b1850d 4923 new_pagecache_page = true;
23be7468 4924 } else {
6bda666a 4925 lock_page(page);
0fe6e20b
NH
4926 if (unlikely(anon_vma_prepare(vma))) {
4927 ret = VM_FAULT_OOM;
4928 goto backout_unlocked;
4929 }
409eb8c2 4930 anon_rmap = 1;
23be7468 4931 }
0fe6e20b 4932 } else {
998b4382
NH
4933 /*
4934 * If memory error occurs between mmap() and fault, some process
4935 * don't have hwpoisoned swap entry for errored virtual address.
4936 * So we need to block hugepage fault by PG_hwpoison bit check.
4937 */
4938 if (unlikely(PageHWPoison(page))) {
0eb98f15 4939 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4940 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4941 goto backout_unlocked;
4942 }
7677f7fd
AR
4943
4944 /* Check for page in userfault range. */
4945 if (userfaultfd_minor(vma)) {
4946 unlock_page(page);
4947 put_page(page);
4948 ret = hugetlb_handle_userfault(vma, mapping, idx,
4949 flags, haddr,
4950 VM_UFFD_MINOR);
4951 goto out;
4952 }
6bda666a 4953 }
1e8f889b 4954
57303d80
AW
4955 /*
4956 * If we are going to COW a private mapping later, we examine the
4957 * pending reservations for this page now. This will ensure that
4958 * any allocations necessary to record that reservation occur outside
4959 * the spinlock.
4960 */
5e911373 4961 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4962 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4963 ret = VM_FAULT_OOM;
4964 goto backout_unlocked;
4965 }
5e911373 4966 /* Just decrements count, does not deallocate */
285b8dca 4967 vma_end_reservation(h, vma, haddr);
5e911373 4968 }
57303d80 4969
8bea8052 4970 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4971 ret = 0;
7f2e9525 4972 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4973 goto backout;
4974
07443a85 4975 if (anon_rmap) {
d6995da3 4976 ClearHPageRestoreReserve(page);
285b8dca 4977 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4978 } else
53f9263b 4979 page_dup_rmap(page, true);
1e8f889b
DG
4980 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4981 && (vma->vm_flags & VM_SHARED)));
285b8dca 4982 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4983
5d317b2b 4984 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4985 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4986 /* Optimization, do the COW without a second fault */
974e6d66 4987 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4988 }
4989
cb900f41 4990 spin_unlock(ptl);
cb6acd01
MK
4991
4992 /*
8f251a3d
MK
4993 * Only set HPageMigratable in newly allocated pages. Existing pages
4994 * found in the pagecache may not have HPageMigratableset if they have
4995 * been isolated for migration.
cb6acd01
MK
4996 */
4997 if (new_page)
8f251a3d 4998 SetHPageMigratable(page);
cb6acd01 4999
4c887265
AL
5000 unlock_page(page);
5001out:
ac9b9c66 5002 return ret;
4c887265
AL
5003
5004backout:
cb900f41 5005 spin_unlock(ptl);
2b26736c 5006backout_unlocked:
4c887265 5007 unlock_page(page);
c7b1850d
MK
5008 /* restore reserve for newly allocated pages not in page cache */
5009 if (new_page && !new_pagecache_page)
5010 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
5011 put_page(page);
5012 goto out;
ac9b9c66
HD
5013}
5014
8382d914 5015#ifdef CONFIG_SMP
188b04a7 5016u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5017{
5018 unsigned long key[2];
5019 u32 hash;
5020
1b426bac
MK
5021 key[0] = (unsigned long) mapping;
5022 key[1] = idx;
8382d914 5023
55254636 5024 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
5025
5026 return hash & (num_fault_mutexes - 1);
5027}
5028#else
5029/*
6c26d310 5030 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
5031 * return 0 and avoid the hashing overhead.
5032 */
188b04a7 5033u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
5034{
5035 return 0;
5036}
5037#endif
5038
2b740303 5039vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 5040 unsigned long address, unsigned int flags)
86e5216f 5041{
8382d914 5042 pte_t *ptep, entry;
cb900f41 5043 spinlock_t *ptl;
2b740303 5044 vm_fault_t ret;
8382d914
DB
5045 u32 hash;
5046 pgoff_t idx;
0fe6e20b 5047 struct page *page = NULL;
57303d80 5048 struct page *pagecache_page = NULL;
a5516438 5049 struct hstate *h = hstate_vma(vma);
8382d914 5050 struct address_space *mapping;
0f792cf9 5051 int need_wait_lock = 0;
285b8dca 5052 unsigned long haddr = address & huge_page_mask(h);
86e5216f 5053
285b8dca 5054 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 5055 if (ptep) {
c0d0381a
MK
5056 /*
5057 * Since we hold no locks, ptep could be stale. That is
5058 * OK as we are only making decisions based on content and
5059 * not actually modifying content here.
5060 */
fd6a03ed 5061 entry = huge_ptep_get(ptep);
290408d4 5062 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 5063 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
5064 return 0;
5065 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 5066 return VM_FAULT_HWPOISON_LARGE |
972dc4de 5067 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
5068 }
5069
c0d0381a
MK
5070 /*
5071 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
5072 * until finished with ptep. This serves two purposes:
5073 * 1) It prevents huge_pmd_unshare from being called elsewhere
5074 * and making the ptep no longer valid.
5075 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
5076 *
5077 * ptep could have already be assigned via huge_pte_offset. That
5078 * is OK, as huge_pte_alloc will return the same value unless
5079 * something has changed.
5080 */
8382d914 5081 mapping = vma->vm_file->f_mapping;
c0d0381a 5082 i_mmap_lock_read(mapping);
aec44e0f 5083 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
c0d0381a
MK
5084 if (!ptep) {
5085 i_mmap_unlock_read(mapping);
5086 return VM_FAULT_OOM;
5087 }
8382d914 5088
3935baa9
DG
5089 /*
5090 * Serialize hugepage allocation and instantiation, so that we don't
5091 * get spurious allocation failures if two CPUs race to instantiate
5092 * the same page in the page cache.
5093 */
c0d0381a 5094 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 5095 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 5096 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 5097
7f2e9525
GS
5098 entry = huge_ptep_get(ptep);
5099 if (huge_pte_none(entry)) {
8382d914 5100 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 5101 goto out_mutex;
3935baa9 5102 }
86e5216f 5103
83c54070 5104 ret = 0;
1e8f889b 5105
0f792cf9
NH
5106 /*
5107 * entry could be a migration/hwpoison entry at this point, so this
5108 * check prevents the kernel from going below assuming that we have
7c8de358
EP
5109 * an active hugepage in pagecache. This goto expects the 2nd page
5110 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5111 * properly handle it.
0f792cf9
NH
5112 */
5113 if (!pte_present(entry))
5114 goto out_mutex;
5115
57303d80
AW
5116 /*
5117 * If we are going to COW the mapping later, we examine the pending
5118 * reservations for this page now. This will ensure that any
5119 * allocations necessary to record that reservation occur outside the
5120 * spinlock. For private mappings, we also lookup the pagecache
5121 * page now as it is used to determine if a reservation has been
5122 * consumed.
5123 */
106c992a 5124 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 5125 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 5126 ret = VM_FAULT_OOM;
b4d1d99f 5127 goto out_mutex;
2b26736c 5128 }
5e911373 5129 /* Just decrements count, does not deallocate */
285b8dca 5130 vma_end_reservation(h, vma, haddr);
57303d80 5131
f83a275d 5132 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 5133 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 5134 vma, haddr);
57303d80
AW
5135 }
5136
0f792cf9
NH
5137 ptl = huge_pte_lock(h, mm, ptep);
5138
5139 /* Check for a racing update before calling hugetlb_cow */
5140 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5141 goto out_ptl;
5142
56c9cfb1
NH
5143 /*
5144 * hugetlb_cow() requires page locks of pte_page(entry) and
5145 * pagecache_page, so here we need take the former one
5146 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
5147 */
5148 page = pte_page(entry);
5149 if (page != pagecache_page)
0f792cf9
NH
5150 if (!trylock_page(page)) {
5151 need_wait_lock = 1;
5152 goto out_ptl;
5153 }
b4d1d99f 5154
0f792cf9 5155 get_page(page);
b4d1d99f 5156
788c7df4 5157 if (flags & FAULT_FLAG_WRITE) {
106c992a 5158 if (!huge_pte_write(entry)) {
974e6d66 5159 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 5160 pagecache_page, ptl);
0f792cf9 5161 goto out_put_page;
b4d1d99f 5162 }
106c992a 5163 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
5164 }
5165 entry = pte_mkyoung(entry);
285b8dca 5166 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 5167 flags & FAULT_FLAG_WRITE))
285b8dca 5168 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
5169out_put_page:
5170 if (page != pagecache_page)
5171 unlock_page(page);
5172 put_page(page);
cb900f41
KS
5173out_ptl:
5174 spin_unlock(ptl);
57303d80
AW
5175
5176 if (pagecache_page) {
5177 unlock_page(pagecache_page);
5178 put_page(pagecache_page);
5179 }
b4d1d99f 5180out_mutex:
c672c7f2 5181 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 5182 i_mmap_unlock_read(mapping);
0f792cf9
NH
5183 /*
5184 * Generally it's safe to hold refcount during waiting page lock. But
5185 * here we just wait to defer the next page fault to avoid busy loop and
5186 * the page is not used after unlocked before returning from the current
5187 * page fault. So we are safe from accessing freed page, even if we wait
5188 * here without taking refcount.
5189 */
5190 if (need_wait_lock)
5191 wait_on_page_locked(page);
1e8f889b 5192 return ret;
86e5216f
AL
5193}
5194
714c1891 5195#ifdef CONFIG_USERFAULTFD
8fb5debc
MK
5196/*
5197 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5198 * modifications for huge pages.
5199 */
5200int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5201 pte_t *dst_pte,
5202 struct vm_area_struct *dst_vma,
5203 unsigned long dst_addr,
5204 unsigned long src_addr,
f6191471 5205 enum mcopy_atomic_mode mode,
8fb5debc
MK
5206 struct page **pagep)
5207{
f6191471 5208 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
8cc5fcbb
MA
5209 struct hstate *h = hstate_vma(dst_vma);
5210 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5211 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
1e392147 5212 unsigned long size;
1c9e8def 5213 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
5214 pte_t _dst_pte;
5215 spinlock_t *ptl;
8cc5fcbb 5216 int ret = -ENOMEM;
8fb5debc 5217 struct page *page;
f6191471 5218 int writable;
c7b1850d 5219 bool new_pagecache_page = false;
8fb5debc 5220
f6191471
AR
5221 if (is_continue) {
5222 ret = -EFAULT;
5223 page = find_lock_page(mapping, idx);
5224 if (!page)
5225 goto out;
5226 } else if (!*pagep) {
d84cf06e
MA
5227 /* If a page already exists, then it's UFFDIO_COPY for
5228 * a non-missing case. Return -EEXIST.
5229 */
5230 if (vm_shared &&
5231 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5232 ret = -EEXIST;
5233 goto out;
5234 }
5235
8fb5debc 5236 page = alloc_huge_page(dst_vma, dst_addr, 0);
d84cf06e
MA
5237 if (IS_ERR(page)) {
5238 ret = -ENOMEM;
8fb5debc 5239 goto out;
d84cf06e 5240 }
8fb5debc
MK
5241
5242 ret = copy_huge_page_from_user(page,
5243 (const void __user *) src_addr,
810a56b9 5244 pages_per_huge_page(h), false);
8fb5debc 5245
c1e8d7c6 5246 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 5247 if (unlikely(ret)) {
9e368259 5248 ret = -ENOENT;
8cc5fcbb
MA
5249 /* Free the allocated page which may have
5250 * consumed a reservation.
5251 */
5252 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5253 put_page(page);
5254
5255 /* Allocate a temporary page to hold the copied
5256 * contents.
5257 */
5258 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5259 if (!page) {
5260 ret = -ENOMEM;
5261 goto out;
5262 }
8fb5debc 5263 *pagep = page;
8cc5fcbb
MA
5264 /* Set the outparam pagep and return to the caller to
5265 * copy the contents outside the lock. Don't free the
5266 * page.
5267 */
8fb5debc
MK
5268 goto out;
5269 }
5270 } else {
8cc5fcbb
MA
5271 if (vm_shared &&
5272 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5273 put_page(*pagep);
5274 ret = -EEXIST;
5275 *pagep = NULL;
5276 goto out;
5277 }
5278
5279 page = alloc_huge_page(dst_vma, dst_addr, 0);
5280 if (IS_ERR(page)) {
5281 ret = -ENOMEM;
5282 *pagep = NULL;
5283 goto out;
5284 }
5285 copy_huge_page(page, *pagep);
5286 put_page(*pagep);
8fb5debc
MK
5287 *pagep = NULL;
5288 }
5289
5290 /*
5291 * The memory barrier inside __SetPageUptodate makes sure that
5292 * preceding stores to the page contents become visible before
5293 * the set_pte_at() write.
5294 */
5295 __SetPageUptodate(page);
8fb5debc 5296
f6191471
AR
5297 /* Add shared, newly allocated pages to the page cache. */
5298 if (vm_shared && !is_continue) {
1e392147
AA
5299 size = i_size_read(mapping->host) >> huge_page_shift(h);
5300 ret = -EFAULT;
5301 if (idx >= size)
5302 goto out_release_nounlock;
1c9e8def 5303
1e392147
AA
5304 /*
5305 * Serialization between remove_inode_hugepages() and
5306 * huge_add_to_page_cache() below happens through the
5307 * hugetlb_fault_mutex_table that here must be hold by
5308 * the caller.
5309 */
1c9e8def
MK
5310 ret = huge_add_to_page_cache(page, mapping, idx);
5311 if (ret)
5312 goto out_release_nounlock;
c7b1850d 5313 new_pagecache_page = true;
1c9e8def
MK
5314 }
5315
8fb5debc
MK
5316 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5317 spin_lock(ptl);
5318
1e392147
AA
5319 /*
5320 * Recheck the i_size after holding PT lock to make sure not
5321 * to leave any page mapped (as page_mapped()) beyond the end
5322 * of the i_size (remove_inode_hugepages() is strict about
5323 * enforcing that). If we bail out here, we'll also leave a
5324 * page in the radix tree in the vm_shared case beyond the end
5325 * of the i_size, but remove_inode_hugepages() will take care
5326 * of it as soon as we drop the hugetlb_fault_mutex_table.
5327 */
5328 size = i_size_read(mapping->host) >> huge_page_shift(h);
5329 ret = -EFAULT;
5330 if (idx >= size)
5331 goto out_release_unlock;
5332
8fb5debc
MK
5333 ret = -EEXIST;
5334 if (!huge_pte_none(huge_ptep_get(dst_pte)))
5335 goto out_release_unlock;
5336
1c9e8def
MK
5337 if (vm_shared) {
5338 page_dup_rmap(page, true);
5339 } else {
d6995da3 5340 ClearHPageRestoreReserve(page);
1c9e8def
MK
5341 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5342 }
8fb5debc 5343
f6191471
AR
5344 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5345 if (is_continue && !vm_shared)
5346 writable = 0;
5347 else
5348 writable = dst_vma->vm_flags & VM_WRITE;
5349
5350 _dst_pte = make_huge_pte(dst_vma, page, writable);
5351 if (writable)
8fb5debc
MK
5352 _dst_pte = huge_pte_mkdirty(_dst_pte);
5353 _dst_pte = pte_mkyoung(_dst_pte);
5354
5355 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5356
5357 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5358 dst_vma->vm_flags & VM_WRITE);
5359 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5360
5361 /* No need to invalidate - it was non-present before */
5362 update_mmu_cache(dst_vma, dst_addr, dst_pte);
5363
5364 spin_unlock(ptl);
f6191471
AR
5365 if (!is_continue)
5366 SetHPageMigratable(page);
5367 if (vm_shared || is_continue)
1c9e8def 5368 unlock_page(page);
8fb5debc
MK
5369 ret = 0;
5370out:
5371 return ret;
5372out_release_unlock:
5373 spin_unlock(ptl);
f6191471 5374 if (vm_shared || is_continue)
1c9e8def 5375 unlock_page(page);
5af10dfd 5376out_release_nounlock:
c7b1850d
MK
5377 if (!new_pagecache_page)
5378 restore_reserve_on_error(h, dst_vma, dst_addr, page);
8fb5debc
MK
5379 put_page(page);
5380 goto out;
5381}
714c1891 5382#endif /* CONFIG_USERFAULTFD */
8fb5debc 5383
82e5d378
JM
5384static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5385 int refs, struct page **pages,
5386 struct vm_area_struct **vmas)
5387{
5388 int nr;
5389
5390 for (nr = 0; nr < refs; nr++) {
5391 if (likely(pages))
5392 pages[nr] = mem_map_offset(page, nr);
5393 if (vmas)
5394 vmas[nr] = vma;
5395 }
5396}
5397
28a35716
ML
5398long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5399 struct page **pages, struct vm_area_struct **vmas,
5400 unsigned long *position, unsigned long *nr_pages,
4f6da934 5401 long i, unsigned int flags, int *locked)
63551ae0 5402{
d5d4b0aa
KC
5403 unsigned long pfn_offset;
5404 unsigned long vaddr = *position;
28a35716 5405 unsigned long remainder = *nr_pages;
a5516438 5406 struct hstate *h = hstate_vma(vma);
0fa5bc40 5407 int err = -EFAULT, refs;
63551ae0 5408
63551ae0 5409 while (vaddr < vma->vm_end && remainder) {
4c887265 5410 pte_t *pte;
cb900f41 5411 spinlock_t *ptl = NULL;
2a15efc9 5412 int absent;
4c887265 5413 struct page *page;
63551ae0 5414
02057967
DR
5415 /*
5416 * If we have a pending SIGKILL, don't keep faulting pages and
5417 * potentially allocating memory.
5418 */
fa45f116 5419 if (fatal_signal_pending(current)) {
02057967
DR
5420 remainder = 0;
5421 break;
5422 }
5423
4c887265
AL
5424 /*
5425 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 5426 * each hugepage. We have to make sure we get the
4c887265 5427 * first, for the page indexing below to work.
cb900f41
KS
5428 *
5429 * Note that page table lock is not held when pte is null.
4c887265 5430 */
7868a208
PA
5431 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5432 huge_page_size(h));
cb900f41
KS
5433 if (pte)
5434 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
5435 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5436
5437 /*
5438 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
5439 * an error where there's an empty slot with no huge pagecache
5440 * to back it. This way, we avoid allocating a hugepage, and
5441 * the sparse dumpfile avoids allocating disk blocks, but its
5442 * huge holes still show up with zeroes where they need to be.
2a15efc9 5443 */
3ae77f43
HD
5444 if (absent && (flags & FOLL_DUMP) &&
5445 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
5446 if (pte)
5447 spin_unlock(ptl);
2a15efc9
HD
5448 remainder = 0;
5449 break;
5450 }
63551ae0 5451
9cc3a5bd
NH
5452 /*
5453 * We need call hugetlb_fault for both hugepages under migration
5454 * (in which case hugetlb_fault waits for the migration,) and
5455 * hwpoisoned hugepages (in which case we need to prevent the
5456 * caller from accessing to them.) In order to do this, we use
5457 * here is_swap_pte instead of is_hugetlb_entry_migration and
5458 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5459 * both cases, and because we can't follow correct pages
5460 * directly from any kind of swap entries.
5461 */
5462 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
5463 ((flags & FOLL_WRITE) &&
5464 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 5465 vm_fault_t ret;
87ffc118 5466 unsigned int fault_flags = 0;
63551ae0 5467
cb900f41
KS
5468 if (pte)
5469 spin_unlock(ptl);
87ffc118
AA
5470 if (flags & FOLL_WRITE)
5471 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 5472 if (locked)
71335f37
PX
5473 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5474 FAULT_FLAG_KILLABLE;
87ffc118
AA
5475 if (flags & FOLL_NOWAIT)
5476 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5477 FAULT_FLAG_RETRY_NOWAIT;
5478 if (flags & FOLL_TRIED) {
4426e945
PX
5479 /*
5480 * Note: FAULT_FLAG_ALLOW_RETRY and
5481 * FAULT_FLAG_TRIED can co-exist
5482 */
87ffc118
AA
5483 fault_flags |= FAULT_FLAG_TRIED;
5484 }
5485 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5486 if (ret & VM_FAULT_ERROR) {
2be7cfed 5487 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
5488 remainder = 0;
5489 break;
5490 }
5491 if (ret & VM_FAULT_RETRY) {
4f6da934 5492 if (locked &&
1ac25013 5493 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 5494 *locked = 0;
87ffc118
AA
5495 *nr_pages = 0;
5496 /*
5497 * VM_FAULT_RETRY must not return an
5498 * error, it will return zero
5499 * instead.
5500 *
5501 * No need to update "position" as the
5502 * caller will not check it after
5503 * *nr_pages is set to 0.
5504 */
5505 return i;
5506 }
5507 continue;
4c887265
AL
5508 }
5509
a5516438 5510 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 5511 page = pte_page(huge_ptep_get(pte));
8fde12ca 5512
acbfb087
ZL
5513 /*
5514 * If subpage information not requested, update counters
5515 * and skip the same_page loop below.
5516 */
5517 if (!pages && !vmas && !pfn_offset &&
5518 (vaddr + huge_page_size(h) < vma->vm_end) &&
5519 (remainder >= pages_per_huge_page(h))) {
5520 vaddr += huge_page_size(h);
5521 remainder -= pages_per_huge_page(h);
5522 i += pages_per_huge_page(h);
5523 spin_unlock(ptl);
5524 continue;
5525 }
5526
d08af0a5
JM
5527 /* vaddr may not be aligned to PAGE_SIZE */
5528 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
5529 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
0fa5bc40 5530
82e5d378
JM
5531 if (pages || vmas)
5532 record_subpages_vmas(mem_map_offset(page, pfn_offset),
5533 vma, refs,
5534 likely(pages) ? pages + i : NULL,
5535 vmas ? vmas + i : NULL);
63551ae0 5536
82e5d378 5537 if (pages) {
0fa5bc40
JM
5538 /*
5539 * try_grab_compound_head() should always succeed here,
5540 * because: a) we hold the ptl lock, and b) we've just
5541 * checked that the huge page is present in the page
5542 * tables. If the huge page is present, then the tail
5543 * pages must also be present. The ptl prevents the
5544 * head page and tail pages from being rearranged in
5545 * any way. So this page must be available at this
5546 * point, unless the page refcount overflowed:
5547 */
82e5d378 5548 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
5549 refs,
5550 flags))) {
5551 spin_unlock(ptl);
5552 remainder = 0;
5553 err = -ENOMEM;
5554 break;
5555 }
d5d4b0aa 5556 }
82e5d378
JM
5557
5558 vaddr += (refs << PAGE_SHIFT);
5559 remainder -= refs;
5560 i += refs;
5561
cb900f41 5562 spin_unlock(ptl);
63551ae0 5563 }
28a35716 5564 *nr_pages = remainder;
87ffc118
AA
5565 /*
5566 * setting position is actually required only if remainder is
5567 * not zero but it's faster not to add a "if (remainder)"
5568 * branch.
5569 */
63551ae0
DG
5570 *position = vaddr;
5571
2be7cfed 5572 return i ? i : err;
63551ae0 5573}
8f860591 5574
7da4d641 5575unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
5576 unsigned long address, unsigned long end, pgprot_t newprot)
5577{
5578 struct mm_struct *mm = vma->vm_mm;
5579 unsigned long start = address;
5580 pte_t *ptep;
5581 pte_t pte;
a5516438 5582 struct hstate *h = hstate_vma(vma);
7da4d641 5583 unsigned long pages = 0;
dff11abe 5584 bool shared_pmd = false;
ac46d4f3 5585 struct mmu_notifier_range range;
dff11abe
MK
5586
5587 /*
5588 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5589 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5590 * range if PMD sharing is possible.
5591 */
7269f999
JG
5592 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5593 0, vma, mm, start, end);
ac46d4f3 5594 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5595
5596 BUG_ON(address >= end);
ac46d4f3 5597 flush_cache_range(vma, range.start, range.end);
8f860591 5598
ac46d4f3 5599 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5600 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5601 for (; address < end; address += huge_page_size(h)) {
cb900f41 5602 spinlock_t *ptl;
7868a208 5603 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5604 if (!ptep)
5605 continue;
cb900f41 5606 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5607 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5608 pages++;
cb900f41 5609 spin_unlock(ptl);
dff11abe 5610 shared_pmd = true;
39dde65c 5611 continue;
7da4d641 5612 }
a8bda28d
NH
5613 pte = huge_ptep_get(ptep);
5614 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5615 spin_unlock(ptl);
5616 continue;
5617 }
5618 if (unlikely(is_hugetlb_entry_migration(pte))) {
5619 swp_entry_t entry = pte_to_swp_entry(pte);
5620
4dd845b5 5621 if (is_writable_migration_entry(entry)) {
a8bda28d
NH
5622 pte_t newpte;
5623
4dd845b5
AP
5624 entry = make_readable_migration_entry(
5625 swp_offset(entry));
a8bda28d 5626 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5627 set_huge_swap_pte_at(mm, address, ptep,
5628 newpte, huge_page_size(h));
a8bda28d
NH
5629 pages++;
5630 }
5631 spin_unlock(ptl);
5632 continue;
5633 }
5634 if (!huge_pte_none(pte)) {
023bdd00 5635 pte_t old_pte;
79c1c594 5636 unsigned int shift = huge_page_shift(hstate_vma(vma));
023bdd00
AK
5637
5638 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5639 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
79c1c594 5640 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
023bdd00 5641 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5642 pages++;
8f860591 5643 }
cb900f41 5644 spin_unlock(ptl);
8f860591 5645 }
d833352a 5646 /*
c8c06efa 5647 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5648 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5649 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5650 * and that page table be reused and filled with junk. If we actually
5651 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5652 */
dff11abe 5653 if (shared_pmd)
ac46d4f3 5654 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5655 else
5656 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5657 /*
5658 * No need to call mmu_notifier_invalidate_range() we are downgrading
5659 * page table protection not changing it to point to a new page.
5660 *
ad56b738 5661 * See Documentation/vm/mmu_notifier.rst
0f10851e 5662 */
83cde9e8 5663 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5664 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5665
5666 return pages << h->order;
8f860591
ZY
5667}
5668
33b8f84a
MK
5669/* Return true if reservation was successful, false otherwise. */
5670bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 5671 long from, long to,
5a6fe125 5672 struct vm_area_struct *vma,
ca16d140 5673 vm_flags_t vm_flags)
e4e574b7 5674{
33b8f84a 5675 long chg, add = -1;
a5516438 5676 struct hstate *h = hstate_inode(inode);
90481622 5677 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5678 struct resv_map *resv_map;
075a61d0 5679 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5680 long gbl_reserve, regions_needed = 0;
e4e574b7 5681
63489f8e
MK
5682 /* This should never happen */
5683 if (from > to) {
5684 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 5685 return false;
63489f8e
MK
5686 }
5687
17c9d12e
MG
5688 /*
5689 * Only apply hugepage reservation if asked. At fault time, an
5690 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5691 * without using reserves
17c9d12e 5692 */
ca16d140 5693 if (vm_flags & VM_NORESERVE)
33b8f84a 5694 return true;
17c9d12e 5695
a1e78772
MG
5696 /*
5697 * Shared mappings base their reservation on the number of pages that
5698 * are already allocated on behalf of the file. Private mappings need
5699 * to reserve the full area even if read-only as mprotect() may be
5700 * called to make the mapping read-write. Assume !vma is a shm mapping
5701 */
9119a41e 5702 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5703 /*
5704 * resv_map can not be NULL as hugetlb_reserve_pages is only
5705 * called for inodes for which resv_maps were created (see
5706 * hugetlbfs_get_inode).
5707 */
4e35f483 5708 resv_map = inode_resv_map(inode);
9119a41e 5709
0db9d74e 5710 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5711
5712 } else {
e9fe92ae 5713 /* Private mapping. */
9119a41e 5714 resv_map = resv_map_alloc();
17c9d12e 5715 if (!resv_map)
33b8f84a 5716 return false;
17c9d12e 5717
a1e78772 5718 chg = to - from;
84afd99b 5719
17c9d12e
MG
5720 set_vma_resv_map(vma, resv_map);
5721 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5722 }
5723
33b8f84a 5724 if (chg < 0)
c50ac050 5725 goto out_err;
8a630112 5726
33b8f84a
MK
5727 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5728 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 5729 goto out_err;
075a61d0
MA
5730
5731 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5732 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5733 * of the resv_map.
5734 */
5735 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5736 }
5737
1c5ecae3
MK
5738 /*
5739 * There must be enough pages in the subpool for the mapping. If
5740 * the subpool has a minimum size, there may be some global
5741 * reservations already in place (gbl_reserve).
5742 */
5743 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 5744 if (gbl_reserve < 0)
075a61d0 5745 goto out_uncharge_cgroup;
5a6fe125
MG
5746
5747 /*
17c9d12e 5748 * Check enough hugepages are available for the reservation.
90481622 5749 * Hand the pages back to the subpool if there are not
5a6fe125 5750 */
33b8f84a 5751 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 5752 goto out_put_pages;
17c9d12e
MG
5753
5754 /*
5755 * Account for the reservations made. Shared mappings record regions
5756 * that have reservations as they are shared by multiple VMAs.
5757 * When the last VMA disappears, the region map says how much
5758 * the reservation was and the page cache tells how much of
5759 * the reservation was consumed. Private mappings are per-VMA and
5760 * only the consumed reservations are tracked. When the VMA
5761 * disappears, the original reservation is the VMA size and the
5762 * consumed reservations are stored in the map. Hence, nothing
5763 * else has to be done for private mappings here
5764 */
33039678 5765 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5766 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5767
5768 if (unlikely(add < 0)) {
5769 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5770 goto out_put_pages;
0db9d74e 5771 } else if (unlikely(chg > add)) {
33039678
MK
5772 /*
5773 * pages in this range were added to the reserve
5774 * map between region_chg and region_add. This
5775 * indicates a race with alloc_huge_page. Adjust
5776 * the subpool and reserve counts modified above
5777 * based on the difference.
5778 */
5779 long rsv_adjust;
5780
d85aecf2
ML
5781 /*
5782 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5783 * reference to h_cg->css. See comment below for detail.
5784 */
075a61d0
MA
5785 hugetlb_cgroup_uncharge_cgroup_rsvd(
5786 hstate_index(h),
5787 (chg - add) * pages_per_huge_page(h), h_cg);
5788
33039678
MK
5789 rsv_adjust = hugepage_subpool_put_pages(spool,
5790 chg - add);
5791 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
5792 } else if (h_cg) {
5793 /*
5794 * The file_regions will hold their own reference to
5795 * h_cg->css. So we should release the reference held
5796 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5797 * done.
5798 */
5799 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
5800 }
5801 }
33b8f84a
MK
5802 return true;
5803
075a61d0
MA
5804out_put_pages:
5805 /* put back original number of pages, chg */
5806 (void)hugepage_subpool_put_pages(spool, chg);
5807out_uncharge_cgroup:
5808 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5809 chg * pages_per_huge_page(h), h_cg);
c50ac050 5810out_err:
5e911373 5811 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5812 /* Only call region_abort if the region_chg succeeded but the
5813 * region_add failed or didn't run.
5814 */
5815 if (chg >= 0 && add < 0)
5816 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5817 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5818 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 5819 return false;
a43a8c39
KC
5820}
5821
b5cec28d
MK
5822long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5823 long freed)
a43a8c39 5824{
a5516438 5825 struct hstate *h = hstate_inode(inode);
4e35f483 5826 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5827 long chg = 0;
90481622 5828 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5829 long gbl_reserve;
45c682a6 5830
f27a5136
MK
5831 /*
5832 * Since this routine can be called in the evict inode path for all
5833 * hugetlbfs inodes, resv_map could be NULL.
5834 */
b5cec28d
MK
5835 if (resv_map) {
5836 chg = region_del(resv_map, start, end);
5837 /*
5838 * region_del() can fail in the rare case where a region
5839 * must be split and another region descriptor can not be
5840 * allocated. If end == LONG_MAX, it will not fail.
5841 */
5842 if (chg < 0)
5843 return chg;
5844 }
5845
45c682a6 5846 spin_lock(&inode->i_lock);
e4c6f8be 5847 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5848 spin_unlock(&inode->i_lock);
5849
1c5ecae3
MK
5850 /*
5851 * If the subpool has a minimum size, the number of global
5852 * reservations to be released may be adjusted.
dddf31a4
ML
5853 *
5854 * Note that !resv_map implies freed == 0. So (chg - freed)
5855 * won't go negative.
1c5ecae3
MK
5856 */
5857 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5858 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5859
5860 return 0;
a43a8c39 5861}
93f70f90 5862
3212b535
SC
5863#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5864static unsigned long page_table_shareable(struct vm_area_struct *svma,
5865 struct vm_area_struct *vma,
5866 unsigned long addr, pgoff_t idx)
5867{
5868 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5869 svma->vm_start;
5870 unsigned long sbase = saddr & PUD_MASK;
5871 unsigned long s_end = sbase + PUD_SIZE;
5872
5873 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5874 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5875 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5876
5877 /*
5878 * match the virtual addresses, permission and the alignment of the
5879 * page table page.
5880 */
5881 if (pmd_index(addr) != pmd_index(saddr) ||
5882 vm_flags != svm_flags ||
07e51edf 5883 !range_in_vma(svma, sbase, s_end))
3212b535
SC
5884 return 0;
5885
5886 return saddr;
5887}
5888
31aafb45 5889static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5890{
5891 unsigned long base = addr & PUD_MASK;
5892 unsigned long end = base + PUD_SIZE;
5893
5894 /*
5895 * check on proper vm_flags and page table alignment
5896 */
017b1660 5897 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5898 return true;
5899 return false;
3212b535
SC
5900}
5901
c1991e07
PX
5902bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5903{
5904#ifdef CONFIG_USERFAULTFD
5905 if (uffd_disable_huge_pmd_share(vma))
5906 return false;
5907#endif
5908 return vma_shareable(vma, addr);
5909}
5910
017b1660
MK
5911/*
5912 * Determine if start,end range within vma could be mapped by shared pmd.
5913 * If yes, adjust start and end to cover range associated with possible
5914 * shared pmd mappings.
5915 */
5916void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5917 unsigned long *start, unsigned long *end)
5918{
a1ba9da8
LX
5919 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5920 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5921
a1ba9da8 5922 /*
f0953a1b
IM
5923 * vma needs to span at least one aligned PUD size, and the range
5924 * must be at least partially within in.
a1ba9da8
LX
5925 */
5926 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5927 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5928 return;
5929
75802ca6 5930 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
5931 if (*start > v_start)
5932 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5933
a1ba9da8
LX
5934 if (*end < v_end)
5935 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5936}
5937
3212b535
SC
5938/*
5939 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5940 * and returns the corresponding pte. While this is not necessary for the
5941 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5942 * code much cleaner.
5943 *
0bf7b64e
MK
5944 * This routine must be called with i_mmap_rwsem held in at least read mode if
5945 * sharing is possible. For hugetlbfs, this prevents removal of any page
5946 * table entries associated with the address space. This is important as we
5947 * are setting up sharing based on existing page table entries (mappings).
5948 *
5949 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5950 * huge_pte_alloc know that sharing is not possible and do not take
5951 * i_mmap_rwsem as a performance optimization. This is handled by the
5952 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5953 * only required for subsequent processing.
3212b535 5954 */
aec44e0f
PX
5955pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5956 unsigned long addr, pud_t *pud)
3212b535 5957{
3212b535
SC
5958 struct address_space *mapping = vma->vm_file->f_mapping;
5959 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5960 vma->vm_pgoff;
5961 struct vm_area_struct *svma;
5962 unsigned long saddr;
5963 pte_t *spte = NULL;
5964 pte_t *pte;
cb900f41 5965 spinlock_t *ptl;
3212b535 5966
0bf7b64e 5967 i_mmap_assert_locked(mapping);
3212b535
SC
5968 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5969 if (svma == vma)
5970 continue;
5971
5972 saddr = page_table_shareable(svma, vma, addr, idx);
5973 if (saddr) {
7868a208
PA
5974 spte = huge_pte_offset(svma->vm_mm, saddr,
5975 vma_mmu_pagesize(svma));
3212b535
SC
5976 if (spte) {
5977 get_page(virt_to_page(spte));
5978 break;
5979 }
5980 }
5981 }
5982
5983 if (!spte)
5984 goto out;
5985
8bea8052 5986 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5987 if (pud_none(*pud)) {
3212b535
SC
5988 pud_populate(mm, pud,
5989 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5990 mm_inc_nr_pmds(mm);
dc6c9a35 5991 } else {
3212b535 5992 put_page(virt_to_page(spte));
dc6c9a35 5993 }
cb900f41 5994 spin_unlock(ptl);
3212b535
SC
5995out:
5996 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5997 return pte;
5998}
5999
6000/*
6001 * unmap huge page backed by shared pte.
6002 *
6003 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6004 * indicated by page_count > 1, unmap is achieved by clearing pud and
6005 * decrementing the ref count. If count == 1, the pte page is not shared.
6006 *
c0d0381a 6007 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
6008 *
6009 * returns: 1 successfully unmapped a shared pte page
6010 * 0 the underlying pte page is not shared, or it is the last user
6011 */
34ae204f
MK
6012int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6013 unsigned long *addr, pte_t *ptep)
3212b535
SC
6014{
6015 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
6016 p4d_t *p4d = p4d_offset(pgd, *addr);
6017 pud_t *pud = pud_offset(p4d, *addr);
3212b535 6018
34ae204f 6019 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
6020 BUG_ON(page_count(virt_to_page(ptep)) == 0);
6021 if (page_count(virt_to_page(ptep)) == 1)
6022 return 0;
6023
6024 pud_clear(pud);
6025 put_page(virt_to_page(ptep));
dc6c9a35 6026 mm_dec_nr_pmds(mm);
3212b535
SC
6027 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6028 return 1;
6029}
c1991e07 6030
9e5fc74c 6031#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
aec44e0f
PX
6032pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6033 unsigned long addr, pud_t *pud)
9e5fc74c
SC
6034{
6035 return NULL;
6036}
e81f2d22 6037
34ae204f
MK
6038int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6039 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
6040{
6041 return 0;
6042}
017b1660
MK
6043
6044void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6045 unsigned long *start, unsigned long *end)
6046{
6047}
c1991e07
PX
6048
6049bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6050{
6051 return false;
6052}
3212b535
SC
6053#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6054
9e5fc74c 6055#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 6056pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
6057 unsigned long addr, unsigned long sz)
6058{
6059 pgd_t *pgd;
c2febafc 6060 p4d_t *p4d;
9e5fc74c
SC
6061 pud_t *pud;
6062 pte_t *pte = NULL;
6063
6064 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
6065 p4d = p4d_alloc(mm, pgd, addr);
6066 if (!p4d)
6067 return NULL;
c2febafc 6068 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
6069 if (pud) {
6070 if (sz == PUD_SIZE) {
6071 pte = (pte_t *)pud;
6072 } else {
6073 BUG_ON(sz != PMD_SIZE);
c1991e07 6074 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 6075 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
6076 else
6077 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6078 }
6079 }
4e666314 6080 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
6081
6082 return pte;
6083}
6084
9b19df29
PA
6085/*
6086 * huge_pte_offset() - Walk the page table to resolve the hugepage
6087 * entry at address @addr
6088 *
8ac0b81a
LX
6089 * Return: Pointer to page table entry (PUD or PMD) for
6090 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
6091 * size @sz doesn't match the hugepage size at this level of the page
6092 * table.
6093 */
7868a208
PA
6094pte_t *huge_pte_offset(struct mm_struct *mm,
6095 unsigned long addr, unsigned long sz)
9e5fc74c
SC
6096{
6097 pgd_t *pgd;
c2febafc 6098 p4d_t *p4d;
8ac0b81a
LX
6099 pud_t *pud;
6100 pmd_t *pmd;
9e5fc74c
SC
6101
6102 pgd = pgd_offset(mm, addr);
c2febafc
KS
6103 if (!pgd_present(*pgd))
6104 return NULL;
6105 p4d = p4d_offset(pgd, addr);
6106 if (!p4d_present(*p4d))
6107 return NULL;
9b19df29 6108
c2febafc 6109 pud = pud_offset(p4d, addr);
8ac0b81a
LX
6110 if (sz == PUD_SIZE)
6111 /* must be pud huge, non-present or none */
c2febafc 6112 return (pte_t *)pud;
8ac0b81a 6113 if (!pud_present(*pud))
9b19df29 6114 return NULL;
8ac0b81a 6115 /* must have a valid entry and size to go further */
9b19df29 6116
8ac0b81a
LX
6117 pmd = pmd_offset(pud, addr);
6118 /* must be pmd huge, non-present or none */
6119 return (pte_t *)pmd;
9e5fc74c
SC
6120}
6121
61f77eda
NH
6122#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6123
6124/*
6125 * These functions are overwritable if your architecture needs its own
6126 * behavior.
6127 */
6128struct page * __weak
6129follow_huge_addr(struct mm_struct *mm, unsigned long address,
6130 int write)
6131{
6132 return ERR_PTR(-EINVAL);
6133}
6134
4dc71451
AK
6135struct page * __weak
6136follow_huge_pd(struct vm_area_struct *vma,
6137 unsigned long address, hugepd_t hpd, int flags, int pdshift)
6138{
6139 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6140 return NULL;
6141}
6142
61f77eda 6143struct page * __weak
9e5fc74c 6144follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 6145 pmd_t *pmd, int flags)
9e5fc74c 6146{
e66f17ff
NH
6147 struct page *page = NULL;
6148 spinlock_t *ptl;
c9d398fa 6149 pte_t pte;
3faa52c0
JH
6150
6151 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6152 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6153 (FOLL_PIN | FOLL_GET)))
6154 return NULL;
6155
e66f17ff
NH
6156retry:
6157 ptl = pmd_lockptr(mm, pmd);
6158 spin_lock(ptl);
6159 /*
6160 * make sure that the address range covered by this pmd is not
6161 * unmapped from other threads.
6162 */
6163 if (!pmd_huge(*pmd))
6164 goto out;
c9d398fa
NH
6165 pte = huge_ptep_get((pte_t *)pmd);
6166 if (pte_present(pte)) {
97534127 6167 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
6168 /*
6169 * try_grab_page() should always succeed here, because: a) we
6170 * hold the pmd (ptl) lock, and b) we've just checked that the
6171 * huge pmd (head) page is present in the page tables. The ptl
6172 * prevents the head page and tail pages from being rearranged
6173 * in any way. So this page must be available at this point,
6174 * unless the page refcount overflowed:
6175 */
6176 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6177 page = NULL;
6178 goto out;
6179 }
e66f17ff 6180 } else {
c9d398fa 6181 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
6182 spin_unlock(ptl);
6183 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6184 goto retry;
6185 }
6186 /*
6187 * hwpoisoned entry is treated as no_page_table in
6188 * follow_page_mask().
6189 */
6190 }
6191out:
6192 spin_unlock(ptl);
9e5fc74c
SC
6193 return page;
6194}
6195
61f77eda 6196struct page * __weak
9e5fc74c 6197follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 6198 pud_t *pud, int flags)
9e5fc74c 6199{
3faa52c0 6200 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 6201 return NULL;
9e5fc74c 6202
e66f17ff 6203 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
6204}
6205
faaa5b62
AK
6206struct page * __weak
6207follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6208{
3faa52c0 6209 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
6210 return NULL;
6211
6212 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6213}
6214
31caf665
NH
6215bool isolate_huge_page(struct page *page, struct list_head *list)
6216{
bcc54222
NH
6217 bool ret = true;
6218
db71ef79 6219 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
6220 if (!PageHeadHuge(page) ||
6221 !HPageMigratable(page) ||
0eb2df2b 6222 !get_page_unless_zero(page)) {
bcc54222
NH
6223 ret = false;
6224 goto unlock;
6225 }
8f251a3d 6226 ClearHPageMigratable(page);
31caf665 6227 list_move_tail(&page->lru, list);
bcc54222 6228unlock:
db71ef79 6229 spin_unlock_irq(&hugetlb_lock);
bcc54222 6230 return ret;
31caf665
NH
6231}
6232
25182f05
NH
6233int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6234{
6235 int ret = 0;
6236
6237 *hugetlb = false;
6238 spin_lock_irq(&hugetlb_lock);
6239 if (PageHeadHuge(page)) {
6240 *hugetlb = true;
6241 if (HPageFreed(page) || HPageMigratable(page))
6242 ret = get_page_unless_zero(page);
0ed950d1
NH
6243 else
6244 ret = -EBUSY;
25182f05
NH
6245 }
6246 spin_unlock_irq(&hugetlb_lock);
6247 return ret;
6248}
6249
31caf665
NH
6250void putback_active_hugepage(struct page *page)
6251{
db71ef79 6252 spin_lock_irq(&hugetlb_lock);
8f251a3d 6253 SetHPageMigratable(page);
31caf665 6254 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 6255 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
6256 put_page(page);
6257}
ab5ac90a
MH
6258
6259void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6260{
6261 struct hstate *h = page_hstate(oldpage);
6262
6263 hugetlb_cgroup_migrate(oldpage, newpage);
6264 set_page_owner_migrate_reason(newpage, reason);
6265
6266 /*
6267 * transfer temporary state of the new huge page. This is
6268 * reverse to other transitions because the newpage is going to
6269 * be final while the old one will be freed so it takes over
6270 * the temporary status.
6271 *
6272 * Also note that we have to transfer the per-node surplus state
6273 * here as well otherwise the global surplus count will not match
6274 * the per-node's.
6275 */
9157c311 6276 if (HPageTemporary(newpage)) {
ab5ac90a
MH
6277 int old_nid = page_to_nid(oldpage);
6278 int new_nid = page_to_nid(newpage);
6279
9157c311
MK
6280 SetHPageTemporary(oldpage);
6281 ClearHPageTemporary(newpage);
ab5ac90a 6282
5af1ab1d
ML
6283 /*
6284 * There is no need to transfer the per-node surplus state
6285 * when we do not cross the node.
6286 */
6287 if (new_nid == old_nid)
6288 return;
db71ef79 6289 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
6290 if (h->surplus_huge_pages_node[old_nid]) {
6291 h->surplus_huge_pages_node[old_nid]--;
6292 h->surplus_huge_pages_node[new_nid]++;
6293 }
db71ef79 6294 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
6295 }
6296}
cf11e85f 6297
6dfeaff9
PX
6298/*
6299 * This function will unconditionally remove all the shared pmd pgtable entries
6300 * within the specific vma for a hugetlbfs memory range.
6301 */
6302void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6303{
6304 struct hstate *h = hstate_vma(vma);
6305 unsigned long sz = huge_page_size(h);
6306 struct mm_struct *mm = vma->vm_mm;
6307 struct mmu_notifier_range range;
6308 unsigned long address, start, end;
6309 spinlock_t *ptl;
6310 pte_t *ptep;
6311
6312 if (!(vma->vm_flags & VM_MAYSHARE))
6313 return;
6314
6315 start = ALIGN(vma->vm_start, PUD_SIZE);
6316 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6317
6318 if (start >= end)
6319 return;
6320
6321 /*
6322 * No need to call adjust_range_if_pmd_sharing_possible(), because
6323 * we have already done the PUD_SIZE alignment.
6324 */
6325 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6326 start, end);
6327 mmu_notifier_invalidate_range_start(&range);
6328 i_mmap_lock_write(vma->vm_file->f_mapping);
6329 for (address = start; address < end; address += PUD_SIZE) {
6330 unsigned long tmp = address;
6331
6332 ptep = huge_pte_offset(mm, address, sz);
6333 if (!ptep)
6334 continue;
6335 ptl = huge_pte_lock(h, mm, ptep);
6336 /* We don't want 'address' to be changed */
6337 huge_pmd_unshare(mm, vma, &tmp, ptep);
6338 spin_unlock(ptl);
6339 }
6340 flush_hugetlb_tlb_range(vma, start, end);
6341 i_mmap_unlock_write(vma->vm_file->f_mapping);
6342 /*
6343 * No need to call mmu_notifier_invalidate_range(), see
6344 * Documentation/vm/mmu_notifier.rst.
6345 */
6346 mmu_notifier_invalidate_range_end(&range);
6347}
6348
cf11e85f 6349#ifdef CONFIG_CMA
cf11e85f
RG
6350static bool cma_reserve_called __initdata;
6351
6352static int __init cmdline_parse_hugetlb_cma(char *p)
6353{
6354 hugetlb_cma_size = memparse(p, &p);
6355 return 0;
6356}
6357
6358early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6359
6360void __init hugetlb_cma_reserve(int order)
6361{
6362 unsigned long size, reserved, per_node;
6363 int nid;
6364
6365 cma_reserve_called = true;
6366
6367 if (!hugetlb_cma_size)
6368 return;
6369
6370 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6371 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6372 (PAGE_SIZE << order) / SZ_1M);
6373 return;
6374 }
6375
6376 /*
6377 * If 3 GB area is requested on a machine with 4 numa nodes,
6378 * let's allocate 1 GB on first three nodes and ignore the last one.
6379 */
6380 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6381 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6382 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6383
6384 reserved = 0;
6385 for_each_node_state(nid, N_ONLINE) {
6386 int res;
2281f797 6387 char name[CMA_MAX_NAME];
cf11e85f
RG
6388
6389 size = min(per_node, hugetlb_cma_size - reserved);
6390 size = round_up(size, PAGE_SIZE << order);
6391
2281f797 6392 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 6393 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 6394 0, false, name,
cf11e85f
RG
6395 &hugetlb_cma[nid], nid);
6396 if (res) {
6397 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6398 res, nid);
6399 continue;
6400 }
6401
6402 reserved += size;
6403 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6404 size / SZ_1M, nid);
6405
6406 if (reserved >= hugetlb_cma_size)
6407 break;
6408 }
6409}
6410
6411void __init hugetlb_cma_check(void)
6412{
6413 if (!hugetlb_cma_size || cma_reserve_called)
6414 return;
6415
6416 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6417}
6418
6419#endif /* CONFIG_CMA */