]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/hugetlb.c
mm, hugetlb: clean-up alloc_huge_page()
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
24669e58 27#include <asm/tlb.h>
63551ae0 28
24669e58 29#include <linux/io.h>
63551ae0 30#include <linux/hugetlb.h>
9dd540e2 31#include <linux/hugetlb_cgroup.h>
9a305230 32#include <linux/node.h>
7835e98b 33#include "internal.h"
1da177e4
LT
34
35const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
36static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9
DG
50/*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
c3f38a38 53DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 54
90481622
DG
55static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56{
57 bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59 spin_unlock(&spool->lock);
60
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
63 if (free)
64 kfree(spool);
65}
66
67struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68{
69 struct hugepage_subpool *spool;
70
71 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 if (!spool)
73 return NULL;
74
75 spin_lock_init(&spool->lock);
76 spool->count = 1;
77 spool->max_hpages = nr_blocks;
78 spool->used_hpages = 0;
79
80 return spool;
81}
82
83void hugepage_put_subpool(struct hugepage_subpool *spool)
84{
85 spin_lock(&spool->lock);
86 BUG_ON(!spool->count);
87 spool->count--;
88 unlock_or_release_subpool(spool);
89}
90
91static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 long delta)
93{
94 int ret = 0;
95
96 if (!spool)
97 return 0;
98
99 spin_lock(&spool->lock);
100 if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 spool->used_hpages += delta;
102 } else {
103 ret = -ENOMEM;
104 }
105 spin_unlock(&spool->lock);
106
107 return ret;
108}
109
110static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 long delta)
112{
113 if (!spool)
114 return;
115
116 spin_lock(&spool->lock);
117 spool->used_hpages -= delta;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool);
121}
122
123static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124{
125 return HUGETLBFS_SB(inode->i_sb)->spool;
126}
127
128static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129{
496ad9aa 130 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
131}
132
96822904
AW
133/*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
84afd99b
AW
136 *
137 * The region data structures are protected by a combination of the mmap_sem
c748c262 138 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
84afd99b 139 * must either hold the mmap_sem for write, or the mmap_sem for read and
c748c262 140 * the hugetlb_instantiation_mutex:
84afd99b 141 *
32f84528 142 * down_write(&mm->mmap_sem);
84afd99b 143 * or
32f84528
CF
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
146 */
147struct file_region {
148 struct list_head link;
149 long from;
150 long to;
151};
152
153static long region_add(struct list_head *head, long f, long t)
154{
155 struct file_region *rg, *nrg, *trg;
156
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
159 if (f <= rg->to)
160 break;
161
162 /* Round our left edge to the current segment if it encloses us. */
163 if (f > rg->from)
164 f = rg->from;
165
166 /* Check for and consume any regions we now overlap with. */
167 nrg = rg;
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 if (rg->from > t)
172 break;
173
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
177 if (rg->to > t)
178 t = rg->to;
179 if (rg != nrg) {
180 list_del(&rg->link);
181 kfree(rg);
182 }
183 }
184 nrg->from = f;
185 nrg->to = t;
186 return 0;
187}
188
189static long region_chg(struct list_head *head, long f, long t)
190{
191 struct file_region *rg, *nrg;
192 long chg = 0;
193
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 if (!nrg)
205 return -ENOMEM;
206 nrg->from = f;
207 nrg->to = f;
208 INIT_LIST_HEAD(&nrg->link);
209 list_add(&nrg->link, rg->link.prev);
210
211 return t - f;
212 }
213
214 /* Round our left edge to the current segment if it encloses us. */
215 if (f > rg->from)
216 f = rg->from;
217 chg = t - f;
218
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg, rg->link.prev, link) {
221 if (&rg->link == head)
222 break;
223 if (rg->from > t)
224 return chg;
225
25985edc 226 /* We overlap with this area, if it extends further than
96822904
AW
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
229 if (rg->to > t) {
230 chg += rg->to - t;
231 t = rg->to;
232 }
233 chg -= rg->to - rg->from;
234 }
235 return chg;
236}
237
238static long region_truncate(struct list_head *head, long end)
239{
240 struct file_region *rg, *trg;
241 long chg = 0;
242
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg, head, link)
245 if (end <= rg->to)
246 break;
247 if (&rg->link == head)
248 return 0;
249
250 /* If we are in the middle of a region then adjust it. */
251 if (end > rg->from) {
252 chg = rg->to - end;
253 rg->to = end;
254 rg = list_entry(rg->link.next, typeof(*rg), link);
255 }
256
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 if (&rg->link == head)
260 break;
261 chg += rg->to - rg->from;
262 list_del(&rg->link);
263 kfree(rg);
264 }
265 return chg;
266}
267
84afd99b
AW
268static long region_count(struct list_head *head, long f, long t)
269{
270 struct file_region *rg;
271 long chg = 0;
272
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
275 long seg_from;
276 long seg_to;
84afd99b
AW
277
278 if (rg->to <= f)
279 continue;
280 if (rg->from >= t)
281 break;
282
283 seg_from = max(rg->from, f);
284 seg_to = min(rg->to, t);
285
286 chg += seg_to - seg_from;
287 }
288
289 return chg;
290}
291
e7c4b0bf
AW
292/*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
a5516438
AK
296static pgoff_t vma_hugecache_offset(struct hstate *h,
297 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 298{
a5516438
AK
299 return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
301}
302
0fe6e20b
NH
303pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 unsigned long address)
305{
306 return vma_hugecache_offset(hstate_vma(vma), vma, address);
307}
308
08fba699
MG
309/*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314{
315 struct hstate *hstate;
316
317 if (!is_vm_hugetlb_page(vma))
318 return PAGE_SIZE;
319
320 hstate = hstate_vma(vma);
321
2415cf12 322 return 1UL << huge_page_shift(hstate);
08fba699 323}
f340ca0f 324EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 325
3340289d
MG
326/*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332#ifndef vma_mmu_pagesize
333unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334{
335 return vma_kernel_pagesize(vma);
336}
337#endif
338
84afd99b
AW
339/*
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344#define HPAGE_RESV_OWNER (1UL << 0)
345#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 346#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 347
a1e78772
MG
348/*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
a1e78772 366 */
e7c4b0bf
AW
367static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368{
369 return (unsigned long)vma->vm_private_data;
370}
371
372static void set_vma_private_data(struct vm_area_struct *vma,
373 unsigned long value)
374{
375 vma->vm_private_data = (void *)value;
376}
377
84afd99b
AW
378struct resv_map {
379 struct kref refs;
380 struct list_head regions;
381};
382
2a4b3ded 383static struct resv_map *resv_map_alloc(void)
84afd99b
AW
384{
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393}
394
2a4b3ded 395static void resv_map_release(struct kref *ref)
84afd99b
AW
396{
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map->regions, 0);
401 kfree(resv_map);
402}
403
404static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
405{
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 407 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
2a4b3ded 410 return NULL;
a1e78772
MG
411}
412
84afd99b 413static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
414{
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 417
84afd99b
AW
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
420}
421
422static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423{
04f2cbe3 424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
428}
429
430static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431{
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
433
434 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
435}
436
437/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
438static void decrement_hugepage_resv_vma(struct hstate *h,
439 struct vm_area_struct *vma)
a1e78772 440{
c37f9fb1
AW
441 if (vma->vm_flags & VM_NORESERVE)
442 return;
443
f83a275d 444 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 445 /* Shared mappings always use reserves */
a5516438 446 h->resv_huge_pages--;
84afd99b 447 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
448 /*
449 * Only the process that called mmap() has reserves for
450 * private mappings.
451 */
a5516438 452 h->resv_huge_pages--;
a1e78772
MG
453 }
454}
455
04f2cbe3 456/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
457void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458{
459 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 460 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
461 vma->vm_private_data = (void *)0;
462}
463
464/* Returns true if the VMA has associated reserve pages */
7f09ca51 465static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 466{
f83a275d 467 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
468 return 1;
469 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470 return 1;
471 return 0;
a1e78772
MG
472}
473
0ebabb41
NH
474static void copy_gigantic_page(struct page *dst, struct page *src)
475{
476 int i;
477 struct hstate *h = page_hstate(src);
478 struct page *dst_base = dst;
479 struct page *src_base = src;
480
481 for (i = 0; i < pages_per_huge_page(h); ) {
482 cond_resched();
483 copy_highpage(dst, src);
484
485 i++;
486 dst = mem_map_next(dst, dst_base, i);
487 src = mem_map_next(src, src_base, i);
488 }
489}
490
491void copy_huge_page(struct page *dst, struct page *src)
492{
493 int i;
494 struct hstate *h = page_hstate(src);
495
496 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497 copy_gigantic_page(dst, src);
498 return;
499 }
500
501 might_sleep();
502 for (i = 0; i < pages_per_huge_page(h); i++) {
503 cond_resched();
504 copy_highpage(dst + i, src + i);
505 }
506}
507
a5516438 508static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
509{
510 int nid = page_to_nid(page);
0edaecfa 511 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
512 h->free_huge_pages++;
513 h->free_huge_pages_node[nid]++;
1da177e4
LT
514}
515
bf50bab2
NH
516static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517{
518 struct page *page;
519
520 if (list_empty(&h->hugepage_freelists[nid]))
521 return NULL;
522 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
0edaecfa 523 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 524 set_page_refcounted(page);
bf50bab2
NH
525 h->free_huge_pages--;
526 h->free_huge_pages_node[nid]--;
527 return page;
528}
529
a5516438
AK
530static struct page *dequeue_huge_page_vma(struct hstate *h,
531 struct vm_area_struct *vma,
04f2cbe3 532 unsigned long address, int avoid_reserve)
1da177e4 533{
b1c12cbc 534 struct page *page = NULL;
480eccf9 535 struct mempolicy *mpol;
19770b32 536 nodemask_t *nodemask;
c0ff7453 537 struct zonelist *zonelist;
dd1a239f
MG
538 struct zone *zone;
539 struct zoneref *z;
cc9a6c87 540 unsigned int cpuset_mems_cookie;
1da177e4 541
a1e78772
MG
542 /*
543 * A child process with MAP_PRIVATE mappings created by their parent
544 * have no page reserves. This check ensures that reservations are
545 * not "stolen". The child may still get SIGKILLed
546 */
7f09ca51 547 if (!vma_has_reserves(vma) &&
a5516438 548 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 549 goto err;
a1e78772 550
04f2cbe3 551 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 552 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 553 goto err;
04f2cbe3 554
9966c4bb
JK
555retry_cpuset:
556 cpuset_mems_cookie = get_mems_allowed();
557 zonelist = huge_zonelist(vma, address,
558 htlb_alloc_mask, &mpol, &nodemask);
559
19770b32
MG
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 if (page) {
565 if (!avoid_reserve)
566 decrement_hugepage_resv_vma(h, vma);
567 break;
568 }
3abf7afd 569 }
1da177e4 570 }
cc9a6c87 571
52cd3b07 572 mpol_cond_put(mpol);
cc9a6c87
MG
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 goto retry_cpuset;
1da177e4 575 return page;
cc9a6c87
MG
576
577err:
cc9a6c87 578 return NULL;
1da177e4
LT
579}
580
a5516438 581static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
582{
583 int i;
a5516438 584
18229df5
AW
585 VM_BUG_ON(h->order >= MAX_ORDER);
586
a5516438
AK
587 h->nr_huge_pages--;
588 h->nr_huge_pages_node[page_to_nid(page)]--;
589 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
590 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591 1 << PG_referenced | 1 << PG_dirty |
592 1 << PG_active | 1 << PG_reserved |
593 1 << PG_private | 1 << PG_writeback);
6af2acb6 594 }
9dd540e2 595 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
7f2e9525 598 arch_release_hugepage(page);
a5516438 599 __free_pages(page, huge_page_order(h));
6af2acb6
AL
600}
601
e5ff2159
AK
602struct hstate *size_to_hstate(unsigned long size)
603{
604 struct hstate *h;
605
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
609 }
610 return NULL;
611}
612
27a85ef1
DG
613static void free_huge_page(struct page *page)
614{
a5516438
AK
615 /*
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
618 */
e5ff2159 619 struct hstate *h = page_hstate(page);
7893d1d5 620 int nid = page_to_nid(page);
90481622
DG
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
27a85ef1 623
e5df70ab 624 set_page_private(page, 0);
23be7468 625 page->mapping = NULL;
7893d1d5 626 BUG_ON(page_count(page));
0fe6e20b 627 BUG_ON(page_mapcount(page));
27a85ef1
DG
628
629 spin_lock(&hugetlb_lock);
6d76dcf4
AK
630 hugetlb_cgroup_uncharge_page(hstate_index(h),
631 pages_per_huge_page(h), page);
aa888a74 632 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
633 /* remove the page from active list */
634 list_del(&page->lru);
a5516438
AK
635 update_and_free_page(h, page);
636 h->surplus_huge_pages--;
637 h->surplus_huge_pages_node[nid]--;
7893d1d5 638 } else {
5d3a551c 639 arch_clear_hugepage_flags(page);
a5516438 640 enqueue_huge_page(h, page);
7893d1d5 641 }
27a85ef1 642 spin_unlock(&hugetlb_lock);
90481622 643 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
644}
645
a5516438 646static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 647{
0edaecfa 648 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
649 set_compound_page_dtor(page, free_huge_page);
650 spin_lock(&hugetlb_lock);
9dd540e2 651 set_hugetlb_cgroup(page, NULL);
a5516438
AK
652 h->nr_huge_pages++;
653 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
654 spin_unlock(&hugetlb_lock);
655 put_page(page); /* free it into the hugepage allocator */
656}
657
20a0307c
WF
658static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659{
660 int i;
661 int nr_pages = 1 << order;
662 struct page *p = page + 1;
663
664 /* we rely on prep_new_huge_page to set the destructor */
665 set_compound_order(page, order);
666 __SetPageHead(page);
667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 __SetPageTail(p);
58a84aa9 669 set_page_count(p, 0);
20a0307c
WF
670 p->first_page = page;
671 }
672}
673
7795912c
AM
674/*
675 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676 * transparent huge pages. See the PageTransHuge() documentation for more
677 * details.
678 */
20a0307c
WF
679int PageHuge(struct page *page)
680{
681 compound_page_dtor *dtor;
682
683 if (!PageCompound(page))
684 return 0;
685
686 page = compound_head(page);
687 dtor = get_compound_page_dtor(page);
688
689 return dtor == free_huge_page;
690}
43131e14
NH
691EXPORT_SYMBOL_GPL(PageHuge);
692
13d60f4b
ZY
693pgoff_t __basepage_index(struct page *page)
694{
695 struct page *page_head = compound_head(page);
696 pgoff_t index = page_index(page_head);
697 unsigned long compound_idx;
698
699 if (!PageHuge(page_head))
700 return page_index(page);
701
702 if (compound_order(page_head) >= MAX_ORDER)
703 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
704 else
705 compound_idx = page - page_head;
706
707 return (index << compound_order(page_head)) + compound_idx;
708}
709
a5516438 710static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 711{
1da177e4 712 struct page *page;
f96efd58 713
aa888a74
AK
714 if (h->order >= MAX_ORDER)
715 return NULL;
716
6484eb3e 717 page = alloc_pages_exact_node(nid,
551883ae
NA
718 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
719 __GFP_REPEAT|__GFP_NOWARN,
a5516438 720 huge_page_order(h));
1da177e4 721 if (page) {
7f2e9525 722 if (arch_prepare_hugepage(page)) {
caff3a2c 723 __free_pages(page, huge_page_order(h));
7b8ee84d 724 return NULL;
7f2e9525 725 }
a5516438 726 prep_new_huge_page(h, page, nid);
1da177e4 727 }
63b4613c
NA
728
729 return page;
730}
731
9a76db09 732/*
6ae11b27
LS
733 * common helper functions for hstate_next_node_to_{alloc|free}.
734 * We may have allocated or freed a huge page based on a different
735 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
736 * be outside of *nodes_allowed. Ensure that we use an allowed
737 * node for alloc or free.
9a76db09 738 */
6ae11b27 739static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 740{
6ae11b27 741 nid = next_node(nid, *nodes_allowed);
9a76db09 742 if (nid == MAX_NUMNODES)
6ae11b27 743 nid = first_node(*nodes_allowed);
9a76db09
LS
744 VM_BUG_ON(nid >= MAX_NUMNODES);
745
746 return nid;
747}
748
6ae11b27
LS
749static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
750{
751 if (!node_isset(nid, *nodes_allowed))
752 nid = next_node_allowed(nid, nodes_allowed);
753 return nid;
754}
755
5ced66c9 756/*
6ae11b27
LS
757 * returns the previously saved node ["this node"] from which to
758 * allocate a persistent huge page for the pool and advance the
759 * next node from which to allocate, handling wrap at end of node
760 * mask.
5ced66c9 761 */
6ae11b27
LS
762static int hstate_next_node_to_alloc(struct hstate *h,
763 nodemask_t *nodes_allowed)
5ced66c9 764{
6ae11b27
LS
765 int nid;
766
767 VM_BUG_ON(!nodes_allowed);
768
769 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
770 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 771
9a76db09 772 return nid;
5ced66c9
AK
773}
774
6ae11b27 775static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
63b4613c
NA
776{
777 struct page *page;
778 int start_nid;
779 int next_nid;
780 int ret = 0;
781
6ae11b27 782 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 783 next_nid = start_nid;
63b4613c
NA
784
785 do {
e8c5c824 786 page = alloc_fresh_huge_page_node(h, next_nid);
9a76db09 787 if (page) {
63b4613c 788 ret = 1;
9a76db09
LS
789 break;
790 }
6ae11b27 791 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
9a76db09 792 } while (next_nid != start_nid);
63b4613c 793
3b116300
AL
794 if (ret)
795 count_vm_event(HTLB_BUDDY_PGALLOC);
796 else
797 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
798
63b4613c 799 return ret;
1da177e4
LT
800}
801
e8c5c824 802/*
6ae11b27
LS
803 * helper for free_pool_huge_page() - return the previously saved
804 * node ["this node"] from which to free a huge page. Advance the
805 * next node id whether or not we find a free huge page to free so
806 * that the next attempt to free addresses the next node.
e8c5c824 807 */
6ae11b27 808static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 809{
6ae11b27
LS
810 int nid;
811
812 VM_BUG_ON(!nodes_allowed);
813
814 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
815 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 816
9a76db09 817 return nid;
e8c5c824
LS
818}
819
820/*
821 * Free huge page from pool from next node to free.
822 * Attempt to keep persistent huge pages more or less
823 * balanced over allowed nodes.
824 * Called with hugetlb_lock locked.
825 */
6ae11b27
LS
826static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
827 bool acct_surplus)
e8c5c824
LS
828{
829 int start_nid;
830 int next_nid;
831 int ret = 0;
832
6ae11b27 833 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
834 next_nid = start_nid;
835
836 do {
685f3457
LS
837 /*
838 * If we're returning unused surplus pages, only examine
839 * nodes with surplus pages.
840 */
841 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
842 !list_empty(&h->hugepage_freelists[next_nid])) {
e8c5c824
LS
843 struct page *page =
844 list_entry(h->hugepage_freelists[next_nid].next,
845 struct page, lru);
846 list_del(&page->lru);
847 h->free_huge_pages--;
848 h->free_huge_pages_node[next_nid]--;
685f3457
LS
849 if (acct_surplus) {
850 h->surplus_huge_pages--;
851 h->surplus_huge_pages_node[next_nid]--;
852 }
e8c5c824
LS
853 update_and_free_page(h, page);
854 ret = 1;
9a76db09 855 break;
e8c5c824 856 }
6ae11b27 857 next_nid = hstate_next_node_to_free(h, nodes_allowed);
9a76db09 858 } while (next_nid != start_nid);
e8c5c824
LS
859
860 return ret;
861}
862
bf50bab2 863static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
864{
865 struct page *page;
bf50bab2 866 unsigned int r_nid;
7893d1d5 867
aa888a74
AK
868 if (h->order >= MAX_ORDER)
869 return NULL;
870
d1c3fb1f
NA
871 /*
872 * Assume we will successfully allocate the surplus page to
873 * prevent racing processes from causing the surplus to exceed
874 * overcommit
875 *
876 * This however introduces a different race, where a process B
877 * tries to grow the static hugepage pool while alloc_pages() is
878 * called by process A. B will only examine the per-node
879 * counters in determining if surplus huge pages can be
880 * converted to normal huge pages in adjust_pool_surplus(). A
881 * won't be able to increment the per-node counter, until the
882 * lock is dropped by B, but B doesn't drop hugetlb_lock until
883 * no more huge pages can be converted from surplus to normal
884 * state (and doesn't try to convert again). Thus, we have a
885 * case where a surplus huge page exists, the pool is grown, and
886 * the surplus huge page still exists after, even though it
887 * should just have been converted to a normal huge page. This
888 * does not leak memory, though, as the hugepage will be freed
889 * once it is out of use. It also does not allow the counters to
890 * go out of whack in adjust_pool_surplus() as we don't modify
891 * the node values until we've gotten the hugepage and only the
892 * per-node value is checked there.
893 */
894 spin_lock(&hugetlb_lock);
a5516438 895 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
896 spin_unlock(&hugetlb_lock);
897 return NULL;
898 } else {
a5516438
AK
899 h->nr_huge_pages++;
900 h->surplus_huge_pages++;
d1c3fb1f
NA
901 }
902 spin_unlock(&hugetlb_lock);
903
bf50bab2
NH
904 if (nid == NUMA_NO_NODE)
905 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
906 __GFP_REPEAT|__GFP_NOWARN,
907 huge_page_order(h));
908 else
909 page = alloc_pages_exact_node(nid,
910 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
911 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 912
caff3a2c
GS
913 if (page && arch_prepare_hugepage(page)) {
914 __free_pages(page, huge_page_order(h));
ea5768c7 915 page = NULL;
caff3a2c
GS
916 }
917
d1c3fb1f 918 spin_lock(&hugetlb_lock);
7893d1d5 919 if (page) {
0edaecfa 920 INIT_LIST_HEAD(&page->lru);
bf50bab2 921 r_nid = page_to_nid(page);
7893d1d5 922 set_compound_page_dtor(page, free_huge_page);
9dd540e2 923 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
924 /*
925 * We incremented the global counters already
926 */
bf50bab2
NH
927 h->nr_huge_pages_node[r_nid]++;
928 h->surplus_huge_pages_node[r_nid]++;
3b116300 929 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 930 } else {
a5516438
AK
931 h->nr_huge_pages--;
932 h->surplus_huge_pages--;
3b116300 933 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 934 }
d1c3fb1f 935 spin_unlock(&hugetlb_lock);
7893d1d5
AL
936
937 return page;
938}
939
bf50bab2
NH
940/*
941 * This allocation function is useful in the context where vma is irrelevant.
942 * E.g. soft-offlining uses this function because it only cares physical
943 * address of error page.
944 */
945struct page *alloc_huge_page_node(struct hstate *h, int nid)
946{
947 struct page *page;
948
949 spin_lock(&hugetlb_lock);
950 page = dequeue_huge_page_node(h, nid);
951 spin_unlock(&hugetlb_lock);
952
94ae8ba7 953 if (!page)
bf50bab2
NH
954 page = alloc_buddy_huge_page(h, nid);
955
956 return page;
957}
958
e4e574b7 959/*
25985edc 960 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
961 * of size 'delta'.
962 */
a5516438 963static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
964{
965 struct list_head surplus_list;
966 struct page *page, *tmp;
967 int ret, i;
968 int needed, allocated;
28073b02 969 bool alloc_ok = true;
e4e574b7 970
a5516438 971 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 972 if (needed <= 0) {
a5516438 973 h->resv_huge_pages += delta;
e4e574b7 974 return 0;
ac09b3a1 975 }
e4e574b7
AL
976
977 allocated = 0;
978 INIT_LIST_HEAD(&surplus_list);
979
980 ret = -ENOMEM;
981retry:
982 spin_unlock(&hugetlb_lock);
983 for (i = 0; i < needed; i++) {
bf50bab2 984 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
985 if (!page) {
986 alloc_ok = false;
987 break;
988 }
e4e574b7
AL
989 list_add(&page->lru, &surplus_list);
990 }
28073b02 991 allocated += i;
e4e574b7
AL
992
993 /*
994 * After retaking hugetlb_lock, we need to recalculate 'needed'
995 * because either resv_huge_pages or free_huge_pages may have changed.
996 */
997 spin_lock(&hugetlb_lock);
a5516438
AK
998 needed = (h->resv_huge_pages + delta) -
999 (h->free_huge_pages + allocated);
28073b02
HD
1000 if (needed > 0) {
1001 if (alloc_ok)
1002 goto retry;
1003 /*
1004 * We were not able to allocate enough pages to
1005 * satisfy the entire reservation so we free what
1006 * we've allocated so far.
1007 */
1008 goto free;
1009 }
e4e574b7
AL
1010 /*
1011 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1012 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1013 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1014 * allocator. Commit the entire reservation here to prevent another
1015 * process from stealing the pages as they are added to the pool but
1016 * before they are reserved.
e4e574b7
AL
1017 */
1018 needed += allocated;
a5516438 1019 h->resv_huge_pages += delta;
e4e574b7 1020 ret = 0;
a9869b83 1021
19fc3f0a 1022 /* Free the needed pages to the hugetlb pool */
e4e574b7 1023 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1024 if ((--needed) < 0)
1025 break;
a9869b83
NH
1026 /*
1027 * This page is now managed by the hugetlb allocator and has
1028 * no users -- drop the buddy allocator's reference.
1029 */
1030 put_page_testzero(page);
1031 VM_BUG_ON(page_count(page));
a5516438 1032 enqueue_huge_page(h, page);
19fc3f0a 1033 }
28073b02 1034free:
b0365c8d 1035 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1036
1037 /* Free unnecessary surplus pages to the buddy allocator */
1038 if (!list_empty(&surplus_list)) {
19fc3f0a 1039 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
a9869b83 1040 put_page(page);
af767cbd 1041 }
e4e574b7 1042 }
a9869b83 1043 spin_lock(&hugetlb_lock);
e4e574b7
AL
1044
1045 return ret;
1046}
1047
1048/*
1049 * When releasing a hugetlb pool reservation, any surplus pages that were
1050 * allocated to satisfy the reservation must be explicitly freed if they were
1051 * never used.
685f3457 1052 * Called with hugetlb_lock held.
e4e574b7 1053 */
a5516438
AK
1054static void return_unused_surplus_pages(struct hstate *h,
1055 unsigned long unused_resv_pages)
e4e574b7 1056{
e4e574b7
AL
1057 unsigned long nr_pages;
1058
ac09b3a1 1059 /* Uncommit the reservation */
a5516438 1060 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1061
aa888a74
AK
1062 /* Cannot return gigantic pages currently */
1063 if (h->order >= MAX_ORDER)
1064 return;
1065
a5516438 1066 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1067
685f3457
LS
1068 /*
1069 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1070 * evenly across all nodes with memory. Iterate across these nodes
1071 * until we can no longer free unreserved surplus pages. This occurs
1072 * when the nodes with surplus pages have no free pages.
1073 * free_pool_huge_page() will balance the the freed pages across the
1074 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1075 */
1076 while (nr_pages--) {
8cebfcd0 1077 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1078 break;
e4e574b7
AL
1079 }
1080}
1081
c37f9fb1
AW
1082/*
1083 * Determine if the huge page at addr within the vma has an associated
1084 * reservation. Where it does not we will need to logically increase
90481622
DG
1085 * reservation and actually increase subpool usage before an allocation
1086 * can occur. Where any new reservation would be required the
1087 * reservation change is prepared, but not committed. Once the page
1088 * has been allocated from the subpool and instantiated the change should
1089 * be committed via vma_commit_reservation. No action is required on
1090 * failure.
c37f9fb1 1091 */
e2f17d94 1092static long vma_needs_reservation(struct hstate *h,
a5516438 1093 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1094{
1095 struct address_space *mapping = vma->vm_file->f_mapping;
1096 struct inode *inode = mapping->host;
1097
f83a275d 1098 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1099 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1100 return region_chg(&inode->i_mapping->private_list,
1101 idx, idx + 1);
1102
84afd99b
AW
1103 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1104 return 1;
c37f9fb1 1105
84afd99b 1106 } else {
e2f17d94 1107 long err;
a5516438 1108 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1109 struct resv_map *reservations = vma_resv_map(vma);
1110
1111 err = region_chg(&reservations->regions, idx, idx + 1);
1112 if (err < 0)
1113 return err;
1114 return 0;
1115 }
c37f9fb1 1116}
a5516438
AK
1117static void vma_commit_reservation(struct hstate *h,
1118 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1119{
1120 struct address_space *mapping = vma->vm_file->f_mapping;
1121 struct inode *inode = mapping->host;
1122
f83a275d 1123 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1124 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1125 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1126
1127 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1128 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1129 struct resv_map *reservations = vma_resv_map(vma);
1130
1131 /* Mark this page used in the map. */
1132 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1133 }
1134}
1135
a1e78772 1136static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1137 unsigned long addr, int avoid_reserve)
1da177e4 1138{
90481622 1139 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1140 struct hstate *h = hstate_vma(vma);
348ea204 1141 struct page *page;
e2f17d94 1142 long chg;
6d76dcf4
AK
1143 int ret, idx;
1144 struct hugetlb_cgroup *h_cg;
a1e78772 1145
6d76dcf4 1146 idx = hstate_index(h);
a1e78772 1147 /*
90481622
DG
1148 * Processes that did not create the mapping will have no
1149 * reserves and will not have accounted against subpool
1150 * limit. Check that the subpool limit can be made before
1151 * satisfying the allocation MAP_NORESERVE mappings may also
1152 * need pages and subpool limit allocated allocated if no reserve
1153 * mapping overlaps.
a1e78772 1154 */
a5516438 1155 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1156 if (chg < 0)
76dcee75 1157 return ERR_PTR(-ENOMEM);
c37f9fb1 1158 if (chg)
90481622 1159 if (hugepage_subpool_get_pages(spool, chg))
76dcee75 1160 return ERR_PTR(-ENOSPC);
1da177e4 1161
6d76dcf4
AK
1162 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1163 if (ret) {
1164 hugepage_subpool_put_pages(spool, chg);
1165 return ERR_PTR(-ENOSPC);
1166 }
1da177e4 1167 spin_lock(&hugetlb_lock);
a5516438 1168 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
81a6fcae 1169 if (!page) {
94ae8ba7 1170 spin_unlock(&hugetlb_lock);
bf50bab2 1171 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1172 if (!page) {
6d76dcf4
AK
1173 hugetlb_cgroup_uncharge_cgroup(idx,
1174 pages_per_huge_page(h),
1175 h_cg);
90481622 1176 hugepage_subpool_put_pages(spool, chg);
76dcee75 1177 return ERR_PTR(-ENOSPC);
68842c9b 1178 }
79dbb236
AK
1179 spin_lock(&hugetlb_lock);
1180 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1181 /* Fall through */
68842c9b 1182 }
81a6fcae
JK
1183 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1184 spin_unlock(&hugetlb_lock);
348ea204 1185
90481622 1186 set_page_private(page, (unsigned long)spool);
90d8b7e6 1187
a5516438 1188 vma_commit_reservation(h, vma, addr);
90d8b7e6 1189 return page;
b45b5bd6
DG
1190}
1191
91f47662 1192int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1193{
1194 struct huge_bootmem_page *m;
8cebfcd0 1195 int nr_nodes = nodes_weight(node_states[N_MEMORY]);
aa888a74
AK
1196
1197 while (nr_nodes) {
1198 void *addr;
1199
1200 addr = __alloc_bootmem_node_nopanic(
6ae11b27 1201 NODE_DATA(hstate_next_node_to_alloc(h,
8cebfcd0 1202 &node_states[N_MEMORY])),
aa888a74
AK
1203 huge_page_size(h), huge_page_size(h), 0);
1204
1205 if (addr) {
1206 /*
1207 * Use the beginning of the huge page to store the
1208 * huge_bootmem_page struct (until gather_bootmem
1209 * puts them into the mem_map).
1210 */
1211 m = addr;
91f47662 1212 goto found;
aa888a74 1213 }
aa888a74
AK
1214 nr_nodes--;
1215 }
1216 return 0;
1217
1218found:
1219 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1220 /* Put them into a private list first because mem_map is not up yet */
1221 list_add(&m->list, &huge_boot_pages);
1222 m->hstate = h;
1223 return 1;
1224}
1225
18229df5
AW
1226static void prep_compound_huge_page(struct page *page, int order)
1227{
1228 if (unlikely(order > (MAX_ORDER - 1)))
1229 prep_compound_gigantic_page(page, order);
1230 else
1231 prep_compound_page(page, order);
1232}
1233
aa888a74
AK
1234/* Put bootmem huge pages into the standard lists after mem_map is up */
1235static void __init gather_bootmem_prealloc(void)
1236{
1237 struct huge_bootmem_page *m;
1238
1239 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1240 struct hstate *h = m->hstate;
ee8f248d
BB
1241 struct page *page;
1242
1243#ifdef CONFIG_HIGHMEM
1244 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1245 free_bootmem_late((unsigned long)m,
1246 sizeof(struct huge_bootmem_page));
1247#else
1248 page = virt_to_page(m);
1249#endif
aa888a74
AK
1250 __ClearPageReserved(page);
1251 WARN_ON(page_count(page) != 1);
18229df5 1252 prep_compound_huge_page(page, h->order);
aa888a74 1253 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1254 /*
1255 * If we had gigantic hugepages allocated at boot time, we need
1256 * to restore the 'stolen' pages to totalram_pages in order to
1257 * fix confusing memory reports from free(1) and another
1258 * side-effects, like CommitLimit going negative.
1259 */
1260 if (h->order > (MAX_ORDER - 1))
3dcc0571 1261 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1262 }
1263}
1264
8faa8b07 1265static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1266{
1267 unsigned long i;
a5516438 1268
e5ff2159 1269 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1270 if (h->order >= MAX_ORDER) {
1271 if (!alloc_bootmem_huge_page(h))
1272 break;
9b5e5d0f 1273 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1274 &node_states[N_MEMORY]))
1da177e4 1275 break;
1da177e4 1276 }
8faa8b07 1277 h->max_huge_pages = i;
e5ff2159
AK
1278}
1279
1280static void __init hugetlb_init_hstates(void)
1281{
1282 struct hstate *h;
1283
1284 for_each_hstate(h) {
8faa8b07
AK
1285 /* oversize hugepages were init'ed in early boot */
1286 if (h->order < MAX_ORDER)
1287 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1288 }
1289}
1290
4abd32db
AK
1291static char * __init memfmt(char *buf, unsigned long n)
1292{
1293 if (n >= (1UL << 30))
1294 sprintf(buf, "%lu GB", n >> 30);
1295 else if (n >= (1UL << 20))
1296 sprintf(buf, "%lu MB", n >> 20);
1297 else
1298 sprintf(buf, "%lu KB", n >> 10);
1299 return buf;
1300}
1301
e5ff2159
AK
1302static void __init report_hugepages(void)
1303{
1304 struct hstate *h;
1305
1306 for_each_hstate(h) {
4abd32db 1307 char buf[32];
ffb22af5 1308 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1309 memfmt(buf, huge_page_size(h)),
1310 h->free_huge_pages);
e5ff2159
AK
1311 }
1312}
1313
1da177e4 1314#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1315static void try_to_free_low(struct hstate *h, unsigned long count,
1316 nodemask_t *nodes_allowed)
1da177e4 1317{
4415cc8d
CL
1318 int i;
1319
aa888a74
AK
1320 if (h->order >= MAX_ORDER)
1321 return;
1322
6ae11b27 1323 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1324 struct page *page, *next;
a5516438
AK
1325 struct list_head *freel = &h->hugepage_freelists[i];
1326 list_for_each_entry_safe(page, next, freel, lru) {
1327 if (count >= h->nr_huge_pages)
6b0c880d 1328 return;
1da177e4
LT
1329 if (PageHighMem(page))
1330 continue;
1331 list_del(&page->lru);
e5ff2159 1332 update_and_free_page(h, page);
a5516438
AK
1333 h->free_huge_pages--;
1334 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1335 }
1336 }
1337}
1338#else
6ae11b27
LS
1339static inline void try_to_free_low(struct hstate *h, unsigned long count,
1340 nodemask_t *nodes_allowed)
1da177e4
LT
1341{
1342}
1343#endif
1344
20a0307c
WF
1345/*
1346 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1347 * balanced by operating on them in a round-robin fashion.
1348 * Returns 1 if an adjustment was made.
1349 */
6ae11b27
LS
1350static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1351 int delta)
20a0307c 1352{
e8c5c824 1353 int start_nid, next_nid;
20a0307c
WF
1354 int ret = 0;
1355
1356 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1357
e8c5c824 1358 if (delta < 0)
6ae11b27 1359 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
e8c5c824 1360 else
6ae11b27 1361 start_nid = hstate_next_node_to_free(h, nodes_allowed);
e8c5c824
LS
1362 next_nid = start_nid;
1363
1364 do {
1365 int nid = next_nid;
1366 if (delta < 0) {
e8c5c824
LS
1367 /*
1368 * To shrink on this node, there must be a surplus page
1369 */
9a76db09 1370 if (!h->surplus_huge_pages_node[nid]) {
6ae11b27
LS
1371 next_nid = hstate_next_node_to_alloc(h,
1372 nodes_allowed);
e8c5c824 1373 continue;
9a76db09 1374 }
e8c5c824
LS
1375 }
1376 if (delta > 0) {
e8c5c824
LS
1377 /*
1378 * Surplus cannot exceed the total number of pages
1379 */
1380 if (h->surplus_huge_pages_node[nid] >=
9a76db09 1381 h->nr_huge_pages_node[nid]) {
6ae11b27
LS
1382 next_nid = hstate_next_node_to_free(h,
1383 nodes_allowed);
e8c5c824 1384 continue;
9a76db09 1385 }
e8c5c824 1386 }
20a0307c
WF
1387
1388 h->surplus_huge_pages += delta;
1389 h->surplus_huge_pages_node[nid] += delta;
1390 ret = 1;
1391 break;
e8c5c824 1392 } while (next_nid != start_nid);
20a0307c 1393
20a0307c
WF
1394 return ret;
1395}
1396
a5516438 1397#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1398static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1399 nodemask_t *nodes_allowed)
1da177e4 1400{
7893d1d5 1401 unsigned long min_count, ret;
1da177e4 1402
aa888a74
AK
1403 if (h->order >= MAX_ORDER)
1404 return h->max_huge_pages;
1405
7893d1d5
AL
1406 /*
1407 * Increase the pool size
1408 * First take pages out of surplus state. Then make up the
1409 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1410 *
1411 * We might race with alloc_buddy_huge_page() here and be unable
1412 * to convert a surplus huge page to a normal huge page. That is
1413 * not critical, though, it just means the overall size of the
1414 * pool might be one hugepage larger than it needs to be, but
1415 * within all the constraints specified by the sysctls.
7893d1d5 1416 */
1da177e4 1417 spin_lock(&hugetlb_lock);
a5516438 1418 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1419 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1420 break;
1421 }
1422
a5516438 1423 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1424 /*
1425 * If this allocation races such that we no longer need the
1426 * page, free_huge_page will handle it by freeing the page
1427 * and reducing the surplus.
1428 */
1429 spin_unlock(&hugetlb_lock);
6ae11b27 1430 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1431 spin_lock(&hugetlb_lock);
1432 if (!ret)
1433 goto out;
1434
536240f2
MG
1435 /* Bail for signals. Probably ctrl-c from user */
1436 if (signal_pending(current))
1437 goto out;
7893d1d5 1438 }
7893d1d5
AL
1439
1440 /*
1441 * Decrease the pool size
1442 * First return free pages to the buddy allocator (being careful
1443 * to keep enough around to satisfy reservations). Then place
1444 * pages into surplus state as needed so the pool will shrink
1445 * to the desired size as pages become free.
d1c3fb1f
NA
1446 *
1447 * By placing pages into the surplus state independent of the
1448 * overcommit value, we are allowing the surplus pool size to
1449 * exceed overcommit. There are few sane options here. Since
1450 * alloc_buddy_huge_page() is checking the global counter,
1451 * though, we'll note that we're not allowed to exceed surplus
1452 * and won't grow the pool anywhere else. Not until one of the
1453 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1454 */
a5516438 1455 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1456 min_count = max(count, min_count);
6ae11b27 1457 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1458 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1459 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1460 break;
1da177e4 1461 }
a5516438 1462 while (count < persistent_huge_pages(h)) {
6ae11b27 1463 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1464 break;
1465 }
1466out:
a5516438 1467 ret = persistent_huge_pages(h);
1da177e4 1468 spin_unlock(&hugetlb_lock);
7893d1d5 1469 return ret;
1da177e4
LT
1470}
1471
a3437870
NA
1472#define HSTATE_ATTR_RO(_name) \
1473 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1474
1475#define HSTATE_ATTR(_name) \
1476 static struct kobj_attribute _name##_attr = \
1477 __ATTR(_name, 0644, _name##_show, _name##_store)
1478
1479static struct kobject *hugepages_kobj;
1480static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1481
9a305230
LS
1482static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1483
1484static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1485{
1486 int i;
9a305230 1487
a3437870 1488 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1489 if (hstate_kobjs[i] == kobj) {
1490 if (nidp)
1491 *nidp = NUMA_NO_NODE;
a3437870 1492 return &hstates[i];
9a305230
LS
1493 }
1494
1495 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1496}
1497
06808b08 1498static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1499 struct kobj_attribute *attr, char *buf)
1500{
9a305230
LS
1501 struct hstate *h;
1502 unsigned long nr_huge_pages;
1503 int nid;
1504
1505 h = kobj_to_hstate(kobj, &nid);
1506 if (nid == NUMA_NO_NODE)
1507 nr_huge_pages = h->nr_huge_pages;
1508 else
1509 nr_huge_pages = h->nr_huge_pages_node[nid];
1510
1511 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1512}
adbe8726 1513
06808b08
LS
1514static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1515 struct kobject *kobj, struct kobj_attribute *attr,
1516 const char *buf, size_t len)
a3437870
NA
1517{
1518 int err;
9a305230 1519 int nid;
06808b08 1520 unsigned long count;
9a305230 1521 struct hstate *h;
bad44b5b 1522 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1523
3dbb95f7 1524 err = kstrtoul(buf, 10, &count);
73ae31e5 1525 if (err)
adbe8726 1526 goto out;
a3437870 1527
9a305230 1528 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1529 if (h->order >= MAX_ORDER) {
1530 err = -EINVAL;
1531 goto out;
1532 }
1533
9a305230
LS
1534 if (nid == NUMA_NO_NODE) {
1535 /*
1536 * global hstate attribute
1537 */
1538 if (!(obey_mempolicy &&
1539 init_nodemask_of_mempolicy(nodes_allowed))) {
1540 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1541 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1542 }
1543 } else if (nodes_allowed) {
1544 /*
1545 * per node hstate attribute: adjust count to global,
1546 * but restrict alloc/free to the specified node.
1547 */
1548 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1549 init_nodemask_of_node(nodes_allowed, nid);
1550 } else
8cebfcd0 1551 nodes_allowed = &node_states[N_MEMORY];
9a305230 1552
06808b08 1553 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1554
8cebfcd0 1555 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1556 NODEMASK_FREE(nodes_allowed);
1557
1558 return len;
adbe8726
EM
1559out:
1560 NODEMASK_FREE(nodes_allowed);
1561 return err;
06808b08
LS
1562}
1563
1564static ssize_t nr_hugepages_show(struct kobject *kobj,
1565 struct kobj_attribute *attr, char *buf)
1566{
1567 return nr_hugepages_show_common(kobj, attr, buf);
1568}
1569
1570static ssize_t nr_hugepages_store(struct kobject *kobj,
1571 struct kobj_attribute *attr, const char *buf, size_t len)
1572{
1573 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1574}
1575HSTATE_ATTR(nr_hugepages);
1576
06808b08
LS
1577#ifdef CONFIG_NUMA
1578
1579/*
1580 * hstate attribute for optionally mempolicy-based constraint on persistent
1581 * huge page alloc/free.
1582 */
1583static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1584 struct kobj_attribute *attr, char *buf)
1585{
1586 return nr_hugepages_show_common(kobj, attr, buf);
1587}
1588
1589static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1590 struct kobj_attribute *attr, const char *buf, size_t len)
1591{
1592 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1593}
1594HSTATE_ATTR(nr_hugepages_mempolicy);
1595#endif
1596
1597
a3437870
NA
1598static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1599 struct kobj_attribute *attr, char *buf)
1600{
9a305230 1601 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1602 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1603}
adbe8726 1604
a3437870
NA
1605static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1606 struct kobj_attribute *attr, const char *buf, size_t count)
1607{
1608 int err;
1609 unsigned long input;
9a305230 1610 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1611
adbe8726
EM
1612 if (h->order >= MAX_ORDER)
1613 return -EINVAL;
1614
3dbb95f7 1615 err = kstrtoul(buf, 10, &input);
a3437870 1616 if (err)
73ae31e5 1617 return err;
a3437870
NA
1618
1619 spin_lock(&hugetlb_lock);
1620 h->nr_overcommit_huge_pages = input;
1621 spin_unlock(&hugetlb_lock);
1622
1623 return count;
1624}
1625HSTATE_ATTR(nr_overcommit_hugepages);
1626
1627static ssize_t free_hugepages_show(struct kobject *kobj,
1628 struct kobj_attribute *attr, char *buf)
1629{
9a305230
LS
1630 struct hstate *h;
1631 unsigned long free_huge_pages;
1632 int nid;
1633
1634 h = kobj_to_hstate(kobj, &nid);
1635 if (nid == NUMA_NO_NODE)
1636 free_huge_pages = h->free_huge_pages;
1637 else
1638 free_huge_pages = h->free_huge_pages_node[nid];
1639
1640 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1641}
1642HSTATE_ATTR_RO(free_hugepages);
1643
1644static ssize_t resv_hugepages_show(struct kobject *kobj,
1645 struct kobj_attribute *attr, char *buf)
1646{
9a305230 1647 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1648 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1649}
1650HSTATE_ATTR_RO(resv_hugepages);
1651
1652static ssize_t surplus_hugepages_show(struct kobject *kobj,
1653 struct kobj_attribute *attr, char *buf)
1654{
9a305230
LS
1655 struct hstate *h;
1656 unsigned long surplus_huge_pages;
1657 int nid;
1658
1659 h = kobj_to_hstate(kobj, &nid);
1660 if (nid == NUMA_NO_NODE)
1661 surplus_huge_pages = h->surplus_huge_pages;
1662 else
1663 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1664
1665 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1666}
1667HSTATE_ATTR_RO(surplus_hugepages);
1668
1669static struct attribute *hstate_attrs[] = {
1670 &nr_hugepages_attr.attr,
1671 &nr_overcommit_hugepages_attr.attr,
1672 &free_hugepages_attr.attr,
1673 &resv_hugepages_attr.attr,
1674 &surplus_hugepages_attr.attr,
06808b08
LS
1675#ifdef CONFIG_NUMA
1676 &nr_hugepages_mempolicy_attr.attr,
1677#endif
a3437870
NA
1678 NULL,
1679};
1680
1681static struct attribute_group hstate_attr_group = {
1682 .attrs = hstate_attrs,
1683};
1684
094e9539
JM
1685static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1686 struct kobject **hstate_kobjs,
1687 struct attribute_group *hstate_attr_group)
a3437870
NA
1688{
1689 int retval;
972dc4de 1690 int hi = hstate_index(h);
a3437870 1691
9a305230
LS
1692 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1693 if (!hstate_kobjs[hi])
a3437870
NA
1694 return -ENOMEM;
1695
9a305230 1696 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1697 if (retval)
9a305230 1698 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1699
1700 return retval;
1701}
1702
1703static void __init hugetlb_sysfs_init(void)
1704{
1705 struct hstate *h;
1706 int err;
1707
1708 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1709 if (!hugepages_kobj)
1710 return;
1711
1712 for_each_hstate(h) {
9a305230
LS
1713 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1714 hstate_kobjs, &hstate_attr_group);
a3437870 1715 if (err)
ffb22af5 1716 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1717 }
1718}
1719
9a305230
LS
1720#ifdef CONFIG_NUMA
1721
1722/*
1723 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1724 * with node devices in node_devices[] using a parallel array. The array
1725 * index of a node device or _hstate == node id.
1726 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1727 * the base kernel, on the hugetlb module.
1728 */
1729struct node_hstate {
1730 struct kobject *hugepages_kobj;
1731 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1732};
1733struct node_hstate node_hstates[MAX_NUMNODES];
1734
1735/*
10fbcf4c 1736 * A subset of global hstate attributes for node devices
9a305230
LS
1737 */
1738static struct attribute *per_node_hstate_attrs[] = {
1739 &nr_hugepages_attr.attr,
1740 &free_hugepages_attr.attr,
1741 &surplus_hugepages_attr.attr,
1742 NULL,
1743};
1744
1745static struct attribute_group per_node_hstate_attr_group = {
1746 .attrs = per_node_hstate_attrs,
1747};
1748
1749/*
10fbcf4c 1750 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1751 * Returns node id via non-NULL nidp.
1752 */
1753static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1754{
1755 int nid;
1756
1757 for (nid = 0; nid < nr_node_ids; nid++) {
1758 struct node_hstate *nhs = &node_hstates[nid];
1759 int i;
1760 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1761 if (nhs->hstate_kobjs[i] == kobj) {
1762 if (nidp)
1763 *nidp = nid;
1764 return &hstates[i];
1765 }
1766 }
1767
1768 BUG();
1769 return NULL;
1770}
1771
1772/*
10fbcf4c 1773 * Unregister hstate attributes from a single node device.
9a305230
LS
1774 * No-op if no hstate attributes attached.
1775 */
3cd8b44f 1776static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1777{
1778 struct hstate *h;
10fbcf4c 1779 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1780
1781 if (!nhs->hugepages_kobj)
9b5e5d0f 1782 return; /* no hstate attributes */
9a305230 1783
972dc4de
AK
1784 for_each_hstate(h) {
1785 int idx = hstate_index(h);
1786 if (nhs->hstate_kobjs[idx]) {
1787 kobject_put(nhs->hstate_kobjs[idx]);
1788 nhs->hstate_kobjs[idx] = NULL;
9a305230 1789 }
972dc4de 1790 }
9a305230
LS
1791
1792 kobject_put(nhs->hugepages_kobj);
1793 nhs->hugepages_kobj = NULL;
1794}
1795
1796/*
10fbcf4c 1797 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1798 * that have them.
1799 */
1800static void hugetlb_unregister_all_nodes(void)
1801{
1802 int nid;
1803
1804 /*
10fbcf4c 1805 * disable node device registrations.
9a305230
LS
1806 */
1807 register_hugetlbfs_with_node(NULL, NULL);
1808
1809 /*
1810 * remove hstate attributes from any nodes that have them.
1811 */
1812 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1813 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1814}
1815
1816/*
10fbcf4c 1817 * Register hstate attributes for a single node device.
9a305230
LS
1818 * No-op if attributes already registered.
1819 */
3cd8b44f 1820static void hugetlb_register_node(struct node *node)
9a305230
LS
1821{
1822 struct hstate *h;
10fbcf4c 1823 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1824 int err;
1825
1826 if (nhs->hugepages_kobj)
1827 return; /* already allocated */
1828
1829 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1830 &node->dev.kobj);
9a305230
LS
1831 if (!nhs->hugepages_kobj)
1832 return;
1833
1834 for_each_hstate(h) {
1835 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1836 nhs->hstate_kobjs,
1837 &per_node_hstate_attr_group);
1838 if (err) {
ffb22af5
AM
1839 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1840 h->name, node->dev.id);
9a305230
LS
1841 hugetlb_unregister_node(node);
1842 break;
1843 }
1844 }
1845}
1846
1847/*
9b5e5d0f 1848 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1849 * devices of nodes that have memory. All on-line nodes should have
1850 * registered their associated device by this time.
9a305230
LS
1851 */
1852static void hugetlb_register_all_nodes(void)
1853{
1854 int nid;
1855
8cebfcd0 1856 for_each_node_state(nid, N_MEMORY) {
8732794b 1857 struct node *node = node_devices[nid];
10fbcf4c 1858 if (node->dev.id == nid)
9a305230
LS
1859 hugetlb_register_node(node);
1860 }
1861
1862 /*
10fbcf4c 1863 * Let the node device driver know we're here so it can
9a305230
LS
1864 * [un]register hstate attributes on node hotplug.
1865 */
1866 register_hugetlbfs_with_node(hugetlb_register_node,
1867 hugetlb_unregister_node);
1868}
1869#else /* !CONFIG_NUMA */
1870
1871static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1872{
1873 BUG();
1874 if (nidp)
1875 *nidp = -1;
1876 return NULL;
1877}
1878
1879static void hugetlb_unregister_all_nodes(void) { }
1880
1881static void hugetlb_register_all_nodes(void) { }
1882
1883#endif
1884
a3437870
NA
1885static void __exit hugetlb_exit(void)
1886{
1887 struct hstate *h;
1888
9a305230
LS
1889 hugetlb_unregister_all_nodes();
1890
a3437870 1891 for_each_hstate(h) {
972dc4de 1892 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1893 }
1894
1895 kobject_put(hugepages_kobj);
1896}
1897module_exit(hugetlb_exit);
1898
1899static int __init hugetlb_init(void)
1900{
0ef89d25
BH
1901 /* Some platform decide whether they support huge pages at boot
1902 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1903 * there is no such support
1904 */
1905 if (HPAGE_SHIFT == 0)
1906 return 0;
a3437870 1907
e11bfbfc
NP
1908 if (!size_to_hstate(default_hstate_size)) {
1909 default_hstate_size = HPAGE_SIZE;
1910 if (!size_to_hstate(default_hstate_size))
1911 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1912 }
972dc4de 1913 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1914 if (default_hstate_max_huge_pages)
1915 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1916
1917 hugetlb_init_hstates();
aa888a74 1918 gather_bootmem_prealloc();
a3437870
NA
1919 report_hugepages();
1920
1921 hugetlb_sysfs_init();
9a305230 1922 hugetlb_register_all_nodes();
7179e7bf 1923 hugetlb_cgroup_file_init();
9a305230 1924
a3437870
NA
1925 return 0;
1926}
1927module_init(hugetlb_init);
1928
1929/* Should be called on processing a hugepagesz=... option */
1930void __init hugetlb_add_hstate(unsigned order)
1931{
1932 struct hstate *h;
8faa8b07
AK
1933 unsigned long i;
1934
a3437870 1935 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1936 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1937 return;
1938 }
47d38344 1939 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1940 BUG_ON(order == 0);
47d38344 1941 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1942 h->order = order;
1943 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1944 h->nr_huge_pages = 0;
1945 h->free_huge_pages = 0;
1946 for (i = 0; i < MAX_NUMNODES; ++i)
1947 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1948 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
1949 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1950 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
1951 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1952 huge_page_size(h)/1024);
8faa8b07 1953
a3437870
NA
1954 parsed_hstate = h;
1955}
1956
e11bfbfc 1957static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1958{
1959 unsigned long *mhp;
8faa8b07 1960 static unsigned long *last_mhp;
a3437870
NA
1961
1962 /*
47d38344 1963 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1964 * so this hugepages= parameter goes to the "default hstate".
1965 */
47d38344 1966 if (!hugetlb_max_hstate)
a3437870
NA
1967 mhp = &default_hstate_max_huge_pages;
1968 else
1969 mhp = &parsed_hstate->max_huge_pages;
1970
8faa8b07 1971 if (mhp == last_mhp) {
ffb22af5
AM
1972 pr_warning("hugepages= specified twice without "
1973 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
1974 return 1;
1975 }
1976
a3437870
NA
1977 if (sscanf(s, "%lu", mhp) <= 0)
1978 *mhp = 0;
1979
8faa8b07
AK
1980 /*
1981 * Global state is always initialized later in hugetlb_init.
1982 * But we need to allocate >= MAX_ORDER hstates here early to still
1983 * use the bootmem allocator.
1984 */
47d38344 1985 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
1986 hugetlb_hstate_alloc_pages(parsed_hstate);
1987
1988 last_mhp = mhp;
1989
a3437870
NA
1990 return 1;
1991}
e11bfbfc
NP
1992__setup("hugepages=", hugetlb_nrpages_setup);
1993
1994static int __init hugetlb_default_setup(char *s)
1995{
1996 default_hstate_size = memparse(s, &s);
1997 return 1;
1998}
1999__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2000
8a213460
NA
2001static unsigned int cpuset_mems_nr(unsigned int *array)
2002{
2003 int node;
2004 unsigned int nr = 0;
2005
2006 for_each_node_mask(node, cpuset_current_mems_allowed)
2007 nr += array[node];
2008
2009 return nr;
2010}
2011
2012#ifdef CONFIG_SYSCTL
06808b08
LS
2013static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2014 struct ctl_table *table, int write,
2015 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2016{
e5ff2159
AK
2017 struct hstate *h = &default_hstate;
2018 unsigned long tmp;
08d4a246 2019 int ret;
e5ff2159 2020
c033a93c 2021 tmp = h->max_huge_pages;
e5ff2159 2022
adbe8726
EM
2023 if (write && h->order >= MAX_ORDER)
2024 return -EINVAL;
2025
e5ff2159
AK
2026 table->data = &tmp;
2027 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2028 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2029 if (ret)
2030 goto out;
e5ff2159 2031
06808b08 2032 if (write) {
bad44b5b
DR
2033 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2034 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2035 if (!(obey_mempolicy &&
2036 init_nodemask_of_mempolicy(nodes_allowed))) {
2037 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2038 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2039 }
2040 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2041
8cebfcd0 2042 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2043 NODEMASK_FREE(nodes_allowed);
2044 }
08d4a246
MH
2045out:
2046 return ret;
1da177e4 2047}
396faf03 2048
06808b08
LS
2049int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2050 void __user *buffer, size_t *length, loff_t *ppos)
2051{
2052
2053 return hugetlb_sysctl_handler_common(false, table, write,
2054 buffer, length, ppos);
2055}
2056
2057#ifdef CONFIG_NUMA
2058int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2059 void __user *buffer, size_t *length, loff_t *ppos)
2060{
2061 return hugetlb_sysctl_handler_common(true, table, write,
2062 buffer, length, ppos);
2063}
2064#endif /* CONFIG_NUMA */
2065
396faf03 2066int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2067 void __user *buffer,
396faf03
MG
2068 size_t *length, loff_t *ppos)
2069{
8d65af78 2070 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2071 if (hugepages_treat_as_movable)
2072 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2073 else
2074 htlb_alloc_mask = GFP_HIGHUSER;
2075 return 0;
2076}
2077
a3d0c6aa 2078int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2079 void __user *buffer,
a3d0c6aa
NA
2080 size_t *length, loff_t *ppos)
2081{
a5516438 2082 struct hstate *h = &default_hstate;
e5ff2159 2083 unsigned long tmp;
08d4a246 2084 int ret;
e5ff2159 2085
c033a93c 2086 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2087
adbe8726
EM
2088 if (write && h->order >= MAX_ORDER)
2089 return -EINVAL;
2090
e5ff2159
AK
2091 table->data = &tmp;
2092 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2093 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2094 if (ret)
2095 goto out;
e5ff2159
AK
2096
2097 if (write) {
2098 spin_lock(&hugetlb_lock);
2099 h->nr_overcommit_huge_pages = tmp;
2100 spin_unlock(&hugetlb_lock);
2101 }
08d4a246
MH
2102out:
2103 return ret;
a3d0c6aa
NA
2104}
2105
1da177e4
LT
2106#endif /* CONFIG_SYSCTL */
2107
e1759c21 2108void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2109{
a5516438 2110 struct hstate *h = &default_hstate;
e1759c21 2111 seq_printf(m,
4f98a2fe
RR
2112 "HugePages_Total: %5lu\n"
2113 "HugePages_Free: %5lu\n"
2114 "HugePages_Rsvd: %5lu\n"
2115 "HugePages_Surp: %5lu\n"
2116 "Hugepagesize: %8lu kB\n",
a5516438
AK
2117 h->nr_huge_pages,
2118 h->free_huge_pages,
2119 h->resv_huge_pages,
2120 h->surplus_huge_pages,
2121 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2122}
2123
2124int hugetlb_report_node_meminfo(int nid, char *buf)
2125{
a5516438 2126 struct hstate *h = &default_hstate;
1da177e4
LT
2127 return sprintf(buf,
2128 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2129 "Node %d HugePages_Free: %5u\n"
2130 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2131 nid, h->nr_huge_pages_node[nid],
2132 nid, h->free_huge_pages_node[nid],
2133 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2134}
2135
949f7ec5
DR
2136void hugetlb_show_meminfo(void)
2137{
2138 struct hstate *h;
2139 int nid;
2140
2141 for_each_node_state(nid, N_MEMORY)
2142 for_each_hstate(h)
2143 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2144 nid,
2145 h->nr_huge_pages_node[nid],
2146 h->free_huge_pages_node[nid],
2147 h->surplus_huge_pages_node[nid],
2148 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2149}
2150
1da177e4
LT
2151/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2152unsigned long hugetlb_total_pages(void)
2153{
d0028588
WL
2154 struct hstate *h;
2155 unsigned long nr_total_pages = 0;
2156
2157 for_each_hstate(h)
2158 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2159 return nr_total_pages;
1da177e4 2160}
1da177e4 2161
a5516438 2162static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2163{
2164 int ret = -ENOMEM;
2165
2166 spin_lock(&hugetlb_lock);
2167 /*
2168 * When cpuset is configured, it breaks the strict hugetlb page
2169 * reservation as the accounting is done on a global variable. Such
2170 * reservation is completely rubbish in the presence of cpuset because
2171 * the reservation is not checked against page availability for the
2172 * current cpuset. Application can still potentially OOM'ed by kernel
2173 * with lack of free htlb page in cpuset that the task is in.
2174 * Attempt to enforce strict accounting with cpuset is almost
2175 * impossible (or too ugly) because cpuset is too fluid that
2176 * task or memory node can be dynamically moved between cpusets.
2177 *
2178 * The change of semantics for shared hugetlb mapping with cpuset is
2179 * undesirable. However, in order to preserve some of the semantics,
2180 * we fall back to check against current free page availability as
2181 * a best attempt and hopefully to minimize the impact of changing
2182 * semantics that cpuset has.
2183 */
2184 if (delta > 0) {
a5516438 2185 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2186 goto out;
2187
a5516438
AK
2188 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2189 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2190 goto out;
2191 }
2192 }
2193
2194 ret = 0;
2195 if (delta < 0)
a5516438 2196 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2197
2198out:
2199 spin_unlock(&hugetlb_lock);
2200 return ret;
2201}
2202
84afd99b
AW
2203static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2204{
2205 struct resv_map *reservations = vma_resv_map(vma);
2206
2207 /*
2208 * This new VMA should share its siblings reservation map if present.
2209 * The VMA will only ever have a valid reservation map pointer where
2210 * it is being copied for another still existing VMA. As that VMA
25985edc 2211 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2212 * after this open call completes. It is therefore safe to take a
2213 * new reference here without additional locking.
2214 */
2215 if (reservations)
2216 kref_get(&reservations->refs);
2217}
2218
c50ac050
DH
2219static void resv_map_put(struct vm_area_struct *vma)
2220{
2221 struct resv_map *reservations = vma_resv_map(vma);
2222
2223 if (!reservations)
2224 return;
2225 kref_put(&reservations->refs, resv_map_release);
2226}
2227
a1e78772
MG
2228static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2229{
a5516438 2230 struct hstate *h = hstate_vma(vma);
84afd99b 2231 struct resv_map *reservations = vma_resv_map(vma);
90481622 2232 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2233 unsigned long reserve;
2234 unsigned long start;
2235 unsigned long end;
2236
2237 if (reservations) {
a5516438
AK
2238 start = vma_hugecache_offset(h, vma, vma->vm_start);
2239 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2240
2241 reserve = (end - start) -
2242 region_count(&reservations->regions, start, end);
2243
c50ac050 2244 resv_map_put(vma);
84afd99b 2245
7251ff78 2246 if (reserve) {
a5516438 2247 hugetlb_acct_memory(h, -reserve);
90481622 2248 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2249 }
84afd99b 2250 }
a1e78772
MG
2251}
2252
1da177e4
LT
2253/*
2254 * We cannot handle pagefaults against hugetlb pages at all. They cause
2255 * handle_mm_fault() to try to instantiate regular-sized pages in the
2256 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2257 * this far.
2258 */
d0217ac0 2259static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2260{
2261 BUG();
d0217ac0 2262 return 0;
1da177e4
LT
2263}
2264
f0f37e2f 2265const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2266 .fault = hugetlb_vm_op_fault,
84afd99b 2267 .open = hugetlb_vm_op_open,
a1e78772 2268 .close = hugetlb_vm_op_close,
1da177e4
LT
2269};
2270
1e8f889b
DG
2271static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2272 int writable)
63551ae0
DG
2273{
2274 pte_t entry;
2275
1e8f889b 2276 if (writable) {
106c992a
GS
2277 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2278 vma->vm_page_prot)));
63551ae0 2279 } else {
106c992a
GS
2280 entry = huge_pte_wrprotect(mk_huge_pte(page,
2281 vma->vm_page_prot));
63551ae0
DG
2282 }
2283 entry = pte_mkyoung(entry);
2284 entry = pte_mkhuge(entry);
d9ed9faa 2285 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2286
2287 return entry;
2288}
2289
1e8f889b
DG
2290static void set_huge_ptep_writable(struct vm_area_struct *vma,
2291 unsigned long address, pte_t *ptep)
2292{
2293 pte_t entry;
2294
106c992a 2295 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2296 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2297 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2298}
2299
2300
63551ae0
DG
2301int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2302 struct vm_area_struct *vma)
2303{
2304 pte_t *src_pte, *dst_pte, entry;
2305 struct page *ptepage;
1c59827d 2306 unsigned long addr;
1e8f889b 2307 int cow;
a5516438
AK
2308 struct hstate *h = hstate_vma(vma);
2309 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2310
2311 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2312
a5516438 2313 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2314 src_pte = huge_pte_offset(src, addr);
2315 if (!src_pte)
2316 continue;
a5516438 2317 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2318 if (!dst_pte)
2319 goto nomem;
c5c99429
LW
2320
2321 /* If the pagetables are shared don't copy or take references */
2322 if (dst_pte == src_pte)
2323 continue;
2324
c74df32c 2325 spin_lock(&dst->page_table_lock);
46478758 2326 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2327 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2328 if (cow)
7f2e9525
GS
2329 huge_ptep_set_wrprotect(src, addr, src_pte);
2330 entry = huge_ptep_get(src_pte);
1c59827d
HD
2331 ptepage = pte_page(entry);
2332 get_page(ptepage);
0fe6e20b 2333 page_dup_rmap(ptepage);
1c59827d
HD
2334 set_huge_pte_at(dst, addr, dst_pte, entry);
2335 }
2336 spin_unlock(&src->page_table_lock);
c74df32c 2337 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2338 }
2339 return 0;
2340
2341nomem:
2342 return -ENOMEM;
2343}
2344
290408d4
NH
2345static int is_hugetlb_entry_migration(pte_t pte)
2346{
2347 swp_entry_t swp;
2348
2349 if (huge_pte_none(pte) || pte_present(pte))
2350 return 0;
2351 swp = pte_to_swp_entry(pte);
32f84528 2352 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2353 return 1;
32f84528 2354 else
290408d4
NH
2355 return 0;
2356}
2357
fd6a03ed
NH
2358static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2359{
2360 swp_entry_t swp;
2361
2362 if (huge_pte_none(pte) || pte_present(pte))
2363 return 0;
2364 swp = pte_to_swp_entry(pte);
32f84528 2365 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2366 return 1;
32f84528 2367 else
fd6a03ed
NH
2368 return 0;
2369}
2370
24669e58
AK
2371void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2372 unsigned long start, unsigned long end,
2373 struct page *ref_page)
63551ae0 2374{
24669e58 2375 int force_flush = 0;
63551ae0
DG
2376 struct mm_struct *mm = vma->vm_mm;
2377 unsigned long address;
c7546f8f 2378 pte_t *ptep;
63551ae0
DG
2379 pte_t pte;
2380 struct page *page;
a5516438
AK
2381 struct hstate *h = hstate_vma(vma);
2382 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2383 const unsigned long mmun_start = start; /* For mmu_notifiers */
2384 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2385
63551ae0 2386 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2387 BUG_ON(start & ~huge_page_mask(h));
2388 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2389
24669e58 2390 tlb_start_vma(tlb, vma);
2ec74c3e 2391 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2392again:
508034a3 2393 spin_lock(&mm->page_table_lock);
a5516438 2394 for (address = start; address < end; address += sz) {
c7546f8f 2395 ptep = huge_pte_offset(mm, address);
4c887265 2396 if (!ptep)
c7546f8f
DG
2397 continue;
2398
39dde65c
KC
2399 if (huge_pmd_unshare(mm, &address, ptep))
2400 continue;
2401
6629326b
HD
2402 pte = huge_ptep_get(ptep);
2403 if (huge_pte_none(pte))
2404 continue;
2405
2406 /*
2407 * HWPoisoned hugepage is already unmapped and dropped reference
2408 */
8c4894c6 2409 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2410 huge_pte_clear(mm, address, ptep);
6629326b 2411 continue;
8c4894c6 2412 }
6629326b
HD
2413
2414 page = pte_page(pte);
04f2cbe3
MG
2415 /*
2416 * If a reference page is supplied, it is because a specific
2417 * page is being unmapped, not a range. Ensure the page we
2418 * are about to unmap is the actual page of interest.
2419 */
2420 if (ref_page) {
04f2cbe3
MG
2421 if (page != ref_page)
2422 continue;
2423
2424 /*
2425 * Mark the VMA as having unmapped its page so that
2426 * future faults in this VMA will fail rather than
2427 * looking like data was lost
2428 */
2429 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2430 }
2431
c7546f8f 2432 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2433 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2434 if (huge_pte_dirty(pte))
6649a386 2435 set_page_dirty(page);
9e81130b 2436
24669e58
AK
2437 page_remove_rmap(page);
2438 force_flush = !__tlb_remove_page(tlb, page);
2439 if (force_flush)
2440 break;
9e81130b
HD
2441 /* Bail out after unmapping reference page if supplied */
2442 if (ref_page)
2443 break;
63551ae0 2444 }
cd2934a3 2445 spin_unlock(&mm->page_table_lock);
24669e58
AK
2446 /*
2447 * mmu_gather ran out of room to batch pages, we break out of
2448 * the PTE lock to avoid doing the potential expensive TLB invalidate
2449 * and page-free while holding it.
2450 */
2451 if (force_flush) {
2452 force_flush = 0;
2453 tlb_flush_mmu(tlb);
2454 if (address < end && !ref_page)
2455 goto again;
fe1668ae 2456 }
2ec74c3e 2457 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2458 tlb_end_vma(tlb, vma);
1da177e4 2459}
63551ae0 2460
d833352a
MG
2461void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2462 struct vm_area_struct *vma, unsigned long start,
2463 unsigned long end, struct page *ref_page)
2464{
2465 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2466
2467 /*
2468 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2469 * test will fail on a vma being torn down, and not grab a page table
2470 * on its way out. We're lucky that the flag has such an appropriate
2471 * name, and can in fact be safely cleared here. We could clear it
2472 * before the __unmap_hugepage_range above, but all that's necessary
2473 * is to clear it before releasing the i_mmap_mutex. This works
2474 * because in the context this is called, the VMA is about to be
2475 * destroyed and the i_mmap_mutex is held.
2476 */
2477 vma->vm_flags &= ~VM_MAYSHARE;
2478}
2479
502717f4 2480void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2481 unsigned long end, struct page *ref_page)
502717f4 2482{
24669e58
AK
2483 struct mm_struct *mm;
2484 struct mmu_gather tlb;
2485
2486 mm = vma->vm_mm;
2487
2b047252 2488 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2489 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2490 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2491}
2492
04f2cbe3
MG
2493/*
2494 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2495 * mappping it owns the reserve page for. The intention is to unmap the page
2496 * from other VMAs and let the children be SIGKILLed if they are faulting the
2497 * same region.
2498 */
2a4b3ded
HH
2499static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2500 struct page *page, unsigned long address)
04f2cbe3 2501{
7526674d 2502 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2503 struct vm_area_struct *iter_vma;
2504 struct address_space *mapping;
04f2cbe3
MG
2505 pgoff_t pgoff;
2506
2507 /*
2508 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2509 * from page cache lookup which is in HPAGE_SIZE units.
2510 */
7526674d 2511 address = address & huge_page_mask(h);
36e4f20a
MH
2512 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2513 vma->vm_pgoff;
496ad9aa 2514 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2515
4eb2b1dc
MG
2516 /*
2517 * Take the mapping lock for the duration of the table walk. As
2518 * this mapping should be shared between all the VMAs,
2519 * __unmap_hugepage_range() is called as the lock is already held
2520 */
3d48ae45 2521 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2522 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2523 /* Do not unmap the current VMA */
2524 if (iter_vma == vma)
2525 continue;
2526
2527 /*
2528 * Unmap the page from other VMAs without their own reserves.
2529 * They get marked to be SIGKILLed if they fault in these
2530 * areas. This is because a future no-page fault on this VMA
2531 * could insert a zeroed page instead of the data existing
2532 * from the time of fork. This would look like data corruption
2533 */
2534 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2535 unmap_hugepage_range(iter_vma, address,
2536 address + huge_page_size(h), page);
04f2cbe3 2537 }
3d48ae45 2538 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2539
2540 return 1;
2541}
2542
0fe6e20b
NH
2543/*
2544 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2545 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2546 * cannot race with other handlers or page migration.
2547 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2548 */
1e8f889b 2549static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2550 unsigned long address, pte_t *ptep, pte_t pte,
2551 struct page *pagecache_page)
1e8f889b 2552{
a5516438 2553 struct hstate *h = hstate_vma(vma);
1e8f889b 2554 struct page *old_page, *new_page;
79ac6ba4 2555 int avoidcopy;
04f2cbe3 2556 int outside_reserve = 0;
2ec74c3e
SG
2557 unsigned long mmun_start; /* For mmu_notifiers */
2558 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2559
2560 old_page = pte_page(pte);
2561
04f2cbe3 2562retry_avoidcopy:
1e8f889b
DG
2563 /* If no-one else is actually using this page, avoid the copy
2564 * and just make the page writable */
0fe6e20b 2565 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2566 if (avoidcopy) {
56c9cfb1
NH
2567 if (PageAnon(old_page))
2568 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2569 set_huge_ptep_writable(vma, address, ptep);
83c54070 2570 return 0;
1e8f889b
DG
2571 }
2572
04f2cbe3
MG
2573 /*
2574 * If the process that created a MAP_PRIVATE mapping is about to
2575 * perform a COW due to a shared page count, attempt to satisfy
2576 * the allocation without using the existing reserves. The pagecache
2577 * page is used to determine if the reserve at this address was
2578 * consumed or not. If reserves were used, a partial faulted mapping
2579 * at the time of fork() could consume its reserves on COW instead
2580 * of the full address range.
2581 */
f83a275d 2582 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2583 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2584 old_page != pagecache_page)
2585 outside_reserve = 1;
2586
1e8f889b 2587 page_cache_get(old_page);
b76c8cfb
LW
2588
2589 /* Drop page_table_lock as buddy allocator may be called */
2590 spin_unlock(&mm->page_table_lock);
04f2cbe3 2591 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2592
2fc39cec 2593 if (IS_ERR(new_page)) {
76dcee75 2594 long err = PTR_ERR(new_page);
1e8f889b 2595 page_cache_release(old_page);
04f2cbe3
MG
2596
2597 /*
2598 * If a process owning a MAP_PRIVATE mapping fails to COW,
2599 * it is due to references held by a child and an insufficient
2600 * huge page pool. To guarantee the original mappers
2601 * reliability, unmap the page from child processes. The child
2602 * may get SIGKILLed if it later faults.
2603 */
2604 if (outside_reserve) {
2605 BUG_ON(huge_pte_none(pte));
2606 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2607 BUG_ON(huge_pte_none(pte));
b76c8cfb 2608 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2609 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2610 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2611 goto retry_avoidcopy;
2612 /*
2613 * race occurs while re-acquiring page_table_lock, and
2614 * our job is done.
2615 */
2616 return 0;
04f2cbe3
MG
2617 }
2618 WARN_ON_ONCE(1);
2619 }
2620
b76c8cfb
LW
2621 /* Caller expects lock to be held */
2622 spin_lock(&mm->page_table_lock);
76dcee75
AK
2623 if (err == -ENOMEM)
2624 return VM_FAULT_OOM;
2625 else
2626 return VM_FAULT_SIGBUS;
1e8f889b
DG
2627 }
2628
0fe6e20b
NH
2629 /*
2630 * When the original hugepage is shared one, it does not have
2631 * anon_vma prepared.
2632 */
44e2aa93 2633 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2634 page_cache_release(new_page);
2635 page_cache_release(old_page);
44e2aa93
DN
2636 /* Caller expects lock to be held */
2637 spin_lock(&mm->page_table_lock);
0fe6e20b 2638 return VM_FAULT_OOM;
44e2aa93 2639 }
0fe6e20b 2640
47ad8475
AA
2641 copy_user_huge_page(new_page, old_page, address, vma,
2642 pages_per_huge_page(h));
0ed361de 2643 __SetPageUptodate(new_page);
1e8f889b 2644
2ec74c3e
SG
2645 mmun_start = address & huge_page_mask(h);
2646 mmun_end = mmun_start + huge_page_size(h);
2647 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb
LW
2648 /*
2649 * Retake the page_table_lock to check for racing updates
2650 * before the page tables are altered
2651 */
2652 spin_lock(&mm->page_table_lock);
a5516438 2653 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2654 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2655 /* Break COW */
8fe627ec 2656 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2657 set_huge_pte_at(mm, address, ptep,
2658 make_huge_pte(vma, new_page, 1));
0fe6e20b 2659 page_remove_rmap(old_page);
cd67f0d2 2660 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2661 /* Make the old page be freed below */
2662 new_page = old_page;
2663 }
2ec74c3e
SG
2664 spin_unlock(&mm->page_table_lock);
2665 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2666 /* Caller expects lock to be held */
2667 spin_lock(&mm->page_table_lock);
1e8f889b
DG
2668 page_cache_release(new_page);
2669 page_cache_release(old_page);
83c54070 2670 return 0;
1e8f889b
DG
2671}
2672
04f2cbe3 2673/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2674static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2675 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2676{
2677 struct address_space *mapping;
e7c4b0bf 2678 pgoff_t idx;
04f2cbe3
MG
2679
2680 mapping = vma->vm_file->f_mapping;
a5516438 2681 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2682
2683 return find_lock_page(mapping, idx);
2684}
2685
3ae77f43
HD
2686/*
2687 * Return whether there is a pagecache page to back given address within VMA.
2688 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2689 */
2690static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2691 struct vm_area_struct *vma, unsigned long address)
2692{
2693 struct address_space *mapping;
2694 pgoff_t idx;
2695 struct page *page;
2696
2697 mapping = vma->vm_file->f_mapping;
2698 idx = vma_hugecache_offset(h, vma, address);
2699
2700 page = find_get_page(mapping, idx);
2701 if (page)
2702 put_page(page);
2703 return page != NULL;
2704}
2705
a1ed3dda 2706static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2707 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2708{
a5516438 2709 struct hstate *h = hstate_vma(vma);
ac9b9c66 2710 int ret = VM_FAULT_SIGBUS;
409eb8c2 2711 int anon_rmap = 0;
e7c4b0bf 2712 pgoff_t idx;
4c887265 2713 unsigned long size;
4c887265
AL
2714 struct page *page;
2715 struct address_space *mapping;
1e8f889b 2716 pte_t new_pte;
4c887265 2717
04f2cbe3
MG
2718 /*
2719 * Currently, we are forced to kill the process in the event the
2720 * original mapper has unmapped pages from the child due to a failed
25985edc 2721 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2722 */
2723 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2724 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2725 current->pid);
04f2cbe3
MG
2726 return ret;
2727 }
2728
4c887265 2729 mapping = vma->vm_file->f_mapping;
a5516438 2730 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2731
2732 /*
2733 * Use page lock to guard against racing truncation
2734 * before we get page_table_lock.
2735 */
6bda666a
CL
2736retry:
2737 page = find_lock_page(mapping, idx);
2738 if (!page) {
a5516438 2739 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2740 if (idx >= size)
2741 goto out;
04f2cbe3 2742 page = alloc_huge_page(vma, address, 0);
2fc39cec 2743 if (IS_ERR(page)) {
76dcee75
AK
2744 ret = PTR_ERR(page);
2745 if (ret == -ENOMEM)
2746 ret = VM_FAULT_OOM;
2747 else
2748 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2749 goto out;
2750 }
47ad8475 2751 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2752 __SetPageUptodate(page);
ac9b9c66 2753
f83a275d 2754 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2755 int err;
45c682a6 2756 struct inode *inode = mapping->host;
6bda666a
CL
2757
2758 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2759 if (err) {
2760 put_page(page);
6bda666a
CL
2761 if (err == -EEXIST)
2762 goto retry;
2763 goto out;
2764 }
45c682a6
KC
2765
2766 spin_lock(&inode->i_lock);
a5516438 2767 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2768 spin_unlock(&inode->i_lock);
23be7468 2769 } else {
6bda666a 2770 lock_page(page);
0fe6e20b
NH
2771 if (unlikely(anon_vma_prepare(vma))) {
2772 ret = VM_FAULT_OOM;
2773 goto backout_unlocked;
2774 }
409eb8c2 2775 anon_rmap = 1;
23be7468 2776 }
0fe6e20b 2777 } else {
998b4382
NH
2778 /*
2779 * If memory error occurs between mmap() and fault, some process
2780 * don't have hwpoisoned swap entry for errored virtual address.
2781 * So we need to block hugepage fault by PG_hwpoison bit check.
2782 */
2783 if (unlikely(PageHWPoison(page))) {
32f84528 2784 ret = VM_FAULT_HWPOISON |
972dc4de 2785 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2786 goto backout_unlocked;
2787 }
6bda666a 2788 }
1e8f889b 2789
57303d80
AW
2790 /*
2791 * If we are going to COW a private mapping later, we examine the
2792 * pending reservations for this page now. This will ensure that
2793 * any allocations necessary to record that reservation occur outside
2794 * the spinlock.
2795 */
788c7df4 2796 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2797 if (vma_needs_reservation(h, vma, address) < 0) {
2798 ret = VM_FAULT_OOM;
2799 goto backout_unlocked;
2800 }
57303d80 2801
ac9b9c66 2802 spin_lock(&mm->page_table_lock);
a5516438 2803 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2804 if (idx >= size)
2805 goto backout;
2806
83c54070 2807 ret = 0;
7f2e9525 2808 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2809 goto backout;
2810
409eb8c2
HD
2811 if (anon_rmap)
2812 hugepage_add_new_anon_rmap(page, vma, address);
2813 else
2814 page_dup_rmap(page);
1e8f889b
DG
2815 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2816 && (vma->vm_flags & VM_SHARED)));
2817 set_huge_pte_at(mm, address, ptep, new_pte);
2818
788c7df4 2819 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2820 /* Optimization, do the COW without a second fault */
04f2cbe3 2821 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2822 }
2823
ac9b9c66 2824 spin_unlock(&mm->page_table_lock);
4c887265
AL
2825 unlock_page(page);
2826out:
ac9b9c66 2827 return ret;
4c887265
AL
2828
2829backout:
2830 spin_unlock(&mm->page_table_lock);
2b26736c 2831backout_unlocked:
4c887265
AL
2832 unlock_page(page);
2833 put_page(page);
2834 goto out;
ac9b9c66
HD
2835}
2836
86e5216f 2837int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2838 unsigned long address, unsigned int flags)
86e5216f
AL
2839{
2840 pte_t *ptep;
2841 pte_t entry;
1e8f889b 2842 int ret;
0fe6e20b 2843 struct page *page = NULL;
57303d80 2844 struct page *pagecache_page = NULL;
3935baa9 2845 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2846 struct hstate *h = hstate_vma(vma);
86e5216f 2847
1e16a539
KH
2848 address &= huge_page_mask(h);
2849
fd6a03ed
NH
2850 ptep = huge_pte_offset(mm, address);
2851 if (ptep) {
2852 entry = huge_ptep_get(ptep);
290408d4 2853 if (unlikely(is_hugetlb_entry_migration(entry))) {
30dad309 2854 migration_entry_wait_huge(mm, ptep);
290408d4
NH
2855 return 0;
2856 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2857 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2858 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2859 }
2860
a5516438 2861 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2862 if (!ptep)
2863 return VM_FAULT_OOM;
2864
3935baa9
DG
2865 /*
2866 * Serialize hugepage allocation and instantiation, so that we don't
2867 * get spurious allocation failures if two CPUs race to instantiate
2868 * the same page in the page cache.
2869 */
2870 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2871 entry = huge_ptep_get(ptep);
2872 if (huge_pte_none(entry)) {
788c7df4 2873 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2874 goto out_mutex;
3935baa9 2875 }
86e5216f 2876
83c54070 2877 ret = 0;
1e8f889b 2878
57303d80
AW
2879 /*
2880 * If we are going to COW the mapping later, we examine the pending
2881 * reservations for this page now. This will ensure that any
2882 * allocations necessary to record that reservation occur outside the
2883 * spinlock. For private mappings, we also lookup the pagecache
2884 * page now as it is used to determine if a reservation has been
2885 * consumed.
2886 */
106c992a 2887 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2888 if (vma_needs_reservation(h, vma, address) < 0) {
2889 ret = VM_FAULT_OOM;
b4d1d99f 2890 goto out_mutex;
2b26736c 2891 }
57303d80 2892
f83a275d 2893 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2894 pagecache_page = hugetlbfs_pagecache_page(h,
2895 vma, address);
2896 }
2897
56c9cfb1
NH
2898 /*
2899 * hugetlb_cow() requires page locks of pte_page(entry) and
2900 * pagecache_page, so here we need take the former one
2901 * when page != pagecache_page or !pagecache_page.
2902 * Note that locking order is always pagecache_page -> page,
2903 * so no worry about deadlock.
2904 */
2905 page = pte_page(entry);
66aebce7 2906 get_page(page);
56c9cfb1 2907 if (page != pagecache_page)
0fe6e20b 2908 lock_page(page);
0fe6e20b 2909
1e8f889b
DG
2910 spin_lock(&mm->page_table_lock);
2911 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2912 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2913 goto out_page_table_lock;
2914
2915
788c7df4 2916 if (flags & FAULT_FLAG_WRITE) {
106c992a 2917 if (!huge_pte_write(entry)) {
57303d80
AW
2918 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2919 pagecache_page);
b4d1d99f
DG
2920 goto out_page_table_lock;
2921 }
106c992a 2922 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2923 }
2924 entry = pte_mkyoung(entry);
788c7df4
HD
2925 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2926 flags & FAULT_FLAG_WRITE))
4b3073e1 2927 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2928
2929out_page_table_lock:
1e8f889b 2930 spin_unlock(&mm->page_table_lock);
57303d80
AW
2931
2932 if (pagecache_page) {
2933 unlock_page(pagecache_page);
2934 put_page(pagecache_page);
2935 }
1f64d69c
DN
2936 if (page != pagecache_page)
2937 unlock_page(page);
66aebce7 2938 put_page(page);
57303d80 2939
b4d1d99f 2940out_mutex:
3935baa9 2941 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2942
2943 return ret;
86e5216f
AL
2944}
2945
28a35716
ML
2946long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2947 struct page **pages, struct vm_area_struct **vmas,
2948 unsigned long *position, unsigned long *nr_pages,
2949 long i, unsigned int flags)
63551ae0 2950{
d5d4b0aa
KC
2951 unsigned long pfn_offset;
2952 unsigned long vaddr = *position;
28a35716 2953 unsigned long remainder = *nr_pages;
a5516438 2954 struct hstate *h = hstate_vma(vma);
63551ae0 2955
1c59827d 2956 spin_lock(&mm->page_table_lock);
63551ae0 2957 while (vaddr < vma->vm_end && remainder) {
4c887265 2958 pte_t *pte;
2a15efc9 2959 int absent;
4c887265 2960 struct page *page;
63551ae0 2961
4c887265
AL
2962 /*
2963 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2964 * each hugepage. We have to make sure we get the
4c887265
AL
2965 * first, for the page indexing below to work.
2966 */
a5516438 2967 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2968 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2969
2970 /*
2971 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2972 * an error where there's an empty slot with no huge pagecache
2973 * to back it. This way, we avoid allocating a hugepage, and
2974 * the sparse dumpfile avoids allocating disk blocks, but its
2975 * huge holes still show up with zeroes where they need to be.
2a15efc9 2976 */
3ae77f43
HD
2977 if (absent && (flags & FOLL_DUMP) &&
2978 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2979 remainder = 0;
2980 break;
2981 }
63551ae0 2982
9cc3a5bd
NH
2983 /*
2984 * We need call hugetlb_fault for both hugepages under migration
2985 * (in which case hugetlb_fault waits for the migration,) and
2986 * hwpoisoned hugepages (in which case we need to prevent the
2987 * caller from accessing to them.) In order to do this, we use
2988 * here is_swap_pte instead of is_hugetlb_entry_migration and
2989 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2990 * both cases, and because we can't follow correct pages
2991 * directly from any kind of swap entries.
2992 */
2993 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
2994 ((flags & FOLL_WRITE) &&
2995 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 2996 int ret;
63551ae0 2997
4c887265 2998 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2999 ret = hugetlb_fault(mm, vma, vaddr,
3000 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 3001 spin_lock(&mm->page_table_lock);
a89182c7 3002 if (!(ret & VM_FAULT_ERROR))
4c887265 3003 continue;
63551ae0 3004
4c887265 3005 remainder = 0;
4c887265
AL
3006 break;
3007 }
3008
a5516438 3009 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3010 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3011same_page:
d6692183 3012 if (pages) {
2a15efc9 3013 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 3014 get_page(pages[i]);
d6692183 3015 }
63551ae0
DG
3016
3017 if (vmas)
3018 vmas[i] = vma;
3019
3020 vaddr += PAGE_SIZE;
d5d4b0aa 3021 ++pfn_offset;
63551ae0
DG
3022 --remainder;
3023 ++i;
d5d4b0aa 3024 if (vaddr < vma->vm_end && remainder &&
a5516438 3025 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3026 /*
3027 * We use pfn_offset to avoid touching the pageframes
3028 * of this compound page.
3029 */
3030 goto same_page;
3031 }
63551ae0 3032 }
1c59827d 3033 spin_unlock(&mm->page_table_lock);
28a35716 3034 *nr_pages = remainder;
63551ae0
DG
3035 *position = vaddr;
3036
2a15efc9 3037 return i ? i : -EFAULT;
63551ae0 3038}
8f860591 3039
7da4d641 3040unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3041 unsigned long address, unsigned long end, pgprot_t newprot)
3042{
3043 struct mm_struct *mm = vma->vm_mm;
3044 unsigned long start = address;
3045 pte_t *ptep;
3046 pte_t pte;
a5516438 3047 struct hstate *h = hstate_vma(vma);
7da4d641 3048 unsigned long pages = 0;
8f860591
ZY
3049
3050 BUG_ON(address >= end);
3051 flush_cache_range(vma, address, end);
3052
3d48ae45 3053 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 3054 spin_lock(&mm->page_table_lock);
a5516438 3055 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
3056 ptep = huge_pte_offset(mm, address);
3057 if (!ptep)
3058 continue;
7da4d641
PZ
3059 if (huge_pmd_unshare(mm, &address, ptep)) {
3060 pages++;
39dde65c 3061 continue;
7da4d641 3062 }
7f2e9525 3063 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3064 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3065 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3066 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3067 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3068 pages++;
8f860591
ZY
3069 }
3070 }
3071 spin_unlock(&mm->page_table_lock);
d833352a
MG
3072 /*
3073 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3074 * may have cleared our pud entry and done put_page on the page table:
3075 * once we release i_mmap_mutex, another task can do the final put_page
3076 * and that page table be reused and filled with junk.
3077 */
8f860591 3078 flush_tlb_range(vma, start, end);
d833352a 3079 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3080
3081 return pages << h->order;
8f860591
ZY
3082}
3083
a1e78772
MG
3084int hugetlb_reserve_pages(struct inode *inode,
3085 long from, long to,
5a6fe125 3086 struct vm_area_struct *vma,
ca16d140 3087 vm_flags_t vm_flags)
e4e574b7 3088{
17c9d12e 3089 long ret, chg;
a5516438 3090 struct hstate *h = hstate_inode(inode);
90481622 3091 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3092
17c9d12e
MG
3093 /*
3094 * Only apply hugepage reservation if asked. At fault time, an
3095 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3096 * without using reserves
17c9d12e 3097 */
ca16d140 3098 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3099 return 0;
3100
a1e78772
MG
3101 /*
3102 * Shared mappings base their reservation on the number of pages that
3103 * are already allocated on behalf of the file. Private mappings need
3104 * to reserve the full area even if read-only as mprotect() may be
3105 * called to make the mapping read-write. Assume !vma is a shm mapping
3106 */
f83a275d 3107 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3108 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3109 else {
3110 struct resv_map *resv_map = resv_map_alloc();
3111 if (!resv_map)
3112 return -ENOMEM;
3113
a1e78772 3114 chg = to - from;
84afd99b 3115
17c9d12e
MG
3116 set_vma_resv_map(vma, resv_map);
3117 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3118 }
3119
c50ac050
DH
3120 if (chg < 0) {
3121 ret = chg;
3122 goto out_err;
3123 }
8a630112 3124
90481622 3125 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3126 if (hugepage_subpool_get_pages(spool, chg)) {
3127 ret = -ENOSPC;
3128 goto out_err;
3129 }
5a6fe125
MG
3130
3131 /*
17c9d12e 3132 * Check enough hugepages are available for the reservation.
90481622 3133 * Hand the pages back to the subpool if there are not
5a6fe125 3134 */
a5516438 3135 ret = hugetlb_acct_memory(h, chg);
68842c9b 3136 if (ret < 0) {
90481622 3137 hugepage_subpool_put_pages(spool, chg);
c50ac050 3138 goto out_err;
68842c9b 3139 }
17c9d12e
MG
3140
3141 /*
3142 * Account for the reservations made. Shared mappings record regions
3143 * that have reservations as they are shared by multiple VMAs.
3144 * When the last VMA disappears, the region map says how much
3145 * the reservation was and the page cache tells how much of
3146 * the reservation was consumed. Private mappings are per-VMA and
3147 * only the consumed reservations are tracked. When the VMA
3148 * disappears, the original reservation is the VMA size and the
3149 * consumed reservations are stored in the map. Hence, nothing
3150 * else has to be done for private mappings here
3151 */
f83a275d 3152 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3153 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3154 return 0;
c50ac050 3155out_err:
4523e145
DH
3156 if (vma)
3157 resv_map_put(vma);
c50ac050 3158 return ret;
a43a8c39
KC
3159}
3160
3161void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3162{
a5516438 3163 struct hstate *h = hstate_inode(inode);
a43a8c39 3164 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3165 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3166
3167 spin_lock(&inode->i_lock);
e4c6f8be 3168 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3169 spin_unlock(&inode->i_lock);
3170
90481622 3171 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3172 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3173}
93f70f90 3174
3212b535
SC
3175#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3176static unsigned long page_table_shareable(struct vm_area_struct *svma,
3177 struct vm_area_struct *vma,
3178 unsigned long addr, pgoff_t idx)
3179{
3180 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3181 svma->vm_start;
3182 unsigned long sbase = saddr & PUD_MASK;
3183 unsigned long s_end = sbase + PUD_SIZE;
3184
3185 /* Allow segments to share if only one is marked locked */
3186 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3187 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3188
3189 /*
3190 * match the virtual addresses, permission and the alignment of the
3191 * page table page.
3192 */
3193 if (pmd_index(addr) != pmd_index(saddr) ||
3194 vm_flags != svm_flags ||
3195 sbase < svma->vm_start || svma->vm_end < s_end)
3196 return 0;
3197
3198 return saddr;
3199}
3200
3201static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3202{
3203 unsigned long base = addr & PUD_MASK;
3204 unsigned long end = base + PUD_SIZE;
3205
3206 /*
3207 * check on proper vm_flags and page table alignment
3208 */
3209 if (vma->vm_flags & VM_MAYSHARE &&
3210 vma->vm_start <= base && end <= vma->vm_end)
3211 return 1;
3212 return 0;
3213}
3214
3215/*
3216 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3217 * and returns the corresponding pte. While this is not necessary for the
3218 * !shared pmd case because we can allocate the pmd later as well, it makes the
3219 * code much cleaner. pmd allocation is essential for the shared case because
3220 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3221 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3222 * bad pmd for sharing.
3223 */
3224pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3225{
3226 struct vm_area_struct *vma = find_vma(mm, addr);
3227 struct address_space *mapping = vma->vm_file->f_mapping;
3228 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3229 vma->vm_pgoff;
3230 struct vm_area_struct *svma;
3231 unsigned long saddr;
3232 pte_t *spte = NULL;
3233 pte_t *pte;
3234
3235 if (!vma_shareable(vma, addr))
3236 return (pte_t *)pmd_alloc(mm, pud, addr);
3237
3238 mutex_lock(&mapping->i_mmap_mutex);
3239 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3240 if (svma == vma)
3241 continue;
3242
3243 saddr = page_table_shareable(svma, vma, addr, idx);
3244 if (saddr) {
3245 spte = huge_pte_offset(svma->vm_mm, saddr);
3246 if (spte) {
3247 get_page(virt_to_page(spte));
3248 break;
3249 }
3250 }
3251 }
3252
3253 if (!spte)
3254 goto out;
3255
3256 spin_lock(&mm->page_table_lock);
3257 if (pud_none(*pud))
3258 pud_populate(mm, pud,
3259 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3260 else
3261 put_page(virt_to_page(spte));
3262 spin_unlock(&mm->page_table_lock);
3263out:
3264 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3265 mutex_unlock(&mapping->i_mmap_mutex);
3266 return pte;
3267}
3268
3269/*
3270 * unmap huge page backed by shared pte.
3271 *
3272 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3273 * indicated by page_count > 1, unmap is achieved by clearing pud and
3274 * decrementing the ref count. If count == 1, the pte page is not shared.
3275 *
3276 * called with vma->vm_mm->page_table_lock held.
3277 *
3278 * returns: 1 successfully unmapped a shared pte page
3279 * 0 the underlying pte page is not shared, or it is the last user
3280 */
3281int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3282{
3283 pgd_t *pgd = pgd_offset(mm, *addr);
3284 pud_t *pud = pud_offset(pgd, *addr);
3285
3286 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3287 if (page_count(virt_to_page(ptep)) == 1)
3288 return 0;
3289
3290 pud_clear(pud);
3291 put_page(virt_to_page(ptep));
3292 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3293 return 1;
3294}
9e5fc74c
SC
3295#define want_pmd_share() (1)
3296#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3297pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3298{
3299 return NULL;
3300}
3301#define want_pmd_share() (0)
3212b535
SC
3302#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3303
9e5fc74c
SC
3304#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3305pte_t *huge_pte_alloc(struct mm_struct *mm,
3306 unsigned long addr, unsigned long sz)
3307{
3308 pgd_t *pgd;
3309 pud_t *pud;
3310 pte_t *pte = NULL;
3311
3312 pgd = pgd_offset(mm, addr);
3313 pud = pud_alloc(mm, pgd, addr);
3314 if (pud) {
3315 if (sz == PUD_SIZE) {
3316 pte = (pte_t *)pud;
3317 } else {
3318 BUG_ON(sz != PMD_SIZE);
3319 if (want_pmd_share() && pud_none(*pud))
3320 pte = huge_pmd_share(mm, addr, pud);
3321 else
3322 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3323 }
3324 }
3325 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3326
3327 return pte;
3328}
3329
3330pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3331{
3332 pgd_t *pgd;
3333 pud_t *pud;
3334 pmd_t *pmd = NULL;
3335
3336 pgd = pgd_offset(mm, addr);
3337 if (pgd_present(*pgd)) {
3338 pud = pud_offset(pgd, addr);
3339 if (pud_present(*pud)) {
3340 if (pud_huge(*pud))
3341 return (pte_t *)pud;
3342 pmd = pmd_offset(pud, addr);
3343 }
3344 }
3345 return (pte_t *) pmd;
3346}
3347
3348struct page *
3349follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3350 pmd_t *pmd, int write)
3351{
3352 struct page *page;
3353
3354 page = pte_page(*(pte_t *)pmd);
3355 if (page)
3356 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3357 return page;
3358}
3359
3360struct page *
3361follow_huge_pud(struct mm_struct *mm, unsigned long address,
3362 pud_t *pud, int write)
3363{
3364 struct page *page;
3365
3366 page = pte_page(*(pte_t *)pud);
3367 if (page)
3368 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3369 return page;
3370}
3371
3372#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3373
3374/* Can be overriden by architectures */
3375__attribute__((weak)) struct page *
3376follow_huge_pud(struct mm_struct *mm, unsigned long address,
3377 pud_t *pud, int write)
3378{
3379 BUG();
3380 return NULL;
3381}
3382
3383#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3384
d5bd9106
AK
3385#ifdef CONFIG_MEMORY_FAILURE
3386
6de2b1aa
NH
3387/* Should be called in hugetlb_lock */
3388static int is_hugepage_on_freelist(struct page *hpage)
3389{
3390 struct page *page;
3391 struct page *tmp;
3392 struct hstate *h = page_hstate(hpage);
3393 int nid = page_to_nid(hpage);
3394
3395 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3396 if (page == hpage)
3397 return 1;
3398 return 0;
3399}
3400
93f70f90
NH
3401/*
3402 * This function is called from memory failure code.
3403 * Assume the caller holds page lock of the head page.
3404 */
6de2b1aa 3405int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3406{
3407 struct hstate *h = page_hstate(hpage);
3408 int nid = page_to_nid(hpage);
6de2b1aa 3409 int ret = -EBUSY;
93f70f90
NH
3410
3411 spin_lock(&hugetlb_lock);
6de2b1aa 3412 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3413 /*
3414 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3415 * but dangling hpage->lru can trigger list-debug warnings
3416 * (this happens when we call unpoison_memory() on it),
3417 * so let it point to itself with list_del_init().
3418 */
3419 list_del_init(&hpage->lru);
8c6c2ecb 3420 set_page_refcounted(hpage);
6de2b1aa
NH
3421 h->free_huge_pages--;
3422 h->free_huge_pages_node[nid]--;
3423 ret = 0;
3424 }
93f70f90 3425 spin_unlock(&hugetlb_lock);
6de2b1aa 3426 return ret;
93f70f90 3427}
6de2b1aa 3428#endif