]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
mm: hugetlbfs: fix cannot migrate the fallocated HugeTLB page
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
1a1aad8a 42#include <linux/userfaultfd_k.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
1da177e4 45
c3f38a38 46int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 49
dbda8fea 50#ifdef CONFIG_CMA
cf11e85f 51static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
52#endif
53static unsigned long hugetlb_cma_size __initdata;
cf11e85f 54
641844f5
NH
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 60
53ba51d2
JT
61__initdata LIST_HEAD(huge_boot_pages);
62
e5ff2159
AK
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 66static bool __initdata parsed_valid_hugepagesz = true;
282f4214 67static bool __initdata parsed_default_hugepagesz;
e5ff2159 68
3935baa9 69/*
31caf665
NH
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
3935baa9 72 */
c3f38a38 73DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 74
8382d914
DB
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
c672c7f2 80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 81
7ca02d0a
MK
82/* Forward declaration */
83static int hugetlb_acct_memory(struct hstate *h, long delta);
84
90481622
DG
85static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
86{
87 bool free = (spool->count == 0) && (spool->used_hpages == 0);
88
89 spin_unlock(&spool->lock);
90
91 /* If no pages are used, and no other handles to the subpool
7c8de358 92 * remain, give up any reservations based on minimum size and
7ca02d0a
MK
93 * free the subpool */
94 if (free) {
95 if (spool->min_hpages != -1)
96 hugetlb_acct_memory(spool->hstate,
97 -spool->min_hpages);
90481622 98 kfree(spool);
7ca02d0a 99 }
90481622
DG
100}
101
7ca02d0a
MK
102struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103 long min_hpages)
90481622
DG
104{
105 struct hugepage_subpool *spool;
106
c6a91820 107 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
108 if (!spool)
109 return NULL;
110
111 spin_lock_init(&spool->lock);
112 spool->count = 1;
7ca02d0a
MK
113 spool->max_hpages = max_hpages;
114 spool->hstate = h;
115 spool->min_hpages = min_hpages;
116
117 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118 kfree(spool);
119 return NULL;
120 }
121 spool->rsv_hpages = min_hpages;
90481622
DG
122
123 return spool;
124}
125
126void hugepage_put_subpool(struct hugepage_subpool *spool)
127{
128 spin_lock(&spool->lock);
129 BUG_ON(!spool->count);
130 spool->count--;
131 unlock_or_release_subpool(spool);
132}
133
1c5ecae3
MK
134/*
135 * Subpool accounting for allocating and reserving pages.
136 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 137 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
138 * global pools must be adjusted (upward). The returned value may
139 * only be different than the passed value (delta) in the case where
7c8de358 140 * a subpool minimum size must be maintained.
1c5ecae3
MK
141 */
142static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
143 long delta)
144{
1c5ecae3 145 long ret = delta;
90481622
DG
146
147 if (!spool)
1c5ecae3 148 return ret;
90481622
DG
149
150 spin_lock(&spool->lock);
1c5ecae3
MK
151
152 if (spool->max_hpages != -1) { /* maximum size accounting */
153 if ((spool->used_hpages + delta) <= spool->max_hpages)
154 spool->used_hpages += delta;
155 else {
156 ret = -ENOMEM;
157 goto unlock_ret;
158 }
90481622 159 }
90481622 160
09a95e29
MK
161 /* minimum size accounting */
162 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
163 if (delta > spool->rsv_hpages) {
164 /*
165 * Asking for more reserves than those already taken on
166 * behalf of subpool. Return difference.
167 */
168 ret = delta - spool->rsv_hpages;
169 spool->rsv_hpages = 0;
170 } else {
171 ret = 0; /* reserves already accounted for */
172 spool->rsv_hpages -= delta;
173 }
174 }
175
176unlock_ret:
177 spin_unlock(&spool->lock);
90481622
DG
178 return ret;
179}
180
1c5ecae3
MK
181/*
182 * Subpool accounting for freeing and unreserving pages.
183 * Return the number of global page reservations that must be dropped.
184 * The return value may only be different than the passed value (delta)
185 * in the case where a subpool minimum size must be maintained.
186 */
187static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
188 long delta)
189{
1c5ecae3
MK
190 long ret = delta;
191
90481622 192 if (!spool)
1c5ecae3 193 return delta;
90481622
DG
194
195 spin_lock(&spool->lock);
1c5ecae3
MK
196
197 if (spool->max_hpages != -1) /* maximum size accounting */
198 spool->used_hpages -= delta;
199
09a95e29
MK
200 /* minimum size accounting */
201 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
202 if (spool->rsv_hpages + delta <= spool->min_hpages)
203 ret = 0;
204 else
205 ret = spool->rsv_hpages + delta - spool->min_hpages;
206
207 spool->rsv_hpages += delta;
208 if (spool->rsv_hpages > spool->min_hpages)
209 spool->rsv_hpages = spool->min_hpages;
210 }
211
212 /*
213 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 * quota reference, free it now.
215 */
90481622 216 unlock_or_release_subpool(spool);
1c5ecae3
MK
217
218 return ret;
90481622
DG
219}
220
221static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222{
223 return HUGETLBFS_SB(inode->i_sb)->spool;
224}
225
226static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227{
496ad9aa 228 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
229}
230
0db9d74e
MA
231/* Helper that removes a struct file_region from the resv_map cache and returns
232 * it for use.
233 */
234static struct file_region *
235get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
236{
237 struct file_region *nrg = NULL;
238
239 VM_BUG_ON(resv->region_cache_count <= 0);
240
241 resv->region_cache_count--;
242 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
243 list_del(&nrg->link);
244
245 nrg->from = from;
246 nrg->to = to;
247
248 return nrg;
249}
250
075a61d0
MA
251static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
252 struct file_region *rg)
253{
254#ifdef CONFIG_CGROUP_HUGETLB
255 nrg->reservation_counter = rg->reservation_counter;
256 nrg->css = rg->css;
257 if (rg->css)
258 css_get(rg->css);
259#endif
260}
261
262/* Helper that records hugetlb_cgroup uncharge info. */
263static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
264 struct hstate *h,
265 struct resv_map *resv,
266 struct file_region *nrg)
267{
268#ifdef CONFIG_CGROUP_HUGETLB
269 if (h_cg) {
270 nrg->reservation_counter =
271 &h_cg->rsvd_hugepage[hstate_index(h)];
272 nrg->css = &h_cg->css;
273 if (!resv->pages_per_hpage)
274 resv->pages_per_hpage = pages_per_huge_page(h);
275 /* pages_per_hpage should be the same for all entries in
276 * a resv_map.
277 */
278 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
279 } else {
280 nrg->reservation_counter = NULL;
281 nrg->css = NULL;
282 }
283#endif
284}
285
a9b3f867
MA
286static bool has_same_uncharge_info(struct file_region *rg,
287 struct file_region *org)
288{
289#ifdef CONFIG_CGROUP_HUGETLB
290 return rg && org &&
291 rg->reservation_counter == org->reservation_counter &&
292 rg->css == org->css;
293
294#else
295 return true;
296#endif
297}
298
299static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
300{
301 struct file_region *nrg = NULL, *prg = NULL;
302
303 prg = list_prev_entry(rg, link);
304 if (&prg->link != &resv->regions && prg->to == rg->from &&
305 has_same_uncharge_info(prg, rg)) {
306 prg->to = rg->to;
307
308 list_del(&rg->link);
309 kfree(rg);
310
7db5e7b6 311 rg = prg;
a9b3f867
MA
312 }
313
314 nrg = list_next_entry(rg, link);
315 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
316 has_same_uncharge_info(nrg, rg)) {
317 nrg->from = rg->from;
318
319 list_del(&rg->link);
320 kfree(rg);
a9b3f867
MA
321 }
322}
323
972a3da3
WY
324/*
325 * Must be called with resv->lock held.
326 *
327 * Calling this with regions_needed != NULL will count the number of pages
328 * to be added but will not modify the linked list. And regions_needed will
329 * indicate the number of file_regions needed in the cache to carry out to add
330 * the regions for this range.
d75c6af9
MA
331 */
332static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 333 struct hugetlb_cgroup *h_cg,
972a3da3 334 struct hstate *h, long *regions_needed)
d75c6af9 335{
0db9d74e 336 long add = 0;
d75c6af9 337 struct list_head *head = &resv->regions;
0db9d74e 338 long last_accounted_offset = f;
d75c6af9
MA
339 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
340
0db9d74e
MA
341 if (regions_needed)
342 *regions_needed = 0;
d75c6af9 343
0db9d74e
MA
344 /* In this loop, we essentially handle an entry for the range
345 * [last_accounted_offset, rg->from), at every iteration, with some
346 * bounds checking.
347 */
348 list_for_each_entry_safe(rg, trg, head, link) {
349 /* Skip irrelevant regions that start before our range. */
350 if (rg->from < f) {
351 /* If this region ends after the last accounted offset,
352 * then we need to update last_accounted_offset.
353 */
354 if (rg->to > last_accounted_offset)
355 last_accounted_offset = rg->to;
356 continue;
357 }
d75c6af9 358
0db9d74e
MA
359 /* When we find a region that starts beyond our range, we've
360 * finished.
361 */
d75c6af9
MA
362 if (rg->from > t)
363 break;
364
0db9d74e
MA
365 /* Add an entry for last_accounted_offset -> rg->from, and
366 * update last_accounted_offset.
367 */
368 if (rg->from > last_accounted_offset) {
369 add += rg->from - last_accounted_offset;
972a3da3 370 if (!regions_needed) {
0db9d74e
MA
371 nrg = get_file_region_entry_from_cache(
372 resv, last_accounted_offset, rg->from);
075a61d0
MA
373 record_hugetlb_cgroup_uncharge_info(h_cg, h,
374 resv, nrg);
0db9d74e 375 list_add(&nrg->link, rg->link.prev);
a9b3f867 376 coalesce_file_region(resv, nrg);
972a3da3 377 } else
0db9d74e
MA
378 *regions_needed += 1;
379 }
380
381 last_accounted_offset = rg->to;
382 }
383
384 /* Handle the case where our range extends beyond
385 * last_accounted_offset.
386 */
387 if (last_accounted_offset < t) {
388 add += t - last_accounted_offset;
972a3da3 389 if (!regions_needed) {
0db9d74e
MA
390 nrg = get_file_region_entry_from_cache(
391 resv, last_accounted_offset, t);
075a61d0 392 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
0db9d74e 393 list_add(&nrg->link, rg->link.prev);
a9b3f867 394 coalesce_file_region(resv, nrg);
972a3da3 395 } else
0db9d74e
MA
396 *regions_needed += 1;
397 }
398
399 VM_BUG_ON(add < 0);
400 return add;
401}
402
403/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
404 */
405static int allocate_file_region_entries(struct resv_map *resv,
406 int regions_needed)
407 __must_hold(&resv->lock)
408{
409 struct list_head allocated_regions;
410 int to_allocate = 0, i = 0;
411 struct file_region *trg = NULL, *rg = NULL;
412
413 VM_BUG_ON(regions_needed < 0);
414
415 INIT_LIST_HEAD(&allocated_regions);
416
417 /*
418 * Check for sufficient descriptors in the cache to accommodate
419 * the number of in progress add operations plus regions_needed.
420 *
421 * This is a while loop because when we drop the lock, some other call
422 * to region_add or region_del may have consumed some region_entries,
423 * so we keep looping here until we finally have enough entries for
424 * (adds_in_progress + regions_needed).
425 */
426 while (resv->region_cache_count <
427 (resv->adds_in_progress + regions_needed)) {
428 to_allocate = resv->adds_in_progress + regions_needed -
429 resv->region_cache_count;
430
431 /* At this point, we should have enough entries in the cache
432 * for all the existings adds_in_progress. We should only be
433 * needing to allocate for regions_needed.
d75c6af9 434 */
0db9d74e
MA
435 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
436
437 spin_unlock(&resv->lock);
438 for (i = 0; i < to_allocate; i++) {
439 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
440 if (!trg)
441 goto out_of_memory;
442 list_add(&trg->link, &allocated_regions);
d75c6af9 443 }
d75c6af9 444
0db9d74e
MA
445 spin_lock(&resv->lock);
446
d3ec7b6e
WY
447 list_splice(&allocated_regions, &resv->region_cache);
448 resv->region_cache_count += to_allocate;
d75c6af9
MA
449 }
450
0db9d74e 451 return 0;
d75c6af9 452
0db9d74e
MA
453out_of_memory:
454 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
455 list_del(&rg->link);
456 kfree(rg);
457 }
458 return -ENOMEM;
d75c6af9
MA
459}
460
1dd308a7
MK
461/*
462 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
463 * map. Regions will be taken from the cache to fill in this range.
464 * Sufficient regions should exist in the cache due to the previous
465 * call to region_chg with the same range, but in some cases the cache will not
466 * have sufficient entries due to races with other code doing region_add or
467 * region_del. The extra needed entries will be allocated.
cf3ad20b 468 *
0db9d74e
MA
469 * regions_needed is the out value provided by a previous call to region_chg.
470 *
471 * Return the number of new huge pages added to the map. This number is greater
472 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 473 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
474 * region_add of regions of length 1 never allocate file_regions and cannot
475 * fail; region_chg will always allocate at least 1 entry and a region_add for
476 * 1 page will only require at most 1 entry.
1dd308a7 477 */
0db9d74e 478static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
479 long in_regions_needed, struct hstate *h,
480 struct hugetlb_cgroup *h_cg)
96822904 481{
0db9d74e 482 long add = 0, actual_regions_needed = 0;
96822904 483
7b24d861 484 spin_lock(&resv->lock);
0db9d74e
MA
485retry:
486
487 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
488 add_reservation_in_range(resv, f, t, NULL, NULL,
489 &actual_regions_needed);
96822904 490
5e911373 491 /*
0db9d74e
MA
492 * Check for sufficient descriptors in the cache to accommodate
493 * this add operation. Note that actual_regions_needed may be greater
494 * than in_regions_needed, as the resv_map may have been modified since
495 * the region_chg call. In this case, we need to make sure that we
496 * allocate extra entries, such that we have enough for all the
497 * existing adds_in_progress, plus the excess needed for this
498 * operation.
5e911373 499 */
0db9d74e
MA
500 if (actual_regions_needed > in_regions_needed &&
501 resv->region_cache_count <
502 resv->adds_in_progress +
503 (actual_regions_needed - in_regions_needed)) {
504 /* region_add operation of range 1 should never need to
505 * allocate file_region entries.
506 */
507 VM_BUG_ON(t - f <= 1);
5e911373 508
0db9d74e
MA
509 if (allocate_file_region_entries(
510 resv, actual_regions_needed - in_regions_needed)) {
511 return -ENOMEM;
512 }
5e911373 513
0db9d74e 514 goto retry;
5e911373
MK
515 }
516
972a3da3 517 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
518
519 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 520
7b24d861 521 spin_unlock(&resv->lock);
cf3ad20b
MK
522 VM_BUG_ON(add < 0);
523 return add;
96822904
AW
524}
525
1dd308a7
MK
526/*
527 * Examine the existing reserve map and determine how many
528 * huge pages in the specified range [f, t) are NOT currently
529 * represented. This routine is called before a subsequent
530 * call to region_add that will actually modify the reserve
531 * map to add the specified range [f, t). region_chg does
532 * not change the number of huge pages represented by the
0db9d74e
MA
533 * map. A number of new file_region structures is added to the cache as a
534 * placeholder, for the subsequent region_add call to use. At least 1
535 * file_region structure is added.
536 *
537 * out_regions_needed is the number of regions added to the
538 * resv->adds_in_progress. This value needs to be provided to a follow up call
539 * to region_add or region_abort for proper accounting.
5e911373
MK
540 *
541 * Returns the number of huge pages that need to be added to the existing
542 * reservation map for the range [f, t). This number is greater or equal to
543 * zero. -ENOMEM is returned if a new file_region structure or cache entry
544 * is needed and can not be allocated.
1dd308a7 545 */
0db9d74e
MA
546static long region_chg(struct resv_map *resv, long f, long t,
547 long *out_regions_needed)
96822904 548{
96822904
AW
549 long chg = 0;
550
7b24d861 551 spin_lock(&resv->lock);
5e911373 552
972a3da3 553 /* Count how many hugepages in this range are NOT represented. */
075a61d0 554 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 555 out_regions_needed);
5e911373 556
0db9d74e
MA
557 if (*out_regions_needed == 0)
558 *out_regions_needed = 1;
5e911373 559
0db9d74e
MA
560 if (allocate_file_region_entries(resv, *out_regions_needed))
561 return -ENOMEM;
5e911373 562
0db9d74e 563 resv->adds_in_progress += *out_regions_needed;
7b24d861 564
7b24d861 565 spin_unlock(&resv->lock);
96822904
AW
566 return chg;
567}
568
5e911373
MK
569/*
570 * Abort the in progress add operation. The adds_in_progress field
571 * of the resv_map keeps track of the operations in progress between
572 * calls to region_chg and region_add. Operations are sometimes
573 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
574 * is called to decrement the adds_in_progress counter. regions_needed
575 * is the value returned by the region_chg call, it is used to decrement
576 * the adds_in_progress counter.
5e911373
MK
577 *
578 * NOTE: The range arguments [f, t) are not needed or used in this
579 * routine. They are kept to make reading the calling code easier as
580 * arguments will match the associated region_chg call.
581 */
0db9d74e
MA
582static void region_abort(struct resv_map *resv, long f, long t,
583 long regions_needed)
5e911373
MK
584{
585 spin_lock(&resv->lock);
586 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 587 resv->adds_in_progress -= regions_needed;
5e911373
MK
588 spin_unlock(&resv->lock);
589}
590
1dd308a7 591/*
feba16e2
MK
592 * Delete the specified range [f, t) from the reserve map. If the
593 * t parameter is LONG_MAX, this indicates that ALL regions after f
594 * should be deleted. Locate the regions which intersect [f, t)
595 * and either trim, delete or split the existing regions.
596 *
597 * Returns the number of huge pages deleted from the reserve map.
598 * In the normal case, the return value is zero or more. In the
599 * case where a region must be split, a new region descriptor must
600 * be allocated. If the allocation fails, -ENOMEM will be returned.
601 * NOTE: If the parameter t == LONG_MAX, then we will never split
602 * a region and possibly return -ENOMEM. Callers specifying
603 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 604 */
feba16e2 605static long region_del(struct resv_map *resv, long f, long t)
96822904 606{
1406ec9b 607 struct list_head *head = &resv->regions;
96822904 608 struct file_region *rg, *trg;
feba16e2
MK
609 struct file_region *nrg = NULL;
610 long del = 0;
96822904 611
feba16e2 612retry:
7b24d861 613 spin_lock(&resv->lock);
feba16e2 614 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
615 /*
616 * Skip regions before the range to be deleted. file_region
617 * ranges are normally of the form [from, to). However, there
618 * may be a "placeholder" entry in the map which is of the form
619 * (from, to) with from == to. Check for placeholder entries
620 * at the beginning of the range to be deleted.
621 */
622 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 623 continue;
dbe409e4 624
feba16e2 625 if (rg->from >= t)
96822904 626 break;
96822904 627
feba16e2
MK
628 if (f > rg->from && t < rg->to) { /* Must split region */
629 /*
630 * Check for an entry in the cache before dropping
631 * lock and attempting allocation.
632 */
633 if (!nrg &&
634 resv->region_cache_count > resv->adds_in_progress) {
635 nrg = list_first_entry(&resv->region_cache,
636 struct file_region,
637 link);
638 list_del(&nrg->link);
639 resv->region_cache_count--;
640 }
96822904 641
feba16e2
MK
642 if (!nrg) {
643 spin_unlock(&resv->lock);
644 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
645 if (!nrg)
646 return -ENOMEM;
647 goto retry;
648 }
649
650 del += t - f;
79aa925b
MK
651 hugetlb_cgroup_uncharge_file_region(
652 resv, rg, t - f);
feba16e2
MK
653
654 /* New entry for end of split region */
655 nrg->from = t;
656 nrg->to = rg->to;
075a61d0
MA
657
658 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
659
feba16e2
MK
660 INIT_LIST_HEAD(&nrg->link);
661
662 /* Original entry is trimmed */
663 rg->to = f;
664
665 list_add(&nrg->link, &rg->link);
666 nrg = NULL;
96822904 667 break;
feba16e2
MK
668 }
669
670 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
671 del += rg->to - rg->from;
075a61d0
MA
672 hugetlb_cgroup_uncharge_file_region(resv, rg,
673 rg->to - rg->from);
feba16e2
MK
674 list_del(&rg->link);
675 kfree(rg);
676 continue;
677 }
678
679 if (f <= rg->from) { /* Trim beginning of region */
075a61d0
MA
680 hugetlb_cgroup_uncharge_file_region(resv, rg,
681 t - rg->from);
075a61d0 682
79aa925b
MK
683 del += t - rg->from;
684 rg->from = t;
685 } else { /* Trim end of region */
075a61d0
MA
686 hugetlb_cgroup_uncharge_file_region(resv, rg,
687 rg->to - f);
79aa925b
MK
688
689 del += rg->to - f;
690 rg->to = f;
feba16e2 691 }
96822904 692 }
7b24d861 693
7b24d861 694 spin_unlock(&resv->lock);
feba16e2
MK
695 kfree(nrg);
696 return del;
96822904
AW
697}
698
b5cec28d
MK
699/*
700 * A rare out of memory error was encountered which prevented removal of
701 * the reserve map region for a page. The huge page itself was free'ed
702 * and removed from the page cache. This routine will adjust the subpool
703 * usage count, and the global reserve count if needed. By incrementing
704 * these counts, the reserve map entry which could not be deleted will
705 * appear as a "reserved" entry instead of simply dangling with incorrect
706 * counts.
707 */
72e2936c 708void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
709{
710 struct hugepage_subpool *spool = subpool_inode(inode);
711 long rsv_adjust;
712
713 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 714 if (rsv_adjust) {
b5cec28d
MK
715 struct hstate *h = hstate_inode(inode);
716
717 hugetlb_acct_memory(h, 1);
718 }
719}
720
1dd308a7
MK
721/*
722 * Count and return the number of huge pages in the reserve map
723 * that intersect with the range [f, t).
724 */
1406ec9b 725static long region_count(struct resv_map *resv, long f, long t)
84afd99b 726{
1406ec9b 727 struct list_head *head = &resv->regions;
84afd99b
AW
728 struct file_region *rg;
729 long chg = 0;
730
7b24d861 731 spin_lock(&resv->lock);
84afd99b
AW
732 /* Locate each segment we overlap with, and count that overlap. */
733 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
734 long seg_from;
735 long seg_to;
84afd99b
AW
736
737 if (rg->to <= f)
738 continue;
739 if (rg->from >= t)
740 break;
741
742 seg_from = max(rg->from, f);
743 seg_to = min(rg->to, t);
744
745 chg += seg_to - seg_from;
746 }
7b24d861 747 spin_unlock(&resv->lock);
84afd99b
AW
748
749 return chg;
750}
751
e7c4b0bf
AW
752/*
753 * Convert the address within this vma to the page offset within
754 * the mapping, in pagecache page units; huge pages here.
755 */
a5516438
AK
756static pgoff_t vma_hugecache_offset(struct hstate *h,
757 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 758{
a5516438
AK
759 return ((address - vma->vm_start) >> huge_page_shift(h)) +
760 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
761}
762
0fe6e20b
NH
763pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
764 unsigned long address)
765{
766 return vma_hugecache_offset(hstate_vma(vma), vma, address);
767}
dee41079 768EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 769
08fba699
MG
770/*
771 * Return the size of the pages allocated when backing a VMA. In the majority
772 * cases this will be same size as used by the page table entries.
773 */
774unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
775{
05ea8860
DW
776 if (vma->vm_ops && vma->vm_ops->pagesize)
777 return vma->vm_ops->pagesize(vma);
778 return PAGE_SIZE;
08fba699 779}
f340ca0f 780EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 781
3340289d
MG
782/*
783 * Return the page size being used by the MMU to back a VMA. In the majority
784 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
785 * architectures where it differs, an architecture-specific 'strong'
786 * version of this symbol is required.
3340289d 787 */
09135cc5 788__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
789{
790 return vma_kernel_pagesize(vma);
791}
3340289d 792
84afd99b
AW
793/*
794 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
795 * bits of the reservation map pointer, which are always clear due to
796 * alignment.
797 */
798#define HPAGE_RESV_OWNER (1UL << 0)
799#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 800#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 801
a1e78772
MG
802/*
803 * These helpers are used to track how many pages are reserved for
804 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
805 * is guaranteed to have their future faults succeed.
806 *
807 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
808 * the reserve counters are updated with the hugetlb_lock held. It is safe
809 * to reset the VMA at fork() time as it is not in use yet and there is no
810 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
811 *
812 * The private mapping reservation is represented in a subtly different
813 * manner to a shared mapping. A shared mapping has a region map associated
814 * with the underlying file, this region map represents the backing file
815 * pages which have ever had a reservation assigned which this persists even
816 * after the page is instantiated. A private mapping has a region map
817 * associated with the original mmap which is attached to all VMAs which
818 * reference it, this region map represents those offsets which have consumed
819 * reservation ie. where pages have been instantiated.
a1e78772 820 */
e7c4b0bf
AW
821static unsigned long get_vma_private_data(struct vm_area_struct *vma)
822{
823 return (unsigned long)vma->vm_private_data;
824}
825
826static void set_vma_private_data(struct vm_area_struct *vma,
827 unsigned long value)
828{
829 vma->vm_private_data = (void *)value;
830}
831
e9fe92ae
MA
832static void
833resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
834 struct hugetlb_cgroup *h_cg,
835 struct hstate *h)
836{
837#ifdef CONFIG_CGROUP_HUGETLB
838 if (!h_cg || !h) {
839 resv_map->reservation_counter = NULL;
840 resv_map->pages_per_hpage = 0;
841 resv_map->css = NULL;
842 } else {
843 resv_map->reservation_counter =
844 &h_cg->rsvd_hugepage[hstate_index(h)];
845 resv_map->pages_per_hpage = pages_per_huge_page(h);
846 resv_map->css = &h_cg->css;
847 }
848#endif
849}
850
9119a41e 851struct resv_map *resv_map_alloc(void)
84afd99b
AW
852{
853 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
854 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
855
856 if (!resv_map || !rg) {
857 kfree(resv_map);
858 kfree(rg);
84afd99b 859 return NULL;
5e911373 860 }
84afd99b
AW
861
862 kref_init(&resv_map->refs);
7b24d861 863 spin_lock_init(&resv_map->lock);
84afd99b
AW
864 INIT_LIST_HEAD(&resv_map->regions);
865
5e911373 866 resv_map->adds_in_progress = 0;
e9fe92ae
MA
867 /*
868 * Initialize these to 0. On shared mappings, 0's here indicate these
869 * fields don't do cgroup accounting. On private mappings, these will be
870 * re-initialized to the proper values, to indicate that hugetlb cgroup
871 * reservations are to be un-charged from here.
872 */
873 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
874
875 INIT_LIST_HEAD(&resv_map->region_cache);
876 list_add(&rg->link, &resv_map->region_cache);
877 resv_map->region_cache_count = 1;
878
84afd99b
AW
879 return resv_map;
880}
881
9119a41e 882void resv_map_release(struct kref *ref)
84afd99b
AW
883{
884 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
885 struct list_head *head = &resv_map->region_cache;
886 struct file_region *rg, *trg;
84afd99b
AW
887
888 /* Clear out any active regions before we release the map. */
feba16e2 889 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
890
891 /* ... and any entries left in the cache */
892 list_for_each_entry_safe(rg, trg, head, link) {
893 list_del(&rg->link);
894 kfree(rg);
895 }
896
897 VM_BUG_ON(resv_map->adds_in_progress);
898
84afd99b
AW
899 kfree(resv_map);
900}
901
4e35f483
JK
902static inline struct resv_map *inode_resv_map(struct inode *inode)
903{
f27a5136
MK
904 /*
905 * At inode evict time, i_mapping may not point to the original
906 * address space within the inode. This original address space
907 * contains the pointer to the resv_map. So, always use the
908 * address space embedded within the inode.
909 * The VERY common case is inode->mapping == &inode->i_data but,
910 * this may not be true for device special inodes.
911 */
912 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
913}
914
84afd99b 915static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 916{
81d1b09c 917 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
918 if (vma->vm_flags & VM_MAYSHARE) {
919 struct address_space *mapping = vma->vm_file->f_mapping;
920 struct inode *inode = mapping->host;
921
922 return inode_resv_map(inode);
923
924 } else {
84afd99b
AW
925 return (struct resv_map *)(get_vma_private_data(vma) &
926 ~HPAGE_RESV_MASK);
4e35f483 927 }
a1e78772
MG
928}
929
84afd99b 930static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 931{
81d1b09c
SL
932 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 934
84afd99b
AW
935 set_vma_private_data(vma, (get_vma_private_data(vma) &
936 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
937}
938
939static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
940{
81d1b09c
SL
941 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
942 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
943
944 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
945}
946
947static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
948{
81d1b09c 949 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
950
951 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
952}
953
04f2cbe3 954/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
955void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
956{
81d1b09c 957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 958 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
959 vma->vm_private_data = (void *)0;
960}
961
962/* Returns true if the VMA has associated reserve pages */
559ec2f8 963static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 964{
af0ed73e
JK
965 if (vma->vm_flags & VM_NORESERVE) {
966 /*
967 * This address is already reserved by other process(chg == 0),
968 * so, we should decrement reserved count. Without decrementing,
969 * reserve count remains after releasing inode, because this
970 * allocated page will go into page cache and is regarded as
971 * coming from reserved pool in releasing step. Currently, we
972 * don't have any other solution to deal with this situation
973 * properly, so add work-around here.
974 */
975 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 976 return true;
af0ed73e 977 else
559ec2f8 978 return false;
af0ed73e 979 }
a63884e9
JK
980
981 /* Shared mappings always use reserves */
1fb1b0e9
MK
982 if (vma->vm_flags & VM_MAYSHARE) {
983 /*
984 * We know VM_NORESERVE is not set. Therefore, there SHOULD
985 * be a region map for all pages. The only situation where
986 * there is no region map is if a hole was punched via
7c8de358 987 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
988 * use. This situation is indicated if chg != 0.
989 */
990 if (chg)
991 return false;
992 else
993 return true;
994 }
a63884e9
JK
995
996 /*
997 * Only the process that called mmap() has reserves for
998 * private mappings.
999 */
67961f9d
MK
1000 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1001 /*
1002 * Like the shared case above, a hole punch or truncate
1003 * could have been performed on the private mapping.
1004 * Examine the value of chg to determine if reserves
1005 * actually exist or were previously consumed.
1006 * Very Subtle - The value of chg comes from a previous
1007 * call to vma_needs_reserves(). The reserve map for
1008 * private mappings has different (opposite) semantics
1009 * than that of shared mappings. vma_needs_reserves()
1010 * has already taken this difference in semantics into
1011 * account. Therefore, the meaning of chg is the same
1012 * as in the shared case above. Code could easily be
1013 * combined, but keeping it separate draws attention to
1014 * subtle differences.
1015 */
1016 if (chg)
1017 return false;
1018 else
1019 return true;
1020 }
a63884e9 1021
559ec2f8 1022 return false;
a1e78772
MG
1023}
1024
a5516438 1025static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1026{
1027 int nid = page_to_nid(page);
0edaecfa 1028 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1029 h->free_huge_pages++;
1030 h->free_huge_pages_node[nid]++;
1da177e4
LT
1031}
1032
94310cbc 1033static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1034{
1035 struct page *page;
bbe88753
JK
1036 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1037
1038 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1039 if (nocma && is_migrate_cma_page(page))
1040 continue;
bf50bab2 1041
6664bfc8
WY
1042 if (PageHWPoison(page))
1043 continue;
1044
1045 list_move(&page->lru, &h->hugepage_activelist);
1046 set_page_refcounted(page);
1047 h->free_huge_pages--;
1048 h->free_huge_pages_node[nid]--;
1049 return page;
bbe88753
JK
1050 }
1051
6664bfc8 1052 return NULL;
bf50bab2
NH
1053}
1054
3e59fcb0
MH
1055static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1056 nodemask_t *nmask)
94310cbc 1057{
3e59fcb0
MH
1058 unsigned int cpuset_mems_cookie;
1059 struct zonelist *zonelist;
1060 struct zone *zone;
1061 struct zoneref *z;
98fa15f3 1062 int node = NUMA_NO_NODE;
94310cbc 1063
3e59fcb0
MH
1064 zonelist = node_zonelist(nid, gfp_mask);
1065
1066retry_cpuset:
1067 cpuset_mems_cookie = read_mems_allowed_begin();
1068 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1069 struct page *page;
1070
1071 if (!cpuset_zone_allowed(zone, gfp_mask))
1072 continue;
1073 /*
1074 * no need to ask again on the same node. Pool is node rather than
1075 * zone aware
1076 */
1077 if (zone_to_nid(zone) == node)
1078 continue;
1079 node = zone_to_nid(zone);
94310cbc 1080
94310cbc
AK
1081 page = dequeue_huge_page_node_exact(h, node);
1082 if (page)
1083 return page;
1084 }
3e59fcb0
MH
1085 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1086 goto retry_cpuset;
1087
94310cbc
AK
1088 return NULL;
1089}
1090
a5516438
AK
1091static struct page *dequeue_huge_page_vma(struct hstate *h,
1092 struct vm_area_struct *vma,
af0ed73e
JK
1093 unsigned long address, int avoid_reserve,
1094 long chg)
1da177e4 1095{
3e59fcb0 1096 struct page *page;
480eccf9 1097 struct mempolicy *mpol;
04ec6264 1098 gfp_t gfp_mask;
3e59fcb0 1099 nodemask_t *nodemask;
04ec6264 1100 int nid;
1da177e4 1101
a1e78772
MG
1102 /*
1103 * A child process with MAP_PRIVATE mappings created by their parent
1104 * have no page reserves. This check ensures that reservations are
1105 * not "stolen". The child may still get SIGKILLed
1106 */
af0ed73e 1107 if (!vma_has_reserves(vma, chg) &&
a5516438 1108 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1109 goto err;
a1e78772 1110
04f2cbe3 1111 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1112 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1113 goto err;
04f2cbe3 1114
04ec6264
VB
1115 gfp_mask = htlb_alloc_mask(h);
1116 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1117 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1118 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1119 SetPagePrivate(page);
1120 h->resv_huge_pages--;
1da177e4 1121 }
cc9a6c87 1122
52cd3b07 1123 mpol_cond_put(mpol);
1da177e4 1124 return page;
cc9a6c87
MG
1125
1126err:
cc9a6c87 1127 return NULL;
1da177e4
LT
1128}
1129
1cac6f2c
LC
1130/*
1131 * common helper functions for hstate_next_node_to_{alloc|free}.
1132 * We may have allocated or freed a huge page based on a different
1133 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1134 * be outside of *nodes_allowed. Ensure that we use an allowed
1135 * node for alloc or free.
1136 */
1137static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1138{
0edaf86c 1139 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1140 VM_BUG_ON(nid >= MAX_NUMNODES);
1141
1142 return nid;
1143}
1144
1145static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1146{
1147 if (!node_isset(nid, *nodes_allowed))
1148 nid = next_node_allowed(nid, nodes_allowed);
1149 return nid;
1150}
1151
1152/*
1153 * returns the previously saved node ["this node"] from which to
1154 * allocate a persistent huge page for the pool and advance the
1155 * next node from which to allocate, handling wrap at end of node
1156 * mask.
1157 */
1158static int hstate_next_node_to_alloc(struct hstate *h,
1159 nodemask_t *nodes_allowed)
1160{
1161 int nid;
1162
1163 VM_BUG_ON(!nodes_allowed);
1164
1165 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1166 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1167
1168 return nid;
1169}
1170
1171/*
1172 * helper for free_pool_huge_page() - return the previously saved
1173 * node ["this node"] from which to free a huge page. Advance the
1174 * next node id whether or not we find a free huge page to free so
1175 * that the next attempt to free addresses the next node.
1176 */
1177static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1178{
1179 int nid;
1180
1181 VM_BUG_ON(!nodes_allowed);
1182
1183 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1184 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1185
1186 return nid;
1187}
1188
1189#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1190 for (nr_nodes = nodes_weight(*mask); \
1191 nr_nodes > 0 && \
1192 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1193 nr_nodes--)
1194
1195#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1196 for (nr_nodes = nodes_weight(*mask); \
1197 nr_nodes > 0 && \
1198 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1199 nr_nodes--)
1200
e1073d1e 1201#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1202static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1203 unsigned int order)
944d9fec
LC
1204{
1205 int i;
1206 int nr_pages = 1 << order;
1207 struct page *p = page + 1;
1208
c8cc708a 1209 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1210 if (hpage_pincount_available(page))
1211 atomic_set(compound_pincount_ptr(page), 0);
1212
944d9fec 1213 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1214 clear_compound_head(p);
944d9fec 1215 set_page_refcounted(p);
944d9fec
LC
1216 }
1217
1218 set_compound_order(page, 0);
ba9c1201 1219 page[1].compound_nr = 0;
944d9fec
LC
1220 __ClearPageHead(page);
1221}
1222
d00181b9 1223static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1224{
cf11e85f
RG
1225 /*
1226 * If the page isn't allocated using the cma allocator,
1227 * cma_release() returns false.
1228 */
dbda8fea
BS
1229#ifdef CONFIG_CMA
1230 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1231 return;
dbda8fea 1232#endif
cf11e85f 1233
944d9fec
LC
1234 free_contig_range(page_to_pfn(page), 1 << order);
1235}
1236
4eb0716e 1237#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1238static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1239 int nid, nodemask_t *nodemask)
944d9fec 1240{
5e27a2df 1241 unsigned long nr_pages = 1UL << huge_page_order(h);
953f064a
LX
1242 if (nid == NUMA_NO_NODE)
1243 nid = numa_mem_id();
944d9fec 1244
dbda8fea
BS
1245#ifdef CONFIG_CMA
1246 {
cf11e85f
RG
1247 struct page *page;
1248 int node;
1249
953f064a
LX
1250 if (hugetlb_cma[nid]) {
1251 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1252 huge_page_order(h), true);
cf11e85f
RG
1253 if (page)
1254 return page;
1255 }
953f064a
LX
1256
1257 if (!(gfp_mask & __GFP_THISNODE)) {
1258 for_each_node_mask(node, *nodemask) {
1259 if (node == nid || !hugetlb_cma[node])
1260 continue;
1261
1262 page = cma_alloc(hugetlb_cma[node], nr_pages,
1263 huge_page_order(h), true);
1264 if (page)
1265 return page;
1266 }
1267 }
cf11e85f 1268 }
dbda8fea 1269#endif
cf11e85f 1270
5e27a2df 1271 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1272}
1273
1274static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1275static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1276#else /* !CONFIG_CONTIG_ALLOC */
1277static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1278 int nid, nodemask_t *nodemask)
1279{
1280 return NULL;
1281}
1282#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1283
e1073d1e 1284#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1285static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1286 int nid, nodemask_t *nodemask)
1287{
1288 return NULL;
1289}
d00181b9 1290static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1291static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1292 unsigned int order) { }
944d9fec
LC
1293#endif
1294
a5516438 1295static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1296{
1297 int i;
a5516438 1298
4eb0716e 1299 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1300 return;
18229df5 1301
a5516438
AK
1302 h->nr_huge_pages--;
1303 h->nr_huge_pages_node[page_to_nid(page)]--;
1304 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1305 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1306 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1307 1 << PG_active | 1 << PG_private |
1308 1 << PG_writeback);
6af2acb6 1309 }
309381fe 1310 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1adc4d41 1311 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
f1e61557 1312 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1313 set_page_refcounted(page);
944d9fec 1314 if (hstate_is_gigantic(h)) {
cf11e85f
RG
1315 /*
1316 * Temporarily drop the hugetlb_lock, because
1317 * we might block in free_gigantic_page().
1318 */
1319 spin_unlock(&hugetlb_lock);
944d9fec
LC
1320 destroy_compound_gigantic_page(page, huge_page_order(h));
1321 free_gigantic_page(page, huge_page_order(h));
cf11e85f 1322 spin_lock(&hugetlb_lock);
944d9fec 1323 } else {
944d9fec
LC
1324 __free_pages(page, huge_page_order(h));
1325 }
6af2acb6
AL
1326}
1327
e5ff2159
AK
1328struct hstate *size_to_hstate(unsigned long size)
1329{
1330 struct hstate *h;
1331
1332 for_each_hstate(h) {
1333 if (huge_page_size(h) == size)
1334 return h;
1335 }
1336 return NULL;
1337}
1338
bcc54222
NH
1339/*
1340 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1341 * to hstate->hugepage_activelist.)
1342 *
1343 * This function can be called for tail pages, but never returns true for them.
1344 */
1345bool page_huge_active(struct page *page)
1346{
1347 VM_BUG_ON_PAGE(!PageHuge(page), page);
1348 return PageHead(page) && PagePrivate(&page[1]);
1349}
1350
1351/* never called for tail page */
585fc0d2 1352void set_page_huge_active(struct page *page)
bcc54222
NH
1353{
1354 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1355 SetPagePrivate(&page[1]);
1356}
1357
1358static void clear_page_huge_active(struct page *page)
1359{
1360 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1361 ClearPagePrivate(&page[1]);
1362}
1363
ab5ac90a
MH
1364/*
1365 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1366 * code
1367 */
1368static inline bool PageHugeTemporary(struct page *page)
1369{
1370 if (!PageHuge(page))
1371 return false;
1372
1373 return (unsigned long)page[2].mapping == -1U;
1374}
1375
1376static inline void SetPageHugeTemporary(struct page *page)
1377{
1378 page[2].mapping = (void *)-1U;
1379}
1380
1381static inline void ClearPageHugeTemporary(struct page *page)
1382{
1383 page[2].mapping = NULL;
1384}
1385
c77c0a8a 1386static void __free_huge_page(struct page *page)
27a85ef1 1387{
a5516438
AK
1388 /*
1389 * Can't pass hstate in here because it is called from the
1390 * compound page destructor.
1391 */
e5ff2159 1392 struct hstate *h = page_hstate(page);
7893d1d5 1393 int nid = page_to_nid(page);
90481622
DG
1394 struct hugepage_subpool *spool =
1395 (struct hugepage_subpool *)page_private(page);
07443a85 1396 bool restore_reserve;
27a85ef1 1397
b4330afb
MK
1398 VM_BUG_ON_PAGE(page_count(page), page);
1399 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1400
1401 set_page_private(page, 0);
1402 page->mapping = NULL;
07443a85 1403 restore_reserve = PagePrivate(page);
16c794b4 1404 ClearPagePrivate(page);
27a85ef1 1405
1c5ecae3 1406 /*
0919e1b6
MK
1407 * If PagePrivate() was set on page, page allocation consumed a
1408 * reservation. If the page was associated with a subpool, there
1409 * would have been a page reserved in the subpool before allocation
1410 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1411 * reservtion, do not call hugepage_subpool_put_pages() as this will
1412 * remove the reserved page from the subpool.
1c5ecae3 1413 */
0919e1b6
MK
1414 if (!restore_reserve) {
1415 /*
1416 * A return code of zero implies that the subpool will be
1417 * under its minimum size if the reservation is not restored
1418 * after page is free. Therefore, force restore_reserve
1419 * operation.
1420 */
1421 if (hugepage_subpool_put_pages(spool, 1) == 0)
1422 restore_reserve = true;
1423 }
1c5ecae3 1424
27a85ef1 1425 spin_lock(&hugetlb_lock);
bcc54222 1426 clear_page_huge_active(page);
6d76dcf4
AK
1427 hugetlb_cgroup_uncharge_page(hstate_index(h),
1428 pages_per_huge_page(h), page);
08cf9faf
MA
1429 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1430 pages_per_huge_page(h), page);
07443a85
JK
1431 if (restore_reserve)
1432 h->resv_huge_pages++;
1433
ab5ac90a
MH
1434 if (PageHugeTemporary(page)) {
1435 list_del(&page->lru);
1436 ClearPageHugeTemporary(page);
1437 update_and_free_page(h, page);
1438 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1439 /* remove the page from active list */
1440 list_del(&page->lru);
a5516438
AK
1441 update_and_free_page(h, page);
1442 h->surplus_huge_pages--;
1443 h->surplus_huge_pages_node[nid]--;
7893d1d5 1444 } else {
5d3a551c 1445 arch_clear_hugepage_flags(page);
a5516438 1446 enqueue_huge_page(h, page);
7893d1d5 1447 }
27a85ef1
DG
1448 spin_unlock(&hugetlb_lock);
1449}
1450
c77c0a8a
WL
1451/*
1452 * As free_huge_page() can be called from a non-task context, we have
1453 * to defer the actual freeing in a workqueue to prevent potential
1454 * hugetlb_lock deadlock.
1455 *
1456 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1457 * be freed and frees them one-by-one. As the page->mapping pointer is
1458 * going to be cleared in __free_huge_page() anyway, it is reused as the
1459 * llist_node structure of a lockless linked list of huge pages to be freed.
1460 */
1461static LLIST_HEAD(hpage_freelist);
1462
1463static void free_hpage_workfn(struct work_struct *work)
1464{
1465 struct llist_node *node;
1466 struct page *page;
1467
1468 node = llist_del_all(&hpage_freelist);
1469
1470 while (node) {
1471 page = container_of((struct address_space **)node,
1472 struct page, mapping);
1473 node = node->next;
1474 __free_huge_page(page);
1475 }
1476}
1477static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1478
1479void free_huge_page(struct page *page)
1480{
1481 /*
1482 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1483 */
1484 if (!in_task()) {
1485 /*
1486 * Only call schedule_work() if hpage_freelist is previously
1487 * empty. Otherwise, schedule_work() had been called but the
1488 * workfn hasn't retrieved the list yet.
1489 */
1490 if (llist_add((struct llist_node *)&page->mapping,
1491 &hpage_freelist))
1492 schedule_work(&free_hpage_work);
1493 return;
1494 }
1495
1496 __free_huge_page(page);
1497}
1498
a5516438 1499static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1500{
0edaecfa 1501 INIT_LIST_HEAD(&page->lru);
f1e61557 1502 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1503 set_hugetlb_cgroup(page, NULL);
1adc4d41 1504 set_hugetlb_cgroup_rsvd(page, NULL);
2f37511c 1505 spin_lock(&hugetlb_lock);
a5516438
AK
1506 h->nr_huge_pages++;
1507 h->nr_huge_pages_node[nid]++;
b7ba30c6 1508 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1509}
1510
d00181b9 1511static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1512{
1513 int i;
1514 int nr_pages = 1 << order;
1515 struct page *p = page + 1;
1516
1517 /* we rely on prep_new_huge_page to set the destructor */
1518 set_compound_order(page, order);
ef5a22be 1519 __ClearPageReserved(page);
de09d31d 1520 __SetPageHead(page);
20a0307c 1521 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1522 /*
1523 * For gigantic hugepages allocated through bootmem at
1524 * boot, it's safer to be consistent with the not-gigantic
1525 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1526 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1527 * pages may get the reference counting wrong if they see
1528 * PG_reserved set on a tail page (despite the head page not
1529 * having PG_reserved set). Enforcing this consistency between
1530 * head and tail pages allows drivers to optimize away a check
1531 * on the head page when they need know if put_page() is needed
1532 * after get_user_pages().
1533 */
1534 __ClearPageReserved(p);
58a84aa9 1535 set_page_count(p, 0);
1d798ca3 1536 set_compound_head(p, page);
20a0307c 1537 }
b4330afb 1538 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
1539
1540 if (hpage_pincount_available(page))
1541 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1542}
1543
7795912c
AM
1544/*
1545 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546 * transparent huge pages. See the PageTransHuge() documentation for more
1547 * details.
1548 */
20a0307c
WF
1549int PageHuge(struct page *page)
1550{
20a0307c
WF
1551 if (!PageCompound(page))
1552 return 0;
1553
1554 page = compound_head(page);
f1e61557 1555 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1556}
43131e14
NH
1557EXPORT_SYMBOL_GPL(PageHuge);
1558
27c73ae7
AA
1559/*
1560 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561 * normal or transparent huge pages.
1562 */
1563int PageHeadHuge(struct page *page_head)
1564{
27c73ae7
AA
1565 if (!PageHead(page_head))
1566 return 0;
1567
d4af73e3 1568 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1569}
27c73ae7 1570
c0d0381a
MK
1571/*
1572 * Find and lock address space (mapping) in write mode.
1573 *
336bf30e
MK
1574 * Upon entry, the page is locked which means that page_mapping() is
1575 * stable. Due to locking order, we can only trylock_write. If we can
1576 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1577 */
1578struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1579{
336bf30e 1580 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1581
c0d0381a
MK
1582 if (!mapping)
1583 return mapping;
1584
c0d0381a
MK
1585 if (i_mmap_trylock_write(mapping))
1586 return mapping;
1587
336bf30e 1588 return NULL;
c0d0381a
MK
1589}
1590
13d60f4b
ZY
1591pgoff_t __basepage_index(struct page *page)
1592{
1593 struct page *page_head = compound_head(page);
1594 pgoff_t index = page_index(page_head);
1595 unsigned long compound_idx;
1596
1597 if (!PageHuge(page_head))
1598 return page_index(page);
1599
1600 if (compound_order(page_head) >= MAX_ORDER)
1601 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1602 else
1603 compound_idx = page - page_head;
1604
1605 return (index << compound_order(page_head)) + compound_idx;
1606}
1607
0c397dae 1608static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1609 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1610 nodemask_t *node_alloc_noretry)
1da177e4 1611{
af0fb9df 1612 int order = huge_page_order(h);
1da177e4 1613 struct page *page;
f60858f9 1614 bool alloc_try_hard = true;
f96efd58 1615
f60858f9
MK
1616 /*
1617 * By default we always try hard to allocate the page with
1618 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1619 * a loop (to adjust global huge page counts) and previous allocation
1620 * failed, do not continue to try hard on the same node. Use the
1621 * node_alloc_noretry bitmap to manage this state information.
1622 */
1623 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1624 alloc_try_hard = false;
1625 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1626 if (alloc_try_hard)
1627 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1628 if (nid == NUMA_NO_NODE)
1629 nid = numa_mem_id();
1630 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1631 if (page)
1632 __count_vm_event(HTLB_BUDDY_PGALLOC);
1633 else
1634 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1635
f60858f9
MK
1636 /*
1637 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1638 * indicates an overall state change. Clear bit so that we resume
1639 * normal 'try hard' allocations.
1640 */
1641 if (node_alloc_noretry && page && !alloc_try_hard)
1642 node_clear(nid, *node_alloc_noretry);
1643
1644 /*
1645 * If we tried hard to get a page but failed, set bit so that
1646 * subsequent attempts will not try as hard until there is an
1647 * overall state change.
1648 */
1649 if (node_alloc_noretry && !page && alloc_try_hard)
1650 node_set(nid, *node_alloc_noretry);
1651
63b4613c
NA
1652 return page;
1653}
1654
0c397dae
MH
1655/*
1656 * Common helper to allocate a fresh hugetlb page. All specific allocators
1657 * should use this function to get new hugetlb pages
1658 */
1659static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1660 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1661 nodemask_t *node_alloc_noretry)
0c397dae
MH
1662{
1663 struct page *page;
1664
1665 if (hstate_is_gigantic(h))
1666 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1667 else
1668 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1669 nid, nmask, node_alloc_noretry);
0c397dae
MH
1670 if (!page)
1671 return NULL;
1672
1673 if (hstate_is_gigantic(h))
1674 prep_compound_gigantic_page(page, huge_page_order(h));
1675 prep_new_huge_page(h, page, page_to_nid(page));
1676
1677 return page;
1678}
1679
af0fb9df
MH
1680/*
1681 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1682 * manner.
1683 */
f60858f9
MK
1684static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1685 nodemask_t *node_alloc_noretry)
b2261026
JK
1686{
1687 struct page *page;
1688 int nr_nodes, node;
af0fb9df 1689 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1690
1691 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1692 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1693 node_alloc_noretry);
af0fb9df 1694 if (page)
b2261026 1695 break;
b2261026
JK
1696 }
1697
af0fb9df
MH
1698 if (!page)
1699 return 0;
b2261026 1700
af0fb9df
MH
1701 put_page(page); /* free it into the hugepage allocator */
1702
1703 return 1;
b2261026
JK
1704}
1705
e8c5c824
LS
1706/*
1707 * Free huge page from pool from next node to free.
1708 * Attempt to keep persistent huge pages more or less
1709 * balanced over allowed nodes.
1710 * Called with hugetlb_lock locked.
1711 */
6ae11b27
LS
1712static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1713 bool acct_surplus)
e8c5c824 1714{
b2261026 1715 int nr_nodes, node;
e8c5c824
LS
1716 int ret = 0;
1717
b2261026 1718 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1719 /*
1720 * If we're returning unused surplus pages, only examine
1721 * nodes with surplus pages.
1722 */
b2261026
JK
1723 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1724 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1725 struct page *page =
b2261026 1726 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1727 struct page, lru);
1728 list_del(&page->lru);
1729 h->free_huge_pages--;
b2261026 1730 h->free_huge_pages_node[node]--;
685f3457
LS
1731 if (acct_surplus) {
1732 h->surplus_huge_pages--;
b2261026 1733 h->surplus_huge_pages_node[node]--;
685f3457 1734 }
e8c5c824
LS
1735 update_and_free_page(h, page);
1736 ret = 1;
9a76db09 1737 break;
e8c5c824 1738 }
b2261026 1739 }
e8c5c824
LS
1740
1741 return ret;
1742}
1743
c8721bbb
NH
1744/*
1745 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1746 * nothing for in-use hugepages and non-hugepages.
1747 * This function returns values like below:
1748 *
1749 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1750 * (allocated or reserved.)
1751 * 0: successfully dissolved free hugepages or the page is not a
1752 * hugepage (considered as already dissolved)
c8721bbb 1753 */
c3114a84 1754int dissolve_free_huge_page(struct page *page)
c8721bbb 1755{
6bc9b564 1756 int rc = -EBUSY;
082d5b6b 1757
faf53def
NH
1758 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1759 if (!PageHuge(page))
1760 return 0;
1761
c8721bbb 1762 spin_lock(&hugetlb_lock);
faf53def
NH
1763 if (!PageHuge(page)) {
1764 rc = 0;
1765 goto out;
1766 }
1767
1768 if (!page_count(page)) {
2247bb33
GS
1769 struct page *head = compound_head(page);
1770 struct hstate *h = page_hstate(head);
1771 int nid = page_to_nid(head);
6bc9b564 1772 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1773 goto out;
c3114a84
AK
1774 /*
1775 * Move PageHWPoison flag from head page to the raw error page,
1776 * which makes any subpages rather than the error page reusable.
1777 */
1778 if (PageHWPoison(head) && page != head) {
1779 SetPageHWPoison(page);
1780 ClearPageHWPoison(head);
1781 }
2247bb33 1782 list_del(&head->lru);
c8721bbb
NH
1783 h->free_huge_pages--;
1784 h->free_huge_pages_node[nid]--;
c1470b33 1785 h->max_huge_pages--;
2247bb33 1786 update_and_free_page(h, head);
6bc9b564 1787 rc = 0;
c8721bbb 1788 }
082d5b6b 1789out:
c8721bbb 1790 spin_unlock(&hugetlb_lock);
082d5b6b 1791 return rc;
c8721bbb
NH
1792}
1793
1794/*
1795 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1796 * make specified memory blocks removable from the system.
2247bb33
GS
1797 * Note that this will dissolve a free gigantic hugepage completely, if any
1798 * part of it lies within the given range.
082d5b6b
GS
1799 * Also note that if dissolve_free_huge_page() returns with an error, all
1800 * free hugepages that were dissolved before that error are lost.
c8721bbb 1801 */
082d5b6b 1802int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1803{
c8721bbb 1804 unsigned long pfn;
eb03aa00 1805 struct page *page;
082d5b6b 1806 int rc = 0;
c8721bbb 1807
d0177639 1808 if (!hugepages_supported())
082d5b6b 1809 return rc;
d0177639 1810
eb03aa00
GS
1811 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1812 page = pfn_to_page(pfn);
faf53def
NH
1813 rc = dissolve_free_huge_page(page);
1814 if (rc)
1815 break;
eb03aa00 1816 }
082d5b6b
GS
1817
1818 return rc;
c8721bbb
NH
1819}
1820
ab5ac90a
MH
1821/*
1822 * Allocates a fresh surplus page from the page allocator.
1823 */
0c397dae 1824static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1825 int nid, nodemask_t *nmask)
7893d1d5 1826{
9980d744 1827 struct page *page = NULL;
7893d1d5 1828
bae7f4ae 1829 if (hstate_is_gigantic(h))
aa888a74
AK
1830 return NULL;
1831
d1c3fb1f 1832 spin_lock(&hugetlb_lock);
9980d744
MH
1833 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1834 goto out_unlock;
d1c3fb1f
NA
1835 spin_unlock(&hugetlb_lock);
1836
f60858f9 1837 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1838 if (!page)
0c397dae 1839 return NULL;
d1c3fb1f
NA
1840
1841 spin_lock(&hugetlb_lock);
9980d744
MH
1842 /*
1843 * We could have raced with the pool size change.
1844 * Double check that and simply deallocate the new page
1845 * if we would end up overcommiting the surpluses. Abuse
1846 * temporary page to workaround the nasty free_huge_page
1847 * codeflow
1848 */
1849 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1850 SetPageHugeTemporary(page);
2bf753e6 1851 spin_unlock(&hugetlb_lock);
9980d744 1852 put_page(page);
2bf753e6 1853 return NULL;
9980d744 1854 } else {
9980d744 1855 h->surplus_huge_pages++;
4704dea3 1856 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1857 }
9980d744
MH
1858
1859out_unlock:
d1c3fb1f 1860 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1861
1862 return page;
1863}
1864
bbe88753 1865static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1866 int nid, nodemask_t *nmask)
ab5ac90a
MH
1867{
1868 struct page *page;
1869
1870 if (hstate_is_gigantic(h))
1871 return NULL;
1872
f60858f9 1873 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1874 if (!page)
1875 return NULL;
1876
1877 /*
1878 * We do not account these pages as surplus because they are only
1879 * temporary and will be released properly on the last reference
1880 */
ab5ac90a
MH
1881 SetPageHugeTemporary(page);
1882
1883 return page;
1884}
1885
099730d6
DH
1886/*
1887 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1888 */
e0ec90ee 1889static
0c397dae 1890struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1891 struct vm_area_struct *vma, unsigned long addr)
1892{
aaf14e40
MH
1893 struct page *page;
1894 struct mempolicy *mpol;
1895 gfp_t gfp_mask = htlb_alloc_mask(h);
1896 int nid;
1897 nodemask_t *nodemask;
1898
1899 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1900 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1901 mpol_cond_put(mpol);
1902
1903 return page;
099730d6
DH
1904}
1905
ab5ac90a 1906/* page migration callback function */
3e59fcb0 1907struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1908 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1909{
4db9b2ef
MH
1910 spin_lock(&hugetlb_lock);
1911 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1912 struct page *page;
1913
1914 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1915 if (page) {
1916 spin_unlock(&hugetlb_lock);
1917 return page;
4db9b2ef
MH
1918 }
1919 }
1920 spin_unlock(&hugetlb_lock);
4db9b2ef 1921
0c397dae 1922 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1923}
1924
ebd63723 1925/* mempolicy aware migration callback */
389c8178
MH
1926struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1927 unsigned long address)
ebd63723
MH
1928{
1929 struct mempolicy *mpol;
1930 nodemask_t *nodemask;
1931 struct page *page;
ebd63723
MH
1932 gfp_t gfp_mask;
1933 int node;
1934
ebd63723
MH
1935 gfp_mask = htlb_alloc_mask(h);
1936 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 1937 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
1938 mpol_cond_put(mpol);
1939
1940 return page;
1941}
1942
e4e574b7 1943/*
25985edc 1944 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1945 * of size 'delta'.
1946 */
0a4f3d1b 1947static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 1948 __must_hold(&hugetlb_lock)
e4e574b7
AL
1949{
1950 struct list_head surplus_list;
1951 struct page *page, *tmp;
0a4f3d1b
LX
1952 int ret;
1953 long i;
1954 long needed, allocated;
28073b02 1955 bool alloc_ok = true;
e4e574b7 1956
a5516438 1957 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1958 if (needed <= 0) {
a5516438 1959 h->resv_huge_pages += delta;
e4e574b7 1960 return 0;
ac09b3a1 1961 }
e4e574b7
AL
1962
1963 allocated = 0;
1964 INIT_LIST_HEAD(&surplus_list);
1965
1966 ret = -ENOMEM;
1967retry:
1968 spin_unlock(&hugetlb_lock);
1969 for (i = 0; i < needed; i++) {
0c397dae 1970 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1971 NUMA_NO_NODE, NULL);
28073b02
HD
1972 if (!page) {
1973 alloc_ok = false;
1974 break;
1975 }
e4e574b7 1976 list_add(&page->lru, &surplus_list);
69ed779a 1977 cond_resched();
e4e574b7 1978 }
28073b02 1979 allocated += i;
e4e574b7
AL
1980
1981 /*
1982 * After retaking hugetlb_lock, we need to recalculate 'needed'
1983 * because either resv_huge_pages or free_huge_pages may have changed.
1984 */
1985 spin_lock(&hugetlb_lock);
a5516438
AK
1986 needed = (h->resv_huge_pages + delta) -
1987 (h->free_huge_pages + allocated);
28073b02
HD
1988 if (needed > 0) {
1989 if (alloc_ok)
1990 goto retry;
1991 /*
1992 * We were not able to allocate enough pages to
1993 * satisfy the entire reservation so we free what
1994 * we've allocated so far.
1995 */
1996 goto free;
1997 }
e4e574b7
AL
1998 /*
1999 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2000 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2001 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2002 * allocator. Commit the entire reservation here to prevent another
2003 * process from stealing the pages as they are added to the pool but
2004 * before they are reserved.
e4e574b7
AL
2005 */
2006 needed += allocated;
a5516438 2007 h->resv_huge_pages += delta;
e4e574b7 2008 ret = 0;
a9869b83 2009
19fc3f0a 2010 /* Free the needed pages to the hugetlb pool */
e4e574b7 2011 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
2012 if ((--needed) < 0)
2013 break;
a9869b83
NH
2014 /*
2015 * This page is now managed by the hugetlb allocator and has
2016 * no users -- drop the buddy allocator's reference.
2017 */
e5dfaceb 2018 VM_BUG_ON_PAGE(!put_page_testzero(page), page);
a5516438 2019 enqueue_huge_page(h, page);
19fc3f0a 2020 }
28073b02 2021free:
b0365c8d 2022 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
2023
2024 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2025 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2026 put_page(page);
a9869b83 2027 spin_lock(&hugetlb_lock);
e4e574b7
AL
2028
2029 return ret;
2030}
2031
2032/*
e5bbc8a6
MK
2033 * This routine has two main purposes:
2034 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2035 * in unused_resv_pages. This corresponds to the prior adjustments made
2036 * to the associated reservation map.
2037 * 2) Free any unused surplus pages that may have been allocated to satisfy
2038 * the reservation. As many as unused_resv_pages may be freed.
2039 *
2040 * Called with hugetlb_lock held. However, the lock could be dropped (and
2041 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2042 * we must make sure nobody else can claim pages we are in the process of
2043 * freeing. Do this by ensuring resv_huge_page always is greater than the
2044 * number of huge pages we plan to free when dropping the lock.
e4e574b7 2045 */
a5516438
AK
2046static void return_unused_surplus_pages(struct hstate *h,
2047 unsigned long unused_resv_pages)
e4e574b7 2048{
e4e574b7
AL
2049 unsigned long nr_pages;
2050
aa888a74 2051 /* Cannot return gigantic pages currently */
bae7f4ae 2052 if (hstate_is_gigantic(h))
e5bbc8a6 2053 goto out;
aa888a74 2054
e5bbc8a6
MK
2055 /*
2056 * Part (or even all) of the reservation could have been backed
2057 * by pre-allocated pages. Only free surplus pages.
2058 */
a5516438 2059 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2060
685f3457
LS
2061 /*
2062 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2063 * evenly across all nodes with memory. Iterate across these nodes
2064 * until we can no longer free unreserved surplus pages. This occurs
2065 * when the nodes with surplus pages have no free pages.
9e7ee400 2066 * free_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2067 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
2068 *
2069 * Note that we decrement resv_huge_pages as we free the pages. If
2070 * we drop the lock, resv_huge_pages will still be sufficiently large
2071 * to cover subsequent pages we may free.
685f3457
LS
2072 */
2073 while (nr_pages--) {
e5bbc8a6
MK
2074 h->resv_huge_pages--;
2075 unused_resv_pages--;
8cebfcd0 2076 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 2077 goto out;
7848a4bf 2078 cond_resched_lock(&hugetlb_lock);
e4e574b7 2079 }
e5bbc8a6
MK
2080
2081out:
2082 /* Fully uncommit the reservation */
2083 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
2084}
2085
5e911373 2086
c37f9fb1 2087/*
feba16e2 2088 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2089 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2090 *
2091 * vma_needs_reservation is called to determine if the huge page at addr
2092 * within the vma has an associated reservation. If a reservation is
2093 * needed, the value 1 is returned. The caller is then responsible for
2094 * managing the global reservation and subpool usage counts. After
2095 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2096 * to add the page to the reservation map. If the page allocation fails,
2097 * the reservation must be ended instead of committed. vma_end_reservation
2098 * is called in such cases.
cf3ad20b
MK
2099 *
2100 * In the normal case, vma_commit_reservation returns the same value
2101 * as the preceding vma_needs_reservation call. The only time this
2102 * is not the case is if a reserve map was changed between calls. It
2103 * is the responsibility of the caller to notice the difference and
2104 * take appropriate action.
96b96a96
MK
2105 *
2106 * vma_add_reservation is used in error paths where a reservation must
2107 * be restored when a newly allocated huge page must be freed. It is
2108 * to be called after calling vma_needs_reservation to determine if a
2109 * reservation exists.
c37f9fb1 2110 */
5e911373
MK
2111enum vma_resv_mode {
2112 VMA_NEEDS_RESV,
2113 VMA_COMMIT_RESV,
feba16e2 2114 VMA_END_RESV,
96b96a96 2115 VMA_ADD_RESV,
5e911373 2116};
cf3ad20b
MK
2117static long __vma_reservation_common(struct hstate *h,
2118 struct vm_area_struct *vma, unsigned long addr,
5e911373 2119 enum vma_resv_mode mode)
c37f9fb1 2120{
4e35f483
JK
2121 struct resv_map *resv;
2122 pgoff_t idx;
cf3ad20b 2123 long ret;
0db9d74e 2124 long dummy_out_regions_needed;
c37f9fb1 2125
4e35f483
JK
2126 resv = vma_resv_map(vma);
2127 if (!resv)
84afd99b 2128 return 1;
c37f9fb1 2129
4e35f483 2130 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2131 switch (mode) {
2132 case VMA_NEEDS_RESV:
0db9d74e
MA
2133 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2134 /* We assume that vma_reservation_* routines always operate on
2135 * 1 page, and that adding to resv map a 1 page entry can only
2136 * ever require 1 region.
2137 */
2138 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2139 break;
2140 case VMA_COMMIT_RESV:
075a61d0 2141 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2142 /* region_add calls of range 1 should never fail. */
2143 VM_BUG_ON(ret < 0);
5e911373 2144 break;
feba16e2 2145 case VMA_END_RESV:
0db9d74e 2146 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2147 ret = 0;
2148 break;
96b96a96 2149 case VMA_ADD_RESV:
0db9d74e 2150 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2151 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2152 /* region_add calls of range 1 should never fail. */
2153 VM_BUG_ON(ret < 0);
2154 } else {
2155 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2156 ret = region_del(resv, idx, idx + 1);
2157 }
2158 break;
5e911373
MK
2159 default:
2160 BUG();
2161 }
84afd99b 2162
4e35f483 2163 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2164 return ret;
67961f9d
MK
2165 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2166 /*
2167 * In most cases, reserves always exist for private mappings.
2168 * However, a file associated with mapping could have been
2169 * hole punched or truncated after reserves were consumed.
2170 * As subsequent fault on such a range will not use reserves.
2171 * Subtle - The reserve map for private mappings has the
2172 * opposite meaning than that of shared mappings. If NO
2173 * entry is in the reserve map, it means a reservation exists.
2174 * If an entry exists in the reserve map, it means the
2175 * reservation has already been consumed. As a result, the
2176 * return value of this routine is the opposite of the
2177 * value returned from reserve map manipulation routines above.
2178 */
2179 if (ret)
2180 return 0;
2181 else
2182 return 1;
2183 }
4e35f483 2184 else
cf3ad20b 2185 return ret < 0 ? ret : 0;
c37f9fb1 2186}
cf3ad20b
MK
2187
2188static long vma_needs_reservation(struct hstate *h,
a5516438 2189 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2190{
5e911373 2191 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2192}
84afd99b 2193
cf3ad20b
MK
2194static long vma_commit_reservation(struct hstate *h,
2195 struct vm_area_struct *vma, unsigned long addr)
2196{
5e911373
MK
2197 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2198}
2199
feba16e2 2200static void vma_end_reservation(struct hstate *h,
5e911373
MK
2201 struct vm_area_struct *vma, unsigned long addr)
2202{
feba16e2 2203 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2204}
2205
96b96a96
MK
2206static long vma_add_reservation(struct hstate *h,
2207 struct vm_area_struct *vma, unsigned long addr)
2208{
2209 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2210}
2211
2212/*
2213 * This routine is called to restore a reservation on error paths. In the
2214 * specific error paths, a huge page was allocated (via alloc_huge_page)
2215 * and is about to be freed. If a reservation for the page existed,
2216 * alloc_huge_page would have consumed the reservation and set PagePrivate
2217 * in the newly allocated page. When the page is freed via free_huge_page,
2218 * the global reservation count will be incremented if PagePrivate is set.
2219 * However, free_huge_page can not adjust the reserve map. Adjust the
2220 * reserve map here to be consistent with global reserve count adjustments
2221 * to be made by free_huge_page.
2222 */
2223static void restore_reserve_on_error(struct hstate *h,
2224 struct vm_area_struct *vma, unsigned long address,
2225 struct page *page)
2226{
2227 if (unlikely(PagePrivate(page))) {
2228 long rc = vma_needs_reservation(h, vma, address);
2229
2230 if (unlikely(rc < 0)) {
2231 /*
2232 * Rare out of memory condition in reserve map
2233 * manipulation. Clear PagePrivate so that
2234 * global reserve count will not be incremented
2235 * by free_huge_page. This will make it appear
2236 * as though the reservation for this page was
2237 * consumed. This may prevent the task from
2238 * faulting in the page at a later time. This
2239 * is better than inconsistent global huge page
2240 * accounting of reserve counts.
2241 */
2242 ClearPagePrivate(page);
2243 } else if (rc) {
2244 rc = vma_add_reservation(h, vma, address);
2245 if (unlikely(rc < 0))
2246 /*
2247 * See above comment about rare out of
2248 * memory condition.
2249 */
2250 ClearPagePrivate(page);
2251 } else
2252 vma_end_reservation(h, vma, address);
2253 }
2254}
2255
70c3547e 2256struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2257 unsigned long addr, int avoid_reserve)
1da177e4 2258{
90481622 2259 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2260 struct hstate *h = hstate_vma(vma);
348ea204 2261 struct page *page;
d85f69b0
MK
2262 long map_chg, map_commit;
2263 long gbl_chg;
6d76dcf4
AK
2264 int ret, idx;
2265 struct hugetlb_cgroup *h_cg;
08cf9faf 2266 bool deferred_reserve;
a1e78772 2267
6d76dcf4 2268 idx = hstate_index(h);
a1e78772 2269 /*
d85f69b0
MK
2270 * Examine the region/reserve map to determine if the process
2271 * has a reservation for the page to be allocated. A return
2272 * code of zero indicates a reservation exists (no change).
a1e78772 2273 */
d85f69b0
MK
2274 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2275 if (map_chg < 0)
76dcee75 2276 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2277
2278 /*
2279 * Processes that did not create the mapping will have no
2280 * reserves as indicated by the region/reserve map. Check
2281 * that the allocation will not exceed the subpool limit.
2282 * Allocations for MAP_NORESERVE mappings also need to be
2283 * checked against any subpool limit.
2284 */
2285 if (map_chg || avoid_reserve) {
2286 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2287 if (gbl_chg < 0) {
feba16e2 2288 vma_end_reservation(h, vma, addr);
76dcee75 2289 return ERR_PTR(-ENOSPC);
5e911373 2290 }
1da177e4 2291
d85f69b0
MK
2292 /*
2293 * Even though there was no reservation in the region/reserve
2294 * map, there could be reservations associated with the
2295 * subpool that can be used. This would be indicated if the
2296 * return value of hugepage_subpool_get_pages() is zero.
2297 * However, if avoid_reserve is specified we still avoid even
2298 * the subpool reservations.
2299 */
2300 if (avoid_reserve)
2301 gbl_chg = 1;
2302 }
2303
08cf9faf
MA
2304 /* If this allocation is not consuming a reservation, charge it now.
2305 */
2306 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2307 if (deferred_reserve) {
2308 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2309 idx, pages_per_huge_page(h), &h_cg);
2310 if (ret)
2311 goto out_subpool_put;
2312 }
2313
6d76dcf4 2314 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2315 if (ret)
08cf9faf 2316 goto out_uncharge_cgroup_reservation;
8f34af6f 2317
1da177e4 2318 spin_lock(&hugetlb_lock);
d85f69b0
MK
2319 /*
2320 * glb_chg is passed to indicate whether or not a page must be taken
2321 * from the global free pool (global change). gbl_chg == 0 indicates
2322 * a reservation exists for the allocation.
2323 */
2324 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2325 if (!page) {
94ae8ba7 2326 spin_unlock(&hugetlb_lock);
0c397dae 2327 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2328 if (!page)
2329 goto out_uncharge_cgroup;
a88c7695
NH
2330 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2331 SetPagePrivate(page);
2332 h->resv_huge_pages--;
2333 }
79dbb236 2334 spin_lock(&hugetlb_lock);
15a8d68e 2335 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2336 /* Fall through */
68842c9b 2337 }
81a6fcae 2338 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2339 /* If allocation is not consuming a reservation, also store the
2340 * hugetlb_cgroup pointer on the page.
2341 */
2342 if (deferred_reserve) {
2343 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2344 h_cg, page);
2345 }
2346
81a6fcae 2347 spin_unlock(&hugetlb_lock);
348ea204 2348
90481622 2349 set_page_private(page, (unsigned long)spool);
90d8b7e6 2350
d85f69b0
MK
2351 map_commit = vma_commit_reservation(h, vma, addr);
2352 if (unlikely(map_chg > map_commit)) {
33039678
MK
2353 /*
2354 * The page was added to the reservation map between
2355 * vma_needs_reservation and vma_commit_reservation.
2356 * This indicates a race with hugetlb_reserve_pages.
2357 * Adjust for the subpool count incremented above AND
2358 * in hugetlb_reserve_pages for the same page. Also,
2359 * the reservation count added in hugetlb_reserve_pages
2360 * no longer applies.
2361 */
2362 long rsv_adjust;
2363
2364 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2365 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2366 if (deferred_reserve)
2367 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2368 pages_per_huge_page(h), page);
33039678 2369 }
90d8b7e6 2370 return page;
8f34af6f
JZ
2371
2372out_uncharge_cgroup:
2373 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2374out_uncharge_cgroup_reservation:
2375 if (deferred_reserve)
2376 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2377 h_cg);
8f34af6f 2378out_subpool_put:
d85f69b0 2379 if (map_chg || avoid_reserve)
8f34af6f 2380 hugepage_subpool_put_pages(spool, 1);
feba16e2 2381 vma_end_reservation(h, vma, addr);
8f34af6f 2382 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2383}
2384
e24a1307
AK
2385int alloc_bootmem_huge_page(struct hstate *h)
2386 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2387int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2388{
2389 struct huge_bootmem_page *m;
b2261026 2390 int nr_nodes, node;
aa888a74 2391
b2261026 2392 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2393 void *addr;
2394
eb31d559 2395 addr = memblock_alloc_try_nid_raw(
8b89a116 2396 huge_page_size(h), huge_page_size(h),
97ad1087 2397 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2398 if (addr) {
2399 /*
2400 * Use the beginning of the huge page to store the
2401 * huge_bootmem_page struct (until gather_bootmem
2402 * puts them into the mem_map).
2403 */
2404 m = addr;
91f47662 2405 goto found;
aa888a74 2406 }
aa888a74
AK
2407 }
2408 return 0;
2409
2410found:
df994ead 2411 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2412 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2413 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2414 list_add(&m->list, &huge_boot_pages);
2415 m->hstate = h;
2416 return 1;
2417}
2418
d00181b9
KS
2419static void __init prep_compound_huge_page(struct page *page,
2420 unsigned int order)
18229df5
AW
2421{
2422 if (unlikely(order > (MAX_ORDER - 1)))
2423 prep_compound_gigantic_page(page, order);
2424 else
2425 prep_compound_page(page, order);
2426}
2427
aa888a74
AK
2428/* Put bootmem huge pages into the standard lists after mem_map is up */
2429static void __init gather_bootmem_prealloc(void)
2430{
2431 struct huge_bootmem_page *m;
2432
2433 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2434 struct page *page = virt_to_page(m);
aa888a74 2435 struct hstate *h = m->hstate;
ee8f248d 2436
aa888a74 2437 WARN_ON(page_count(page) != 1);
18229df5 2438 prep_compound_huge_page(page, h->order);
ef5a22be 2439 WARN_ON(PageReserved(page));
aa888a74 2440 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2441 put_page(page); /* free it into the hugepage allocator */
2442
b0320c7b
RA
2443 /*
2444 * If we had gigantic hugepages allocated at boot time, we need
2445 * to restore the 'stolen' pages to totalram_pages in order to
2446 * fix confusing memory reports from free(1) and another
2447 * side-effects, like CommitLimit going negative.
2448 */
bae7f4ae 2449 if (hstate_is_gigantic(h))
3dcc0571 2450 adjust_managed_page_count(page, 1 << h->order);
520495fe 2451 cond_resched();
aa888a74
AK
2452 }
2453}
2454
8faa8b07 2455static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2456{
2457 unsigned long i;
f60858f9
MK
2458 nodemask_t *node_alloc_noretry;
2459
2460 if (!hstate_is_gigantic(h)) {
2461 /*
2462 * Bit mask controlling how hard we retry per-node allocations.
2463 * Ignore errors as lower level routines can deal with
2464 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2465 * time, we are likely in bigger trouble.
2466 */
2467 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2468 GFP_KERNEL);
2469 } else {
2470 /* allocations done at boot time */
2471 node_alloc_noretry = NULL;
2472 }
2473
2474 /* bit mask controlling how hard we retry per-node allocations */
2475 if (node_alloc_noretry)
2476 nodes_clear(*node_alloc_noretry);
a5516438 2477
e5ff2159 2478 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2479 if (hstate_is_gigantic(h)) {
dbda8fea 2480 if (hugetlb_cma_size) {
cf11e85f
RG
2481 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2482 break;
2483 }
aa888a74
AK
2484 if (!alloc_bootmem_huge_page(h))
2485 break;
0c397dae 2486 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2487 &node_states[N_MEMORY],
2488 node_alloc_noretry))
1da177e4 2489 break;
69ed779a 2490 cond_resched();
1da177e4 2491 }
d715cf80
LH
2492 if (i < h->max_huge_pages) {
2493 char buf[32];
2494
c6247f72 2495 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2496 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2497 h->max_huge_pages, buf, i);
2498 h->max_huge_pages = i;
2499 }
f60858f9
MK
2500
2501 kfree(node_alloc_noretry);
e5ff2159
AK
2502}
2503
2504static void __init hugetlb_init_hstates(void)
2505{
2506 struct hstate *h;
2507
2508 for_each_hstate(h) {
641844f5
NH
2509 if (minimum_order > huge_page_order(h))
2510 minimum_order = huge_page_order(h);
2511
8faa8b07 2512 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2513 if (!hstate_is_gigantic(h))
8faa8b07 2514 hugetlb_hstate_alloc_pages(h);
e5ff2159 2515 }
641844f5 2516 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2517}
2518
2519static void __init report_hugepages(void)
2520{
2521 struct hstate *h;
2522
2523 for_each_hstate(h) {
4abd32db 2524 char buf[32];
c6247f72
MW
2525
2526 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2527 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2528 buf, h->free_huge_pages);
e5ff2159
AK
2529 }
2530}
2531
1da177e4 2532#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2533static void try_to_free_low(struct hstate *h, unsigned long count,
2534 nodemask_t *nodes_allowed)
1da177e4 2535{
4415cc8d
CL
2536 int i;
2537
bae7f4ae 2538 if (hstate_is_gigantic(h))
aa888a74
AK
2539 return;
2540
6ae11b27 2541 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2542 struct page *page, *next;
a5516438
AK
2543 struct list_head *freel = &h->hugepage_freelists[i];
2544 list_for_each_entry_safe(page, next, freel, lru) {
2545 if (count >= h->nr_huge_pages)
6b0c880d 2546 return;
1da177e4
LT
2547 if (PageHighMem(page))
2548 continue;
2549 list_del(&page->lru);
e5ff2159 2550 update_and_free_page(h, page);
a5516438
AK
2551 h->free_huge_pages--;
2552 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2553 }
2554 }
2555}
2556#else
6ae11b27
LS
2557static inline void try_to_free_low(struct hstate *h, unsigned long count,
2558 nodemask_t *nodes_allowed)
1da177e4
LT
2559{
2560}
2561#endif
2562
20a0307c
WF
2563/*
2564 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2565 * balanced by operating on them in a round-robin fashion.
2566 * Returns 1 if an adjustment was made.
2567 */
6ae11b27
LS
2568static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2569 int delta)
20a0307c 2570{
b2261026 2571 int nr_nodes, node;
20a0307c
WF
2572
2573 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2574
b2261026
JK
2575 if (delta < 0) {
2576 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2577 if (h->surplus_huge_pages_node[node])
2578 goto found;
e8c5c824 2579 }
b2261026
JK
2580 } else {
2581 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2582 if (h->surplus_huge_pages_node[node] <
2583 h->nr_huge_pages_node[node])
2584 goto found;
e8c5c824 2585 }
b2261026
JK
2586 }
2587 return 0;
20a0307c 2588
b2261026
JK
2589found:
2590 h->surplus_huge_pages += delta;
2591 h->surplus_huge_pages_node[node] += delta;
2592 return 1;
20a0307c
WF
2593}
2594
a5516438 2595#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2596static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2597 nodemask_t *nodes_allowed)
1da177e4 2598{
7893d1d5 2599 unsigned long min_count, ret;
f60858f9
MK
2600 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2601
2602 /*
2603 * Bit mask controlling how hard we retry per-node allocations.
2604 * If we can not allocate the bit mask, do not attempt to allocate
2605 * the requested huge pages.
2606 */
2607 if (node_alloc_noretry)
2608 nodes_clear(*node_alloc_noretry);
2609 else
2610 return -ENOMEM;
1da177e4 2611
4eb0716e
AG
2612 spin_lock(&hugetlb_lock);
2613
fd875dca
MK
2614 /*
2615 * Check for a node specific request.
2616 * Changing node specific huge page count may require a corresponding
2617 * change to the global count. In any case, the passed node mask
2618 * (nodes_allowed) will restrict alloc/free to the specified node.
2619 */
2620 if (nid != NUMA_NO_NODE) {
2621 unsigned long old_count = count;
2622
2623 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2624 /*
2625 * User may have specified a large count value which caused the
2626 * above calculation to overflow. In this case, they wanted
2627 * to allocate as many huge pages as possible. Set count to
2628 * largest possible value to align with their intention.
2629 */
2630 if (count < old_count)
2631 count = ULONG_MAX;
2632 }
2633
4eb0716e
AG
2634 /*
2635 * Gigantic pages runtime allocation depend on the capability for large
2636 * page range allocation.
2637 * If the system does not provide this feature, return an error when
2638 * the user tries to allocate gigantic pages but let the user free the
2639 * boottime allocated gigantic pages.
2640 */
2641 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2642 if (count > persistent_huge_pages(h)) {
2643 spin_unlock(&hugetlb_lock);
f60858f9 2644 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2645 return -EINVAL;
2646 }
2647 /* Fall through to decrease pool */
2648 }
aa888a74 2649
7893d1d5
AL
2650 /*
2651 * Increase the pool size
2652 * First take pages out of surplus state. Then make up the
2653 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2654 *
0c397dae 2655 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2656 * to convert a surplus huge page to a normal huge page. That is
2657 * not critical, though, it just means the overall size of the
2658 * pool might be one hugepage larger than it needs to be, but
2659 * within all the constraints specified by the sysctls.
7893d1d5 2660 */
a5516438 2661 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2662 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2663 break;
2664 }
2665
a5516438 2666 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2667 /*
2668 * If this allocation races such that we no longer need the
2669 * page, free_huge_page will handle it by freeing the page
2670 * and reducing the surplus.
2671 */
2672 spin_unlock(&hugetlb_lock);
649920c6
JH
2673
2674 /* yield cpu to avoid soft lockup */
2675 cond_resched();
2676
f60858f9
MK
2677 ret = alloc_pool_huge_page(h, nodes_allowed,
2678 node_alloc_noretry);
7893d1d5
AL
2679 spin_lock(&hugetlb_lock);
2680 if (!ret)
2681 goto out;
2682
536240f2
MG
2683 /* Bail for signals. Probably ctrl-c from user */
2684 if (signal_pending(current))
2685 goto out;
7893d1d5 2686 }
7893d1d5
AL
2687
2688 /*
2689 * Decrease the pool size
2690 * First return free pages to the buddy allocator (being careful
2691 * to keep enough around to satisfy reservations). Then place
2692 * pages into surplus state as needed so the pool will shrink
2693 * to the desired size as pages become free.
d1c3fb1f
NA
2694 *
2695 * By placing pages into the surplus state independent of the
2696 * overcommit value, we are allowing the surplus pool size to
2697 * exceed overcommit. There are few sane options here. Since
0c397dae 2698 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2699 * though, we'll note that we're not allowed to exceed surplus
2700 * and won't grow the pool anywhere else. Not until one of the
2701 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2702 */
a5516438 2703 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2704 min_count = max(count, min_count);
6ae11b27 2705 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2706 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2707 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2708 break;
55f67141 2709 cond_resched_lock(&hugetlb_lock);
1da177e4 2710 }
a5516438 2711 while (count < persistent_huge_pages(h)) {
6ae11b27 2712 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2713 break;
2714 }
2715out:
4eb0716e 2716 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2717 spin_unlock(&hugetlb_lock);
4eb0716e 2718
f60858f9
MK
2719 NODEMASK_FREE(node_alloc_noretry);
2720
4eb0716e 2721 return 0;
1da177e4
LT
2722}
2723
a3437870
NA
2724#define HSTATE_ATTR_RO(_name) \
2725 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2726
2727#define HSTATE_ATTR(_name) \
2728 static struct kobj_attribute _name##_attr = \
2729 __ATTR(_name, 0644, _name##_show, _name##_store)
2730
2731static struct kobject *hugepages_kobj;
2732static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2733
9a305230
LS
2734static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2735
2736static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2737{
2738 int i;
9a305230 2739
a3437870 2740 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2741 if (hstate_kobjs[i] == kobj) {
2742 if (nidp)
2743 *nidp = NUMA_NO_NODE;
a3437870 2744 return &hstates[i];
9a305230
LS
2745 }
2746
2747 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2748}
2749
06808b08 2750static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2751 struct kobj_attribute *attr, char *buf)
2752{
9a305230
LS
2753 struct hstate *h;
2754 unsigned long nr_huge_pages;
2755 int nid;
2756
2757 h = kobj_to_hstate(kobj, &nid);
2758 if (nid == NUMA_NO_NODE)
2759 nr_huge_pages = h->nr_huge_pages;
2760 else
2761 nr_huge_pages = h->nr_huge_pages_node[nid];
2762
ae7a927d 2763 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 2764}
adbe8726 2765
238d3c13
DR
2766static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2767 struct hstate *h, int nid,
2768 unsigned long count, size_t len)
a3437870
NA
2769{
2770 int err;
2d0adf7e 2771 nodemask_t nodes_allowed, *n_mask;
a3437870 2772
2d0adf7e
OS
2773 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2774 return -EINVAL;
adbe8726 2775
9a305230
LS
2776 if (nid == NUMA_NO_NODE) {
2777 /*
2778 * global hstate attribute
2779 */
2780 if (!(obey_mempolicy &&
2d0adf7e
OS
2781 init_nodemask_of_mempolicy(&nodes_allowed)))
2782 n_mask = &node_states[N_MEMORY];
2783 else
2784 n_mask = &nodes_allowed;
2785 } else {
9a305230 2786 /*
fd875dca
MK
2787 * Node specific request. count adjustment happens in
2788 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2789 */
2d0adf7e
OS
2790 init_nodemask_of_node(&nodes_allowed, nid);
2791 n_mask = &nodes_allowed;
fd875dca 2792 }
9a305230 2793
2d0adf7e 2794 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2795
4eb0716e 2796 return err ? err : len;
06808b08
LS
2797}
2798
238d3c13
DR
2799static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2800 struct kobject *kobj, const char *buf,
2801 size_t len)
2802{
2803 struct hstate *h;
2804 unsigned long count;
2805 int nid;
2806 int err;
2807
2808 err = kstrtoul(buf, 10, &count);
2809 if (err)
2810 return err;
2811
2812 h = kobj_to_hstate(kobj, &nid);
2813 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2814}
2815
06808b08
LS
2816static ssize_t nr_hugepages_show(struct kobject *kobj,
2817 struct kobj_attribute *attr, char *buf)
2818{
2819 return nr_hugepages_show_common(kobj, attr, buf);
2820}
2821
2822static ssize_t nr_hugepages_store(struct kobject *kobj,
2823 struct kobj_attribute *attr, const char *buf, size_t len)
2824{
238d3c13 2825 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2826}
2827HSTATE_ATTR(nr_hugepages);
2828
06808b08
LS
2829#ifdef CONFIG_NUMA
2830
2831/*
2832 * hstate attribute for optionally mempolicy-based constraint on persistent
2833 * huge page alloc/free.
2834 */
2835static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
2836 struct kobj_attribute *attr,
2837 char *buf)
06808b08
LS
2838{
2839 return nr_hugepages_show_common(kobj, attr, buf);
2840}
2841
2842static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2843 struct kobj_attribute *attr, const char *buf, size_t len)
2844{
238d3c13 2845 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2846}
2847HSTATE_ATTR(nr_hugepages_mempolicy);
2848#endif
2849
2850
a3437870
NA
2851static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2852 struct kobj_attribute *attr, char *buf)
2853{
9a305230 2854 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2855 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 2856}
adbe8726 2857
a3437870
NA
2858static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2859 struct kobj_attribute *attr, const char *buf, size_t count)
2860{
2861 int err;
2862 unsigned long input;
9a305230 2863 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2864
bae7f4ae 2865 if (hstate_is_gigantic(h))
adbe8726
EM
2866 return -EINVAL;
2867
3dbb95f7 2868 err = kstrtoul(buf, 10, &input);
a3437870 2869 if (err)
73ae31e5 2870 return err;
a3437870
NA
2871
2872 spin_lock(&hugetlb_lock);
2873 h->nr_overcommit_huge_pages = input;
2874 spin_unlock(&hugetlb_lock);
2875
2876 return count;
2877}
2878HSTATE_ATTR(nr_overcommit_hugepages);
2879
2880static ssize_t free_hugepages_show(struct kobject *kobj,
2881 struct kobj_attribute *attr, char *buf)
2882{
9a305230
LS
2883 struct hstate *h;
2884 unsigned long free_huge_pages;
2885 int nid;
2886
2887 h = kobj_to_hstate(kobj, &nid);
2888 if (nid == NUMA_NO_NODE)
2889 free_huge_pages = h->free_huge_pages;
2890 else
2891 free_huge_pages = h->free_huge_pages_node[nid];
2892
ae7a927d 2893 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
2894}
2895HSTATE_ATTR_RO(free_hugepages);
2896
2897static ssize_t resv_hugepages_show(struct kobject *kobj,
2898 struct kobj_attribute *attr, char *buf)
2899{
9a305230 2900 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2901 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
2902}
2903HSTATE_ATTR_RO(resv_hugepages);
2904
2905static ssize_t surplus_hugepages_show(struct kobject *kobj,
2906 struct kobj_attribute *attr, char *buf)
2907{
9a305230
LS
2908 struct hstate *h;
2909 unsigned long surplus_huge_pages;
2910 int nid;
2911
2912 h = kobj_to_hstate(kobj, &nid);
2913 if (nid == NUMA_NO_NODE)
2914 surplus_huge_pages = h->surplus_huge_pages;
2915 else
2916 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2917
ae7a927d 2918 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2919}
2920HSTATE_ATTR_RO(surplus_hugepages);
2921
2922static struct attribute *hstate_attrs[] = {
2923 &nr_hugepages_attr.attr,
2924 &nr_overcommit_hugepages_attr.attr,
2925 &free_hugepages_attr.attr,
2926 &resv_hugepages_attr.attr,
2927 &surplus_hugepages_attr.attr,
06808b08
LS
2928#ifdef CONFIG_NUMA
2929 &nr_hugepages_mempolicy_attr.attr,
2930#endif
a3437870
NA
2931 NULL,
2932};
2933
67e5ed96 2934static const struct attribute_group hstate_attr_group = {
a3437870
NA
2935 .attrs = hstate_attrs,
2936};
2937
094e9539
JM
2938static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2939 struct kobject **hstate_kobjs,
67e5ed96 2940 const struct attribute_group *hstate_attr_group)
a3437870
NA
2941{
2942 int retval;
972dc4de 2943 int hi = hstate_index(h);
a3437870 2944
9a305230
LS
2945 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2946 if (!hstate_kobjs[hi])
a3437870
NA
2947 return -ENOMEM;
2948
9a305230 2949 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2950 if (retval)
9a305230 2951 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2952
2953 return retval;
2954}
2955
2956static void __init hugetlb_sysfs_init(void)
2957{
2958 struct hstate *h;
2959 int err;
2960
2961 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2962 if (!hugepages_kobj)
2963 return;
2964
2965 for_each_hstate(h) {
9a305230
LS
2966 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2967 hstate_kobjs, &hstate_attr_group);
a3437870 2968 if (err)
282f4214 2969 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
2970 }
2971}
2972
9a305230
LS
2973#ifdef CONFIG_NUMA
2974
2975/*
2976 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2977 * with node devices in node_devices[] using a parallel array. The array
2978 * index of a node device or _hstate == node id.
2979 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2980 * the base kernel, on the hugetlb module.
2981 */
2982struct node_hstate {
2983 struct kobject *hugepages_kobj;
2984 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2985};
b4e289a6 2986static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2987
2988/*
10fbcf4c 2989 * A subset of global hstate attributes for node devices
9a305230
LS
2990 */
2991static struct attribute *per_node_hstate_attrs[] = {
2992 &nr_hugepages_attr.attr,
2993 &free_hugepages_attr.attr,
2994 &surplus_hugepages_attr.attr,
2995 NULL,
2996};
2997
67e5ed96 2998static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2999 .attrs = per_node_hstate_attrs,
3000};
3001
3002/*
10fbcf4c 3003 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3004 * Returns node id via non-NULL nidp.
3005 */
3006static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3007{
3008 int nid;
3009
3010 for (nid = 0; nid < nr_node_ids; nid++) {
3011 struct node_hstate *nhs = &node_hstates[nid];
3012 int i;
3013 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3014 if (nhs->hstate_kobjs[i] == kobj) {
3015 if (nidp)
3016 *nidp = nid;
3017 return &hstates[i];
3018 }
3019 }
3020
3021 BUG();
3022 return NULL;
3023}
3024
3025/*
10fbcf4c 3026 * Unregister hstate attributes from a single node device.
9a305230
LS
3027 * No-op if no hstate attributes attached.
3028 */
3cd8b44f 3029static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3030{
3031 struct hstate *h;
10fbcf4c 3032 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3033
3034 if (!nhs->hugepages_kobj)
9b5e5d0f 3035 return; /* no hstate attributes */
9a305230 3036
972dc4de
AK
3037 for_each_hstate(h) {
3038 int idx = hstate_index(h);
3039 if (nhs->hstate_kobjs[idx]) {
3040 kobject_put(nhs->hstate_kobjs[idx]);
3041 nhs->hstate_kobjs[idx] = NULL;
9a305230 3042 }
972dc4de 3043 }
9a305230
LS
3044
3045 kobject_put(nhs->hugepages_kobj);
3046 nhs->hugepages_kobj = NULL;
3047}
3048
9a305230
LS
3049
3050/*
10fbcf4c 3051 * Register hstate attributes for a single node device.
9a305230
LS
3052 * No-op if attributes already registered.
3053 */
3cd8b44f 3054static void hugetlb_register_node(struct node *node)
9a305230
LS
3055{
3056 struct hstate *h;
10fbcf4c 3057 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3058 int err;
3059
3060 if (nhs->hugepages_kobj)
3061 return; /* already allocated */
3062
3063 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3064 &node->dev.kobj);
9a305230
LS
3065 if (!nhs->hugepages_kobj)
3066 return;
3067
3068 for_each_hstate(h) {
3069 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3070 nhs->hstate_kobjs,
3071 &per_node_hstate_attr_group);
3072 if (err) {
282f4214 3073 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3074 h->name, node->dev.id);
9a305230
LS
3075 hugetlb_unregister_node(node);
3076 break;
3077 }
3078 }
3079}
3080
3081/*
9b5e5d0f 3082 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3083 * devices of nodes that have memory. All on-line nodes should have
3084 * registered their associated device by this time.
9a305230 3085 */
7d9ca000 3086static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3087{
3088 int nid;
3089
8cebfcd0 3090 for_each_node_state(nid, N_MEMORY) {
8732794b 3091 struct node *node = node_devices[nid];
10fbcf4c 3092 if (node->dev.id == nid)
9a305230
LS
3093 hugetlb_register_node(node);
3094 }
3095
3096 /*
10fbcf4c 3097 * Let the node device driver know we're here so it can
9a305230
LS
3098 * [un]register hstate attributes on node hotplug.
3099 */
3100 register_hugetlbfs_with_node(hugetlb_register_node,
3101 hugetlb_unregister_node);
3102}
3103#else /* !CONFIG_NUMA */
3104
3105static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3106{
3107 BUG();
3108 if (nidp)
3109 *nidp = -1;
3110 return NULL;
3111}
3112
9a305230
LS
3113static void hugetlb_register_all_nodes(void) { }
3114
3115#endif
3116
a3437870
NA
3117static int __init hugetlb_init(void)
3118{
8382d914
DB
3119 int i;
3120
c2833a5b
MK
3121 if (!hugepages_supported()) {
3122 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3123 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3124 return 0;
c2833a5b 3125 }
a3437870 3126
282f4214
MK
3127 /*
3128 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3129 * architectures depend on setup being done here.
3130 */
3131 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3132 if (!parsed_default_hugepagesz) {
3133 /*
3134 * If we did not parse a default huge page size, set
3135 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3136 * number of huge pages for this default size was implicitly
3137 * specified, set that here as well.
3138 * Note that the implicit setting will overwrite an explicit
3139 * setting. A warning will be printed in this case.
3140 */
3141 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3142 if (default_hstate_max_huge_pages) {
3143 if (default_hstate.max_huge_pages) {
3144 char buf[32];
3145
3146 string_get_size(huge_page_size(&default_hstate),
3147 1, STRING_UNITS_2, buf, 32);
3148 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3149 default_hstate.max_huge_pages, buf);
3150 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3151 default_hstate_max_huge_pages);
3152 }
3153 default_hstate.max_huge_pages =
3154 default_hstate_max_huge_pages;
d715cf80 3155 }
f8b74815 3156 }
a3437870 3157
cf11e85f 3158 hugetlb_cma_check();
a3437870 3159 hugetlb_init_hstates();
aa888a74 3160 gather_bootmem_prealloc();
a3437870
NA
3161 report_hugepages();
3162
3163 hugetlb_sysfs_init();
9a305230 3164 hugetlb_register_all_nodes();
7179e7bf 3165 hugetlb_cgroup_file_init();
9a305230 3166
8382d914
DB
3167#ifdef CONFIG_SMP
3168 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3169#else
3170 num_fault_mutexes = 1;
3171#endif
c672c7f2 3172 hugetlb_fault_mutex_table =
6da2ec56
KC
3173 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3174 GFP_KERNEL);
c672c7f2 3175 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3176
3177 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3178 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3179 return 0;
3180}
3e89e1c5 3181subsys_initcall(hugetlb_init);
a3437870 3182
ae94da89
MK
3183/* Overwritten by architectures with more huge page sizes */
3184bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3185{
ae94da89 3186 return size == HPAGE_SIZE;
9fee021d
VT
3187}
3188
d00181b9 3189void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3190{
3191 struct hstate *h;
8faa8b07
AK
3192 unsigned long i;
3193
a3437870 3194 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3195 return;
3196 }
47d38344 3197 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3198 BUG_ON(order == 0);
47d38344 3199 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
3200 h->order = order;
3201 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
3202 for (i = 0; i < MAX_NUMNODES; ++i)
3203 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3204 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3205 h->next_nid_to_alloc = first_memory_node;
3206 h->next_nid_to_free = first_memory_node;
a3437870
NA
3207 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3208 huge_page_size(h)/1024);
8faa8b07 3209
a3437870
NA
3210 parsed_hstate = h;
3211}
3212
282f4214
MK
3213/*
3214 * hugepages command line processing
3215 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3216 * specification. If not, ignore the hugepages value. hugepages can also
3217 * be the first huge page command line option in which case it implicitly
3218 * specifies the number of huge pages for the default size.
3219 */
3220static int __init hugepages_setup(char *s)
a3437870
NA
3221{
3222 unsigned long *mhp;
8faa8b07 3223 static unsigned long *last_mhp;
a3437870 3224
9fee021d 3225 if (!parsed_valid_hugepagesz) {
282f4214 3226 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3227 parsed_valid_hugepagesz = true;
282f4214 3228 return 0;
9fee021d 3229 }
282f4214 3230
a3437870 3231 /*
282f4214
MK
3232 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3233 * yet, so this hugepages= parameter goes to the "default hstate".
3234 * Otherwise, it goes with the previously parsed hugepagesz or
3235 * default_hugepagesz.
a3437870 3236 */
9fee021d 3237 else if (!hugetlb_max_hstate)
a3437870
NA
3238 mhp = &default_hstate_max_huge_pages;
3239 else
3240 mhp = &parsed_hstate->max_huge_pages;
3241
8faa8b07 3242 if (mhp == last_mhp) {
282f4214
MK
3243 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3244 return 0;
8faa8b07
AK
3245 }
3246
a3437870
NA
3247 if (sscanf(s, "%lu", mhp) <= 0)
3248 *mhp = 0;
3249
8faa8b07
AK
3250 /*
3251 * Global state is always initialized later in hugetlb_init.
3252 * But we need to allocate >= MAX_ORDER hstates here early to still
3253 * use the bootmem allocator.
3254 */
47d38344 3255 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
3256 hugetlb_hstate_alloc_pages(parsed_hstate);
3257
3258 last_mhp = mhp;
3259
a3437870
NA
3260 return 1;
3261}
282f4214 3262__setup("hugepages=", hugepages_setup);
e11bfbfc 3263
282f4214
MK
3264/*
3265 * hugepagesz command line processing
3266 * A specific huge page size can only be specified once with hugepagesz.
3267 * hugepagesz is followed by hugepages on the command line. The global
3268 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3269 * hugepagesz argument was valid.
3270 */
359f2544 3271static int __init hugepagesz_setup(char *s)
e11bfbfc 3272{
359f2544 3273 unsigned long size;
282f4214
MK
3274 struct hstate *h;
3275
3276 parsed_valid_hugepagesz = false;
359f2544
MK
3277 size = (unsigned long)memparse(s, NULL);
3278
3279 if (!arch_hugetlb_valid_size(size)) {
282f4214 3280 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3281 return 0;
3282 }
3283
282f4214
MK
3284 h = size_to_hstate(size);
3285 if (h) {
3286 /*
3287 * hstate for this size already exists. This is normally
3288 * an error, but is allowed if the existing hstate is the
3289 * default hstate. More specifically, it is only allowed if
3290 * the number of huge pages for the default hstate was not
3291 * previously specified.
3292 */
3293 if (!parsed_default_hugepagesz || h != &default_hstate ||
3294 default_hstate.max_huge_pages) {
3295 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3296 return 0;
3297 }
3298
3299 /*
3300 * No need to call hugetlb_add_hstate() as hstate already
3301 * exists. But, do set parsed_hstate so that a following
3302 * hugepages= parameter will be applied to this hstate.
3303 */
3304 parsed_hstate = h;
3305 parsed_valid_hugepagesz = true;
3306 return 1;
38237830
MK
3307 }
3308
359f2544 3309 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3310 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3311 return 1;
3312}
359f2544
MK
3313__setup("hugepagesz=", hugepagesz_setup);
3314
282f4214
MK
3315/*
3316 * default_hugepagesz command line input
3317 * Only one instance of default_hugepagesz allowed on command line.
3318 */
ae94da89 3319static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3320{
ae94da89
MK
3321 unsigned long size;
3322
282f4214 3323 parsed_valid_hugepagesz = false;
282f4214
MK
3324 if (parsed_default_hugepagesz) {
3325 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3326 return 0;
3327 }
3328
ae94da89
MK
3329 size = (unsigned long)memparse(s, NULL);
3330
3331 if (!arch_hugetlb_valid_size(size)) {
282f4214 3332 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3333 return 0;
3334 }
3335
282f4214
MK
3336 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3337 parsed_valid_hugepagesz = true;
3338 parsed_default_hugepagesz = true;
3339 default_hstate_idx = hstate_index(size_to_hstate(size));
3340
3341 /*
3342 * The number of default huge pages (for this size) could have been
3343 * specified as the first hugetlb parameter: hugepages=X. If so,
3344 * then default_hstate_max_huge_pages is set. If the default huge
3345 * page size is gigantic (>= MAX_ORDER), then the pages must be
3346 * allocated here from bootmem allocator.
3347 */
3348 if (default_hstate_max_huge_pages) {
3349 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3350 if (hstate_is_gigantic(&default_hstate))
3351 hugetlb_hstate_alloc_pages(&default_hstate);
3352 default_hstate_max_huge_pages = 0;
3353 }
3354
e11bfbfc
NP
3355 return 1;
3356}
ae94da89 3357__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3358
8ca39e68 3359static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3360{
3361 int node;
3362 unsigned int nr = 0;
8ca39e68
MS
3363 nodemask_t *mpol_allowed;
3364 unsigned int *array = h->free_huge_pages_node;
3365 gfp_t gfp_mask = htlb_alloc_mask(h);
3366
3367 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3368
8ca39e68
MS
3369 for_each_node_mask(node, cpuset_current_mems_allowed) {
3370 if (!mpol_allowed ||
3371 (mpol_allowed && node_isset(node, *mpol_allowed)))
3372 nr += array[node];
3373 }
8a213460
NA
3374
3375 return nr;
3376}
3377
3378#ifdef CONFIG_SYSCTL
17743798
MS
3379static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3380 void *buffer, size_t *length,
3381 loff_t *ppos, unsigned long *out)
3382{
3383 struct ctl_table dup_table;
3384
3385 /*
3386 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3387 * can duplicate the @table and alter the duplicate of it.
3388 */
3389 dup_table = *table;
3390 dup_table.data = out;
3391
3392 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3393}
3394
06808b08
LS
3395static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3396 struct ctl_table *table, int write,
32927393 3397 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3398{
e5ff2159 3399 struct hstate *h = &default_hstate;
238d3c13 3400 unsigned long tmp = h->max_huge_pages;
08d4a246 3401 int ret;
e5ff2159 3402
457c1b27 3403 if (!hugepages_supported())
86613628 3404 return -EOPNOTSUPP;
457c1b27 3405
17743798
MS
3406 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3407 &tmp);
08d4a246
MH
3408 if (ret)
3409 goto out;
e5ff2159 3410
238d3c13
DR
3411 if (write)
3412 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3413 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3414out:
3415 return ret;
1da177e4 3416}
396faf03 3417
06808b08 3418int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3419 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3420{
3421
3422 return hugetlb_sysctl_handler_common(false, table, write,
3423 buffer, length, ppos);
3424}
3425
3426#ifdef CONFIG_NUMA
3427int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3428 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3429{
3430 return hugetlb_sysctl_handler_common(true, table, write,
3431 buffer, length, ppos);
3432}
3433#endif /* CONFIG_NUMA */
3434
a3d0c6aa 3435int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3436 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3437{
a5516438 3438 struct hstate *h = &default_hstate;
e5ff2159 3439 unsigned long tmp;
08d4a246 3440 int ret;
e5ff2159 3441
457c1b27 3442 if (!hugepages_supported())
86613628 3443 return -EOPNOTSUPP;
457c1b27 3444
c033a93c 3445 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3446
bae7f4ae 3447 if (write && hstate_is_gigantic(h))
adbe8726
EM
3448 return -EINVAL;
3449
17743798
MS
3450 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3451 &tmp);
08d4a246
MH
3452 if (ret)
3453 goto out;
e5ff2159
AK
3454
3455 if (write) {
3456 spin_lock(&hugetlb_lock);
3457 h->nr_overcommit_huge_pages = tmp;
3458 spin_unlock(&hugetlb_lock);
3459 }
08d4a246
MH
3460out:
3461 return ret;
a3d0c6aa
NA
3462}
3463
1da177e4
LT
3464#endif /* CONFIG_SYSCTL */
3465
e1759c21 3466void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3467{
fcb2b0c5
RG
3468 struct hstate *h;
3469 unsigned long total = 0;
3470
457c1b27
NA
3471 if (!hugepages_supported())
3472 return;
fcb2b0c5
RG
3473
3474 for_each_hstate(h) {
3475 unsigned long count = h->nr_huge_pages;
3476
3477 total += (PAGE_SIZE << huge_page_order(h)) * count;
3478
3479 if (h == &default_hstate)
3480 seq_printf(m,
3481 "HugePages_Total: %5lu\n"
3482 "HugePages_Free: %5lu\n"
3483 "HugePages_Rsvd: %5lu\n"
3484 "HugePages_Surp: %5lu\n"
3485 "Hugepagesize: %8lu kB\n",
3486 count,
3487 h->free_huge_pages,
3488 h->resv_huge_pages,
3489 h->surplus_huge_pages,
3490 (PAGE_SIZE << huge_page_order(h)) / 1024);
3491 }
3492
3493 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3494}
3495
7981593b 3496int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3497{
a5516438 3498 struct hstate *h = &default_hstate;
7981593b 3499
457c1b27
NA
3500 if (!hugepages_supported())
3501 return 0;
7981593b
JP
3502
3503 return sysfs_emit_at(buf, len,
3504 "Node %d HugePages_Total: %5u\n"
3505 "Node %d HugePages_Free: %5u\n"
3506 "Node %d HugePages_Surp: %5u\n",
3507 nid, h->nr_huge_pages_node[nid],
3508 nid, h->free_huge_pages_node[nid],
3509 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3510}
3511
949f7ec5
DR
3512void hugetlb_show_meminfo(void)
3513{
3514 struct hstate *h;
3515 int nid;
3516
457c1b27
NA
3517 if (!hugepages_supported())
3518 return;
3519
949f7ec5
DR
3520 for_each_node_state(nid, N_MEMORY)
3521 for_each_hstate(h)
3522 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3523 nid,
3524 h->nr_huge_pages_node[nid],
3525 h->free_huge_pages_node[nid],
3526 h->surplus_huge_pages_node[nid],
3527 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3528}
3529
5d317b2b
NH
3530void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3531{
3532 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3533 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3534}
3535
1da177e4
LT
3536/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3537unsigned long hugetlb_total_pages(void)
3538{
d0028588
WL
3539 struct hstate *h;
3540 unsigned long nr_total_pages = 0;
3541
3542 for_each_hstate(h)
3543 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3544 return nr_total_pages;
1da177e4 3545}
1da177e4 3546
a5516438 3547static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3548{
3549 int ret = -ENOMEM;
3550
3551 spin_lock(&hugetlb_lock);
3552 /*
3553 * When cpuset is configured, it breaks the strict hugetlb page
3554 * reservation as the accounting is done on a global variable. Such
3555 * reservation is completely rubbish in the presence of cpuset because
3556 * the reservation is not checked against page availability for the
3557 * current cpuset. Application can still potentially OOM'ed by kernel
3558 * with lack of free htlb page in cpuset that the task is in.
3559 * Attempt to enforce strict accounting with cpuset is almost
3560 * impossible (or too ugly) because cpuset is too fluid that
3561 * task or memory node can be dynamically moved between cpusets.
3562 *
3563 * The change of semantics for shared hugetlb mapping with cpuset is
3564 * undesirable. However, in order to preserve some of the semantics,
3565 * we fall back to check against current free page availability as
3566 * a best attempt and hopefully to minimize the impact of changing
3567 * semantics that cpuset has.
8ca39e68
MS
3568 *
3569 * Apart from cpuset, we also have memory policy mechanism that
3570 * also determines from which node the kernel will allocate memory
3571 * in a NUMA system. So similar to cpuset, we also should consider
3572 * the memory policy of the current task. Similar to the description
3573 * above.
fc1b8a73
MG
3574 */
3575 if (delta > 0) {
a5516438 3576 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3577 goto out;
3578
8ca39e68 3579 if (delta > allowed_mems_nr(h)) {
a5516438 3580 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3581 goto out;
3582 }
3583 }
3584
3585 ret = 0;
3586 if (delta < 0)
a5516438 3587 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3588
3589out:
3590 spin_unlock(&hugetlb_lock);
3591 return ret;
3592}
3593
84afd99b
AW
3594static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3595{
f522c3ac 3596 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3597
3598 /*
3599 * This new VMA should share its siblings reservation map if present.
3600 * The VMA will only ever have a valid reservation map pointer where
3601 * it is being copied for another still existing VMA. As that VMA
25985edc 3602 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3603 * after this open call completes. It is therefore safe to take a
3604 * new reference here without additional locking.
3605 */
4e35f483 3606 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3607 kref_get(&resv->refs);
84afd99b
AW
3608}
3609
a1e78772
MG
3610static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3611{
a5516438 3612 struct hstate *h = hstate_vma(vma);
f522c3ac 3613 struct resv_map *resv = vma_resv_map(vma);
90481622 3614 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3615 unsigned long reserve, start, end;
1c5ecae3 3616 long gbl_reserve;
84afd99b 3617
4e35f483
JK
3618 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3619 return;
84afd99b 3620
4e35f483
JK
3621 start = vma_hugecache_offset(h, vma, vma->vm_start);
3622 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3623
4e35f483 3624 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3625 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3626 if (reserve) {
1c5ecae3
MK
3627 /*
3628 * Decrement reserve counts. The global reserve count may be
3629 * adjusted if the subpool has a minimum size.
3630 */
3631 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3632 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3633 }
e9fe92ae
MA
3634
3635 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3636}
3637
31383c68
DW
3638static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3639{
3640 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3641 return -EINVAL;
3642 return 0;
3643}
3644
05ea8860
DW
3645static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3646{
3647 struct hstate *hstate = hstate_vma(vma);
3648
3649 return 1UL << huge_page_shift(hstate);
3650}
3651
1da177e4
LT
3652/*
3653 * We cannot handle pagefaults against hugetlb pages at all. They cause
3654 * handle_mm_fault() to try to instantiate regular-sized pages in the
3655 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3656 * this far.
3657 */
b3ec9f33 3658static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3659{
3660 BUG();
d0217ac0 3661 return 0;
1da177e4
LT
3662}
3663
eec3636a
JC
3664/*
3665 * When a new function is introduced to vm_operations_struct and added
3666 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3667 * This is because under System V memory model, mappings created via
3668 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3669 * their original vm_ops are overwritten with shm_vm_ops.
3670 */
f0f37e2f 3671const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3672 .fault = hugetlb_vm_op_fault,
84afd99b 3673 .open = hugetlb_vm_op_open,
a1e78772 3674 .close = hugetlb_vm_op_close,
dd3b614f 3675 .may_split = hugetlb_vm_op_split,
05ea8860 3676 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3677};
3678
1e8f889b
DG
3679static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3680 int writable)
63551ae0
DG
3681{
3682 pte_t entry;
3683
1e8f889b 3684 if (writable) {
106c992a
GS
3685 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3686 vma->vm_page_prot)));
63551ae0 3687 } else {
106c992a
GS
3688 entry = huge_pte_wrprotect(mk_huge_pte(page,
3689 vma->vm_page_prot));
63551ae0
DG
3690 }
3691 entry = pte_mkyoung(entry);
3692 entry = pte_mkhuge(entry);
d9ed9faa 3693 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3694
3695 return entry;
3696}
3697
1e8f889b
DG
3698static void set_huge_ptep_writable(struct vm_area_struct *vma,
3699 unsigned long address, pte_t *ptep)
3700{
3701 pte_t entry;
3702
106c992a 3703 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3704 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3705 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3706}
3707
d5ed7444 3708bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3709{
3710 swp_entry_t swp;
3711
3712 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3713 return false;
4a705fef 3714 swp = pte_to_swp_entry(pte);
d79d176a 3715 if (is_migration_entry(swp))
d5ed7444 3716 return true;
4a705fef 3717 else
d5ed7444 3718 return false;
4a705fef
NH
3719}
3720
3e5c3600 3721static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
3722{
3723 swp_entry_t swp;
3724
3725 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 3726 return false;
4a705fef 3727 swp = pte_to_swp_entry(pte);
d79d176a 3728 if (is_hwpoison_entry(swp))
3e5c3600 3729 return true;
4a705fef 3730 else
3e5c3600 3731 return false;
4a705fef 3732}
1e8f889b 3733
63551ae0
DG
3734int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3735 struct vm_area_struct *vma)
3736{
5e41540c 3737 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3738 struct page *ptepage;
1c59827d 3739 unsigned long addr;
1e8f889b 3740 int cow;
a5516438
AK
3741 struct hstate *h = hstate_vma(vma);
3742 unsigned long sz = huge_page_size(h);
c0d0381a 3743 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3744 struct mmu_notifier_range range;
e8569dd2 3745 int ret = 0;
1e8f889b
DG
3746
3747 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3748
ac46d4f3 3749 if (cow) {
7269f999 3750 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3751 vma->vm_start,
ac46d4f3
JG
3752 vma->vm_end);
3753 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3754 } else {
3755 /*
3756 * For shared mappings i_mmap_rwsem must be held to call
3757 * huge_pte_alloc, otherwise the returned ptep could go
3758 * away if part of a shared pmd and another thread calls
3759 * huge_pmd_unshare.
3760 */
3761 i_mmap_lock_read(mapping);
ac46d4f3 3762 }
e8569dd2 3763
a5516438 3764 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3765 spinlock_t *src_ptl, *dst_ptl;
7868a208 3766 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3767 if (!src_pte)
3768 continue;
a5516438 3769 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3770 if (!dst_pte) {
3771 ret = -ENOMEM;
3772 break;
3773 }
c5c99429 3774
5e41540c
MK
3775 /*
3776 * If the pagetables are shared don't copy or take references.
3777 * dst_pte == src_pte is the common case of src/dest sharing.
3778 *
3779 * However, src could have 'unshared' and dst shares with
3780 * another vma. If dst_pte !none, this implies sharing.
3781 * Check here before taking page table lock, and once again
3782 * after taking the lock below.
3783 */
3784 dst_entry = huge_ptep_get(dst_pte);
3785 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3786 continue;
3787
cb900f41
KS
3788 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3789 src_ptl = huge_pte_lockptr(h, src, src_pte);
3790 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3791 entry = huge_ptep_get(src_pte);
5e41540c
MK
3792 dst_entry = huge_ptep_get(dst_pte);
3793 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3794 /*
3795 * Skip if src entry none. Also, skip in the
3796 * unlikely case dst entry !none as this implies
3797 * sharing with another vma.
3798 */
4a705fef
NH
3799 ;
3800 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3801 is_hugetlb_entry_hwpoisoned(entry))) {
3802 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3803
3804 if (is_write_migration_entry(swp_entry) && cow) {
3805 /*
3806 * COW mappings require pages in both
3807 * parent and child to be set to read.
3808 */
3809 make_migration_entry_read(&swp_entry);
3810 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3811 set_huge_swap_pte_at(src, addr, src_pte,
3812 entry, sz);
4a705fef 3813 }
e5251fd4 3814 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3815 } else {
34ee645e 3816 if (cow) {
0f10851e
JG
3817 /*
3818 * No need to notify as we are downgrading page
3819 * table protection not changing it to point
3820 * to a new page.
3821 *
ad56b738 3822 * See Documentation/vm/mmu_notifier.rst
0f10851e 3823 */
7f2e9525 3824 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3825 }
0253d634 3826 entry = huge_ptep_get(src_pte);
1c59827d
HD
3827 ptepage = pte_page(entry);
3828 get_page(ptepage);
53f9263b 3829 page_dup_rmap(ptepage, true);
1c59827d 3830 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3831 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3832 }
cb900f41
KS
3833 spin_unlock(src_ptl);
3834 spin_unlock(dst_ptl);
63551ae0 3835 }
63551ae0 3836
e8569dd2 3837 if (cow)
ac46d4f3 3838 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3839 else
3840 i_mmap_unlock_read(mapping);
e8569dd2
AS
3841
3842 return ret;
63551ae0
DG
3843}
3844
24669e58
AK
3845void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3846 unsigned long start, unsigned long end,
3847 struct page *ref_page)
63551ae0
DG
3848{
3849 struct mm_struct *mm = vma->vm_mm;
3850 unsigned long address;
c7546f8f 3851 pte_t *ptep;
63551ae0 3852 pte_t pte;
cb900f41 3853 spinlock_t *ptl;
63551ae0 3854 struct page *page;
a5516438
AK
3855 struct hstate *h = hstate_vma(vma);
3856 unsigned long sz = huge_page_size(h);
ac46d4f3 3857 struct mmu_notifier_range range;
a5516438 3858
63551ae0 3859 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3860 BUG_ON(start & ~huge_page_mask(h));
3861 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3862
07e32661
AK
3863 /*
3864 * This is a hugetlb vma, all the pte entries should point
3865 * to huge page.
3866 */
ed6a7935 3867 tlb_change_page_size(tlb, sz);
24669e58 3868 tlb_start_vma(tlb, vma);
dff11abe
MK
3869
3870 /*
3871 * If sharing possible, alert mmu notifiers of worst case.
3872 */
6f4f13e8
JG
3873 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3874 end);
ac46d4f3
JG
3875 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3876 mmu_notifier_invalidate_range_start(&range);
569f48b8 3877 address = start;
569f48b8 3878 for (; address < end; address += sz) {
7868a208 3879 ptep = huge_pte_offset(mm, address, sz);
4c887265 3880 if (!ptep)
c7546f8f
DG
3881 continue;
3882
cb900f41 3883 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 3884 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 3885 spin_unlock(ptl);
dff11abe
MK
3886 /*
3887 * We just unmapped a page of PMDs by clearing a PUD.
3888 * The caller's TLB flush range should cover this area.
3889 */
31d49da5
AK
3890 continue;
3891 }
39dde65c 3892
6629326b 3893 pte = huge_ptep_get(ptep);
31d49da5
AK
3894 if (huge_pte_none(pte)) {
3895 spin_unlock(ptl);
3896 continue;
3897 }
6629326b
HD
3898
3899 /*
9fbc1f63
NH
3900 * Migrating hugepage or HWPoisoned hugepage is already
3901 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3902 */
9fbc1f63 3903 if (unlikely(!pte_present(pte))) {
9386fac3 3904 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3905 spin_unlock(ptl);
3906 continue;
8c4894c6 3907 }
6629326b
HD
3908
3909 page = pte_page(pte);
04f2cbe3
MG
3910 /*
3911 * If a reference page is supplied, it is because a specific
3912 * page is being unmapped, not a range. Ensure the page we
3913 * are about to unmap is the actual page of interest.
3914 */
3915 if (ref_page) {
31d49da5
AK
3916 if (page != ref_page) {
3917 spin_unlock(ptl);
3918 continue;
3919 }
04f2cbe3
MG
3920 /*
3921 * Mark the VMA as having unmapped its page so that
3922 * future faults in this VMA will fail rather than
3923 * looking like data was lost
3924 */
3925 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3926 }
3927
c7546f8f 3928 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3929 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3930 if (huge_pte_dirty(pte))
6649a386 3931 set_page_dirty(page);
9e81130b 3932
5d317b2b 3933 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3934 page_remove_rmap(page, true);
31d49da5 3935
cb900f41 3936 spin_unlock(ptl);
e77b0852 3937 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3938 /*
3939 * Bail out after unmapping reference page if supplied
3940 */
3941 if (ref_page)
3942 break;
fe1668ae 3943 }
ac46d4f3 3944 mmu_notifier_invalidate_range_end(&range);
24669e58 3945 tlb_end_vma(tlb, vma);
1da177e4 3946}
63551ae0 3947
d833352a
MG
3948void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3949 struct vm_area_struct *vma, unsigned long start,
3950 unsigned long end, struct page *ref_page)
3951{
3952 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3953
3954 /*
3955 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3956 * test will fail on a vma being torn down, and not grab a page table
3957 * on its way out. We're lucky that the flag has such an appropriate
3958 * name, and can in fact be safely cleared here. We could clear it
3959 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3960 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3961 * because in the context this is called, the VMA is about to be
c8c06efa 3962 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3963 */
3964 vma->vm_flags &= ~VM_MAYSHARE;
3965}
3966
502717f4 3967void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3968 unsigned long end, struct page *ref_page)
502717f4 3969{
24669e58
AK
3970 struct mm_struct *mm;
3971 struct mmu_gather tlb;
dff11abe
MK
3972 unsigned long tlb_start = start;
3973 unsigned long tlb_end = end;
3974
3975 /*
3976 * If shared PMDs were possibly used within this vma range, adjust
3977 * start/end for worst case tlb flushing.
3978 * Note that we can not be sure if PMDs are shared until we try to
3979 * unmap pages. However, we want to make sure TLB flushing covers
3980 * the largest possible range.
3981 */
3982 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
3983
3984 mm = vma->vm_mm;
3985
dff11abe 3986 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 3987 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 3988 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
KC
3989}
3990
04f2cbe3
MG
3991/*
3992 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3993 * mappping it owns the reserve page for. The intention is to unmap the page
3994 * from other VMAs and let the children be SIGKILLed if they are faulting the
3995 * same region.
3996 */
2f4612af
DB
3997static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3998 struct page *page, unsigned long address)
04f2cbe3 3999{
7526674d 4000 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4001 struct vm_area_struct *iter_vma;
4002 struct address_space *mapping;
04f2cbe3
MG
4003 pgoff_t pgoff;
4004
4005 /*
4006 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4007 * from page cache lookup which is in HPAGE_SIZE units.
4008 */
7526674d 4009 address = address & huge_page_mask(h);
36e4f20a
MH
4010 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4011 vma->vm_pgoff;
93c76a3d 4012 mapping = vma->vm_file->f_mapping;
04f2cbe3 4013
4eb2b1dc
MG
4014 /*
4015 * Take the mapping lock for the duration of the table walk. As
4016 * this mapping should be shared between all the VMAs,
4017 * __unmap_hugepage_range() is called as the lock is already held
4018 */
83cde9e8 4019 i_mmap_lock_write(mapping);
6b2dbba8 4020 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4021 /* Do not unmap the current VMA */
4022 if (iter_vma == vma)
4023 continue;
4024
2f84a899
MG
4025 /*
4026 * Shared VMAs have their own reserves and do not affect
4027 * MAP_PRIVATE accounting but it is possible that a shared
4028 * VMA is using the same page so check and skip such VMAs.
4029 */
4030 if (iter_vma->vm_flags & VM_MAYSHARE)
4031 continue;
4032
04f2cbe3
MG
4033 /*
4034 * Unmap the page from other VMAs without their own reserves.
4035 * They get marked to be SIGKILLed if they fault in these
4036 * areas. This is because a future no-page fault on this VMA
4037 * could insert a zeroed page instead of the data existing
4038 * from the time of fork. This would look like data corruption
4039 */
4040 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4041 unmap_hugepage_range(iter_vma, address,
4042 address + huge_page_size(h), page);
04f2cbe3 4043 }
83cde9e8 4044 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4045}
4046
0fe6e20b
NH
4047/*
4048 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4049 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4050 * cannot race with other handlers or page migration.
4051 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4052 */
2b740303 4053static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4054 unsigned long address, pte_t *ptep,
3999f52e 4055 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4056{
3999f52e 4057 pte_t pte;
a5516438 4058 struct hstate *h = hstate_vma(vma);
1e8f889b 4059 struct page *old_page, *new_page;
2b740303
SJ
4060 int outside_reserve = 0;
4061 vm_fault_t ret = 0;
974e6d66 4062 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4063 struct mmu_notifier_range range;
1e8f889b 4064
3999f52e 4065 pte = huge_ptep_get(ptep);
1e8f889b
DG
4066 old_page = pte_page(pte);
4067
04f2cbe3 4068retry_avoidcopy:
1e8f889b
DG
4069 /* If no-one else is actually using this page, avoid the copy
4070 * and just make the page writable */
37a2140d 4071 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4072 page_move_anon_rmap(old_page, vma);
5b7a1d40 4073 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4074 return 0;
1e8f889b
DG
4075 }
4076
04f2cbe3
MG
4077 /*
4078 * If the process that created a MAP_PRIVATE mapping is about to
4079 * perform a COW due to a shared page count, attempt to satisfy
4080 * the allocation without using the existing reserves. The pagecache
4081 * page is used to determine if the reserve at this address was
4082 * consumed or not. If reserves were used, a partial faulted mapping
4083 * at the time of fork() could consume its reserves on COW instead
4084 * of the full address range.
4085 */
5944d011 4086 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4087 old_page != pagecache_page)
4088 outside_reserve = 1;
4089
09cbfeaf 4090 get_page(old_page);
b76c8cfb 4091
ad4404a2
DB
4092 /*
4093 * Drop page table lock as buddy allocator may be called. It will
4094 * be acquired again before returning to the caller, as expected.
4095 */
cb900f41 4096 spin_unlock(ptl);
5b7a1d40 4097 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4098
2fc39cec 4099 if (IS_ERR(new_page)) {
04f2cbe3
MG
4100 /*
4101 * If a process owning a MAP_PRIVATE mapping fails to COW,
4102 * it is due to references held by a child and an insufficient
4103 * huge page pool. To guarantee the original mappers
4104 * reliability, unmap the page from child processes. The child
4105 * may get SIGKILLed if it later faults.
4106 */
4107 if (outside_reserve) {
e7dd91c4
MK
4108 struct address_space *mapping = vma->vm_file->f_mapping;
4109 pgoff_t idx;
4110 u32 hash;
4111
09cbfeaf 4112 put_page(old_page);
04f2cbe3 4113 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4114 /*
4115 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4116 * unmapping. unmapping needs to hold i_mmap_rwsem
4117 * in write mode. Dropping i_mmap_rwsem in read mode
4118 * here is OK as COW mappings do not interact with
4119 * PMD sharing.
4120 *
4121 * Reacquire both after unmap operation.
4122 */
4123 idx = vma_hugecache_offset(h, vma, haddr);
4124 hash = hugetlb_fault_mutex_hash(mapping, idx);
4125 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4126 i_mmap_unlock_read(mapping);
4127
5b7a1d40 4128 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4129
4130 i_mmap_lock_read(mapping);
4131 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4132 spin_lock(ptl);
5b7a1d40 4133 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4134 if (likely(ptep &&
4135 pte_same(huge_ptep_get(ptep), pte)))
4136 goto retry_avoidcopy;
4137 /*
4138 * race occurs while re-acquiring page table
4139 * lock, and our job is done.
4140 */
4141 return 0;
04f2cbe3
MG
4142 }
4143
2b740303 4144 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4145 goto out_release_old;
1e8f889b
DG
4146 }
4147
0fe6e20b
NH
4148 /*
4149 * When the original hugepage is shared one, it does not have
4150 * anon_vma prepared.
4151 */
44e2aa93 4152 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4153 ret = VM_FAULT_OOM;
4154 goto out_release_all;
44e2aa93 4155 }
0fe6e20b 4156
974e6d66 4157 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4158 pages_per_huge_page(h));
0ed361de 4159 __SetPageUptodate(new_page);
1e8f889b 4160
7269f999 4161 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4162 haddr + huge_page_size(h));
ac46d4f3 4163 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4164
b76c8cfb 4165 /*
cb900f41 4166 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4167 * before the page tables are altered
4168 */
cb900f41 4169 spin_lock(ptl);
5b7a1d40 4170 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4171 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
4172 ClearPagePrivate(new_page);
4173
1e8f889b 4174 /* Break COW */
5b7a1d40 4175 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4176 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4177 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4178 make_huge_pte(vma, new_page, 1));
d281ee61 4179 page_remove_rmap(old_page, true);
5b7a1d40 4180 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 4181 set_page_huge_active(new_page);
1e8f889b
DG
4182 /* Make the old page be freed below */
4183 new_page = old_page;
4184 }
cb900f41 4185 spin_unlock(ptl);
ac46d4f3 4186 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4187out_release_all:
5b7a1d40 4188 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4189 put_page(new_page);
ad4404a2 4190out_release_old:
09cbfeaf 4191 put_page(old_page);
8312034f 4192
ad4404a2
DB
4193 spin_lock(ptl); /* Caller expects lock to be held */
4194 return ret;
1e8f889b
DG
4195}
4196
04f2cbe3 4197/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4198static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4199 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4200{
4201 struct address_space *mapping;
e7c4b0bf 4202 pgoff_t idx;
04f2cbe3
MG
4203
4204 mapping = vma->vm_file->f_mapping;
a5516438 4205 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4206
4207 return find_lock_page(mapping, idx);
4208}
4209
3ae77f43
HD
4210/*
4211 * Return whether there is a pagecache page to back given address within VMA.
4212 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4213 */
4214static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4215 struct vm_area_struct *vma, unsigned long address)
4216{
4217 struct address_space *mapping;
4218 pgoff_t idx;
4219 struct page *page;
4220
4221 mapping = vma->vm_file->f_mapping;
4222 idx = vma_hugecache_offset(h, vma, address);
4223
4224 page = find_get_page(mapping, idx);
4225 if (page)
4226 put_page(page);
4227 return page != NULL;
4228}
4229
ab76ad54
MK
4230int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4231 pgoff_t idx)
4232{
4233 struct inode *inode = mapping->host;
4234 struct hstate *h = hstate_inode(inode);
4235 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4236
4237 if (err)
4238 return err;
4239 ClearPagePrivate(page);
4240
22146c3c
MK
4241 /*
4242 * set page dirty so that it will not be removed from cache/file
4243 * by non-hugetlbfs specific code paths.
4244 */
4245 set_page_dirty(page);
4246
ab76ad54
MK
4247 spin_lock(&inode->i_lock);
4248 inode->i_blocks += blocks_per_huge_page(h);
4249 spin_unlock(&inode->i_lock);
4250 return 0;
4251}
4252
2b740303
SJ
4253static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4254 struct vm_area_struct *vma,
4255 struct address_space *mapping, pgoff_t idx,
4256 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4257{
a5516438 4258 struct hstate *h = hstate_vma(vma);
2b740303 4259 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4260 int anon_rmap = 0;
4c887265 4261 unsigned long size;
4c887265 4262 struct page *page;
1e8f889b 4263 pte_t new_pte;
cb900f41 4264 spinlock_t *ptl;
285b8dca 4265 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4266 bool new_page = false;
4c887265 4267
04f2cbe3
MG
4268 /*
4269 * Currently, we are forced to kill the process in the event the
4270 * original mapper has unmapped pages from the child due to a failed
25985edc 4271 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4272 */
4273 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4274 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4275 current->pid);
04f2cbe3
MG
4276 return ret;
4277 }
4278
4c887265 4279 /*
87bf91d3
MK
4280 * We can not race with truncation due to holding i_mmap_rwsem.
4281 * i_size is modified when holding i_mmap_rwsem, so check here
4282 * once for faults beyond end of file.
4c887265 4283 */
87bf91d3
MK
4284 size = i_size_read(mapping->host) >> huge_page_shift(h);
4285 if (idx >= size)
4286 goto out;
4287
6bda666a
CL
4288retry:
4289 page = find_lock_page(mapping, idx);
4290 if (!page) {
1a1aad8a
MK
4291 /*
4292 * Check for page in userfault range
4293 */
4294 if (userfaultfd_missing(vma)) {
4295 u32 hash;
4296 struct vm_fault vmf = {
4297 .vma = vma,
285b8dca 4298 .address = haddr,
1a1aad8a
MK
4299 .flags = flags,
4300 /*
4301 * Hard to debug if it ends up being
4302 * used by a callee that assumes
4303 * something about the other
4304 * uninitialized fields... same as in
4305 * memory.c
4306 */
4307 };
4308
4309 /*
c0d0381a
MK
4310 * hugetlb_fault_mutex and i_mmap_rwsem must be
4311 * dropped before handling userfault. Reacquire
4312 * after handling fault to make calling code simpler.
1a1aad8a 4313 */
188b04a7 4314 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 4315 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4316 i_mmap_unlock_read(mapping);
1a1aad8a 4317 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 4318 i_mmap_lock_read(mapping);
1a1aad8a
MK
4319 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4320 goto out;
4321 }
4322
285b8dca 4323 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4324 if (IS_ERR(page)) {
4643d67e
MK
4325 /*
4326 * Returning error will result in faulting task being
4327 * sent SIGBUS. The hugetlb fault mutex prevents two
4328 * tasks from racing to fault in the same page which
4329 * could result in false unable to allocate errors.
4330 * Page migration does not take the fault mutex, but
4331 * does a clear then write of pte's under page table
4332 * lock. Page fault code could race with migration,
4333 * notice the clear pte and try to allocate a page
4334 * here. Before returning error, get ptl and make
4335 * sure there really is no pte entry.
4336 */
4337 ptl = huge_pte_lock(h, mm, ptep);
4338 if (!huge_pte_none(huge_ptep_get(ptep))) {
4339 ret = 0;
4340 spin_unlock(ptl);
4341 goto out;
4342 }
4343 spin_unlock(ptl);
2b740303 4344 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
4345 goto out;
4346 }
47ad8475 4347 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4348 __SetPageUptodate(page);
cb6acd01 4349 new_page = true;
ac9b9c66 4350
f83a275d 4351 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4352 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4353 if (err) {
4354 put_page(page);
6bda666a
CL
4355 if (err == -EEXIST)
4356 goto retry;
4357 goto out;
4358 }
23be7468 4359 } else {
6bda666a 4360 lock_page(page);
0fe6e20b
NH
4361 if (unlikely(anon_vma_prepare(vma))) {
4362 ret = VM_FAULT_OOM;
4363 goto backout_unlocked;
4364 }
409eb8c2 4365 anon_rmap = 1;
23be7468 4366 }
0fe6e20b 4367 } else {
998b4382
NH
4368 /*
4369 * If memory error occurs between mmap() and fault, some process
4370 * don't have hwpoisoned swap entry for errored virtual address.
4371 * So we need to block hugepage fault by PG_hwpoison bit check.
4372 */
4373 if (unlikely(PageHWPoison(page))) {
0eb98f15 4374 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4375 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4376 goto backout_unlocked;
4377 }
6bda666a 4378 }
1e8f889b 4379
57303d80
AW
4380 /*
4381 * If we are going to COW a private mapping later, we examine the
4382 * pending reservations for this page now. This will ensure that
4383 * any allocations necessary to record that reservation occur outside
4384 * the spinlock.
4385 */
5e911373 4386 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4387 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4388 ret = VM_FAULT_OOM;
4389 goto backout_unlocked;
4390 }
5e911373 4391 /* Just decrements count, does not deallocate */
285b8dca 4392 vma_end_reservation(h, vma, haddr);
5e911373 4393 }
57303d80 4394
8bea8052 4395 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4396 ret = 0;
7f2e9525 4397 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4398 goto backout;
4399
07443a85
JK
4400 if (anon_rmap) {
4401 ClearPagePrivate(page);
285b8dca 4402 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4403 } else
53f9263b 4404 page_dup_rmap(page, true);
1e8f889b
DG
4405 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4406 && (vma->vm_flags & VM_SHARED)));
285b8dca 4407 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4408
5d317b2b 4409 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4410 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4411 /* Optimization, do the COW without a second fault */
974e6d66 4412 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4413 }
4414
cb900f41 4415 spin_unlock(ptl);
cb6acd01
MK
4416
4417 /*
4418 * Only make newly allocated pages active. Existing pages found
4419 * in the pagecache could be !page_huge_active() if they have been
4420 * isolated for migration.
4421 */
4422 if (new_page)
4423 set_page_huge_active(page);
4424
4c887265
AL
4425 unlock_page(page);
4426out:
ac9b9c66 4427 return ret;
4c887265
AL
4428
4429backout:
cb900f41 4430 spin_unlock(ptl);
2b26736c 4431backout_unlocked:
4c887265 4432 unlock_page(page);
285b8dca 4433 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4434 put_page(page);
4435 goto out;
ac9b9c66
HD
4436}
4437
8382d914 4438#ifdef CONFIG_SMP
188b04a7 4439u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4440{
4441 unsigned long key[2];
4442 u32 hash;
4443
1b426bac
MK
4444 key[0] = (unsigned long) mapping;
4445 key[1] = idx;
8382d914 4446
55254636 4447 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4448
4449 return hash & (num_fault_mutexes - 1);
4450}
4451#else
4452/*
4453 * For uniprocesor systems we always use a single mutex, so just
4454 * return 0 and avoid the hashing overhead.
4455 */
188b04a7 4456u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4457{
4458 return 0;
4459}
4460#endif
4461
2b740303 4462vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4463 unsigned long address, unsigned int flags)
86e5216f 4464{
8382d914 4465 pte_t *ptep, entry;
cb900f41 4466 spinlock_t *ptl;
2b740303 4467 vm_fault_t ret;
8382d914
DB
4468 u32 hash;
4469 pgoff_t idx;
0fe6e20b 4470 struct page *page = NULL;
57303d80 4471 struct page *pagecache_page = NULL;
a5516438 4472 struct hstate *h = hstate_vma(vma);
8382d914 4473 struct address_space *mapping;
0f792cf9 4474 int need_wait_lock = 0;
285b8dca 4475 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4476
285b8dca 4477 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4478 if (ptep) {
c0d0381a
MK
4479 /*
4480 * Since we hold no locks, ptep could be stale. That is
4481 * OK as we are only making decisions based on content and
4482 * not actually modifying content here.
4483 */
fd6a03ed 4484 entry = huge_ptep_get(ptep);
290408d4 4485 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4486 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4487 return 0;
4488 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4489 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4490 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4491 }
4492
c0d0381a
MK
4493 /*
4494 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4495 * until finished with ptep. This serves two purposes:
4496 * 1) It prevents huge_pmd_unshare from being called elsewhere
4497 * and making the ptep no longer valid.
4498 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4499 *
4500 * ptep could have already be assigned via huge_pte_offset. That
4501 * is OK, as huge_pte_alloc will return the same value unless
4502 * something has changed.
4503 */
8382d914 4504 mapping = vma->vm_file->f_mapping;
c0d0381a
MK
4505 i_mmap_lock_read(mapping);
4506 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4507 if (!ptep) {
4508 i_mmap_unlock_read(mapping);
4509 return VM_FAULT_OOM;
4510 }
8382d914 4511
3935baa9
DG
4512 /*
4513 * Serialize hugepage allocation and instantiation, so that we don't
4514 * get spurious allocation failures if two CPUs race to instantiate
4515 * the same page in the page cache.
4516 */
c0d0381a 4517 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4518 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4519 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4520
7f2e9525
GS
4521 entry = huge_ptep_get(ptep);
4522 if (huge_pte_none(entry)) {
8382d914 4523 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4524 goto out_mutex;
3935baa9 4525 }
86e5216f 4526
83c54070 4527 ret = 0;
1e8f889b 4528
0f792cf9
NH
4529 /*
4530 * entry could be a migration/hwpoison entry at this point, so this
4531 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4532 * an active hugepage in pagecache. This goto expects the 2nd page
4533 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4534 * properly handle it.
0f792cf9
NH
4535 */
4536 if (!pte_present(entry))
4537 goto out_mutex;
4538
57303d80
AW
4539 /*
4540 * If we are going to COW the mapping later, we examine the pending
4541 * reservations for this page now. This will ensure that any
4542 * allocations necessary to record that reservation occur outside the
4543 * spinlock. For private mappings, we also lookup the pagecache
4544 * page now as it is used to determine if a reservation has been
4545 * consumed.
4546 */
106c992a 4547 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4548 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4549 ret = VM_FAULT_OOM;
b4d1d99f 4550 goto out_mutex;
2b26736c 4551 }
5e911373 4552 /* Just decrements count, does not deallocate */
285b8dca 4553 vma_end_reservation(h, vma, haddr);
57303d80 4554
f83a275d 4555 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4556 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4557 vma, haddr);
57303d80
AW
4558 }
4559
0f792cf9
NH
4560 ptl = huge_pte_lock(h, mm, ptep);
4561
4562 /* Check for a racing update before calling hugetlb_cow */
4563 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4564 goto out_ptl;
4565
56c9cfb1
NH
4566 /*
4567 * hugetlb_cow() requires page locks of pte_page(entry) and
4568 * pagecache_page, so here we need take the former one
4569 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4570 */
4571 page = pte_page(entry);
4572 if (page != pagecache_page)
0f792cf9
NH
4573 if (!trylock_page(page)) {
4574 need_wait_lock = 1;
4575 goto out_ptl;
4576 }
b4d1d99f 4577
0f792cf9 4578 get_page(page);
b4d1d99f 4579
788c7df4 4580 if (flags & FAULT_FLAG_WRITE) {
106c992a 4581 if (!huge_pte_write(entry)) {
974e6d66 4582 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4583 pagecache_page, ptl);
0f792cf9 4584 goto out_put_page;
b4d1d99f 4585 }
106c992a 4586 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4587 }
4588 entry = pte_mkyoung(entry);
285b8dca 4589 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4590 flags & FAULT_FLAG_WRITE))
285b8dca 4591 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4592out_put_page:
4593 if (page != pagecache_page)
4594 unlock_page(page);
4595 put_page(page);
cb900f41
KS
4596out_ptl:
4597 spin_unlock(ptl);
57303d80
AW
4598
4599 if (pagecache_page) {
4600 unlock_page(pagecache_page);
4601 put_page(pagecache_page);
4602 }
b4d1d99f 4603out_mutex:
c672c7f2 4604 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4605 i_mmap_unlock_read(mapping);
0f792cf9
NH
4606 /*
4607 * Generally it's safe to hold refcount during waiting page lock. But
4608 * here we just wait to defer the next page fault to avoid busy loop and
4609 * the page is not used after unlocked before returning from the current
4610 * page fault. So we are safe from accessing freed page, even if we wait
4611 * here without taking refcount.
4612 */
4613 if (need_wait_lock)
4614 wait_on_page_locked(page);
1e8f889b 4615 return ret;
86e5216f
AL
4616}
4617
8fb5debc
MK
4618/*
4619 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4620 * modifications for huge pages.
4621 */
4622int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4623 pte_t *dst_pte,
4624 struct vm_area_struct *dst_vma,
4625 unsigned long dst_addr,
4626 unsigned long src_addr,
4627 struct page **pagep)
4628{
1e392147
AA
4629 struct address_space *mapping;
4630 pgoff_t idx;
4631 unsigned long size;
1c9e8def 4632 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4633 struct hstate *h = hstate_vma(dst_vma);
4634 pte_t _dst_pte;
4635 spinlock_t *ptl;
4636 int ret;
4637 struct page *page;
4638
4639 if (!*pagep) {
4640 ret = -ENOMEM;
4641 page = alloc_huge_page(dst_vma, dst_addr, 0);
4642 if (IS_ERR(page))
4643 goto out;
4644
4645 ret = copy_huge_page_from_user(page,
4646 (const void __user *) src_addr,
810a56b9 4647 pages_per_huge_page(h), false);
8fb5debc 4648
c1e8d7c6 4649 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 4650 if (unlikely(ret)) {
9e368259 4651 ret = -ENOENT;
8fb5debc
MK
4652 *pagep = page;
4653 /* don't free the page */
4654 goto out;
4655 }
4656 } else {
4657 page = *pagep;
4658 *pagep = NULL;
4659 }
4660
4661 /*
4662 * The memory barrier inside __SetPageUptodate makes sure that
4663 * preceding stores to the page contents become visible before
4664 * the set_pte_at() write.
4665 */
4666 __SetPageUptodate(page);
8fb5debc 4667
1e392147
AA
4668 mapping = dst_vma->vm_file->f_mapping;
4669 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4670
1c9e8def
MK
4671 /*
4672 * If shared, add to page cache
4673 */
4674 if (vm_shared) {
1e392147
AA
4675 size = i_size_read(mapping->host) >> huge_page_shift(h);
4676 ret = -EFAULT;
4677 if (idx >= size)
4678 goto out_release_nounlock;
1c9e8def 4679
1e392147
AA
4680 /*
4681 * Serialization between remove_inode_hugepages() and
4682 * huge_add_to_page_cache() below happens through the
4683 * hugetlb_fault_mutex_table that here must be hold by
4684 * the caller.
4685 */
1c9e8def
MK
4686 ret = huge_add_to_page_cache(page, mapping, idx);
4687 if (ret)
4688 goto out_release_nounlock;
4689 }
4690
8fb5debc
MK
4691 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4692 spin_lock(ptl);
4693
1e392147
AA
4694 /*
4695 * Recheck the i_size after holding PT lock to make sure not
4696 * to leave any page mapped (as page_mapped()) beyond the end
4697 * of the i_size (remove_inode_hugepages() is strict about
4698 * enforcing that). If we bail out here, we'll also leave a
4699 * page in the radix tree in the vm_shared case beyond the end
4700 * of the i_size, but remove_inode_hugepages() will take care
4701 * of it as soon as we drop the hugetlb_fault_mutex_table.
4702 */
4703 size = i_size_read(mapping->host) >> huge_page_shift(h);
4704 ret = -EFAULT;
4705 if (idx >= size)
4706 goto out_release_unlock;
4707
8fb5debc
MK
4708 ret = -EEXIST;
4709 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4710 goto out_release_unlock;
4711
1c9e8def
MK
4712 if (vm_shared) {
4713 page_dup_rmap(page, true);
4714 } else {
4715 ClearPagePrivate(page);
4716 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4717 }
8fb5debc
MK
4718
4719 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4720 if (dst_vma->vm_flags & VM_WRITE)
4721 _dst_pte = huge_pte_mkdirty(_dst_pte);
4722 _dst_pte = pte_mkyoung(_dst_pte);
4723
4724 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4725
4726 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4727 dst_vma->vm_flags & VM_WRITE);
4728 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4729
4730 /* No need to invalidate - it was non-present before */
4731 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4732
4733 spin_unlock(ptl);
cb6acd01 4734 set_page_huge_active(page);
1c9e8def
MK
4735 if (vm_shared)
4736 unlock_page(page);
8fb5debc
MK
4737 ret = 0;
4738out:
4739 return ret;
4740out_release_unlock:
4741 spin_unlock(ptl);
1c9e8def
MK
4742 if (vm_shared)
4743 unlock_page(page);
5af10dfd 4744out_release_nounlock:
8fb5debc
MK
4745 put_page(page);
4746 goto out;
4747}
4748
28a35716
ML
4749long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4750 struct page **pages, struct vm_area_struct **vmas,
4751 unsigned long *position, unsigned long *nr_pages,
4f6da934 4752 long i, unsigned int flags, int *locked)
63551ae0 4753{
d5d4b0aa
KC
4754 unsigned long pfn_offset;
4755 unsigned long vaddr = *position;
28a35716 4756 unsigned long remainder = *nr_pages;
a5516438 4757 struct hstate *h = hstate_vma(vma);
2be7cfed 4758 int err = -EFAULT;
63551ae0 4759
63551ae0 4760 while (vaddr < vma->vm_end && remainder) {
4c887265 4761 pte_t *pte;
cb900f41 4762 spinlock_t *ptl = NULL;
2a15efc9 4763 int absent;
4c887265 4764 struct page *page;
63551ae0 4765
02057967
DR
4766 /*
4767 * If we have a pending SIGKILL, don't keep faulting pages and
4768 * potentially allocating memory.
4769 */
fa45f116 4770 if (fatal_signal_pending(current)) {
02057967
DR
4771 remainder = 0;
4772 break;
4773 }
4774
4c887265
AL
4775 /*
4776 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4777 * each hugepage. We have to make sure we get the
4c887265 4778 * first, for the page indexing below to work.
cb900f41
KS
4779 *
4780 * Note that page table lock is not held when pte is null.
4c887265 4781 */
7868a208
PA
4782 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4783 huge_page_size(h));
cb900f41
KS
4784 if (pte)
4785 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4786 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4787
4788 /*
4789 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4790 * an error where there's an empty slot with no huge pagecache
4791 * to back it. This way, we avoid allocating a hugepage, and
4792 * the sparse dumpfile avoids allocating disk blocks, but its
4793 * huge holes still show up with zeroes where they need to be.
2a15efc9 4794 */
3ae77f43
HD
4795 if (absent && (flags & FOLL_DUMP) &&
4796 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4797 if (pte)
4798 spin_unlock(ptl);
2a15efc9
HD
4799 remainder = 0;
4800 break;
4801 }
63551ae0 4802
9cc3a5bd
NH
4803 /*
4804 * We need call hugetlb_fault for both hugepages under migration
4805 * (in which case hugetlb_fault waits for the migration,) and
4806 * hwpoisoned hugepages (in which case we need to prevent the
4807 * caller from accessing to them.) In order to do this, we use
4808 * here is_swap_pte instead of is_hugetlb_entry_migration and
4809 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4810 * both cases, and because we can't follow correct pages
4811 * directly from any kind of swap entries.
4812 */
4813 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4814 ((flags & FOLL_WRITE) &&
4815 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4816 vm_fault_t ret;
87ffc118 4817 unsigned int fault_flags = 0;
63551ae0 4818
cb900f41
KS
4819 if (pte)
4820 spin_unlock(ptl);
87ffc118
AA
4821 if (flags & FOLL_WRITE)
4822 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4823 if (locked)
71335f37
PX
4824 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4825 FAULT_FLAG_KILLABLE;
87ffc118
AA
4826 if (flags & FOLL_NOWAIT)
4827 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4828 FAULT_FLAG_RETRY_NOWAIT;
4829 if (flags & FOLL_TRIED) {
4426e945
PX
4830 /*
4831 * Note: FAULT_FLAG_ALLOW_RETRY and
4832 * FAULT_FLAG_TRIED can co-exist
4833 */
87ffc118
AA
4834 fault_flags |= FAULT_FLAG_TRIED;
4835 }
4836 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4837 if (ret & VM_FAULT_ERROR) {
2be7cfed 4838 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4839 remainder = 0;
4840 break;
4841 }
4842 if (ret & VM_FAULT_RETRY) {
4f6da934 4843 if (locked &&
1ac25013 4844 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4845 *locked = 0;
87ffc118
AA
4846 *nr_pages = 0;
4847 /*
4848 * VM_FAULT_RETRY must not return an
4849 * error, it will return zero
4850 * instead.
4851 *
4852 * No need to update "position" as the
4853 * caller will not check it after
4854 * *nr_pages is set to 0.
4855 */
4856 return i;
4857 }
4858 continue;
4c887265
AL
4859 }
4860
a5516438 4861 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4862 page = pte_page(huge_ptep_get(pte));
8fde12ca 4863
acbfb087
ZL
4864 /*
4865 * If subpage information not requested, update counters
4866 * and skip the same_page loop below.
4867 */
4868 if (!pages && !vmas && !pfn_offset &&
4869 (vaddr + huge_page_size(h) < vma->vm_end) &&
4870 (remainder >= pages_per_huge_page(h))) {
4871 vaddr += huge_page_size(h);
4872 remainder -= pages_per_huge_page(h);
4873 i += pages_per_huge_page(h);
4874 spin_unlock(ptl);
4875 continue;
4876 }
4877
d5d4b0aa 4878same_page:
d6692183 4879 if (pages) {
2a15efc9 4880 pages[i] = mem_map_offset(page, pfn_offset);
3faa52c0
JH
4881 /*
4882 * try_grab_page() should always succeed here, because:
4883 * a) we hold the ptl lock, and b) we've just checked
4884 * that the huge page is present in the page tables. If
4885 * the huge page is present, then the tail pages must
4886 * also be present. The ptl prevents the head page and
4887 * tail pages from being rearranged in any way. So this
4888 * page must be available at this point, unless the page
4889 * refcount overflowed:
4890 */
4891 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4892 spin_unlock(ptl);
4893 remainder = 0;
4894 err = -ENOMEM;
4895 break;
4896 }
d6692183 4897 }
63551ae0
DG
4898
4899 if (vmas)
4900 vmas[i] = vma;
4901
4902 vaddr += PAGE_SIZE;
d5d4b0aa 4903 ++pfn_offset;
63551ae0
DG
4904 --remainder;
4905 ++i;
d5d4b0aa 4906 if (vaddr < vma->vm_end && remainder &&
a5516438 4907 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4908 /*
4909 * We use pfn_offset to avoid touching the pageframes
4910 * of this compound page.
4911 */
4912 goto same_page;
4913 }
cb900f41 4914 spin_unlock(ptl);
63551ae0 4915 }
28a35716 4916 *nr_pages = remainder;
87ffc118
AA
4917 /*
4918 * setting position is actually required only if remainder is
4919 * not zero but it's faster not to add a "if (remainder)"
4920 * branch.
4921 */
63551ae0
DG
4922 *position = vaddr;
4923
2be7cfed 4924 return i ? i : err;
63551ae0 4925}
8f860591 4926
5491ae7b
AK
4927#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4928/*
4929 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4930 * implement this.
4931 */
4932#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4933#endif
4934
7da4d641 4935unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4936 unsigned long address, unsigned long end, pgprot_t newprot)
4937{
4938 struct mm_struct *mm = vma->vm_mm;
4939 unsigned long start = address;
4940 pte_t *ptep;
4941 pte_t pte;
a5516438 4942 struct hstate *h = hstate_vma(vma);
7da4d641 4943 unsigned long pages = 0;
dff11abe 4944 bool shared_pmd = false;
ac46d4f3 4945 struct mmu_notifier_range range;
dff11abe
MK
4946
4947 /*
4948 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4949 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
4950 * range if PMD sharing is possible.
4951 */
7269f999
JG
4952 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4953 0, vma, mm, start, end);
ac46d4f3 4954 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
4955
4956 BUG_ON(address >= end);
ac46d4f3 4957 flush_cache_range(vma, range.start, range.end);
8f860591 4958
ac46d4f3 4959 mmu_notifier_invalidate_range_start(&range);
83cde9e8 4960 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4961 for (; address < end; address += huge_page_size(h)) {
cb900f41 4962 spinlock_t *ptl;
7868a208 4963 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4964 if (!ptep)
4965 continue;
cb900f41 4966 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 4967 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 4968 pages++;
cb900f41 4969 spin_unlock(ptl);
dff11abe 4970 shared_pmd = true;
39dde65c 4971 continue;
7da4d641 4972 }
a8bda28d
NH
4973 pte = huge_ptep_get(ptep);
4974 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4975 spin_unlock(ptl);
4976 continue;
4977 }
4978 if (unlikely(is_hugetlb_entry_migration(pte))) {
4979 swp_entry_t entry = pte_to_swp_entry(pte);
4980
4981 if (is_write_migration_entry(entry)) {
4982 pte_t newpte;
4983
4984 make_migration_entry_read(&entry);
4985 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4986 set_huge_swap_pte_at(mm, address, ptep,
4987 newpte, huge_page_size(h));
a8bda28d
NH
4988 pages++;
4989 }
4990 spin_unlock(ptl);
4991 continue;
4992 }
4993 if (!huge_pte_none(pte)) {
023bdd00
AK
4994 pte_t old_pte;
4995
4996 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4997 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 4998 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 4999 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5000 pages++;
8f860591 5001 }
cb900f41 5002 spin_unlock(ptl);
8f860591 5003 }
d833352a 5004 /*
c8c06efa 5005 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5006 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5007 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5008 * and that page table be reused and filled with junk. If we actually
5009 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5010 */
dff11abe 5011 if (shared_pmd)
ac46d4f3 5012 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5013 else
5014 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5015 /*
5016 * No need to call mmu_notifier_invalidate_range() we are downgrading
5017 * page table protection not changing it to point to a new page.
5018 *
ad56b738 5019 * See Documentation/vm/mmu_notifier.rst
0f10851e 5020 */
83cde9e8 5021 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5022 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5023
5024 return pages << h->order;
8f860591
ZY
5025}
5026
a1e78772
MG
5027int hugetlb_reserve_pages(struct inode *inode,
5028 long from, long to,
5a6fe125 5029 struct vm_area_struct *vma,
ca16d140 5030 vm_flags_t vm_flags)
e4e574b7 5031{
0db9d74e 5032 long ret, chg, add = -1;
a5516438 5033 struct hstate *h = hstate_inode(inode);
90481622 5034 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5035 struct resv_map *resv_map;
075a61d0 5036 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5037 long gbl_reserve, regions_needed = 0;
e4e574b7 5038
63489f8e
MK
5039 /* This should never happen */
5040 if (from > to) {
5041 VM_WARN(1, "%s called with a negative range\n", __func__);
5042 return -EINVAL;
5043 }
5044
17c9d12e
MG
5045 /*
5046 * Only apply hugepage reservation if asked. At fault time, an
5047 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5048 * without using reserves
17c9d12e 5049 */
ca16d140 5050 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
5051 return 0;
5052
a1e78772
MG
5053 /*
5054 * Shared mappings base their reservation on the number of pages that
5055 * are already allocated on behalf of the file. Private mappings need
5056 * to reserve the full area even if read-only as mprotect() may be
5057 * called to make the mapping read-write. Assume !vma is a shm mapping
5058 */
9119a41e 5059 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5060 /*
5061 * resv_map can not be NULL as hugetlb_reserve_pages is only
5062 * called for inodes for which resv_maps were created (see
5063 * hugetlbfs_get_inode).
5064 */
4e35f483 5065 resv_map = inode_resv_map(inode);
9119a41e 5066
0db9d74e 5067 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5068
5069 } else {
e9fe92ae 5070 /* Private mapping. */
9119a41e 5071 resv_map = resv_map_alloc();
17c9d12e
MG
5072 if (!resv_map)
5073 return -ENOMEM;
5074
a1e78772 5075 chg = to - from;
84afd99b 5076
17c9d12e
MG
5077 set_vma_resv_map(vma, resv_map);
5078 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5079 }
5080
c50ac050
DH
5081 if (chg < 0) {
5082 ret = chg;
5083 goto out_err;
5084 }
8a630112 5085
075a61d0
MA
5086 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5087 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5088
5089 if (ret < 0) {
5090 ret = -ENOMEM;
5091 goto out_err;
5092 }
5093
5094 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5095 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5096 * of the resv_map.
5097 */
5098 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5099 }
5100
1c5ecae3
MK
5101 /*
5102 * There must be enough pages in the subpool for the mapping. If
5103 * the subpool has a minimum size, there may be some global
5104 * reservations already in place (gbl_reserve).
5105 */
5106 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5107 if (gbl_reserve < 0) {
c50ac050 5108 ret = -ENOSPC;
075a61d0 5109 goto out_uncharge_cgroup;
c50ac050 5110 }
5a6fe125
MG
5111
5112 /*
17c9d12e 5113 * Check enough hugepages are available for the reservation.
90481622 5114 * Hand the pages back to the subpool if there are not
5a6fe125 5115 */
1c5ecae3 5116 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 5117 if (ret < 0) {
075a61d0 5118 goto out_put_pages;
68842c9b 5119 }
17c9d12e
MG
5120
5121 /*
5122 * Account for the reservations made. Shared mappings record regions
5123 * that have reservations as they are shared by multiple VMAs.
5124 * When the last VMA disappears, the region map says how much
5125 * the reservation was and the page cache tells how much of
5126 * the reservation was consumed. Private mappings are per-VMA and
5127 * only the consumed reservations are tracked. When the VMA
5128 * disappears, the original reservation is the VMA size and the
5129 * consumed reservations are stored in the map. Hence, nothing
5130 * else has to be done for private mappings here
5131 */
33039678 5132 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5133 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5134
5135 if (unlikely(add < 0)) {
5136 hugetlb_acct_memory(h, -gbl_reserve);
7fc2513a 5137 ret = add;
075a61d0 5138 goto out_put_pages;
0db9d74e 5139 } else if (unlikely(chg > add)) {
33039678
MK
5140 /*
5141 * pages in this range were added to the reserve
5142 * map between region_chg and region_add. This
5143 * indicates a race with alloc_huge_page. Adjust
5144 * the subpool and reserve counts modified above
5145 * based on the difference.
5146 */
5147 long rsv_adjust;
5148
075a61d0
MA
5149 hugetlb_cgroup_uncharge_cgroup_rsvd(
5150 hstate_index(h),
5151 (chg - add) * pages_per_huge_page(h), h_cg);
5152
33039678
MK
5153 rsv_adjust = hugepage_subpool_put_pages(spool,
5154 chg - add);
5155 hugetlb_acct_memory(h, -rsv_adjust);
5156 }
5157 }
a43a8c39 5158 return 0;
075a61d0
MA
5159out_put_pages:
5160 /* put back original number of pages, chg */
5161 (void)hugepage_subpool_put_pages(spool, chg);
5162out_uncharge_cgroup:
5163 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5164 chg * pages_per_huge_page(h), h_cg);
c50ac050 5165out_err:
5e911373 5166 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5167 /* Only call region_abort if the region_chg succeeded but the
5168 * region_add failed or didn't run.
5169 */
5170 if (chg >= 0 && add < 0)
5171 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5172 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5173 kref_put(&resv_map->refs, resv_map_release);
c50ac050 5174 return ret;
a43a8c39
KC
5175}
5176
b5cec28d
MK
5177long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5178 long freed)
a43a8c39 5179{
a5516438 5180 struct hstate *h = hstate_inode(inode);
4e35f483 5181 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5182 long chg = 0;
90481622 5183 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5184 long gbl_reserve;
45c682a6 5185
f27a5136
MK
5186 /*
5187 * Since this routine can be called in the evict inode path for all
5188 * hugetlbfs inodes, resv_map could be NULL.
5189 */
b5cec28d
MK
5190 if (resv_map) {
5191 chg = region_del(resv_map, start, end);
5192 /*
5193 * region_del() can fail in the rare case where a region
5194 * must be split and another region descriptor can not be
5195 * allocated. If end == LONG_MAX, it will not fail.
5196 */
5197 if (chg < 0)
5198 return chg;
5199 }
5200
45c682a6 5201 spin_lock(&inode->i_lock);
e4c6f8be 5202 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5203 spin_unlock(&inode->i_lock);
5204
1c5ecae3
MK
5205 /*
5206 * If the subpool has a minimum size, the number of global
5207 * reservations to be released may be adjusted.
5208 */
5209 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5210 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5211
5212 return 0;
a43a8c39 5213}
93f70f90 5214
3212b535
SC
5215#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5216static unsigned long page_table_shareable(struct vm_area_struct *svma,
5217 struct vm_area_struct *vma,
5218 unsigned long addr, pgoff_t idx)
5219{
5220 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5221 svma->vm_start;
5222 unsigned long sbase = saddr & PUD_MASK;
5223 unsigned long s_end = sbase + PUD_SIZE;
5224
5225 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5226 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5227 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5228
5229 /*
5230 * match the virtual addresses, permission and the alignment of the
5231 * page table page.
5232 */
5233 if (pmd_index(addr) != pmd_index(saddr) ||
5234 vm_flags != svm_flags ||
5235 sbase < svma->vm_start || svma->vm_end < s_end)
5236 return 0;
5237
5238 return saddr;
5239}
5240
31aafb45 5241static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5242{
5243 unsigned long base = addr & PUD_MASK;
5244 unsigned long end = base + PUD_SIZE;
5245
5246 /*
5247 * check on proper vm_flags and page table alignment
5248 */
017b1660 5249 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5250 return true;
5251 return false;
3212b535
SC
5252}
5253
017b1660
MK
5254/*
5255 * Determine if start,end range within vma could be mapped by shared pmd.
5256 * If yes, adjust start and end to cover range associated with possible
5257 * shared pmd mappings.
5258 */
5259void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5260 unsigned long *start, unsigned long *end)
5261{
75802ca6 5262 unsigned long a_start, a_end;
017b1660
MK
5263
5264 if (!(vma->vm_flags & VM_MAYSHARE))
5265 return;
5266
75802ca6
PX
5267 /* Extend the range to be PUD aligned for a worst case scenario */
5268 a_start = ALIGN_DOWN(*start, PUD_SIZE);
5269 a_end = ALIGN(*end, PUD_SIZE);
017b1660 5270
75802ca6
PX
5271 /*
5272 * Intersect the range with the vma range, since pmd sharing won't be
5273 * across vma after all
5274 */
5275 *start = max(vma->vm_start, a_start);
5276 *end = min(vma->vm_end, a_end);
017b1660
MK
5277}
5278
3212b535
SC
5279/*
5280 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5281 * and returns the corresponding pte. While this is not necessary for the
5282 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5283 * code much cleaner.
5284 *
0bf7b64e
MK
5285 * This routine must be called with i_mmap_rwsem held in at least read mode if
5286 * sharing is possible. For hugetlbfs, this prevents removal of any page
5287 * table entries associated with the address space. This is important as we
5288 * are setting up sharing based on existing page table entries (mappings).
5289 *
5290 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5291 * huge_pte_alloc know that sharing is not possible and do not take
5292 * i_mmap_rwsem as a performance optimization. This is handled by the
5293 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5294 * only required for subsequent processing.
3212b535
SC
5295 */
5296pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5297{
5298 struct vm_area_struct *vma = find_vma(mm, addr);
5299 struct address_space *mapping = vma->vm_file->f_mapping;
5300 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5301 vma->vm_pgoff;
5302 struct vm_area_struct *svma;
5303 unsigned long saddr;
5304 pte_t *spte = NULL;
5305 pte_t *pte;
cb900f41 5306 spinlock_t *ptl;
3212b535
SC
5307
5308 if (!vma_shareable(vma, addr))
5309 return (pte_t *)pmd_alloc(mm, pud, addr);
5310
0bf7b64e 5311 i_mmap_assert_locked(mapping);
3212b535
SC
5312 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5313 if (svma == vma)
5314 continue;
5315
5316 saddr = page_table_shareable(svma, vma, addr, idx);
5317 if (saddr) {
7868a208
PA
5318 spte = huge_pte_offset(svma->vm_mm, saddr,
5319 vma_mmu_pagesize(svma));
3212b535
SC
5320 if (spte) {
5321 get_page(virt_to_page(spte));
5322 break;
5323 }
5324 }
5325 }
5326
5327 if (!spte)
5328 goto out;
5329
8bea8052 5330 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5331 if (pud_none(*pud)) {
3212b535
SC
5332 pud_populate(mm, pud,
5333 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5334 mm_inc_nr_pmds(mm);
dc6c9a35 5335 } else {
3212b535 5336 put_page(virt_to_page(spte));
dc6c9a35 5337 }
cb900f41 5338 spin_unlock(ptl);
3212b535
SC
5339out:
5340 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5341 return pte;
5342}
5343
5344/*
5345 * unmap huge page backed by shared pte.
5346 *
5347 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5348 * indicated by page_count > 1, unmap is achieved by clearing pud and
5349 * decrementing the ref count. If count == 1, the pte page is not shared.
5350 *
c0d0381a 5351 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5352 *
5353 * returns: 1 successfully unmapped a shared pte page
5354 * 0 the underlying pte page is not shared, or it is the last user
5355 */
34ae204f
MK
5356int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5357 unsigned long *addr, pte_t *ptep)
3212b535
SC
5358{
5359 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5360 p4d_t *p4d = p4d_offset(pgd, *addr);
5361 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5362
34ae204f 5363 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5364 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5365 if (page_count(virt_to_page(ptep)) == 1)
5366 return 0;
5367
5368 pud_clear(pud);
5369 put_page(virt_to_page(ptep));
dc6c9a35 5370 mm_dec_nr_pmds(mm);
3212b535
SC
5371 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5372 return 1;
5373}
9e5fc74c
SC
5374#define want_pmd_share() (1)
5375#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5376pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5377{
5378 return NULL;
5379}
e81f2d22 5380
34ae204f
MK
5381int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5382 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5383{
5384 return 0;
5385}
017b1660
MK
5386
5387void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5388 unsigned long *start, unsigned long *end)
5389{
5390}
9e5fc74c 5391#define want_pmd_share() (0)
3212b535
SC
5392#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5393
9e5fc74c
SC
5394#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5395pte_t *huge_pte_alloc(struct mm_struct *mm,
5396 unsigned long addr, unsigned long sz)
5397{
5398 pgd_t *pgd;
c2febafc 5399 p4d_t *p4d;
9e5fc74c
SC
5400 pud_t *pud;
5401 pte_t *pte = NULL;
5402
5403 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5404 p4d = p4d_alloc(mm, pgd, addr);
5405 if (!p4d)
5406 return NULL;
c2febafc 5407 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5408 if (pud) {
5409 if (sz == PUD_SIZE) {
5410 pte = (pte_t *)pud;
5411 } else {
5412 BUG_ON(sz != PMD_SIZE);
5413 if (want_pmd_share() && pud_none(*pud))
5414 pte = huge_pmd_share(mm, addr, pud);
5415 else
5416 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5417 }
5418 }
4e666314 5419 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5420
5421 return pte;
5422}
5423
9b19df29
PA
5424/*
5425 * huge_pte_offset() - Walk the page table to resolve the hugepage
5426 * entry at address @addr
5427 *
8ac0b81a
LX
5428 * Return: Pointer to page table entry (PUD or PMD) for
5429 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5430 * size @sz doesn't match the hugepage size at this level of the page
5431 * table.
5432 */
7868a208
PA
5433pte_t *huge_pte_offset(struct mm_struct *mm,
5434 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5435{
5436 pgd_t *pgd;
c2febafc 5437 p4d_t *p4d;
8ac0b81a
LX
5438 pud_t *pud;
5439 pmd_t *pmd;
9e5fc74c
SC
5440
5441 pgd = pgd_offset(mm, addr);
c2febafc
KS
5442 if (!pgd_present(*pgd))
5443 return NULL;
5444 p4d = p4d_offset(pgd, addr);
5445 if (!p4d_present(*p4d))
5446 return NULL;
9b19df29 5447
c2febafc 5448 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5449 if (sz == PUD_SIZE)
5450 /* must be pud huge, non-present or none */
c2febafc 5451 return (pte_t *)pud;
8ac0b81a 5452 if (!pud_present(*pud))
9b19df29 5453 return NULL;
8ac0b81a 5454 /* must have a valid entry and size to go further */
9b19df29 5455
8ac0b81a
LX
5456 pmd = pmd_offset(pud, addr);
5457 /* must be pmd huge, non-present or none */
5458 return (pte_t *)pmd;
9e5fc74c
SC
5459}
5460
61f77eda
NH
5461#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5462
5463/*
5464 * These functions are overwritable if your architecture needs its own
5465 * behavior.
5466 */
5467struct page * __weak
5468follow_huge_addr(struct mm_struct *mm, unsigned long address,
5469 int write)
5470{
5471 return ERR_PTR(-EINVAL);
5472}
5473
4dc71451
AK
5474struct page * __weak
5475follow_huge_pd(struct vm_area_struct *vma,
5476 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5477{
5478 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5479 return NULL;
5480}
5481
61f77eda 5482struct page * __weak
9e5fc74c 5483follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5484 pmd_t *pmd, int flags)
9e5fc74c 5485{
e66f17ff
NH
5486 struct page *page = NULL;
5487 spinlock_t *ptl;
c9d398fa 5488 pte_t pte;
3faa52c0
JH
5489
5490 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5491 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5492 (FOLL_PIN | FOLL_GET)))
5493 return NULL;
5494
e66f17ff
NH
5495retry:
5496 ptl = pmd_lockptr(mm, pmd);
5497 spin_lock(ptl);
5498 /*
5499 * make sure that the address range covered by this pmd is not
5500 * unmapped from other threads.
5501 */
5502 if (!pmd_huge(*pmd))
5503 goto out;
c9d398fa
NH
5504 pte = huge_ptep_get((pte_t *)pmd);
5505 if (pte_present(pte)) {
97534127 5506 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5507 /*
5508 * try_grab_page() should always succeed here, because: a) we
5509 * hold the pmd (ptl) lock, and b) we've just checked that the
5510 * huge pmd (head) page is present in the page tables. The ptl
5511 * prevents the head page and tail pages from being rearranged
5512 * in any way. So this page must be available at this point,
5513 * unless the page refcount overflowed:
5514 */
5515 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5516 page = NULL;
5517 goto out;
5518 }
e66f17ff 5519 } else {
c9d398fa 5520 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5521 spin_unlock(ptl);
5522 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5523 goto retry;
5524 }
5525 /*
5526 * hwpoisoned entry is treated as no_page_table in
5527 * follow_page_mask().
5528 */
5529 }
5530out:
5531 spin_unlock(ptl);
9e5fc74c
SC
5532 return page;
5533}
5534
61f77eda 5535struct page * __weak
9e5fc74c 5536follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5537 pud_t *pud, int flags)
9e5fc74c 5538{
3faa52c0 5539 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5540 return NULL;
9e5fc74c 5541
e66f17ff 5542 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5543}
5544
faaa5b62
AK
5545struct page * __weak
5546follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5547{
3faa52c0 5548 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5549 return NULL;
5550
5551 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5552}
5553
31caf665
NH
5554bool isolate_huge_page(struct page *page, struct list_head *list)
5555{
bcc54222
NH
5556 bool ret = true;
5557
309381fe 5558 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5559 spin_lock(&hugetlb_lock);
bcc54222
NH
5560 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5561 ret = false;
5562 goto unlock;
5563 }
5564 clear_page_huge_active(page);
31caf665 5565 list_move_tail(&page->lru, list);
bcc54222 5566unlock:
31caf665 5567 spin_unlock(&hugetlb_lock);
bcc54222 5568 return ret;
31caf665
NH
5569}
5570
5571void putback_active_hugepage(struct page *page)
5572{
309381fe 5573 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5574 spin_lock(&hugetlb_lock);
bcc54222 5575 set_page_huge_active(page);
31caf665
NH
5576 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5577 spin_unlock(&hugetlb_lock);
5578 put_page(page);
5579}
ab5ac90a
MH
5580
5581void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5582{
5583 struct hstate *h = page_hstate(oldpage);
5584
5585 hugetlb_cgroup_migrate(oldpage, newpage);
5586 set_page_owner_migrate_reason(newpage, reason);
5587
5588 /*
5589 * transfer temporary state of the new huge page. This is
5590 * reverse to other transitions because the newpage is going to
5591 * be final while the old one will be freed so it takes over
5592 * the temporary status.
5593 *
5594 * Also note that we have to transfer the per-node surplus state
5595 * here as well otherwise the global surplus count will not match
5596 * the per-node's.
5597 */
5598 if (PageHugeTemporary(newpage)) {
5599 int old_nid = page_to_nid(oldpage);
5600 int new_nid = page_to_nid(newpage);
5601
5602 SetPageHugeTemporary(oldpage);
5603 ClearPageHugeTemporary(newpage);
5604
5605 spin_lock(&hugetlb_lock);
5606 if (h->surplus_huge_pages_node[old_nid]) {
5607 h->surplus_huge_pages_node[old_nid]--;
5608 h->surplus_huge_pages_node[new_nid]++;
5609 }
5610 spin_unlock(&hugetlb_lock);
5611 }
5612}
cf11e85f
RG
5613
5614#ifdef CONFIG_CMA
cf11e85f
RG
5615static bool cma_reserve_called __initdata;
5616
5617static int __init cmdline_parse_hugetlb_cma(char *p)
5618{
5619 hugetlb_cma_size = memparse(p, &p);
5620 return 0;
5621}
5622
5623early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5624
5625void __init hugetlb_cma_reserve(int order)
5626{
5627 unsigned long size, reserved, per_node;
5628 int nid;
5629
5630 cma_reserve_called = true;
5631
5632 if (!hugetlb_cma_size)
5633 return;
5634
5635 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5636 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5637 (PAGE_SIZE << order) / SZ_1M);
5638 return;
5639 }
5640
5641 /*
5642 * If 3 GB area is requested on a machine with 4 numa nodes,
5643 * let's allocate 1 GB on first three nodes and ignore the last one.
5644 */
5645 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5646 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5647 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5648
5649 reserved = 0;
5650 for_each_node_state(nid, N_ONLINE) {
5651 int res;
2281f797 5652 char name[CMA_MAX_NAME];
cf11e85f
RG
5653
5654 size = min(per_node, hugetlb_cma_size - reserved);
5655 size = round_up(size, PAGE_SIZE << order);
5656
2281f797 5657 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 5658 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 5659 0, false, name,
cf11e85f
RG
5660 &hugetlb_cma[nid], nid);
5661 if (res) {
5662 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5663 res, nid);
5664 continue;
5665 }
5666
5667 reserved += size;
5668 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5669 size / SZ_1M, nid);
5670
5671 if (reserved >= hugetlb_cma_size)
5672 break;
5673 }
5674}
5675
5676void __init hugetlb_cma_check(void)
5677{
5678 if (!hugetlb_cma_size || cma_reserve_called)
5679 return;
5680
5681 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5682}
5683
5684#endif /* CONFIG_CMA */