]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
kthread: prevent deadlock when kthread_mod_delayed_work() races with kthread_cancel_d...
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
ab5ac90a 42#include <linux/page_owner.h>
7835e98b 43#include "internal.h"
1da177e4 44
c3f38a38 45int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
46unsigned int default_hstate_idx;
47struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 48
dbda8fea 49#ifdef CONFIG_CMA
cf11e85f 50static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
51#endif
52static unsigned long hugetlb_cma_size __initdata;
cf11e85f 53
641844f5
NH
54/*
55 * Minimum page order among possible hugepage sizes, set to a proper value
56 * at boot time.
57 */
58static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 59
53ba51d2
JT
60__initdata LIST_HEAD(huge_boot_pages);
61
e5ff2159
AK
62/* for command line parsing */
63static struct hstate * __initdata parsed_hstate;
64static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 65static bool __initdata parsed_valid_hugepagesz = true;
282f4214 66static bool __initdata parsed_default_hugepagesz;
e5ff2159 67
3935baa9 68/*
31caf665
NH
69 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
70 * free_huge_pages, and surplus_huge_pages.
3935baa9 71 */
c3f38a38 72DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 73
8382d914
DB
74/*
75 * Serializes faults on the same logical page. This is used to
76 * prevent spurious OOMs when the hugepage pool is fully utilized.
77 */
78static int num_fault_mutexes;
c672c7f2 79struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 80
7ca02d0a
MK
81/* Forward declaration */
82static int hugetlb_acct_memory(struct hstate *h, long delta);
83
1d88433b 84static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 85{
1d88433b
ML
86 if (spool->count)
87 return false;
88 if (spool->max_hpages != -1)
89 return spool->used_hpages == 0;
90 if (spool->min_hpages != -1)
91 return spool->rsv_hpages == spool->min_hpages;
92
93 return true;
94}
90481622 95
db71ef79
MK
96static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
97 unsigned long irq_flags)
1d88433b 98{
db71ef79 99 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
100
101 /* If no pages are used, and no other handles to the subpool
7c8de358 102 * remain, give up any reservations based on minimum size and
7ca02d0a 103 * free the subpool */
1d88433b 104 if (subpool_is_free(spool)) {
7ca02d0a
MK
105 if (spool->min_hpages != -1)
106 hugetlb_acct_memory(spool->hstate,
107 -spool->min_hpages);
90481622 108 kfree(spool);
7ca02d0a 109 }
90481622
DG
110}
111
7ca02d0a
MK
112struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113 long min_hpages)
90481622
DG
114{
115 struct hugepage_subpool *spool;
116
c6a91820 117 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
118 if (!spool)
119 return NULL;
120
121 spin_lock_init(&spool->lock);
122 spool->count = 1;
7ca02d0a
MK
123 spool->max_hpages = max_hpages;
124 spool->hstate = h;
125 spool->min_hpages = min_hpages;
126
127 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128 kfree(spool);
129 return NULL;
130 }
131 spool->rsv_hpages = min_hpages;
90481622
DG
132
133 return spool;
134}
135
136void hugepage_put_subpool(struct hugepage_subpool *spool)
137{
db71ef79
MK
138 unsigned long flags;
139
140 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
141 BUG_ON(!spool->count);
142 spool->count--;
db71ef79 143 unlock_or_release_subpool(spool, flags);
90481622
DG
144}
145
1c5ecae3
MK
146/*
147 * Subpool accounting for allocating and reserving pages.
148 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 149 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
150 * global pools must be adjusted (upward). The returned value may
151 * only be different than the passed value (delta) in the case where
7c8de358 152 * a subpool minimum size must be maintained.
1c5ecae3
MK
153 */
154static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
155 long delta)
156{
1c5ecae3 157 long ret = delta;
90481622
DG
158
159 if (!spool)
1c5ecae3 160 return ret;
90481622 161
db71ef79 162 spin_lock_irq(&spool->lock);
1c5ecae3
MK
163
164 if (spool->max_hpages != -1) { /* maximum size accounting */
165 if ((spool->used_hpages + delta) <= spool->max_hpages)
166 spool->used_hpages += delta;
167 else {
168 ret = -ENOMEM;
169 goto unlock_ret;
170 }
90481622 171 }
90481622 172
09a95e29
MK
173 /* minimum size accounting */
174 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
175 if (delta > spool->rsv_hpages) {
176 /*
177 * Asking for more reserves than those already taken on
178 * behalf of subpool. Return difference.
179 */
180 ret = delta - spool->rsv_hpages;
181 spool->rsv_hpages = 0;
182 } else {
183 ret = 0; /* reserves already accounted for */
184 spool->rsv_hpages -= delta;
185 }
186 }
187
188unlock_ret:
db71ef79 189 spin_unlock_irq(&spool->lock);
90481622
DG
190 return ret;
191}
192
1c5ecae3
MK
193/*
194 * Subpool accounting for freeing and unreserving pages.
195 * Return the number of global page reservations that must be dropped.
196 * The return value may only be different than the passed value (delta)
197 * in the case where a subpool minimum size must be maintained.
198 */
199static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
200 long delta)
201{
1c5ecae3 202 long ret = delta;
db71ef79 203 unsigned long flags;
1c5ecae3 204
90481622 205 if (!spool)
1c5ecae3 206 return delta;
90481622 207
db71ef79 208 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
209
210 if (spool->max_hpages != -1) /* maximum size accounting */
211 spool->used_hpages -= delta;
212
09a95e29
MK
213 /* minimum size accounting */
214 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
215 if (spool->rsv_hpages + delta <= spool->min_hpages)
216 ret = 0;
217 else
218 ret = spool->rsv_hpages + delta - spool->min_hpages;
219
220 spool->rsv_hpages += delta;
221 if (spool->rsv_hpages > spool->min_hpages)
222 spool->rsv_hpages = spool->min_hpages;
223 }
224
225 /*
226 * If hugetlbfs_put_super couldn't free spool due to an outstanding
227 * quota reference, free it now.
228 */
db71ef79 229 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
230
231 return ret;
90481622
DG
232}
233
234static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
235{
236 return HUGETLBFS_SB(inode->i_sb)->spool;
237}
238
239static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
240{
496ad9aa 241 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
242}
243
0db9d74e
MA
244/* Helper that removes a struct file_region from the resv_map cache and returns
245 * it for use.
246 */
247static struct file_region *
248get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
249{
250 struct file_region *nrg = NULL;
251
252 VM_BUG_ON(resv->region_cache_count <= 0);
253
254 resv->region_cache_count--;
255 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
256 list_del(&nrg->link);
257
258 nrg->from = from;
259 nrg->to = to;
260
261 return nrg;
262}
263
075a61d0
MA
264static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
265 struct file_region *rg)
266{
267#ifdef CONFIG_CGROUP_HUGETLB
268 nrg->reservation_counter = rg->reservation_counter;
269 nrg->css = rg->css;
270 if (rg->css)
271 css_get(rg->css);
272#endif
273}
274
275/* Helper that records hugetlb_cgroup uncharge info. */
276static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
277 struct hstate *h,
278 struct resv_map *resv,
279 struct file_region *nrg)
280{
281#ifdef CONFIG_CGROUP_HUGETLB
282 if (h_cg) {
283 nrg->reservation_counter =
284 &h_cg->rsvd_hugepage[hstate_index(h)];
285 nrg->css = &h_cg->css;
d85aecf2
ML
286 /*
287 * The caller will hold exactly one h_cg->css reference for the
288 * whole contiguous reservation region. But this area might be
289 * scattered when there are already some file_regions reside in
290 * it. As a result, many file_regions may share only one css
291 * reference. In order to ensure that one file_region must hold
292 * exactly one h_cg->css reference, we should do css_get for
293 * each file_region and leave the reference held by caller
294 * untouched.
295 */
296 css_get(&h_cg->css);
075a61d0
MA
297 if (!resv->pages_per_hpage)
298 resv->pages_per_hpage = pages_per_huge_page(h);
299 /* pages_per_hpage should be the same for all entries in
300 * a resv_map.
301 */
302 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
303 } else {
304 nrg->reservation_counter = NULL;
305 nrg->css = NULL;
306 }
307#endif
308}
309
d85aecf2
ML
310static void put_uncharge_info(struct file_region *rg)
311{
312#ifdef CONFIG_CGROUP_HUGETLB
313 if (rg->css)
314 css_put(rg->css);
315#endif
316}
317
a9b3f867
MA
318static bool has_same_uncharge_info(struct file_region *rg,
319 struct file_region *org)
320{
321#ifdef CONFIG_CGROUP_HUGETLB
322 return rg && org &&
323 rg->reservation_counter == org->reservation_counter &&
324 rg->css == org->css;
325
326#else
327 return true;
328#endif
329}
330
331static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
332{
333 struct file_region *nrg = NULL, *prg = NULL;
334
335 prg = list_prev_entry(rg, link);
336 if (&prg->link != &resv->regions && prg->to == rg->from &&
337 has_same_uncharge_info(prg, rg)) {
338 prg->to = rg->to;
339
340 list_del(&rg->link);
d85aecf2 341 put_uncharge_info(rg);
a9b3f867
MA
342 kfree(rg);
343
7db5e7b6 344 rg = prg;
a9b3f867
MA
345 }
346
347 nrg = list_next_entry(rg, link);
348 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
349 has_same_uncharge_info(nrg, rg)) {
350 nrg->from = rg->from;
351
352 list_del(&rg->link);
d85aecf2 353 put_uncharge_info(rg);
a9b3f867 354 kfree(rg);
a9b3f867
MA
355 }
356}
357
2103cf9c
PX
358static inline long
359hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
360 long to, struct hstate *h, struct hugetlb_cgroup *cg,
361 long *regions_needed)
362{
363 struct file_region *nrg;
364
365 if (!regions_needed) {
366 nrg = get_file_region_entry_from_cache(map, from, to);
367 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
368 list_add(&nrg->link, rg->link.prev);
369 coalesce_file_region(map, nrg);
370 } else
371 *regions_needed += 1;
372
373 return to - from;
374}
375
972a3da3
WY
376/*
377 * Must be called with resv->lock held.
378 *
379 * Calling this with regions_needed != NULL will count the number of pages
380 * to be added but will not modify the linked list. And regions_needed will
381 * indicate the number of file_regions needed in the cache to carry out to add
382 * the regions for this range.
d75c6af9
MA
383 */
384static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 385 struct hugetlb_cgroup *h_cg,
972a3da3 386 struct hstate *h, long *regions_needed)
d75c6af9 387{
0db9d74e 388 long add = 0;
d75c6af9 389 struct list_head *head = &resv->regions;
0db9d74e 390 long last_accounted_offset = f;
2103cf9c 391 struct file_region *rg = NULL, *trg = NULL;
d75c6af9 392
0db9d74e
MA
393 if (regions_needed)
394 *regions_needed = 0;
d75c6af9 395
0db9d74e
MA
396 /* In this loop, we essentially handle an entry for the range
397 * [last_accounted_offset, rg->from), at every iteration, with some
398 * bounds checking.
399 */
400 list_for_each_entry_safe(rg, trg, head, link) {
401 /* Skip irrelevant regions that start before our range. */
402 if (rg->from < f) {
403 /* If this region ends after the last accounted offset,
404 * then we need to update last_accounted_offset.
405 */
406 if (rg->to > last_accounted_offset)
407 last_accounted_offset = rg->to;
408 continue;
409 }
d75c6af9 410
0db9d74e
MA
411 /* When we find a region that starts beyond our range, we've
412 * finished.
413 */
ca7e0457 414 if (rg->from >= t)
d75c6af9
MA
415 break;
416
0db9d74e
MA
417 /* Add an entry for last_accounted_offset -> rg->from, and
418 * update last_accounted_offset.
419 */
2103cf9c
PX
420 if (rg->from > last_accounted_offset)
421 add += hugetlb_resv_map_add(resv, rg,
422 last_accounted_offset,
423 rg->from, h, h_cg,
424 regions_needed);
0db9d74e
MA
425
426 last_accounted_offset = rg->to;
427 }
428
429 /* Handle the case where our range extends beyond
430 * last_accounted_offset.
431 */
2103cf9c
PX
432 if (last_accounted_offset < t)
433 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
434 t, h, h_cg, regions_needed);
0db9d74e
MA
435
436 VM_BUG_ON(add < 0);
437 return add;
438}
439
440/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
441 */
442static int allocate_file_region_entries(struct resv_map *resv,
443 int regions_needed)
444 __must_hold(&resv->lock)
445{
446 struct list_head allocated_regions;
447 int to_allocate = 0, i = 0;
448 struct file_region *trg = NULL, *rg = NULL;
449
450 VM_BUG_ON(regions_needed < 0);
451
452 INIT_LIST_HEAD(&allocated_regions);
453
454 /*
455 * Check for sufficient descriptors in the cache to accommodate
456 * the number of in progress add operations plus regions_needed.
457 *
458 * This is a while loop because when we drop the lock, some other call
459 * to region_add or region_del may have consumed some region_entries,
460 * so we keep looping here until we finally have enough entries for
461 * (adds_in_progress + regions_needed).
462 */
463 while (resv->region_cache_count <
464 (resv->adds_in_progress + regions_needed)) {
465 to_allocate = resv->adds_in_progress + regions_needed -
466 resv->region_cache_count;
467
468 /* At this point, we should have enough entries in the cache
f0953a1b 469 * for all the existing adds_in_progress. We should only be
0db9d74e 470 * needing to allocate for regions_needed.
d75c6af9 471 */
0db9d74e
MA
472 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
473
474 spin_unlock(&resv->lock);
475 for (i = 0; i < to_allocate; i++) {
476 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
477 if (!trg)
478 goto out_of_memory;
479 list_add(&trg->link, &allocated_regions);
d75c6af9 480 }
d75c6af9 481
0db9d74e
MA
482 spin_lock(&resv->lock);
483
d3ec7b6e
WY
484 list_splice(&allocated_regions, &resv->region_cache);
485 resv->region_cache_count += to_allocate;
d75c6af9
MA
486 }
487
0db9d74e 488 return 0;
d75c6af9 489
0db9d74e
MA
490out_of_memory:
491 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
492 list_del(&rg->link);
493 kfree(rg);
494 }
495 return -ENOMEM;
d75c6af9
MA
496}
497
1dd308a7
MK
498/*
499 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
500 * map. Regions will be taken from the cache to fill in this range.
501 * Sufficient regions should exist in the cache due to the previous
502 * call to region_chg with the same range, but in some cases the cache will not
503 * have sufficient entries due to races with other code doing region_add or
504 * region_del. The extra needed entries will be allocated.
cf3ad20b 505 *
0db9d74e
MA
506 * regions_needed is the out value provided by a previous call to region_chg.
507 *
508 * Return the number of new huge pages added to the map. This number is greater
509 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 510 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
511 * region_add of regions of length 1 never allocate file_regions and cannot
512 * fail; region_chg will always allocate at least 1 entry and a region_add for
513 * 1 page will only require at most 1 entry.
1dd308a7 514 */
0db9d74e 515static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
516 long in_regions_needed, struct hstate *h,
517 struct hugetlb_cgroup *h_cg)
96822904 518{
0db9d74e 519 long add = 0, actual_regions_needed = 0;
96822904 520
7b24d861 521 spin_lock(&resv->lock);
0db9d74e
MA
522retry:
523
524 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
525 add_reservation_in_range(resv, f, t, NULL, NULL,
526 &actual_regions_needed);
96822904 527
5e911373 528 /*
0db9d74e
MA
529 * Check for sufficient descriptors in the cache to accommodate
530 * this add operation. Note that actual_regions_needed may be greater
531 * than in_regions_needed, as the resv_map may have been modified since
532 * the region_chg call. In this case, we need to make sure that we
533 * allocate extra entries, such that we have enough for all the
534 * existing adds_in_progress, plus the excess needed for this
535 * operation.
5e911373 536 */
0db9d74e
MA
537 if (actual_regions_needed > in_regions_needed &&
538 resv->region_cache_count <
539 resv->adds_in_progress +
540 (actual_regions_needed - in_regions_needed)) {
541 /* region_add operation of range 1 should never need to
542 * allocate file_region entries.
543 */
544 VM_BUG_ON(t - f <= 1);
5e911373 545
0db9d74e
MA
546 if (allocate_file_region_entries(
547 resv, actual_regions_needed - in_regions_needed)) {
548 return -ENOMEM;
549 }
5e911373 550
0db9d74e 551 goto retry;
5e911373
MK
552 }
553
972a3da3 554 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
555
556 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 557
7b24d861 558 spin_unlock(&resv->lock);
cf3ad20b 559 return add;
96822904
AW
560}
561
1dd308a7
MK
562/*
563 * Examine the existing reserve map and determine how many
564 * huge pages in the specified range [f, t) are NOT currently
565 * represented. This routine is called before a subsequent
566 * call to region_add that will actually modify the reserve
567 * map to add the specified range [f, t). region_chg does
568 * not change the number of huge pages represented by the
0db9d74e
MA
569 * map. A number of new file_region structures is added to the cache as a
570 * placeholder, for the subsequent region_add call to use. At least 1
571 * file_region structure is added.
572 *
573 * out_regions_needed is the number of regions added to the
574 * resv->adds_in_progress. This value needs to be provided to a follow up call
575 * to region_add or region_abort for proper accounting.
5e911373
MK
576 *
577 * Returns the number of huge pages that need to be added to the existing
578 * reservation map for the range [f, t). This number is greater or equal to
579 * zero. -ENOMEM is returned if a new file_region structure or cache entry
580 * is needed and can not be allocated.
1dd308a7 581 */
0db9d74e
MA
582static long region_chg(struct resv_map *resv, long f, long t,
583 long *out_regions_needed)
96822904 584{
96822904
AW
585 long chg = 0;
586
7b24d861 587 spin_lock(&resv->lock);
5e911373 588
972a3da3 589 /* Count how many hugepages in this range are NOT represented. */
075a61d0 590 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 591 out_regions_needed);
5e911373 592
0db9d74e
MA
593 if (*out_regions_needed == 0)
594 *out_regions_needed = 1;
5e911373 595
0db9d74e
MA
596 if (allocate_file_region_entries(resv, *out_regions_needed))
597 return -ENOMEM;
5e911373 598
0db9d74e 599 resv->adds_in_progress += *out_regions_needed;
7b24d861 600
7b24d861 601 spin_unlock(&resv->lock);
96822904
AW
602 return chg;
603}
604
5e911373
MK
605/*
606 * Abort the in progress add operation. The adds_in_progress field
607 * of the resv_map keeps track of the operations in progress between
608 * calls to region_chg and region_add. Operations are sometimes
609 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
610 * is called to decrement the adds_in_progress counter. regions_needed
611 * is the value returned by the region_chg call, it is used to decrement
612 * the adds_in_progress counter.
5e911373
MK
613 *
614 * NOTE: The range arguments [f, t) are not needed or used in this
615 * routine. They are kept to make reading the calling code easier as
616 * arguments will match the associated region_chg call.
617 */
0db9d74e
MA
618static void region_abort(struct resv_map *resv, long f, long t,
619 long regions_needed)
5e911373
MK
620{
621 spin_lock(&resv->lock);
622 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 623 resv->adds_in_progress -= regions_needed;
5e911373
MK
624 spin_unlock(&resv->lock);
625}
626
1dd308a7 627/*
feba16e2
MK
628 * Delete the specified range [f, t) from the reserve map. If the
629 * t parameter is LONG_MAX, this indicates that ALL regions after f
630 * should be deleted. Locate the regions which intersect [f, t)
631 * and either trim, delete or split the existing regions.
632 *
633 * Returns the number of huge pages deleted from the reserve map.
634 * In the normal case, the return value is zero or more. In the
635 * case where a region must be split, a new region descriptor must
636 * be allocated. If the allocation fails, -ENOMEM will be returned.
637 * NOTE: If the parameter t == LONG_MAX, then we will never split
638 * a region and possibly return -ENOMEM. Callers specifying
639 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 640 */
feba16e2 641static long region_del(struct resv_map *resv, long f, long t)
96822904 642{
1406ec9b 643 struct list_head *head = &resv->regions;
96822904 644 struct file_region *rg, *trg;
feba16e2
MK
645 struct file_region *nrg = NULL;
646 long del = 0;
96822904 647
feba16e2 648retry:
7b24d861 649 spin_lock(&resv->lock);
feba16e2 650 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
651 /*
652 * Skip regions before the range to be deleted. file_region
653 * ranges are normally of the form [from, to). However, there
654 * may be a "placeholder" entry in the map which is of the form
655 * (from, to) with from == to. Check for placeholder entries
656 * at the beginning of the range to be deleted.
657 */
658 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 659 continue;
dbe409e4 660
feba16e2 661 if (rg->from >= t)
96822904 662 break;
96822904 663
feba16e2
MK
664 if (f > rg->from && t < rg->to) { /* Must split region */
665 /*
666 * Check for an entry in the cache before dropping
667 * lock and attempting allocation.
668 */
669 if (!nrg &&
670 resv->region_cache_count > resv->adds_in_progress) {
671 nrg = list_first_entry(&resv->region_cache,
672 struct file_region,
673 link);
674 list_del(&nrg->link);
675 resv->region_cache_count--;
676 }
96822904 677
feba16e2
MK
678 if (!nrg) {
679 spin_unlock(&resv->lock);
680 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681 if (!nrg)
682 return -ENOMEM;
683 goto retry;
684 }
685
686 del += t - f;
79aa925b 687 hugetlb_cgroup_uncharge_file_region(
d85aecf2 688 resv, rg, t - f, false);
feba16e2
MK
689
690 /* New entry for end of split region */
691 nrg->from = t;
692 nrg->to = rg->to;
075a61d0
MA
693
694 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695
feba16e2
MK
696 INIT_LIST_HEAD(&nrg->link);
697
698 /* Original entry is trimmed */
699 rg->to = f;
700
701 list_add(&nrg->link, &rg->link);
702 nrg = NULL;
96822904 703 break;
feba16e2
MK
704 }
705
706 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707 del += rg->to - rg->from;
075a61d0 708 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 709 rg->to - rg->from, true);
feba16e2
MK
710 list_del(&rg->link);
711 kfree(rg);
712 continue;
713 }
714
715 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 716 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 717 t - rg->from, false);
075a61d0 718
79aa925b
MK
719 del += t - rg->from;
720 rg->from = t;
721 } else { /* Trim end of region */
075a61d0 722 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 723 rg->to - f, false);
79aa925b
MK
724
725 del += rg->to - f;
726 rg->to = f;
feba16e2 727 }
96822904 728 }
7b24d861 729
7b24d861 730 spin_unlock(&resv->lock);
feba16e2
MK
731 kfree(nrg);
732 return del;
96822904
AW
733}
734
b5cec28d
MK
735/*
736 * A rare out of memory error was encountered which prevented removal of
737 * the reserve map region for a page. The huge page itself was free'ed
738 * and removed from the page cache. This routine will adjust the subpool
739 * usage count, and the global reserve count if needed. By incrementing
740 * these counts, the reserve map entry which could not be deleted will
741 * appear as a "reserved" entry instead of simply dangling with incorrect
742 * counts.
743 */
72e2936c 744void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
745{
746 struct hugepage_subpool *spool = subpool_inode(inode);
747 long rsv_adjust;
da56388c 748 bool reserved = false;
b5cec28d
MK
749
750 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 751 if (rsv_adjust > 0) {
b5cec28d
MK
752 struct hstate *h = hstate_inode(inode);
753
da56388c
ML
754 if (!hugetlb_acct_memory(h, 1))
755 reserved = true;
756 } else if (!rsv_adjust) {
757 reserved = true;
b5cec28d 758 }
da56388c
ML
759
760 if (!reserved)
761 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
762}
763
1dd308a7
MK
764/*
765 * Count and return the number of huge pages in the reserve map
766 * that intersect with the range [f, t).
767 */
1406ec9b 768static long region_count(struct resv_map *resv, long f, long t)
84afd99b 769{
1406ec9b 770 struct list_head *head = &resv->regions;
84afd99b
AW
771 struct file_region *rg;
772 long chg = 0;
773
7b24d861 774 spin_lock(&resv->lock);
84afd99b
AW
775 /* Locate each segment we overlap with, and count that overlap. */
776 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
777 long seg_from;
778 long seg_to;
84afd99b
AW
779
780 if (rg->to <= f)
781 continue;
782 if (rg->from >= t)
783 break;
784
785 seg_from = max(rg->from, f);
786 seg_to = min(rg->to, t);
787
788 chg += seg_to - seg_from;
789 }
7b24d861 790 spin_unlock(&resv->lock);
84afd99b
AW
791
792 return chg;
793}
794
e7c4b0bf
AW
795/*
796 * Convert the address within this vma to the page offset within
797 * the mapping, in pagecache page units; huge pages here.
798 */
a5516438
AK
799static pgoff_t vma_hugecache_offset(struct hstate *h,
800 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 801{
a5516438
AK
802 return ((address - vma->vm_start) >> huge_page_shift(h)) +
803 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
804}
805
0fe6e20b
NH
806pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
807 unsigned long address)
808{
809 return vma_hugecache_offset(hstate_vma(vma), vma, address);
810}
dee41079 811EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 812
08fba699
MG
813/*
814 * Return the size of the pages allocated when backing a VMA. In the majority
815 * cases this will be same size as used by the page table entries.
816 */
817unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
818{
05ea8860
DW
819 if (vma->vm_ops && vma->vm_ops->pagesize)
820 return vma->vm_ops->pagesize(vma);
821 return PAGE_SIZE;
08fba699 822}
f340ca0f 823EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 824
3340289d
MG
825/*
826 * Return the page size being used by the MMU to back a VMA. In the majority
827 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
828 * architectures where it differs, an architecture-specific 'strong'
829 * version of this symbol is required.
3340289d 830 */
09135cc5 831__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
832{
833 return vma_kernel_pagesize(vma);
834}
3340289d 835
84afd99b
AW
836/*
837 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
838 * bits of the reservation map pointer, which are always clear due to
839 * alignment.
840 */
841#define HPAGE_RESV_OWNER (1UL << 0)
842#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 843#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 844
a1e78772
MG
845/*
846 * These helpers are used to track how many pages are reserved for
847 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
848 * is guaranteed to have their future faults succeed.
849 *
850 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
851 * the reserve counters are updated with the hugetlb_lock held. It is safe
852 * to reset the VMA at fork() time as it is not in use yet and there is no
853 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
854 *
855 * The private mapping reservation is represented in a subtly different
856 * manner to a shared mapping. A shared mapping has a region map associated
857 * with the underlying file, this region map represents the backing file
858 * pages which have ever had a reservation assigned which this persists even
859 * after the page is instantiated. A private mapping has a region map
860 * associated with the original mmap which is attached to all VMAs which
861 * reference it, this region map represents those offsets which have consumed
862 * reservation ie. where pages have been instantiated.
a1e78772 863 */
e7c4b0bf
AW
864static unsigned long get_vma_private_data(struct vm_area_struct *vma)
865{
866 return (unsigned long)vma->vm_private_data;
867}
868
869static void set_vma_private_data(struct vm_area_struct *vma,
870 unsigned long value)
871{
872 vma->vm_private_data = (void *)value;
873}
874
e9fe92ae
MA
875static void
876resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
877 struct hugetlb_cgroup *h_cg,
878 struct hstate *h)
879{
880#ifdef CONFIG_CGROUP_HUGETLB
881 if (!h_cg || !h) {
882 resv_map->reservation_counter = NULL;
883 resv_map->pages_per_hpage = 0;
884 resv_map->css = NULL;
885 } else {
886 resv_map->reservation_counter =
887 &h_cg->rsvd_hugepage[hstate_index(h)];
888 resv_map->pages_per_hpage = pages_per_huge_page(h);
889 resv_map->css = &h_cg->css;
890 }
891#endif
892}
893
9119a41e 894struct resv_map *resv_map_alloc(void)
84afd99b
AW
895{
896 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
897 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
898
899 if (!resv_map || !rg) {
900 kfree(resv_map);
901 kfree(rg);
84afd99b 902 return NULL;
5e911373 903 }
84afd99b
AW
904
905 kref_init(&resv_map->refs);
7b24d861 906 spin_lock_init(&resv_map->lock);
84afd99b
AW
907 INIT_LIST_HEAD(&resv_map->regions);
908
5e911373 909 resv_map->adds_in_progress = 0;
e9fe92ae
MA
910 /*
911 * Initialize these to 0. On shared mappings, 0's here indicate these
912 * fields don't do cgroup accounting. On private mappings, these will be
913 * re-initialized to the proper values, to indicate that hugetlb cgroup
914 * reservations are to be un-charged from here.
915 */
916 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
917
918 INIT_LIST_HEAD(&resv_map->region_cache);
919 list_add(&rg->link, &resv_map->region_cache);
920 resv_map->region_cache_count = 1;
921
84afd99b
AW
922 return resv_map;
923}
924
9119a41e 925void resv_map_release(struct kref *ref)
84afd99b
AW
926{
927 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
928 struct list_head *head = &resv_map->region_cache;
929 struct file_region *rg, *trg;
84afd99b
AW
930
931 /* Clear out any active regions before we release the map. */
feba16e2 932 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
933
934 /* ... and any entries left in the cache */
935 list_for_each_entry_safe(rg, trg, head, link) {
936 list_del(&rg->link);
937 kfree(rg);
938 }
939
940 VM_BUG_ON(resv_map->adds_in_progress);
941
84afd99b
AW
942 kfree(resv_map);
943}
944
4e35f483
JK
945static inline struct resv_map *inode_resv_map(struct inode *inode)
946{
f27a5136
MK
947 /*
948 * At inode evict time, i_mapping may not point to the original
949 * address space within the inode. This original address space
950 * contains the pointer to the resv_map. So, always use the
951 * address space embedded within the inode.
952 * The VERY common case is inode->mapping == &inode->i_data but,
953 * this may not be true for device special inodes.
954 */
955 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
956}
957
84afd99b 958static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 959{
81d1b09c 960 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
961 if (vma->vm_flags & VM_MAYSHARE) {
962 struct address_space *mapping = vma->vm_file->f_mapping;
963 struct inode *inode = mapping->host;
964
965 return inode_resv_map(inode);
966
967 } else {
84afd99b
AW
968 return (struct resv_map *)(get_vma_private_data(vma) &
969 ~HPAGE_RESV_MASK);
4e35f483 970 }
a1e78772
MG
971}
972
84afd99b 973static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 974{
81d1b09c
SL
975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 977
84afd99b
AW
978 set_vma_private_data(vma, (get_vma_private_data(vma) &
979 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
980}
981
982static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
983{
81d1b09c
SL
984 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
985 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
986
987 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
988}
989
990static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
991{
81d1b09c 992 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
993
994 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
995}
996
04f2cbe3 997/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
998void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
999{
81d1b09c 1000 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 1001 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
1002 vma->vm_private_data = (void *)0;
1003}
1004
1005/* Returns true if the VMA has associated reserve pages */
559ec2f8 1006static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1007{
af0ed73e
JK
1008 if (vma->vm_flags & VM_NORESERVE) {
1009 /*
1010 * This address is already reserved by other process(chg == 0),
1011 * so, we should decrement reserved count. Without decrementing,
1012 * reserve count remains after releasing inode, because this
1013 * allocated page will go into page cache and is regarded as
1014 * coming from reserved pool in releasing step. Currently, we
1015 * don't have any other solution to deal with this situation
1016 * properly, so add work-around here.
1017 */
1018 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1019 return true;
af0ed73e 1020 else
559ec2f8 1021 return false;
af0ed73e 1022 }
a63884e9
JK
1023
1024 /* Shared mappings always use reserves */
1fb1b0e9
MK
1025 if (vma->vm_flags & VM_MAYSHARE) {
1026 /*
1027 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1028 * be a region map for all pages. The only situation where
1029 * there is no region map is if a hole was punched via
7c8de358 1030 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1031 * use. This situation is indicated if chg != 0.
1032 */
1033 if (chg)
1034 return false;
1035 else
1036 return true;
1037 }
a63884e9
JK
1038
1039 /*
1040 * Only the process that called mmap() has reserves for
1041 * private mappings.
1042 */
67961f9d
MK
1043 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1044 /*
1045 * Like the shared case above, a hole punch or truncate
1046 * could have been performed on the private mapping.
1047 * Examine the value of chg to determine if reserves
1048 * actually exist or were previously consumed.
1049 * Very Subtle - The value of chg comes from a previous
1050 * call to vma_needs_reserves(). The reserve map for
1051 * private mappings has different (opposite) semantics
1052 * than that of shared mappings. vma_needs_reserves()
1053 * has already taken this difference in semantics into
1054 * account. Therefore, the meaning of chg is the same
1055 * as in the shared case above. Code could easily be
1056 * combined, but keeping it separate draws attention to
1057 * subtle differences.
1058 */
1059 if (chg)
1060 return false;
1061 else
1062 return true;
1063 }
a63884e9 1064
559ec2f8 1065 return false;
a1e78772
MG
1066}
1067
a5516438 1068static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1069{
1070 int nid = page_to_nid(page);
9487ca60
MK
1071
1072 lockdep_assert_held(&hugetlb_lock);
0edaecfa 1073 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1074 h->free_huge_pages++;
1075 h->free_huge_pages_node[nid]++;
6c037149 1076 SetHPageFreed(page);
1da177e4
LT
1077}
1078
94310cbc 1079static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1080{
1081 struct page *page;
1a08ae36 1082 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1083
9487ca60 1084 lockdep_assert_held(&hugetlb_lock);
bbe88753 1085 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
8e3560d9 1086 if (pin && !is_pinnable_page(page))
bbe88753 1087 continue;
bf50bab2 1088
6664bfc8
WY
1089 if (PageHWPoison(page))
1090 continue;
1091
1092 list_move(&page->lru, &h->hugepage_activelist);
1093 set_page_refcounted(page);
6c037149 1094 ClearHPageFreed(page);
6664bfc8
WY
1095 h->free_huge_pages--;
1096 h->free_huge_pages_node[nid]--;
1097 return page;
bbe88753
JK
1098 }
1099
6664bfc8 1100 return NULL;
bf50bab2
NH
1101}
1102
3e59fcb0
MH
1103static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1104 nodemask_t *nmask)
94310cbc 1105{
3e59fcb0
MH
1106 unsigned int cpuset_mems_cookie;
1107 struct zonelist *zonelist;
1108 struct zone *zone;
1109 struct zoneref *z;
98fa15f3 1110 int node = NUMA_NO_NODE;
94310cbc 1111
3e59fcb0
MH
1112 zonelist = node_zonelist(nid, gfp_mask);
1113
1114retry_cpuset:
1115 cpuset_mems_cookie = read_mems_allowed_begin();
1116 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1117 struct page *page;
1118
1119 if (!cpuset_zone_allowed(zone, gfp_mask))
1120 continue;
1121 /*
1122 * no need to ask again on the same node. Pool is node rather than
1123 * zone aware
1124 */
1125 if (zone_to_nid(zone) == node)
1126 continue;
1127 node = zone_to_nid(zone);
94310cbc 1128
94310cbc
AK
1129 page = dequeue_huge_page_node_exact(h, node);
1130 if (page)
1131 return page;
1132 }
3e59fcb0
MH
1133 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1134 goto retry_cpuset;
1135
94310cbc
AK
1136 return NULL;
1137}
1138
a5516438
AK
1139static struct page *dequeue_huge_page_vma(struct hstate *h,
1140 struct vm_area_struct *vma,
af0ed73e
JK
1141 unsigned long address, int avoid_reserve,
1142 long chg)
1da177e4 1143{
3e59fcb0 1144 struct page *page;
480eccf9 1145 struct mempolicy *mpol;
04ec6264 1146 gfp_t gfp_mask;
3e59fcb0 1147 nodemask_t *nodemask;
04ec6264 1148 int nid;
1da177e4 1149
a1e78772
MG
1150 /*
1151 * A child process with MAP_PRIVATE mappings created by their parent
1152 * have no page reserves. This check ensures that reservations are
1153 * not "stolen". The child may still get SIGKILLed
1154 */
af0ed73e 1155 if (!vma_has_reserves(vma, chg) &&
a5516438 1156 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1157 goto err;
a1e78772 1158
04f2cbe3 1159 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1160 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1161 goto err;
04f2cbe3 1162
04ec6264
VB
1163 gfp_mask = htlb_alloc_mask(h);
1164 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1165 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1166 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1167 SetHPageRestoreReserve(page);
3e59fcb0 1168 h->resv_huge_pages--;
1da177e4 1169 }
cc9a6c87 1170
52cd3b07 1171 mpol_cond_put(mpol);
1da177e4 1172 return page;
cc9a6c87
MG
1173
1174err:
cc9a6c87 1175 return NULL;
1da177e4
LT
1176}
1177
1cac6f2c
LC
1178/*
1179 * common helper functions for hstate_next_node_to_{alloc|free}.
1180 * We may have allocated or freed a huge page based on a different
1181 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1182 * be outside of *nodes_allowed. Ensure that we use an allowed
1183 * node for alloc or free.
1184 */
1185static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1186{
0edaf86c 1187 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1188 VM_BUG_ON(nid >= MAX_NUMNODES);
1189
1190 return nid;
1191}
1192
1193static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1194{
1195 if (!node_isset(nid, *nodes_allowed))
1196 nid = next_node_allowed(nid, nodes_allowed);
1197 return nid;
1198}
1199
1200/*
1201 * returns the previously saved node ["this node"] from which to
1202 * allocate a persistent huge page for the pool and advance the
1203 * next node from which to allocate, handling wrap at end of node
1204 * mask.
1205 */
1206static int hstate_next_node_to_alloc(struct hstate *h,
1207 nodemask_t *nodes_allowed)
1208{
1209 int nid;
1210
1211 VM_BUG_ON(!nodes_allowed);
1212
1213 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1214 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1215
1216 return nid;
1217}
1218
1219/*
10c6ec49 1220 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1221 * node ["this node"] from which to free a huge page. Advance the
1222 * next node id whether or not we find a free huge page to free so
1223 * that the next attempt to free addresses the next node.
1224 */
1225static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1226{
1227 int nid;
1228
1229 VM_BUG_ON(!nodes_allowed);
1230
1231 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1232 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1233
1234 return nid;
1235}
1236
1237#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1238 for (nr_nodes = nodes_weight(*mask); \
1239 nr_nodes > 0 && \
1240 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1241 nr_nodes--)
1242
1243#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1244 for (nr_nodes = nodes_weight(*mask); \
1245 nr_nodes > 0 && \
1246 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1247 nr_nodes--)
1248
e1073d1e 1249#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1250static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1251 unsigned int order)
944d9fec
LC
1252{
1253 int i;
1254 int nr_pages = 1 << order;
1255 struct page *p = page + 1;
1256
c8cc708a 1257 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1258 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1259
944d9fec 1260 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1261 clear_compound_head(p);
944d9fec 1262 set_page_refcounted(p);
944d9fec
LC
1263 }
1264
1265 set_compound_order(page, 0);
ba9c1201 1266 page[1].compound_nr = 0;
944d9fec
LC
1267 __ClearPageHead(page);
1268}
1269
d00181b9 1270static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1271{
cf11e85f
RG
1272 /*
1273 * If the page isn't allocated using the cma allocator,
1274 * cma_release() returns false.
1275 */
dbda8fea
BS
1276#ifdef CONFIG_CMA
1277 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1278 return;
dbda8fea 1279#endif
cf11e85f 1280
944d9fec
LC
1281 free_contig_range(page_to_pfn(page), 1 << order);
1282}
1283
4eb0716e 1284#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1285static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286 int nid, nodemask_t *nodemask)
944d9fec 1287{
04adbc3f 1288 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1289 if (nid == NUMA_NO_NODE)
1290 nid = numa_mem_id();
944d9fec 1291
dbda8fea
BS
1292#ifdef CONFIG_CMA
1293 {
cf11e85f
RG
1294 struct page *page;
1295 int node;
1296
953f064a
LX
1297 if (hugetlb_cma[nid]) {
1298 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1299 huge_page_order(h), true);
cf11e85f
RG
1300 if (page)
1301 return page;
1302 }
953f064a
LX
1303
1304 if (!(gfp_mask & __GFP_THISNODE)) {
1305 for_each_node_mask(node, *nodemask) {
1306 if (node == nid || !hugetlb_cma[node])
1307 continue;
1308
1309 page = cma_alloc(hugetlb_cma[node], nr_pages,
1310 huge_page_order(h), true);
1311 if (page)
1312 return page;
1313 }
1314 }
cf11e85f 1315 }
dbda8fea 1316#endif
cf11e85f 1317
5e27a2df 1318 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1319}
1320
1321static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1322static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1323#else /* !CONFIG_CONTIG_ALLOC */
1324static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1325 int nid, nodemask_t *nodemask)
1326{
1327 return NULL;
1328}
1329#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1330
e1073d1e 1331#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1332static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1333 int nid, nodemask_t *nodemask)
1334{
1335 return NULL;
1336}
d00181b9 1337static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1338static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1339 unsigned int order) { }
944d9fec
LC
1340#endif
1341
6eb4e88a
MK
1342/*
1343 * Remove hugetlb page from lists, and update dtor so that page appears
1344 * as just a compound page. A reference is held on the page.
1345 *
1346 * Must be called with hugetlb lock held.
1347 */
1348static void remove_hugetlb_page(struct hstate *h, struct page *page,
1349 bool adjust_surplus)
1350{
1351 int nid = page_to_nid(page);
1352
1353 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1354 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1355
9487ca60 1356 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1357 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1358 return;
1359
1360 list_del(&page->lru);
1361
1362 if (HPageFreed(page)) {
1363 h->free_huge_pages--;
1364 h->free_huge_pages_node[nid]--;
1365 }
1366 if (adjust_surplus) {
1367 h->surplus_huge_pages--;
1368 h->surplus_huge_pages_node[nid]--;
1369 }
1370
1371 set_page_refcounted(page);
1372 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1373
1374 h->nr_huge_pages--;
1375 h->nr_huge_pages_node[nid]--;
1376}
1377
a5516438 1378static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1379{
1380 int i;
dbfee5ae 1381 struct page *subpage = page;
a5516438 1382
4eb0716e 1383 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1384 return;
18229df5 1385
dbfee5ae
MK
1386 for (i = 0; i < pages_per_huge_page(h);
1387 i++, subpage = mem_map_next(subpage, page, i)) {
1388 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1389 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1390 1 << PG_active | 1 << PG_private |
1391 1 << PG_writeback);
6af2acb6 1392 }
944d9fec
LC
1393 if (hstate_is_gigantic(h)) {
1394 destroy_compound_gigantic_page(page, huge_page_order(h));
1395 free_gigantic_page(page, huge_page_order(h));
1396 } else {
944d9fec
LC
1397 __free_pages(page, huge_page_order(h));
1398 }
6af2acb6
AL
1399}
1400
10c6ec49
MK
1401static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1402{
1403 struct page *page, *t_page;
1404
1405 list_for_each_entry_safe(page, t_page, list, lru) {
1406 update_and_free_page(h, page);
1407 cond_resched();
1408 }
1409}
1410
e5ff2159
AK
1411struct hstate *size_to_hstate(unsigned long size)
1412{
1413 struct hstate *h;
1414
1415 for_each_hstate(h) {
1416 if (huge_page_size(h) == size)
1417 return h;
1418 }
1419 return NULL;
1420}
1421
db71ef79 1422void free_huge_page(struct page *page)
27a85ef1 1423{
a5516438
AK
1424 /*
1425 * Can't pass hstate in here because it is called from the
1426 * compound page destructor.
1427 */
e5ff2159 1428 struct hstate *h = page_hstate(page);
7893d1d5 1429 int nid = page_to_nid(page);
d6995da3 1430 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1431 bool restore_reserve;
db71ef79 1432 unsigned long flags;
27a85ef1 1433
b4330afb
MK
1434 VM_BUG_ON_PAGE(page_count(page), page);
1435 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1436
d6995da3 1437 hugetlb_set_page_subpool(page, NULL);
8ace22bc 1438 page->mapping = NULL;
d6995da3
MK
1439 restore_reserve = HPageRestoreReserve(page);
1440 ClearHPageRestoreReserve(page);
27a85ef1 1441
1c5ecae3 1442 /*
d6995da3 1443 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1444 * reservation. If the page was associated with a subpool, there
1445 * would have been a page reserved in the subpool before allocation
1446 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1447 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1448 * remove the reserved page from the subpool.
1c5ecae3 1449 */
0919e1b6
MK
1450 if (!restore_reserve) {
1451 /*
1452 * A return code of zero implies that the subpool will be
1453 * under its minimum size if the reservation is not restored
1454 * after page is free. Therefore, force restore_reserve
1455 * operation.
1456 */
1457 if (hugepage_subpool_put_pages(spool, 1) == 0)
1458 restore_reserve = true;
1459 }
1c5ecae3 1460
db71ef79 1461 spin_lock_irqsave(&hugetlb_lock, flags);
8f251a3d 1462 ClearHPageMigratable(page);
6d76dcf4
AK
1463 hugetlb_cgroup_uncharge_page(hstate_index(h),
1464 pages_per_huge_page(h), page);
08cf9faf
MA
1465 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1466 pages_per_huge_page(h), page);
07443a85
JK
1467 if (restore_reserve)
1468 h->resv_huge_pages++;
1469
9157c311 1470 if (HPageTemporary(page)) {
6eb4e88a 1471 remove_hugetlb_page(h, page, false);
db71ef79 1472 spin_unlock_irqrestore(&hugetlb_lock, flags);
ab5ac90a
MH
1473 update_and_free_page(h, page);
1474 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1475 /* remove the page from active list */
6eb4e88a 1476 remove_hugetlb_page(h, page, true);
db71ef79 1477 spin_unlock_irqrestore(&hugetlb_lock, flags);
a5516438 1478 update_and_free_page(h, page);
7893d1d5 1479 } else {
5d3a551c 1480 arch_clear_hugepage_flags(page);
a5516438 1481 enqueue_huge_page(h, page);
db71ef79 1482 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1483 }
c77c0a8a
WL
1484}
1485
d3d99fcc
OS
1486/*
1487 * Must be called with the hugetlb lock held
1488 */
1489static void __prep_account_new_huge_page(struct hstate *h, int nid)
1490{
1491 lockdep_assert_held(&hugetlb_lock);
1492 h->nr_huge_pages++;
1493 h->nr_huge_pages_node[nid]++;
1494}
1495
1496static void __prep_new_huge_page(struct page *page)
b7ba30c6 1497{
0edaecfa 1498 INIT_LIST_HEAD(&page->lru);
f1e61557 1499 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1500 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1501 set_hugetlb_cgroup(page, NULL);
1adc4d41 1502 set_hugetlb_cgroup_rsvd(page, NULL);
d3d99fcc
OS
1503}
1504
1505static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1506{
1507 __prep_new_huge_page(page);
db71ef79 1508 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1509 __prep_account_new_huge_page(h, nid);
db71ef79 1510 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1511}
1512
d00181b9 1513static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1514{
1515 int i;
1516 int nr_pages = 1 << order;
1517 struct page *p = page + 1;
1518
1519 /* we rely on prep_new_huge_page to set the destructor */
1520 set_compound_order(page, order);
ef5a22be 1521 __ClearPageReserved(page);
de09d31d 1522 __SetPageHead(page);
20a0307c 1523 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1524 /*
1525 * For gigantic hugepages allocated through bootmem at
1526 * boot, it's safer to be consistent with the not-gigantic
1527 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1528 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1529 * pages may get the reference counting wrong if they see
1530 * PG_reserved set on a tail page (despite the head page not
1531 * having PG_reserved set). Enforcing this consistency between
1532 * head and tail pages allows drivers to optimize away a check
1533 * on the head page when they need know if put_page() is needed
1534 * after get_user_pages().
1535 */
1536 __ClearPageReserved(p);
58a84aa9 1537 set_page_count(p, 0);
1d798ca3 1538 set_compound_head(p, page);
20a0307c 1539 }
b4330afb 1540 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1541 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1542}
1543
7795912c
AM
1544/*
1545 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546 * transparent huge pages. See the PageTransHuge() documentation for more
1547 * details.
1548 */
20a0307c
WF
1549int PageHuge(struct page *page)
1550{
20a0307c
WF
1551 if (!PageCompound(page))
1552 return 0;
1553
1554 page = compound_head(page);
f1e61557 1555 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1556}
43131e14
NH
1557EXPORT_SYMBOL_GPL(PageHuge);
1558
27c73ae7
AA
1559/*
1560 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561 * normal or transparent huge pages.
1562 */
1563int PageHeadHuge(struct page *page_head)
1564{
27c73ae7
AA
1565 if (!PageHead(page_head))
1566 return 0;
1567
d4af73e3 1568 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1569}
27c73ae7 1570
c0d0381a
MK
1571/*
1572 * Find and lock address space (mapping) in write mode.
1573 *
336bf30e
MK
1574 * Upon entry, the page is locked which means that page_mapping() is
1575 * stable. Due to locking order, we can only trylock_write. If we can
1576 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1577 */
1578struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1579{
336bf30e 1580 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1581
c0d0381a
MK
1582 if (!mapping)
1583 return mapping;
1584
c0d0381a
MK
1585 if (i_mmap_trylock_write(mapping))
1586 return mapping;
1587
336bf30e 1588 return NULL;
c0d0381a
MK
1589}
1590
13d60f4b
ZY
1591pgoff_t __basepage_index(struct page *page)
1592{
1593 struct page *page_head = compound_head(page);
1594 pgoff_t index = page_index(page_head);
1595 unsigned long compound_idx;
1596
1597 if (!PageHuge(page_head))
1598 return page_index(page);
1599
1600 if (compound_order(page_head) >= MAX_ORDER)
1601 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1602 else
1603 compound_idx = page - page_head;
1604
1605 return (index << compound_order(page_head)) + compound_idx;
1606}
1607
0c397dae 1608static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1609 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1610 nodemask_t *node_alloc_noretry)
1da177e4 1611{
af0fb9df 1612 int order = huge_page_order(h);
1da177e4 1613 struct page *page;
f60858f9 1614 bool alloc_try_hard = true;
f96efd58 1615
f60858f9
MK
1616 /*
1617 * By default we always try hard to allocate the page with
1618 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1619 * a loop (to adjust global huge page counts) and previous allocation
1620 * failed, do not continue to try hard on the same node. Use the
1621 * node_alloc_noretry bitmap to manage this state information.
1622 */
1623 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1624 alloc_try_hard = false;
1625 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1626 if (alloc_try_hard)
1627 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1628 if (nid == NUMA_NO_NODE)
1629 nid = numa_mem_id();
84172f4b 1630 page = __alloc_pages(gfp_mask, order, nid, nmask);
af0fb9df
MH
1631 if (page)
1632 __count_vm_event(HTLB_BUDDY_PGALLOC);
1633 else
1634 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1635
f60858f9
MK
1636 /*
1637 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1638 * indicates an overall state change. Clear bit so that we resume
1639 * normal 'try hard' allocations.
1640 */
1641 if (node_alloc_noretry && page && !alloc_try_hard)
1642 node_clear(nid, *node_alloc_noretry);
1643
1644 /*
1645 * If we tried hard to get a page but failed, set bit so that
1646 * subsequent attempts will not try as hard until there is an
1647 * overall state change.
1648 */
1649 if (node_alloc_noretry && !page && alloc_try_hard)
1650 node_set(nid, *node_alloc_noretry);
1651
63b4613c
NA
1652 return page;
1653}
1654
0c397dae
MH
1655/*
1656 * Common helper to allocate a fresh hugetlb page. All specific allocators
1657 * should use this function to get new hugetlb pages
1658 */
1659static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1660 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1661 nodemask_t *node_alloc_noretry)
0c397dae
MH
1662{
1663 struct page *page;
1664
1665 if (hstate_is_gigantic(h))
1666 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1667 else
1668 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1669 nid, nmask, node_alloc_noretry);
0c397dae
MH
1670 if (!page)
1671 return NULL;
1672
1673 if (hstate_is_gigantic(h))
1674 prep_compound_gigantic_page(page, huge_page_order(h));
1675 prep_new_huge_page(h, page, page_to_nid(page));
1676
1677 return page;
1678}
1679
af0fb9df
MH
1680/*
1681 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1682 * manner.
1683 */
f60858f9
MK
1684static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1685 nodemask_t *node_alloc_noretry)
b2261026
JK
1686{
1687 struct page *page;
1688 int nr_nodes, node;
af0fb9df 1689 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1690
1691 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1692 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1693 node_alloc_noretry);
af0fb9df 1694 if (page)
b2261026 1695 break;
b2261026
JK
1696 }
1697
af0fb9df
MH
1698 if (!page)
1699 return 0;
b2261026 1700
af0fb9df
MH
1701 put_page(page); /* free it into the hugepage allocator */
1702
1703 return 1;
b2261026
JK
1704}
1705
e8c5c824 1706/*
10c6ec49
MK
1707 * Remove huge page from pool from next node to free. Attempt to keep
1708 * persistent huge pages more or less balanced over allowed nodes.
1709 * This routine only 'removes' the hugetlb page. The caller must make
1710 * an additional call to free the page to low level allocators.
e8c5c824
LS
1711 * Called with hugetlb_lock locked.
1712 */
10c6ec49
MK
1713static struct page *remove_pool_huge_page(struct hstate *h,
1714 nodemask_t *nodes_allowed,
1715 bool acct_surplus)
e8c5c824 1716{
b2261026 1717 int nr_nodes, node;
10c6ec49 1718 struct page *page = NULL;
e8c5c824 1719
9487ca60 1720 lockdep_assert_held(&hugetlb_lock);
b2261026 1721 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1722 /*
1723 * If we're returning unused surplus pages, only examine
1724 * nodes with surplus pages.
1725 */
b2261026
JK
1726 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1727 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 1728 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 1729 struct page, lru);
6eb4e88a 1730 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 1731 break;
e8c5c824 1732 }
b2261026 1733 }
e8c5c824 1734
10c6ec49 1735 return page;
e8c5c824
LS
1736}
1737
c8721bbb
NH
1738/*
1739 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1740 * nothing for in-use hugepages and non-hugepages.
1741 * This function returns values like below:
1742 *
1743 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1744 * (allocated or reserved.)
1745 * 0: successfully dissolved free hugepages or the page is not a
1746 * hugepage (considered as already dissolved)
c8721bbb 1747 */
c3114a84 1748int dissolve_free_huge_page(struct page *page)
c8721bbb 1749{
6bc9b564 1750 int rc = -EBUSY;
082d5b6b 1751
7ffddd49 1752retry:
faf53def
NH
1753 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1754 if (!PageHuge(page))
1755 return 0;
1756
db71ef79 1757 spin_lock_irq(&hugetlb_lock);
faf53def
NH
1758 if (!PageHuge(page)) {
1759 rc = 0;
1760 goto out;
1761 }
1762
1763 if (!page_count(page)) {
2247bb33
GS
1764 struct page *head = compound_head(page);
1765 struct hstate *h = page_hstate(head);
6bc9b564 1766 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1767 goto out;
7ffddd49
MS
1768
1769 /*
1770 * We should make sure that the page is already on the free list
1771 * when it is dissolved.
1772 */
6c037149 1773 if (unlikely(!HPageFreed(head))) {
db71ef79 1774 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
1775 cond_resched();
1776
1777 /*
1778 * Theoretically, we should return -EBUSY when we
1779 * encounter this race. In fact, we have a chance
1780 * to successfully dissolve the page if we do a
1781 * retry. Because the race window is quite small.
1782 * If we seize this opportunity, it is an optimization
1783 * for increasing the success rate of dissolving page.
1784 */
1785 goto retry;
1786 }
1787
c3114a84
AK
1788 /*
1789 * Move PageHWPoison flag from head page to the raw error page,
1790 * which makes any subpages rather than the error page reusable.
1791 */
1792 if (PageHWPoison(head) && page != head) {
1793 SetPageHWPoison(page);
1794 ClearPageHWPoison(head);
1795 }
0c5da357 1796 remove_hugetlb_page(h, head, false);
c1470b33 1797 h->max_huge_pages--;
db71ef79 1798 spin_unlock_irq(&hugetlb_lock);
2247bb33 1799 update_and_free_page(h, head);
1121828a 1800 return 0;
c8721bbb 1801 }
082d5b6b 1802out:
db71ef79 1803 spin_unlock_irq(&hugetlb_lock);
082d5b6b 1804 return rc;
c8721bbb
NH
1805}
1806
1807/*
1808 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1809 * make specified memory blocks removable from the system.
2247bb33
GS
1810 * Note that this will dissolve a free gigantic hugepage completely, if any
1811 * part of it lies within the given range.
082d5b6b
GS
1812 * Also note that if dissolve_free_huge_page() returns with an error, all
1813 * free hugepages that were dissolved before that error are lost.
c8721bbb 1814 */
082d5b6b 1815int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1816{
c8721bbb 1817 unsigned long pfn;
eb03aa00 1818 struct page *page;
082d5b6b 1819 int rc = 0;
c8721bbb 1820
d0177639 1821 if (!hugepages_supported())
082d5b6b 1822 return rc;
d0177639 1823
eb03aa00
GS
1824 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1825 page = pfn_to_page(pfn);
faf53def
NH
1826 rc = dissolve_free_huge_page(page);
1827 if (rc)
1828 break;
eb03aa00 1829 }
082d5b6b
GS
1830
1831 return rc;
c8721bbb
NH
1832}
1833
ab5ac90a
MH
1834/*
1835 * Allocates a fresh surplus page from the page allocator.
1836 */
0c397dae 1837static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1838 int nid, nodemask_t *nmask)
7893d1d5 1839{
9980d744 1840 struct page *page = NULL;
7893d1d5 1841
bae7f4ae 1842 if (hstate_is_gigantic(h))
aa888a74
AK
1843 return NULL;
1844
db71ef79 1845 spin_lock_irq(&hugetlb_lock);
9980d744
MH
1846 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1847 goto out_unlock;
db71ef79 1848 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 1849
f60858f9 1850 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1851 if (!page)
0c397dae 1852 return NULL;
d1c3fb1f 1853
db71ef79 1854 spin_lock_irq(&hugetlb_lock);
9980d744
MH
1855 /*
1856 * We could have raced with the pool size change.
1857 * Double check that and simply deallocate the new page
1858 * if we would end up overcommiting the surpluses. Abuse
1859 * temporary page to workaround the nasty free_huge_page
1860 * codeflow
1861 */
1862 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 1863 SetHPageTemporary(page);
db71ef79 1864 spin_unlock_irq(&hugetlb_lock);
9980d744 1865 put_page(page);
2bf753e6 1866 return NULL;
9980d744 1867 } else {
9980d744 1868 h->surplus_huge_pages++;
4704dea3 1869 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1870 }
9980d744
MH
1871
1872out_unlock:
db71ef79 1873 spin_unlock_irq(&hugetlb_lock);
7893d1d5
AL
1874
1875 return page;
1876}
1877
bbe88753 1878static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1879 int nid, nodemask_t *nmask)
ab5ac90a
MH
1880{
1881 struct page *page;
1882
1883 if (hstate_is_gigantic(h))
1884 return NULL;
1885
f60858f9 1886 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1887 if (!page)
1888 return NULL;
1889
1890 /*
1891 * We do not account these pages as surplus because they are only
1892 * temporary and will be released properly on the last reference
1893 */
9157c311 1894 SetHPageTemporary(page);
ab5ac90a
MH
1895
1896 return page;
1897}
1898
099730d6
DH
1899/*
1900 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1901 */
e0ec90ee 1902static
0c397dae 1903struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1904 struct vm_area_struct *vma, unsigned long addr)
1905{
aaf14e40
MH
1906 struct page *page;
1907 struct mempolicy *mpol;
1908 gfp_t gfp_mask = htlb_alloc_mask(h);
1909 int nid;
1910 nodemask_t *nodemask;
1911
1912 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1913 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1914 mpol_cond_put(mpol);
1915
1916 return page;
099730d6
DH
1917}
1918
ab5ac90a 1919/* page migration callback function */
3e59fcb0 1920struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1921 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1922{
db71ef79 1923 spin_lock_irq(&hugetlb_lock);
4db9b2ef 1924 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1925 struct page *page;
1926
1927 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1928 if (page) {
db71ef79 1929 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 1930 return page;
4db9b2ef
MH
1931 }
1932 }
db71ef79 1933 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 1934
0c397dae 1935 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1936}
1937
ebd63723 1938/* mempolicy aware migration callback */
389c8178
MH
1939struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1940 unsigned long address)
ebd63723
MH
1941{
1942 struct mempolicy *mpol;
1943 nodemask_t *nodemask;
1944 struct page *page;
ebd63723
MH
1945 gfp_t gfp_mask;
1946 int node;
1947
ebd63723
MH
1948 gfp_mask = htlb_alloc_mask(h);
1949 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 1950 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
1951 mpol_cond_put(mpol);
1952
1953 return page;
1954}
1955
e4e574b7 1956/*
25985edc 1957 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1958 * of size 'delta'.
1959 */
0a4f3d1b 1960static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 1961 __must_hold(&hugetlb_lock)
e4e574b7
AL
1962{
1963 struct list_head surplus_list;
1964 struct page *page, *tmp;
0a4f3d1b
LX
1965 int ret;
1966 long i;
1967 long needed, allocated;
28073b02 1968 bool alloc_ok = true;
e4e574b7 1969
9487ca60 1970 lockdep_assert_held(&hugetlb_lock);
a5516438 1971 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1972 if (needed <= 0) {
a5516438 1973 h->resv_huge_pages += delta;
e4e574b7 1974 return 0;
ac09b3a1 1975 }
e4e574b7
AL
1976
1977 allocated = 0;
1978 INIT_LIST_HEAD(&surplus_list);
1979
1980 ret = -ENOMEM;
1981retry:
db71ef79 1982 spin_unlock_irq(&hugetlb_lock);
e4e574b7 1983 for (i = 0; i < needed; i++) {
0c397dae 1984 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1985 NUMA_NO_NODE, NULL);
28073b02
HD
1986 if (!page) {
1987 alloc_ok = false;
1988 break;
1989 }
e4e574b7 1990 list_add(&page->lru, &surplus_list);
69ed779a 1991 cond_resched();
e4e574b7 1992 }
28073b02 1993 allocated += i;
e4e574b7
AL
1994
1995 /*
1996 * After retaking hugetlb_lock, we need to recalculate 'needed'
1997 * because either resv_huge_pages or free_huge_pages may have changed.
1998 */
db71ef79 1999 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2000 needed = (h->resv_huge_pages + delta) -
2001 (h->free_huge_pages + allocated);
28073b02
HD
2002 if (needed > 0) {
2003 if (alloc_ok)
2004 goto retry;
2005 /*
2006 * We were not able to allocate enough pages to
2007 * satisfy the entire reservation so we free what
2008 * we've allocated so far.
2009 */
2010 goto free;
2011 }
e4e574b7
AL
2012 /*
2013 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2014 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2015 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2016 * allocator. Commit the entire reservation here to prevent another
2017 * process from stealing the pages as they are added to the pool but
2018 * before they are reserved.
e4e574b7
AL
2019 */
2020 needed += allocated;
a5516438 2021 h->resv_huge_pages += delta;
e4e574b7 2022 ret = 0;
a9869b83 2023
19fc3f0a 2024 /* Free the needed pages to the hugetlb pool */
e4e574b7 2025 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
e558464b
MS
2026 int zeroed;
2027
19fc3f0a
AL
2028 if ((--needed) < 0)
2029 break;
a9869b83
NH
2030 /*
2031 * This page is now managed by the hugetlb allocator and has
2032 * no users -- drop the buddy allocator's reference.
2033 */
e558464b
MS
2034 zeroed = put_page_testzero(page);
2035 VM_BUG_ON_PAGE(!zeroed, page);
a5516438 2036 enqueue_huge_page(h, page);
19fc3f0a 2037 }
28073b02 2038free:
db71ef79 2039 spin_unlock_irq(&hugetlb_lock);
19fc3f0a
AL
2040
2041 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2042 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2043 put_page(page);
db71ef79 2044 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2045
2046 return ret;
2047}
2048
2049/*
e5bbc8a6
MK
2050 * This routine has two main purposes:
2051 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2052 * in unused_resv_pages. This corresponds to the prior adjustments made
2053 * to the associated reservation map.
2054 * 2) Free any unused surplus pages that may have been allocated to satisfy
2055 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2056 */
a5516438
AK
2057static void return_unused_surplus_pages(struct hstate *h,
2058 unsigned long unused_resv_pages)
e4e574b7 2059{
e4e574b7 2060 unsigned long nr_pages;
10c6ec49
MK
2061 struct page *page;
2062 LIST_HEAD(page_list);
2063
9487ca60 2064 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2065 /* Uncommit the reservation */
2066 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2067
aa888a74 2068 /* Cannot return gigantic pages currently */
bae7f4ae 2069 if (hstate_is_gigantic(h))
e5bbc8a6 2070 goto out;
aa888a74 2071
e5bbc8a6
MK
2072 /*
2073 * Part (or even all) of the reservation could have been backed
2074 * by pre-allocated pages. Only free surplus pages.
2075 */
a5516438 2076 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2077
685f3457
LS
2078 /*
2079 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2080 * evenly across all nodes with memory. Iterate across these nodes
2081 * until we can no longer free unreserved surplus pages. This occurs
2082 * when the nodes with surplus pages have no free pages.
10c6ec49 2083 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2084 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2085 */
2086 while (nr_pages--) {
10c6ec49
MK
2087 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2088 if (!page)
e5bbc8a6 2089 goto out;
10c6ec49
MK
2090
2091 list_add(&page->lru, &page_list);
e4e574b7 2092 }
e5bbc8a6
MK
2093
2094out:
db71ef79 2095 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2096 update_and_free_pages_bulk(h, &page_list);
db71ef79 2097 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2098}
2099
5e911373 2100
c37f9fb1 2101/*
feba16e2 2102 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2103 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2104 *
2105 * vma_needs_reservation is called to determine if the huge page at addr
2106 * within the vma has an associated reservation. If a reservation is
2107 * needed, the value 1 is returned. The caller is then responsible for
2108 * managing the global reservation and subpool usage counts. After
2109 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2110 * to add the page to the reservation map. If the page allocation fails,
2111 * the reservation must be ended instead of committed. vma_end_reservation
2112 * is called in such cases.
cf3ad20b
MK
2113 *
2114 * In the normal case, vma_commit_reservation returns the same value
2115 * as the preceding vma_needs_reservation call. The only time this
2116 * is not the case is if a reserve map was changed between calls. It
2117 * is the responsibility of the caller to notice the difference and
2118 * take appropriate action.
96b96a96
MK
2119 *
2120 * vma_add_reservation is used in error paths where a reservation must
2121 * be restored when a newly allocated huge page must be freed. It is
2122 * to be called after calling vma_needs_reservation to determine if a
2123 * reservation exists.
846be085
MK
2124 *
2125 * vma_del_reservation is used in error paths where an entry in the reserve
2126 * map was created during huge page allocation and must be removed. It is to
2127 * be called after calling vma_needs_reservation to determine if a reservation
2128 * exists.
c37f9fb1 2129 */
5e911373
MK
2130enum vma_resv_mode {
2131 VMA_NEEDS_RESV,
2132 VMA_COMMIT_RESV,
feba16e2 2133 VMA_END_RESV,
96b96a96 2134 VMA_ADD_RESV,
846be085 2135 VMA_DEL_RESV,
5e911373 2136};
cf3ad20b
MK
2137static long __vma_reservation_common(struct hstate *h,
2138 struct vm_area_struct *vma, unsigned long addr,
5e911373 2139 enum vma_resv_mode mode)
c37f9fb1 2140{
4e35f483
JK
2141 struct resv_map *resv;
2142 pgoff_t idx;
cf3ad20b 2143 long ret;
0db9d74e 2144 long dummy_out_regions_needed;
c37f9fb1 2145
4e35f483
JK
2146 resv = vma_resv_map(vma);
2147 if (!resv)
84afd99b 2148 return 1;
c37f9fb1 2149
4e35f483 2150 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2151 switch (mode) {
2152 case VMA_NEEDS_RESV:
0db9d74e
MA
2153 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2154 /* We assume that vma_reservation_* routines always operate on
2155 * 1 page, and that adding to resv map a 1 page entry can only
2156 * ever require 1 region.
2157 */
2158 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2159 break;
2160 case VMA_COMMIT_RESV:
075a61d0 2161 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2162 /* region_add calls of range 1 should never fail. */
2163 VM_BUG_ON(ret < 0);
5e911373 2164 break;
feba16e2 2165 case VMA_END_RESV:
0db9d74e 2166 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2167 ret = 0;
2168 break;
96b96a96 2169 case VMA_ADD_RESV:
0db9d74e 2170 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2171 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2172 /* region_add calls of range 1 should never fail. */
2173 VM_BUG_ON(ret < 0);
2174 } else {
2175 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2176 ret = region_del(resv, idx, idx + 1);
2177 }
2178 break;
846be085
MK
2179 case VMA_DEL_RESV:
2180 if (vma->vm_flags & VM_MAYSHARE) {
2181 region_abort(resv, idx, idx + 1, 1);
2182 ret = region_del(resv, idx, idx + 1);
2183 } else {
2184 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2185 /* region_add calls of range 1 should never fail. */
2186 VM_BUG_ON(ret < 0);
2187 }
2188 break;
5e911373
MK
2189 default:
2190 BUG();
2191 }
84afd99b 2192
846be085 2193 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
cf3ad20b 2194 return ret;
bf3d12b9
ML
2195 /*
2196 * We know private mapping must have HPAGE_RESV_OWNER set.
2197 *
2198 * In most cases, reserves always exist for private mappings.
2199 * However, a file associated with mapping could have been
2200 * hole punched or truncated after reserves were consumed.
2201 * As subsequent fault on such a range will not use reserves.
2202 * Subtle - The reserve map for private mappings has the
2203 * opposite meaning than that of shared mappings. If NO
2204 * entry is in the reserve map, it means a reservation exists.
2205 * If an entry exists in the reserve map, it means the
2206 * reservation has already been consumed. As a result, the
2207 * return value of this routine is the opposite of the
2208 * value returned from reserve map manipulation routines above.
2209 */
2210 if (ret > 0)
2211 return 0;
2212 if (ret == 0)
2213 return 1;
2214 return ret;
c37f9fb1 2215}
cf3ad20b
MK
2216
2217static long vma_needs_reservation(struct hstate *h,
a5516438 2218 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2219{
5e911373 2220 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2221}
84afd99b 2222
cf3ad20b
MK
2223static long vma_commit_reservation(struct hstate *h,
2224 struct vm_area_struct *vma, unsigned long addr)
2225{
5e911373
MK
2226 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2227}
2228
feba16e2 2229static void vma_end_reservation(struct hstate *h,
5e911373
MK
2230 struct vm_area_struct *vma, unsigned long addr)
2231{
feba16e2 2232 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2233}
2234
96b96a96
MK
2235static long vma_add_reservation(struct hstate *h,
2236 struct vm_area_struct *vma, unsigned long addr)
2237{
2238 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2239}
2240
846be085
MK
2241static long vma_del_reservation(struct hstate *h,
2242 struct vm_area_struct *vma, unsigned long addr)
2243{
2244 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2245}
2246
96b96a96 2247/*
846be085
MK
2248 * This routine is called to restore reservation information on error paths.
2249 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2250 * the hugetlb mutex should remain held when calling this routine.
2251 *
2252 * It handles two specific cases:
2253 * 1) A reservation was in place and the page consumed the reservation.
2254 * HPageRestoreReserve is set in the page.
2255 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2256 * not set. However, alloc_huge_page always updates the reserve map.
2257 *
2258 * In case 1, free_huge_page later in the error path will increment the
2259 * global reserve count. But, free_huge_page does not have enough context
2260 * to adjust the reservation map. This case deals primarily with private
2261 * mappings. Adjust the reserve map here to be consistent with global
2262 * reserve count adjustments to be made by free_huge_page. Make sure the
2263 * reserve map indicates there is a reservation present.
2264 *
2265 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
96b96a96 2266 */
846be085
MK
2267void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2268 unsigned long address, struct page *page)
96b96a96 2269{
846be085 2270 long rc = vma_needs_reservation(h, vma, address);
96b96a96 2271
846be085
MK
2272 if (HPageRestoreReserve(page)) {
2273 if (unlikely(rc < 0))
96b96a96
MK
2274 /*
2275 * Rare out of memory condition in reserve map
d6995da3 2276 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2277 * global reserve count will not be incremented
2278 * by free_huge_page. This will make it appear
2279 * as though the reservation for this page was
2280 * consumed. This may prevent the task from
2281 * faulting in the page at a later time. This
2282 * is better than inconsistent global huge page
2283 * accounting of reserve counts.
2284 */
d6995da3 2285 ClearHPageRestoreReserve(page);
846be085
MK
2286 else if (rc)
2287 (void)vma_add_reservation(h, vma, address);
2288 else
2289 vma_end_reservation(h, vma, address);
2290 } else {
2291 if (!rc) {
2292 /*
2293 * This indicates there is an entry in the reserve map
2294 * added by alloc_huge_page. We know it was added
2295 * before the alloc_huge_page call, otherwise
2296 * HPageRestoreReserve would be set on the page.
2297 * Remove the entry so that a subsequent allocation
2298 * does not consume a reservation.
2299 */
2300 rc = vma_del_reservation(h, vma, address);
2301 if (rc < 0)
96b96a96 2302 /*
846be085
MK
2303 * VERY rare out of memory condition. Since
2304 * we can not delete the entry, set
2305 * HPageRestoreReserve so that the reserve
2306 * count will be incremented when the page
2307 * is freed. This reserve will be consumed
2308 * on a subsequent allocation.
96b96a96 2309 */
846be085
MK
2310 SetHPageRestoreReserve(page);
2311 } else if (rc < 0) {
2312 /*
2313 * Rare out of memory condition from
2314 * vma_needs_reservation call. Memory allocation is
2315 * only attempted if a new entry is needed. Therefore,
2316 * this implies there is not an entry in the
2317 * reserve map.
2318 *
2319 * For shared mappings, no entry in the map indicates
2320 * no reservation. We are done.
2321 */
2322 if (!(vma->vm_flags & VM_MAYSHARE))
2323 /*
2324 * For private mappings, no entry indicates
2325 * a reservation is present. Since we can
2326 * not add an entry, set SetHPageRestoreReserve
2327 * on the page so reserve count will be
2328 * incremented when freed. This reserve will
2329 * be consumed on a subsequent allocation.
2330 */
2331 SetHPageRestoreReserve(page);
96b96a96 2332 } else
846be085
MK
2333 /*
2334 * No reservation present, do nothing
2335 */
2336 vma_end_reservation(h, vma, address);
96b96a96
MK
2337 }
2338}
2339
369fa227
OS
2340/*
2341 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2342 * @h: struct hstate old page belongs to
2343 * @old_page: Old page to dissolve
ae37c7ff 2344 * @list: List to isolate the page in case we need to
369fa227
OS
2345 * Returns 0 on success, otherwise negated error.
2346 */
ae37c7ff
OS
2347static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2348 struct list_head *list)
369fa227
OS
2349{
2350 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2351 int nid = page_to_nid(old_page);
2352 struct page *new_page;
2353 int ret = 0;
2354
2355 /*
2356 * Before dissolving the page, we need to allocate a new one for the
2357 * pool to remain stable. Using alloc_buddy_huge_page() allows us to
2358 * not having to deal with prep_new_huge_page() and avoids dealing of any
2359 * counters. This simplifies and let us do the whole thing under the
2360 * lock.
2361 */
2362 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2363 if (!new_page)
2364 return -ENOMEM;
2365
2366retry:
2367 spin_lock_irq(&hugetlb_lock);
2368 if (!PageHuge(old_page)) {
2369 /*
2370 * Freed from under us. Drop new_page too.
2371 */
2372 goto free_new;
2373 } else if (page_count(old_page)) {
2374 /*
ae37c7ff
OS
2375 * Someone has grabbed the page, try to isolate it here.
2376 * Fail with -EBUSY if not possible.
369fa227 2377 */
ae37c7ff
OS
2378 spin_unlock_irq(&hugetlb_lock);
2379 if (!isolate_huge_page(old_page, list))
2380 ret = -EBUSY;
2381 spin_lock_irq(&hugetlb_lock);
369fa227
OS
2382 goto free_new;
2383 } else if (!HPageFreed(old_page)) {
2384 /*
2385 * Page's refcount is 0 but it has not been enqueued in the
2386 * freelist yet. Race window is small, so we can succeed here if
2387 * we retry.
2388 */
2389 spin_unlock_irq(&hugetlb_lock);
2390 cond_resched();
2391 goto retry;
2392 } else {
2393 /*
2394 * Ok, old_page is still a genuine free hugepage. Remove it from
2395 * the freelist and decrease the counters. These will be
2396 * incremented again when calling __prep_account_new_huge_page()
2397 * and enqueue_huge_page() for new_page. The counters will remain
2398 * stable since this happens under the lock.
2399 */
2400 remove_hugetlb_page(h, old_page, false);
2401
2402 /*
2403 * new_page needs to be initialized with the standard hugetlb
2404 * state. This is normally done by prep_new_huge_page() but
2405 * that takes hugetlb_lock which is already held so we need to
2406 * open code it here.
2407 * Reference count trick is needed because allocator gives us
2408 * referenced page but the pool requires pages with 0 refcount.
2409 */
2410 __prep_new_huge_page(new_page);
2411 __prep_account_new_huge_page(h, nid);
2412 page_ref_dec(new_page);
2413 enqueue_huge_page(h, new_page);
2414
2415 /*
2416 * Pages have been replaced, we can safely free the old one.
2417 */
2418 spin_unlock_irq(&hugetlb_lock);
2419 update_and_free_page(h, old_page);
2420 }
2421
2422 return ret;
2423
2424free_new:
2425 spin_unlock_irq(&hugetlb_lock);
2426 __free_pages(new_page, huge_page_order(h));
2427
2428 return ret;
2429}
2430
ae37c7ff 2431int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2432{
2433 struct hstate *h;
2434 struct page *head;
ae37c7ff 2435 int ret = -EBUSY;
369fa227
OS
2436
2437 /*
2438 * The page might have been dissolved from under our feet, so make sure
2439 * to carefully check the state under the lock.
2440 * Return success when racing as if we dissolved the page ourselves.
2441 */
2442 spin_lock_irq(&hugetlb_lock);
2443 if (PageHuge(page)) {
2444 head = compound_head(page);
2445 h = page_hstate(head);
2446 } else {
2447 spin_unlock_irq(&hugetlb_lock);
2448 return 0;
2449 }
2450 spin_unlock_irq(&hugetlb_lock);
2451
2452 /*
2453 * Fence off gigantic pages as there is a cyclic dependency between
2454 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2455 * of bailing out right away without further retrying.
2456 */
2457 if (hstate_is_gigantic(h))
2458 return -ENOMEM;
2459
ae37c7ff
OS
2460 if (page_count(head) && isolate_huge_page(head, list))
2461 ret = 0;
2462 else if (!page_count(head))
2463 ret = alloc_and_dissolve_huge_page(h, head, list);
2464
2465 return ret;
369fa227
OS
2466}
2467
70c3547e 2468struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2469 unsigned long addr, int avoid_reserve)
1da177e4 2470{
90481622 2471 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2472 struct hstate *h = hstate_vma(vma);
348ea204 2473 struct page *page;
d85f69b0
MK
2474 long map_chg, map_commit;
2475 long gbl_chg;
6d76dcf4
AK
2476 int ret, idx;
2477 struct hugetlb_cgroup *h_cg;
08cf9faf 2478 bool deferred_reserve;
a1e78772 2479
6d76dcf4 2480 idx = hstate_index(h);
a1e78772 2481 /*
d85f69b0
MK
2482 * Examine the region/reserve map to determine if the process
2483 * has a reservation for the page to be allocated. A return
2484 * code of zero indicates a reservation exists (no change).
a1e78772 2485 */
d85f69b0
MK
2486 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2487 if (map_chg < 0)
76dcee75 2488 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2489
2490 /*
2491 * Processes that did not create the mapping will have no
2492 * reserves as indicated by the region/reserve map. Check
2493 * that the allocation will not exceed the subpool limit.
2494 * Allocations for MAP_NORESERVE mappings also need to be
2495 * checked against any subpool limit.
2496 */
2497 if (map_chg || avoid_reserve) {
2498 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2499 if (gbl_chg < 0) {
feba16e2 2500 vma_end_reservation(h, vma, addr);
76dcee75 2501 return ERR_PTR(-ENOSPC);
5e911373 2502 }
1da177e4 2503
d85f69b0
MK
2504 /*
2505 * Even though there was no reservation in the region/reserve
2506 * map, there could be reservations associated with the
2507 * subpool that can be used. This would be indicated if the
2508 * return value of hugepage_subpool_get_pages() is zero.
2509 * However, if avoid_reserve is specified we still avoid even
2510 * the subpool reservations.
2511 */
2512 if (avoid_reserve)
2513 gbl_chg = 1;
2514 }
2515
08cf9faf
MA
2516 /* If this allocation is not consuming a reservation, charge it now.
2517 */
6501fe5f 2518 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2519 if (deferred_reserve) {
2520 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2521 idx, pages_per_huge_page(h), &h_cg);
2522 if (ret)
2523 goto out_subpool_put;
2524 }
2525
6d76dcf4 2526 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2527 if (ret)
08cf9faf 2528 goto out_uncharge_cgroup_reservation;
8f34af6f 2529
db71ef79 2530 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
2531 /*
2532 * glb_chg is passed to indicate whether or not a page must be taken
2533 * from the global free pool (global change). gbl_chg == 0 indicates
2534 * a reservation exists for the allocation.
2535 */
2536 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2537 if (!page) {
db71ef79 2538 spin_unlock_irq(&hugetlb_lock);
0c397dae 2539 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2540 if (!page)
2541 goto out_uncharge_cgroup;
a88c7695 2542 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2543 SetHPageRestoreReserve(page);
a88c7695
NH
2544 h->resv_huge_pages--;
2545 }
db71ef79 2546 spin_lock_irq(&hugetlb_lock);
15a8d68e 2547 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2548 /* Fall through */
68842c9b 2549 }
81a6fcae 2550 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2551 /* If allocation is not consuming a reservation, also store the
2552 * hugetlb_cgroup pointer on the page.
2553 */
2554 if (deferred_reserve) {
2555 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2556 h_cg, page);
2557 }
2558
db71ef79 2559 spin_unlock_irq(&hugetlb_lock);
348ea204 2560
d6995da3 2561 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2562
d85f69b0
MK
2563 map_commit = vma_commit_reservation(h, vma, addr);
2564 if (unlikely(map_chg > map_commit)) {
33039678
MK
2565 /*
2566 * The page was added to the reservation map between
2567 * vma_needs_reservation and vma_commit_reservation.
2568 * This indicates a race with hugetlb_reserve_pages.
2569 * Adjust for the subpool count incremented above AND
2570 * in hugetlb_reserve_pages for the same page. Also,
2571 * the reservation count added in hugetlb_reserve_pages
2572 * no longer applies.
2573 */
2574 long rsv_adjust;
2575
2576 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2577 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2578 if (deferred_reserve)
2579 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2580 pages_per_huge_page(h), page);
33039678 2581 }
90d8b7e6 2582 return page;
8f34af6f
JZ
2583
2584out_uncharge_cgroup:
2585 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2586out_uncharge_cgroup_reservation:
2587 if (deferred_reserve)
2588 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2589 h_cg);
8f34af6f 2590out_subpool_put:
d85f69b0 2591 if (map_chg || avoid_reserve)
8f34af6f 2592 hugepage_subpool_put_pages(spool, 1);
feba16e2 2593 vma_end_reservation(h, vma, addr);
8f34af6f 2594 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2595}
2596
e24a1307
AK
2597int alloc_bootmem_huge_page(struct hstate *h)
2598 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2599int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2600{
2601 struct huge_bootmem_page *m;
b2261026 2602 int nr_nodes, node;
aa888a74 2603
b2261026 2604 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2605 void *addr;
2606
eb31d559 2607 addr = memblock_alloc_try_nid_raw(
8b89a116 2608 huge_page_size(h), huge_page_size(h),
97ad1087 2609 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2610 if (addr) {
2611 /*
2612 * Use the beginning of the huge page to store the
2613 * huge_bootmem_page struct (until gather_bootmem
2614 * puts them into the mem_map).
2615 */
2616 m = addr;
91f47662 2617 goto found;
aa888a74 2618 }
aa888a74
AK
2619 }
2620 return 0;
2621
2622found:
df994ead 2623 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2624 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2625 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2626 list_add(&m->list, &huge_boot_pages);
2627 m->hstate = h;
2628 return 1;
2629}
2630
d00181b9
KS
2631static void __init prep_compound_huge_page(struct page *page,
2632 unsigned int order)
18229df5
AW
2633{
2634 if (unlikely(order > (MAX_ORDER - 1)))
2635 prep_compound_gigantic_page(page, order);
2636 else
2637 prep_compound_page(page, order);
2638}
2639
aa888a74
AK
2640/* Put bootmem huge pages into the standard lists after mem_map is up */
2641static void __init gather_bootmem_prealloc(void)
2642{
2643 struct huge_bootmem_page *m;
2644
2645 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2646 struct page *page = virt_to_page(m);
aa888a74 2647 struct hstate *h = m->hstate;
ee8f248d 2648
aa888a74 2649 WARN_ON(page_count(page) != 1);
c78a7f36 2650 prep_compound_huge_page(page, huge_page_order(h));
ef5a22be 2651 WARN_ON(PageReserved(page));
aa888a74 2652 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2653 put_page(page); /* free it into the hugepage allocator */
2654
b0320c7b
RA
2655 /*
2656 * If we had gigantic hugepages allocated at boot time, we need
2657 * to restore the 'stolen' pages to totalram_pages in order to
2658 * fix confusing memory reports from free(1) and another
2659 * side-effects, like CommitLimit going negative.
2660 */
bae7f4ae 2661 if (hstate_is_gigantic(h))
c78a7f36 2662 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 2663 cond_resched();
aa888a74
AK
2664 }
2665}
2666
8faa8b07 2667static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2668{
2669 unsigned long i;
f60858f9
MK
2670 nodemask_t *node_alloc_noretry;
2671
2672 if (!hstate_is_gigantic(h)) {
2673 /*
2674 * Bit mask controlling how hard we retry per-node allocations.
2675 * Ignore errors as lower level routines can deal with
2676 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2677 * time, we are likely in bigger trouble.
2678 */
2679 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2680 GFP_KERNEL);
2681 } else {
2682 /* allocations done at boot time */
2683 node_alloc_noretry = NULL;
2684 }
2685
2686 /* bit mask controlling how hard we retry per-node allocations */
2687 if (node_alloc_noretry)
2688 nodes_clear(*node_alloc_noretry);
a5516438 2689
e5ff2159 2690 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2691 if (hstate_is_gigantic(h)) {
dbda8fea 2692 if (hugetlb_cma_size) {
cf11e85f 2693 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
7ecc9565 2694 goto free;
cf11e85f 2695 }
aa888a74
AK
2696 if (!alloc_bootmem_huge_page(h))
2697 break;
0c397dae 2698 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2699 &node_states[N_MEMORY],
2700 node_alloc_noretry))
1da177e4 2701 break;
69ed779a 2702 cond_resched();
1da177e4 2703 }
d715cf80
LH
2704 if (i < h->max_huge_pages) {
2705 char buf[32];
2706
c6247f72 2707 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2708 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2709 h->max_huge_pages, buf, i);
2710 h->max_huge_pages = i;
2711 }
7ecc9565 2712free:
f60858f9 2713 kfree(node_alloc_noretry);
e5ff2159
AK
2714}
2715
2716static void __init hugetlb_init_hstates(void)
2717{
2718 struct hstate *h;
2719
2720 for_each_hstate(h) {
641844f5
NH
2721 if (minimum_order > huge_page_order(h))
2722 minimum_order = huge_page_order(h);
2723
8faa8b07 2724 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2725 if (!hstate_is_gigantic(h))
8faa8b07 2726 hugetlb_hstate_alloc_pages(h);
e5ff2159 2727 }
641844f5 2728 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2729}
2730
2731static void __init report_hugepages(void)
2732{
2733 struct hstate *h;
2734
2735 for_each_hstate(h) {
4abd32db 2736 char buf[32];
c6247f72
MW
2737
2738 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2739 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2740 buf, h->free_huge_pages);
e5ff2159
AK
2741 }
2742}
2743
1da177e4 2744#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2745static void try_to_free_low(struct hstate *h, unsigned long count,
2746 nodemask_t *nodes_allowed)
1da177e4 2747{
4415cc8d 2748 int i;
1121828a 2749 LIST_HEAD(page_list);
4415cc8d 2750
9487ca60 2751 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 2752 if (hstate_is_gigantic(h))
aa888a74
AK
2753 return;
2754
1121828a
MK
2755 /*
2756 * Collect pages to be freed on a list, and free after dropping lock
2757 */
6ae11b27 2758 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 2759 struct page *page, *next;
a5516438
AK
2760 struct list_head *freel = &h->hugepage_freelists[i];
2761 list_for_each_entry_safe(page, next, freel, lru) {
2762 if (count >= h->nr_huge_pages)
1121828a 2763 goto out;
1da177e4
LT
2764 if (PageHighMem(page))
2765 continue;
6eb4e88a 2766 remove_hugetlb_page(h, page, false);
1121828a 2767 list_add(&page->lru, &page_list);
1da177e4
LT
2768 }
2769 }
1121828a
MK
2770
2771out:
db71ef79 2772 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2773 update_and_free_pages_bulk(h, &page_list);
db71ef79 2774 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
2775}
2776#else
6ae11b27
LS
2777static inline void try_to_free_low(struct hstate *h, unsigned long count,
2778 nodemask_t *nodes_allowed)
1da177e4
LT
2779{
2780}
2781#endif
2782
20a0307c
WF
2783/*
2784 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2785 * balanced by operating on them in a round-robin fashion.
2786 * Returns 1 if an adjustment was made.
2787 */
6ae11b27
LS
2788static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2789 int delta)
20a0307c 2790{
b2261026 2791 int nr_nodes, node;
20a0307c 2792
9487ca60 2793 lockdep_assert_held(&hugetlb_lock);
20a0307c 2794 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2795
b2261026
JK
2796 if (delta < 0) {
2797 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2798 if (h->surplus_huge_pages_node[node])
2799 goto found;
e8c5c824 2800 }
b2261026
JK
2801 } else {
2802 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2803 if (h->surplus_huge_pages_node[node] <
2804 h->nr_huge_pages_node[node])
2805 goto found;
e8c5c824 2806 }
b2261026
JK
2807 }
2808 return 0;
20a0307c 2809
b2261026
JK
2810found:
2811 h->surplus_huge_pages += delta;
2812 h->surplus_huge_pages_node[node] += delta;
2813 return 1;
20a0307c
WF
2814}
2815
a5516438 2816#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2817static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2818 nodemask_t *nodes_allowed)
1da177e4 2819{
7893d1d5 2820 unsigned long min_count, ret;
10c6ec49
MK
2821 struct page *page;
2822 LIST_HEAD(page_list);
f60858f9
MK
2823 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2824
2825 /*
2826 * Bit mask controlling how hard we retry per-node allocations.
2827 * If we can not allocate the bit mask, do not attempt to allocate
2828 * the requested huge pages.
2829 */
2830 if (node_alloc_noretry)
2831 nodes_clear(*node_alloc_noretry);
2832 else
2833 return -ENOMEM;
1da177e4 2834
29383967
MK
2835 /*
2836 * resize_lock mutex prevents concurrent adjustments to number of
2837 * pages in hstate via the proc/sysfs interfaces.
2838 */
2839 mutex_lock(&h->resize_lock);
db71ef79 2840 spin_lock_irq(&hugetlb_lock);
4eb0716e 2841
fd875dca
MK
2842 /*
2843 * Check for a node specific request.
2844 * Changing node specific huge page count may require a corresponding
2845 * change to the global count. In any case, the passed node mask
2846 * (nodes_allowed) will restrict alloc/free to the specified node.
2847 */
2848 if (nid != NUMA_NO_NODE) {
2849 unsigned long old_count = count;
2850
2851 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2852 /*
2853 * User may have specified a large count value which caused the
2854 * above calculation to overflow. In this case, they wanted
2855 * to allocate as many huge pages as possible. Set count to
2856 * largest possible value to align with their intention.
2857 */
2858 if (count < old_count)
2859 count = ULONG_MAX;
2860 }
2861
4eb0716e
AG
2862 /*
2863 * Gigantic pages runtime allocation depend on the capability for large
2864 * page range allocation.
2865 * If the system does not provide this feature, return an error when
2866 * the user tries to allocate gigantic pages but let the user free the
2867 * boottime allocated gigantic pages.
2868 */
2869 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2870 if (count > persistent_huge_pages(h)) {
db71ef79 2871 spin_unlock_irq(&hugetlb_lock);
29383967 2872 mutex_unlock(&h->resize_lock);
f60858f9 2873 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2874 return -EINVAL;
2875 }
2876 /* Fall through to decrease pool */
2877 }
aa888a74 2878
7893d1d5
AL
2879 /*
2880 * Increase the pool size
2881 * First take pages out of surplus state. Then make up the
2882 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2883 *
0c397dae 2884 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2885 * to convert a surplus huge page to a normal huge page. That is
2886 * not critical, though, it just means the overall size of the
2887 * pool might be one hugepage larger than it needs to be, but
2888 * within all the constraints specified by the sysctls.
7893d1d5 2889 */
a5516438 2890 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2891 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2892 break;
2893 }
2894
a5516438 2895 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2896 /*
2897 * If this allocation races such that we no longer need the
2898 * page, free_huge_page will handle it by freeing the page
2899 * and reducing the surplus.
2900 */
db71ef79 2901 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
2902
2903 /* yield cpu to avoid soft lockup */
2904 cond_resched();
2905
f60858f9
MK
2906 ret = alloc_pool_huge_page(h, nodes_allowed,
2907 node_alloc_noretry);
db71ef79 2908 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
2909 if (!ret)
2910 goto out;
2911
536240f2
MG
2912 /* Bail for signals. Probably ctrl-c from user */
2913 if (signal_pending(current))
2914 goto out;
7893d1d5 2915 }
7893d1d5
AL
2916
2917 /*
2918 * Decrease the pool size
2919 * First return free pages to the buddy allocator (being careful
2920 * to keep enough around to satisfy reservations). Then place
2921 * pages into surplus state as needed so the pool will shrink
2922 * to the desired size as pages become free.
d1c3fb1f
NA
2923 *
2924 * By placing pages into the surplus state independent of the
2925 * overcommit value, we are allowing the surplus pool size to
2926 * exceed overcommit. There are few sane options here. Since
0c397dae 2927 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2928 * though, we'll note that we're not allowed to exceed surplus
2929 * and won't grow the pool anywhere else. Not until one of the
2930 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2931 */
a5516438 2932 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2933 min_count = max(count, min_count);
6ae11b27 2934 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
2935
2936 /*
2937 * Collect pages to be removed on list without dropping lock
2938 */
a5516438 2939 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
2940 page = remove_pool_huge_page(h, nodes_allowed, 0);
2941 if (!page)
1da177e4 2942 break;
10c6ec49
MK
2943
2944 list_add(&page->lru, &page_list);
1da177e4 2945 }
10c6ec49 2946 /* free the pages after dropping lock */
db71ef79 2947 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2948 update_and_free_pages_bulk(h, &page_list);
db71ef79 2949 spin_lock_irq(&hugetlb_lock);
10c6ec49 2950
a5516438 2951 while (count < persistent_huge_pages(h)) {
6ae11b27 2952 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2953 break;
2954 }
2955out:
4eb0716e 2956 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 2957 spin_unlock_irq(&hugetlb_lock);
29383967 2958 mutex_unlock(&h->resize_lock);
4eb0716e 2959
f60858f9
MK
2960 NODEMASK_FREE(node_alloc_noretry);
2961
4eb0716e 2962 return 0;
1da177e4
LT
2963}
2964
a3437870
NA
2965#define HSTATE_ATTR_RO(_name) \
2966 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2967
2968#define HSTATE_ATTR(_name) \
2969 static struct kobj_attribute _name##_attr = \
2970 __ATTR(_name, 0644, _name##_show, _name##_store)
2971
2972static struct kobject *hugepages_kobj;
2973static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2974
9a305230
LS
2975static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2976
2977static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2978{
2979 int i;
9a305230 2980
a3437870 2981 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2982 if (hstate_kobjs[i] == kobj) {
2983 if (nidp)
2984 *nidp = NUMA_NO_NODE;
a3437870 2985 return &hstates[i];
9a305230
LS
2986 }
2987
2988 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2989}
2990
06808b08 2991static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2992 struct kobj_attribute *attr, char *buf)
2993{
9a305230
LS
2994 struct hstate *h;
2995 unsigned long nr_huge_pages;
2996 int nid;
2997
2998 h = kobj_to_hstate(kobj, &nid);
2999 if (nid == NUMA_NO_NODE)
3000 nr_huge_pages = h->nr_huge_pages;
3001 else
3002 nr_huge_pages = h->nr_huge_pages_node[nid];
3003
ae7a927d 3004 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 3005}
adbe8726 3006
238d3c13
DR
3007static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3008 struct hstate *h, int nid,
3009 unsigned long count, size_t len)
a3437870
NA
3010{
3011 int err;
2d0adf7e 3012 nodemask_t nodes_allowed, *n_mask;
a3437870 3013
2d0adf7e
OS
3014 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3015 return -EINVAL;
adbe8726 3016
9a305230
LS
3017 if (nid == NUMA_NO_NODE) {
3018 /*
3019 * global hstate attribute
3020 */
3021 if (!(obey_mempolicy &&
2d0adf7e
OS
3022 init_nodemask_of_mempolicy(&nodes_allowed)))
3023 n_mask = &node_states[N_MEMORY];
3024 else
3025 n_mask = &nodes_allowed;
3026 } else {
9a305230 3027 /*
fd875dca
MK
3028 * Node specific request. count adjustment happens in
3029 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 3030 */
2d0adf7e
OS
3031 init_nodemask_of_node(&nodes_allowed, nid);
3032 n_mask = &nodes_allowed;
fd875dca 3033 }
9a305230 3034
2d0adf7e 3035 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 3036
4eb0716e 3037 return err ? err : len;
06808b08
LS
3038}
3039
238d3c13
DR
3040static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3041 struct kobject *kobj, const char *buf,
3042 size_t len)
3043{
3044 struct hstate *h;
3045 unsigned long count;
3046 int nid;
3047 int err;
3048
3049 err = kstrtoul(buf, 10, &count);
3050 if (err)
3051 return err;
3052
3053 h = kobj_to_hstate(kobj, &nid);
3054 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3055}
3056
06808b08
LS
3057static ssize_t nr_hugepages_show(struct kobject *kobj,
3058 struct kobj_attribute *attr, char *buf)
3059{
3060 return nr_hugepages_show_common(kobj, attr, buf);
3061}
3062
3063static ssize_t nr_hugepages_store(struct kobject *kobj,
3064 struct kobj_attribute *attr, const char *buf, size_t len)
3065{
238d3c13 3066 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
3067}
3068HSTATE_ATTR(nr_hugepages);
3069
06808b08
LS
3070#ifdef CONFIG_NUMA
3071
3072/*
3073 * hstate attribute for optionally mempolicy-based constraint on persistent
3074 * huge page alloc/free.
3075 */
3076static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3077 struct kobj_attribute *attr,
3078 char *buf)
06808b08
LS
3079{
3080 return nr_hugepages_show_common(kobj, attr, buf);
3081}
3082
3083static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3084 struct kobj_attribute *attr, const char *buf, size_t len)
3085{
238d3c13 3086 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3087}
3088HSTATE_ATTR(nr_hugepages_mempolicy);
3089#endif
3090
3091
a3437870
NA
3092static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3093 struct kobj_attribute *attr, char *buf)
3094{
9a305230 3095 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3096 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3097}
adbe8726 3098
a3437870
NA
3099static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3100 struct kobj_attribute *attr, const char *buf, size_t count)
3101{
3102 int err;
3103 unsigned long input;
9a305230 3104 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3105
bae7f4ae 3106 if (hstate_is_gigantic(h))
adbe8726
EM
3107 return -EINVAL;
3108
3dbb95f7 3109 err = kstrtoul(buf, 10, &input);
a3437870 3110 if (err)
73ae31e5 3111 return err;
a3437870 3112
db71ef79 3113 spin_lock_irq(&hugetlb_lock);
a3437870 3114 h->nr_overcommit_huge_pages = input;
db71ef79 3115 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3116
3117 return count;
3118}
3119HSTATE_ATTR(nr_overcommit_hugepages);
3120
3121static ssize_t free_hugepages_show(struct kobject *kobj,
3122 struct kobj_attribute *attr, char *buf)
3123{
9a305230
LS
3124 struct hstate *h;
3125 unsigned long free_huge_pages;
3126 int nid;
3127
3128 h = kobj_to_hstate(kobj, &nid);
3129 if (nid == NUMA_NO_NODE)
3130 free_huge_pages = h->free_huge_pages;
3131 else
3132 free_huge_pages = h->free_huge_pages_node[nid];
3133
ae7a927d 3134 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3135}
3136HSTATE_ATTR_RO(free_hugepages);
3137
3138static ssize_t resv_hugepages_show(struct kobject *kobj,
3139 struct kobj_attribute *attr, char *buf)
3140{
9a305230 3141 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3142 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3143}
3144HSTATE_ATTR_RO(resv_hugepages);
3145
3146static ssize_t surplus_hugepages_show(struct kobject *kobj,
3147 struct kobj_attribute *attr, char *buf)
3148{
9a305230
LS
3149 struct hstate *h;
3150 unsigned long surplus_huge_pages;
3151 int nid;
3152
3153 h = kobj_to_hstate(kobj, &nid);
3154 if (nid == NUMA_NO_NODE)
3155 surplus_huge_pages = h->surplus_huge_pages;
3156 else
3157 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3158
ae7a927d 3159 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3160}
3161HSTATE_ATTR_RO(surplus_hugepages);
3162
3163static struct attribute *hstate_attrs[] = {
3164 &nr_hugepages_attr.attr,
3165 &nr_overcommit_hugepages_attr.attr,
3166 &free_hugepages_attr.attr,
3167 &resv_hugepages_attr.attr,
3168 &surplus_hugepages_attr.attr,
06808b08
LS
3169#ifdef CONFIG_NUMA
3170 &nr_hugepages_mempolicy_attr.attr,
3171#endif
a3437870
NA
3172 NULL,
3173};
3174
67e5ed96 3175static const struct attribute_group hstate_attr_group = {
a3437870
NA
3176 .attrs = hstate_attrs,
3177};
3178
094e9539
JM
3179static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3180 struct kobject **hstate_kobjs,
67e5ed96 3181 const struct attribute_group *hstate_attr_group)
a3437870
NA
3182{
3183 int retval;
972dc4de 3184 int hi = hstate_index(h);
a3437870 3185
9a305230
LS
3186 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3187 if (!hstate_kobjs[hi])
a3437870
NA
3188 return -ENOMEM;
3189
9a305230 3190 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 3191 if (retval) {
9a305230 3192 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
3193 hstate_kobjs[hi] = NULL;
3194 }
a3437870
NA
3195
3196 return retval;
3197}
3198
3199static void __init hugetlb_sysfs_init(void)
3200{
3201 struct hstate *h;
3202 int err;
3203
3204 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3205 if (!hugepages_kobj)
3206 return;
3207
3208 for_each_hstate(h) {
9a305230
LS
3209 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3210 hstate_kobjs, &hstate_attr_group);
a3437870 3211 if (err)
282f4214 3212 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3213 }
3214}
3215
9a305230
LS
3216#ifdef CONFIG_NUMA
3217
3218/*
3219 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3220 * with node devices in node_devices[] using a parallel array. The array
3221 * index of a node device or _hstate == node id.
3222 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3223 * the base kernel, on the hugetlb module.
3224 */
3225struct node_hstate {
3226 struct kobject *hugepages_kobj;
3227 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3228};
b4e289a6 3229static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3230
3231/*
10fbcf4c 3232 * A subset of global hstate attributes for node devices
9a305230
LS
3233 */
3234static struct attribute *per_node_hstate_attrs[] = {
3235 &nr_hugepages_attr.attr,
3236 &free_hugepages_attr.attr,
3237 &surplus_hugepages_attr.attr,
3238 NULL,
3239};
3240
67e5ed96 3241static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3242 .attrs = per_node_hstate_attrs,
3243};
3244
3245/*
10fbcf4c 3246 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3247 * Returns node id via non-NULL nidp.
3248 */
3249static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3250{
3251 int nid;
3252
3253 for (nid = 0; nid < nr_node_ids; nid++) {
3254 struct node_hstate *nhs = &node_hstates[nid];
3255 int i;
3256 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3257 if (nhs->hstate_kobjs[i] == kobj) {
3258 if (nidp)
3259 *nidp = nid;
3260 return &hstates[i];
3261 }
3262 }
3263
3264 BUG();
3265 return NULL;
3266}
3267
3268/*
10fbcf4c 3269 * Unregister hstate attributes from a single node device.
9a305230
LS
3270 * No-op if no hstate attributes attached.
3271 */
3cd8b44f 3272static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3273{
3274 struct hstate *h;
10fbcf4c 3275 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3276
3277 if (!nhs->hugepages_kobj)
9b5e5d0f 3278 return; /* no hstate attributes */
9a305230 3279
972dc4de
AK
3280 for_each_hstate(h) {
3281 int idx = hstate_index(h);
3282 if (nhs->hstate_kobjs[idx]) {
3283 kobject_put(nhs->hstate_kobjs[idx]);
3284 nhs->hstate_kobjs[idx] = NULL;
9a305230 3285 }
972dc4de 3286 }
9a305230
LS
3287
3288 kobject_put(nhs->hugepages_kobj);
3289 nhs->hugepages_kobj = NULL;
3290}
3291
9a305230
LS
3292
3293/*
10fbcf4c 3294 * Register hstate attributes for a single node device.
9a305230
LS
3295 * No-op if attributes already registered.
3296 */
3cd8b44f 3297static void hugetlb_register_node(struct node *node)
9a305230
LS
3298{
3299 struct hstate *h;
10fbcf4c 3300 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3301 int err;
3302
3303 if (nhs->hugepages_kobj)
3304 return; /* already allocated */
3305
3306 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3307 &node->dev.kobj);
9a305230
LS
3308 if (!nhs->hugepages_kobj)
3309 return;
3310
3311 for_each_hstate(h) {
3312 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3313 nhs->hstate_kobjs,
3314 &per_node_hstate_attr_group);
3315 if (err) {
282f4214 3316 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3317 h->name, node->dev.id);
9a305230
LS
3318 hugetlb_unregister_node(node);
3319 break;
3320 }
3321 }
3322}
3323
3324/*
9b5e5d0f 3325 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3326 * devices of nodes that have memory. All on-line nodes should have
3327 * registered their associated device by this time.
9a305230 3328 */
7d9ca000 3329static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3330{
3331 int nid;
3332
8cebfcd0 3333 for_each_node_state(nid, N_MEMORY) {
8732794b 3334 struct node *node = node_devices[nid];
10fbcf4c 3335 if (node->dev.id == nid)
9a305230
LS
3336 hugetlb_register_node(node);
3337 }
3338
3339 /*
10fbcf4c 3340 * Let the node device driver know we're here so it can
9a305230
LS
3341 * [un]register hstate attributes on node hotplug.
3342 */
3343 register_hugetlbfs_with_node(hugetlb_register_node,
3344 hugetlb_unregister_node);
3345}
3346#else /* !CONFIG_NUMA */
3347
3348static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3349{
3350 BUG();
3351 if (nidp)
3352 *nidp = -1;
3353 return NULL;
3354}
3355
9a305230
LS
3356static void hugetlb_register_all_nodes(void) { }
3357
3358#endif
3359
a3437870
NA
3360static int __init hugetlb_init(void)
3361{
8382d914
DB
3362 int i;
3363
d6995da3
MK
3364 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3365 __NR_HPAGEFLAGS);
3366
c2833a5b
MK
3367 if (!hugepages_supported()) {
3368 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3369 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3370 return 0;
c2833a5b 3371 }
a3437870 3372
282f4214
MK
3373 /*
3374 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3375 * architectures depend on setup being done here.
3376 */
3377 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3378 if (!parsed_default_hugepagesz) {
3379 /*
3380 * If we did not parse a default huge page size, set
3381 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3382 * number of huge pages for this default size was implicitly
3383 * specified, set that here as well.
3384 * Note that the implicit setting will overwrite an explicit
3385 * setting. A warning will be printed in this case.
3386 */
3387 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3388 if (default_hstate_max_huge_pages) {
3389 if (default_hstate.max_huge_pages) {
3390 char buf[32];
3391
3392 string_get_size(huge_page_size(&default_hstate),
3393 1, STRING_UNITS_2, buf, 32);
3394 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3395 default_hstate.max_huge_pages, buf);
3396 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3397 default_hstate_max_huge_pages);
3398 }
3399 default_hstate.max_huge_pages =
3400 default_hstate_max_huge_pages;
d715cf80 3401 }
f8b74815 3402 }
a3437870 3403
cf11e85f 3404 hugetlb_cma_check();
a3437870 3405 hugetlb_init_hstates();
aa888a74 3406 gather_bootmem_prealloc();
a3437870
NA
3407 report_hugepages();
3408
3409 hugetlb_sysfs_init();
9a305230 3410 hugetlb_register_all_nodes();
7179e7bf 3411 hugetlb_cgroup_file_init();
9a305230 3412
8382d914
DB
3413#ifdef CONFIG_SMP
3414 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3415#else
3416 num_fault_mutexes = 1;
3417#endif
c672c7f2 3418 hugetlb_fault_mutex_table =
6da2ec56
KC
3419 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3420 GFP_KERNEL);
c672c7f2 3421 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3422
3423 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3424 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3425 return 0;
3426}
3e89e1c5 3427subsys_initcall(hugetlb_init);
a3437870 3428
ae94da89
MK
3429/* Overwritten by architectures with more huge page sizes */
3430bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3431{
ae94da89 3432 return size == HPAGE_SIZE;
9fee021d
VT
3433}
3434
d00181b9 3435void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3436{
3437 struct hstate *h;
8faa8b07
AK
3438 unsigned long i;
3439
a3437870 3440 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3441 return;
3442 }
47d38344 3443 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3444 BUG_ON(order == 0);
47d38344 3445 h = &hstates[hugetlb_max_hstate++];
29383967 3446 mutex_init(&h->resize_lock);
a3437870 3447 h->order = order;
aca78307 3448 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
3449 for (i = 0; i < MAX_NUMNODES; ++i)
3450 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3451 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3452 h->next_nid_to_alloc = first_memory_node;
3453 h->next_nid_to_free = first_memory_node;
a3437870
NA
3454 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3455 huge_page_size(h)/1024);
8faa8b07 3456
a3437870
NA
3457 parsed_hstate = h;
3458}
3459
282f4214
MK
3460/*
3461 * hugepages command line processing
3462 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3463 * specification. If not, ignore the hugepages value. hugepages can also
3464 * be the first huge page command line option in which case it implicitly
3465 * specifies the number of huge pages for the default size.
3466 */
3467static int __init hugepages_setup(char *s)
a3437870
NA
3468{
3469 unsigned long *mhp;
8faa8b07 3470 static unsigned long *last_mhp;
a3437870 3471
9fee021d 3472 if (!parsed_valid_hugepagesz) {
282f4214 3473 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3474 parsed_valid_hugepagesz = true;
282f4214 3475 return 0;
9fee021d 3476 }
282f4214 3477
a3437870 3478 /*
282f4214
MK
3479 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3480 * yet, so this hugepages= parameter goes to the "default hstate".
3481 * Otherwise, it goes with the previously parsed hugepagesz or
3482 * default_hugepagesz.
a3437870 3483 */
9fee021d 3484 else if (!hugetlb_max_hstate)
a3437870
NA
3485 mhp = &default_hstate_max_huge_pages;
3486 else
3487 mhp = &parsed_hstate->max_huge_pages;
3488
8faa8b07 3489 if (mhp == last_mhp) {
282f4214
MK
3490 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3491 return 0;
8faa8b07
AK
3492 }
3493
a3437870
NA
3494 if (sscanf(s, "%lu", mhp) <= 0)
3495 *mhp = 0;
3496
8faa8b07
AK
3497 /*
3498 * Global state is always initialized later in hugetlb_init.
04adbc3f 3499 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
3500 * use the bootmem allocator.
3501 */
04adbc3f 3502 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
3503 hugetlb_hstate_alloc_pages(parsed_hstate);
3504
3505 last_mhp = mhp;
3506
a3437870
NA
3507 return 1;
3508}
282f4214 3509__setup("hugepages=", hugepages_setup);
e11bfbfc 3510
282f4214
MK
3511/*
3512 * hugepagesz command line processing
3513 * A specific huge page size can only be specified once with hugepagesz.
3514 * hugepagesz is followed by hugepages on the command line. The global
3515 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3516 * hugepagesz argument was valid.
3517 */
359f2544 3518static int __init hugepagesz_setup(char *s)
e11bfbfc 3519{
359f2544 3520 unsigned long size;
282f4214
MK
3521 struct hstate *h;
3522
3523 parsed_valid_hugepagesz = false;
359f2544
MK
3524 size = (unsigned long)memparse(s, NULL);
3525
3526 if (!arch_hugetlb_valid_size(size)) {
282f4214 3527 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3528 return 0;
3529 }
3530
282f4214
MK
3531 h = size_to_hstate(size);
3532 if (h) {
3533 /*
3534 * hstate for this size already exists. This is normally
3535 * an error, but is allowed if the existing hstate is the
3536 * default hstate. More specifically, it is only allowed if
3537 * the number of huge pages for the default hstate was not
3538 * previously specified.
3539 */
3540 if (!parsed_default_hugepagesz || h != &default_hstate ||
3541 default_hstate.max_huge_pages) {
3542 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3543 return 0;
3544 }
3545
3546 /*
3547 * No need to call hugetlb_add_hstate() as hstate already
3548 * exists. But, do set parsed_hstate so that a following
3549 * hugepages= parameter will be applied to this hstate.
3550 */
3551 parsed_hstate = h;
3552 parsed_valid_hugepagesz = true;
3553 return 1;
38237830
MK
3554 }
3555
359f2544 3556 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3557 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3558 return 1;
3559}
359f2544
MK
3560__setup("hugepagesz=", hugepagesz_setup);
3561
282f4214
MK
3562/*
3563 * default_hugepagesz command line input
3564 * Only one instance of default_hugepagesz allowed on command line.
3565 */
ae94da89 3566static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3567{
ae94da89
MK
3568 unsigned long size;
3569
282f4214 3570 parsed_valid_hugepagesz = false;
282f4214
MK
3571 if (parsed_default_hugepagesz) {
3572 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3573 return 0;
3574 }
3575
ae94da89
MK
3576 size = (unsigned long)memparse(s, NULL);
3577
3578 if (!arch_hugetlb_valid_size(size)) {
282f4214 3579 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3580 return 0;
3581 }
3582
282f4214
MK
3583 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3584 parsed_valid_hugepagesz = true;
3585 parsed_default_hugepagesz = true;
3586 default_hstate_idx = hstate_index(size_to_hstate(size));
3587
3588 /*
3589 * The number of default huge pages (for this size) could have been
3590 * specified as the first hugetlb parameter: hugepages=X. If so,
3591 * then default_hstate_max_huge_pages is set. If the default huge
3592 * page size is gigantic (>= MAX_ORDER), then the pages must be
3593 * allocated here from bootmem allocator.
3594 */
3595 if (default_hstate_max_huge_pages) {
3596 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3597 if (hstate_is_gigantic(&default_hstate))
3598 hugetlb_hstate_alloc_pages(&default_hstate);
3599 default_hstate_max_huge_pages = 0;
3600 }
3601
e11bfbfc
NP
3602 return 1;
3603}
ae94da89 3604__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3605
8ca39e68 3606static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3607{
3608 int node;
3609 unsigned int nr = 0;
8ca39e68
MS
3610 nodemask_t *mpol_allowed;
3611 unsigned int *array = h->free_huge_pages_node;
3612 gfp_t gfp_mask = htlb_alloc_mask(h);
3613
3614 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3615
8ca39e68 3616 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 3617 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
3618 nr += array[node];
3619 }
8a213460
NA
3620
3621 return nr;
3622}
3623
3624#ifdef CONFIG_SYSCTL
17743798
MS
3625static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3626 void *buffer, size_t *length,
3627 loff_t *ppos, unsigned long *out)
3628{
3629 struct ctl_table dup_table;
3630
3631 /*
3632 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3633 * can duplicate the @table and alter the duplicate of it.
3634 */
3635 dup_table = *table;
3636 dup_table.data = out;
3637
3638 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3639}
3640
06808b08
LS
3641static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3642 struct ctl_table *table, int write,
32927393 3643 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3644{
e5ff2159 3645 struct hstate *h = &default_hstate;
238d3c13 3646 unsigned long tmp = h->max_huge_pages;
08d4a246 3647 int ret;
e5ff2159 3648
457c1b27 3649 if (!hugepages_supported())
86613628 3650 return -EOPNOTSUPP;
457c1b27 3651
17743798
MS
3652 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3653 &tmp);
08d4a246
MH
3654 if (ret)
3655 goto out;
e5ff2159 3656
238d3c13
DR
3657 if (write)
3658 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3659 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3660out:
3661 return ret;
1da177e4 3662}
396faf03 3663
06808b08 3664int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3665 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3666{
3667
3668 return hugetlb_sysctl_handler_common(false, table, write,
3669 buffer, length, ppos);
3670}
3671
3672#ifdef CONFIG_NUMA
3673int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3674 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3675{
3676 return hugetlb_sysctl_handler_common(true, table, write,
3677 buffer, length, ppos);
3678}
3679#endif /* CONFIG_NUMA */
3680
a3d0c6aa 3681int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3682 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3683{
a5516438 3684 struct hstate *h = &default_hstate;
e5ff2159 3685 unsigned long tmp;
08d4a246 3686 int ret;
e5ff2159 3687
457c1b27 3688 if (!hugepages_supported())
86613628 3689 return -EOPNOTSUPP;
457c1b27 3690
c033a93c 3691 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3692
bae7f4ae 3693 if (write && hstate_is_gigantic(h))
adbe8726
EM
3694 return -EINVAL;
3695
17743798
MS
3696 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3697 &tmp);
08d4a246
MH
3698 if (ret)
3699 goto out;
e5ff2159
AK
3700
3701 if (write) {
db71ef79 3702 spin_lock_irq(&hugetlb_lock);
e5ff2159 3703 h->nr_overcommit_huge_pages = tmp;
db71ef79 3704 spin_unlock_irq(&hugetlb_lock);
e5ff2159 3705 }
08d4a246
MH
3706out:
3707 return ret;
a3d0c6aa
NA
3708}
3709
1da177e4
LT
3710#endif /* CONFIG_SYSCTL */
3711
e1759c21 3712void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3713{
fcb2b0c5
RG
3714 struct hstate *h;
3715 unsigned long total = 0;
3716
457c1b27
NA
3717 if (!hugepages_supported())
3718 return;
fcb2b0c5
RG
3719
3720 for_each_hstate(h) {
3721 unsigned long count = h->nr_huge_pages;
3722
aca78307 3723 total += huge_page_size(h) * count;
fcb2b0c5
RG
3724
3725 if (h == &default_hstate)
3726 seq_printf(m,
3727 "HugePages_Total: %5lu\n"
3728 "HugePages_Free: %5lu\n"
3729 "HugePages_Rsvd: %5lu\n"
3730 "HugePages_Surp: %5lu\n"
3731 "Hugepagesize: %8lu kB\n",
3732 count,
3733 h->free_huge_pages,
3734 h->resv_huge_pages,
3735 h->surplus_huge_pages,
aca78307 3736 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
3737 }
3738
aca78307 3739 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
3740}
3741
7981593b 3742int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3743{
a5516438 3744 struct hstate *h = &default_hstate;
7981593b 3745
457c1b27
NA
3746 if (!hugepages_supported())
3747 return 0;
7981593b
JP
3748
3749 return sysfs_emit_at(buf, len,
3750 "Node %d HugePages_Total: %5u\n"
3751 "Node %d HugePages_Free: %5u\n"
3752 "Node %d HugePages_Surp: %5u\n",
3753 nid, h->nr_huge_pages_node[nid],
3754 nid, h->free_huge_pages_node[nid],
3755 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3756}
3757
949f7ec5
DR
3758void hugetlb_show_meminfo(void)
3759{
3760 struct hstate *h;
3761 int nid;
3762
457c1b27
NA
3763 if (!hugepages_supported())
3764 return;
3765
949f7ec5
DR
3766 for_each_node_state(nid, N_MEMORY)
3767 for_each_hstate(h)
3768 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3769 nid,
3770 h->nr_huge_pages_node[nid],
3771 h->free_huge_pages_node[nid],
3772 h->surplus_huge_pages_node[nid],
aca78307 3773 huge_page_size(h) / SZ_1K);
949f7ec5
DR
3774}
3775
5d317b2b
NH
3776void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3777{
3778 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3779 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3780}
3781
1da177e4
LT
3782/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3783unsigned long hugetlb_total_pages(void)
3784{
d0028588
WL
3785 struct hstate *h;
3786 unsigned long nr_total_pages = 0;
3787
3788 for_each_hstate(h)
3789 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3790 return nr_total_pages;
1da177e4 3791}
1da177e4 3792
a5516438 3793static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3794{
3795 int ret = -ENOMEM;
3796
0aa7f354
ML
3797 if (!delta)
3798 return 0;
3799
db71ef79 3800 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
3801 /*
3802 * When cpuset is configured, it breaks the strict hugetlb page
3803 * reservation as the accounting is done on a global variable. Such
3804 * reservation is completely rubbish in the presence of cpuset because
3805 * the reservation is not checked against page availability for the
3806 * current cpuset. Application can still potentially OOM'ed by kernel
3807 * with lack of free htlb page in cpuset that the task is in.
3808 * Attempt to enforce strict accounting with cpuset is almost
3809 * impossible (or too ugly) because cpuset is too fluid that
3810 * task or memory node can be dynamically moved between cpusets.
3811 *
3812 * The change of semantics for shared hugetlb mapping with cpuset is
3813 * undesirable. However, in order to preserve some of the semantics,
3814 * we fall back to check against current free page availability as
3815 * a best attempt and hopefully to minimize the impact of changing
3816 * semantics that cpuset has.
8ca39e68
MS
3817 *
3818 * Apart from cpuset, we also have memory policy mechanism that
3819 * also determines from which node the kernel will allocate memory
3820 * in a NUMA system. So similar to cpuset, we also should consider
3821 * the memory policy of the current task. Similar to the description
3822 * above.
fc1b8a73
MG
3823 */
3824 if (delta > 0) {
a5516438 3825 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3826 goto out;
3827
8ca39e68 3828 if (delta > allowed_mems_nr(h)) {
a5516438 3829 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3830 goto out;
3831 }
3832 }
3833
3834 ret = 0;
3835 if (delta < 0)
a5516438 3836 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3837
3838out:
db71ef79 3839 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
3840 return ret;
3841}
3842
84afd99b
AW
3843static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3844{
f522c3ac 3845 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3846
3847 /*
3848 * This new VMA should share its siblings reservation map if present.
3849 * The VMA will only ever have a valid reservation map pointer where
3850 * it is being copied for another still existing VMA. As that VMA
25985edc 3851 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3852 * after this open call completes. It is therefore safe to take a
3853 * new reference here without additional locking.
3854 */
4e35f483 3855 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3856 kref_get(&resv->refs);
84afd99b
AW
3857}
3858
a1e78772
MG
3859static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3860{
a5516438 3861 struct hstate *h = hstate_vma(vma);
f522c3ac 3862 struct resv_map *resv = vma_resv_map(vma);
90481622 3863 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3864 unsigned long reserve, start, end;
1c5ecae3 3865 long gbl_reserve;
84afd99b 3866
4e35f483
JK
3867 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3868 return;
84afd99b 3869
4e35f483
JK
3870 start = vma_hugecache_offset(h, vma, vma->vm_start);
3871 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3872
4e35f483 3873 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3874 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3875 if (reserve) {
1c5ecae3
MK
3876 /*
3877 * Decrement reserve counts. The global reserve count may be
3878 * adjusted if the subpool has a minimum size.
3879 */
3880 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3881 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3882 }
e9fe92ae
MA
3883
3884 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3885}
3886
31383c68
DW
3887static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3888{
3889 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3890 return -EINVAL;
3891 return 0;
3892}
3893
05ea8860
DW
3894static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3895{
aca78307 3896 return huge_page_size(hstate_vma(vma));
05ea8860
DW
3897}
3898
1da177e4
LT
3899/*
3900 * We cannot handle pagefaults against hugetlb pages at all. They cause
3901 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 3902 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
3903 * this far.
3904 */
b3ec9f33 3905static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3906{
3907 BUG();
d0217ac0 3908 return 0;
1da177e4
LT
3909}
3910
eec3636a
JC
3911/*
3912 * When a new function is introduced to vm_operations_struct and added
3913 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3914 * This is because under System V memory model, mappings created via
3915 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3916 * their original vm_ops are overwritten with shm_vm_ops.
3917 */
f0f37e2f 3918const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3919 .fault = hugetlb_vm_op_fault,
84afd99b 3920 .open = hugetlb_vm_op_open,
a1e78772 3921 .close = hugetlb_vm_op_close,
dd3b614f 3922 .may_split = hugetlb_vm_op_split,
05ea8860 3923 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3924};
3925
1e8f889b
DG
3926static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3927 int writable)
63551ae0
DG
3928{
3929 pte_t entry;
3930
1e8f889b 3931 if (writable) {
106c992a
GS
3932 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3933 vma->vm_page_prot)));
63551ae0 3934 } else {
106c992a
GS
3935 entry = huge_pte_wrprotect(mk_huge_pte(page,
3936 vma->vm_page_prot));
63551ae0
DG
3937 }
3938 entry = pte_mkyoung(entry);
3939 entry = pte_mkhuge(entry);
d9ed9faa 3940 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3941
3942 return entry;
3943}
3944
1e8f889b
DG
3945static void set_huge_ptep_writable(struct vm_area_struct *vma,
3946 unsigned long address, pte_t *ptep)
3947{
3948 pte_t entry;
3949
106c992a 3950 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3951 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3952 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3953}
3954
d5ed7444 3955bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3956{
3957 swp_entry_t swp;
3958
3959 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3960 return false;
4a705fef 3961 swp = pte_to_swp_entry(pte);
d79d176a 3962 if (is_migration_entry(swp))
d5ed7444 3963 return true;
4a705fef 3964 else
d5ed7444 3965 return false;
4a705fef
NH
3966}
3967
3e5c3600 3968static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
3969{
3970 swp_entry_t swp;
3971
3972 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 3973 return false;
4a705fef 3974 swp = pte_to_swp_entry(pte);
d79d176a 3975 if (is_hwpoison_entry(swp))
3e5c3600 3976 return true;
4a705fef 3977 else
3e5c3600 3978 return false;
4a705fef 3979}
1e8f889b 3980
4eae4efa
PX
3981static void
3982hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3983 struct page *new_page)
3984{
3985 __SetPageUptodate(new_page);
3986 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3987 hugepage_add_new_anon_rmap(new_page, vma, addr);
3988 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3989 ClearHPageRestoreReserve(new_page);
3990 SetHPageMigratable(new_page);
3991}
3992
63551ae0
DG
3993int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3994 struct vm_area_struct *vma)
3995{
5e41540c 3996 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3997 struct page *ptepage;
1c59827d 3998 unsigned long addr;
ca6eb14d 3999 bool cow = is_cow_mapping(vma->vm_flags);
a5516438
AK
4000 struct hstate *h = hstate_vma(vma);
4001 unsigned long sz = huge_page_size(h);
4eae4efa 4002 unsigned long npages = pages_per_huge_page(h);
c0d0381a 4003 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 4004 struct mmu_notifier_range range;
e8569dd2 4005 int ret = 0;
1e8f889b 4006
ac46d4f3 4007 if (cow) {
7269f999 4008 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 4009 vma->vm_start,
ac46d4f3
JG
4010 vma->vm_end);
4011 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
4012 } else {
4013 /*
4014 * For shared mappings i_mmap_rwsem must be held to call
4015 * huge_pte_alloc, otherwise the returned ptep could go
4016 * away if part of a shared pmd and another thread calls
4017 * huge_pmd_unshare.
4018 */
4019 i_mmap_lock_read(mapping);
ac46d4f3 4020 }
e8569dd2 4021
a5516438 4022 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 4023 spinlock_t *src_ptl, *dst_ptl;
7868a208 4024 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
4025 if (!src_pte)
4026 continue;
aec44e0f 4027 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
e8569dd2
AS
4028 if (!dst_pte) {
4029 ret = -ENOMEM;
4030 break;
4031 }
c5c99429 4032
5e41540c
MK
4033 /*
4034 * If the pagetables are shared don't copy or take references.
4035 * dst_pte == src_pte is the common case of src/dest sharing.
4036 *
4037 * However, src could have 'unshared' and dst shares with
4038 * another vma. If dst_pte !none, this implies sharing.
4039 * Check here before taking page table lock, and once again
4040 * after taking the lock below.
4041 */
4042 dst_entry = huge_ptep_get(dst_pte);
4043 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
4044 continue;
4045
cb900f41
KS
4046 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4047 src_ptl = huge_pte_lockptr(h, src, src_pte);
4048 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 4049 entry = huge_ptep_get(src_pte);
5e41540c 4050 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 4051again:
5e41540c
MK
4052 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4053 /*
4054 * Skip if src entry none. Also, skip in the
4055 * unlikely case dst entry !none as this implies
4056 * sharing with another vma.
4057 */
4a705fef
NH
4058 ;
4059 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4060 is_hugetlb_entry_hwpoisoned(entry))) {
4061 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4062
4063 if (is_write_migration_entry(swp_entry) && cow) {
4064 /*
4065 * COW mappings require pages in both
4066 * parent and child to be set to read.
4067 */
4068 make_migration_entry_read(&swp_entry);
4069 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
4070 set_huge_swap_pte_at(src, addr, src_pte,
4071 entry, sz);
4a705fef 4072 }
e5251fd4 4073 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 4074 } else {
4eae4efa
PX
4075 entry = huge_ptep_get(src_pte);
4076 ptepage = pte_page(entry);
4077 get_page(ptepage);
4078
4079 /*
4080 * This is a rare case where we see pinned hugetlb
4081 * pages while they're prone to COW. We need to do the
4082 * COW earlier during fork.
4083 *
4084 * When pre-allocating the page or copying data, we
4085 * need to be without the pgtable locks since we could
4086 * sleep during the process.
4087 */
4088 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4089 pte_t src_pte_old = entry;
4090 struct page *new;
4091
4092 spin_unlock(src_ptl);
4093 spin_unlock(dst_ptl);
4094 /* Do not use reserve as it's private owned */
4095 new = alloc_huge_page(vma, addr, 1);
4096 if (IS_ERR(new)) {
4097 put_page(ptepage);
4098 ret = PTR_ERR(new);
4099 break;
4100 }
4101 copy_user_huge_page(new, ptepage, addr, vma,
4102 npages);
4103 put_page(ptepage);
4104
4105 /* Install the new huge page if src pte stable */
4106 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4107 src_ptl = huge_pte_lockptr(h, src, src_pte);
4108 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4109 entry = huge_ptep_get(src_pte);
4110 if (!pte_same(src_pte_old, entry)) {
846be085
MK
4111 restore_reserve_on_error(h, vma, addr,
4112 new);
4eae4efa
PX
4113 put_page(new);
4114 /* dst_entry won't change as in child */
4115 goto again;
4116 }
4117 hugetlb_install_page(vma, dst_pte, addr, new);
4118 spin_unlock(src_ptl);
4119 spin_unlock(dst_ptl);
4120 continue;
4121 }
4122
34ee645e 4123 if (cow) {
0f10851e
JG
4124 /*
4125 * No need to notify as we are downgrading page
4126 * table protection not changing it to point
4127 * to a new page.
4128 *
ad56b738 4129 * See Documentation/vm/mmu_notifier.rst
0f10851e 4130 */
7f2e9525 4131 huge_ptep_set_wrprotect(src, addr, src_pte);
84894e1c 4132 entry = huge_pte_wrprotect(entry);
34ee645e 4133 }
4eae4efa 4134
53f9263b 4135 page_dup_rmap(ptepage, true);
1c59827d 4136 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 4137 hugetlb_count_add(npages, dst);
1c59827d 4138 }
cb900f41
KS
4139 spin_unlock(src_ptl);
4140 spin_unlock(dst_ptl);
63551ae0 4141 }
63551ae0 4142
e8569dd2 4143 if (cow)
ac46d4f3 4144 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
4145 else
4146 i_mmap_unlock_read(mapping);
e8569dd2
AS
4147
4148 return ret;
63551ae0
DG
4149}
4150
24669e58
AK
4151void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4152 unsigned long start, unsigned long end,
4153 struct page *ref_page)
63551ae0
DG
4154{
4155 struct mm_struct *mm = vma->vm_mm;
4156 unsigned long address;
c7546f8f 4157 pte_t *ptep;
63551ae0 4158 pte_t pte;
cb900f41 4159 spinlock_t *ptl;
63551ae0 4160 struct page *page;
a5516438
AK
4161 struct hstate *h = hstate_vma(vma);
4162 unsigned long sz = huge_page_size(h);
ac46d4f3 4163 struct mmu_notifier_range range;
a5516438 4164
63551ae0 4165 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
4166 BUG_ON(start & ~huge_page_mask(h));
4167 BUG_ON(end & ~huge_page_mask(h));
63551ae0 4168
07e32661
AK
4169 /*
4170 * This is a hugetlb vma, all the pte entries should point
4171 * to huge page.
4172 */
ed6a7935 4173 tlb_change_page_size(tlb, sz);
24669e58 4174 tlb_start_vma(tlb, vma);
dff11abe
MK
4175
4176 /*
4177 * If sharing possible, alert mmu notifiers of worst case.
4178 */
6f4f13e8
JG
4179 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4180 end);
ac46d4f3
JG
4181 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4182 mmu_notifier_invalidate_range_start(&range);
569f48b8 4183 address = start;
569f48b8 4184 for (; address < end; address += sz) {
7868a208 4185 ptep = huge_pte_offset(mm, address, sz);
4c887265 4186 if (!ptep)
c7546f8f
DG
4187 continue;
4188
cb900f41 4189 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 4190 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 4191 spin_unlock(ptl);
dff11abe
MK
4192 /*
4193 * We just unmapped a page of PMDs by clearing a PUD.
4194 * The caller's TLB flush range should cover this area.
4195 */
31d49da5
AK
4196 continue;
4197 }
39dde65c 4198
6629326b 4199 pte = huge_ptep_get(ptep);
31d49da5
AK
4200 if (huge_pte_none(pte)) {
4201 spin_unlock(ptl);
4202 continue;
4203 }
6629326b
HD
4204
4205 /*
9fbc1f63
NH
4206 * Migrating hugepage or HWPoisoned hugepage is already
4207 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 4208 */
9fbc1f63 4209 if (unlikely(!pte_present(pte))) {
9386fac3 4210 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
4211 spin_unlock(ptl);
4212 continue;
8c4894c6 4213 }
6629326b
HD
4214
4215 page = pte_page(pte);
04f2cbe3
MG
4216 /*
4217 * If a reference page is supplied, it is because a specific
4218 * page is being unmapped, not a range. Ensure the page we
4219 * are about to unmap is the actual page of interest.
4220 */
4221 if (ref_page) {
31d49da5
AK
4222 if (page != ref_page) {
4223 spin_unlock(ptl);
4224 continue;
4225 }
04f2cbe3
MG
4226 /*
4227 * Mark the VMA as having unmapped its page so that
4228 * future faults in this VMA will fail rather than
4229 * looking like data was lost
4230 */
4231 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4232 }
4233
c7546f8f 4234 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 4235 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 4236 if (huge_pte_dirty(pte))
6649a386 4237 set_page_dirty(page);
9e81130b 4238
5d317b2b 4239 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4240 page_remove_rmap(page, true);
31d49da5 4241
cb900f41 4242 spin_unlock(ptl);
e77b0852 4243 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4244 /*
4245 * Bail out after unmapping reference page if supplied
4246 */
4247 if (ref_page)
4248 break;
fe1668ae 4249 }
ac46d4f3 4250 mmu_notifier_invalidate_range_end(&range);
24669e58 4251 tlb_end_vma(tlb, vma);
1da177e4 4252}
63551ae0 4253
d833352a
MG
4254void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4255 struct vm_area_struct *vma, unsigned long start,
4256 unsigned long end, struct page *ref_page)
4257{
4258 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4259
4260 /*
4261 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4262 * test will fail on a vma being torn down, and not grab a page table
4263 * on its way out. We're lucky that the flag has such an appropriate
4264 * name, and can in fact be safely cleared here. We could clear it
4265 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4266 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4267 * because in the context this is called, the VMA is about to be
c8c06efa 4268 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4269 */
4270 vma->vm_flags &= ~VM_MAYSHARE;
4271}
4272
502717f4 4273void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4274 unsigned long end, struct page *ref_page)
502717f4 4275{
24669e58 4276 struct mmu_gather tlb;
dff11abe 4277
a72afd87 4278 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 4279 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 4280 tlb_finish_mmu(&tlb);
502717f4
KC
4281}
4282
04f2cbe3
MG
4283/*
4284 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 4285 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
4286 * from other VMAs and let the children be SIGKILLed if they are faulting the
4287 * same region.
4288 */
2f4612af
DB
4289static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4290 struct page *page, unsigned long address)
04f2cbe3 4291{
7526674d 4292 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4293 struct vm_area_struct *iter_vma;
4294 struct address_space *mapping;
04f2cbe3
MG
4295 pgoff_t pgoff;
4296
4297 /*
4298 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4299 * from page cache lookup which is in HPAGE_SIZE units.
4300 */
7526674d 4301 address = address & huge_page_mask(h);
36e4f20a
MH
4302 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4303 vma->vm_pgoff;
93c76a3d 4304 mapping = vma->vm_file->f_mapping;
04f2cbe3 4305
4eb2b1dc
MG
4306 /*
4307 * Take the mapping lock for the duration of the table walk. As
4308 * this mapping should be shared between all the VMAs,
4309 * __unmap_hugepage_range() is called as the lock is already held
4310 */
83cde9e8 4311 i_mmap_lock_write(mapping);
6b2dbba8 4312 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4313 /* Do not unmap the current VMA */
4314 if (iter_vma == vma)
4315 continue;
4316
2f84a899
MG
4317 /*
4318 * Shared VMAs have their own reserves and do not affect
4319 * MAP_PRIVATE accounting but it is possible that a shared
4320 * VMA is using the same page so check and skip such VMAs.
4321 */
4322 if (iter_vma->vm_flags & VM_MAYSHARE)
4323 continue;
4324
04f2cbe3
MG
4325 /*
4326 * Unmap the page from other VMAs without their own reserves.
4327 * They get marked to be SIGKILLed if they fault in these
4328 * areas. This is because a future no-page fault on this VMA
4329 * could insert a zeroed page instead of the data existing
4330 * from the time of fork. This would look like data corruption
4331 */
4332 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4333 unmap_hugepage_range(iter_vma, address,
4334 address + huge_page_size(h), page);
04f2cbe3 4335 }
83cde9e8 4336 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4337}
4338
0fe6e20b
NH
4339/*
4340 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4341 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4342 * cannot race with other handlers or page migration.
4343 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4344 */
2b740303 4345static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4346 unsigned long address, pte_t *ptep,
3999f52e 4347 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4348{
3999f52e 4349 pte_t pte;
a5516438 4350 struct hstate *h = hstate_vma(vma);
1e8f889b 4351 struct page *old_page, *new_page;
2b740303
SJ
4352 int outside_reserve = 0;
4353 vm_fault_t ret = 0;
974e6d66 4354 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4355 struct mmu_notifier_range range;
1e8f889b 4356
3999f52e 4357 pte = huge_ptep_get(ptep);
1e8f889b
DG
4358 old_page = pte_page(pte);
4359
04f2cbe3 4360retry_avoidcopy:
1e8f889b
DG
4361 /* If no-one else is actually using this page, avoid the copy
4362 * and just make the page writable */
37a2140d 4363 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4364 page_move_anon_rmap(old_page, vma);
5b7a1d40 4365 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4366 return 0;
1e8f889b
DG
4367 }
4368
04f2cbe3
MG
4369 /*
4370 * If the process that created a MAP_PRIVATE mapping is about to
4371 * perform a COW due to a shared page count, attempt to satisfy
4372 * the allocation without using the existing reserves. The pagecache
4373 * page is used to determine if the reserve at this address was
4374 * consumed or not. If reserves were used, a partial faulted mapping
4375 * at the time of fork() could consume its reserves on COW instead
4376 * of the full address range.
4377 */
5944d011 4378 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4379 old_page != pagecache_page)
4380 outside_reserve = 1;
4381
09cbfeaf 4382 get_page(old_page);
b76c8cfb 4383
ad4404a2
DB
4384 /*
4385 * Drop page table lock as buddy allocator may be called. It will
4386 * be acquired again before returning to the caller, as expected.
4387 */
cb900f41 4388 spin_unlock(ptl);
5b7a1d40 4389 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4390
2fc39cec 4391 if (IS_ERR(new_page)) {
04f2cbe3
MG
4392 /*
4393 * If a process owning a MAP_PRIVATE mapping fails to COW,
4394 * it is due to references held by a child and an insufficient
4395 * huge page pool. To guarantee the original mappers
4396 * reliability, unmap the page from child processes. The child
4397 * may get SIGKILLed if it later faults.
4398 */
4399 if (outside_reserve) {
e7dd91c4
MK
4400 struct address_space *mapping = vma->vm_file->f_mapping;
4401 pgoff_t idx;
4402 u32 hash;
4403
09cbfeaf 4404 put_page(old_page);
04f2cbe3 4405 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4406 /*
4407 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4408 * unmapping. unmapping needs to hold i_mmap_rwsem
4409 * in write mode. Dropping i_mmap_rwsem in read mode
4410 * here is OK as COW mappings do not interact with
4411 * PMD sharing.
4412 *
4413 * Reacquire both after unmap operation.
4414 */
4415 idx = vma_hugecache_offset(h, vma, haddr);
4416 hash = hugetlb_fault_mutex_hash(mapping, idx);
4417 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4418 i_mmap_unlock_read(mapping);
4419
5b7a1d40 4420 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4421
4422 i_mmap_lock_read(mapping);
4423 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4424 spin_lock(ptl);
5b7a1d40 4425 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4426 if (likely(ptep &&
4427 pte_same(huge_ptep_get(ptep), pte)))
4428 goto retry_avoidcopy;
4429 /*
4430 * race occurs while re-acquiring page table
4431 * lock, and our job is done.
4432 */
4433 return 0;
04f2cbe3
MG
4434 }
4435
2b740303 4436 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4437 goto out_release_old;
1e8f889b
DG
4438 }
4439
0fe6e20b
NH
4440 /*
4441 * When the original hugepage is shared one, it does not have
4442 * anon_vma prepared.
4443 */
44e2aa93 4444 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4445 ret = VM_FAULT_OOM;
4446 goto out_release_all;
44e2aa93 4447 }
0fe6e20b 4448
974e6d66 4449 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4450 pages_per_huge_page(h));
0ed361de 4451 __SetPageUptodate(new_page);
1e8f889b 4452
7269f999 4453 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4454 haddr + huge_page_size(h));
ac46d4f3 4455 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4456
b76c8cfb 4457 /*
cb900f41 4458 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4459 * before the page tables are altered
4460 */
cb900f41 4461 spin_lock(ptl);
5b7a1d40 4462 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4463 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 4464 ClearHPageRestoreReserve(new_page);
07443a85 4465
1e8f889b 4466 /* Break COW */
5b7a1d40 4467 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4468 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4469 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4470 make_huge_pte(vma, new_page, 1));
d281ee61 4471 page_remove_rmap(old_page, true);
5b7a1d40 4472 hugepage_add_new_anon_rmap(new_page, vma, haddr);
8f251a3d 4473 SetHPageMigratable(new_page);
1e8f889b
DG
4474 /* Make the old page be freed below */
4475 new_page = old_page;
4476 }
cb900f41 4477 spin_unlock(ptl);
ac46d4f3 4478 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4479out_release_all:
5b7a1d40 4480 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4481 put_page(new_page);
ad4404a2 4482out_release_old:
09cbfeaf 4483 put_page(old_page);
8312034f 4484
ad4404a2
DB
4485 spin_lock(ptl); /* Caller expects lock to be held */
4486 return ret;
1e8f889b
DG
4487}
4488
04f2cbe3 4489/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4490static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4491 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4492{
4493 struct address_space *mapping;
e7c4b0bf 4494 pgoff_t idx;
04f2cbe3
MG
4495
4496 mapping = vma->vm_file->f_mapping;
a5516438 4497 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4498
4499 return find_lock_page(mapping, idx);
4500}
4501
3ae77f43
HD
4502/*
4503 * Return whether there is a pagecache page to back given address within VMA.
4504 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4505 */
4506static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4507 struct vm_area_struct *vma, unsigned long address)
4508{
4509 struct address_space *mapping;
4510 pgoff_t idx;
4511 struct page *page;
4512
4513 mapping = vma->vm_file->f_mapping;
4514 idx = vma_hugecache_offset(h, vma, address);
4515
4516 page = find_get_page(mapping, idx);
4517 if (page)
4518 put_page(page);
4519 return page != NULL;
4520}
4521
ab76ad54
MK
4522int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4523 pgoff_t idx)
4524{
4525 struct inode *inode = mapping->host;
4526 struct hstate *h = hstate_inode(inode);
4527 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4528
4529 if (err)
4530 return err;
d6995da3 4531 ClearHPageRestoreReserve(page);
ab76ad54 4532
22146c3c
MK
4533 /*
4534 * set page dirty so that it will not be removed from cache/file
4535 * by non-hugetlbfs specific code paths.
4536 */
4537 set_page_dirty(page);
4538
ab76ad54
MK
4539 spin_lock(&inode->i_lock);
4540 inode->i_blocks += blocks_per_huge_page(h);
4541 spin_unlock(&inode->i_lock);
4542 return 0;
4543}
4544
7677f7fd
AR
4545static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4546 struct address_space *mapping,
4547 pgoff_t idx,
4548 unsigned int flags,
4549 unsigned long haddr,
4550 unsigned long reason)
4551{
4552 vm_fault_t ret;
4553 u32 hash;
4554 struct vm_fault vmf = {
4555 .vma = vma,
4556 .address = haddr,
4557 .flags = flags,
4558
4559 /*
4560 * Hard to debug if it ends up being
4561 * used by a callee that assumes
4562 * something about the other
4563 * uninitialized fields... same as in
4564 * memory.c
4565 */
4566 };
4567
4568 /*
4569 * hugetlb_fault_mutex and i_mmap_rwsem must be
4570 * dropped before handling userfault. Reacquire
4571 * after handling fault to make calling code simpler.
4572 */
4573 hash = hugetlb_fault_mutex_hash(mapping, idx);
4574 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4575 i_mmap_unlock_read(mapping);
4576 ret = handle_userfault(&vmf, reason);
4577 i_mmap_lock_read(mapping);
4578 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4579
4580 return ret;
4581}
4582
2b740303
SJ
4583static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4584 struct vm_area_struct *vma,
4585 struct address_space *mapping, pgoff_t idx,
4586 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4587{
a5516438 4588 struct hstate *h = hstate_vma(vma);
2b740303 4589 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4590 int anon_rmap = 0;
4c887265 4591 unsigned long size;
4c887265 4592 struct page *page;
1e8f889b 4593 pte_t new_pte;
cb900f41 4594 spinlock_t *ptl;
285b8dca 4595 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4596 bool new_page = false;
4c887265 4597
04f2cbe3
MG
4598 /*
4599 * Currently, we are forced to kill the process in the event the
4600 * original mapper has unmapped pages from the child due to a failed
25985edc 4601 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4602 */
4603 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4604 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4605 current->pid);
04f2cbe3
MG
4606 return ret;
4607 }
4608
4c887265 4609 /*
87bf91d3
MK
4610 * We can not race with truncation due to holding i_mmap_rwsem.
4611 * i_size is modified when holding i_mmap_rwsem, so check here
4612 * once for faults beyond end of file.
4c887265 4613 */
87bf91d3
MK
4614 size = i_size_read(mapping->host) >> huge_page_shift(h);
4615 if (idx >= size)
4616 goto out;
4617
6bda666a
CL
4618retry:
4619 page = find_lock_page(mapping, idx);
4620 if (!page) {
7677f7fd 4621 /* Check for page in userfault range */
1a1aad8a 4622 if (userfaultfd_missing(vma)) {
7677f7fd
AR
4623 ret = hugetlb_handle_userfault(vma, mapping, idx,
4624 flags, haddr,
4625 VM_UFFD_MISSING);
1a1aad8a
MK
4626 goto out;
4627 }
4628
285b8dca 4629 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4630 if (IS_ERR(page)) {
4643d67e
MK
4631 /*
4632 * Returning error will result in faulting task being
4633 * sent SIGBUS. The hugetlb fault mutex prevents two
4634 * tasks from racing to fault in the same page which
4635 * could result in false unable to allocate errors.
4636 * Page migration does not take the fault mutex, but
4637 * does a clear then write of pte's under page table
4638 * lock. Page fault code could race with migration,
4639 * notice the clear pte and try to allocate a page
4640 * here. Before returning error, get ptl and make
4641 * sure there really is no pte entry.
4642 */
4643 ptl = huge_pte_lock(h, mm, ptep);
d83e6c8a
ML
4644 ret = 0;
4645 if (huge_pte_none(huge_ptep_get(ptep)))
4646 ret = vmf_error(PTR_ERR(page));
4643d67e 4647 spin_unlock(ptl);
6bda666a
CL
4648 goto out;
4649 }
47ad8475 4650 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4651 __SetPageUptodate(page);
cb6acd01 4652 new_page = true;
ac9b9c66 4653
f83a275d 4654 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4655 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4656 if (err) {
4657 put_page(page);
6bda666a
CL
4658 if (err == -EEXIST)
4659 goto retry;
4660 goto out;
4661 }
23be7468 4662 } else {
6bda666a 4663 lock_page(page);
0fe6e20b
NH
4664 if (unlikely(anon_vma_prepare(vma))) {
4665 ret = VM_FAULT_OOM;
4666 goto backout_unlocked;
4667 }
409eb8c2 4668 anon_rmap = 1;
23be7468 4669 }
0fe6e20b 4670 } else {
998b4382
NH
4671 /*
4672 * If memory error occurs between mmap() and fault, some process
4673 * don't have hwpoisoned swap entry for errored virtual address.
4674 * So we need to block hugepage fault by PG_hwpoison bit check.
4675 */
4676 if (unlikely(PageHWPoison(page))) {
0eb98f15 4677 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4678 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4679 goto backout_unlocked;
4680 }
7677f7fd
AR
4681
4682 /* Check for page in userfault range. */
4683 if (userfaultfd_minor(vma)) {
4684 unlock_page(page);
4685 put_page(page);
4686 ret = hugetlb_handle_userfault(vma, mapping, idx,
4687 flags, haddr,
4688 VM_UFFD_MINOR);
4689 goto out;
4690 }
6bda666a 4691 }
1e8f889b 4692
57303d80
AW
4693 /*
4694 * If we are going to COW a private mapping later, we examine the
4695 * pending reservations for this page now. This will ensure that
4696 * any allocations necessary to record that reservation occur outside
4697 * the spinlock.
4698 */
5e911373 4699 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4700 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4701 ret = VM_FAULT_OOM;
4702 goto backout_unlocked;
4703 }
5e911373 4704 /* Just decrements count, does not deallocate */
285b8dca 4705 vma_end_reservation(h, vma, haddr);
5e911373 4706 }
57303d80 4707
8bea8052 4708 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4709 ret = 0;
7f2e9525 4710 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4711 goto backout;
4712
07443a85 4713 if (anon_rmap) {
d6995da3 4714 ClearHPageRestoreReserve(page);
285b8dca 4715 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4716 } else
53f9263b 4717 page_dup_rmap(page, true);
1e8f889b
DG
4718 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4719 && (vma->vm_flags & VM_SHARED)));
285b8dca 4720 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4721
5d317b2b 4722 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4723 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4724 /* Optimization, do the COW without a second fault */
974e6d66 4725 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4726 }
4727
cb900f41 4728 spin_unlock(ptl);
cb6acd01
MK
4729
4730 /*
8f251a3d
MK
4731 * Only set HPageMigratable in newly allocated pages. Existing pages
4732 * found in the pagecache may not have HPageMigratableset if they have
4733 * been isolated for migration.
cb6acd01
MK
4734 */
4735 if (new_page)
8f251a3d 4736 SetHPageMigratable(page);
cb6acd01 4737
4c887265
AL
4738 unlock_page(page);
4739out:
ac9b9c66 4740 return ret;
4c887265
AL
4741
4742backout:
cb900f41 4743 spin_unlock(ptl);
2b26736c 4744backout_unlocked:
4c887265 4745 unlock_page(page);
285b8dca 4746 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4747 put_page(page);
4748 goto out;
ac9b9c66
HD
4749}
4750
8382d914 4751#ifdef CONFIG_SMP
188b04a7 4752u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4753{
4754 unsigned long key[2];
4755 u32 hash;
4756
1b426bac
MK
4757 key[0] = (unsigned long) mapping;
4758 key[1] = idx;
8382d914 4759
55254636 4760 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4761
4762 return hash & (num_fault_mutexes - 1);
4763}
4764#else
4765/*
6c26d310 4766 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
4767 * return 0 and avoid the hashing overhead.
4768 */
188b04a7 4769u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4770{
4771 return 0;
4772}
4773#endif
4774
2b740303 4775vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4776 unsigned long address, unsigned int flags)
86e5216f 4777{
8382d914 4778 pte_t *ptep, entry;
cb900f41 4779 spinlock_t *ptl;
2b740303 4780 vm_fault_t ret;
8382d914
DB
4781 u32 hash;
4782 pgoff_t idx;
0fe6e20b 4783 struct page *page = NULL;
57303d80 4784 struct page *pagecache_page = NULL;
a5516438 4785 struct hstate *h = hstate_vma(vma);
8382d914 4786 struct address_space *mapping;
0f792cf9 4787 int need_wait_lock = 0;
285b8dca 4788 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4789
285b8dca 4790 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4791 if (ptep) {
c0d0381a
MK
4792 /*
4793 * Since we hold no locks, ptep could be stale. That is
4794 * OK as we are only making decisions based on content and
4795 * not actually modifying content here.
4796 */
fd6a03ed 4797 entry = huge_ptep_get(ptep);
290408d4 4798 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4799 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4800 return 0;
4801 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4802 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4803 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4804 }
4805
c0d0381a
MK
4806 /*
4807 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4808 * until finished with ptep. This serves two purposes:
4809 * 1) It prevents huge_pmd_unshare from being called elsewhere
4810 * and making the ptep no longer valid.
4811 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4812 *
4813 * ptep could have already be assigned via huge_pte_offset. That
4814 * is OK, as huge_pte_alloc will return the same value unless
4815 * something has changed.
4816 */
8382d914 4817 mapping = vma->vm_file->f_mapping;
c0d0381a 4818 i_mmap_lock_read(mapping);
aec44e0f 4819 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
c0d0381a
MK
4820 if (!ptep) {
4821 i_mmap_unlock_read(mapping);
4822 return VM_FAULT_OOM;
4823 }
8382d914 4824
3935baa9
DG
4825 /*
4826 * Serialize hugepage allocation and instantiation, so that we don't
4827 * get spurious allocation failures if two CPUs race to instantiate
4828 * the same page in the page cache.
4829 */
c0d0381a 4830 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4831 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4832 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4833
7f2e9525
GS
4834 entry = huge_ptep_get(ptep);
4835 if (huge_pte_none(entry)) {
8382d914 4836 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4837 goto out_mutex;
3935baa9 4838 }
86e5216f 4839
83c54070 4840 ret = 0;
1e8f889b 4841
0f792cf9
NH
4842 /*
4843 * entry could be a migration/hwpoison entry at this point, so this
4844 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4845 * an active hugepage in pagecache. This goto expects the 2nd page
4846 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4847 * properly handle it.
0f792cf9
NH
4848 */
4849 if (!pte_present(entry))
4850 goto out_mutex;
4851
57303d80
AW
4852 /*
4853 * If we are going to COW the mapping later, we examine the pending
4854 * reservations for this page now. This will ensure that any
4855 * allocations necessary to record that reservation occur outside the
4856 * spinlock. For private mappings, we also lookup the pagecache
4857 * page now as it is used to determine if a reservation has been
4858 * consumed.
4859 */
106c992a 4860 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4861 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4862 ret = VM_FAULT_OOM;
b4d1d99f 4863 goto out_mutex;
2b26736c 4864 }
5e911373 4865 /* Just decrements count, does not deallocate */
285b8dca 4866 vma_end_reservation(h, vma, haddr);
57303d80 4867
f83a275d 4868 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4869 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4870 vma, haddr);
57303d80
AW
4871 }
4872
0f792cf9
NH
4873 ptl = huge_pte_lock(h, mm, ptep);
4874
4875 /* Check for a racing update before calling hugetlb_cow */
4876 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4877 goto out_ptl;
4878
56c9cfb1
NH
4879 /*
4880 * hugetlb_cow() requires page locks of pte_page(entry) and
4881 * pagecache_page, so here we need take the former one
4882 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4883 */
4884 page = pte_page(entry);
4885 if (page != pagecache_page)
0f792cf9
NH
4886 if (!trylock_page(page)) {
4887 need_wait_lock = 1;
4888 goto out_ptl;
4889 }
b4d1d99f 4890
0f792cf9 4891 get_page(page);
b4d1d99f 4892
788c7df4 4893 if (flags & FAULT_FLAG_WRITE) {
106c992a 4894 if (!huge_pte_write(entry)) {
974e6d66 4895 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4896 pagecache_page, ptl);
0f792cf9 4897 goto out_put_page;
b4d1d99f 4898 }
106c992a 4899 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4900 }
4901 entry = pte_mkyoung(entry);
285b8dca 4902 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4903 flags & FAULT_FLAG_WRITE))
285b8dca 4904 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4905out_put_page:
4906 if (page != pagecache_page)
4907 unlock_page(page);
4908 put_page(page);
cb900f41
KS
4909out_ptl:
4910 spin_unlock(ptl);
57303d80
AW
4911
4912 if (pagecache_page) {
4913 unlock_page(pagecache_page);
4914 put_page(pagecache_page);
4915 }
b4d1d99f 4916out_mutex:
c672c7f2 4917 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4918 i_mmap_unlock_read(mapping);
0f792cf9
NH
4919 /*
4920 * Generally it's safe to hold refcount during waiting page lock. But
4921 * here we just wait to defer the next page fault to avoid busy loop and
4922 * the page is not used after unlocked before returning from the current
4923 * page fault. So we are safe from accessing freed page, even if we wait
4924 * here without taking refcount.
4925 */
4926 if (need_wait_lock)
4927 wait_on_page_locked(page);
1e8f889b 4928 return ret;
86e5216f
AL
4929}
4930
714c1891 4931#ifdef CONFIG_USERFAULTFD
8fb5debc
MK
4932/*
4933 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4934 * modifications for huge pages.
4935 */
4936int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4937 pte_t *dst_pte,
4938 struct vm_area_struct *dst_vma,
4939 unsigned long dst_addr,
4940 unsigned long src_addr,
f6191471 4941 enum mcopy_atomic_mode mode,
8fb5debc
MK
4942 struct page **pagep)
4943{
f6191471 4944 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
1e392147
AA
4945 struct address_space *mapping;
4946 pgoff_t idx;
4947 unsigned long size;
1c9e8def 4948 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4949 struct hstate *h = hstate_vma(dst_vma);
4950 pte_t _dst_pte;
4951 spinlock_t *ptl;
4952 int ret;
4953 struct page *page;
f6191471 4954 int writable;
8fb5debc 4955
f6191471
AR
4956 mapping = dst_vma->vm_file->f_mapping;
4957 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4958
4959 if (is_continue) {
4960 ret = -EFAULT;
4961 page = find_lock_page(mapping, idx);
4962 if (!page)
4963 goto out;
4964 } else if (!*pagep) {
d84cf06e
MA
4965 /* If a page already exists, then it's UFFDIO_COPY for
4966 * a non-missing case. Return -EEXIST.
4967 */
4968 if (vm_shared &&
4969 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4970 ret = -EEXIST;
4971 goto out;
4972 }
4973
8fb5debc 4974 page = alloc_huge_page(dst_vma, dst_addr, 0);
d84cf06e
MA
4975 if (IS_ERR(page)) {
4976 ret = -ENOMEM;
8fb5debc 4977 goto out;
d84cf06e 4978 }
8fb5debc
MK
4979
4980 ret = copy_huge_page_from_user(page,
4981 (const void __user *) src_addr,
810a56b9 4982 pages_per_huge_page(h), false);
8fb5debc 4983
c1e8d7c6 4984 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 4985 if (unlikely(ret)) {
9e368259 4986 ret = -ENOENT;
8fb5debc
MK
4987 *pagep = page;
4988 /* don't free the page */
4989 goto out;
4990 }
4991 } else {
4992 page = *pagep;
4993 *pagep = NULL;
4994 }
4995
4996 /*
4997 * The memory barrier inside __SetPageUptodate makes sure that
4998 * preceding stores to the page contents become visible before
4999 * the set_pte_at() write.
5000 */
5001 __SetPageUptodate(page);
8fb5debc 5002
f6191471
AR
5003 /* Add shared, newly allocated pages to the page cache. */
5004 if (vm_shared && !is_continue) {
1e392147
AA
5005 size = i_size_read(mapping->host) >> huge_page_shift(h);
5006 ret = -EFAULT;
5007 if (idx >= size)
5008 goto out_release_nounlock;
1c9e8def 5009
1e392147
AA
5010 /*
5011 * Serialization between remove_inode_hugepages() and
5012 * huge_add_to_page_cache() below happens through the
5013 * hugetlb_fault_mutex_table that here must be hold by
5014 * the caller.
5015 */
1c9e8def
MK
5016 ret = huge_add_to_page_cache(page, mapping, idx);
5017 if (ret)
5018 goto out_release_nounlock;
5019 }
5020
8fb5debc
MK
5021 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5022 spin_lock(ptl);
5023
1e392147
AA
5024 /*
5025 * Recheck the i_size after holding PT lock to make sure not
5026 * to leave any page mapped (as page_mapped()) beyond the end
5027 * of the i_size (remove_inode_hugepages() is strict about
5028 * enforcing that). If we bail out here, we'll also leave a
5029 * page in the radix tree in the vm_shared case beyond the end
5030 * of the i_size, but remove_inode_hugepages() will take care
5031 * of it as soon as we drop the hugetlb_fault_mutex_table.
5032 */
5033 size = i_size_read(mapping->host) >> huge_page_shift(h);
5034 ret = -EFAULT;
5035 if (idx >= size)
5036 goto out_release_unlock;
5037
8fb5debc
MK
5038 ret = -EEXIST;
5039 if (!huge_pte_none(huge_ptep_get(dst_pte)))
5040 goto out_release_unlock;
5041
1c9e8def
MK
5042 if (vm_shared) {
5043 page_dup_rmap(page, true);
5044 } else {
d6995da3 5045 ClearHPageRestoreReserve(page);
1c9e8def
MK
5046 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5047 }
8fb5debc 5048
f6191471
AR
5049 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5050 if (is_continue && !vm_shared)
5051 writable = 0;
5052 else
5053 writable = dst_vma->vm_flags & VM_WRITE;
5054
5055 _dst_pte = make_huge_pte(dst_vma, page, writable);
5056 if (writable)
8fb5debc
MK
5057 _dst_pte = huge_pte_mkdirty(_dst_pte);
5058 _dst_pte = pte_mkyoung(_dst_pte);
5059
5060 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5061
5062 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5063 dst_vma->vm_flags & VM_WRITE);
5064 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5065
5066 /* No need to invalidate - it was non-present before */
5067 update_mmu_cache(dst_vma, dst_addr, dst_pte);
5068
5069 spin_unlock(ptl);
f6191471
AR
5070 if (!is_continue)
5071 SetHPageMigratable(page);
5072 if (vm_shared || is_continue)
1c9e8def 5073 unlock_page(page);
8fb5debc
MK
5074 ret = 0;
5075out:
5076 return ret;
5077out_release_unlock:
5078 spin_unlock(ptl);
f6191471 5079 if (vm_shared || is_continue)
1c9e8def 5080 unlock_page(page);
5af10dfd 5081out_release_nounlock:
846be085 5082 restore_reserve_on_error(h, dst_vma, dst_addr, page);
8fb5debc
MK
5083 put_page(page);
5084 goto out;
5085}
714c1891 5086#endif /* CONFIG_USERFAULTFD */
8fb5debc 5087
82e5d378
JM
5088static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5089 int refs, struct page **pages,
5090 struct vm_area_struct **vmas)
5091{
5092 int nr;
5093
5094 for (nr = 0; nr < refs; nr++) {
5095 if (likely(pages))
5096 pages[nr] = mem_map_offset(page, nr);
5097 if (vmas)
5098 vmas[nr] = vma;
5099 }
5100}
5101
28a35716
ML
5102long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5103 struct page **pages, struct vm_area_struct **vmas,
5104 unsigned long *position, unsigned long *nr_pages,
4f6da934 5105 long i, unsigned int flags, int *locked)
63551ae0 5106{
d5d4b0aa
KC
5107 unsigned long pfn_offset;
5108 unsigned long vaddr = *position;
28a35716 5109 unsigned long remainder = *nr_pages;
a5516438 5110 struct hstate *h = hstate_vma(vma);
0fa5bc40 5111 int err = -EFAULT, refs;
63551ae0 5112
63551ae0 5113 while (vaddr < vma->vm_end && remainder) {
4c887265 5114 pte_t *pte;
cb900f41 5115 spinlock_t *ptl = NULL;
2a15efc9 5116 int absent;
4c887265 5117 struct page *page;
63551ae0 5118
02057967
DR
5119 /*
5120 * If we have a pending SIGKILL, don't keep faulting pages and
5121 * potentially allocating memory.
5122 */
fa45f116 5123 if (fatal_signal_pending(current)) {
02057967
DR
5124 remainder = 0;
5125 break;
5126 }
5127
4c887265
AL
5128 /*
5129 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 5130 * each hugepage. We have to make sure we get the
4c887265 5131 * first, for the page indexing below to work.
cb900f41
KS
5132 *
5133 * Note that page table lock is not held when pte is null.
4c887265 5134 */
7868a208
PA
5135 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5136 huge_page_size(h));
cb900f41
KS
5137 if (pte)
5138 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
5139 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5140
5141 /*
5142 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
5143 * an error where there's an empty slot with no huge pagecache
5144 * to back it. This way, we avoid allocating a hugepage, and
5145 * the sparse dumpfile avoids allocating disk blocks, but its
5146 * huge holes still show up with zeroes where they need to be.
2a15efc9 5147 */
3ae77f43
HD
5148 if (absent && (flags & FOLL_DUMP) &&
5149 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
5150 if (pte)
5151 spin_unlock(ptl);
2a15efc9
HD
5152 remainder = 0;
5153 break;
5154 }
63551ae0 5155
9cc3a5bd
NH
5156 /*
5157 * We need call hugetlb_fault for both hugepages under migration
5158 * (in which case hugetlb_fault waits for the migration,) and
5159 * hwpoisoned hugepages (in which case we need to prevent the
5160 * caller from accessing to them.) In order to do this, we use
5161 * here is_swap_pte instead of is_hugetlb_entry_migration and
5162 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5163 * both cases, and because we can't follow correct pages
5164 * directly from any kind of swap entries.
5165 */
5166 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
5167 ((flags & FOLL_WRITE) &&
5168 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 5169 vm_fault_t ret;
87ffc118 5170 unsigned int fault_flags = 0;
63551ae0 5171
cb900f41
KS
5172 if (pte)
5173 spin_unlock(ptl);
87ffc118
AA
5174 if (flags & FOLL_WRITE)
5175 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 5176 if (locked)
71335f37
PX
5177 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5178 FAULT_FLAG_KILLABLE;
87ffc118
AA
5179 if (flags & FOLL_NOWAIT)
5180 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5181 FAULT_FLAG_RETRY_NOWAIT;
5182 if (flags & FOLL_TRIED) {
4426e945
PX
5183 /*
5184 * Note: FAULT_FLAG_ALLOW_RETRY and
5185 * FAULT_FLAG_TRIED can co-exist
5186 */
87ffc118
AA
5187 fault_flags |= FAULT_FLAG_TRIED;
5188 }
5189 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5190 if (ret & VM_FAULT_ERROR) {
2be7cfed 5191 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
5192 remainder = 0;
5193 break;
5194 }
5195 if (ret & VM_FAULT_RETRY) {
4f6da934 5196 if (locked &&
1ac25013 5197 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 5198 *locked = 0;
87ffc118
AA
5199 *nr_pages = 0;
5200 /*
5201 * VM_FAULT_RETRY must not return an
5202 * error, it will return zero
5203 * instead.
5204 *
5205 * No need to update "position" as the
5206 * caller will not check it after
5207 * *nr_pages is set to 0.
5208 */
5209 return i;
5210 }
5211 continue;
4c887265
AL
5212 }
5213
a5516438 5214 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 5215 page = pte_page(huge_ptep_get(pte));
8fde12ca 5216
acbfb087
ZL
5217 /*
5218 * If subpage information not requested, update counters
5219 * and skip the same_page loop below.
5220 */
5221 if (!pages && !vmas && !pfn_offset &&
5222 (vaddr + huge_page_size(h) < vma->vm_end) &&
5223 (remainder >= pages_per_huge_page(h))) {
5224 vaddr += huge_page_size(h);
5225 remainder -= pages_per_huge_page(h);
5226 i += pages_per_huge_page(h);
5227 spin_unlock(ptl);
5228 continue;
5229 }
5230
82e5d378
JM
5231 refs = min3(pages_per_huge_page(h) - pfn_offset,
5232 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
0fa5bc40 5233
82e5d378
JM
5234 if (pages || vmas)
5235 record_subpages_vmas(mem_map_offset(page, pfn_offset),
5236 vma, refs,
5237 likely(pages) ? pages + i : NULL,
5238 vmas ? vmas + i : NULL);
63551ae0 5239
82e5d378 5240 if (pages) {
0fa5bc40
JM
5241 /*
5242 * try_grab_compound_head() should always succeed here,
5243 * because: a) we hold the ptl lock, and b) we've just
5244 * checked that the huge page is present in the page
5245 * tables. If the huge page is present, then the tail
5246 * pages must also be present. The ptl prevents the
5247 * head page and tail pages from being rearranged in
5248 * any way. So this page must be available at this
5249 * point, unless the page refcount overflowed:
5250 */
82e5d378 5251 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
5252 refs,
5253 flags))) {
5254 spin_unlock(ptl);
5255 remainder = 0;
5256 err = -ENOMEM;
5257 break;
5258 }
d5d4b0aa 5259 }
82e5d378
JM
5260
5261 vaddr += (refs << PAGE_SHIFT);
5262 remainder -= refs;
5263 i += refs;
5264
cb900f41 5265 spin_unlock(ptl);
63551ae0 5266 }
28a35716 5267 *nr_pages = remainder;
87ffc118
AA
5268 /*
5269 * setting position is actually required only if remainder is
5270 * not zero but it's faster not to add a "if (remainder)"
5271 * branch.
5272 */
63551ae0
DG
5273 *position = vaddr;
5274
2be7cfed 5275 return i ? i : err;
63551ae0 5276}
8f860591 5277
7da4d641 5278unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
5279 unsigned long address, unsigned long end, pgprot_t newprot)
5280{
5281 struct mm_struct *mm = vma->vm_mm;
5282 unsigned long start = address;
5283 pte_t *ptep;
5284 pte_t pte;
a5516438 5285 struct hstate *h = hstate_vma(vma);
7da4d641 5286 unsigned long pages = 0;
dff11abe 5287 bool shared_pmd = false;
ac46d4f3 5288 struct mmu_notifier_range range;
dff11abe
MK
5289
5290 /*
5291 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5292 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5293 * range if PMD sharing is possible.
5294 */
7269f999
JG
5295 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5296 0, vma, mm, start, end);
ac46d4f3 5297 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5298
5299 BUG_ON(address >= end);
ac46d4f3 5300 flush_cache_range(vma, range.start, range.end);
8f860591 5301
ac46d4f3 5302 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5303 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5304 for (; address < end; address += huge_page_size(h)) {
cb900f41 5305 spinlock_t *ptl;
7868a208 5306 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5307 if (!ptep)
5308 continue;
cb900f41 5309 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5310 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5311 pages++;
cb900f41 5312 spin_unlock(ptl);
dff11abe 5313 shared_pmd = true;
39dde65c 5314 continue;
7da4d641 5315 }
a8bda28d
NH
5316 pte = huge_ptep_get(ptep);
5317 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5318 spin_unlock(ptl);
5319 continue;
5320 }
5321 if (unlikely(is_hugetlb_entry_migration(pte))) {
5322 swp_entry_t entry = pte_to_swp_entry(pte);
5323
5324 if (is_write_migration_entry(entry)) {
5325 pte_t newpte;
5326
5327 make_migration_entry_read(&entry);
5328 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5329 set_huge_swap_pte_at(mm, address, ptep,
5330 newpte, huge_page_size(h));
a8bda28d
NH
5331 pages++;
5332 }
5333 spin_unlock(ptl);
5334 continue;
5335 }
5336 if (!huge_pte_none(pte)) {
023bdd00
AK
5337 pte_t old_pte;
5338
5339 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5340 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5341 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5342 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5343 pages++;
8f860591 5344 }
cb900f41 5345 spin_unlock(ptl);
8f860591 5346 }
d833352a 5347 /*
c8c06efa 5348 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5349 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5350 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5351 * and that page table be reused and filled with junk. If we actually
5352 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5353 */
dff11abe 5354 if (shared_pmd)
ac46d4f3 5355 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5356 else
5357 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5358 /*
5359 * No need to call mmu_notifier_invalidate_range() we are downgrading
5360 * page table protection not changing it to point to a new page.
5361 *
ad56b738 5362 * See Documentation/vm/mmu_notifier.rst
0f10851e 5363 */
83cde9e8 5364 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5365 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5366
5367 return pages << h->order;
8f860591
ZY
5368}
5369
33b8f84a
MK
5370/* Return true if reservation was successful, false otherwise. */
5371bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 5372 long from, long to,
5a6fe125 5373 struct vm_area_struct *vma,
ca16d140 5374 vm_flags_t vm_flags)
e4e574b7 5375{
33b8f84a 5376 long chg, add = -1;
a5516438 5377 struct hstate *h = hstate_inode(inode);
90481622 5378 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5379 struct resv_map *resv_map;
075a61d0 5380 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5381 long gbl_reserve, regions_needed = 0;
e4e574b7 5382
63489f8e
MK
5383 /* This should never happen */
5384 if (from > to) {
5385 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 5386 return false;
63489f8e
MK
5387 }
5388
17c9d12e
MG
5389 /*
5390 * Only apply hugepage reservation if asked. At fault time, an
5391 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5392 * without using reserves
17c9d12e 5393 */
ca16d140 5394 if (vm_flags & VM_NORESERVE)
33b8f84a 5395 return true;
17c9d12e 5396
a1e78772
MG
5397 /*
5398 * Shared mappings base their reservation on the number of pages that
5399 * are already allocated on behalf of the file. Private mappings need
5400 * to reserve the full area even if read-only as mprotect() may be
5401 * called to make the mapping read-write. Assume !vma is a shm mapping
5402 */
9119a41e 5403 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5404 /*
5405 * resv_map can not be NULL as hugetlb_reserve_pages is only
5406 * called for inodes for which resv_maps were created (see
5407 * hugetlbfs_get_inode).
5408 */
4e35f483 5409 resv_map = inode_resv_map(inode);
9119a41e 5410
0db9d74e 5411 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5412
5413 } else {
e9fe92ae 5414 /* Private mapping. */
9119a41e 5415 resv_map = resv_map_alloc();
17c9d12e 5416 if (!resv_map)
33b8f84a 5417 return false;
17c9d12e 5418
a1e78772 5419 chg = to - from;
84afd99b 5420
17c9d12e
MG
5421 set_vma_resv_map(vma, resv_map);
5422 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5423 }
5424
33b8f84a 5425 if (chg < 0)
c50ac050 5426 goto out_err;
8a630112 5427
33b8f84a
MK
5428 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5429 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 5430 goto out_err;
075a61d0
MA
5431
5432 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5433 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5434 * of the resv_map.
5435 */
5436 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5437 }
5438
1c5ecae3
MK
5439 /*
5440 * There must be enough pages in the subpool for the mapping. If
5441 * the subpool has a minimum size, there may be some global
5442 * reservations already in place (gbl_reserve).
5443 */
5444 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 5445 if (gbl_reserve < 0)
075a61d0 5446 goto out_uncharge_cgroup;
5a6fe125
MG
5447
5448 /*
17c9d12e 5449 * Check enough hugepages are available for the reservation.
90481622 5450 * Hand the pages back to the subpool if there are not
5a6fe125 5451 */
33b8f84a 5452 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 5453 goto out_put_pages;
17c9d12e
MG
5454
5455 /*
5456 * Account for the reservations made. Shared mappings record regions
5457 * that have reservations as they are shared by multiple VMAs.
5458 * When the last VMA disappears, the region map says how much
5459 * the reservation was and the page cache tells how much of
5460 * the reservation was consumed. Private mappings are per-VMA and
5461 * only the consumed reservations are tracked. When the VMA
5462 * disappears, the original reservation is the VMA size and the
5463 * consumed reservations are stored in the map. Hence, nothing
5464 * else has to be done for private mappings here
5465 */
33039678 5466 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5467 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5468
5469 if (unlikely(add < 0)) {
5470 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5471 goto out_put_pages;
0db9d74e 5472 } else if (unlikely(chg > add)) {
33039678
MK
5473 /*
5474 * pages in this range were added to the reserve
5475 * map between region_chg and region_add. This
5476 * indicates a race with alloc_huge_page. Adjust
5477 * the subpool and reserve counts modified above
5478 * based on the difference.
5479 */
5480 long rsv_adjust;
5481
d85aecf2
ML
5482 /*
5483 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5484 * reference to h_cg->css. See comment below for detail.
5485 */
075a61d0
MA
5486 hugetlb_cgroup_uncharge_cgroup_rsvd(
5487 hstate_index(h),
5488 (chg - add) * pages_per_huge_page(h), h_cg);
5489
33039678
MK
5490 rsv_adjust = hugepage_subpool_put_pages(spool,
5491 chg - add);
5492 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
5493 } else if (h_cg) {
5494 /*
5495 * The file_regions will hold their own reference to
5496 * h_cg->css. So we should release the reference held
5497 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5498 * done.
5499 */
5500 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
5501 }
5502 }
33b8f84a
MK
5503 return true;
5504
075a61d0
MA
5505out_put_pages:
5506 /* put back original number of pages, chg */
5507 (void)hugepage_subpool_put_pages(spool, chg);
5508out_uncharge_cgroup:
5509 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5510 chg * pages_per_huge_page(h), h_cg);
c50ac050 5511out_err:
5e911373 5512 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5513 /* Only call region_abort if the region_chg succeeded but the
5514 * region_add failed or didn't run.
5515 */
5516 if (chg >= 0 && add < 0)
5517 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5518 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5519 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 5520 return false;
a43a8c39
KC
5521}
5522
b5cec28d
MK
5523long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5524 long freed)
a43a8c39 5525{
a5516438 5526 struct hstate *h = hstate_inode(inode);
4e35f483 5527 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5528 long chg = 0;
90481622 5529 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5530 long gbl_reserve;
45c682a6 5531
f27a5136
MK
5532 /*
5533 * Since this routine can be called in the evict inode path for all
5534 * hugetlbfs inodes, resv_map could be NULL.
5535 */
b5cec28d
MK
5536 if (resv_map) {
5537 chg = region_del(resv_map, start, end);
5538 /*
5539 * region_del() can fail in the rare case where a region
5540 * must be split and another region descriptor can not be
5541 * allocated. If end == LONG_MAX, it will not fail.
5542 */
5543 if (chg < 0)
5544 return chg;
5545 }
5546
45c682a6 5547 spin_lock(&inode->i_lock);
e4c6f8be 5548 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5549 spin_unlock(&inode->i_lock);
5550
1c5ecae3
MK
5551 /*
5552 * If the subpool has a minimum size, the number of global
5553 * reservations to be released may be adjusted.
dddf31a4
ML
5554 *
5555 * Note that !resv_map implies freed == 0. So (chg - freed)
5556 * won't go negative.
1c5ecae3
MK
5557 */
5558 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5559 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5560
5561 return 0;
a43a8c39 5562}
93f70f90 5563
3212b535
SC
5564#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5565static unsigned long page_table_shareable(struct vm_area_struct *svma,
5566 struct vm_area_struct *vma,
5567 unsigned long addr, pgoff_t idx)
5568{
5569 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5570 svma->vm_start;
5571 unsigned long sbase = saddr & PUD_MASK;
5572 unsigned long s_end = sbase + PUD_SIZE;
5573
5574 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5575 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5576 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5577
5578 /*
5579 * match the virtual addresses, permission and the alignment of the
5580 * page table page.
5581 */
5582 if (pmd_index(addr) != pmd_index(saddr) ||
5583 vm_flags != svm_flags ||
07e51edf 5584 !range_in_vma(svma, sbase, s_end))
3212b535
SC
5585 return 0;
5586
5587 return saddr;
5588}
5589
31aafb45 5590static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5591{
5592 unsigned long base = addr & PUD_MASK;
5593 unsigned long end = base + PUD_SIZE;
5594
5595 /*
5596 * check on proper vm_flags and page table alignment
5597 */
017b1660 5598 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5599 return true;
5600 return false;
3212b535
SC
5601}
5602
c1991e07
PX
5603bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5604{
5605#ifdef CONFIG_USERFAULTFD
5606 if (uffd_disable_huge_pmd_share(vma))
5607 return false;
5608#endif
5609 return vma_shareable(vma, addr);
5610}
5611
017b1660
MK
5612/*
5613 * Determine if start,end range within vma could be mapped by shared pmd.
5614 * If yes, adjust start and end to cover range associated with possible
5615 * shared pmd mappings.
5616 */
5617void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5618 unsigned long *start, unsigned long *end)
5619{
a1ba9da8
LX
5620 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5621 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5622
a1ba9da8 5623 /*
f0953a1b
IM
5624 * vma needs to span at least one aligned PUD size, and the range
5625 * must be at least partially within in.
a1ba9da8
LX
5626 */
5627 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5628 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5629 return;
5630
75802ca6 5631 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
5632 if (*start > v_start)
5633 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5634
a1ba9da8
LX
5635 if (*end < v_end)
5636 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5637}
5638
3212b535
SC
5639/*
5640 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5641 * and returns the corresponding pte. While this is not necessary for the
5642 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5643 * code much cleaner.
5644 *
0bf7b64e
MK
5645 * This routine must be called with i_mmap_rwsem held in at least read mode if
5646 * sharing is possible. For hugetlbfs, this prevents removal of any page
5647 * table entries associated with the address space. This is important as we
5648 * are setting up sharing based on existing page table entries (mappings).
5649 *
5650 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5651 * huge_pte_alloc know that sharing is not possible and do not take
5652 * i_mmap_rwsem as a performance optimization. This is handled by the
5653 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5654 * only required for subsequent processing.
3212b535 5655 */
aec44e0f
PX
5656pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5657 unsigned long addr, pud_t *pud)
3212b535 5658{
3212b535
SC
5659 struct address_space *mapping = vma->vm_file->f_mapping;
5660 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5661 vma->vm_pgoff;
5662 struct vm_area_struct *svma;
5663 unsigned long saddr;
5664 pte_t *spte = NULL;
5665 pte_t *pte;
cb900f41 5666 spinlock_t *ptl;
3212b535 5667
0bf7b64e 5668 i_mmap_assert_locked(mapping);
3212b535
SC
5669 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5670 if (svma == vma)
5671 continue;
5672
5673 saddr = page_table_shareable(svma, vma, addr, idx);
5674 if (saddr) {
7868a208
PA
5675 spte = huge_pte_offset(svma->vm_mm, saddr,
5676 vma_mmu_pagesize(svma));
3212b535
SC
5677 if (spte) {
5678 get_page(virt_to_page(spte));
5679 break;
5680 }
5681 }
5682 }
5683
5684 if (!spte)
5685 goto out;
5686
8bea8052 5687 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5688 if (pud_none(*pud)) {
3212b535
SC
5689 pud_populate(mm, pud,
5690 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5691 mm_inc_nr_pmds(mm);
dc6c9a35 5692 } else {
3212b535 5693 put_page(virt_to_page(spte));
dc6c9a35 5694 }
cb900f41 5695 spin_unlock(ptl);
3212b535
SC
5696out:
5697 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5698 return pte;
5699}
5700
5701/*
5702 * unmap huge page backed by shared pte.
5703 *
5704 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5705 * indicated by page_count > 1, unmap is achieved by clearing pud and
5706 * decrementing the ref count. If count == 1, the pte page is not shared.
5707 *
c0d0381a 5708 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5709 *
5710 * returns: 1 successfully unmapped a shared pte page
5711 * 0 the underlying pte page is not shared, or it is the last user
5712 */
34ae204f
MK
5713int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5714 unsigned long *addr, pte_t *ptep)
3212b535
SC
5715{
5716 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5717 p4d_t *p4d = p4d_offset(pgd, *addr);
5718 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5719
34ae204f 5720 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5721 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5722 if (page_count(virt_to_page(ptep)) == 1)
5723 return 0;
5724
5725 pud_clear(pud);
5726 put_page(virt_to_page(ptep));
dc6c9a35 5727 mm_dec_nr_pmds(mm);
3212b535
SC
5728 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5729 return 1;
5730}
c1991e07 5731
9e5fc74c 5732#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
aec44e0f
PX
5733pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5734 unsigned long addr, pud_t *pud)
9e5fc74c
SC
5735{
5736 return NULL;
5737}
e81f2d22 5738
34ae204f
MK
5739int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5740 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5741{
5742 return 0;
5743}
017b1660
MK
5744
5745void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5746 unsigned long *start, unsigned long *end)
5747{
5748}
c1991e07
PX
5749
5750bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5751{
5752 return false;
5753}
3212b535
SC
5754#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5755
9e5fc74c 5756#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 5757pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
5758 unsigned long addr, unsigned long sz)
5759{
5760 pgd_t *pgd;
c2febafc 5761 p4d_t *p4d;
9e5fc74c
SC
5762 pud_t *pud;
5763 pte_t *pte = NULL;
5764
5765 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5766 p4d = p4d_alloc(mm, pgd, addr);
5767 if (!p4d)
5768 return NULL;
c2febafc 5769 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5770 if (pud) {
5771 if (sz == PUD_SIZE) {
5772 pte = (pte_t *)pud;
5773 } else {
5774 BUG_ON(sz != PMD_SIZE);
c1991e07 5775 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 5776 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
5777 else
5778 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5779 }
5780 }
4e666314 5781 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5782
5783 return pte;
5784}
5785
9b19df29
PA
5786/*
5787 * huge_pte_offset() - Walk the page table to resolve the hugepage
5788 * entry at address @addr
5789 *
8ac0b81a
LX
5790 * Return: Pointer to page table entry (PUD or PMD) for
5791 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5792 * size @sz doesn't match the hugepage size at this level of the page
5793 * table.
5794 */
7868a208
PA
5795pte_t *huge_pte_offset(struct mm_struct *mm,
5796 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5797{
5798 pgd_t *pgd;
c2febafc 5799 p4d_t *p4d;
8ac0b81a
LX
5800 pud_t *pud;
5801 pmd_t *pmd;
9e5fc74c
SC
5802
5803 pgd = pgd_offset(mm, addr);
c2febafc
KS
5804 if (!pgd_present(*pgd))
5805 return NULL;
5806 p4d = p4d_offset(pgd, addr);
5807 if (!p4d_present(*p4d))
5808 return NULL;
9b19df29 5809
c2febafc 5810 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5811 if (sz == PUD_SIZE)
5812 /* must be pud huge, non-present or none */
c2febafc 5813 return (pte_t *)pud;
8ac0b81a 5814 if (!pud_present(*pud))
9b19df29 5815 return NULL;
8ac0b81a 5816 /* must have a valid entry and size to go further */
9b19df29 5817
8ac0b81a
LX
5818 pmd = pmd_offset(pud, addr);
5819 /* must be pmd huge, non-present or none */
5820 return (pte_t *)pmd;
9e5fc74c
SC
5821}
5822
61f77eda
NH
5823#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5824
5825/*
5826 * These functions are overwritable if your architecture needs its own
5827 * behavior.
5828 */
5829struct page * __weak
5830follow_huge_addr(struct mm_struct *mm, unsigned long address,
5831 int write)
5832{
5833 return ERR_PTR(-EINVAL);
5834}
5835
4dc71451
AK
5836struct page * __weak
5837follow_huge_pd(struct vm_area_struct *vma,
5838 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5839{
5840 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5841 return NULL;
5842}
5843
61f77eda 5844struct page * __weak
9e5fc74c 5845follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5846 pmd_t *pmd, int flags)
9e5fc74c 5847{
e66f17ff
NH
5848 struct page *page = NULL;
5849 spinlock_t *ptl;
c9d398fa 5850 pte_t pte;
3faa52c0
JH
5851
5852 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5853 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5854 (FOLL_PIN | FOLL_GET)))
5855 return NULL;
5856
e66f17ff
NH
5857retry:
5858 ptl = pmd_lockptr(mm, pmd);
5859 spin_lock(ptl);
5860 /*
5861 * make sure that the address range covered by this pmd is not
5862 * unmapped from other threads.
5863 */
5864 if (!pmd_huge(*pmd))
5865 goto out;
c9d398fa
NH
5866 pte = huge_ptep_get((pte_t *)pmd);
5867 if (pte_present(pte)) {
97534127 5868 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5869 /*
5870 * try_grab_page() should always succeed here, because: a) we
5871 * hold the pmd (ptl) lock, and b) we've just checked that the
5872 * huge pmd (head) page is present in the page tables. The ptl
5873 * prevents the head page and tail pages from being rearranged
5874 * in any way. So this page must be available at this point,
5875 * unless the page refcount overflowed:
5876 */
5877 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5878 page = NULL;
5879 goto out;
5880 }
e66f17ff 5881 } else {
c9d398fa 5882 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5883 spin_unlock(ptl);
5884 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5885 goto retry;
5886 }
5887 /*
5888 * hwpoisoned entry is treated as no_page_table in
5889 * follow_page_mask().
5890 */
5891 }
5892out:
5893 spin_unlock(ptl);
9e5fc74c
SC
5894 return page;
5895}
5896
61f77eda 5897struct page * __weak
9e5fc74c 5898follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5899 pud_t *pud, int flags)
9e5fc74c 5900{
3faa52c0 5901 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5902 return NULL;
9e5fc74c 5903
e66f17ff 5904 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5905}
5906
faaa5b62
AK
5907struct page * __weak
5908follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5909{
3faa52c0 5910 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5911 return NULL;
5912
5913 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5914}
5915
31caf665
NH
5916bool isolate_huge_page(struct page *page, struct list_head *list)
5917{
bcc54222
NH
5918 bool ret = true;
5919
db71ef79 5920 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
5921 if (!PageHeadHuge(page) ||
5922 !HPageMigratable(page) ||
0eb2df2b 5923 !get_page_unless_zero(page)) {
bcc54222
NH
5924 ret = false;
5925 goto unlock;
5926 }
8f251a3d 5927 ClearHPageMigratable(page);
31caf665 5928 list_move_tail(&page->lru, list);
bcc54222 5929unlock:
db71ef79 5930 spin_unlock_irq(&hugetlb_lock);
bcc54222 5931 return ret;
31caf665
NH
5932}
5933
25182f05
NH
5934int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
5935{
5936 int ret = 0;
5937
5938 *hugetlb = false;
5939 spin_lock_irq(&hugetlb_lock);
5940 if (PageHeadHuge(page)) {
5941 *hugetlb = true;
5942 if (HPageFreed(page) || HPageMigratable(page))
5943 ret = get_page_unless_zero(page);
5944 }
5945 spin_unlock_irq(&hugetlb_lock);
5946 return ret;
5947}
5948
31caf665
NH
5949void putback_active_hugepage(struct page *page)
5950{
db71ef79 5951 spin_lock_irq(&hugetlb_lock);
8f251a3d 5952 SetHPageMigratable(page);
31caf665 5953 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 5954 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
5955 put_page(page);
5956}
ab5ac90a
MH
5957
5958void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5959{
5960 struct hstate *h = page_hstate(oldpage);
5961
5962 hugetlb_cgroup_migrate(oldpage, newpage);
5963 set_page_owner_migrate_reason(newpage, reason);
5964
5965 /*
5966 * transfer temporary state of the new huge page. This is
5967 * reverse to other transitions because the newpage is going to
5968 * be final while the old one will be freed so it takes over
5969 * the temporary status.
5970 *
5971 * Also note that we have to transfer the per-node surplus state
5972 * here as well otherwise the global surplus count will not match
5973 * the per-node's.
5974 */
9157c311 5975 if (HPageTemporary(newpage)) {
ab5ac90a
MH
5976 int old_nid = page_to_nid(oldpage);
5977 int new_nid = page_to_nid(newpage);
5978
9157c311
MK
5979 SetHPageTemporary(oldpage);
5980 ClearHPageTemporary(newpage);
ab5ac90a 5981
5af1ab1d
ML
5982 /*
5983 * There is no need to transfer the per-node surplus state
5984 * when we do not cross the node.
5985 */
5986 if (new_nid == old_nid)
5987 return;
db71ef79 5988 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
5989 if (h->surplus_huge_pages_node[old_nid]) {
5990 h->surplus_huge_pages_node[old_nid]--;
5991 h->surplus_huge_pages_node[new_nid]++;
5992 }
db71ef79 5993 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
5994 }
5995}
cf11e85f 5996
6dfeaff9
PX
5997/*
5998 * This function will unconditionally remove all the shared pmd pgtable entries
5999 * within the specific vma for a hugetlbfs memory range.
6000 */
6001void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6002{
6003 struct hstate *h = hstate_vma(vma);
6004 unsigned long sz = huge_page_size(h);
6005 struct mm_struct *mm = vma->vm_mm;
6006 struct mmu_notifier_range range;
6007 unsigned long address, start, end;
6008 spinlock_t *ptl;
6009 pte_t *ptep;
6010
6011 if (!(vma->vm_flags & VM_MAYSHARE))
6012 return;
6013
6014 start = ALIGN(vma->vm_start, PUD_SIZE);
6015 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6016
6017 if (start >= end)
6018 return;
6019
6020 /*
6021 * No need to call adjust_range_if_pmd_sharing_possible(), because
6022 * we have already done the PUD_SIZE alignment.
6023 */
6024 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6025 start, end);
6026 mmu_notifier_invalidate_range_start(&range);
6027 i_mmap_lock_write(vma->vm_file->f_mapping);
6028 for (address = start; address < end; address += PUD_SIZE) {
6029 unsigned long tmp = address;
6030
6031 ptep = huge_pte_offset(mm, address, sz);
6032 if (!ptep)
6033 continue;
6034 ptl = huge_pte_lock(h, mm, ptep);
6035 /* We don't want 'address' to be changed */
6036 huge_pmd_unshare(mm, vma, &tmp, ptep);
6037 spin_unlock(ptl);
6038 }
6039 flush_hugetlb_tlb_range(vma, start, end);
6040 i_mmap_unlock_write(vma->vm_file->f_mapping);
6041 /*
6042 * No need to call mmu_notifier_invalidate_range(), see
6043 * Documentation/vm/mmu_notifier.rst.
6044 */
6045 mmu_notifier_invalidate_range_end(&range);
6046}
6047
cf11e85f 6048#ifdef CONFIG_CMA
cf11e85f
RG
6049static bool cma_reserve_called __initdata;
6050
6051static int __init cmdline_parse_hugetlb_cma(char *p)
6052{
6053 hugetlb_cma_size = memparse(p, &p);
6054 return 0;
6055}
6056
6057early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6058
6059void __init hugetlb_cma_reserve(int order)
6060{
6061 unsigned long size, reserved, per_node;
6062 int nid;
6063
6064 cma_reserve_called = true;
6065
6066 if (!hugetlb_cma_size)
6067 return;
6068
6069 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6070 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6071 (PAGE_SIZE << order) / SZ_1M);
6072 return;
6073 }
6074
6075 /*
6076 * If 3 GB area is requested on a machine with 4 numa nodes,
6077 * let's allocate 1 GB on first three nodes and ignore the last one.
6078 */
6079 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6080 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6081 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6082
6083 reserved = 0;
6084 for_each_node_state(nid, N_ONLINE) {
6085 int res;
2281f797 6086 char name[CMA_MAX_NAME];
cf11e85f
RG
6087
6088 size = min(per_node, hugetlb_cma_size - reserved);
6089 size = round_up(size, PAGE_SIZE << order);
6090
2281f797 6091 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 6092 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 6093 0, false, name,
cf11e85f
RG
6094 &hugetlb_cma[nid], nid);
6095 if (res) {
6096 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6097 res, nid);
6098 continue;
6099 }
6100
6101 reserved += size;
6102 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6103 size / SZ_1M, nid);
6104
6105 if (reserved >= hugetlb_cma_size)
6106 break;
6107 }
6108}
6109
6110void __init hugetlb_cma_check(void)
6111{
6112 if (!hugetlb_cma_size || cma_reserve_called)
6113 return;
6114
6115 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6116}
6117
6118#endif /* CONFIG_CMA */