]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/hugetlb.c
mm, hugetlb: protect reserved pages when soft offlining a hugepage
[mirror_ubuntu-artful-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
24669e58 27#include <asm/tlb.h>
63551ae0 28
24669e58 29#include <linux/io.h>
63551ae0 30#include <linux/hugetlb.h>
9dd540e2 31#include <linux/hugetlb_cgroup.h>
9a305230 32#include <linux/node.h>
7835e98b 33#include "internal.h"
1da177e4
LT
34
35const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
36static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9
DG
50/*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
c3f38a38 53DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 54
90481622
DG
55static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56{
57 bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59 spin_unlock(&spool->lock);
60
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
63 if (free)
64 kfree(spool);
65}
66
67struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68{
69 struct hugepage_subpool *spool;
70
71 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 if (!spool)
73 return NULL;
74
75 spin_lock_init(&spool->lock);
76 spool->count = 1;
77 spool->max_hpages = nr_blocks;
78 spool->used_hpages = 0;
79
80 return spool;
81}
82
83void hugepage_put_subpool(struct hugepage_subpool *spool)
84{
85 spin_lock(&spool->lock);
86 BUG_ON(!spool->count);
87 spool->count--;
88 unlock_or_release_subpool(spool);
89}
90
91static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 long delta)
93{
94 int ret = 0;
95
96 if (!spool)
97 return 0;
98
99 spin_lock(&spool->lock);
100 if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 spool->used_hpages += delta;
102 } else {
103 ret = -ENOMEM;
104 }
105 spin_unlock(&spool->lock);
106
107 return ret;
108}
109
110static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 long delta)
112{
113 if (!spool)
114 return;
115
116 spin_lock(&spool->lock);
117 spool->used_hpages -= delta;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool);
121}
122
123static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124{
125 return HUGETLBFS_SB(inode->i_sb)->spool;
126}
127
128static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129{
496ad9aa 130 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
131}
132
96822904
AW
133/*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
84afd99b
AW
136 *
137 * The region data structures are protected by a combination of the mmap_sem
c748c262 138 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
84afd99b 139 * must either hold the mmap_sem for write, or the mmap_sem for read and
c748c262 140 * the hugetlb_instantiation_mutex:
84afd99b 141 *
32f84528 142 * down_write(&mm->mmap_sem);
84afd99b 143 * or
32f84528
CF
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
146 */
147struct file_region {
148 struct list_head link;
149 long from;
150 long to;
151};
152
153static long region_add(struct list_head *head, long f, long t)
154{
155 struct file_region *rg, *nrg, *trg;
156
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
159 if (f <= rg->to)
160 break;
161
162 /* Round our left edge to the current segment if it encloses us. */
163 if (f > rg->from)
164 f = rg->from;
165
166 /* Check for and consume any regions we now overlap with. */
167 nrg = rg;
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 if (rg->from > t)
172 break;
173
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
177 if (rg->to > t)
178 t = rg->to;
179 if (rg != nrg) {
180 list_del(&rg->link);
181 kfree(rg);
182 }
183 }
184 nrg->from = f;
185 nrg->to = t;
186 return 0;
187}
188
189static long region_chg(struct list_head *head, long f, long t)
190{
191 struct file_region *rg, *nrg;
192 long chg = 0;
193
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 if (!nrg)
205 return -ENOMEM;
206 nrg->from = f;
207 nrg->to = f;
208 INIT_LIST_HEAD(&nrg->link);
209 list_add(&nrg->link, rg->link.prev);
210
211 return t - f;
212 }
213
214 /* Round our left edge to the current segment if it encloses us. */
215 if (f > rg->from)
216 f = rg->from;
217 chg = t - f;
218
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg, rg->link.prev, link) {
221 if (&rg->link == head)
222 break;
223 if (rg->from > t)
224 return chg;
225
25985edc 226 /* We overlap with this area, if it extends further than
96822904
AW
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
229 if (rg->to > t) {
230 chg += rg->to - t;
231 t = rg->to;
232 }
233 chg -= rg->to - rg->from;
234 }
235 return chg;
236}
237
238static long region_truncate(struct list_head *head, long end)
239{
240 struct file_region *rg, *trg;
241 long chg = 0;
242
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg, head, link)
245 if (end <= rg->to)
246 break;
247 if (&rg->link == head)
248 return 0;
249
250 /* If we are in the middle of a region then adjust it. */
251 if (end > rg->from) {
252 chg = rg->to - end;
253 rg->to = end;
254 rg = list_entry(rg->link.next, typeof(*rg), link);
255 }
256
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 if (&rg->link == head)
260 break;
261 chg += rg->to - rg->from;
262 list_del(&rg->link);
263 kfree(rg);
264 }
265 return chg;
266}
267
84afd99b
AW
268static long region_count(struct list_head *head, long f, long t)
269{
270 struct file_region *rg;
271 long chg = 0;
272
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
275 long seg_from;
276 long seg_to;
84afd99b
AW
277
278 if (rg->to <= f)
279 continue;
280 if (rg->from >= t)
281 break;
282
283 seg_from = max(rg->from, f);
284 seg_to = min(rg->to, t);
285
286 chg += seg_to - seg_from;
287 }
288
289 return chg;
290}
291
e7c4b0bf
AW
292/*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
a5516438
AK
296static pgoff_t vma_hugecache_offset(struct hstate *h,
297 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 298{
a5516438
AK
299 return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
301}
302
0fe6e20b
NH
303pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 unsigned long address)
305{
306 return vma_hugecache_offset(hstate_vma(vma), vma, address);
307}
308
08fba699
MG
309/*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314{
315 struct hstate *hstate;
316
317 if (!is_vm_hugetlb_page(vma))
318 return PAGE_SIZE;
319
320 hstate = hstate_vma(vma);
321
2415cf12 322 return 1UL << huge_page_shift(hstate);
08fba699 323}
f340ca0f 324EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 325
3340289d
MG
326/*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332#ifndef vma_mmu_pagesize
333unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334{
335 return vma_kernel_pagesize(vma);
336}
337#endif
338
84afd99b
AW
339/*
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344#define HPAGE_RESV_OWNER (1UL << 0)
345#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 346#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 347
a1e78772
MG
348/*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
a1e78772 366 */
e7c4b0bf
AW
367static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368{
369 return (unsigned long)vma->vm_private_data;
370}
371
372static void set_vma_private_data(struct vm_area_struct *vma,
373 unsigned long value)
374{
375 vma->vm_private_data = (void *)value;
376}
377
84afd99b
AW
378struct resv_map {
379 struct kref refs;
380 struct list_head regions;
381};
382
2a4b3ded 383static struct resv_map *resv_map_alloc(void)
84afd99b
AW
384{
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393}
394
2a4b3ded 395static void resv_map_release(struct kref *ref)
84afd99b
AW
396{
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map->regions, 0);
401 kfree(resv_map);
402}
403
404static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
405{
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 407 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
2a4b3ded 410 return NULL;
a1e78772
MG
411}
412
84afd99b 413static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
414{
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 417
84afd99b
AW
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
420}
421
422static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423{
04f2cbe3 424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
428}
429
430static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431{
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
433
434 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
435}
436
04f2cbe3 437/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
438void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
439{
440 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 441 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
442 vma->vm_private_data = (void *)0;
443}
444
445/* Returns true if the VMA has associated reserve pages */
af0ed73e 446static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 447{
af0ed73e
JK
448 if (vma->vm_flags & VM_NORESERVE) {
449 /*
450 * This address is already reserved by other process(chg == 0),
451 * so, we should decrement reserved count. Without decrementing,
452 * reserve count remains after releasing inode, because this
453 * allocated page will go into page cache and is regarded as
454 * coming from reserved pool in releasing step. Currently, we
455 * don't have any other solution to deal with this situation
456 * properly, so add work-around here.
457 */
458 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
459 return 1;
460 else
461 return 0;
462 }
a63884e9
JK
463
464 /* Shared mappings always use reserves */
f83a275d 465 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 466 return 1;
a63884e9
JK
467
468 /*
469 * Only the process that called mmap() has reserves for
470 * private mappings.
471 */
7f09ca51
MG
472 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
473 return 1;
a63884e9 474
7f09ca51 475 return 0;
a1e78772
MG
476}
477
0ebabb41
NH
478static void copy_gigantic_page(struct page *dst, struct page *src)
479{
480 int i;
481 struct hstate *h = page_hstate(src);
482 struct page *dst_base = dst;
483 struct page *src_base = src;
484
485 for (i = 0; i < pages_per_huge_page(h); ) {
486 cond_resched();
487 copy_highpage(dst, src);
488
489 i++;
490 dst = mem_map_next(dst, dst_base, i);
491 src = mem_map_next(src, src_base, i);
492 }
493}
494
495void copy_huge_page(struct page *dst, struct page *src)
496{
497 int i;
498 struct hstate *h = page_hstate(src);
499
500 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
501 copy_gigantic_page(dst, src);
502 return;
503 }
504
505 might_sleep();
506 for (i = 0; i < pages_per_huge_page(h); i++) {
507 cond_resched();
508 copy_highpage(dst + i, src + i);
509 }
510}
511
a5516438 512static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
513{
514 int nid = page_to_nid(page);
0edaecfa 515 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
516 h->free_huge_pages++;
517 h->free_huge_pages_node[nid]++;
1da177e4
LT
518}
519
bf50bab2
NH
520static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
521{
522 struct page *page;
523
524 if (list_empty(&h->hugepage_freelists[nid]))
525 return NULL;
526 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
0edaecfa 527 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 528 set_page_refcounted(page);
bf50bab2
NH
529 h->free_huge_pages--;
530 h->free_huge_pages_node[nid]--;
531 return page;
532}
533
a5516438
AK
534static struct page *dequeue_huge_page_vma(struct hstate *h,
535 struct vm_area_struct *vma,
af0ed73e
JK
536 unsigned long address, int avoid_reserve,
537 long chg)
1da177e4 538{
b1c12cbc 539 struct page *page = NULL;
480eccf9 540 struct mempolicy *mpol;
19770b32 541 nodemask_t *nodemask;
c0ff7453 542 struct zonelist *zonelist;
dd1a239f
MG
543 struct zone *zone;
544 struct zoneref *z;
cc9a6c87 545 unsigned int cpuset_mems_cookie;
1da177e4 546
a1e78772
MG
547 /*
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
551 */
af0ed73e 552 if (!vma_has_reserves(vma, chg) &&
a5516438 553 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 554 goto err;
a1e78772 555
04f2cbe3 556 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 557 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 558 goto err;
04f2cbe3 559
9966c4bb
JK
560retry_cpuset:
561 cpuset_mems_cookie = get_mems_allowed();
562 zonelist = huge_zonelist(vma, address,
563 htlb_alloc_mask, &mpol, &nodemask);
564
19770b32
MG
565 for_each_zone_zonelist_nodemask(zone, z, zonelist,
566 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
567 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
568 page = dequeue_huge_page_node(h, zone_to_nid(zone));
569 if (page) {
af0ed73e
JK
570 if (avoid_reserve)
571 break;
572 if (!vma_has_reserves(vma, chg))
573 break;
574
575 h->resv_huge_pages--;
bf50bab2
NH
576 break;
577 }
3abf7afd 578 }
1da177e4 579 }
cc9a6c87 580
52cd3b07 581 mpol_cond_put(mpol);
cc9a6c87
MG
582 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
583 goto retry_cpuset;
1da177e4 584 return page;
cc9a6c87
MG
585
586err:
cc9a6c87 587 return NULL;
1da177e4
LT
588}
589
a5516438 590static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
591{
592 int i;
a5516438 593
18229df5
AW
594 VM_BUG_ON(h->order >= MAX_ORDER);
595
a5516438
AK
596 h->nr_huge_pages--;
597 h->nr_huge_pages_node[page_to_nid(page)]--;
598 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
599 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
600 1 << PG_referenced | 1 << PG_dirty |
601 1 << PG_active | 1 << PG_reserved |
602 1 << PG_private | 1 << PG_writeback);
6af2acb6 603 }
9dd540e2 604 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
605 set_compound_page_dtor(page, NULL);
606 set_page_refcounted(page);
7f2e9525 607 arch_release_hugepage(page);
a5516438 608 __free_pages(page, huge_page_order(h));
6af2acb6
AL
609}
610
e5ff2159
AK
611struct hstate *size_to_hstate(unsigned long size)
612{
613 struct hstate *h;
614
615 for_each_hstate(h) {
616 if (huge_page_size(h) == size)
617 return h;
618 }
619 return NULL;
620}
621
27a85ef1
DG
622static void free_huge_page(struct page *page)
623{
a5516438
AK
624 /*
625 * Can't pass hstate in here because it is called from the
626 * compound page destructor.
627 */
e5ff2159 628 struct hstate *h = page_hstate(page);
7893d1d5 629 int nid = page_to_nid(page);
90481622
DG
630 struct hugepage_subpool *spool =
631 (struct hugepage_subpool *)page_private(page);
27a85ef1 632
e5df70ab 633 set_page_private(page, 0);
23be7468 634 page->mapping = NULL;
7893d1d5 635 BUG_ON(page_count(page));
0fe6e20b 636 BUG_ON(page_mapcount(page));
27a85ef1
DG
637
638 spin_lock(&hugetlb_lock);
6d76dcf4
AK
639 hugetlb_cgroup_uncharge_page(hstate_index(h),
640 pages_per_huge_page(h), page);
aa888a74 641 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
642 /* remove the page from active list */
643 list_del(&page->lru);
a5516438
AK
644 update_and_free_page(h, page);
645 h->surplus_huge_pages--;
646 h->surplus_huge_pages_node[nid]--;
7893d1d5 647 } else {
5d3a551c 648 arch_clear_hugepage_flags(page);
a5516438 649 enqueue_huge_page(h, page);
7893d1d5 650 }
27a85ef1 651 spin_unlock(&hugetlb_lock);
90481622 652 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
653}
654
a5516438 655static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 656{
0edaecfa 657 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
658 set_compound_page_dtor(page, free_huge_page);
659 spin_lock(&hugetlb_lock);
9dd540e2 660 set_hugetlb_cgroup(page, NULL);
a5516438
AK
661 h->nr_huge_pages++;
662 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
663 spin_unlock(&hugetlb_lock);
664 put_page(page); /* free it into the hugepage allocator */
665}
666
20a0307c
WF
667static void prep_compound_gigantic_page(struct page *page, unsigned long order)
668{
669 int i;
670 int nr_pages = 1 << order;
671 struct page *p = page + 1;
672
673 /* we rely on prep_new_huge_page to set the destructor */
674 set_compound_order(page, order);
675 __SetPageHead(page);
676 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
677 __SetPageTail(p);
58a84aa9 678 set_page_count(p, 0);
20a0307c
WF
679 p->first_page = page;
680 }
681}
682
7795912c
AM
683/*
684 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
685 * transparent huge pages. See the PageTransHuge() documentation for more
686 * details.
687 */
20a0307c
WF
688int PageHuge(struct page *page)
689{
690 compound_page_dtor *dtor;
691
692 if (!PageCompound(page))
693 return 0;
694
695 page = compound_head(page);
696 dtor = get_compound_page_dtor(page);
697
698 return dtor == free_huge_page;
699}
43131e14
NH
700EXPORT_SYMBOL_GPL(PageHuge);
701
13d60f4b
ZY
702pgoff_t __basepage_index(struct page *page)
703{
704 struct page *page_head = compound_head(page);
705 pgoff_t index = page_index(page_head);
706 unsigned long compound_idx;
707
708 if (!PageHuge(page_head))
709 return page_index(page);
710
711 if (compound_order(page_head) >= MAX_ORDER)
712 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
713 else
714 compound_idx = page - page_head;
715
716 return (index << compound_order(page_head)) + compound_idx;
717}
718
a5516438 719static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 720{
1da177e4 721 struct page *page;
f96efd58 722
aa888a74
AK
723 if (h->order >= MAX_ORDER)
724 return NULL;
725
6484eb3e 726 page = alloc_pages_exact_node(nid,
551883ae
NA
727 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
728 __GFP_REPEAT|__GFP_NOWARN,
a5516438 729 huge_page_order(h));
1da177e4 730 if (page) {
7f2e9525 731 if (arch_prepare_hugepage(page)) {
caff3a2c 732 __free_pages(page, huge_page_order(h));
7b8ee84d 733 return NULL;
7f2e9525 734 }
a5516438 735 prep_new_huge_page(h, page, nid);
1da177e4 736 }
63b4613c
NA
737
738 return page;
739}
740
9a76db09 741/*
6ae11b27
LS
742 * common helper functions for hstate_next_node_to_{alloc|free}.
743 * We may have allocated or freed a huge page based on a different
744 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
745 * be outside of *nodes_allowed. Ensure that we use an allowed
746 * node for alloc or free.
9a76db09 747 */
6ae11b27 748static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 749{
6ae11b27 750 nid = next_node(nid, *nodes_allowed);
9a76db09 751 if (nid == MAX_NUMNODES)
6ae11b27 752 nid = first_node(*nodes_allowed);
9a76db09
LS
753 VM_BUG_ON(nid >= MAX_NUMNODES);
754
755 return nid;
756}
757
6ae11b27
LS
758static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
759{
760 if (!node_isset(nid, *nodes_allowed))
761 nid = next_node_allowed(nid, nodes_allowed);
762 return nid;
763}
764
5ced66c9 765/*
6ae11b27
LS
766 * returns the previously saved node ["this node"] from which to
767 * allocate a persistent huge page for the pool and advance the
768 * next node from which to allocate, handling wrap at end of node
769 * mask.
5ced66c9 770 */
6ae11b27
LS
771static int hstate_next_node_to_alloc(struct hstate *h,
772 nodemask_t *nodes_allowed)
5ced66c9 773{
6ae11b27
LS
774 int nid;
775
776 VM_BUG_ON(!nodes_allowed);
777
778 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
779 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 780
9a76db09 781 return nid;
5ced66c9
AK
782}
783
e8c5c824 784/*
6ae11b27
LS
785 * helper for free_pool_huge_page() - return the previously saved
786 * node ["this node"] from which to free a huge page. Advance the
787 * next node id whether or not we find a free huge page to free so
788 * that the next attempt to free addresses the next node.
e8c5c824 789 */
6ae11b27 790static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 791{
6ae11b27
LS
792 int nid;
793
794 VM_BUG_ON(!nodes_allowed);
795
796 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
797 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 798
9a76db09 799 return nid;
e8c5c824
LS
800}
801
b2261026
JK
802#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
803 for (nr_nodes = nodes_weight(*mask); \
804 nr_nodes > 0 && \
805 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
806 nr_nodes--)
807
808#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
809 for (nr_nodes = nodes_weight(*mask); \
810 nr_nodes > 0 && \
811 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
812 nr_nodes--)
813
814static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
815{
816 struct page *page;
817 int nr_nodes, node;
818 int ret = 0;
819
820 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
821 page = alloc_fresh_huge_page_node(h, node);
822 if (page) {
823 ret = 1;
824 break;
825 }
826 }
827
828 if (ret)
829 count_vm_event(HTLB_BUDDY_PGALLOC);
830 else
831 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
832
833 return ret;
834}
835
e8c5c824
LS
836/*
837 * Free huge page from pool from next node to free.
838 * Attempt to keep persistent huge pages more or less
839 * balanced over allowed nodes.
840 * Called with hugetlb_lock locked.
841 */
6ae11b27
LS
842static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
843 bool acct_surplus)
e8c5c824 844{
b2261026 845 int nr_nodes, node;
e8c5c824
LS
846 int ret = 0;
847
b2261026 848 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
849 /*
850 * If we're returning unused surplus pages, only examine
851 * nodes with surplus pages.
852 */
b2261026
JK
853 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
854 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 855 struct page *page =
b2261026 856 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
857 struct page, lru);
858 list_del(&page->lru);
859 h->free_huge_pages--;
b2261026 860 h->free_huge_pages_node[node]--;
685f3457
LS
861 if (acct_surplus) {
862 h->surplus_huge_pages--;
b2261026 863 h->surplus_huge_pages_node[node]--;
685f3457 864 }
e8c5c824
LS
865 update_and_free_page(h, page);
866 ret = 1;
9a76db09 867 break;
e8c5c824 868 }
b2261026 869 }
e8c5c824
LS
870
871 return ret;
872}
873
bf50bab2 874static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
875{
876 struct page *page;
bf50bab2 877 unsigned int r_nid;
7893d1d5 878
aa888a74
AK
879 if (h->order >= MAX_ORDER)
880 return NULL;
881
d1c3fb1f
NA
882 /*
883 * Assume we will successfully allocate the surplus page to
884 * prevent racing processes from causing the surplus to exceed
885 * overcommit
886 *
887 * This however introduces a different race, where a process B
888 * tries to grow the static hugepage pool while alloc_pages() is
889 * called by process A. B will only examine the per-node
890 * counters in determining if surplus huge pages can be
891 * converted to normal huge pages in adjust_pool_surplus(). A
892 * won't be able to increment the per-node counter, until the
893 * lock is dropped by B, but B doesn't drop hugetlb_lock until
894 * no more huge pages can be converted from surplus to normal
895 * state (and doesn't try to convert again). Thus, we have a
896 * case where a surplus huge page exists, the pool is grown, and
897 * the surplus huge page still exists after, even though it
898 * should just have been converted to a normal huge page. This
899 * does not leak memory, though, as the hugepage will be freed
900 * once it is out of use. It also does not allow the counters to
901 * go out of whack in adjust_pool_surplus() as we don't modify
902 * the node values until we've gotten the hugepage and only the
903 * per-node value is checked there.
904 */
905 spin_lock(&hugetlb_lock);
a5516438 906 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
907 spin_unlock(&hugetlb_lock);
908 return NULL;
909 } else {
a5516438
AK
910 h->nr_huge_pages++;
911 h->surplus_huge_pages++;
d1c3fb1f
NA
912 }
913 spin_unlock(&hugetlb_lock);
914
bf50bab2
NH
915 if (nid == NUMA_NO_NODE)
916 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
917 __GFP_REPEAT|__GFP_NOWARN,
918 huge_page_order(h));
919 else
920 page = alloc_pages_exact_node(nid,
921 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
922 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 923
caff3a2c
GS
924 if (page && arch_prepare_hugepage(page)) {
925 __free_pages(page, huge_page_order(h));
ea5768c7 926 page = NULL;
caff3a2c
GS
927 }
928
d1c3fb1f 929 spin_lock(&hugetlb_lock);
7893d1d5 930 if (page) {
0edaecfa 931 INIT_LIST_HEAD(&page->lru);
bf50bab2 932 r_nid = page_to_nid(page);
7893d1d5 933 set_compound_page_dtor(page, free_huge_page);
9dd540e2 934 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
935 /*
936 * We incremented the global counters already
937 */
bf50bab2
NH
938 h->nr_huge_pages_node[r_nid]++;
939 h->surplus_huge_pages_node[r_nid]++;
3b116300 940 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 941 } else {
a5516438
AK
942 h->nr_huge_pages--;
943 h->surplus_huge_pages--;
3b116300 944 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 945 }
d1c3fb1f 946 spin_unlock(&hugetlb_lock);
7893d1d5
AL
947
948 return page;
949}
950
bf50bab2
NH
951/*
952 * This allocation function is useful in the context where vma is irrelevant.
953 * E.g. soft-offlining uses this function because it only cares physical
954 * address of error page.
955 */
956struct page *alloc_huge_page_node(struct hstate *h, int nid)
957{
4ef91848 958 struct page *page = NULL;
bf50bab2
NH
959
960 spin_lock(&hugetlb_lock);
4ef91848
JK
961 if (h->free_huge_pages - h->resv_huge_pages > 0)
962 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
963 spin_unlock(&hugetlb_lock);
964
94ae8ba7 965 if (!page)
bf50bab2
NH
966 page = alloc_buddy_huge_page(h, nid);
967
968 return page;
969}
970
e4e574b7 971/*
25985edc 972 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
973 * of size 'delta'.
974 */
a5516438 975static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
976{
977 struct list_head surplus_list;
978 struct page *page, *tmp;
979 int ret, i;
980 int needed, allocated;
28073b02 981 bool alloc_ok = true;
e4e574b7 982
a5516438 983 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 984 if (needed <= 0) {
a5516438 985 h->resv_huge_pages += delta;
e4e574b7 986 return 0;
ac09b3a1 987 }
e4e574b7
AL
988
989 allocated = 0;
990 INIT_LIST_HEAD(&surplus_list);
991
992 ret = -ENOMEM;
993retry:
994 spin_unlock(&hugetlb_lock);
995 for (i = 0; i < needed; i++) {
bf50bab2 996 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
997 if (!page) {
998 alloc_ok = false;
999 break;
1000 }
e4e574b7
AL
1001 list_add(&page->lru, &surplus_list);
1002 }
28073b02 1003 allocated += i;
e4e574b7
AL
1004
1005 /*
1006 * After retaking hugetlb_lock, we need to recalculate 'needed'
1007 * because either resv_huge_pages or free_huge_pages may have changed.
1008 */
1009 spin_lock(&hugetlb_lock);
a5516438
AK
1010 needed = (h->resv_huge_pages + delta) -
1011 (h->free_huge_pages + allocated);
28073b02
HD
1012 if (needed > 0) {
1013 if (alloc_ok)
1014 goto retry;
1015 /*
1016 * We were not able to allocate enough pages to
1017 * satisfy the entire reservation so we free what
1018 * we've allocated so far.
1019 */
1020 goto free;
1021 }
e4e574b7
AL
1022 /*
1023 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1024 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1025 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1026 * allocator. Commit the entire reservation here to prevent another
1027 * process from stealing the pages as they are added to the pool but
1028 * before they are reserved.
e4e574b7
AL
1029 */
1030 needed += allocated;
a5516438 1031 h->resv_huge_pages += delta;
e4e574b7 1032 ret = 0;
a9869b83 1033
19fc3f0a 1034 /* Free the needed pages to the hugetlb pool */
e4e574b7 1035 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1036 if ((--needed) < 0)
1037 break;
a9869b83
NH
1038 /*
1039 * This page is now managed by the hugetlb allocator and has
1040 * no users -- drop the buddy allocator's reference.
1041 */
1042 put_page_testzero(page);
1043 VM_BUG_ON(page_count(page));
a5516438 1044 enqueue_huge_page(h, page);
19fc3f0a 1045 }
28073b02 1046free:
b0365c8d 1047 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1048
1049 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1050 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1051 put_page(page);
a9869b83 1052 spin_lock(&hugetlb_lock);
e4e574b7
AL
1053
1054 return ret;
1055}
1056
1057/*
1058 * When releasing a hugetlb pool reservation, any surplus pages that were
1059 * allocated to satisfy the reservation must be explicitly freed if they were
1060 * never used.
685f3457 1061 * Called with hugetlb_lock held.
e4e574b7 1062 */
a5516438
AK
1063static void return_unused_surplus_pages(struct hstate *h,
1064 unsigned long unused_resv_pages)
e4e574b7 1065{
e4e574b7
AL
1066 unsigned long nr_pages;
1067
ac09b3a1 1068 /* Uncommit the reservation */
a5516438 1069 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1070
aa888a74
AK
1071 /* Cannot return gigantic pages currently */
1072 if (h->order >= MAX_ORDER)
1073 return;
1074
a5516438 1075 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1076
685f3457
LS
1077 /*
1078 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1079 * evenly across all nodes with memory. Iterate across these nodes
1080 * until we can no longer free unreserved surplus pages. This occurs
1081 * when the nodes with surplus pages have no free pages.
1082 * free_pool_huge_page() will balance the the freed pages across the
1083 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1084 */
1085 while (nr_pages--) {
8cebfcd0 1086 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1087 break;
e4e574b7
AL
1088 }
1089}
1090
c37f9fb1
AW
1091/*
1092 * Determine if the huge page at addr within the vma has an associated
1093 * reservation. Where it does not we will need to logically increase
90481622
DG
1094 * reservation and actually increase subpool usage before an allocation
1095 * can occur. Where any new reservation would be required the
1096 * reservation change is prepared, but not committed. Once the page
1097 * has been allocated from the subpool and instantiated the change should
1098 * be committed via vma_commit_reservation. No action is required on
1099 * failure.
c37f9fb1 1100 */
e2f17d94 1101static long vma_needs_reservation(struct hstate *h,
a5516438 1102 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1103{
1104 struct address_space *mapping = vma->vm_file->f_mapping;
1105 struct inode *inode = mapping->host;
1106
f83a275d 1107 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1108 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1109 return region_chg(&inode->i_mapping->private_list,
1110 idx, idx + 1);
1111
84afd99b
AW
1112 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1113 return 1;
c37f9fb1 1114
84afd99b 1115 } else {
e2f17d94 1116 long err;
a5516438 1117 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1118 struct resv_map *reservations = vma_resv_map(vma);
1119
1120 err = region_chg(&reservations->regions, idx, idx + 1);
1121 if (err < 0)
1122 return err;
1123 return 0;
1124 }
c37f9fb1 1125}
a5516438
AK
1126static void vma_commit_reservation(struct hstate *h,
1127 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1128{
1129 struct address_space *mapping = vma->vm_file->f_mapping;
1130 struct inode *inode = mapping->host;
1131
f83a275d 1132 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1133 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1134 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1135
1136 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1137 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1138 struct resv_map *reservations = vma_resv_map(vma);
1139
1140 /* Mark this page used in the map. */
1141 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1142 }
1143}
1144
a1e78772 1145static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1146 unsigned long addr, int avoid_reserve)
1da177e4 1147{
90481622 1148 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1149 struct hstate *h = hstate_vma(vma);
348ea204 1150 struct page *page;
e2f17d94 1151 long chg;
6d76dcf4
AK
1152 int ret, idx;
1153 struct hugetlb_cgroup *h_cg;
a1e78772 1154
6d76dcf4 1155 idx = hstate_index(h);
a1e78772 1156 /*
90481622
DG
1157 * Processes that did not create the mapping will have no
1158 * reserves and will not have accounted against subpool
1159 * limit. Check that the subpool limit can be made before
1160 * satisfying the allocation MAP_NORESERVE mappings may also
1161 * need pages and subpool limit allocated allocated if no reserve
1162 * mapping overlaps.
a1e78772 1163 */
a5516438 1164 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1165 if (chg < 0)
76dcee75 1166 return ERR_PTR(-ENOMEM);
c37f9fb1 1167 if (chg)
90481622 1168 if (hugepage_subpool_get_pages(spool, chg))
76dcee75 1169 return ERR_PTR(-ENOSPC);
1da177e4 1170
6d76dcf4
AK
1171 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1172 if (ret) {
1173 hugepage_subpool_put_pages(spool, chg);
1174 return ERR_PTR(-ENOSPC);
1175 }
1da177e4 1176 spin_lock(&hugetlb_lock);
af0ed73e 1177 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1178 if (!page) {
94ae8ba7 1179 spin_unlock(&hugetlb_lock);
bf50bab2 1180 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1181 if (!page) {
6d76dcf4
AK
1182 hugetlb_cgroup_uncharge_cgroup(idx,
1183 pages_per_huge_page(h),
1184 h_cg);
90481622 1185 hugepage_subpool_put_pages(spool, chg);
76dcee75 1186 return ERR_PTR(-ENOSPC);
68842c9b 1187 }
79dbb236
AK
1188 spin_lock(&hugetlb_lock);
1189 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1190 /* Fall through */
68842c9b 1191 }
81a6fcae
JK
1192 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1193 spin_unlock(&hugetlb_lock);
348ea204 1194
90481622 1195 set_page_private(page, (unsigned long)spool);
90d8b7e6 1196
a5516438 1197 vma_commit_reservation(h, vma, addr);
90d8b7e6 1198 return page;
b45b5bd6
DG
1199}
1200
91f47662 1201int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1202{
1203 struct huge_bootmem_page *m;
b2261026 1204 int nr_nodes, node;
aa888a74 1205
b2261026 1206 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1207 void *addr;
1208
b2261026 1209 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
aa888a74
AK
1210 huge_page_size(h), huge_page_size(h), 0);
1211
1212 if (addr) {
1213 /*
1214 * Use the beginning of the huge page to store the
1215 * huge_bootmem_page struct (until gather_bootmem
1216 * puts them into the mem_map).
1217 */
1218 m = addr;
91f47662 1219 goto found;
aa888a74 1220 }
aa888a74
AK
1221 }
1222 return 0;
1223
1224found:
1225 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1226 /* Put them into a private list first because mem_map is not up yet */
1227 list_add(&m->list, &huge_boot_pages);
1228 m->hstate = h;
1229 return 1;
1230}
1231
18229df5
AW
1232static void prep_compound_huge_page(struct page *page, int order)
1233{
1234 if (unlikely(order > (MAX_ORDER - 1)))
1235 prep_compound_gigantic_page(page, order);
1236 else
1237 prep_compound_page(page, order);
1238}
1239
aa888a74
AK
1240/* Put bootmem huge pages into the standard lists after mem_map is up */
1241static void __init gather_bootmem_prealloc(void)
1242{
1243 struct huge_bootmem_page *m;
1244
1245 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1246 struct hstate *h = m->hstate;
ee8f248d
BB
1247 struct page *page;
1248
1249#ifdef CONFIG_HIGHMEM
1250 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1251 free_bootmem_late((unsigned long)m,
1252 sizeof(struct huge_bootmem_page));
1253#else
1254 page = virt_to_page(m);
1255#endif
aa888a74
AK
1256 __ClearPageReserved(page);
1257 WARN_ON(page_count(page) != 1);
18229df5 1258 prep_compound_huge_page(page, h->order);
aa888a74 1259 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1260 /*
1261 * If we had gigantic hugepages allocated at boot time, we need
1262 * to restore the 'stolen' pages to totalram_pages in order to
1263 * fix confusing memory reports from free(1) and another
1264 * side-effects, like CommitLimit going negative.
1265 */
1266 if (h->order > (MAX_ORDER - 1))
3dcc0571 1267 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1268 }
1269}
1270
8faa8b07 1271static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1272{
1273 unsigned long i;
a5516438 1274
e5ff2159 1275 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1276 if (h->order >= MAX_ORDER) {
1277 if (!alloc_bootmem_huge_page(h))
1278 break;
9b5e5d0f 1279 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1280 &node_states[N_MEMORY]))
1da177e4 1281 break;
1da177e4 1282 }
8faa8b07 1283 h->max_huge_pages = i;
e5ff2159
AK
1284}
1285
1286static void __init hugetlb_init_hstates(void)
1287{
1288 struct hstate *h;
1289
1290 for_each_hstate(h) {
8faa8b07
AK
1291 /* oversize hugepages were init'ed in early boot */
1292 if (h->order < MAX_ORDER)
1293 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1294 }
1295}
1296
4abd32db
AK
1297static char * __init memfmt(char *buf, unsigned long n)
1298{
1299 if (n >= (1UL << 30))
1300 sprintf(buf, "%lu GB", n >> 30);
1301 else if (n >= (1UL << 20))
1302 sprintf(buf, "%lu MB", n >> 20);
1303 else
1304 sprintf(buf, "%lu KB", n >> 10);
1305 return buf;
1306}
1307
e5ff2159
AK
1308static void __init report_hugepages(void)
1309{
1310 struct hstate *h;
1311
1312 for_each_hstate(h) {
4abd32db 1313 char buf[32];
ffb22af5 1314 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1315 memfmt(buf, huge_page_size(h)),
1316 h->free_huge_pages);
e5ff2159
AK
1317 }
1318}
1319
1da177e4 1320#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1321static void try_to_free_low(struct hstate *h, unsigned long count,
1322 nodemask_t *nodes_allowed)
1da177e4 1323{
4415cc8d
CL
1324 int i;
1325
aa888a74
AK
1326 if (h->order >= MAX_ORDER)
1327 return;
1328
6ae11b27 1329 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1330 struct page *page, *next;
a5516438
AK
1331 struct list_head *freel = &h->hugepage_freelists[i];
1332 list_for_each_entry_safe(page, next, freel, lru) {
1333 if (count >= h->nr_huge_pages)
6b0c880d 1334 return;
1da177e4
LT
1335 if (PageHighMem(page))
1336 continue;
1337 list_del(&page->lru);
e5ff2159 1338 update_and_free_page(h, page);
a5516438
AK
1339 h->free_huge_pages--;
1340 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1341 }
1342 }
1343}
1344#else
6ae11b27
LS
1345static inline void try_to_free_low(struct hstate *h, unsigned long count,
1346 nodemask_t *nodes_allowed)
1da177e4
LT
1347{
1348}
1349#endif
1350
20a0307c
WF
1351/*
1352 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1353 * balanced by operating on them in a round-robin fashion.
1354 * Returns 1 if an adjustment was made.
1355 */
6ae11b27
LS
1356static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1357 int delta)
20a0307c 1358{
b2261026 1359 int nr_nodes, node;
20a0307c
WF
1360
1361 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1362
b2261026
JK
1363 if (delta < 0) {
1364 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1365 if (h->surplus_huge_pages_node[node])
1366 goto found;
e8c5c824 1367 }
b2261026
JK
1368 } else {
1369 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1370 if (h->surplus_huge_pages_node[node] <
1371 h->nr_huge_pages_node[node])
1372 goto found;
e8c5c824 1373 }
b2261026
JK
1374 }
1375 return 0;
20a0307c 1376
b2261026
JK
1377found:
1378 h->surplus_huge_pages += delta;
1379 h->surplus_huge_pages_node[node] += delta;
1380 return 1;
20a0307c
WF
1381}
1382
a5516438 1383#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1384static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1385 nodemask_t *nodes_allowed)
1da177e4 1386{
7893d1d5 1387 unsigned long min_count, ret;
1da177e4 1388
aa888a74
AK
1389 if (h->order >= MAX_ORDER)
1390 return h->max_huge_pages;
1391
7893d1d5
AL
1392 /*
1393 * Increase the pool size
1394 * First take pages out of surplus state. Then make up the
1395 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1396 *
1397 * We might race with alloc_buddy_huge_page() here and be unable
1398 * to convert a surplus huge page to a normal huge page. That is
1399 * not critical, though, it just means the overall size of the
1400 * pool might be one hugepage larger than it needs to be, but
1401 * within all the constraints specified by the sysctls.
7893d1d5 1402 */
1da177e4 1403 spin_lock(&hugetlb_lock);
a5516438 1404 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1405 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1406 break;
1407 }
1408
a5516438 1409 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1410 /*
1411 * If this allocation races such that we no longer need the
1412 * page, free_huge_page will handle it by freeing the page
1413 * and reducing the surplus.
1414 */
1415 spin_unlock(&hugetlb_lock);
6ae11b27 1416 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1417 spin_lock(&hugetlb_lock);
1418 if (!ret)
1419 goto out;
1420
536240f2
MG
1421 /* Bail for signals. Probably ctrl-c from user */
1422 if (signal_pending(current))
1423 goto out;
7893d1d5 1424 }
7893d1d5
AL
1425
1426 /*
1427 * Decrease the pool size
1428 * First return free pages to the buddy allocator (being careful
1429 * to keep enough around to satisfy reservations). Then place
1430 * pages into surplus state as needed so the pool will shrink
1431 * to the desired size as pages become free.
d1c3fb1f
NA
1432 *
1433 * By placing pages into the surplus state independent of the
1434 * overcommit value, we are allowing the surplus pool size to
1435 * exceed overcommit. There are few sane options here. Since
1436 * alloc_buddy_huge_page() is checking the global counter,
1437 * though, we'll note that we're not allowed to exceed surplus
1438 * and won't grow the pool anywhere else. Not until one of the
1439 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1440 */
a5516438 1441 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1442 min_count = max(count, min_count);
6ae11b27 1443 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1444 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1445 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1446 break;
1da177e4 1447 }
a5516438 1448 while (count < persistent_huge_pages(h)) {
6ae11b27 1449 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1450 break;
1451 }
1452out:
a5516438 1453 ret = persistent_huge_pages(h);
1da177e4 1454 spin_unlock(&hugetlb_lock);
7893d1d5 1455 return ret;
1da177e4
LT
1456}
1457
a3437870
NA
1458#define HSTATE_ATTR_RO(_name) \
1459 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1460
1461#define HSTATE_ATTR(_name) \
1462 static struct kobj_attribute _name##_attr = \
1463 __ATTR(_name, 0644, _name##_show, _name##_store)
1464
1465static struct kobject *hugepages_kobj;
1466static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1467
9a305230
LS
1468static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1469
1470static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1471{
1472 int i;
9a305230 1473
a3437870 1474 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1475 if (hstate_kobjs[i] == kobj) {
1476 if (nidp)
1477 *nidp = NUMA_NO_NODE;
a3437870 1478 return &hstates[i];
9a305230
LS
1479 }
1480
1481 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1482}
1483
06808b08 1484static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1485 struct kobj_attribute *attr, char *buf)
1486{
9a305230
LS
1487 struct hstate *h;
1488 unsigned long nr_huge_pages;
1489 int nid;
1490
1491 h = kobj_to_hstate(kobj, &nid);
1492 if (nid == NUMA_NO_NODE)
1493 nr_huge_pages = h->nr_huge_pages;
1494 else
1495 nr_huge_pages = h->nr_huge_pages_node[nid];
1496
1497 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1498}
adbe8726 1499
06808b08
LS
1500static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1501 struct kobject *kobj, struct kobj_attribute *attr,
1502 const char *buf, size_t len)
a3437870
NA
1503{
1504 int err;
9a305230 1505 int nid;
06808b08 1506 unsigned long count;
9a305230 1507 struct hstate *h;
bad44b5b 1508 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1509
3dbb95f7 1510 err = kstrtoul(buf, 10, &count);
73ae31e5 1511 if (err)
adbe8726 1512 goto out;
a3437870 1513
9a305230 1514 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1515 if (h->order >= MAX_ORDER) {
1516 err = -EINVAL;
1517 goto out;
1518 }
1519
9a305230
LS
1520 if (nid == NUMA_NO_NODE) {
1521 /*
1522 * global hstate attribute
1523 */
1524 if (!(obey_mempolicy &&
1525 init_nodemask_of_mempolicy(nodes_allowed))) {
1526 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1527 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1528 }
1529 } else if (nodes_allowed) {
1530 /*
1531 * per node hstate attribute: adjust count to global,
1532 * but restrict alloc/free to the specified node.
1533 */
1534 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1535 init_nodemask_of_node(nodes_allowed, nid);
1536 } else
8cebfcd0 1537 nodes_allowed = &node_states[N_MEMORY];
9a305230 1538
06808b08 1539 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1540
8cebfcd0 1541 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1542 NODEMASK_FREE(nodes_allowed);
1543
1544 return len;
adbe8726
EM
1545out:
1546 NODEMASK_FREE(nodes_allowed);
1547 return err;
06808b08
LS
1548}
1549
1550static ssize_t nr_hugepages_show(struct kobject *kobj,
1551 struct kobj_attribute *attr, char *buf)
1552{
1553 return nr_hugepages_show_common(kobj, attr, buf);
1554}
1555
1556static ssize_t nr_hugepages_store(struct kobject *kobj,
1557 struct kobj_attribute *attr, const char *buf, size_t len)
1558{
1559 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1560}
1561HSTATE_ATTR(nr_hugepages);
1562
06808b08
LS
1563#ifdef CONFIG_NUMA
1564
1565/*
1566 * hstate attribute for optionally mempolicy-based constraint on persistent
1567 * huge page alloc/free.
1568 */
1569static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1570 struct kobj_attribute *attr, char *buf)
1571{
1572 return nr_hugepages_show_common(kobj, attr, buf);
1573}
1574
1575static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1576 struct kobj_attribute *attr, const char *buf, size_t len)
1577{
1578 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1579}
1580HSTATE_ATTR(nr_hugepages_mempolicy);
1581#endif
1582
1583
a3437870
NA
1584static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1585 struct kobj_attribute *attr, char *buf)
1586{
9a305230 1587 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1588 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1589}
adbe8726 1590
a3437870
NA
1591static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1592 struct kobj_attribute *attr, const char *buf, size_t count)
1593{
1594 int err;
1595 unsigned long input;
9a305230 1596 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1597
adbe8726
EM
1598 if (h->order >= MAX_ORDER)
1599 return -EINVAL;
1600
3dbb95f7 1601 err = kstrtoul(buf, 10, &input);
a3437870 1602 if (err)
73ae31e5 1603 return err;
a3437870
NA
1604
1605 spin_lock(&hugetlb_lock);
1606 h->nr_overcommit_huge_pages = input;
1607 spin_unlock(&hugetlb_lock);
1608
1609 return count;
1610}
1611HSTATE_ATTR(nr_overcommit_hugepages);
1612
1613static ssize_t free_hugepages_show(struct kobject *kobj,
1614 struct kobj_attribute *attr, char *buf)
1615{
9a305230
LS
1616 struct hstate *h;
1617 unsigned long free_huge_pages;
1618 int nid;
1619
1620 h = kobj_to_hstate(kobj, &nid);
1621 if (nid == NUMA_NO_NODE)
1622 free_huge_pages = h->free_huge_pages;
1623 else
1624 free_huge_pages = h->free_huge_pages_node[nid];
1625
1626 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1627}
1628HSTATE_ATTR_RO(free_hugepages);
1629
1630static ssize_t resv_hugepages_show(struct kobject *kobj,
1631 struct kobj_attribute *attr, char *buf)
1632{
9a305230 1633 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1634 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1635}
1636HSTATE_ATTR_RO(resv_hugepages);
1637
1638static ssize_t surplus_hugepages_show(struct kobject *kobj,
1639 struct kobj_attribute *attr, char *buf)
1640{
9a305230
LS
1641 struct hstate *h;
1642 unsigned long surplus_huge_pages;
1643 int nid;
1644
1645 h = kobj_to_hstate(kobj, &nid);
1646 if (nid == NUMA_NO_NODE)
1647 surplus_huge_pages = h->surplus_huge_pages;
1648 else
1649 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1650
1651 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1652}
1653HSTATE_ATTR_RO(surplus_hugepages);
1654
1655static struct attribute *hstate_attrs[] = {
1656 &nr_hugepages_attr.attr,
1657 &nr_overcommit_hugepages_attr.attr,
1658 &free_hugepages_attr.attr,
1659 &resv_hugepages_attr.attr,
1660 &surplus_hugepages_attr.attr,
06808b08
LS
1661#ifdef CONFIG_NUMA
1662 &nr_hugepages_mempolicy_attr.attr,
1663#endif
a3437870
NA
1664 NULL,
1665};
1666
1667static struct attribute_group hstate_attr_group = {
1668 .attrs = hstate_attrs,
1669};
1670
094e9539
JM
1671static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1672 struct kobject **hstate_kobjs,
1673 struct attribute_group *hstate_attr_group)
a3437870
NA
1674{
1675 int retval;
972dc4de 1676 int hi = hstate_index(h);
a3437870 1677
9a305230
LS
1678 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1679 if (!hstate_kobjs[hi])
a3437870
NA
1680 return -ENOMEM;
1681
9a305230 1682 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1683 if (retval)
9a305230 1684 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1685
1686 return retval;
1687}
1688
1689static void __init hugetlb_sysfs_init(void)
1690{
1691 struct hstate *h;
1692 int err;
1693
1694 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1695 if (!hugepages_kobj)
1696 return;
1697
1698 for_each_hstate(h) {
9a305230
LS
1699 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1700 hstate_kobjs, &hstate_attr_group);
a3437870 1701 if (err)
ffb22af5 1702 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1703 }
1704}
1705
9a305230
LS
1706#ifdef CONFIG_NUMA
1707
1708/*
1709 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1710 * with node devices in node_devices[] using a parallel array. The array
1711 * index of a node device or _hstate == node id.
1712 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1713 * the base kernel, on the hugetlb module.
1714 */
1715struct node_hstate {
1716 struct kobject *hugepages_kobj;
1717 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1718};
1719struct node_hstate node_hstates[MAX_NUMNODES];
1720
1721/*
10fbcf4c 1722 * A subset of global hstate attributes for node devices
9a305230
LS
1723 */
1724static struct attribute *per_node_hstate_attrs[] = {
1725 &nr_hugepages_attr.attr,
1726 &free_hugepages_attr.attr,
1727 &surplus_hugepages_attr.attr,
1728 NULL,
1729};
1730
1731static struct attribute_group per_node_hstate_attr_group = {
1732 .attrs = per_node_hstate_attrs,
1733};
1734
1735/*
10fbcf4c 1736 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1737 * Returns node id via non-NULL nidp.
1738 */
1739static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1740{
1741 int nid;
1742
1743 for (nid = 0; nid < nr_node_ids; nid++) {
1744 struct node_hstate *nhs = &node_hstates[nid];
1745 int i;
1746 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1747 if (nhs->hstate_kobjs[i] == kobj) {
1748 if (nidp)
1749 *nidp = nid;
1750 return &hstates[i];
1751 }
1752 }
1753
1754 BUG();
1755 return NULL;
1756}
1757
1758/*
10fbcf4c 1759 * Unregister hstate attributes from a single node device.
9a305230
LS
1760 * No-op if no hstate attributes attached.
1761 */
3cd8b44f 1762static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1763{
1764 struct hstate *h;
10fbcf4c 1765 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1766
1767 if (!nhs->hugepages_kobj)
9b5e5d0f 1768 return; /* no hstate attributes */
9a305230 1769
972dc4de
AK
1770 for_each_hstate(h) {
1771 int idx = hstate_index(h);
1772 if (nhs->hstate_kobjs[idx]) {
1773 kobject_put(nhs->hstate_kobjs[idx]);
1774 nhs->hstate_kobjs[idx] = NULL;
9a305230 1775 }
972dc4de 1776 }
9a305230
LS
1777
1778 kobject_put(nhs->hugepages_kobj);
1779 nhs->hugepages_kobj = NULL;
1780}
1781
1782/*
10fbcf4c 1783 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1784 * that have them.
1785 */
1786static void hugetlb_unregister_all_nodes(void)
1787{
1788 int nid;
1789
1790 /*
10fbcf4c 1791 * disable node device registrations.
9a305230
LS
1792 */
1793 register_hugetlbfs_with_node(NULL, NULL);
1794
1795 /*
1796 * remove hstate attributes from any nodes that have them.
1797 */
1798 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1799 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1800}
1801
1802/*
10fbcf4c 1803 * Register hstate attributes for a single node device.
9a305230
LS
1804 * No-op if attributes already registered.
1805 */
3cd8b44f 1806static void hugetlb_register_node(struct node *node)
9a305230
LS
1807{
1808 struct hstate *h;
10fbcf4c 1809 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1810 int err;
1811
1812 if (nhs->hugepages_kobj)
1813 return; /* already allocated */
1814
1815 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1816 &node->dev.kobj);
9a305230
LS
1817 if (!nhs->hugepages_kobj)
1818 return;
1819
1820 for_each_hstate(h) {
1821 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1822 nhs->hstate_kobjs,
1823 &per_node_hstate_attr_group);
1824 if (err) {
ffb22af5
AM
1825 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1826 h->name, node->dev.id);
9a305230
LS
1827 hugetlb_unregister_node(node);
1828 break;
1829 }
1830 }
1831}
1832
1833/*
9b5e5d0f 1834 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1835 * devices of nodes that have memory. All on-line nodes should have
1836 * registered their associated device by this time.
9a305230
LS
1837 */
1838static void hugetlb_register_all_nodes(void)
1839{
1840 int nid;
1841
8cebfcd0 1842 for_each_node_state(nid, N_MEMORY) {
8732794b 1843 struct node *node = node_devices[nid];
10fbcf4c 1844 if (node->dev.id == nid)
9a305230
LS
1845 hugetlb_register_node(node);
1846 }
1847
1848 /*
10fbcf4c 1849 * Let the node device driver know we're here so it can
9a305230
LS
1850 * [un]register hstate attributes on node hotplug.
1851 */
1852 register_hugetlbfs_with_node(hugetlb_register_node,
1853 hugetlb_unregister_node);
1854}
1855#else /* !CONFIG_NUMA */
1856
1857static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1858{
1859 BUG();
1860 if (nidp)
1861 *nidp = -1;
1862 return NULL;
1863}
1864
1865static void hugetlb_unregister_all_nodes(void) { }
1866
1867static void hugetlb_register_all_nodes(void) { }
1868
1869#endif
1870
a3437870
NA
1871static void __exit hugetlb_exit(void)
1872{
1873 struct hstate *h;
1874
9a305230
LS
1875 hugetlb_unregister_all_nodes();
1876
a3437870 1877 for_each_hstate(h) {
972dc4de 1878 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1879 }
1880
1881 kobject_put(hugepages_kobj);
1882}
1883module_exit(hugetlb_exit);
1884
1885static int __init hugetlb_init(void)
1886{
0ef89d25
BH
1887 /* Some platform decide whether they support huge pages at boot
1888 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1889 * there is no such support
1890 */
1891 if (HPAGE_SHIFT == 0)
1892 return 0;
a3437870 1893
e11bfbfc
NP
1894 if (!size_to_hstate(default_hstate_size)) {
1895 default_hstate_size = HPAGE_SIZE;
1896 if (!size_to_hstate(default_hstate_size))
1897 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1898 }
972dc4de 1899 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1900 if (default_hstate_max_huge_pages)
1901 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1902
1903 hugetlb_init_hstates();
aa888a74 1904 gather_bootmem_prealloc();
a3437870
NA
1905 report_hugepages();
1906
1907 hugetlb_sysfs_init();
9a305230 1908 hugetlb_register_all_nodes();
7179e7bf 1909 hugetlb_cgroup_file_init();
9a305230 1910
a3437870
NA
1911 return 0;
1912}
1913module_init(hugetlb_init);
1914
1915/* Should be called on processing a hugepagesz=... option */
1916void __init hugetlb_add_hstate(unsigned order)
1917{
1918 struct hstate *h;
8faa8b07
AK
1919 unsigned long i;
1920
a3437870 1921 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1922 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1923 return;
1924 }
47d38344 1925 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1926 BUG_ON(order == 0);
47d38344 1927 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1928 h->order = order;
1929 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1930 h->nr_huge_pages = 0;
1931 h->free_huge_pages = 0;
1932 for (i = 0; i < MAX_NUMNODES; ++i)
1933 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1934 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
1935 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1936 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
1937 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1938 huge_page_size(h)/1024);
8faa8b07 1939
a3437870
NA
1940 parsed_hstate = h;
1941}
1942
e11bfbfc 1943static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1944{
1945 unsigned long *mhp;
8faa8b07 1946 static unsigned long *last_mhp;
a3437870
NA
1947
1948 /*
47d38344 1949 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1950 * so this hugepages= parameter goes to the "default hstate".
1951 */
47d38344 1952 if (!hugetlb_max_hstate)
a3437870
NA
1953 mhp = &default_hstate_max_huge_pages;
1954 else
1955 mhp = &parsed_hstate->max_huge_pages;
1956
8faa8b07 1957 if (mhp == last_mhp) {
ffb22af5
AM
1958 pr_warning("hugepages= specified twice without "
1959 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
1960 return 1;
1961 }
1962
a3437870
NA
1963 if (sscanf(s, "%lu", mhp) <= 0)
1964 *mhp = 0;
1965
8faa8b07
AK
1966 /*
1967 * Global state is always initialized later in hugetlb_init.
1968 * But we need to allocate >= MAX_ORDER hstates here early to still
1969 * use the bootmem allocator.
1970 */
47d38344 1971 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
1972 hugetlb_hstate_alloc_pages(parsed_hstate);
1973
1974 last_mhp = mhp;
1975
a3437870
NA
1976 return 1;
1977}
e11bfbfc
NP
1978__setup("hugepages=", hugetlb_nrpages_setup);
1979
1980static int __init hugetlb_default_setup(char *s)
1981{
1982 default_hstate_size = memparse(s, &s);
1983 return 1;
1984}
1985__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1986
8a213460
NA
1987static unsigned int cpuset_mems_nr(unsigned int *array)
1988{
1989 int node;
1990 unsigned int nr = 0;
1991
1992 for_each_node_mask(node, cpuset_current_mems_allowed)
1993 nr += array[node];
1994
1995 return nr;
1996}
1997
1998#ifdef CONFIG_SYSCTL
06808b08
LS
1999static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2000 struct ctl_table *table, int write,
2001 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2002{
e5ff2159
AK
2003 struct hstate *h = &default_hstate;
2004 unsigned long tmp;
08d4a246 2005 int ret;
e5ff2159 2006
c033a93c 2007 tmp = h->max_huge_pages;
e5ff2159 2008
adbe8726
EM
2009 if (write && h->order >= MAX_ORDER)
2010 return -EINVAL;
2011
e5ff2159
AK
2012 table->data = &tmp;
2013 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2014 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2015 if (ret)
2016 goto out;
e5ff2159 2017
06808b08 2018 if (write) {
bad44b5b
DR
2019 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2020 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2021 if (!(obey_mempolicy &&
2022 init_nodemask_of_mempolicy(nodes_allowed))) {
2023 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2024 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2025 }
2026 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2027
8cebfcd0 2028 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2029 NODEMASK_FREE(nodes_allowed);
2030 }
08d4a246
MH
2031out:
2032 return ret;
1da177e4 2033}
396faf03 2034
06808b08
LS
2035int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2036 void __user *buffer, size_t *length, loff_t *ppos)
2037{
2038
2039 return hugetlb_sysctl_handler_common(false, table, write,
2040 buffer, length, ppos);
2041}
2042
2043#ifdef CONFIG_NUMA
2044int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2045 void __user *buffer, size_t *length, loff_t *ppos)
2046{
2047 return hugetlb_sysctl_handler_common(true, table, write,
2048 buffer, length, ppos);
2049}
2050#endif /* CONFIG_NUMA */
2051
396faf03 2052int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2053 void __user *buffer,
396faf03
MG
2054 size_t *length, loff_t *ppos)
2055{
8d65af78 2056 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2057 if (hugepages_treat_as_movable)
2058 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2059 else
2060 htlb_alloc_mask = GFP_HIGHUSER;
2061 return 0;
2062}
2063
a3d0c6aa 2064int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2065 void __user *buffer,
a3d0c6aa
NA
2066 size_t *length, loff_t *ppos)
2067{
a5516438 2068 struct hstate *h = &default_hstate;
e5ff2159 2069 unsigned long tmp;
08d4a246 2070 int ret;
e5ff2159 2071
c033a93c 2072 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2073
adbe8726
EM
2074 if (write && h->order >= MAX_ORDER)
2075 return -EINVAL;
2076
e5ff2159
AK
2077 table->data = &tmp;
2078 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2079 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2080 if (ret)
2081 goto out;
e5ff2159
AK
2082
2083 if (write) {
2084 spin_lock(&hugetlb_lock);
2085 h->nr_overcommit_huge_pages = tmp;
2086 spin_unlock(&hugetlb_lock);
2087 }
08d4a246
MH
2088out:
2089 return ret;
a3d0c6aa
NA
2090}
2091
1da177e4
LT
2092#endif /* CONFIG_SYSCTL */
2093
e1759c21 2094void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2095{
a5516438 2096 struct hstate *h = &default_hstate;
e1759c21 2097 seq_printf(m,
4f98a2fe
RR
2098 "HugePages_Total: %5lu\n"
2099 "HugePages_Free: %5lu\n"
2100 "HugePages_Rsvd: %5lu\n"
2101 "HugePages_Surp: %5lu\n"
2102 "Hugepagesize: %8lu kB\n",
a5516438
AK
2103 h->nr_huge_pages,
2104 h->free_huge_pages,
2105 h->resv_huge_pages,
2106 h->surplus_huge_pages,
2107 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2108}
2109
2110int hugetlb_report_node_meminfo(int nid, char *buf)
2111{
a5516438 2112 struct hstate *h = &default_hstate;
1da177e4
LT
2113 return sprintf(buf,
2114 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2115 "Node %d HugePages_Free: %5u\n"
2116 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2117 nid, h->nr_huge_pages_node[nid],
2118 nid, h->free_huge_pages_node[nid],
2119 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2120}
2121
949f7ec5
DR
2122void hugetlb_show_meminfo(void)
2123{
2124 struct hstate *h;
2125 int nid;
2126
2127 for_each_node_state(nid, N_MEMORY)
2128 for_each_hstate(h)
2129 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2130 nid,
2131 h->nr_huge_pages_node[nid],
2132 h->free_huge_pages_node[nid],
2133 h->surplus_huge_pages_node[nid],
2134 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2135}
2136
1da177e4
LT
2137/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2138unsigned long hugetlb_total_pages(void)
2139{
d0028588
WL
2140 struct hstate *h;
2141 unsigned long nr_total_pages = 0;
2142
2143 for_each_hstate(h)
2144 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2145 return nr_total_pages;
1da177e4 2146}
1da177e4 2147
a5516438 2148static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2149{
2150 int ret = -ENOMEM;
2151
2152 spin_lock(&hugetlb_lock);
2153 /*
2154 * When cpuset is configured, it breaks the strict hugetlb page
2155 * reservation as the accounting is done on a global variable. Such
2156 * reservation is completely rubbish in the presence of cpuset because
2157 * the reservation is not checked against page availability for the
2158 * current cpuset. Application can still potentially OOM'ed by kernel
2159 * with lack of free htlb page in cpuset that the task is in.
2160 * Attempt to enforce strict accounting with cpuset is almost
2161 * impossible (or too ugly) because cpuset is too fluid that
2162 * task or memory node can be dynamically moved between cpusets.
2163 *
2164 * The change of semantics for shared hugetlb mapping with cpuset is
2165 * undesirable. However, in order to preserve some of the semantics,
2166 * we fall back to check against current free page availability as
2167 * a best attempt and hopefully to minimize the impact of changing
2168 * semantics that cpuset has.
2169 */
2170 if (delta > 0) {
a5516438 2171 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2172 goto out;
2173
a5516438
AK
2174 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2175 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2176 goto out;
2177 }
2178 }
2179
2180 ret = 0;
2181 if (delta < 0)
a5516438 2182 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2183
2184out:
2185 spin_unlock(&hugetlb_lock);
2186 return ret;
2187}
2188
84afd99b
AW
2189static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2190{
2191 struct resv_map *reservations = vma_resv_map(vma);
2192
2193 /*
2194 * This new VMA should share its siblings reservation map if present.
2195 * The VMA will only ever have a valid reservation map pointer where
2196 * it is being copied for another still existing VMA. As that VMA
25985edc 2197 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2198 * after this open call completes. It is therefore safe to take a
2199 * new reference here without additional locking.
2200 */
2201 if (reservations)
2202 kref_get(&reservations->refs);
2203}
2204
c50ac050
DH
2205static void resv_map_put(struct vm_area_struct *vma)
2206{
2207 struct resv_map *reservations = vma_resv_map(vma);
2208
2209 if (!reservations)
2210 return;
2211 kref_put(&reservations->refs, resv_map_release);
2212}
2213
a1e78772
MG
2214static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2215{
a5516438 2216 struct hstate *h = hstate_vma(vma);
84afd99b 2217 struct resv_map *reservations = vma_resv_map(vma);
90481622 2218 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2219 unsigned long reserve;
2220 unsigned long start;
2221 unsigned long end;
2222
2223 if (reservations) {
a5516438
AK
2224 start = vma_hugecache_offset(h, vma, vma->vm_start);
2225 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2226
2227 reserve = (end - start) -
2228 region_count(&reservations->regions, start, end);
2229
c50ac050 2230 resv_map_put(vma);
84afd99b 2231
7251ff78 2232 if (reserve) {
a5516438 2233 hugetlb_acct_memory(h, -reserve);
90481622 2234 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2235 }
84afd99b 2236 }
a1e78772
MG
2237}
2238
1da177e4
LT
2239/*
2240 * We cannot handle pagefaults against hugetlb pages at all. They cause
2241 * handle_mm_fault() to try to instantiate regular-sized pages in the
2242 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2243 * this far.
2244 */
d0217ac0 2245static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2246{
2247 BUG();
d0217ac0 2248 return 0;
1da177e4
LT
2249}
2250
f0f37e2f 2251const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2252 .fault = hugetlb_vm_op_fault,
84afd99b 2253 .open = hugetlb_vm_op_open,
a1e78772 2254 .close = hugetlb_vm_op_close,
1da177e4
LT
2255};
2256
1e8f889b
DG
2257static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2258 int writable)
63551ae0
DG
2259{
2260 pte_t entry;
2261
1e8f889b 2262 if (writable) {
106c992a
GS
2263 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2264 vma->vm_page_prot)));
63551ae0 2265 } else {
106c992a
GS
2266 entry = huge_pte_wrprotect(mk_huge_pte(page,
2267 vma->vm_page_prot));
63551ae0
DG
2268 }
2269 entry = pte_mkyoung(entry);
2270 entry = pte_mkhuge(entry);
d9ed9faa 2271 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2272
2273 return entry;
2274}
2275
1e8f889b
DG
2276static void set_huge_ptep_writable(struct vm_area_struct *vma,
2277 unsigned long address, pte_t *ptep)
2278{
2279 pte_t entry;
2280
106c992a 2281 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2282 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2283 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2284}
2285
2286
63551ae0
DG
2287int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2288 struct vm_area_struct *vma)
2289{
2290 pte_t *src_pte, *dst_pte, entry;
2291 struct page *ptepage;
1c59827d 2292 unsigned long addr;
1e8f889b 2293 int cow;
a5516438
AK
2294 struct hstate *h = hstate_vma(vma);
2295 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2296
2297 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2298
a5516438 2299 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2300 src_pte = huge_pte_offset(src, addr);
2301 if (!src_pte)
2302 continue;
a5516438 2303 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2304 if (!dst_pte)
2305 goto nomem;
c5c99429
LW
2306
2307 /* If the pagetables are shared don't copy or take references */
2308 if (dst_pte == src_pte)
2309 continue;
2310
c74df32c 2311 spin_lock(&dst->page_table_lock);
46478758 2312 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2313 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2314 if (cow)
7f2e9525
GS
2315 huge_ptep_set_wrprotect(src, addr, src_pte);
2316 entry = huge_ptep_get(src_pte);
1c59827d
HD
2317 ptepage = pte_page(entry);
2318 get_page(ptepage);
0fe6e20b 2319 page_dup_rmap(ptepage);
1c59827d
HD
2320 set_huge_pte_at(dst, addr, dst_pte, entry);
2321 }
2322 spin_unlock(&src->page_table_lock);
c74df32c 2323 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2324 }
2325 return 0;
2326
2327nomem:
2328 return -ENOMEM;
2329}
2330
290408d4
NH
2331static int is_hugetlb_entry_migration(pte_t pte)
2332{
2333 swp_entry_t swp;
2334
2335 if (huge_pte_none(pte) || pte_present(pte))
2336 return 0;
2337 swp = pte_to_swp_entry(pte);
32f84528 2338 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2339 return 1;
32f84528 2340 else
290408d4
NH
2341 return 0;
2342}
2343
fd6a03ed
NH
2344static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2345{
2346 swp_entry_t swp;
2347
2348 if (huge_pte_none(pte) || pte_present(pte))
2349 return 0;
2350 swp = pte_to_swp_entry(pte);
32f84528 2351 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2352 return 1;
32f84528 2353 else
fd6a03ed
NH
2354 return 0;
2355}
2356
24669e58
AK
2357void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2358 unsigned long start, unsigned long end,
2359 struct page *ref_page)
63551ae0 2360{
24669e58 2361 int force_flush = 0;
63551ae0
DG
2362 struct mm_struct *mm = vma->vm_mm;
2363 unsigned long address;
c7546f8f 2364 pte_t *ptep;
63551ae0
DG
2365 pte_t pte;
2366 struct page *page;
a5516438
AK
2367 struct hstate *h = hstate_vma(vma);
2368 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2369 const unsigned long mmun_start = start; /* For mmu_notifiers */
2370 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2371
63551ae0 2372 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2373 BUG_ON(start & ~huge_page_mask(h));
2374 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2375
24669e58 2376 tlb_start_vma(tlb, vma);
2ec74c3e 2377 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2378again:
508034a3 2379 spin_lock(&mm->page_table_lock);
a5516438 2380 for (address = start; address < end; address += sz) {
c7546f8f 2381 ptep = huge_pte_offset(mm, address);
4c887265 2382 if (!ptep)
c7546f8f
DG
2383 continue;
2384
39dde65c
KC
2385 if (huge_pmd_unshare(mm, &address, ptep))
2386 continue;
2387
6629326b
HD
2388 pte = huge_ptep_get(ptep);
2389 if (huge_pte_none(pte))
2390 continue;
2391
2392 /*
2393 * HWPoisoned hugepage is already unmapped and dropped reference
2394 */
8c4894c6 2395 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2396 huge_pte_clear(mm, address, ptep);
6629326b 2397 continue;
8c4894c6 2398 }
6629326b
HD
2399
2400 page = pte_page(pte);
04f2cbe3
MG
2401 /*
2402 * If a reference page is supplied, it is because a specific
2403 * page is being unmapped, not a range. Ensure the page we
2404 * are about to unmap is the actual page of interest.
2405 */
2406 if (ref_page) {
04f2cbe3
MG
2407 if (page != ref_page)
2408 continue;
2409
2410 /*
2411 * Mark the VMA as having unmapped its page so that
2412 * future faults in this VMA will fail rather than
2413 * looking like data was lost
2414 */
2415 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2416 }
2417
c7546f8f 2418 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2419 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2420 if (huge_pte_dirty(pte))
6649a386 2421 set_page_dirty(page);
9e81130b 2422
24669e58
AK
2423 page_remove_rmap(page);
2424 force_flush = !__tlb_remove_page(tlb, page);
2425 if (force_flush)
2426 break;
9e81130b
HD
2427 /* Bail out after unmapping reference page if supplied */
2428 if (ref_page)
2429 break;
63551ae0 2430 }
cd2934a3 2431 spin_unlock(&mm->page_table_lock);
24669e58
AK
2432 /*
2433 * mmu_gather ran out of room to batch pages, we break out of
2434 * the PTE lock to avoid doing the potential expensive TLB invalidate
2435 * and page-free while holding it.
2436 */
2437 if (force_flush) {
2438 force_flush = 0;
2439 tlb_flush_mmu(tlb);
2440 if (address < end && !ref_page)
2441 goto again;
fe1668ae 2442 }
2ec74c3e 2443 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2444 tlb_end_vma(tlb, vma);
1da177e4 2445}
63551ae0 2446
d833352a
MG
2447void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2448 struct vm_area_struct *vma, unsigned long start,
2449 unsigned long end, struct page *ref_page)
2450{
2451 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2452
2453 /*
2454 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2455 * test will fail on a vma being torn down, and not grab a page table
2456 * on its way out. We're lucky that the flag has such an appropriate
2457 * name, and can in fact be safely cleared here. We could clear it
2458 * before the __unmap_hugepage_range above, but all that's necessary
2459 * is to clear it before releasing the i_mmap_mutex. This works
2460 * because in the context this is called, the VMA is about to be
2461 * destroyed and the i_mmap_mutex is held.
2462 */
2463 vma->vm_flags &= ~VM_MAYSHARE;
2464}
2465
502717f4 2466void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2467 unsigned long end, struct page *ref_page)
502717f4 2468{
24669e58
AK
2469 struct mm_struct *mm;
2470 struct mmu_gather tlb;
2471
2472 mm = vma->vm_mm;
2473
2b047252 2474 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2475 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2476 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2477}
2478
04f2cbe3
MG
2479/*
2480 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2481 * mappping it owns the reserve page for. The intention is to unmap the page
2482 * from other VMAs and let the children be SIGKILLed if they are faulting the
2483 * same region.
2484 */
2a4b3ded
HH
2485static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2486 struct page *page, unsigned long address)
04f2cbe3 2487{
7526674d 2488 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2489 struct vm_area_struct *iter_vma;
2490 struct address_space *mapping;
04f2cbe3
MG
2491 pgoff_t pgoff;
2492
2493 /*
2494 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2495 * from page cache lookup which is in HPAGE_SIZE units.
2496 */
7526674d 2497 address = address & huge_page_mask(h);
36e4f20a
MH
2498 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2499 vma->vm_pgoff;
496ad9aa 2500 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2501
4eb2b1dc
MG
2502 /*
2503 * Take the mapping lock for the duration of the table walk. As
2504 * this mapping should be shared between all the VMAs,
2505 * __unmap_hugepage_range() is called as the lock is already held
2506 */
3d48ae45 2507 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2508 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2509 /* Do not unmap the current VMA */
2510 if (iter_vma == vma)
2511 continue;
2512
2513 /*
2514 * Unmap the page from other VMAs without their own reserves.
2515 * They get marked to be SIGKILLed if they fault in these
2516 * areas. This is because a future no-page fault on this VMA
2517 * could insert a zeroed page instead of the data existing
2518 * from the time of fork. This would look like data corruption
2519 */
2520 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2521 unmap_hugepage_range(iter_vma, address,
2522 address + huge_page_size(h), page);
04f2cbe3 2523 }
3d48ae45 2524 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2525
2526 return 1;
2527}
2528
0fe6e20b
NH
2529/*
2530 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2531 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2532 * cannot race with other handlers or page migration.
2533 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2534 */
1e8f889b 2535static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2536 unsigned long address, pte_t *ptep, pte_t pte,
2537 struct page *pagecache_page)
1e8f889b 2538{
a5516438 2539 struct hstate *h = hstate_vma(vma);
1e8f889b 2540 struct page *old_page, *new_page;
04f2cbe3 2541 int outside_reserve = 0;
2ec74c3e
SG
2542 unsigned long mmun_start; /* For mmu_notifiers */
2543 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2544
2545 old_page = pte_page(pte);
2546
04f2cbe3 2547retry_avoidcopy:
1e8f889b
DG
2548 /* If no-one else is actually using this page, avoid the copy
2549 * and just make the page writable */
37a2140d
JK
2550 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2551 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2552 set_huge_ptep_writable(vma, address, ptep);
83c54070 2553 return 0;
1e8f889b
DG
2554 }
2555
04f2cbe3
MG
2556 /*
2557 * If the process that created a MAP_PRIVATE mapping is about to
2558 * perform a COW due to a shared page count, attempt to satisfy
2559 * the allocation without using the existing reserves. The pagecache
2560 * page is used to determine if the reserve at this address was
2561 * consumed or not. If reserves were used, a partial faulted mapping
2562 * at the time of fork() could consume its reserves on COW instead
2563 * of the full address range.
2564 */
f83a275d 2565 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2566 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2567 old_page != pagecache_page)
2568 outside_reserve = 1;
2569
1e8f889b 2570 page_cache_get(old_page);
b76c8cfb
LW
2571
2572 /* Drop page_table_lock as buddy allocator may be called */
2573 spin_unlock(&mm->page_table_lock);
04f2cbe3 2574 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2575
2fc39cec 2576 if (IS_ERR(new_page)) {
76dcee75 2577 long err = PTR_ERR(new_page);
1e8f889b 2578 page_cache_release(old_page);
04f2cbe3
MG
2579
2580 /*
2581 * If a process owning a MAP_PRIVATE mapping fails to COW,
2582 * it is due to references held by a child and an insufficient
2583 * huge page pool. To guarantee the original mappers
2584 * reliability, unmap the page from child processes. The child
2585 * may get SIGKILLed if it later faults.
2586 */
2587 if (outside_reserve) {
2588 BUG_ON(huge_pte_none(pte));
2589 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2590 BUG_ON(huge_pte_none(pte));
b76c8cfb 2591 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2592 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2593 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2594 goto retry_avoidcopy;
2595 /*
2596 * race occurs while re-acquiring page_table_lock, and
2597 * our job is done.
2598 */
2599 return 0;
04f2cbe3
MG
2600 }
2601 WARN_ON_ONCE(1);
2602 }
2603
b76c8cfb
LW
2604 /* Caller expects lock to be held */
2605 spin_lock(&mm->page_table_lock);
76dcee75
AK
2606 if (err == -ENOMEM)
2607 return VM_FAULT_OOM;
2608 else
2609 return VM_FAULT_SIGBUS;
1e8f889b
DG
2610 }
2611
0fe6e20b
NH
2612 /*
2613 * When the original hugepage is shared one, it does not have
2614 * anon_vma prepared.
2615 */
44e2aa93 2616 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2617 page_cache_release(new_page);
2618 page_cache_release(old_page);
44e2aa93
DN
2619 /* Caller expects lock to be held */
2620 spin_lock(&mm->page_table_lock);
0fe6e20b 2621 return VM_FAULT_OOM;
44e2aa93 2622 }
0fe6e20b 2623
47ad8475
AA
2624 copy_user_huge_page(new_page, old_page, address, vma,
2625 pages_per_huge_page(h));
0ed361de 2626 __SetPageUptodate(new_page);
1e8f889b 2627
2ec74c3e
SG
2628 mmun_start = address & huge_page_mask(h);
2629 mmun_end = mmun_start + huge_page_size(h);
2630 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb
LW
2631 /*
2632 * Retake the page_table_lock to check for racing updates
2633 * before the page tables are altered
2634 */
2635 spin_lock(&mm->page_table_lock);
a5516438 2636 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2637 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2638 /* Break COW */
8fe627ec 2639 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2640 set_huge_pte_at(mm, address, ptep,
2641 make_huge_pte(vma, new_page, 1));
0fe6e20b 2642 page_remove_rmap(old_page);
cd67f0d2 2643 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2644 /* Make the old page be freed below */
2645 new_page = old_page;
2646 }
2ec74c3e
SG
2647 spin_unlock(&mm->page_table_lock);
2648 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2649 /* Caller expects lock to be held */
2650 spin_lock(&mm->page_table_lock);
1e8f889b
DG
2651 page_cache_release(new_page);
2652 page_cache_release(old_page);
83c54070 2653 return 0;
1e8f889b
DG
2654}
2655
04f2cbe3 2656/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2657static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2658 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2659{
2660 struct address_space *mapping;
e7c4b0bf 2661 pgoff_t idx;
04f2cbe3
MG
2662
2663 mapping = vma->vm_file->f_mapping;
a5516438 2664 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2665
2666 return find_lock_page(mapping, idx);
2667}
2668
3ae77f43
HD
2669/*
2670 * Return whether there is a pagecache page to back given address within VMA.
2671 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2672 */
2673static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2674 struct vm_area_struct *vma, unsigned long address)
2675{
2676 struct address_space *mapping;
2677 pgoff_t idx;
2678 struct page *page;
2679
2680 mapping = vma->vm_file->f_mapping;
2681 idx = vma_hugecache_offset(h, vma, address);
2682
2683 page = find_get_page(mapping, idx);
2684 if (page)
2685 put_page(page);
2686 return page != NULL;
2687}
2688
a1ed3dda 2689static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2690 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2691{
a5516438 2692 struct hstate *h = hstate_vma(vma);
ac9b9c66 2693 int ret = VM_FAULT_SIGBUS;
409eb8c2 2694 int anon_rmap = 0;
e7c4b0bf 2695 pgoff_t idx;
4c887265 2696 unsigned long size;
4c887265
AL
2697 struct page *page;
2698 struct address_space *mapping;
1e8f889b 2699 pte_t new_pte;
4c887265 2700
04f2cbe3
MG
2701 /*
2702 * Currently, we are forced to kill the process in the event the
2703 * original mapper has unmapped pages from the child due to a failed
25985edc 2704 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2705 */
2706 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2707 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2708 current->pid);
04f2cbe3
MG
2709 return ret;
2710 }
2711
4c887265 2712 mapping = vma->vm_file->f_mapping;
a5516438 2713 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2714
2715 /*
2716 * Use page lock to guard against racing truncation
2717 * before we get page_table_lock.
2718 */
6bda666a
CL
2719retry:
2720 page = find_lock_page(mapping, idx);
2721 if (!page) {
a5516438 2722 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2723 if (idx >= size)
2724 goto out;
04f2cbe3 2725 page = alloc_huge_page(vma, address, 0);
2fc39cec 2726 if (IS_ERR(page)) {
76dcee75
AK
2727 ret = PTR_ERR(page);
2728 if (ret == -ENOMEM)
2729 ret = VM_FAULT_OOM;
2730 else
2731 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2732 goto out;
2733 }
47ad8475 2734 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2735 __SetPageUptodate(page);
ac9b9c66 2736
f83a275d 2737 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2738 int err;
45c682a6 2739 struct inode *inode = mapping->host;
6bda666a
CL
2740
2741 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2742 if (err) {
2743 put_page(page);
6bda666a
CL
2744 if (err == -EEXIST)
2745 goto retry;
2746 goto out;
2747 }
45c682a6
KC
2748
2749 spin_lock(&inode->i_lock);
a5516438 2750 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2751 spin_unlock(&inode->i_lock);
23be7468 2752 } else {
6bda666a 2753 lock_page(page);
0fe6e20b
NH
2754 if (unlikely(anon_vma_prepare(vma))) {
2755 ret = VM_FAULT_OOM;
2756 goto backout_unlocked;
2757 }
409eb8c2 2758 anon_rmap = 1;
23be7468 2759 }
0fe6e20b 2760 } else {
998b4382
NH
2761 /*
2762 * If memory error occurs between mmap() and fault, some process
2763 * don't have hwpoisoned swap entry for errored virtual address.
2764 * So we need to block hugepage fault by PG_hwpoison bit check.
2765 */
2766 if (unlikely(PageHWPoison(page))) {
32f84528 2767 ret = VM_FAULT_HWPOISON |
972dc4de 2768 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2769 goto backout_unlocked;
2770 }
6bda666a 2771 }
1e8f889b 2772
57303d80
AW
2773 /*
2774 * If we are going to COW a private mapping later, we examine the
2775 * pending reservations for this page now. This will ensure that
2776 * any allocations necessary to record that reservation occur outside
2777 * the spinlock.
2778 */
788c7df4 2779 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2780 if (vma_needs_reservation(h, vma, address) < 0) {
2781 ret = VM_FAULT_OOM;
2782 goto backout_unlocked;
2783 }
57303d80 2784
ac9b9c66 2785 spin_lock(&mm->page_table_lock);
a5516438 2786 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2787 if (idx >= size)
2788 goto backout;
2789
83c54070 2790 ret = 0;
7f2e9525 2791 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2792 goto backout;
2793
409eb8c2
HD
2794 if (anon_rmap)
2795 hugepage_add_new_anon_rmap(page, vma, address);
2796 else
2797 page_dup_rmap(page);
1e8f889b
DG
2798 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2799 && (vma->vm_flags & VM_SHARED)));
2800 set_huge_pte_at(mm, address, ptep, new_pte);
2801
788c7df4 2802 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2803 /* Optimization, do the COW without a second fault */
04f2cbe3 2804 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2805 }
2806
ac9b9c66 2807 spin_unlock(&mm->page_table_lock);
4c887265
AL
2808 unlock_page(page);
2809out:
ac9b9c66 2810 return ret;
4c887265
AL
2811
2812backout:
2813 spin_unlock(&mm->page_table_lock);
2b26736c 2814backout_unlocked:
4c887265
AL
2815 unlock_page(page);
2816 put_page(page);
2817 goto out;
ac9b9c66
HD
2818}
2819
86e5216f 2820int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2821 unsigned long address, unsigned int flags)
86e5216f
AL
2822{
2823 pte_t *ptep;
2824 pte_t entry;
1e8f889b 2825 int ret;
0fe6e20b 2826 struct page *page = NULL;
57303d80 2827 struct page *pagecache_page = NULL;
3935baa9 2828 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2829 struct hstate *h = hstate_vma(vma);
86e5216f 2830
1e16a539
KH
2831 address &= huge_page_mask(h);
2832
fd6a03ed
NH
2833 ptep = huge_pte_offset(mm, address);
2834 if (ptep) {
2835 entry = huge_ptep_get(ptep);
290408d4 2836 if (unlikely(is_hugetlb_entry_migration(entry))) {
30dad309 2837 migration_entry_wait_huge(mm, ptep);
290408d4
NH
2838 return 0;
2839 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2840 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2841 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2842 }
2843
a5516438 2844 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2845 if (!ptep)
2846 return VM_FAULT_OOM;
2847
3935baa9
DG
2848 /*
2849 * Serialize hugepage allocation and instantiation, so that we don't
2850 * get spurious allocation failures if two CPUs race to instantiate
2851 * the same page in the page cache.
2852 */
2853 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2854 entry = huge_ptep_get(ptep);
2855 if (huge_pte_none(entry)) {
788c7df4 2856 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2857 goto out_mutex;
3935baa9 2858 }
86e5216f 2859
83c54070 2860 ret = 0;
1e8f889b 2861
57303d80
AW
2862 /*
2863 * If we are going to COW the mapping later, we examine the pending
2864 * reservations for this page now. This will ensure that any
2865 * allocations necessary to record that reservation occur outside the
2866 * spinlock. For private mappings, we also lookup the pagecache
2867 * page now as it is used to determine if a reservation has been
2868 * consumed.
2869 */
106c992a 2870 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2871 if (vma_needs_reservation(h, vma, address) < 0) {
2872 ret = VM_FAULT_OOM;
b4d1d99f 2873 goto out_mutex;
2b26736c 2874 }
57303d80 2875
f83a275d 2876 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2877 pagecache_page = hugetlbfs_pagecache_page(h,
2878 vma, address);
2879 }
2880
56c9cfb1
NH
2881 /*
2882 * hugetlb_cow() requires page locks of pte_page(entry) and
2883 * pagecache_page, so here we need take the former one
2884 * when page != pagecache_page or !pagecache_page.
2885 * Note that locking order is always pagecache_page -> page,
2886 * so no worry about deadlock.
2887 */
2888 page = pte_page(entry);
66aebce7 2889 get_page(page);
56c9cfb1 2890 if (page != pagecache_page)
0fe6e20b 2891 lock_page(page);
0fe6e20b 2892
1e8f889b
DG
2893 spin_lock(&mm->page_table_lock);
2894 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2895 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2896 goto out_page_table_lock;
2897
2898
788c7df4 2899 if (flags & FAULT_FLAG_WRITE) {
106c992a 2900 if (!huge_pte_write(entry)) {
57303d80
AW
2901 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2902 pagecache_page);
b4d1d99f
DG
2903 goto out_page_table_lock;
2904 }
106c992a 2905 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2906 }
2907 entry = pte_mkyoung(entry);
788c7df4
HD
2908 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2909 flags & FAULT_FLAG_WRITE))
4b3073e1 2910 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2911
2912out_page_table_lock:
1e8f889b 2913 spin_unlock(&mm->page_table_lock);
57303d80
AW
2914
2915 if (pagecache_page) {
2916 unlock_page(pagecache_page);
2917 put_page(pagecache_page);
2918 }
1f64d69c
DN
2919 if (page != pagecache_page)
2920 unlock_page(page);
66aebce7 2921 put_page(page);
57303d80 2922
b4d1d99f 2923out_mutex:
3935baa9 2924 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2925
2926 return ret;
86e5216f
AL
2927}
2928
28a35716
ML
2929long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2930 struct page **pages, struct vm_area_struct **vmas,
2931 unsigned long *position, unsigned long *nr_pages,
2932 long i, unsigned int flags)
63551ae0 2933{
d5d4b0aa
KC
2934 unsigned long pfn_offset;
2935 unsigned long vaddr = *position;
28a35716 2936 unsigned long remainder = *nr_pages;
a5516438 2937 struct hstate *h = hstate_vma(vma);
63551ae0 2938
1c59827d 2939 spin_lock(&mm->page_table_lock);
63551ae0 2940 while (vaddr < vma->vm_end && remainder) {
4c887265 2941 pte_t *pte;
2a15efc9 2942 int absent;
4c887265 2943 struct page *page;
63551ae0 2944
4c887265
AL
2945 /*
2946 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2947 * each hugepage. We have to make sure we get the
4c887265
AL
2948 * first, for the page indexing below to work.
2949 */
a5516438 2950 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2951 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2952
2953 /*
2954 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2955 * an error where there's an empty slot with no huge pagecache
2956 * to back it. This way, we avoid allocating a hugepage, and
2957 * the sparse dumpfile avoids allocating disk blocks, but its
2958 * huge holes still show up with zeroes where they need to be.
2a15efc9 2959 */
3ae77f43
HD
2960 if (absent && (flags & FOLL_DUMP) &&
2961 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2962 remainder = 0;
2963 break;
2964 }
63551ae0 2965
9cc3a5bd
NH
2966 /*
2967 * We need call hugetlb_fault for both hugepages under migration
2968 * (in which case hugetlb_fault waits for the migration,) and
2969 * hwpoisoned hugepages (in which case we need to prevent the
2970 * caller from accessing to them.) In order to do this, we use
2971 * here is_swap_pte instead of is_hugetlb_entry_migration and
2972 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2973 * both cases, and because we can't follow correct pages
2974 * directly from any kind of swap entries.
2975 */
2976 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
2977 ((flags & FOLL_WRITE) &&
2978 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 2979 int ret;
63551ae0 2980
4c887265 2981 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2982 ret = hugetlb_fault(mm, vma, vaddr,
2983 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2984 spin_lock(&mm->page_table_lock);
a89182c7 2985 if (!(ret & VM_FAULT_ERROR))
4c887265 2986 continue;
63551ae0 2987
4c887265 2988 remainder = 0;
4c887265
AL
2989 break;
2990 }
2991
a5516438 2992 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2993 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2994same_page:
d6692183 2995 if (pages) {
2a15efc9 2996 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2997 get_page(pages[i]);
d6692183 2998 }
63551ae0
DG
2999
3000 if (vmas)
3001 vmas[i] = vma;
3002
3003 vaddr += PAGE_SIZE;
d5d4b0aa 3004 ++pfn_offset;
63551ae0
DG
3005 --remainder;
3006 ++i;
d5d4b0aa 3007 if (vaddr < vma->vm_end && remainder &&
a5516438 3008 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3009 /*
3010 * We use pfn_offset to avoid touching the pageframes
3011 * of this compound page.
3012 */
3013 goto same_page;
3014 }
63551ae0 3015 }
1c59827d 3016 spin_unlock(&mm->page_table_lock);
28a35716 3017 *nr_pages = remainder;
63551ae0
DG
3018 *position = vaddr;
3019
2a15efc9 3020 return i ? i : -EFAULT;
63551ae0 3021}
8f860591 3022
7da4d641 3023unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3024 unsigned long address, unsigned long end, pgprot_t newprot)
3025{
3026 struct mm_struct *mm = vma->vm_mm;
3027 unsigned long start = address;
3028 pte_t *ptep;
3029 pte_t pte;
a5516438 3030 struct hstate *h = hstate_vma(vma);
7da4d641 3031 unsigned long pages = 0;
8f860591
ZY
3032
3033 BUG_ON(address >= end);
3034 flush_cache_range(vma, address, end);
3035
3d48ae45 3036 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 3037 spin_lock(&mm->page_table_lock);
a5516438 3038 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
3039 ptep = huge_pte_offset(mm, address);
3040 if (!ptep)
3041 continue;
7da4d641
PZ
3042 if (huge_pmd_unshare(mm, &address, ptep)) {
3043 pages++;
39dde65c 3044 continue;
7da4d641 3045 }
7f2e9525 3046 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3047 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3048 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3049 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3050 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3051 pages++;
8f860591
ZY
3052 }
3053 }
3054 spin_unlock(&mm->page_table_lock);
d833352a
MG
3055 /*
3056 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3057 * may have cleared our pud entry and done put_page on the page table:
3058 * once we release i_mmap_mutex, another task can do the final put_page
3059 * and that page table be reused and filled with junk.
3060 */
8f860591 3061 flush_tlb_range(vma, start, end);
d833352a 3062 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3063
3064 return pages << h->order;
8f860591
ZY
3065}
3066
a1e78772
MG
3067int hugetlb_reserve_pages(struct inode *inode,
3068 long from, long to,
5a6fe125 3069 struct vm_area_struct *vma,
ca16d140 3070 vm_flags_t vm_flags)
e4e574b7 3071{
17c9d12e 3072 long ret, chg;
a5516438 3073 struct hstate *h = hstate_inode(inode);
90481622 3074 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3075
17c9d12e
MG
3076 /*
3077 * Only apply hugepage reservation if asked. At fault time, an
3078 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3079 * without using reserves
17c9d12e 3080 */
ca16d140 3081 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3082 return 0;
3083
a1e78772
MG
3084 /*
3085 * Shared mappings base their reservation on the number of pages that
3086 * are already allocated on behalf of the file. Private mappings need
3087 * to reserve the full area even if read-only as mprotect() may be
3088 * called to make the mapping read-write. Assume !vma is a shm mapping
3089 */
f83a275d 3090 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3091 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3092 else {
3093 struct resv_map *resv_map = resv_map_alloc();
3094 if (!resv_map)
3095 return -ENOMEM;
3096
a1e78772 3097 chg = to - from;
84afd99b 3098
17c9d12e
MG
3099 set_vma_resv_map(vma, resv_map);
3100 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3101 }
3102
c50ac050
DH
3103 if (chg < 0) {
3104 ret = chg;
3105 goto out_err;
3106 }
8a630112 3107
90481622 3108 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3109 if (hugepage_subpool_get_pages(spool, chg)) {
3110 ret = -ENOSPC;
3111 goto out_err;
3112 }
5a6fe125
MG
3113
3114 /*
17c9d12e 3115 * Check enough hugepages are available for the reservation.
90481622 3116 * Hand the pages back to the subpool if there are not
5a6fe125 3117 */
a5516438 3118 ret = hugetlb_acct_memory(h, chg);
68842c9b 3119 if (ret < 0) {
90481622 3120 hugepage_subpool_put_pages(spool, chg);
c50ac050 3121 goto out_err;
68842c9b 3122 }
17c9d12e
MG
3123
3124 /*
3125 * Account for the reservations made. Shared mappings record regions
3126 * that have reservations as they are shared by multiple VMAs.
3127 * When the last VMA disappears, the region map says how much
3128 * the reservation was and the page cache tells how much of
3129 * the reservation was consumed. Private mappings are per-VMA and
3130 * only the consumed reservations are tracked. When the VMA
3131 * disappears, the original reservation is the VMA size and the
3132 * consumed reservations are stored in the map. Hence, nothing
3133 * else has to be done for private mappings here
3134 */
f83a275d 3135 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3136 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3137 return 0;
c50ac050 3138out_err:
4523e145
DH
3139 if (vma)
3140 resv_map_put(vma);
c50ac050 3141 return ret;
a43a8c39
KC
3142}
3143
3144void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3145{
a5516438 3146 struct hstate *h = hstate_inode(inode);
a43a8c39 3147 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3148 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3149
3150 spin_lock(&inode->i_lock);
e4c6f8be 3151 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3152 spin_unlock(&inode->i_lock);
3153
90481622 3154 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3155 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3156}
93f70f90 3157
3212b535
SC
3158#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3159static unsigned long page_table_shareable(struct vm_area_struct *svma,
3160 struct vm_area_struct *vma,
3161 unsigned long addr, pgoff_t idx)
3162{
3163 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3164 svma->vm_start;
3165 unsigned long sbase = saddr & PUD_MASK;
3166 unsigned long s_end = sbase + PUD_SIZE;
3167
3168 /* Allow segments to share if only one is marked locked */
3169 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3170 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3171
3172 /*
3173 * match the virtual addresses, permission and the alignment of the
3174 * page table page.
3175 */
3176 if (pmd_index(addr) != pmd_index(saddr) ||
3177 vm_flags != svm_flags ||
3178 sbase < svma->vm_start || svma->vm_end < s_end)
3179 return 0;
3180
3181 return saddr;
3182}
3183
3184static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3185{
3186 unsigned long base = addr & PUD_MASK;
3187 unsigned long end = base + PUD_SIZE;
3188
3189 /*
3190 * check on proper vm_flags and page table alignment
3191 */
3192 if (vma->vm_flags & VM_MAYSHARE &&
3193 vma->vm_start <= base && end <= vma->vm_end)
3194 return 1;
3195 return 0;
3196}
3197
3198/*
3199 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3200 * and returns the corresponding pte. While this is not necessary for the
3201 * !shared pmd case because we can allocate the pmd later as well, it makes the
3202 * code much cleaner. pmd allocation is essential for the shared case because
3203 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3204 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3205 * bad pmd for sharing.
3206 */
3207pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3208{
3209 struct vm_area_struct *vma = find_vma(mm, addr);
3210 struct address_space *mapping = vma->vm_file->f_mapping;
3211 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3212 vma->vm_pgoff;
3213 struct vm_area_struct *svma;
3214 unsigned long saddr;
3215 pte_t *spte = NULL;
3216 pte_t *pte;
3217
3218 if (!vma_shareable(vma, addr))
3219 return (pte_t *)pmd_alloc(mm, pud, addr);
3220
3221 mutex_lock(&mapping->i_mmap_mutex);
3222 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3223 if (svma == vma)
3224 continue;
3225
3226 saddr = page_table_shareable(svma, vma, addr, idx);
3227 if (saddr) {
3228 spte = huge_pte_offset(svma->vm_mm, saddr);
3229 if (spte) {
3230 get_page(virt_to_page(spte));
3231 break;
3232 }
3233 }
3234 }
3235
3236 if (!spte)
3237 goto out;
3238
3239 spin_lock(&mm->page_table_lock);
3240 if (pud_none(*pud))
3241 pud_populate(mm, pud,
3242 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3243 else
3244 put_page(virt_to_page(spte));
3245 spin_unlock(&mm->page_table_lock);
3246out:
3247 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3248 mutex_unlock(&mapping->i_mmap_mutex);
3249 return pte;
3250}
3251
3252/*
3253 * unmap huge page backed by shared pte.
3254 *
3255 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3256 * indicated by page_count > 1, unmap is achieved by clearing pud and
3257 * decrementing the ref count. If count == 1, the pte page is not shared.
3258 *
3259 * called with vma->vm_mm->page_table_lock held.
3260 *
3261 * returns: 1 successfully unmapped a shared pte page
3262 * 0 the underlying pte page is not shared, or it is the last user
3263 */
3264int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3265{
3266 pgd_t *pgd = pgd_offset(mm, *addr);
3267 pud_t *pud = pud_offset(pgd, *addr);
3268
3269 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3270 if (page_count(virt_to_page(ptep)) == 1)
3271 return 0;
3272
3273 pud_clear(pud);
3274 put_page(virt_to_page(ptep));
3275 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3276 return 1;
3277}
9e5fc74c
SC
3278#define want_pmd_share() (1)
3279#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3280pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3281{
3282 return NULL;
3283}
3284#define want_pmd_share() (0)
3212b535
SC
3285#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3286
9e5fc74c
SC
3287#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3288pte_t *huge_pte_alloc(struct mm_struct *mm,
3289 unsigned long addr, unsigned long sz)
3290{
3291 pgd_t *pgd;
3292 pud_t *pud;
3293 pte_t *pte = NULL;
3294
3295 pgd = pgd_offset(mm, addr);
3296 pud = pud_alloc(mm, pgd, addr);
3297 if (pud) {
3298 if (sz == PUD_SIZE) {
3299 pte = (pte_t *)pud;
3300 } else {
3301 BUG_ON(sz != PMD_SIZE);
3302 if (want_pmd_share() && pud_none(*pud))
3303 pte = huge_pmd_share(mm, addr, pud);
3304 else
3305 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3306 }
3307 }
3308 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3309
3310 return pte;
3311}
3312
3313pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3314{
3315 pgd_t *pgd;
3316 pud_t *pud;
3317 pmd_t *pmd = NULL;
3318
3319 pgd = pgd_offset(mm, addr);
3320 if (pgd_present(*pgd)) {
3321 pud = pud_offset(pgd, addr);
3322 if (pud_present(*pud)) {
3323 if (pud_huge(*pud))
3324 return (pte_t *)pud;
3325 pmd = pmd_offset(pud, addr);
3326 }
3327 }
3328 return (pte_t *) pmd;
3329}
3330
3331struct page *
3332follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3333 pmd_t *pmd, int write)
3334{
3335 struct page *page;
3336
3337 page = pte_page(*(pte_t *)pmd);
3338 if (page)
3339 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3340 return page;
3341}
3342
3343struct page *
3344follow_huge_pud(struct mm_struct *mm, unsigned long address,
3345 pud_t *pud, int write)
3346{
3347 struct page *page;
3348
3349 page = pte_page(*(pte_t *)pud);
3350 if (page)
3351 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3352 return page;
3353}
3354
3355#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3356
3357/* Can be overriden by architectures */
3358__attribute__((weak)) struct page *
3359follow_huge_pud(struct mm_struct *mm, unsigned long address,
3360 pud_t *pud, int write)
3361{
3362 BUG();
3363 return NULL;
3364}
3365
3366#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3367
d5bd9106
AK
3368#ifdef CONFIG_MEMORY_FAILURE
3369
6de2b1aa
NH
3370/* Should be called in hugetlb_lock */
3371static int is_hugepage_on_freelist(struct page *hpage)
3372{
3373 struct page *page;
3374 struct page *tmp;
3375 struct hstate *h = page_hstate(hpage);
3376 int nid = page_to_nid(hpage);
3377
3378 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3379 if (page == hpage)
3380 return 1;
3381 return 0;
3382}
3383
93f70f90
NH
3384/*
3385 * This function is called from memory failure code.
3386 * Assume the caller holds page lock of the head page.
3387 */
6de2b1aa 3388int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3389{
3390 struct hstate *h = page_hstate(hpage);
3391 int nid = page_to_nid(hpage);
6de2b1aa 3392 int ret = -EBUSY;
93f70f90
NH
3393
3394 spin_lock(&hugetlb_lock);
6de2b1aa 3395 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3396 /*
3397 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3398 * but dangling hpage->lru can trigger list-debug warnings
3399 * (this happens when we call unpoison_memory() on it),
3400 * so let it point to itself with list_del_init().
3401 */
3402 list_del_init(&hpage->lru);
8c6c2ecb 3403 set_page_refcounted(hpage);
6de2b1aa
NH
3404 h->free_huge_pages--;
3405 h->free_huge_pages_node[nid]--;
3406 ret = 0;
3407 }
93f70f90 3408 spin_unlock(&hugetlb_lock);
6de2b1aa 3409 return ret;
93f70f90 3410}
6de2b1aa 3411#endif