]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
mm/hugetlb: refactor subpage recording
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
1a1aad8a 42#include <linux/userfaultfd_k.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
1da177e4 45
c3f38a38 46int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 49
dbda8fea 50#ifdef CONFIG_CMA
cf11e85f 51static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
52#endif
53static unsigned long hugetlb_cma_size __initdata;
cf11e85f 54
641844f5
NH
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 60
53ba51d2
JT
61__initdata LIST_HEAD(huge_boot_pages);
62
e5ff2159
AK
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 66static bool __initdata parsed_valid_hugepagesz = true;
282f4214 67static bool __initdata parsed_default_hugepagesz;
e5ff2159 68
3935baa9 69/*
31caf665
NH
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
3935baa9 72 */
c3f38a38 73DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 74
8382d914
DB
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
c672c7f2 80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 81
7ffddd49
MS
82static inline bool PageHugeFreed(struct page *head)
83{
84 return page_private(head + 4) == -1UL;
85}
86
87static inline void SetPageHugeFreed(struct page *head)
88{
89 set_page_private(head + 4, -1UL);
90}
91
92static inline void ClearPageHugeFreed(struct page *head)
93{
94 set_page_private(head + 4, 0);
95}
96
7ca02d0a
MK
97/* Forward declaration */
98static int hugetlb_acct_memory(struct hstate *h, long delta);
99
1d88433b 100static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 101{
1d88433b
ML
102 if (spool->count)
103 return false;
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
108
109 return true;
110}
90481622 111
1d88433b
ML
112static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
113{
90481622
DG
114 spin_unlock(&spool->lock);
115
116 /* If no pages are used, and no other handles to the subpool
7c8de358 117 * remain, give up any reservations based on minimum size and
7ca02d0a 118 * free the subpool */
1d88433b 119 if (subpool_is_free(spool)) {
7ca02d0a
MK
120 if (spool->min_hpages != -1)
121 hugetlb_acct_memory(spool->hstate,
122 -spool->min_hpages);
90481622 123 kfree(spool);
7ca02d0a 124 }
90481622
DG
125}
126
7ca02d0a
MK
127struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
128 long min_hpages)
90481622
DG
129{
130 struct hugepage_subpool *spool;
131
c6a91820 132 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
133 if (!spool)
134 return NULL;
135
136 spin_lock_init(&spool->lock);
137 spool->count = 1;
7ca02d0a
MK
138 spool->max_hpages = max_hpages;
139 spool->hstate = h;
140 spool->min_hpages = min_hpages;
141
142 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
143 kfree(spool);
144 return NULL;
145 }
146 spool->rsv_hpages = min_hpages;
90481622
DG
147
148 return spool;
149}
150
151void hugepage_put_subpool(struct hugepage_subpool *spool)
152{
153 spin_lock(&spool->lock);
154 BUG_ON(!spool->count);
155 spool->count--;
156 unlock_or_release_subpool(spool);
157}
158
1c5ecae3
MK
159/*
160 * Subpool accounting for allocating and reserving pages.
161 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 162 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
163 * global pools must be adjusted (upward). The returned value may
164 * only be different than the passed value (delta) in the case where
7c8de358 165 * a subpool minimum size must be maintained.
1c5ecae3
MK
166 */
167static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
168 long delta)
169{
1c5ecae3 170 long ret = delta;
90481622
DG
171
172 if (!spool)
1c5ecae3 173 return ret;
90481622
DG
174
175 spin_lock(&spool->lock);
1c5ecae3
MK
176
177 if (spool->max_hpages != -1) { /* maximum size accounting */
178 if ((spool->used_hpages + delta) <= spool->max_hpages)
179 spool->used_hpages += delta;
180 else {
181 ret = -ENOMEM;
182 goto unlock_ret;
183 }
90481622 184 }
90481622 185
09a95e29
MK
186 /* minimum size accounting */
187 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
188 if (delta > spool->rsv_hpages) {
189 /*
190 * Asking for more reserves than those already taken on
191 * behalf of subpool. Return difference.
192 */
193 ret = delta - spool->rsv_hpages;
194 spool->rsv_hpages = 0;
195 } else {
196 ret = 0; /* reserves already accounted for */
197 spool->rsv_hpages -= delta;
198 }
199 }
200
201unlock_ret:
202 spin_unlock(&spool->lock);
90481622
DG
203 return ret;
204}
205
1c5ecae3
MK
206/*
207 * Subpool accounting for freeing and unreserving pages.
208 * Return the number of global page reservations that must be dropped.
209 * The return value may only be different than the passed value (delta)
210 * in the case where a subpool minimum size must be maintained.
211 */
212static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
213 long delta)
214{
1c5ecae3
MK
215 long ret = delta;
216
90481622 217 if (!spool)
1c5ecae3 218 return delta;
90481622
DG
219
220 spin_lock(&spool->lock);
1c5ecae3
MK
221
222 if (spool->max_hpages != -1) /* maximum size accounting */
223 spool->used_hpages -= delta;
224
09a95e29
MK
225 /* minimum size accounting */
226 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
227 if (spool->rsv_hpages + delta <= spool->min_hpages)
228 ret = 0;
229 else
230 ret = spool->rsv_hpages + delta - spool->min_hpages;
231
232 spool->rsv_hpages += delta;
233 if (spool->rsv_hpages > spool->min_hpages)
234 spool->rsv_hpages = spool->min_hpages;
235 }
236
237 /*
238 * If hugetlbfs_put_super couldn't free spool due to an outstanding
239 * quota reference, free it now.
240 */
90481622 241 unlock_or_release_subpool(spool);
1c5ecae3
MK
242
243 return ret;
90481622
DG
244}
245
246static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
247{
248 return HUGETLBFS_SB(inode->i_sb)->spool;
249}
250
251static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
252{
496ad9aa 253 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
254}
255
0db9d74e
MA
256/* Helper that removes a struct file_region from the resv_map cache and returns
257 * it for use.
258 */
259static struct file_region *
260get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
261{
262 struct file_region *nrg = NULL;
263
264 VM_BUG_ON(resv->region_cache_count <= 0);
265
266 resv->region_cache_count--;
267 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
268 list_del(&nrg->link);
269
270 nrg->from = from;
271 nrg->to = to;
272
273 return nrg;
274}
275
075a61d0
MA
276static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
277 struct file_region *rg)
278{
279#ifdef CONFIG_CGROUP_HUGETLB
280 nrg->reservation_counter = rg->reservation_counter;
281 nrg->css = rg->css;
282 if (rg->css)
283 css_get(rg->css);
284#endif
285}
286
287/* Helper that records hugetlb_cgroup uncharge info. */
288static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
289 struct hstate *h,
290 struct resv_map *resv,
291 struct file_region *nrg)
292{
293#ifdef CONFIG_CGROUP_HUGETLB
294 if (h_cg) {
295 nrg->reservation_counter =
296 &h_cg->rsvd_hugepage[hstate_index(h)];
297 nrg->css = &h_cg->css;
298 if (!resv->pages_per_hpage)
299 resv->pages_per_hpage = pages_per_huge_page(h);
300 /* pages_per_hpage should be the same for all entries in
301 * a resv_map.
302 */
303 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304 } else {
305 nrg->reservation_counter = NULL;
306 nrg->css = NULL;
307 }
308#endif
309}
310
a9b3f867
MA
311static bool has_same_uncharge_info(struct file_region *rg,
312 struct file_region *org)
313{
314#ifdef CONFIG_CGROUP_HUGETLB
315 return rg && org &&
316 rg->reservation_counter == org->reservation_counter &&
317 rg->css == org->css;
318
319#else
320 return true;
321#endif
322}
323
324static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
325{
326 struct file_region *nrg = NULL, *prg = NULL;
327
328 prg = list_prev_entry(rg, link);
329 if (&prg->link != &resv->regions && prg->to == rg->from &&
330 has_same_uncharge_info(prg, rg)) {
331 prg->to = rg->to;
332
333 list_del(&rg->link);
334 kfree(rg);
335
7db5e7b6 336 rg = prg;
a9b3f867
MA
337 }
338
339 nrg = list_next_entry(rg, link);
340 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
341 has_same_uncharge_info(nrg, rg)) {
342 nrg->from = rg->from;
343
344 list_del(&rg->link);
345 kfree(rg);
a9b3f867
MA
346 }
347}
348
972a3da3
WY
349/*
350 * Must be called with resv->lock held.
351 *
352 * Calling this with regions_needed != NULL will count the number of pages
353 * to be added but will not modify the linked list. And regions_needed will
354 * indicate the number of file_regions needed in the cache to carry out to add
355 * the regions for this range.
d75c6af9
MA
356 */
357static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 358 struct hugetlb_cgroup *h_cg,
972a3da3 359 struct hstate *h, long *regions_needed)
d75c6af9 360{
0db9d74e 361 long add = 0;
d75c6af9 362 struct list_head *head = &resv->regions;
0db9d74e 363 long last_accounted_offset = f;
d75c6af9
MA
364 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
365
0db9d74e
MA
366 if (regions_needed)
367 *regions_needed = 0;
d75c6af9 368
0db9d74e
MA
369 /* In this loop, we essentially handle an entry for the range
370 * [last_accounted_offset, rg->from), at every iteration, with some
371 * bounds checking.
372 */
373 list_for_each_entry_safe(rg, trg, head, link) {
374 /* Skip irrelevant regions that start before our range. */
375 if (rg->from < f) {
376 /* If this region ends after the last accounted offset,
377 * then we need to update last_accounted_offset.
378 */
379 if (rg->to > last_accounted_offset)
380 last_accounted_offset = rg->to;
381 continue;
382 }
d75c6af9 383
0db9d74e
MA
384 /* When we find a region that starts beyond our range, we've
385 * finished.
386 */
d75c6af9
MA
387 if (rg->from > t)
388 break;
389
0db9d74e
MA
390 /* Add an entry for last_accounted_offset -> rg->from, and
391 * update last_accounted_offset.
392 */
393 if (rg->from > last_accounted_offset) {
394 add += rg->from - last_accounted_offset;
972a3da3 395 if (!regions_needed) {
0db9d74e
MA
396 nrg = get_file_region_entry_from_cache(
397 resv, last_accounted_offset, rg->from);
075a61d0
MA
398 record_hugetlb_cgroup_uncharge_info(h_cg, h,
399 resv, nrg);
0db9d74e 400 list_add(&nrg->link, rg->link.prev);
a9b3f867 401 coalesce_file_region(resv, nrg);
972a3da3 402 } else
0db9d74e
MA
403 *regions_needed += 1;
404 }
405
406 last_accounted_offset = rg->to;
407 }
408
409 /* Handle the case where our range extends beyond
410 * last_accounted_offset.
411 */
412 if (last_accounted_offset < t) {
413 add += t - last_accounted_offset;
972a3da3 414 if (!regions_needed) {
0db9d74e
MA
415 nrg = get_file_region_entry_from_cache(
416 resv, last_accounted_offset, t);
075a61d0 417 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
0db9d74e 418 list_add(&nrg->link, rg->link.prev);
a9b3f867 419 coalesce_file_region(resv, nrg);
972a3da3 420 } else
0db9d74e
MA
421 *regions_needed += 1;
422 }
423
424 VM_BUG_ON(add < 0);
425 return add;
426}
427
428/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
429 */
430static int allocate_file_region_entries(struct resv_map *resv,
431 int regions_needed)
432 __must_hold(&resv->lock)
433{
434 struct list_head allocated_regions;
435 int to_allocate = 0, i = 0;
436 struct file_region *trg = NULL, *rg = NULL;
437
438 VM_BUG_ON(regions_needed < 0);
439
440 INIT_LIST_HEAD(&allocated_regions);
441
442 /*
443 * Check for sufficient descriptors in the cache to accommodate
444 * the number of in progress add operations plus regions_needed.
445 *
446 * This is a while loop because when we drop the lock, some other call
447 * to region_add or region_del may have consumed some region_entries,
448 * so we keep looping here until we finally have enough entries for
449 * (adds_in_progress + regions_needed).
450 */
451 while (resv->region_cache_count <
452 (resv->adds_in_progress + regions_needed)) {
453 to_allocate = resv->adds_in_progress + regions_needed -
454 resv->region_cache_count;
455
456 /* At this point, we should have enough entries in the cache
457 * for all the existings adds_in_progress. We should only be
458 * needing to allocate for regions_needed.
d75c6af9 459 */
0db9d74e
MA
460 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
461
462 spin_unlock(&resv->lock);
463 for (i = 0; i < to_allocate; i++) {
464 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
465 if (!trg)
466 goto out_of_memory;
467 list_add(&trg->link, &allocated_regions);
d75c6af9 468 }
d75c6af9 469
0db9d74e
MA
470 spin_lock(&resv->lock);
471
d3ec7b6e
WY
472 list_splice(&allocated_regions, &resv->region_cache);
473 resv->region_cache_count += to_allocate;
d75c6af9
MA
474 }
475
0db9d74e 476 return 0;
d75c6af9 477
0db9d74e
MA
478out_of_memory:
479 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
480 list_del(&rg->link);
481 kfree(rg);
482 }
483 return -ENOMEM;
d75c6af9
MA
484}
485
1dd308a7
MK
486/*
487 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
488 * map. Regions will be taken from the cache to fill in this range.
489 * Sufficient regions should exist in the cache due to the previous
490 * call to region_chg with the same range, but in some cases the cache will not
491 * have sufficient entries due to races with other code doing region_add or
492 * region_del. The extra needed entries will be allocated.
cf3ad20b 493 *
0db9d74e
MA
494 * regions_needed is the out value provided by a previous call to region_chg.
495 *
496 * Return the number of new huge pages added to the map. This number is greater
497 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 498 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
499 * region_add of regions of length 1 never allocate file_regions and cannot
500 * fail; region_chg will always allocate at least 1 entry and a region_add for
501 * 1 page will only require at most 1 entry.
1dd308a7 502 */
0db9d74e 503static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
504 long in_regions_needed, struct hstate *h,
505 struct hugetlb_cgroup *h_cg)
96822904 506{
0db9d74e 507 long add = 0, actual_regions_needed = 0;
96822904 508
7b24d861 509 spin_lock(&resv->lock);
0db9d74e
MA
510retry:
511
512 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
513 add_reservation_in_range(resv, f, t, NULL, NULL,
514 &actual_regions_needed);
96822904 515
5e911373 516 /*
0db9d74e
MA
517 * Check for sufficient descriptors in the cache to accommodate
518 * this add operation. Note that actual_regions_needed may be greater
519 * than in_regions_needed, as the resv_map may have been modified since
520 * the region_chg call. In this case, we need to make sure that we
521 * allocate extra entries, such that we have enough for all the
522 * existing adds_in_progress, plus the excess needed for this
523 * operation.
5e911373 524 */
0db9d74e
MA
525 if (actual_regions_needed > in_regions_needed &&
526 resv->region_cache_count <
527 resv->adds_in_progress +
528 (actual_regions_needed - in_regions_needed)) {
529 /* region_add operation of range 1 should never need to
530 * allocate file_region entries.
531 */
532 VM_BUG_ON(t - f <= 1);
5e911373 533
0db9d74e
MA
534 if (allocate_file_region_entries(
535 resv, actual_regions_needed - in_regions_needed)) {
536 return -ENOMEM;
537 }
5e911373 538
0db9d74e 539 goto retry;
5e911373
MK
540 }
541
972a3da3 542 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
543
544 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 545
7b24d861 546 spin_unlock(&resv->lock);
cf3ad20b
MK
547 VM_BUG_ON(add < 0);
548 return add;
96822904
AW
549}
550
1dd308a7
MK
551/*
552 * Examine the existing reserve map and determine how many
553 * huge pages in the specified range [f, t) are NOT currently
554 * represented. This routine is called before a subsequent
555 * call to region_add that will actually modify the reserve
556 * map to add the specified range [f, t). region_chg does
557 * not change the number of huge pages represented by the
0db9d74e
MA
558 * map. A number of new file_region structures is added to the cache as a
559 * placeholder, for the subsequent region_add call to use. At least 1
560 * file_region structure is added.
561 *
562 * out_regions_needed is the number of regions added to the
563 * resv->adds_in_progress. This value needs to be provided to a follow up call
564 * to region_add or region_abort for proper accounting.
5e911373
MK
565 *
566 * Returns the number of huge pages that need to be added to the existing
567 * reservation map for the range [f, t). This number is greater or equal to
568 * zero. -ENOMEM is returned if a new file_region structure or cache entry
569 * is needed and can not be allocated.
1dd308a7 570 */
0db9d74e
MA
571static long region_chg(struct resv_map *resv, long f, long t,
572 long *out_regions_needed)
96822904 573{
96822904
AW
574 long chg = 0;
575
7b24d861 576 spin_lock(&resv->lock);
5e911373 577
972a3da3 578 /* Count how many hugepages in this range are NOT represented. */
075a61d0 579 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 580 out_regions_needed);
5e911373 581
0db9d74e
MA
582 if (*out_regions_needed == 0)
583 *out_regions_needed = 1;
5e911373 584
0db9d74e
MA
585 if (allocate_file_region_entries(resv, *out_regions_needed))
586 return -ENOMEM;
5e911373 587
0db9d74e 588 resv->adds_in_progress += *out_regions_needed;
7b24d861 589
7b24d861 590 spin_unlock(&resv->lock);
96822904
AW
591 return chg;
592}
593
5e911373
MK
594/*
595 * Abort the in progress add operation. The adds_in_progress field
596 * of the resv_map keeps track of the operations in progress between
597 * calls to region_chg and region_add. Operations are sometimes
598 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
599 * is called to decrement the adds_in_progress counter. regions_needed
600 * is the value returned by the region_chg call, it is used to decrement
601 * the adds_in_progress counter.
5e911373
MK
602 *
603 * NOTE: The range arguments [f, t) are not needed or used in this
604 * routine. They are kept to make reading the calling code easier as
605 * arguments will match the associated region_chg call.
606 */
0db9d74e
MA
607static void region_abort(struct resv_map *resv, long f, long t,
608 long regions_needed)
5e911373
MK
609{
610 spin_lock(&resv->lock);
611 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 612 resv->adds_in_progress -= regions_needed;
5e911373
MK
613 spin_unlock(&resv->lock);
614}
615
1dd308a7 616/*
feba16e2
MK
617 * Delete the specified range [f, t) from the reserve map. If the
618 * t parameter is LONG_MAX, this indicates that ALL regions after f
619 * should be deleted. Locate the regions which intersect [f, t)
620 * and either trim, delete or split the existing regions.
621 *
622 * Returns the number of huge pages deleted from the reserve map.
623 * In the normal case, the return value is zero or more. In the
624 * case where a region must be split, a new region descriptor must
625 * be allocated. If the allocation fails, -ENOMEM will be returned.
626 * NOTE: If the parameter t == LONG_MAX, then we will never split
627 * a region and possibly return -ENOMEM. Callers specifying
628 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 629 */
feba16e2 630static long region_del(struct resv_map *resv, long f, long t)
96822904 631{
1406ec9b 632 struct list_head *head = &resv->regions;
96822904 633 struct file_region *rg, *trg;
feba16e2
MK
634 struct file_region *nrg = NULL;
635 long del = 0;
96822904 636
feba16e2 637retry:
7b24d861 638 spin_lock(&resv->lock);
feba16e2 639 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
640 /*
641 * Skip regions before the range to be deleted. file_region
642 * ranges are normally of the form [from, to). However, there
643 * may be a "placeholder" entry in the map which is of the form
644 * (from, to) with from == to. Check for placeholder entries
645 * at the beginning of the range to be deleted.
646 */
647 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 648 continue;
dbe409e4 649
feba16e2 650 if (rg->from >= t)
96822904 651 break;
96822904 652
feba16e2
MK
653 if (f > rg->from && t < rg->to) { /* Must split region */
654 /*
655 * Check for an entry in the cache before dropping
656 * lock and attempting allocation.
657 */
658 if (!nrg &&
659 resv->region_cache_count > resv->adds_in_progress) {
660 nrg = list_first_entry(&resv->region_cache,
661 struct file_region,
662 link);
663 list_del(&nrg->link);
664 resv->region_cache_count--;
665 }
96822904 666
feba16e2
MK
667 if (!nrg) {
668 spin_unlock(&resv->lock);
669 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
670 if (!nrg)
671 return -ENOMEM;
672 goto retry;
673 }
674
675 del += t - f;
79aa925b
MK
676 hugetlb_cgroup_uncharge_file_region(
677 resv, rg, t - f);
feba16e2
MK
678
679 /* New entry for end of split region */
680 nrg->from = t;
681 nrg->to = rg->to;
075a61d0
MA
682
683 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
684
feba16e2
MK
685 INIT_LIST_HEAD(&nrg->link);
686
687 /* Original entry is trimmed */
688 rg->to = f;
689
690 list_add(&nrg->link, &rg->link);
691 nrg = NULL;
96822904 692 break;
feba16e2
MK
693 }
694
695 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
696 del += rg->to - rg->from;
075a61d0
MA
697 hugetlb_cgroup_uncharge_file_region(resv, rg,
698 rg->to - rg->from);
feba16e2
MK
699 list_del(&rg->link);
700 kfree(rg);
701 continue;
702 }
703
704 if (f <= rg->from) { /* Trim beginning of region */
075a61d0
MA
705 hugetlb_cgroup_uncharge_file_region(resv, rg,
706 t - rg->from);
075a61d0 707
79aa925b
MK
708 del += t - rg->from;
709 rg->from = t;
710 } else { /* Trim end of region */
075a61d0
MA
711 hugetlb_cgroup_uncharge_file_region(resv, rg,
712 rg->to - f);
79aa925b
MK
713
714 del += rg->to - f;
715 rg->to = f;
feba16e2 716 }
96822904 717 }
7b24d861 718
7b24d861 719 spin_unlock(&resv->lock);
feba16e2
MK
720 kfree(nrg);
721 return del;
96822904
AW
722}
723
b5cec28d
MK
724/*
725 * A rare out of memory error was encountered which prevented removal of
726 * the reserve map region for a page. The huge page itself was free'ed
727 * and removed from the page cache. This routine will adjust the subpool
728 * usage count, and the global reserve count if needed. By incrementing
729 * these counts, the reserve map entry which could not be deleted will
730 * appear as a "reserved" entry instead of simply dangling with incorrect
731 * counts.
732 */
72e2936c 733void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
734{
735 struct hugepage_subpool *spool = subpool_inode(inode);
736 long rsv_adjust;
737
738 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 739 if (rsv_adjust) {
b5cec28d
MK
740 struct hstate *h = hstate_inode(inode);
741
742 hugetlb_acct_memory(h, 1);
743 }
744}
745
1dd308a7
MK
746/*
747 * Count and return the number of huge pages in the reserve map
748 * that intersect with the range [f, t).
749 */
1406ec9b 750static long region_count(struct resv_map *resv, long f, long t)
84afd99b 751{
1406ec9b 752 struct list_head *head = &resv->regions;
84afd99b
AW
753 struct file_region *rg;
754 long chg = 0;
755
7b24d861 756 spin_lock(&resv->lock);
84afd99b
AW
757 /* Locate each segment we overlap with, and count that overlap. */
758 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
759 long seg_from;
760 long seg_to;
84afd99b
AW
761
762 if (rg->to <= f)
763 continue;
764 if (rg->from >= t)
765 break;
766
767 seg_from = max(rg->from, f);
768 seg_to = min(rg->to, t);
769
770 chg += seg_to - seg_from;
771 }
7b24d861 772 spin_unlock(&resv->lock);
84afd99b
AW
773
774 return chg;
775}
776
e7c4b0bf
AW
777/*
778 * Convert the address within this vma to the page offset within
779 * the mapping, in pagecache page units; huge pages here.
780 */
a5516438
AK
781static pgoff_t vma_hugecache_offset(struct hstate *h,
782 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 783{
a5516438
AK
784 return ((address - vma->vm_start) >> huge_page_shift(h)) +
785 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
786}
787
0fe6e20b
NH
788pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
789 unsigned long address)
790{
791 return vma_hugecache_offset(hstate_vma(vma), vma, address);
792}
dee41079 793EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 794
08fba699
MG
795/*
796 * Return the size of the pages allocated when backing a VMA. In the majority
797 * cases this will be same size as used by the page table entries.
798 */
799unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
800{
05ea8860
DW
801 if (vma->vm_ops && vma->vm_ops->pagesize)
802 return vma->vm_ops->pagesize(vma);
803 return PAGE_SIZE;
08fba699 804}
f340ca0f 805EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 806
3340289d
MG
807/*
808 * Return the page size being used by the MMU to back a VMA. In the majority
809 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
810 * architectures where it differs, an architecture-specific 'strong'
811 * version of this symbol is required.
3340289d 812 */
09135cc5 813__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
814{
815 return vma_kernel_pagesize(vma);
816}
3340289d 817
84afd99b
AW
818/*
819 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
820 * bits of the reservation map pointer, which are always clear due to
821 * alignment.
822 */
823#define HPAGE_RESV_OWNER (1UL << 0)
824#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 825#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 826
a1e78772
MG
827/*
828 * These helpers are used to track how many pages are reserved for
829 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
830 * is guaranteed to have their future faults succeed.
831 *
832 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
833 * the reserve counters are updated with the hugetlb_lock held. It is safe
834 * to reset the VMA at fork() time as it is not in use yet and there is no
835 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
836 *
837 * The private mapping reservation is represented in a subtly different
838 * manner to a shared mapping. A shared mapping has a region map associated
839 * with the underlying file, this region map represents the backing file
840 * pages which have ever had a reservation assigned which this persists even
841 * after the page is instantiated. A private mapping has a region map
842 * associated with the original mmap which is attached to all VMAs which
843 * reference it, this region map represents those offsets which have consumed
844 * reservation ie. where pages have been instantiated.
a1e78772 845 */
e7c4b0bf
AW
846static unsigned long get_vma_private_data(struct vm_area_struct *vma)
847{
848 return (unsigned long)vma->vm_private_data;
849}
850
851static void set_vma_private_data(struct vm_area_struct *vma,
852 unsigned long value)
853{
854 vma->vm_private_data = (void *)value;
855}
856
e9fe92ae
MA
857static void
858resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
859 struct hugetlb_cgroup *h_cg,
860 struct hstate *h)
861{
862#ifdef CONFIG_CGROUP_HUGETLB
863 if (!h_cg || !h) {
864 resv_map->reservation_counter = NULL;
865 resv_map->pages_per_hpage = 0;
866 resv_map->css = NULL;
867 } else {
868 resv_map->reservation_counter =
869 &h_cg->rsvd_hugepage[hstate_index(h)];
870 resv_map->pages_per_hpage = pages_per_huge_page(h);
871 resv_map->css = &h_cg->css;
872 }
873#endif
874}
875
9119a41e 876struct resv_map *resv_map_alloc(void)
84afd99b
AW
877{
878 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
879 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
880
881 if (!resv_map || !rg) {
882 kfree(resv_map);
883 kfree(rg);
84afd99b 884 return NULL;
5e911373 885 }
84afd99b
AW
886
887 kref_init(&resv_map->refs);
7b24d861 888 spin_lock_init(&resv_map->lock);
84afd99b
AW
889 INIT_LIST_HEAD(&resv_map->regions);
890
5e911373 891 resv_map->adds_in_progress = 0;
e9fe92ae
MA
892 /*
893 * Initialize these to 0. On shared mappings, 0's here indicate these
894 * fields don't do cgroup accounting. On private mappings, these will be
895 * re-initialized to the proper values, to indicate that hugetlb cgroup
896 * reservations are to be un-charged from here.
897 */
898 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
899
900 INIT_LIST_HEAD(&resv_map->region_cache);
901 list_add(&rg->link, &resv_map->region_cache);
902 resv_map->region_cache_count = 1;
903
84afd99b
AW
904 return resv_map;
905}
906
9119a41e 907void resv_map_release(struct kref *ref)
84afd99b
AW
908{
909 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
910 struct list_head *head = &resv_map->region_cache;
911 struct file_region *rg, *trg;
84afd99b
AW
912
913 /* Clear out any active regions before we release the map. */
feba16e2 914 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
915
916 /* ... and any entries left in the cache */
917 list_for_each_entry_safe(rg, trg, head, link) {
918 list_del(&rg->link);
919 kfree(rg);
920 }
921
922 VM_BUG_ON(resv_map->adds_in_progress);
923
84afd99b
AW
924 kfree(resv_map);
925}
926
4e35f483
JK
927static inline struct resv_map *inode_resv_map(struct inode *inode)
928{
f27a5136
MK
929 /*
930 * At inode evict time, i_mapping may not point to the original
931 * address space within the inode. This original address space
932 * contains the pointer to the resv_map. So, always use the
933 * address space embedded within the inode.
934 * The VERY common case is inode->mapping == &inode->i_data but,
935 * this may not be true for device special inodes.
936 */
937 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
938}
939
84afd99b 940static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 941{
81d1b09c 942 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
943 if (vma->vm_flags & VM_MAYSHARE) {
944 struct address_space *mapping = vma->vm_file->f_mapping;
945 struct inode *inode = mapping->host;
946
947 return inode_resv_map(inode);
948
949 } else {
84afd99b
AW
950 return (struct resv_map *)(get_vma_private_data(vma) &
951 ~HPAGE_RESV_MASK);
4e35f483 952 }
a1e78772
MG
953}
954
84afd99b 955static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 956{
81d1b09c
SL
957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 959
84afd99b
AW
960 set_vma_private_data(vma, (get_vma_private_data(vma) &
961 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
962}
963
964static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
965{
81d1b09c
SL
966 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
967 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
968
969 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
970}
971
972static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
973{
81d1b09c 974 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
975
976 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
977}
978
04f2cbe3 979/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
980void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
981{
81d1b09c 982 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 983 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
984 vma->vm_private_data = (void *)0;
985}
986
987/* Returns true if the VMA has associated reserve pages */
559ec2f8 988static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 989{
af0ed73e
JK
990 if (vma->vm_flags & VM_NORESERVE) {
991 /*
992 * This address is already reserved by other process(chg == 0),
993 * so, we should decrement reserved count. Without decrementing,
994 * reserve count remains after releasing inode, because this
995 * allocated page will go into page cache and is regarded as
996 * coming from reserved pool in releasing step. Currently, we
997 * don't have any other solution to deal with this situation
998 * properly, so add work-around here.
999 */
1000 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1001 return true;
af0ed73e 1002 else
559ec2f8 1003 return false;
af0ed73e 1004 }
a63884e9
JK
1005
1006 /* Shared mappings always use reserves */
1fb1b0e9
MK
1007 if (vma->vm_flags & VM_MAYSHARE) {
1008 /*
1009 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1010 * be a region map for all pages. The only situation where
1011 * there is no region map is if a hole was punched via
7c8de358 1012 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1013 * use. This situation is indicated if chg != 0.
1014 */
1015 if (chg)
1016 return false;
1017 else
1018 return true;
1019 }
a63884e9
JK
1020
1021 /*
1022 * Only the process that called mmap() has reserves for
1023 * private mappings.
1024 */
67961f9d
MK
1025 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1026 /*
1027 * Like the shared case above, a hole punch or truncate
1028 * could have been performed on the private mapping.
1029 * Examine the value of chg to determine if reserves
1030 * actually exist or were previously consumed.
1031 * Very Subtle - The value of chg comes from a previous
1032 * call to vma_needs_reserves(). The reserve map for
1033 * private mappings has different (opposite) semantics
1034 * than that of shared mappings. vma_needs_reserves()
1035 * has already taken this difference in semantics into
1036 * account. Therefore, the meaning of chg is the same
1037 * as in the shared case above. Code could easily be
1038 * combined, but keeping it separate draws attention to
1039 * subtle differences.
1040 */
1041 if (chg)
1042 return false;
1043 else
1044 return true;
1045 }
a63884e9 1046
559ec2f8 1047 return false;
a1e78772
MG
1048}
1049
a5516438 1050static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1051{
1052 int nid = page_to_nid(page);
0edaecfa 1053 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1054 h->free_huge_pages++;
1055 h->free_huge_pages_node[nid]++;
7ffddd49 1056 SetPageHugeFreed(page);
1da177e4
LT
1057}
1058
94310cbc 1059static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1060{
1061 struct page *page;
bbe88753
JK
1062 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1063
1064 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1065 if (nocma && is_migrate_cma_page(page))
1066 continue;
bf50bab2 1067
6664bfc8
WY
1068 if (PageHWPoison(page))
1069 continue;
1070
1071 list_move(&page->lru, &h->hugepage_activelist);
1072 set_page_refcounted(page);
7ffddd49 1073 ClearPageHugeFreed(page);
6664bfc8
WY
1074 h->free_huge_pages--;
1075 h->free_huge_pages_node[nid]--;
1076 return page;
bbe88753
JK
1077 }
1078
6664bfc8 1079 return NULL;
bf50bab2
NH
1080}
1081
3e59fcb0
MH
1082static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1083 nodemask_t *nmask)
94310cbc 1084{
3e59fcb0
MH
1085 unsigned int cpuset_mems_cookie;
1086 struct zonelist *zonelist;
1087 struct zone *zone;
1088 struct zoneref *z;
98fa15f3 1089 int node = NUMA_NO_NODE;
94310cbc 1090
3e59fcb0
MH
1091 zonelist = node_zonelist(nid, gfp_mask);
1092
1093retry_cpuset:
1094 cpuset_mems_cookie = read_mems_allowed_begin();
1095 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1096 struct page *page;
1097
1098 if (!cpuset_zone_allowed(zone, gfp_mask))
1099 continue;
1100 /*
1101 * no need to ask again on the same node. Pool is node rather than
1102 * zone aware
1103 */
1104 if (zone_to_nid(zone) == node)
1105 continue;
1106 node = zone_to_nid(zone);
94310cbc 1107
94310cbc
AK
1108 page = dequeue_huge_page_node_exact(h, node);
1109 if (page)
1110 return page;
1111 }
3e59fcb0
MH
1112 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1113 goto retry_cpuset;
1114
94310cbc
AK
1115 return NULL;
1116}
1117
a5516438
AK
1118static struct page *dequeue_huge_page_vma(struct hstate *h,
1119 struct vm_area_struct *vma,
af0ed73e
JK
1120 unsigned long address, int avoid_reserve,
1121 long chg)
1da177e4 1122{
3e59fcb0 1123 struct page *page;
480eccf9 1124 struct mempolicy *mpol;
04ec6264 1125 gfp_t gfp_mask;
3e59fcb0 1126 nodemask_t *nodemask;
04ec6264 1127 int nid;
1da177e4 1128
a1e78772
MG
1129 /*
1130 * A child process with MAP_PRIVATE mappings created by their parent
1131 * have no page reserves. This check ensures that reservations are
1132 * not "stolen". The child may still get SIGKILLed
1133 */
af0ed73e 1134 if (!vma_has_reserves(vma, chg) &&
a5516438 1135 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1136 goto err;
a1e78772 1137
04f2cbe3 1138 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1139 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1140 goto err;
04f2cbe3 1141
04ec6264
VB
1142 gfp_mask = htlb_alloc_mask(h);
1143 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1144 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1145 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1146 SetPagePrivate(page);
1147 h->resv_huge_pages--;
1da177e4 1148 }
cc9a6c87 1149
52cd3b07 1150 mpol_cond_put(mpol);
1da177e4 1151 return page;
cc9a6c87
MG
1152
1153err:
cc9a6c87 1154 return NULL;
1da177e4
LT
1155}
1156
1cac6f2c
LC
1157/*
1158 * common helper functions for hstate_next_node_to_{alloc|free}.
1159 * We may have allocated or freed a huge page based on a different
1160 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1161 * be outside of *nodes_allowed. Ensure that we use an allowed
1162 * node for alloc or free.
1163 */
1164static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1165{
0edaf86c 1166 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1167 VM_BUG_ON(nid >= MAX_NUMNODES);
1168
1169 return nid;
1170}
1171
1172static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1173{
1174 if (!node_isset(nid, *nodes_allowed))
1175 nid = next_node_allowed(nid, nodes_allowed);
1176 return nid;
1177}
1178
1179/*
1180 * returns the previously saved node ["this node"] from which to
1181 * allocate a persistent huge page for the pool and advance the
1182 * next node from which to allocate, handling wrap at end of node
1183 * mask.
1184 */
1185static int hstate_next_node_to_alloc(struct hstate *h,
1186 nodemask_t *nodes_allowed)
1187{
1188 int nid;
1189
1190 VM_BUG_ON(!nodes_allowed);
1191
1192 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1193 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1194
1195 return nid;
1196}
1197
1198/*
1199 * helper for free_pool_huge_page() - return the previously saved
1200 * node ["this node"] from which to free a huge page. Advance the
1201 * next node id whether or not we find a free huge page to free so
1202 * that the next attempt to free addresses the next node.
1203 */
1204static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1205{
1206 int nid;
1207
1208 VM_BUG_ON(!nodes_allowed);
1209
1210 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1211 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1212
1213 return nid;
1214}
1215
1216#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1217 for (nr_nodes = nodes_weight(*mask); \
1218 nr_nodes > 0 && \
1219 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1220 nr_nodes--)
1221
1222#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1223 for (nr_nodes = nodes_weight(*mask); \
1224 nr_nodes > 0 && \
1225 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1226 nr_nodes--)
1227
e1073d1e 1228#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1229static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1230 unsigned int order)
944d9fec
LC
1231{
1232 int i;
1233 int nr_pages = 1 << order;
1234 struct page *p = page + 1;
1235
c8cc708a 1236 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1237 if (hpage_pincount_available(page))
1238 atomic_set(compound_pincount_ptr(page), 0);
1239
944d9fec 1240 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1241 clear_compound_head(p);
944d9fec 1242 set_page_refcounted(p);
944d9fec
LC
1243 }
1244
1245 set_compound_order(page, 0);
ba9c1201 1246 page[1].compound_nr = 0;
944d9fec
LC
1247 __ClearPageHead(page);
1248}
1249
d00181b9 1250static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1251{
cf11e85f
RG
1252 /*
1253 * If the page isn't allocated using the cma allocator,
1254 * cma_release() returns false.
1255 */
dbda8fea
BS
1256#ifdef CONFIG_CMA
1257 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1258 return;
dbda8fea 1259#endif
cf11e85f 1260
944d9fec
LC
1261 free_contig_range(page_to_pfn(page), 1 << order);
1262}
1263
4eb0716e 1264#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1265static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1266 int nid, nodemask_t *nodemask)
944d9fec 1267{
5e27a2df 1268 unsigned long nr_pages = 1UL << huge_page_order(h);
953f064a
LX
1269 if (nid == NUMA_NO_NODE)
1270 nid = numa_mem_id();
944d9fec 1271
dbda8fea
BS
1272#ifdef CONFIG_CMA
1273 {
cf11e85f
RG
1274 struct page *page;
1275 int node;
1276
953f064a
LX
1277 if (hugetlb_cma[nid]) {
1278 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1279 huge_page_order(h), true);
cf11e85f
RG
1280 if (page)
1281 return page;
1282 }
953f064a
LX
1283
1284 if (!(gfp_mask & __GFP_THISNODE)) {
1285 for_each_node_mask(node, *nodemask) {
1286 if (node == nid || !hugetlb_cma[node])
1287 continue;
1288
1289 page = cma_alloc(hugetlb_cma[node], nr_pages,
1290 huge_page_order(h), true);
1291 if (page)
1292 return page;
1293 }
1294 }
cf11e85f 1295 }
dbda8fea 1296#endif
cf11e85f 1297
5e27a2df 1298 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1299}
1300
1301static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1302static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1303#else /* !CONFIG_CONTIG_ALLOC */
1304static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1305 int nid, nodemask_t *nodemask)
1306{
1307 return NULL;
1308}
1309#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1310
e1073d1e 1311#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1312static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1313 int nid, nodemask_t *nodemask)
1314{
1315 return NULL;
1316}
d00181b9 1317static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1318static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1319 unsigned int order) { }
944d9fec
LC
1320#endif
1321
a5516438 1322static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1323{
1324 int i;
a5516438 1325
4eb0716e 1326 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1327 return;
18229df5 1328
a5516438
AK
1329 h->nr_huge_pages--;
1330 h->nr_huge_pages_node[page_to_nid(page)]--;
1331 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1332 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1333 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1334 1 << PG_active | 1 << PG_private |
1335 1 << PG_writeback);
6af2acb6 1336 }
309381fe 1337 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1adc4d41 1338 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
f1e61557 1339 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1340 set_page_refcounted(page);
944d9fec 1341 if (hstate_is_gigantic(h)) {
cf11e85f
RG
1342 /*
1343 * Temporarily drop the hugetlb_lock, because
1344 * we might block in free_gigantic_page().
1345 */
1346 spin_unlock(&hugetlb_lock);
944d9fec
LC
1347 destroy_compound_gigantic_page(page, huge_page_order(h));
1348 free_gigantic_page(page, huge_page_order(h));
cf11e85f 1349 spin_lock(&hugetlb_lock);
944d9fec 1350 } else {
944d9fec
LC
1351 __free_pages(page, huge_page_order(h));
1352 }
6af2acb6
AL
1353}
1354
e5ff2159
AK
1355struct hstate *size_to_hstate(unsigned long size)
1356{
1357 struct hstate *h;
1358
1359 for_each_hstate(h) {
1360 if (huge_page_size(h) == size)
1361 return h;
1362 }
1363 return NULL;
1364}
1365
bcc54222
NH
1366/*
1367 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1368 * to hstate->hugepage_activelist.)
1369 *
1370 * This function can be called for tail pages, but never returns true for them.
1371 */
1372bool page_huge_active(struct page *page)
1373{
ecbf4724 1374 return PageHeadHuge(page) && PagePrivate(&page[1]);
bcc54222
NH
1375}
1376
1377/* never called for tail page */
585fc0d2 1378void set_page_huge_active(struct page *page)
bcc54222
NH
1379{
1380 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1381 SetPagePrivate(&page[1]);
1382}
1383
1384static void clear_page_huge_active(struct page *page)
1385{
1386 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1387 ClearPagePrivate(&page[1]);
1388}
1389
ab5ac90a
MH
1390/*
1391 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1392 * code
1393 */
1394static inline bool PageHugeTemporary(struct page *page)
1395{
1396 if (!PageHuge(page))
1397 return false;
1398
1399 return (unsigned long)page[2].mapping == -1U;
1400}
1401
1402static inline void SetPageHugeTemporary(struct page *page)
1403{
1404 page[2].mapping = (void *)-1U;
1405}
1406
1407static inline void ClearPageHugeTemporary(struct page *page)
1408{
1409 page[2].mapping = NULL;
1410}
1411
c77c0a8a 1412static void __free_huge_page(struct page *page)
27a85ef1 1413{
a5516438
AK
1414 /*
1415 * Can't pass hstate in here because it is called from the
1416 * compound page destructor.
1417 */
e5ff2159 1418 struct hstate *h = page_hstate(page);
7893d1d5 1419 int nid = page_to_nid(page);
90481622
DG
1420 struct hugepage_subpool *spool =
1421 (struct hugepage_subpool *)page_private(page);
07443a85 1422 bool restore_reserve;
27a85ef1 1423
b4330afb
MK
1424 VM_BUG_ON_PAGE(page_count(page), page);
1425 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1426
1427 set_page_private(page, 0);
1428 page->mapping = NULL;
07443a85 1429 restore_reserve = PagePrivate(page);
16c794b4 1430 ClearPagePrivate(page);
27a85ef1 1431
1c5ecae3 1432 /*
0919e1b6
MK
1433 * If PagePrivate() was set on page, page allocation consumed a
1434 * reservation. If the page was associated with a subpool, there
1435 * would have been a page reserved in the subpool before allocation
1436 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1437 * reservtion, do not call hugepage_subpool_put_pages() as this will
1438 * remove the reserved page from the subpool.
1c5ecae3 1439 */
0919e1b6
MK
1440 if (!restore_reserve) {
1441 /*
1442 * A return code of zero implies that the subpool will be
1443 * under its minimum size if the reservation is not restored
1444 * after page is free. Therefore, force restore_reserve
1445 * operation.
1446 */
1447 if (hugepage_subpool_put_pages(spool, 1) == 0)
1448 restore_reserve = true;
1449 }
1c5ecae3 1450
27a85ef1 1451 spin_lock(&hugetlb_lock);
bcc54222 1452 clear_page_huge_active(page);
6d76dcf4
AK
1453 hugetlb_cgroup_uncharge_page(hstate_index(h),
1454 pages_per_huge_page(h), page);
08cf9faf
MA
1455 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1456 pages_per_huge_page(h), page);
07443a85
JK
1457 if (restore_reserve)
1458 h->resv_huge_pages++;
1459
ab5ac90a
MH
1460 if (PageHugeTemporary(page)) {
1461 list_del(&page->lru);
1462 ClearPageHugeTemporary(page);
1463 update_and_free_page(h, page);
1464 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1465 /* remove the page from active list */
1466 list_del(&page->lru);
a5516438
AK
1467 update_and_free_page(h, page);
1468 h->surplus_huge_pages--;
1469 h->surplus_huge_pages_node[nid]--;
7893d1d5 1470 } else {
5d3a551c 1471 arch_clear_hugepage_flags(page);
a5516438 1472 enqueue_huge_page(h, page);
7893d1d5 1473 }
27a85ef1
DG
1474 spin_unlock(&hugetlb_lock);
1475}
1476
c77c0a8a
WL
1477/*
1478 * As free_huge_page() can be called from a non-task context, we have
1479 * to defer the actual freeing in a workqueue to prevent potential
1480 * hugetlb_lock deadlock.
1481 *
1482 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1483 * be freed and frees them one-by-one. As the page->mapping pointer is
1484 * going to be cleared in __free_huge_page() anyway, it is reused as the
1485 * llist_node structure of a lockless linked list of huge pages to be freed.
1486 */
1487static LLIST_HEAD(hpage_freelist);
1488
1489static void free_hpage_workfn(struct work_struct *work)
1490{
1491 struct llist_node *node;
1492 struct page *page;
1493
1494 node = llist_del_all(&hpage_freelist);
1495
1496 while (node) {
1497 page = container_of((struct address_space **)node,
1498 struct page, mapping);
1499 node = node->next;
1500 __free_huge_page(page);
1501 }
1502}
1503static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1504
1505void free_huge_page(struct page *page)
1506{
1507 /*
1508 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1509 */
1510 if (!in_task()) {
1511 /*
1512 * Only call schedule_work() if hpage_freelist is previously
1513 * empty. Otherwise, schedule_work() had been called but the
1514 * workfn hasn't retrieved the list yet.
1515 */
1516 if (llist_add((struct llist_node *)&page->mapping,
1517 &hpage_freelist))
1518 schedule_work(&free_hpage_work);
1519 return;
1520 }
1521
1522 __free_huge_page(page);
1523}
1524
a5516438 1525static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1526{
0edaecfa 1527 INIT_LIST_HEAD(&page->lru);
f1e61557 1528 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1529 set_hugetlb_cgroup(page, NULL);
1adc4d41 1530 set_hugetlb_cgroup_rsvd(page, NULL);
2f37511c 1531 spin_lock(&hugetlb_lock);
a5516438
AK
1532 h->nr_huge_pages++;
1533 h->nr_huge_pages_node[nid]++;
7ffddd49 1534 ClearPageHugeFreed(page);
b7ba30c6 1535 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1536}
1537
d00181b9 1538static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1539{
1540 int i;
1541 int nr_pages = 1 << order;
1542 struct page *p = page + 1;
1543
1544 /* we rely on prep_new_huge_page to set the destructor */
1545 set_compound_order(page, order);
ef5a22be 1546 __ClearPageReserved(page);
de09d31d 1547 __SetPageHead(page);
20a0307c 1548 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1549 /*
1550 * For gigantic hugepages allocated through bootmem at
1551 * boot, it's safer to be consistent with the not-gigantic
1552 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1553 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1554 * pages may get the reference counting wrong if they see
1555 * PG_reserved set on a tail page (despite the head page not
1556 * having PG_reserved set). Enforcing this consistency between
1557 * head and tail pages allows drivers to optimize away a check
1558 * on the head page when they need know if put_page() is needed
1559 * after get_user_pages().
1560 */
1561 __ClearPageReserved(p);
58a84aa9 1562 set_page_count(p, 0);
1d798ca3 1563 set_compound_head(p, page);
20a0307c 1564 }
b4330afb 1565 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
1566
1567 if (hpage_pincount_available(page))
1568 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1569}
1570
7795912c
AM
1571/*
1572 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1573 * transparent huge pages. See the PageTransHuge() documentation for more
1574 * details.
1575 */
20a0307c
WF
1576int PageHuge(struct page *page)
1577{
20a0307c
WF
1578 if (!PageCompound(page))
1579 return 0;
1580
1581 page = compound_head(page);
f1e61557 1582 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1583}
43131e14
NH
1584EXPORT_SYMBOL_GPL(PageHuge);
1585
27c73ae7
AA
1586/*
1587 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1588 * normal or transparent huge pages.
1589 */
1590int PageHeadHuge(struct page *page_head)
1591{
27c73ae7
AA
1592 if (!PageHead(page_head))
1593 return 0;
1594
d4af73e3 1595 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1596}
27c73ae7 1597
c0d0381a
MK
1598/*
1599 * Find and lock address space (mapping) in write mode.
1600 *
336bf30e
MK
1601 * Upon entry, the page is locked which means that page_mapping() is
1602 * stable. Due to locking order, we can only trylock_write. If we can
1603 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1604 */
1605struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1606{
336bf30e 1607 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1608
c0d0381a
MK
1609 if (!mapping)
1610 return mapping;
1611
c0d0381a
MK
1612 if (i_mmap_trylock_write(mapping))
1613 return mapping;
1614
336bf30e 1615 return NULL;
c0d0381a
MK
1616}
1617
13d60f4b
ZY
1618pgoff_t __basepage_index(struct page *page)
1619{
1620 struct page *page_head = compound_head(page);
1621 pgoff_t index = page_index(page_head);
1622 unsigned long compound_idx;
1623
1624 if (!PageHuge(page_head))
1625 return page_index(page);
1626
1627 if (compound_order(page_head) >= MAX_ORDER)
1628 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1629 else
1630 compound_idx = page - page_head;
1631
1632 return (index << compound_order(page_head)) + compound_idx;
1633}
1634
0c397dae 1635static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1636 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1637 nodemask_t *node_alloc_noretry)
1da177e4 1638{
af0fb9df 1639 int order = huge_page_order(h);
1da177e4 1640 struct page *page;
f60858f9 1641 bool alloc_try_hard = true;
f96efd58 1642
f60858f9
MK
1643 /*
1644 * By default we always try hard to allocate the page with
1645 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1646 * a loop (to adjust global huge page counts) and previous allocation
1647 * failed, do not continue to try hard on the same node. Use the
1648 * node_alloc_noretry bitmap to manage this state information.
1649 */
1650 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1651 alloc_try_hard = false;
1652 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1653 if (alloc_try_hard)
1654 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1655 if (nid == NUMA_NO_NODE)
1656 nid = numa_mem_id();
1657 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1658 if (page)
1659 __count_vm_event(HTLB_BUDDY_PGALLOC);
1660 else
1661 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1662
f60858f9
MK
1663 /*
1664 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1665 * indicates an overall state change. Clear bit so that we resume
1666 * normal 'try hard' allocations.
1667 */
1668 if (node_alloc_noretry && page && !alloc_try_hard)
1669 node_clear(nid, *node_alloc_noretry);
1670
1671 /*
1672 * If we tried hard to get a page but failed, set bit so that
1673 * subsequent attempts will not try as hard until there is an
1674 * overall state change.
1675 */
1676 if (node_alloc_noretry && !page && alloc_try_hard)
1677 node_set(nid, *node_alloc_noretry);
1678
63b4613c
NA
1679 return page;
1680}
1681
0c397dae
MH
1682/*
1683 * Common helper to allocate a fresh hugetlb page. All specific allocators
1684 * should use this function to get new hugetlb pages
1685 */
1686static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1687 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1688 nodemask_t *node_alloc_noretry)
0c397dae
MH
1689{
1690 struct page *page;
1691
1692 if (hstate_is_gigantic(h))
1693 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1694 else
1695 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1696 nid, nmask, node_alloc_noretry);
0c397dae
MH
1697 if (!page)
1698 return NULL;
1699
1700 if (hstate_is_gigantic(h))
1701 prep_compound_gigantic_page(page, huge_page_order(h));
1702 prep_new_huge_page(h, page, page_to_nid(page));
1703
1704 return page;
1705}
1706
af0fb9df
MH
1707/*
1708 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1709 * manner.
1710 */
f60858f9
MK
1711static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1712 nodemask_t *node_alloc_noretry)
b2261026
JK
1713{
1714 struct page *page;
1715 int nr_nodes, node;
af0fb9df 1716 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1717
1718 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1719 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1720 node_alloc_noretry);
af0fb9df 1721 if (page)
b2261026 1722 break;
b2261026
JK
1723 }
1724
af0fb9df
MH
1725 if (!page)
1726 return 0;
b2261026 1727
af0fb9df
MH
1728 put_page(page); /* free it into the hugepage allocator */
1729
1730 return 1;
b2261026
JK
1731}
1732
e8c5c824
LS
1733/*
1734 * Free huge page from pool from next node to free.
1735 * Attempt to keep persistent huge pages more or less
1736 * balanced over allowed nodes.
1737 * Called with hugetlb_lock locked.
1738 */
6ae11b27
LS
1739static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1740 bool acct_surplus)
e8c5c824 1741{
b2261026 1742 int nr_nodes, node;
e8c5c824
LS
1743 int ret = 0;
1744
b2261026 1745 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1746 /*
1747 * If we're returning unused surplus pages, only examine
1748 * nodes with surplus pages.
1749 */
b2261026
JK
1750 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1751 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1752 struct page *page =
b2261026 1753 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1754 struct page, lru);
1755 list_del(&page->lru);
1756 h->free_huge_pages--;
b2261026 1757 h->free_huge_pages_node[node]--;
685f3457
LS
1758 if (acct_surplus) {
1759 h->surplus_huge_pages--;
b2261026 1760 h->surplus_huge_pages_node[node]--;
685f3457 1761 }
e8c5c824
LS
1762 update_and_free_page(h, page);
1763 ret = 1;
9a76db09 1764 break;
e8c5c824 1765 }
b2261026 1766 }
e8c5c824
LS
1767
1768 return ret;
1769}
1770
c8721bbb
NH
1771/*
1772 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1773 * nothing for in-use hugepages and non-hugepages.
1774 * This function returns values like below:
1775 *
1776 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1777 * (allocated or reserved.)
1778 * 0: successfully dissolved free hugepages or the page is not a
1779 * hugepage (considered as already dissolved)
c8721bbb 1780 */
c3114a84 1781int dissolve_free_huge_page(struct page *page)
c8721bbb 1782{
6bc9b564 1783 int rc = -EBUSY;
082d5b6b 1784
7ffddd49 1785retry:
faf53def
NH
1786 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1787 if (!PageHuge(page))
1788 return 0;
1789
c8721bbb 1790 spin_lock(&hugetlb_lock);
faf53def
NH
1791 if (!PageHuge(page)) {
1792 rc = 0;
1793 goto out;
1794 }
1795
1796 if (!page_count(page)) {
2247bb33
GS
1797 struct page *head = compound_head(page);
1798 struct hstate *h = page_hstate(head);
1799 int nid = page_to_nid(head);
6bc9b564 1800 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1801 goto out;
7ffddd49
MS
1802
1803 /*
1804 * We should make sure that the page is already on the free list
1805 * when it is dissolved.
1806 */
1807 if (unlikely(!PageHugeFreed(head))) {
1808 spin_unlock(&hugetlb_lock);
1809 cond_resched();
1810
1811 /*
1812 * Theoretically, we should return -EBUSY when we
1813 * encounter this race. In fact, we have a chance
1814 * to successfully dissolve the page if we do a
1815 * retry. Because the race window is quite small.
1816 * If we seize this opportunity, it is an optimization
1817 * for increasing the success rate of dissolving page.
1818 */
1819 goto retry;
1820 }
1821
c3114a84
AK
1822 /*
1823 * Move PageHWPoison flag from head page to the raw error page,
1824 * which makes any subpages rather than the error page reusable.
1825 */
1826 if (PageHWPoison(head) && page != head) {
1827 SetPageHWPoison(page);
1828 ClearPageHWPoison(head);
1829 }
2247bb33 1830 list_del(&head->lru);
c8721bbb
NH
1831 h->free_huge_pages--;
1832 h->free_huge_pages_node[nid]--;
c1470b33 1833 h->max_huge_pages--;
2247bb33 1834 update_and_free_page(h, head);
6bc9b564 1835 rc = 0;
c8721bbb 1836 }
082d5b6b 1837out:
c8721bbb 1838 spin_unlock(&hugetlb_lock);
082d5b6b 1839 return rc;
c8721bbb
NH
1840}
1841
1842/*
1843 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1844 * make specified memory blocks removable from the system.
2247bb33
GS
1845 * Note that this will dissolve a free gigantic hugepage completely, if any
1846 * part of it lies within the given range.
082d5b6b
GS
1847 * Also note that if dissolve_free_huge_page() returns with an error, all
1848 * free hugepages that were dissolved before that error are lost.
c8721bbb 1849 */
082d5b6b 1850int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1851{
c8721bbb 1852 unsigned long pfn;
eb03aa00 1853 struct page *page;
082d5b6b 1854 int rc = 0;
c8721bbb 1855
d0177639 1856 if (!hugepages_supported())
082d5b6b 1857 return rc;
d0177639 1858
eb03aa00
GS
1859 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1860 page = pfn_to_page(pfn);
faf53def
NH
1861 rc = dissolve_free_huge_page(page);
1862 if (rc)
1863 break;
eb03aa00 1864 }
082d5b6b
GS
1865
1866 return rc;
c8721bbb
NH
1867}
1868
ab5ac90a
MH
1869/*
1870 * Allocates a fresh surplus page from the page allocator.
1871 */
0c397dae 1872static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1873 int nid, nodemask_t *nmask)
7893d1d5 1874{
9980d744 1875 struct page *page = NULL;
7893d1d5 1876
bae7f4ae 1877 if (hstate_is_gigantic(h))
aa888a74
AK
1878 return NULL;
1879
d1c3fb1f 1880 spin_lock(&hugetlb_lock);
9980d744
MH
1881 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1882 goto out_unlock;
d1c3fb1f
NA
1883 spin_unlock(&hugetlb_lock);
1884
f60858f9 1885 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1886 if (!page)
0c397dae 1887 return NULL;
d1c3fb1f
NA
1888
1889 spin_lock(&hugetlb_lock);
9980d744
MH
1890 /*
1891 * We could have raced with the pool size change.
1892 * Double check that and simply deallocate the new page
1893 * if we would end up overcommiting the surpluses. Abuse
1894 * temporary page to workaround the nasty free_huge_page
1895 * codeflow
1896 */
1897 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1898 SetPageHugeTemporary(page);
2bf753e6 1899 spin_unlock(&hugetlb_lock);
9980d744 1900 put_page(page);
2bf753e6 1901 return NULL;
9980d744 1902 } else {
9980d744 1903 h->surplus_huge_pages++;
4704dea3 1904 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1905 }
9980d744
MH
1906
1907out_unlock:
d1c3fb1f 1908 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1909
1910 return page;
1911}
1912
bbe88753 1913static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1914 int nid, nodemask_t *nmask)
ab5ac90a
MH
1915{
1916 struct page *page;
1917
1918 if (hstate_is_gigantic(h))
1919 return NULL;
1920
f60858f9 1921 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1922 if (!page)
1923 return NULL;
1924
1925 /*
1926 * We do not account these pages as surplus because they are only
1927 * temporary and will be released properly on the last reference
1928 */
ab5ac90a
MH
1929 SetPageHugeTemporary(page);
1930
1931 return page;
1932}
1933
099730d6
DH
1934/*
1935 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1936 */
e0ec90ee 1937static
0c397dae 1938struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1939 struct vm_area_struct *vma, unsigned long addr)
1940{
aaf14e40
MH
1941 struct page *page;
1942 struct mempolicy *mpol;
1943 gfp_t gfp_mask = htlb_alloc_mask(h);
1944 int nid;
1945 nodemask_t *nodemask;
1946
1947 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1948 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1949 mpol_cond_put(mpol);
1950
1951 return page;
099730d6
DH
1952}
1953
ab5ac90a 1954/* page migration callback function */
3e59fcb0 1955struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1956 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1957{
4db9b2ef
MH
1958 spin_lock(&hugetlb_lock);
1959 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1960 struct page *page;
1961
1962 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1963 if (page) {
1964 spin_unlock(&hugetlb_lock);
1965 return page;
4db9b2ef
MH
1966 }
1967 }
1968 spin_unlock(&hugetlb_lock);
4db9b2ef 1969
0c397dae 1970 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1971}
1972
ebd63723 1973/* mempolicy aware migration callback */
389c8178
MH
1974struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1975 unsigned long address)
ebd63723
MH
1976{
1977 struct mempolicy *mpol;
1978 nodemask_t *nodemask;
1979 struct page *page;
ebd63723
MH
1980 gfp_t gfp_mask;
1981 int node;
1982
ebd63723
MH
1983 gfp_mask = htlb_alloc_mask(h);
1984 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 1985 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
1986 mpol_cond_put(mpol);
1987
1988 return page;
1989}
1990
e4e574b7 1991/*
25985edc 1992 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1993 * of size 'delta'.
1994 */
0a4f3d1b 1995static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 1996 __must_hold(&hugetlb_lock)
e4e574b7
AL
1997{
1998 struct list_head surplus_list;
1999 struct page *page, *tmp;
0a4f3d1b
LX
2000 int ret;
2001 long i;
2002 long needed, allocated;
28073b02 2003 bool alloc_ok = true;
e4e574b7 2004
a5516438 2005 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2006 if (needed <= 0) {
a5516438 2007 h->resv_huge_pages += delta;
e4e574b7 2008 return 0;
ac09b3a1 2009 }
e4e574b7
AL
2010
2011 allocated = 0;
2012 INIT_LIST_HEAD(&surplus_list);
2013
2014 ret = -ENOMEM;
2015retry:
2016 spin_unlock(&hugetlb_lock);
2017 for (i = 0; i < needed; i++) {
0c397dae 2018 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 2019 NUMA_NO_NODE, NULL);
28073b02
HD
2020 if (!page) {
2021 alloc_ok = false;
2022 break;
2023 }
e4e574b7 2024 list_add(&page->lru, &surplus_list);
69ed779a 2025 cond_resched();
e4e574b7 2026 }
28073b02 2027 allocated += i;
e4e574b7
AL
2028
2029 /*
2030 * After retaking hugetlb_lock, we need to recalculate 'needed'
2031 * because either resv_huge_pages or free_huge_pages may have changed.
2032 */
2033 spin_lock(&hugetlb_lock);
a5516438
AK
2034 needed = (h->resv_huge_pages + delta) -
2035 (h->free_huge_pages + allocated);
28073b02
HD
2036 if (needed > 0) {
2037 if (alloc_ok)
2038 goto retry;
2039 /*
2040 * We were not able to allocate enough pages to
2041 * satisfy the entire reservation so we free what
2042 * we've allocated so far.
2043 */
2044 goto free;
2045 }
e4e574b7
AL
2046 /*
2047 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2048 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2049 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2050 * allocator. Commit the entire reservation here to prevent another
2051 * process from stealing the pages as they are added to the pool but
2052 * before they are reserved.
e4e574b7
AL
2053 */
2054 needed += allocated;
a5516438 2055 h->resv_huge_pages += delta;
e4e574b7 2056 ret = 0;
a9869b83 2057
19fc3f0a 2058 /* Free the needed pages to the hugetlb pool */
e4e574b7 2059 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
e558464b
MS
2060 int zeroed;
2061
19fc3f0a
AL
2062 if ((--needed) < 0)
2063 break;
a9869b83
NH
2064 /*
2065 * This page is now managed by the hugetlb allocator and has
2066 * no users -- drop the buddy allocator's reference.
2067 */
e558464b
MS
2068 zeroed = put_page_testzero(page);
2069 VM_BUG_ON_PAGE(!zeroed, page);
a5516438 2070 enqueue_huge_page(h, page);
19fc3f0a 2071 }
28073b02 2072free:
b0365c8d 2073 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
2074
2075 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2076 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2077 put_page(page);
a9869b83 2078 spin_lock(&hugetlb_lock);
e4e574b7
AL
2079
2080 return ret;
2081}
2082
2083/*
e5bbc8a6
MK
2084 * This routine has two main purposes:
2085 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2086 * in unused_resv_pages. This corresponds to the prior adjustments made
2087 * to the associated reservation map.
2088 * 2) Free any unused surplus pages that may have been allocated to satisfy
2089 * the reservation. As many as unused_resv_pages may be freed.
2090 *
2091 * Called with hugetlb_lock held. However, the lock could be dropped (and
2092 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2093 * we must make sure nobody else can claim pages we are in the process of
2094 * freeing. Do this by ensuring resv_huge_page always is greater than the
2095 * number of huge pages we plan to free when dropping the lock.
e4e574b7 2096 */
a5516438
AK
2097static void return_unused_surplus_pages(struct hstate *h,
2098 unsigned long unused_resv_pages)
e4e574b7 2099{
e4e574b7
AL
2100 unsigned long nr_pages;
2101
aa888a74 2102 /* Cannot return gigantic pages currently */
bae7f4ae 2103 if (hstate_is_gigantic(h))
e5bbc8a6 2104 goto out;
aa888a74 2105
e5bbc8a6
MK
2106 /*
2107 * Part (or even all) of the reservation could have been backed
2108 * by pre-allocated pages. Only free surplus pages.
2109 */
a5516438 2110 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2111
685f3457
LS
2112 /*
2113 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2114 * evenly across all nodes with memory. Iterate across these nodes
2115 * until we can no longer free unreserved surplus pages. This occurs
2116 * when the nodes with surplus pages have no free pages.
9e7ee400 2117 * free_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2118 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
2119 *
2120 * Note that we decrement resv_huge_pages as we free the pages. If
2121 * we drop the lock, resv_huge_pages will still be sufficiently large
2122 * to cover subsequent pages we may free.
685f3457
LS
2123 */
2124 while (nr_pages--) {
e5bbc8a6
MK
2125 h->resv_huge_pages--;
2126 unused_resv_pages--;
8cebfcd0 2127 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 2128 goto out;
7848a4bf 2129 cond_resched_lock(&hugetlb_lock);
e4e574b7 2130 }
e5bbc8a6
MK
2131
2132out:
2133 /* Fully uncommit the reservation */
2134 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
2135}
2136
5e911373 2137
c37f9fb1 2138/*
feba16e2 2139 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2140 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2141 *
2142 * vma_needs_reservation is called to determine if the huge page at addr
2143 * within the vma has an associated reservation. If a reservation is
2144 * needed, the value 1 is returned. The caller is then responsible for
2145 * managing the global reservation and subpool usage counts. After
2146 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2147 * to add the page to the reservation map. If the page allocation fails,
2148 * the reservation must be ended instead of committed. vma_end_reservation
2149 * is called in such cases.
cf3ad20b
MK
2150 *
2151 * In the normal case, vma_commit_reservation returns the same value
2152 * as the preceding vma_needs_reservation call. The only time this
2153 * is not the case is if a reserve map was changed between calls. It
2154 * is the responsibility of the caller to notice the difference and
2155 * take appropriate action.
96b96a96
MK
2156 *
2157 * vma_add_reservation is used in error paths where a reservation must
2158 * be restored when a newly allocated huge page must be freed. It is
2159 * to be called after calling vma_needs_reservation to determine if a
2160 * reservation exists.
c37f9fb1 2161 */
5e911373
MK
2162enum vma_resv_mode {
2163 VMA_NEEDS_RESV,
2164 VMA_COMMIT_RESV,
feba16e2 2165 VMA_END_RESV,
96b96a96 2166 VMA_ADD_RESV,
5e911373 2167};
cf3ad20b
MK
2168static long __vma_reservation_common(struct hstate *h,
2169 struct vm_area_struct *vma, unsigned long addr,
5e911373 2170 enum vma_resv_mode mode)
c37f9fb1 2171{
4e35f483
JK
2172 struct resv_map *resv;
2173 pgoff_t idx;
cf3ad20b 2174 long ret;
0db9d74e 2175 long dummy_out_regions_needed;
c37f9fb1 2176
4e35f483
JK
2177 resv = vma_resv_map(vma);
2178 if (!resv)
84afd99b 2179 return 1;
c37f9fb1 2180
4e35f483 2181 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2182 switch (mode) {
2183 case VMA_NEEDS_RESV:
0db9d74e
MA
2184 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2185 /* We assume that vma_reservation_* routines always operate on
2186 * 1 page, and that adding to resv map a 1 page entry can only
2187 * ever require 1 region.
2188 */
2189 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2190 break;
2191 case VMA_COMMIT_RESV:
075a61d0 2192 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2193 /* region_add calls of range 1 should never fail. */
2194 VM_BUG_ON(ret < 0);
5e911373 2195 break;
feba16e2 2196 case VMA_END_RESV:
0db9d74e 2197 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2198 ret = 0;
2199 break;
96b96a96 2200 case VMA_ADD_RESV:
0db9d74e 2201 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2202 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2203 /* region_add calls of range 1 should never fail. */
2204 VM_BUG_ON(ret < 0);
2205 } else {
2206 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2207 ret = region_del(resv, idx, idx + 1);
2208 }
2209 break;
5e911373
MK
2210 default:
2211 BUG();
2212 }
84afd99b 2213
4e35f483 2214 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2215 return ret;
67961f9d
MK
2216 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2217 /*
2218 * In most cases, reserves always exist for private mappings.
2219 * However, a file associated with mapping could have been
2220 * hole punched or truncated after reserves were consumed.
2221 * As subsequent fault on such a range will not use reserves.
2222 * Subtle - The reserve map for private mappings has the
2223 * opposite meaning than that of shared mappings. If NO
2224 * entry is in the reserve map, it means a reservation exists.
2225 * If an entry exists in the reserve map, it means the
2226 * reservation has already been consumed. As a result, the
2227 * return value of this routine is the opposite of the
2228 * value returned from reserve map manipulation routines above.
2229 */
2230 if (ret)
2231 return 0;
2232 else
2233 return 1;
2234 }
4e35f483 2235 else
cf3ad20b 2236 return ret < 0 ? ret : 0;
c37f9fb1 2237}
cf3ad20b
MK
2238
2239static long vma_needs_reservation(struct hstate *h,
a5516438 2240 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2241{
5e911373 2242 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2243}
84afd99b 2244
cf3ad20b
MK
2245static long vma_commit_reservation(struct hstate *h,
2246 struct vm_area_struct *vma, unsigned long addr)
2247{
5e911373
MK
2248 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2249}
2250
feba16e2 2251static void vma_end_reservation(struct hstate *h,
5e911373
MK
2252 struct vm_area_struct *vma, unsigned long addr)
2253{
feba16e2 2254 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2255}
2256
96b96a96
MK
2257static long vma_add_reservation(struct hstate *h,
2258 struct vm_area_struct *vma, unsigned long addr)
2259{
2260 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2261}
2262
2263/*
2264 * This routine is called to restore a reservation on error paths. In the
2265 * specific error paths, a huge page was allocated (via alloc_huge_page)
2266 * and is about to be freed. If a reservation for the page existed,
2267 * alloc_huge_page would have consumed the reservation and set PagePrivate
2268 * in the newly allocated page. When the page is freed via free_huge_page,
2269 * the global reservation count will be incremented if PagePrivate is set.
2270 * However, free_huge_page can not adjust the reserve map. Adjust the
2271 * reserve map here to be consistent with global reserve count adjustments
2272 * to be made by free_huge_page.
2273 */
2274static void restore_reserve_on_error(struct hstate *h,
2275 struct vm_area_struct *vma, unsigned long address,
2276 struct page *page)
2277{
2278 if (unlikely(PagePrivate(page))) {
2279 long rc = vma_needs_reservation(h, vma, address);
2280
2281 if (unlikely(rc < 0)) {
2282 /*
2283 * Rare out of memory condition in reserve map
2284 * manipulation. Clear PagePrivate so that
2285 * global reserve count will not be incremented
2286 * by free_huge_page. This will make it appear
2287 * as though the reservation for this page was
2288 * consumed. This may prevent the task from
2289 * faulting in the page at a later time. This
2290 * is better than inconsistent global huge page
2291 * accounting of reserve counts.
2292 */
2293 ClearPagePrivate(page);
2294 } else if (rc) {
2295 rc = vma_add_reservation(h, vma, address);
2296 if (unlikely(rc < 0))
2297 /*
2298 * See above comment about rare out of
2299 * memory condition.
2300 */
2301 ClearPagePrivate(page);
2302 } else
2303 vma_end_reservation(h, vma, address);
2304 }
2305}
2306
70c3547e 2307struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2308 unsigned long addr, int avoid_reserve)
1da177e4 2309{
90481622 2310 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2311 struct hstate *h = hstate_vma(vma);
348ea204 2312 struct page *page;
d85f69b0
MK
2313 long map_chg, map_commit;
2314 long gbl_chg;
6d76dcf4
AK
2315 int ret, idx;
2316 struct hugetlb_cgroup *h_cg;
08cf9faf 2317 bool deferred_reserve;
a1e78772 2318
6d76dcf4 2319 idx = hstate_index(h);
a1e78772 2320 /*
d85f69b0
MK
2321 * Examine the region/reserve map to determine if the process
2322 * has a reservation for the page to be allocated. A return
2323 * code of zero indicates a reservation exists (no change).
a1e78772 2324 */
d85f69b0
MK
2325 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2326 if (map_chg < 0)
76dcee75 2327 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2328
2329 /*
2330 * Processes that did not create the mapping will have no
2331 * reserves as indicated by the region/reserve map. Check
2332 * that the allocation will not exceed the subpool limit.
2333 * Allocations for MAP_NORESERVE mappings also need to be
2334 * checked against any subpool limit.
2335 */
2336 if (map_chg || avoid_reserve) {
2337 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2338 if (gbl_chg < 0) {
feba16e2 2339 vma_end_reservation(h, vma, addr);
76dcee75 2340 return ERR_PTR(-ENOSPC);
5e911373 2341 }
1da177e4 2342
d85f69b0
MK
2343 /*
2344 * Even though there was no reservation in the region/reserve
2345 * map, there could be reservations associated with the
2346 * subpool that can be used. This would be indicated if the
2347 * return value of hugepage_subpool_get_pages() is zero.
2348 * However, if avoid_reserve is specified we still avoid even
2349 * the subpool reservations.
2350 */
2351 if (avoid_reserve)
2352 gbl_chg = 1;
2353 }
2354
08cf9faf
MA
2355 /* If this allocation is not consuming a reservation, charge it now.
2356 */
2357 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2358 if (deferred_reserve) {
2359 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2360 idx, pages_per_huge_page(h), &h_cg);
2361 if (ret)
2362 goto out_subpool_put;
2363 }
2364
6d76dcf4 2365 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2366 if (ret)
08cf9faf 2367 goto out_uncharge_cgroup_reservation;
8f34af6f 2368
1da177e4 2369 spin_lock(&hugetlb_lock);
d85f69b0
MK
2370 /*
2371 * glb_chg is passed to indicate whether or not a page must be taken
2372 * from the global free pool (global change). gbl_chg == 0 indicates
2373 * a reservation exists for the allocation.
2374 */
2375 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2376 if (!page) {
94ae8ba7 2377 spin_unlock(&hugetlb_lock);
0c397dae 2378 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2379 if (!page)
2380 goto out_uncharge_cgroup;
a88c7695
NH
2381 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2382 SetPagePrivate(page);
2383 h->resv_huge_pages--;
2384 }
79dbb236 2385 spin_lock(&hugetlb_lock);
15a8d68e 2386 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2387 /* Fall through */
68842c9b 2388 }
81a6fcae 2389 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2390 /* If allocation is not consuming a reservation, also store the
2391 * hugetlb_cgroup pointer on the page.
2392 */
2393 if (deferred_reserve) {
2394 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2395 h_cg, page);
2396 }
2397
81a6fcae 2398 spin_unlock(&hugetlb_lock);
348ea204 2399
90481622 2400 set_page_private(page, (unsigned long)spool);
90d8b7e6 2401
d85f69b0
MK
2402 map_commit = vma_commit_reservation(h, vma, addr);
2403 if (unlikely(map_chg > map_commit)) {
33039678
MK
2404 /*
2405 * The page was added to the reservation map between
2406 * vma_needs_reservation and vma_commit_reservation.
2407 * This indicates a race with hugetlb_reserve_pages.
2408 * Adjust for the subpool count incremented above AND
2409 * in hugetlb_reserve_pages for the same page. Also,
2410 * the reservation count added in hugetlb_reserve_pages
2411 * no longer applies.
2412 */
2413 long rsv_adjust;
2414
2415 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2416 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2417 if (deferred_reserve)
2418 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2419 pages_per_huge_page(h), page);
33039678 2420 }
90d8b7e6 2421 return page;
8f34af6f
JZ
2422
2423out_uncharge_cgroup:
2424 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2425out_uncharge_cgroup_reservation:
2426 if (deferred_reserve)
2427 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2428 h_cg);
8f34af6f 2429out_subpool_put:
d85f69b0 2430 if (map_chg || avoid_reserve)
8f34af6f 2431 hugepage_subpool_put_pages(spool, 1);
feba16e2 2432 vma_end_reservation(h, vma, addr);
8f34af6f 2433 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2434}
2435
e24a1307
AK
2436int alloc_bootmem_huge_page(struct hstate *h)
2437 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2438int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2439{
2440 struct huge_bootmem_page *m;
b2261026 2441 int nr_nodes, node;
aa888a74 2442
b2261026 2443 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2444 void *addr;
2445
eb31d559 2446 addr = memblock_alloc_try_nid_raw(
8b89a116 2447 huge_page_size(h), huge_page_size(h),
97ad1087 2448 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2449 if (addr) {
2450 /*
2451 * Use the beginning of the huge page to store the
2452 * huge_bootmem_page struct (until gather_bootmem
2453 * puts them into the mem_map).
2454 */
2455 m = addr;
91f47662 2456 goto found;
aa888a74 2457 }
aa888a74
AK
2458 }
2459 return 0;
2460
2461found:
df994ead 2462 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2463 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2464 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2465 list_add(&m->list, &huge_boot_pages);
2466 m->hstate = h;
2467 return 1;
2468}
2469
d00181b9
KS
2470static void __init prep_compound_huge_page(struct page *page,
2471 unsigned int order)
18229df5
AW
2472{
2473 if (unlikely(order > (MAX_ORDER - 1)))
2474 prep_compound_gigantic_page(page, order);
2475 else
2476 prep_compound_page(page, order);
2477}
2478
aa888a74
AK
2479/* Put bootmem huge pages into the standard lists after mem_map is up */
2480static void __init gather_bootmem_prealloc(void)
2481{
2482 struct huge_bootmem_page *m;
2483
2484 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2485 struct page *page = virt_to_page(m);
aa888a74 2486 struct hstate *h = m->hstate;
ee8f248d 2487
aa888a74 2488 WARN_ON(page_count(page) != 1);
c78a7f36 2489 prep_compound_huge_page(page, huge_page_order(h));
ef5a22be 2490 WARN_ON(PageReserved(page));
aa888a74 2491 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2492 put_page(page); /* free it into the hugepage allocator */
2493
b0320c7b
RA
2494 /*
2495 * If we had gigantic hugepages allocated at boot time, we need
2496 * to restore the 'stolen' pages to totalram_pages in order to
2497 * fix confusing memory reports from free(1) and another
2498 * side-effects, like CommitLimit going negative.
2499 */
bae7f4ae 2500 if (hstate_is_gigantic(h))
c78a7f36 2501 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 2502 cond_resched();
aa888a74
AK
2503 }
2504}
2505
8faa8b07 2506static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2507{
2508 unsigned long i;
f60858f9
MK
2509 nodemask_t *node_alloc_noretry;
2510
2511 if (!hstate_is_gigantic(h)) {
2512 /*
2513 * Bit mask controlling how hard we retry per-node allocations.
2514 * Ignore errors as lower level routines can deal with
2515 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2516 * time, we are likely in bigger trouble.
2517 */
2518 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2519 GFP_KERNEL);
2520 } else {
2521 /* allocations done at boot time */
2522 node_alloc_noretry = NULL;
2523 }
2524
2525 /* bit mask controlling how hard we retry per-node allocations */
2526 if (node_alloc_noretry)
2527 nodes_clear(*node_alloc_noretry);
a5516438 2528
e5ff2159 2529 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2530 if (hstate_is_gigantic(h)) {
dbda8fea 2531 if (hugetlb_cma_size) {
cf11e85f
RG
2532 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2533 break;
2534 }
aa888a74
AK
2535 if (!alloc_bootmem_huge_page(h))
2536 break;
0c397dae 2537 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2538 &node_states[N_MEMORY],
2539 node_alloc_noretry))
1da177e4 2540 break;
69ed779a 2541 cond_resched();
1da177e4 2542 }
d715cf80
LH
2543 if (i < h->max_huge_pages) {
2544 char buf[32];
2545
c6247f72 2546 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2547 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2548 h->max_huge_pages, buf, i);
2549 h->max_huge_pages = i;
2550 }
f60858f9
MK
2551
2552 kfree(node_alloc_noretry);
e5ff2159
AK
2553}
2554
2555static void __init hugetlb_init_hstates(void)
2556{
2557 struct hstate *h;
2558
2559 for_each_hstate(h) {
641844f5
NH
2560 if (minimum_order > huge_page_order(h))
2561 minimum_order = huge_page_order(h);
2562
8faa8b07 2563 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2564 if (!hstate_is_gigantic(h))
8faa8b07 2565 hugetlb_hstate_alloc_pages(h);
e5ff2159 2566 }
641844f5 2567 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2568}
2569
2570static void __init report_hugepages(void)
2571{
2572 struct hstate *h;
2573
2574 for_each_hstate(h) {
4abd32db 2575 char buf[32];
c6247f72
MW
2576
2577 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2578 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2579 buf, h->free_huge_pages);
e5ff2159
AK
2580 }
2581}
2582
1da177e4 2583#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2584static void try_to_free_low(struct hstate *h, unsigned long count,
2585 nodemask_t *nodes_allowed)
1da177e4 2586{
4415cc8d
CL
2587 int i;
2588
bae7f4ae 2589 if (hstate_is_gigantic(h))
aa888a74
AK
2590 return;
2591
6ae11b27 2592 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2593 struct page *page, *next;
a5516438
AK
2594 struct list_head *freel = &h->hugepage_freelists[i];
2595 list_for_each_entry_safe(page, next, freel, lru) {
2596 if (count >= h->nr_huge_pages)
6b0c880d 2597 return;
1da177e4
LT
2598 if (PageHighMem(page))
2599 continue;
2600 list_del(&page->lru);
e5ff2159 2601 update_and_free_page(h, page);
a5516438
AK
2602 h->free_huge_pages--;
2603 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2604 }
2605 }
2606}
2607#else
6ae11b27
LS
2608static inline void try_to_free_low(struct hstate *h, unsigned long count,
2609 nodemask_t *nodes_allowed)
1da177e4
LT
2610{
2611}
2612#endif
2613
20a0307c
WF
2614/*
2615 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2616 * balanced by operating on them in a round-robin fashion.
2617 * Returns 1 if an adjustment was made.
2618 */
6ae11b27
LS
2619static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2620 int delta)
20a0307c 2621{
b2261026 2622 int nr_nodes, node;
20a0307c
WF
2623
2624 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2625
b2261026
JK
2626 if (delta < 0) {
2627 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2628 if (h->surplus_huge_pages_node[node])
2629 goto found;
e8c5c824 2630 }
b2261026
JK
2631 } else {
2632 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2633 if (h->surplus_huge_pages_node[node] <
2634 h->nr_huge_pages_node[node])
2635 goto found;
e8c5c824 2636 }
b2261026
JK
2637 }
2638 return 0;
20a0307c 2639
b2261026
JK
2640found:
2641 h->surplus_huge_pages += delta;
2642 h->surplus_huge_pages_node[node] += delta;
2643 return 1;
20a0307c
WF
2644}
2645
a5516438 2646#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2647static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2648 nodemask_t *nodes_allowed)
1da177e4 2649{
7893d1d5 2650 unsigned long min_count, ret;
f60858f9
MK
2651 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2652
2653 /*
2654 * Bit mask controlling how hard we retry per-node allocations.
2655 * If we can not allocate the bit mask, do not attempt to allocate
2656 * the requested huge pages.
2657 */
2658 if (node_alloc_noretry)
2659 nodes_clear(*node_alloc_noretry);
2660 else
2661 return -ENOMEM;
1da177e4 2662
4eb0716e
AG
2663 spin_lock(&hugetlb_lock);
2664
fd875dca
MK
2665 /*
2666 * Check for a node specific request.
2667 * Changing node specific huge page count may require a corresponding
2668 * change to the global count. In any case, the passed node mask
2669 * (nodes_allowed) will restrict alloc/free to the specified node.
2670 */
2671 if (nid != NUMA_NO_NODE) {
2672 unsigned long old_count = count;
2673
2674 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2675 /*
2676 * User may have specified a large count value which caused the
2677 * above calculation to overflow. In this case, they wanted
2678 * to allocate as many huge pages as possible. Set count to
2679 * largest possible value to align with their intention.
2680 */
2681 if (count < old_count)
2682 count = ULONG_MAX;
2683 }
2684
4eb0716e
AG
2685 /*
2686 * Gigantic pages runtime allocation depend on the capability for large
2687 * page range allocation.
2688 * If the system does not provide this feature, return an error when
2689 * the user tries to allocate gigantic pages but let the user free the
2690 * boottime allocated gigantic pages.
2691 */
2692 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2693 if (count > persistent_huge_pages(h)) {
2694 spin_unlock(&hugetlb_lock);
f60858f9 2695 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2696 return -EINVAL;
2697 }
2698 /* Fall through to decrease pool */
2699 }
aa888a74 2700
7893d1d5
AL
2701 /*
2702 * Increase the pool size
2703 * First take pages out of surplus state. Then make up the
2704 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2705 *
0c397dae 2706 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2707 * to convert a surplus huge page to a normal huge page. That is
2708 * not critical, though, it just means the overall size of the
2709 * pool might be one hugepage larger than it needs to be, but
2710 * within all the constraints specified by the sysctls.
7893d1d5 2711 */
a5516438 2712 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2713 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2714 break;
2715 }
2716
a5516438 2717 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2718 /*
2719 * If this allocation races such that we no longer need the
2720 * page, free_huge_page will handle it by freeing the page
2721 * and reducing the surplus.
2722 */
2723 spin_unlock(&hugetlb_lock);
649920c6
JH
2724
2725 /* yield cpu to avoid soft lockup */
2726 cond_resched();
2727
f60858f9
MK
2728 ret = alloc_pool_huge_page(h, nodes_allowed,
2729 node_alloc_noretry);
7893d1d5
AL
2730 spin_lock(&hugetlb_lock);
2731 if (!ret)
2732 goto out;
2733
536240f2
MG
2734 /* Bail for signals. Probably ctrl-c from user */
2735 if (signal_pending(current))
2736 goto out;
7893d1d5 2737 }
7893d1d5
AL
2738
2739 /*
2740 * Decrease the pool size
2741 * First return free pages to the buddy allocator (being careful
2742 * to keep enough around to satisfy reservations). Then place
2743 * pages into surplus state as needed so the pool will shrink
2744 * to the desired size as pages become free.
d1c3fb1f
NA
2745 *
2746 * By placing pages into the surplus state independent of the
2747 * overcommit value, we are allowing the surplus pool size to
2748 * exceed overcommit. There are few sane options here. Since
0c397dae 2749 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2750 * though, we'll note that we're not allowed to exceed surplus
2751 * and won't grow the pool anywhere else. Not until one of the
2752 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2753 */
a5516438 2754 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2755 min_count = max(count, min_count);
6ae11b27 2756 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2757 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2758 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2759 break;
55f67141 2760 cond_resched_lock(&hugetlb_lock);
1da177e4 2761 }
a5516438 2762 while (count < persistent_huge_pages(h)) {
6ae11b27 2763 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2764 break;
2765 }
2766out:
4eb0716e 2767 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2768 spin_unlock(&hugetlb_lock);
4eb0716e 2769
f60858f9
MK
2770 NODEMASK_FREE(node_alloc_noretry);
2771
4eb0716e 2772 return 0;
1da177e4
LT
2773}
2774
a3437870
NA
2775#define HSTATE_ATTR_RO(_name) \
2776 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2777
2778#define HSTATE_ATTR(_name) \
2779 static struct kobj_attribute _name##_attr = \
2780 __ATTR(_name, 0644, _name##_show, _name##_store)
2781
2782static struct kobject *hugepages_kobj;
2783static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2784
9a305230
LS
2785static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2786
2787static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2788{
2789 int i;
9a305230 2790
a3437870 2791 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2792 if (hstate_kobjs[i] == kobj) {
2793 if (nidp)
2794 *nidp = NUMA_NO_NODE;
a3437870 2795 return &hstates[i];
9a305230
LS
2796 }
2797
2798 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2799}
2800
06808b08 2801static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2802 struct kobj_attribute *attr, char *buf)
2803{
9a305230
LS
2804 struct hstate *h;
2805 unsigned long nr_huge_pages;
2806 int nid;
2807
2808 h = kobj_to_hstate(kobj, &nid);
2809 if (nid == NUMA_NO_NODE)
2810 nr_huge_pages = h->nr_huge_pages;
2811 else
2812 nr_huge_pages = h->nr_huge_pages_node[nid];
2813
ae7a927d 2814 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 2815}
adbe8726 2816
238d3c13
DR
2817static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2818 struct hstate *h, int nid,
2819 unsigned long count, size_t len)
a3437870
NA
2820{
2821 int err;
2d0adf7e 2822 nodemask_t nodes_allowed, *n_mask;
a3437870 2823
2d0adf7e
OS
2824 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2825 return -EINVAL;
adbe8726 2826
9a305230
LS
2827 if (nid == NUMA_NO_NODE) {
2828 /*
2829 * global hstate attribute
2830 */
2831 if (!(obey_mempolicy &&
2d0adf7e
OS
2832 init_nodemask_of_mempolicy(&nodes_allowed)))
2833 n_mask = &node_states[N_MEMORY];
2834 else
2835 n_mask = &nodes_allowed;
2836 } else {
9a305230 2837 /*
fd875dca
MK
2838 * Node specific request. count adjustment happens in
2839 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2840 */
2d0adf7e
OS
2841 init_nodemask_of_node(&nodes_allowed, nid);
2842 n_mask = &nodes_allowed;
fd875dca 2843 }
9a305230 2844
2d0adf7e 2845 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2846
4eb0716e 2847 return err ? err : len;
06808b08
LS
2848}
2849
238d3c13
DR
2850static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2851 struct kobject *kobj, const char *buf,
2852 size_t len)
2853{
2854 struct hstate *h;
2855 unsigned long count;
2856 int nid;
2857 int err;
2858
2859 err = kstrtoul(buf, 10, &count);
2860 if (err)
2861 return err;
2862
2863 h = kobj_to_hstate(kobj, &nid);
2864 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2865}
2866
06808b08
LS
2867static ssize_t nr_hugepages_show(struct kobject *kobj,
2868 struct kobj_attribute *attr, char *buf)
2869{
2870 return nr_hugepages_show_common(kobj, attr, buf);
2871}
2872
2873static ssize_t nr_hugepages_store(struct kobject *kobj,
2874 struct kobj_attribute *attr, const char *buf, size_t len)
2875{
238d3c13 2876 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2877}
2878HSTATE_ATTR(nr_hugepages);
2879
06808b08
LS
2880#ifdef CONFIG_NUMA
2881
2882/*
2883 * hstate attribute for optionally mempolicy-based constraint on persistent
2884 * huge page alloc/free.
2885 */
2886static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
2887 struct kobj_attribute *attr,
2888 char *buf)
06808b08
LS
2889{
2890 return nr_hugepages_show_common(kobj, attr, buf);
2891}
2892
2893static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2894 struct kobj_attribute *attr, const char *buf, size_t len)
2895{
238d3c13 2896 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2897}
2898HSTATE_ATTR(nr_hugepages_mempolicy);
2899#endif
2900
2901
a3437870
NA
2902static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2903 struct kobj_attribute *attr, char *buf)
2904{
9a305230 2905 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2906 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 2907}
adbe8726 2908
a3437870
NA
2909static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2910 struct kobj_attribute *attr, const char *buf, size_t count)
2911{
2912 int err;
2913 unsigned long input;
9a305230 2914 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2915
bae7f4ae 2916 if (hstate_is_gigantic(h))
adbe8726
EM
2917 return -EINVAL;
2918
3dbb95f7 2919 err = kstrtoul(buf, 10, &input);
a3437870 2920 if (err)
73ae31e5 2921 return err;
a3437870
NA
2922
2923 spin_lock(&hugetlb_lock);
2924 h->nr_overcommit_huge_pages = input;
2925 spin_unlock(&hugetlb_lock);
2926
2927 return count;
2928}
2929HSTATE_ATTR(nr_overcommit_hugepages);
2930
2931static ssize_t free_hugepages_show(struct kobject *kobj,
2932 struct kobj_attribute *attr, char *buf)
2933{
9a305230
LS
2934 struct hstate *h;
2935 unsigned long free_huge_pages;
2936 int nid;
2937
2938 h = kobj_to_hstate(kobj, &nid);
2939 if (nid == NUMA_NO_NODE)
2940 free_huge_pages = h->free_huge_pages;
2941 else
2942 free_huge_pages = h->free_huge_pages_node[nid];
2943
ae7a927d 2944 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
2945}
2946HSTATE_ATTR_RO(free_hugepages);
2947
2948static ssize_t resv_hugepages_show(struct kobject *kobj,
2949 struct kobj_attribute *attr, char *buf)
2950{
9a305230 2951 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2952 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
2953}
2954HSTATE_ATTR_RO(resv_hugepages);
2955
2956static ssize_t surplus_hugepages_show(struct kobject *kobj,
2957 struct kobj_attribute *attr, char *buf)
2958{
9a305230
LS
2959 struct hstate *h;
2960 unsigned long surplus_huge_pages;
2961 int nid;
2962
2963 h = kobj_to_hstate(kobj, &nid);
2964 if (nid == NUMA_NO_NODE)
2965 surplus_huge_pages = h->surplus_huge_pages;
2966 else
2967 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2968
ae7a927d 2969 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2970}
2971HSTATE_ATTR_RO(surplus_hugepages);
2972
2973static struct attribute *hstate_attrs[] = {
2974 &nr_hugepages_attr.attr,
2975 &nr_overcommit_hugepages_attr.attr,
2976 &free_hugepages_attr.attr,
2977 &resv_hugepages_attr.attr,
2978 &surplus_hugepages_attr.attr,
06808b08
LS
2979#ifdef CONFIG_NUMA
2980 &nr_hugepages_mempolicy_attr.attr,
2981#endif
a3437870
NA
2982 NULL,
2983};
2984
67e5ed96 2985static const struct attribute_group hstate_attr_group = {
a3437870
NA
2986 .attrs = hstate_attrs,
2987};
2988
094e9539
JM
2989static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2990 struct kobject **hstate_kobjs,
67e5ed96 2991 const struct attribute_group *hstate_attr_group)
a3437870
NA
2992{
2993 int retval;
972dc4de 2994 int hi = hstate_index(h);
a3437870 2995
9a305230
LS
2996 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2997 if (!hstate_kobjs[hi])
a3437870
NA
2998 return -ENOMEM;
2999
9a305230 3000 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 3001 if (retval) {
9a305230 3002 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
3003 hstate_kobjs[hi] = NULL;
3004 }
a3437870
NA
3005
3006 return retval;
3007}
3008
3009static void __init hugetlb_sysfs_init(void)
3010{
3011 struct hstate *h;
3012 int err;
3013
3014 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3015 if (!hugepages_kobj)
3016 return;
3017
3018 for_each_hstate(h) {
9a305230
LS
3019 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3020 hstate_kobjs, &hstate_attr_group);
a3437870 3021 if (err)
282f4214 3022 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3023 }
3024}
3025
9a305230
LS
3026#ifdef CONFIG_NUMA
3027
3028/*
3029 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3030 * with node devices in node_devices[] using a parallel array. The array
3031 * index of a node device or _hstate == node id.
3032 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3033 * the base kernel, on the hugetlb module.
3034 */
3035struct node_hstate {
3036 struct kobject *hugepages_kobj;
3037 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3038};
b4e289a6 3039static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3040
3041/*
10fbcf4c 3042 * A subset of global hstate attributes for node devices
9a305230
LS
3043 */
3044static struct attribute *per_node_hstate_attrs[] = {
3045 &nr_hugepages_attr.attr,
3046 &free_hugepages_attr.attr,
3047 &surplus_hugepages_attr.attr,
3048 NULL,
3049};
3050
67e5ed96 3051static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3052 .attrs = per_node_hstate_attrs,
3053};
3054
3055/*
10fbcf4c 3056 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3057 * Returns node id via non-NULL nidp.
3058 */
3059static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3060{
3061 int nid;
3062
3063 for (nid = 0; nid < nr_node_ids; nid++) {
3064 struct node_hstate *nhs = &node_hstates[nid];
3065 int i;
3066 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3067 if (nhs->hstate_kobjs[i] == kobj) {
3068 if (nidp)
3069 *nidp = nid;
3070 return &hstates[i];
3071 }
3072 }
3073
3074 BUG();
3075 return NULL;
3076}
3077
3078/*
10fbcf4c 3079 * Unregister hstate attributes from a single node device.
9a305230
LS
3080 * No-op if no hstate attributes attached.
3081 */
3cd8b44f 3082static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3083{
3084 struct hstate *h;
10fbcf4c 3085 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3086
3087 if (!nhs->hugepages_kobj)
9b5e5d0f 3088 return; /* no hstate attributes */
9a305230 3089
972dc4de
AK
3090 for_each_hstate(h) {
3091 int idx = hstate_index(h);
3092 if (nhs->hstate_kobjs[idx]) {
3093 kobject_put(nhs->hstate_kobjs[idx]);
3094 nhs->hstate_kobjs[idx] = NULL;
9a305230 3095 }
972dc4de 3096 }
9a305230
LS
3097
3098 kobject_put(nhs->hugepages_kobj);
3099 nhs->hugepages_kobj = NULL;
3100}
3101
9a305230
LS
3102
3103/*
10fbcf4c 3104 * Register hstate attributes for a single node device.
9a305230
LS
3105 * No-op if attributes already registered.
3106 */
3cd8b44f 3107static void hugetlb_register_node(struct node *node)
9a305230
LS
3108{
3109 struct hstate *h;
10fbcf4c 3110 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3111 int err;
3112
3113 if (nhs->hugepages_kobj)
3114 return; /* already allocated */
3115
3116 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3117 &node->dev.kobj);
9a305230
LS
3118 if (!nhs->hugepages_kobj)
3119 return;
3120
3121 for_each_hstate(h) {
3122 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3123 nhs->hstate_kobjs,
3124 &per_node_hstate_attr_group);
3125 if (err) {
282f4214 3126 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3127 h->name, node->dev.id);
9a305230
LS
3128 hugetlb_unregister_node(node);
3129 break;
3130 }
3131 }
3132}
3133
3134/*
9b5e5d0f 3135 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3136 * devices of nodes that have memory. All on-line nodes should have
3137 * registered their associated device by this time.
9a305230 3138 */
7d9ca000 3139static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3140{
3141 int nid;
3142
8cebfcd0 3143 for_each_node_state(nid, N_MEMORY) {
8732794b 3144 struct node *node = node_devices[nid];
10fbcf4c 3145 if (node->dev.id == nid)
9a305230
LS
3146 hugetlb_register_node(node);
3147 }
3148
3149 /*
10fbcf4c 3150 * Let the node device driver know we're here so it can
9a305230
LS
3151 * [un]register hstate attributes on node hotplug.
3152 */
3153 register_hugetlbfs_with_node(hugetlb_register_node,
3154 hugetlb_unregister_node);
3155}
3156#else /* !CONFIG_NUMA */
3157
3158static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3159{
3160 BUG();
3161 if (nidp)
3162 *nidp = -1;
3163 return NULL;
3164}
3165
9a305230
LS
3166static void hugetlb_register_all_nodes(void) { }
3167
3168#endif
3169
a3437870
NA
3170static int __init hugetlb_init(void)
3171{
8382d914
DB
3172 int i;
3173
c2833a5b
MK
3174 if (!hugepages_supported()) {
3175 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3176 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3177 return 0;
c2833a5b 3178 }
a3437870 3179
282f4214
MK
3180 /*
3181 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3182 * architectures depend on setup being done here.
3183 */
3184 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3185 if (!parsed_default_hugepagesz) {
3186 /*
3187 * If we did not parse a default huge page size, set
3188 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3189 * number of huge pages for this default size was implicitly
3190 * specified, set that here as well.
3191 * Note that the implicit setting will overwrite an explicit
3192 * setting. A warning will be printed in this case.
3193 */
3194 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3195 if (default_hstate_max_huge_pages) {
3196 if (default_hstate.max_huge_pages) {
3197 char buf[32];
3198
3199 string_get_size(huge_page_size(&default_hstate),
3200 1, STRING_UNITS_2, buf, 32);
3201 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3202 default_hstate.max_huge_pages, buf);
3203 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3204 default_hstate_max_huge_pages);
3205 }
3206 default_hstate.max_huge_pages =
3207 default_hstate_max_huge_pages;
d715cf80 3208 }
f8b74815 3209 }
a3437870 3210
cf11e85f 3211 hugetlb_cma_check();
a3437870 3212 hugetlb_init_hstates();
aa888a74 3213 gather_bootmem_prealloc();
a3437870
NA
3214 report_hugepages();
3215
3216 hugetlb_sysfs_init();
9a305230 3217 hugetlb_register_all_nodes();
7179e7bf 3218 hugetlb_cgroup_file_init();
9a305230 3219
8382d914
DB
3220#ifdef CONFIG_SMP
3221 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3222#else
3223 num_fault_mutexes = 1;
3224#endif
c672c7f2 3225 hugetlb_fault_mutex_table =
6da2ec56
KC
3226 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3227 GFP_KERNEL);
c672c7f2 3228 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3229
3230 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3231 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3232 return 0;
3233}
3e89e1c5 3234subsys_initcall(hugetlb_init);
a3437870 3235
ae94da89
MK
3236/* Overwritten by architectures with more huge page sizes */
3237bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3238{
ae94da89 3239 return size == HPAGE_SIZE;
9fee021d
VT
3240}
3241
d00181b9 3242void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3243{
3244 struct hstate *h;
8faa8b07
AK
3245 unsigned long i;
3246
a3437870 3247 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3248 return;
3249 }
47d38344 3250 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3251 BUG_ON(order == 0);
47d38344 3252 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
3253 h->order = order;
3254 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
3255 for (i = 0; i < MAX_NUMNODES; ++i)
3256 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3257 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3258 h->next_nid_to_alloc = first_memory_node;
3259 h->next_nid_to_free = first_memory_node;
a3437870
NA
3260 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3261 huge_page_size(h)/1024);
8faa8b07 3262
a3437870
NA
3263 parsed_hstate = h;
3264}
3265
282f4214
MK
3266/*
3267 * hugepages command line processing
3268 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3269 * specification. If not, ignore the hugepages value. hugepages can also
3270 * be the first huge page command line option in which case it implicitly
3271 * specifies the number of huge pages for the default size.
3272 */
3273static int __init hugepages_setup(char *s)
a3437870
NA
3274{
3275 unsigned long *mhp;
8faa8b07 3276 static unsigned long *last_mhp;
a3437870 3277
9fee021d 3278 if (!parsed_valid_hugepagesz) {
282f4214 3279 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3280 parsed_valid_hugepagesz = true;
282f4214 3281 return 0;
9fee021d 3282 }
282f4214 3283
a3437870 3284 /*
282f4214
MK
3285 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3286 * yet, so this hugepages= parameter goes to the "default hstate".
3287 * Otherwise, it goes with the previously parsed hugepagesz or
3288 * default_hugepagesz.
a3437870 3289 */
9fee021d 3290 else if (!hugetlb_max_hstate)
a3437870
NA
3291 mhp = &default_hstate_max_huge_pages;
3292 else
3293 mhp = &parsed_hstate->max_huge_pages;
3294
8faa8b07 3295 if (mhp == last_mhp) {
282f4214
MK
3296 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3297 return 0;
8faa8b07
AK
3298 }
3299
a3437870
NA
3300 if (sscanf(s, "%lu", mhp) <= 0)
3301 *mhp = 0;
3302
8faa8b07
AK
3303 /*
3304 * Global state is always initialized later in hugetlb_init.
3305 * But we need to allocate >= MAX_ORDER hstates here early to still
3306 * use the bootmem allocator.
3307 */
47d38344 3308 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
3309 hugetlb_hstate_alloc_pages(parsed_hstate);
3310
3311 last_mhp = mhp;
3312
a3437870
NA
3313 return 1;
3314}
282f4214 3315__setup("hugepages=", hugepages_setup);
e11bfbfc 3316
282f4214
MK
3317/*
3318 * hugepagesz command line processing
3319 * A specific huge page size can only be specified once with hugepagesz.
3320 * hugepagesz is followed by hugepages on the command line. The global
3321 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3322 * hugepagesz argument was valid.
3323 */
359f2544 3324static int __init hugepagesz_setup(char *s)
e11bfbfc 3325{
359f2544 3326 unsigned long size;
282f4214
MK
3327 struct hstate *h;
3328
3329 parsed_valid_hugepagesz = false;
359f2544
MK
3330 size = (unsigned long)memparse(s, NULL);
3331
3332 if (!arch_hugetlb_valid_size(size)) {
282f4214 3333 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3334 return 0;
3335 }
3336
282f4214
MK
3337 h = size_to_hstate(size);
3338 if (h) {
3339 /*
3340 * hstate for this size already exists. This is normally
3341 * an error, but is allowed if the existing hstate is the
3342 * default hstate. More specifically, it is only allowed if
3343 * the number of huge pages for the default hstate was not
3344 * previously specified.
3345 */
3346 if (!parsed_default_hugepagesz || h != &default_hstate ||
3347 default_hstate.max_huge_pages) {
3348 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3349 return 0;
3350 }
3351
3352 /*
3353 * No need to call hugetlb_add_hstate() as hstate already
3354 * exists. But, do set parsed_hstate so that a following
3355 * hugepages= parameter will be applied to this hstate.
3356 */
3357 parsed_hstate = h;
3358 parsed_valid_hugepagesz = true;
3359 return 1;
38237830
MK
3360 }
3361
359f2544 3362 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3363 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3364 return 1;
3365}
359f2544
MK
3366__setup("hugepagesz=", hugepagesz_setup);
3367
282f4214
MK
3368/*
3369 * default_hugepagesz command line input
3370 * Only one instance of default_hugepagesz allowed on command line.
3371 */
ae94da89 3372static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3373{
ae94da89
MK
3374 unsigned long size;
3375
282f4214 3376 parsed_valid_hugepagesz = false;
282f4214
MK
3377 if (parsed_default_hugepagesz) {
3378 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3379 return 0;
3380 }
3381
ae94da89
MK
3382 size = (unsigned long)memparse(s, NULL);
3383
3384 if (!arch_hugetlb_valid_size(size)) {
282f4214 3385 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3386 return 0;
3387 }
3388
282f4214
MK
3389 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3390 parsed_valid_hugepagesz = true;
3391 parsed_default_hugepagesz = true;
3392 default_hstate_idx = hstate_index(size_to_hstate(size));
3393
3394 /*
3395 * The number of default huge pages (for this size) could have been
3396 * specified as the first hugetlb parameter: hugepages=X. If so,
3397 * then default_hstate_max_huge_pages is set. If the default huge
3398 * page size is gigantic (>= MAX_ORDER), then the pages must be
3399 * allocated here from bootmem allocator.
3400 */
3401 if (default_hstate_max_huge_pages) {
3402 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3403 if (hstate_is_gigantic(&default_hstate))
3404 hugetlb_hstate_alloc_pages(&default_hstate);
3405 default_hstate_max_huge_pages = 0;
3406 }
3407
e11bfbfc
NP
3408 return 1;
3409}
ae94da89 3410__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3411
8ca39e68 3412static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3413{
3414 int node;
3415 unsigned int nr = 0;
8ca39e68
MS
3416 nodemask_t *mpol_allowed;
3417 unsigned int *array = h->free_huge_pages_node;
3418 gfp_t gfp_mask = htlb_alloc_mask(h);
3419
3420 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3421
8ca39e68 3422 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 3423 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
3424 nr += array[node];
3425 }
8a213460
NA
3426
3427 return nr;
3428}
3429
3430#ifdef CONFIG_SYSCTL
17743798
MS
3431static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3432 void *buffer, size_t *length,
3433 loff_t *ppos, unsigned long *out)
3434{
3435 struct ctl_table dup_table;
3436
3437 /*
3438 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3439 * can duplicate the @table and alter the duplicate of it.
3440 */
3441 dup_table = *table;
3442 dup_table.data = out;
3443
3444 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3445}
3446
06808b08
LS
3447static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3448 struct ctl_table *table, int write,
32927393 3449 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3450{
e5ff2159 3451 struct hstate *h = &default_hstate;
238d3c13 3452 unsigned long tmp = h->max_huge_pages;
08d4a246 3453 int ret;
e5ff2159 3454
457c1b27 3455 if (!hugepages_supported())
86613628 3456 return -EOPNOTSUPP;
457c1b27 3457
17743798
MS
3458 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3459 &tmp);
08d4a246
MH
3460 if (ret)
3461 goto out;
e5ff2159 3462
238d3c13
DR
3463 if (write)
3464 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3465 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3466out:
3467 return ret;
1da177e4 3468}
396faf03 3469
06808b08 3470int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3471 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3472{
3473
3474 return hugetlb_sysctl_handler_common(false, table, write,
3475 buffer, length, ppos);
3476}
3477
3478#ifdef CONFIG_NUMA
3479int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3480 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3481{
3482 return hugetlb_sysctl_handler_common(true, table, write,
3483 buffer, length, ppos);
3484}
3485#endif /* CONFIG_NUMA */
3486
a3d0c6aa 3487int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3488 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3489{
a5516438 3490 struct hstate *h = &default_hstate;
e5ff2159 3491 unsigned long tmp;
08d4a246 3492 int ret;
e5ff2159 3493
457c1b27 3494 if (!hugepages_supported())
86613628 3495 return -EOPNOTSUPP;
457c1b27 3496
c033a93c 3497 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3498
bae7f4ae 3499 if (write && hstate_is_gigantic(h))
adbe8726
EM
3500 return -EINVAL;
3501
17743798
MS
3502 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3503 &tmp);
08d4a246
MH
3504 if (ret)
3505 goto out;
e5ff2159
AK
3506
3507 if (write) {
3508 spin_lock(&hugetlb_lock);
3509 h->nr_overcommit_huge_pages = tmp;
3510 spin_unlock(&hugetlb_lock);
3511 }
08d4a246
MH
3512out:
3513 return ret;
a3d0c6aa
NA
3514}
3515
1da177e4
LT
3516#endif /* CONFIG_SYSCTL */
3517
e1759c21 3518void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3519{
fcb2b0c5
RG
3520 struct hstate *h;
3521 unsigned long total = 0;
3522
457c1b27
NA
3523 if (!hugepages_supported())
3524 return;
fcb2b0c5
RG
3525
3526 for_each_hstate(h) {
3527 unsigned long count = h->nr_huge_pages;
3528
3529 total += (PAGE_SIZE << huge_page_order(h)) * count;
3530
3531 if (h == &default_hstate)
3532 seq_printf(m,
3533 "HugePages_Total: %5lu\n"
3534 "HugePages_Free: %5lu\n"
3535 "HugePages_Rsvd: %5lu\n"
3536 "HugePages_Surp: %5lu\n"
3537 "Hugepagesize: %8lu kB\n",
3538 count,
3539 h->free_huge_pages,
3540 h->resv_huge_pages,
3541 h->surplus_huge_pages,
3542 (PAGE_SIZE << huge_page_order(h)) / 1024);
3543 }
3544
3545 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3546}
3547
7981593b 3548int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3549{
a5516438 3550 struct hstate *h = &default_hstate;
7981593b 3551
457c1b27
NA
3552 if (!hugepages_supported())
3553 return 0;
7981593b
JP
3554
3555 return sysfs_emit_at(buf, len,
3556 "Node %d HugePages_Total: %5u\n"
3557 "Node %d HugePages_Free: %5u\n"
3558 "Node %d HugePages_Surp: %5u\n",
3559 nid, h->nr_huge_pages_node[nid],
3560 nid, h->free_huge_pages_node[nid],
3561 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3562}
3563
949f7ec5
DR
3564void hugetlb_show_meminfo(void)
3565{
3566 struct hstate *h;
3567 int nid;
3568
457c1b27
NA
3569 if (!hugepages_supported())
3570 return;
3571
949f7ec5
DR
3572 for_each_node_state(nid, N_MEMORY)
3573 for_each_hstate(h)
3574 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3575 nid,
3576 h->nr_huge_pages_node[nid],
3577 h->free_huge_pages_node[nid],
3578 h->surplus_huge_pages_node[nid],
3579 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3580}
3581
5d317b2b
NH
3582void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3583{
3584 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3585 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3586}
3587
1da177e4
LT
3588/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3589unsigned long hugetlb_total_pages(void)
3590{
d0028588
WL
3591 struct hstate *h;
3592 unsigned long nr_total_pages = 0;
3593
3594 for_each_hstate(h)
3595 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3596 return nr_total_pages;
1da177e4 3597}
1da177e4 3598
a5516438 3599static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3600{
3601 int ret = -ENOMEM;
3602
0aa7f354
ML
3603 if (!delta)
3604 return 0;
3605
fc1b8a73
MG
3606 spin_lock(&hugetlb_lock);
3607 /*
3608 * When cpuset is configured, it breaks the strict hugetlb page
3609 * reservation as the accounting is done on a global variable. Such
3610 * reservation is completely rubbish in the presence of cpuset because
3611 * the reservation is not checked against page availability for the
3612 * current cpuset. Application can still potentially OOM'ed by kernel
3613 * with lack of free htlb page in cpuset that the task is in.
3614 * Attempt to enforce strict accounting with cpuset is almost
3615 * impossible (or too ugly) because cpuset is too fluid that
3616 * task or memory node can be dynamically moved between cpusets.
3617 *
3618 * The change of semantics for shared hugetlb mapping with cpuset is
3619 * undesirable. However, in order to preserve some of the semantics,
3620 * we fall back to check against current free page availability as
3621 * a best attempt and hopefully to minimize the impact of changing
3622 * semantics that cpuset has.
8ca39e68
MS
3623 *
3624 * Apart from cpuset, we also have memory policy mechanism that
3625 * also determines from which node the kernel will allocate memory
3626 * in a NUMA system. So similar to cpuset, we also should consider
3627 * the memory policy of the current task. Similar to the description
3628 * above.
fc1b8a73
MG
3629 */
3630 if (delta > 0) {
a5516438 3631 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3632 goto out;
3633
8ca39e68 3634 if (delta > allowed_mems_nr(h)) {
a5516438 3635 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3636 goto out;
3637 }
3638 }
3639
3640 ret = 0;
3641 if (delta < 0)
a5516438 3642 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3643
3644out:
3645 spin_unlock(&hugetlb_lock);
3646 return ret;
3647}
3648
84afd99b
AW
3649static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3650{
f522c3ac 3651 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3652
3653 /*
3654 * This new VMA should share its siblings reservation map if present.
3655 * The VMA will only ever have a valid reservation map pointer where
3656 * it is being copied for another still existing VMA. As that VMA
25985edc 3657 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3658 * after this open call completes. It is therefore safe to take a
3659 * new reference here without additional locking.
3660 */
4e35f483 3661 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3662 kref_get(&resv->refs);
84afd99b
AW
3663}
3664
a1e78772
MG
3665static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3666{
a5516438 3667 struct hstate *h = hstate_vma(vma);
f522c3ac 3668 struct resv_map *resv = vma_resv_map(vma);
90481622 3669 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3670 unsigned long reserve, start, end;
1c5ecae3 3671 long gbl_reserve;
84afd99b 3672
4e35f483
JK
3673 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3674 return;
84afd99b 3675
4e35f483
JK
3676 start = vma_hugecache_offset(h, vma, vma->vm_start);
3677 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3678
4e35f483 3679 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3680 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3681 if (reserve) {
1c5ecae3
MK
3682 /*
3683 * Decrement reserve counts. The global reserve count may be
3684 * adjusted if the subpool has a minimum size.
3685 */
3686 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3687 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3688 }
e9fe92ae
MA
3689
3690 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3691}
3692
31383c68
DW
3693static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3694{
3695 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3696 return -EINVAL;
3697 return 0;
3698}
3699
05ea8860
DW
3700static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3701{
3702 struct hstate *hstate = hstate_vma(vma);
3703
3704 return 1UL << huge_page_shift(hstate);
3705}
3706
1da177e4
LT
3707/*
3708 * We cannot handle pagefaults against hugetlb pages at all. They cause
3709 * handle_mm_fault() to try to instantiate regular-sized pages in the
3710 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3711 * this far.
3712 */
b3ec9f33 3713static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3714{
3715 BUG();
d0217ac0 3716 return 0;
1da177e4
LT
3717}
3718
eec3636a
JC
3719/*
3720 * When a new function is introduced to vm_operations_struct and added
3721 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3722 * This is because under System V memory model, mappings created via
3723 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3724 * their original vm_ops are overwritten with shm_vm_ops.
3725 */
f0f37e2f 3726const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3727 .fault = hugetlb_vm_op_fault,
84afd99b 3728 .open = hugetlb_vm_op_open,
a1e78772 3729 .close = hugetlb_vm_op_close,
dd3b614f 3730 .may_split = hugetlb_vm_op_split,
05ea8860 3731 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3732};
3733
1e8f889b
DG
3734static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3735 int writable)
63551ae0
DG
3736{
3737 pte_t entry;
3738
1e8f889b 3739 if (writable) {
106c992a
GS
3740 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3741 vma->vm_page_prot)));
63551ae0 3742 } else {
106c992a
GS
3743 entry = huge_pte_wrprotect(mk_huge_pte(page,
3744 vma->vm_page_prot));
63551ae0
DG
3745 }
3746 entry = pte_mkyoung(entry);
3747 entry = pte_mkhuge(entry);
d9ed9faa 3748 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3749
3750 return entry;
3751}
3752
1e8f889b
DG
3753static void set_huge_ptep_writable(struct vm_area_struct *vma,
3754 unsigned long address, pte_t *ptep)
3755{
3756 pte_t entry;
3757
106c992a 3758 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3759 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3760 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3761}
3762
d5ed7444 3763bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3764{
3765 swp_entry_t swp;
3766
3767 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3768 return false;
4a705fef 3769 swp = pte_to_swp_entry(pte);
d79d176a 3770 if (is_migration_entry(swp))
d5ed7444 3771 return true;
4a705fef 3772 else
d5ed7444 3773 return false;
4a705fef
NH
3774}
3775
3e5c3600 3776static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
3777{
3778 swp_entry_t swp;
3779
3780 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 3781 return false;
4a705fef 3782 swp = pte_to_swp_entry(pte);
d79d176a 3783 if (is_hwpoison_entry(swp))
3e5c3600 3784 return true;
4a705fef 3785 else
3e5c3600 3786 return false;
4a705fef 3787}
1e8f889b 3788
63551ae0
DG
3789int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3790 struct vm_area_struct *vma)
3791{
5e41540c 3792 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3793 struct page *ptepage;
1c59827d 3794 unsigned long addr;
1e8f889b 3795 int cow;
a5516438
AK
3796 struct hstate *h = hstate_vma(vma);
3797 unsigned long sz = huge_page_size(h);
c0d0381a 3798 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3799 struct mmu_notifier_range range;
e8569dd2 3800 int ret = 0;
1e8f889b
DG
3801
3802 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3803
ac46d4f3 3804 if (cow) {
7269f999 3805 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3806 vma->vm_start,
ac46d4f3
JG
3807 vma->vm_end);
3808 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3809 } else {
3810 /*
3811 * For shared mappings i_mmap_rwsem must be held to call
3812 * huge_pte_alloc, otherwise the returned ptep could go
3813 * away if part of a shared pmd and another thread calls
3814 * huge_pmd_unshare.
3815 */
3816 i_mmap_lock_read(mapping);
ac46d4f3 3817 }
e8569dd2 3818
a5516438 3819 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3820 spinlock_t *src_ptl, *dst_ptl;
7868a208 3821 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3822 if (!src_pte)
3823 continue;
a5516438 3824 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3825 if (!dst_pte) {
3826 ret = -ENOMEM;
3827 break;
3828 }
c5c99429 3829
5e41540c
MK
3830 /*
3831 * If the pagetables are shared don't copy or take references.
3832 * dst_pte == src_pte is the common case of src/dest sharing.
3833 *
3834 * However, src could have 'unshared' and dst shares with
3835 * another vma. If dst_pte !none, this implies sharing.
3836 * Check here before taking page table lock, and once again
3837 * after taking the lock below.
3838 */
3839 dst_entry = huge_ptep_get(dst_pte);
3840 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3841 continue;
3842
cb900f41
KS
3843 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3844 src_ptl = huge_pte_lockptr(h, src, src_pte);
3845 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3846 entry = huge_ptep_get(src_pte);
5e41540c
MK
3847 dst_entry = huge_ptep_get(dst_pte);
3848 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3849 /*
3850 * Skip if src entry none. Also, skip in the
3851 * unlikely case dst entry !none as this implies
3852 * sharing with another vma.
3853 */
4a705fef
NH
3854 ;
3855 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3856 is_hugetlb_entry_hwpoisoned(entry))) {
3857 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3858
3859 if (is_write_migration_entry(swp_entry) && cow) {
3860 /*
3861 * COW mappings require pages in both
3862 * parent and child to be set to read.
3863 */
3864 make_migration_entry_read(&swp_entry);
3865 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3866 set_huge_swap_pte_at(src, addr, src_pte,
3867 entry, sz);
4a705fef 3868 }
e5251fd4 3869 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3870 } else {
34ee645e 3871 if (cow) {
0f10851e
JG
3872 /*
3873 * No need to notify as we are downgrading page
3874 * table protection not changing it to point
3875 * to a new page.
3876 *
ad56b738 3877 * See Documentation/vm/mmu_notifier.rst
0f10851e 3878 */
7f2e9525 3879 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3880 }
0253d634 3881 entry = huge_ptep_get(src_pte);
1c59827d
HD
3882 ptepage = pte_page(entry);
3883 get_page(ptepage);
53f9263b 3884 page_dup_rmap(ptepage, true);
1c59827d 3885 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3886 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3887 }
cb900f41
KS
3888 spin_unlock(src_ptl);
3889 spin_unlock(dst_ptl);
63551ae0 3890 }
63551ae0 3891
e8569dd2 3892 if (cow)
ac46d4f3 3893 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3894 else
3895 i_mmap_unlock_read(mapping);
e8569dd2
AS
3896
3897 return ret;
63551ae0
DG
3898}
3899
24669e58
AK
3900void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3901 unsigned long start, unsigned long end,
3902 struct page *ref_page)
63551ae0
DG
3903{
3904 struct mm_struct *mm = vma->vm_mm;
3905 unsigned long address;
c7546f8f 3906 pte_t *ptep;
63551ae0 3907 pte_t pte;
cb900f41 3908 spinlock_t *ptl;
63551ae0 3909 struct page *page;
a5516438
AK
3910 struct hstate *h = hstate_vma(vma);
3911 unsigned long sz = huge_page_size(h);
ac46d4f3 3912 struct mmu_notifier_range range;
a5516438 3913
63551ae0 3914 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3915 BUG_ON(start & ~huge_page_mask(h));
3916 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3917
07e32661
AK
3918 /*
3919 * This is a hugetlb vma, all the pte entries should point
3920 * to huge page.
3921 */
ed6a7935 3922 tlb_change_page_size(tlb, sz);
24669e58 3923 tlb_start_vma(tlb, vma);
dff11abe
MK
3924
3925 /*
3926 * If sharing possible, alert mmu notifiers of worst case.
3927 */
6f4f13e8
JG
3928 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3929 end);
ac46d4f3
JG
3930 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3931 mmu_notifier_invalidate_range_start(&range);
569f48b8 3932 address = start;
569f48b8 3933 for (; address < end; address += sz) {
7868a208 3934 ptep = huge_pte_offset(mm, address, sz);
4c887265 3935 if (!ptep)
c7546f8f
DG
3936 continue;
3937
cb900f41 3938 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 3939 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 3940 spin_unlock(ptl);
dff11abe
MK
3941 /*
3942 * We just unmapped a page of PMDs by clearing a PUD.
3943 * The caller's TLB flush range should cover this area.
3944 */
31d49da5
AK
3945 continue;
3946 }
39dde65c 3947
6629326b 3948 pte = huge_ptep_get(ptep);
31d49da5
AK
3949 if (huge_pte_none(pte)) {
3950 spin_unlock(ptl);
3951 continue;
3952 }
6629326b
HD
3953
3954 /*
9fbc1f63
NH
3955 * Migrating hugepage or HWPoisoned hugepage is already
3956 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3957 */
9fbc1f63 3958 if (unlikely(!pte_present(pte))) {
9386fac3 3959 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3960 spin_unlock(ptl);
3961 continue;
8c4894c6 3962 }
6629326b
HD
3963
3964 page = pte_page(pte);
04f2cbe3
MG
3965 /*
3966 * If a reference page is supplied, it is because a specific
3967 * page is being unmapped, not a range. Ensure the page we
3968 * are about to unmap is the actual page of interest.
3969 */
3970 if (ref_page) {
31d49da5
AK
3971 if (page != ref_page) {
3972 spin_unlock(ptl);
3973 continue;
3974 }
04f2cbe3
MG
3975 /*
3976 * Mark the VMA as having unmapped its page so that
3977 * future faults in this VMA will fail rather than
3978 * looking like data was lost
3979 */
3980 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3981 }
3982
c7546f8f 3983 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3984 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3985 if (huge_pte_dirty(pte))
6649a386 3986 set_page_dirty(page);
9e81130b 3987
5d317b2b 3988 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3989 page_remove_rmap(page, true);
31d49da5 3990
cb900f41 3991 spin_unlock(ptl);
e77b0852 3992 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3993 /*
3994 * Bail out after unmapping reference page if supplied
3995 */
3996 if (ref_page)
3997 break;
fe1668ae 3998 }
ac46d4f3 3999 mmu_notifier_invalidate_range_end(&range);
24669e58 4000 tlb_end_vma(tlb, vma);
1da177e4 4001}
63551ae0 4002
d833352a
MG
4003void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4004 struct vm_area_struct *vma, unsigned long start,
4005 unsigned long end, struct page *ref_page)
4006{
4007 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4008
4009 /*
4010 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4011 * test will fail on a vma being torn down, and not grab a page table
4012 * on its way out. We're lucky that the flag has such an appropriate
4013 * name, and can in fact be safely cleared here. We could clear it
4014 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4015 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4016 * because in the context this is called, the VMA is about to be
c8c06efa 4017 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4018 */
4019 vma->vm_flags &= ~VM_MAYSHARE;
4020}
4021
502717f4 4022void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4023 unsigned long end, struct page *ref_page)
502717f4 4024{
24669e58 4025 struct mmu_gather tlb;
dff11abe 4026
a72afd87 4027 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 4028 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 4029 tlb_finish_mmu(&tlb);
502717f4
KC
4030}
4031
04f2cbe3
MG
4032/*
4033 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4034 * mappping it owns the reserve page for. The intention is to unmap the page
4035 * from other VMAs and let the children be SIGKILLed if they are faulting the
4036 * same region.
4037 */
2f4612af
DB
4038static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4039 struct page *page, unsigned long address)
04f2cbe3 4040{
7526674d 4041 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4042 struct vm_area_struct *iter_vma;
4043 struct address_space *mapping;
04f2cbe3
MG
4044 pgoff_t pgoff;
4045
4046 /*
4047 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4048 * from page cache lookup which is in HPAGE_SIZE units.
4049 */
7526674d 4050 address = address & huge_page_mask(h);
36e4f20a
MH
4051 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4052 vma->vm_pgoff;
93c76a3d 4053 mapping = vma->vm_file->f_mapping;
04f2cbe3 4054
4eb2b1dc
MG
4055 /*
4056 * Take the mapping lock for the duration of the table walk. As
4057 * this mapping should be shared between all the VMAs,
4058 * __unmap_hugepage_range() is called as the lock is already held
4059 */
83cde9e8 4060 i_mmap_lock_write(mapping);
6b2dbba8 4061 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4062 /* Do not unmap the current VMA */
4063 if (iter_vma == vma)
4064 continue;
4065
2f84a899
MG
4066 /*
4067 * Shared VMAs have their own reserves and do not affect
4068 * MAP_PRIVATE accounting but it is possible that a shared
4069 * VMA is using the same page so check and skip such VMAs.
4070 */
4071 if (iter_vma->vm_flags & VM_MAYSHARE)
4072 continue;
4073
04f2cbe3
MG
4074 /*
4075 * Unmap the page from other VMAs without their own reserves.
4076 * They get marked to be SIGKILLed if they fault in these
4077 * areas. This is because a future no-page fault on this VMA
4078 * could insert a zeroed page instead of the data existing
4079 * from the time of fork. This would look like data corruption
4080 */
4081 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4082 unmap_hugepage_range(iter_vma, address,
4083 address + huge_page_size(h), page);
04f2cbe3 4084 }
83cde9e8 4085 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4086}
4087
0fe6e20b
NH
4088/*
4089 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4090 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4091 * cannot race with other handlers or page migration.
4092 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4093 */
2b740303 4094static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4095 unsigned long address, pte_t *ptep,
3999f52e 4096 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4097{
3999f52e 4098 pte_t pte;
a5516438 4099 struct hstate *h = hstate_vma(vma);
1e8f889b 4100 struct page *old_page, *new_page;
2b740303
SJ
4101 int outside_reserve = 0;
4102 vm_fault_t ret = 0;
974e6d66 4103 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4104 struct mmu_notifier_range range;
1e8f889b 4105
3999f52e 4106 pte = huge_ptep_get(ptep);
1e8f889b
DG
4107 old_page = pte_page(pte);
4108
04f2cbe3 4109retry_avoidcopy:
1e8f889b
DG
4110 /* If no-one else is actually using this page, avoid the copy
4111 * and just make the page writable */
37a2140d 4112 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4113 page_move_anon_rmap(old_page, vma);
5b7a1d40 4114 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4115 return 0;
1e8f889b
DG
4116 }
4117
04f2cbe3
MG
4118 /*
4119 * If the process that created a MAP_PRIVATE mapping is about to
4120 * perform a COW due to a shared page count, attempt to satisfy
4121 * the allocation without using the existing reserves. The pagecache
4122 * page is used to determine if the reserve at this address was
4123 * consumed or not. If reserves were used, a partial faulted mapping
4124 * at the time of fork() could consume its reserves on COW instead
4125 * of the full address range.
4126 */
5944d011 4127 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4128 old_page != pagecache_page)
4129 outside_reserve = 1;
4130
09cbfeaf 4131 get_page(old_page);
b76c8cfb 4132
ad4404a2
DB
4133 /*
4134 * Drop page table lock as buddy allocator may be called. It will
4135 * be acquired again before returning to the caller, as expected.
4136 */
cb900f41 4137 spin_unlock(ptl);
5b7a1d40 4138 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4139
2fc39cec 4140 if (IS_ERR(new_page)) {
04f2cbe3
MG
4141 /*
4142 * If a process owning a MAP_PRIVATE mapping fails to COW,
4143 * it is due to references held by a child and an insufficient
4144 * huge page pool. To guarantee the original mappers
4145 * reliability, unmap the page from child processes. The child
4146 * may get SIGKILLed if it later faults.
4147 */
4148 if (outside_reserve) {
e7dd91c4
MK
4149 struct address_space *mapping = vma->vm_file->f_mapping;
4150 pgoff_t idx;
4151 u32 hash;
4152
09cbfeaf 4153 put_page(old_page);
04f2cbe3 4154 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4155 /*
4156 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4157 * unmapping. unmapping needs to hold i_mmap_rwsem
4158 * in write mode. Dropping i_mmap_rwsem in read mode
4159 * here is OK as COW mappings do not interact with
4160 * PMD sharing.
4161 *
4162 * Reacquire both after unmap operation.
4163 */
4164 idx = vma_hugecache_offset(h, vma, haddr);
4165 hash = hugetlb_fault_mutex_hash(mapping, idx);
4166 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4167 i_mmap_unlock_read(mapping);
4168
5b7a1d40 4169 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4170
4171 i_mmap_lock_read(mapping);
4172 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4173 spin_lock(ptl);
5b7a1d40 4174 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4175 if (likely(ptep &&
4176 pte_same(huge_ptep_get(ptep), pte)))
4177 goto retry_avoidcopy;
4178 /*
4179 * race occurs while re-acquiring page table
4180 * lock, and our job is done.
4181 */
4182 return 0;
04f2cbe3
MG
4183 }
4184
2b740303 4185 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4186 goto out_release_old;
1e8f889b
DG
4187 }
4188
0fe6e20b
NH
4189 /*
4190 * When the original hugepage is shared one, it does not have
4191 * anon_vma prepared.
4192 */
44e2aa93 4193 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4194 ret = VM_FAULT_OOM;
4195 goto out_release_all;
44e2aa93 4196 }
0fe6e20b 4197
974e6d66 4198 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4199 pages_per_huge_page(h));
0ed361de 4200 __SetPageUptodate(new_page);
1e8f889b 4201
7269f999 4202 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4203 haddr + huge_page_size(h));
ac46d4f3 4204 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4205
b76c8cfb 4206 /*
cb900f41 4207 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4208 * before the page tables are altered
4209 */
cb900f41 4210 spin_lock(ptl);
5b7a1d40 4211 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4212 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
4213 ClearPagePrivate(new_page);
4214
1e8f889b 4215 /* Break COW */
5b7a1d40 4216 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4217 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4218 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4219 make_huge_pte(vma, new_page, 1));
d281ee61 4220 page_remove_rmap(old_page, true);
5b7a1d40 4221 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 4222 set_page_huge_active(new_page);
1e8f889b
DG
4223 /* Make the old page be freed below */
4224 new_page = old_page;
4225 }
cb900f41 4226 spin_unlock(ptl);
ac46d4f3 4227 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4228out_release_all:
5b7a1d40 4229 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4230 put_page(new_page);
ad4404a2 4231out_release_old:
09cbfeaf 4232 put_page(old_page);
8312034f 4233
ad4404a2
DB
4234 spin_lock(ptl); /* Caller expects lock to be held */
4235 return ret;
1e8f889b
DG
4236}
4237
04f2cbe3 4238/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4239static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4240 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4241{
4242 struct address_space *mapping;
e7c4b0bf 4243 pgoff_t idx;
04f2cbe3
MG
4244
4245 mapping = vma->vm_file->f_mapping;
a5516438 4246 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4247
4248 return find_lock_page(mapping, idx);
4249}
4250
3ae77f43
HD
4251/*
4252 * Return whether there is a pagecache page to back given address within VMA.
4253 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4254 */
4255static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4256 struct vm_area_struct *vma, unsigned long address)
4257{
4258 struct address_space *mapping;
4259 pgoff_t idx;
4260 struct page *page;
4261
4262 mapping = vma->vm_file->f_mapping;
4263 idx = vma_hugecache_offset(h, vma, address);
4264
4265 page = find_get_page(mapping, idx);
4266 if (page)
4267 put_page(page);
4268 return page != NULL;
4269}
4270
ab76ad54
MK
4271int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4272 pgoff_t idx)
4273{
4274 struct inode *inode = mapping->host;
4275 struct hstate *h = hstate_inode(inode);
4276 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4277
4278 if (err)
4279 return err;
4280 ClearPagePrivate(page);
4281
22146c3c
MK
4282 /*
4283 * set page dirty so that it will not be removed from cache/file
4284 * by non-hugetlbfs specific code paths.
4285 */
4286 set_page_dirty(page);
4287
ab76ad54
MK
4288 spin_lock(&inode->i_lock);
4289 inode->i_blocks += blocks_per_huge_page(h);
4290 spin_unlock(&inode->i_lock);
4291 return 0;
4292}
4293
2b740303
SJ
4294static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4295 struct vm_area_struct *vma,
4296 struct address_space *mapping, pgoff_t idx,
4297 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4298{
a5516438 4299 struct hstate *h = hstate_vma(vma);
2b740303 4300 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4301 int anon_rmap = 0;
4c887265 4302 unsigned long size;
4c887265 4303 struct page *page;
1e8f889b 4304 pte_t new_pte;
cb900f41 4305 spinlock_t *ptl;
285b8dca 4306 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4307 bool new_page = false;
4c887265 4308
04f2cbe3
MG
4309 /*
4310 * Currently, we are forced to kill the process in the event the
4311 * original mapper has unmapped pages from the child due to a failed
25985edc 4312 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4313 */
4314 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4315 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4316 current->pid);
04f2cbe3
MG
4317 return ret;
4318 }
4319
4c887265 4320 /*
87bf91d3
MK
4321 * We can not race with truncation due to holding i_mmap_rwsem.
4322 * i_size is modified when holding i_mmap_rwsem, so check here
4323 * once for faults beyond end of file.
4c887265 4324 */
87bf91d3
MK
4325 size = i_size_read(mapping->host) >> huge_page_shift(h);
4326 if (idx >= size)
4327 goto out;
4328
6bda666a
CL
4329retry:
4330 page = find_lock_page(mapping, idx);
4331 if (!page) {
1a1aad8a
MK
4332 /*
4333 * Check for page in userfault range
4334 */
4335 if (userfaultfd_missing(vma)) {
4336 u32 hash;
4337 struct vm_fault vmf = {
4338 .vma = vma,
285b8dca 4339 .address = haddr,
1a1aad8a
MK
4340 .flags = flags,
4341 /*
4342 * Hard to debug if it ends up being
4343 * used by a callee that assumes
4344 * something about the other
4345 * uninitialized fields... same as in
4346 * memory.c
4347 */
4348 };
4349
4350 /*
c0d0381a
MK
4351 * hugetlb_fault_mutex and i_mmap_rwsem must be
4352 * dropped before handling userfault. Reacquire
4353 * after handling fault to make calling code simpler.
1a1aad8a 4354 */
188b04a7 4355 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 4356 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4357 i_mmap_unlock_read(mapping);
1a1aad8a 4358 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 4359 i_mmap_lock_read(mapping);
1a1aad8a
MK
4360 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4361 goto out;
4362 }
4363
285b8dca 4364 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4365 if (IS_ERR(page)) {
4643d67e
MK
4366 /*
4367 * Returning error will result in faulting task being
4368 * sent SIGBUS. The hugetlb fault mutex prevents two
4369 * tasks from racing to fault in the same page which
4370 * could result in false unable to allocate errors.
4371 * Page migration does not take the fault mutex, but
4372 * does a clear then write of pte's under page table
4373 * lock. Page fault code could race with migration,
4374 * notice the clear pte and try to allocate a page
4375 * here. Before returning error, get ptl and make
4376 * sure there really is no pte entry.
4377 */
4378 ptl = huge_pte_lock(h, mm, ptep);
4379 if (!huge_pte_none(huge_ptep_get(ptep))) {
4380 ret = 0;
4381 spin_unlock(ptl);
4382 goto out;
4383 }
4384 spin_unlock(ptl);
2b740303 4385 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
4386 goto out;
4387 }
47ad8475 4388 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4389 __SetPageUptodate(page);
cb6acd01 4390 new_page = true;
ac9b9c66 4391
f83a275d 4392 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4393 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4394 if (err) {
4395 put_page(page);
6bda666a
CL
4396 if (err == -EEXIST)
4397 goto retry;
4398 goto out;
4399 }
23be7468 4400 } else {
6bda666a 4401 lock_page(page);
0fe6e20b
NH
4402 if (unlikely(anon_vma_prepare(vma))) {
4403 ret = VM_FAULT_OOM;
4404 goto backout_unlocked;
4405 }
409eb8c2 4406 anon_rmap = 1;
23be7468 4407 }
0fe6e20b 4408 } else {
998b4382
NH
4409 /*
4410 * If memory error occurs between mmap() and fault, some process
4411 * don't have hwpoisoned swap entry for errored virtual address.
4412 * So we need to block hugepage fault by PG_hwpoison bit check.
4413 */
4414 if (unlikely(PageHWPoison(page))) {
0eb98f15 4415 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4416 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4417 goto backout_unlocked;
4418 }
6bda666a 4419 }
1e8f889b 4420
57303d80
AW
4421 /*
4422 * If we are going to COW a private mapping later, we examine the
4423 * pending reservations for this page now. This will ensure that
4424 * any allocations necessary to record that reservation occur outside
4425 * the spinlock.
4426 */
5e911373 4427 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4428 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4429 ret = VM_FAULT_OOM;
4430 goto backout_unlocked;
4431 }
5e911373 4432 /* Just decrements count, does not deallocate */
285b8dca 4433 vma_end_reservation(h, vma, haddr);
5e911373 4434 }
57303d80 4435
8bea8052 4436 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4437 ret = 0;
7f2e9525 4438 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4439 goto backout;
4440
07443a85
JK
4441 if (anon_rmap) {
4442 ClearPagePrivate(page);
285b8dca 4443 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4444 } else
53f9263b 4445 page_dup_rmap(page, true);
1e8f889b
DG
4446 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4447 && (vma->vm_flags & VM_SHARED)));
285b8dca 4448 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4449
5d317b2b 4450 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4451 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4452 /* Optimization, do the COW without a second fault */
974e6d66 4453 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4454 }
4455
cb900f41 4456 spin_unlock(ptl);
cb6acd01
MK
4457
4458 /*
4459 * Only make newly allocated pages active. Existing pages found
4460 * in the pagecache could be !page_huge_active() if they have been
4461 * isolated for migration.
4462 */
4463 if (new_page)
4464 set_page_huge_active(page);
4465
4c887265
AL
4466 unlock_page(page);
4467out:
ac9b9c66 4468 return ret;
4c887265
AL
4469
4470backout:
cb900f41 4471 spin_unlock(ptl);
2b26736c 4472backout_unlocked:
4c887265 4473 unlock_page(page);
285b8dca 4474 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4475 put_page(page);
4476 goto out;
ac9b9c66
HD
4477}
4478
8382d914 4479#ifdef CONFIG_SMP
188b04a7 4480u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4481{
4482 unsigned long key[2];
4483 u32 hash;
4484
1b426bac
MK
4485 key[0] = (unsigned long) mapping;
4486 key[1] = idx;
8382d914 4487
55254636 4488 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4489
4490 return hash & (num_fault_mutexes - 1);
4491}
4492#else
4493/*
4494 * For uniprocesor systems we always use a single mutex, so just
4495 * return 0 and avoid the hashing overhead.
4496 */
188b04a7 4497u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4498{
4499 return 0;
4500}
4501#endif
4502
2b740303 4503vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4504 unsigned long address, unsigned int flags)
86e5216f 4505{
8382d914 4506 pte_t *ptep, entry;
cb900f41 4507 spinlock_t *ptl;
2b740303 4508 vm_fault_t ret;
8382d914
DB
4509 u32 hash;
4510 pgoff_t idx;
0fe6e20b 4511 struct page *page = NULL;
57303d80 4512 struct page *pagecache_page = NULL;
a5516438 4513 struct hstate *h = hstate_vma(vma);
8382d914 4514 struct address_space *mapping;
0f792cf9 4515 int need_wait_lock = 0;
285b8dca 4516 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4517
285b8dca 4518 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4519 if (ptep) {
c0d0381a
MK
4520 /*
4521 * Since we hold no locks, ptep could be stale. That is
4522 * OK as we are only making decisions based on content and
4523 * not actually modifying content here.
4524 */
fd6a03ed 4525 entry = huge_ptep_get(ptep);
290408d4 4526 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4527 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4528 return 0;
4529 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4530 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4531 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4532 }
4533
c0d0381a
MK
4534 /*
4535 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4536 * until finished with ptep. This serves two purposes:
4537 * 1) It prevents huge_pmd_unshare from being called elsewhere
4538 * and making the ptep no longer valid.
4539 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4540 *
4541 * ptep could have already be assigned via huge_pte_offset. That
4542 * is OK, as huge_pte_alloc will return the same value unless
4543 * something has changed.
4544 */
8382d914 4545 mapping = vma->vm_file->f_mapping;
c0d0381a
MK
4546 i_mmap_lock_read(mapping);
4547 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4548 if (!ptep) {
4549 i_mmap_unlock_read(mapping);
4550 return VM_FAULT_OOM;
4551 }
8382d914 4552
3935baa9
DG
4553 /*
4554 * Serialize hugepage allocation and instantiation, so that we don't
4555 * get spurious allocation failures if two CPUs race to instantiate
4556 * the same page in the page cache.
4557 */
c0d0381a 4558 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4559 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4560 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4561
7f2e9525
GS
4562 entry = huge_ptep_get(ptep);
4563 if (huge_pte_none(entry)) {
8382d914 4564 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4565 goto out_mutex;
3935baa9 4566 }
86e5216f 4567
83c54070 4568 ret = 0;
1e8f889b 4569
0f792cf9
NH
4570 /*
4571 * entry could be a migration/hwpoison entry at this point, so this
4572 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4573 * an active hugepage in pagecache. This goto expects the 2nd page
4574 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4575 * properly handle it.
0f792cf9
NH
4576 */
4577 if (!pte_present(entry))
4578 goto out_mutex;
4579
57303d80
AW
4580 /*
4581 * If we are going to COW the mapping later, we examine the pending
4582 * reservations for this page now. This will ensure that any
4583 * allocations necessary to record that reservation occur outside the
4584 * spinlock. For private mappings, we also lookup the pagecache
4585 * page now as it is used to determine if a reservation has been
4586 * consumed.
4587 */
106c992a 4588 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4589 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4590 ret = VM_FAULT_OOM;
b4d1d99f 4591 goto out_mutex;
2b26736c 4592 }
5e911373 4593 /* Just decrements count, does not deallocate */
285b8dca 4594 vma_end_reservation(h, vma, haddr);
57303d80 4595
f83a275d 4596 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4597 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4598 vma, haddr);
57303d80
AW
4599 }
4600
0f792cf9
NH
4601 ptl = huge_pte_lock(h, mm, ptep);
4602
4603 /* Check for a racing update before calling hugetlb_cow */
4604 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4605 goto out_ptl;
4606
56c9cfb1
NH
4607 /*
4608 * hugetlb_cow() requires page locks of pte_page(entry) and
4609 * pagecache_page, so here we need take the former one
4610 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4611 */
4612 page = pte_page(entry);
4613 if (page != pagecache_page)
0f792cf9
NH
4614 if (!trylock_page(page)) {
4615 need_wait_lock = 1;
4616 goto out_ptl;
4617 }
b4d1d99f 4618
0f792cf9 4619 get_page(page);
b4d1d99f 4620
788c7df4 4621 if (flags & FAULT_FLAG_WRITE) {
106c992a 4622 if (!huge_pte_write(entry)) {
974e6d66 4623 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4624 pagecache_page, ptl);
0f792cf9 4625 goto out_put_page;
b4d1d99f 4626 }
106c992a 4627 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4628 }
4629 entry = pte_mkyoung(entry);
285b8dca 4630 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4631 flags & FAULT_FLAG_WRITE))
285b8dca 4632 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4633out_put_page:
4634 if (page != pagecache_page)
4635 unlock_page(page);
4636 put_page(page);
cb900f41
KS
4637out_ptl:
4638 spin_unlock(ptl);
57303d80
AW
4639
4640 if (pagecache_page) {
4641 unlock_page(pagecache_page);
4642 put_page(pagecache_page);
4643 }
b4d1d99f 4644out_mutex:
c672c7f2 4645 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4646 i_mmap_unlock_read(mapping);
0f792cf9
NH
4647 /*
4648 * Generally it's safe to hold refcount during waiting page lock. But
4649 * here we just wait to defer the next page fault to avoid busy loop and
4650 * the page is not used after unlocked before returning from the current
4651 * page fault. So we are safe from accessing freed page, even if we wait
4652 * here without taking refcount.
4653 */
4654 if (need_wait_lock)
4655 wait_on_page_locked(page);
1e8f889b 4656 return ret;
86e5216f
AL
4657}
4658
8fb5debc
MK
4659/*
4660 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4661 * modifications for huge pages.
4662 */
4663int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4664 pte_t *dst_pte,
4665 struct vm_area_struct *dst_vma,
4666 unsigned long dst_addr,
4667 unsigned long src_addr,
4668 struct page **pagep)
4669{
1e392147
AA
4670 struct address_space *mapping;
4671 pgoff_t idx;
4672 unsigned long size;
1c9e8def 4673 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4674 struct hstate *h = hstate_vma(dst_vma);
4675 pte_t _dst_pte;
4676 spinlock_t *ptl;
4677 int ret;
4678 struct page *page;
4679
4680 if (!*pagep) {
4681 ret = -ENOMEM;
4682 page = alloc_huge_page(dst_vma, dst_addr, 0);
4683 if (IS_ERR(page))
4684 goto out;
4685
4686 ret = copy_huge_page_from_user(page,
4687 (const void __user *) src_addr,
810a56b9 4688 pages_per_huge_page(h), false);
8fb5debc 4689
c1e8d7c6 4690 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 4691 if (unlikely(ret)) {
9e368259 4692 ret = -ENOENT;
8fb5debc
MK
4693 *pagep = page;
4694 /* don't free the page */
4695 goto out;
4696 }
4697 } else {
4698 page = *pagep;
4699 *pagep = NULL;
4700 }
4701
4702 /*
4703 * The memory barrier inside __SetPageUptodate makes sure that
4704 * preceding stores to the page contents become visible before
4705 * the set_pte_at() write.
4706 */
4707 __SetPageUptodate(page);
8fb5debc 4708
1e392147
AA
4709 mapping = dst_vma->vm_file->f_mapping;
4710 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4711
1c9e8def
MK
4712 /*
4713 * If shared, add to page cache
4714 */
4715 if (vm_shared) {
1e392147
AA
4716 size = i_size_read(mapping->host) >> huge_page_shift(h);
4717 ret = -EFAULT;
4718 if (idx >= size)
4719 goto out_release_nounlock;
1c9e8def 4720
1e392147
AA
4721 /*
4722 * Serialization between remove_inode_hugepages() and
4723 * huge_add_to_page_cache() below happens through the
4724 * hugetlb_fault_mutex_table that here must be hold by
4725 * the caller.
4726 */
1c9e8def
MK
4727 ret = huge_add_to_page_cache(page, mapping, idx);
4728 if (ret)
4729 goto out_release_nounlock;
4730 }
4731
8fb5debc
MK
4732 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4733 spin_lock(ptl);
4734
1e392147
AA
4735 /*
4736 * Recheck the i_size after holding PT lock to make sure not
4737 * to leave any page mapped (as page_mapped()) beyond the end
4738 * of the i_size (remove_inode_hugepages() is strict about
4739 * enforcing that). If we bail out here, we'll also leave a
4740 * page in the radix tree in the vm_shared case beyond the end
4741 * of the i_size, but remove_inode_hugepages() will take care
4742 * of it as soon as we drop the hugetlb_fault_mutex_table.
4743 */
4744 size = i_size_read(mapping->host) >> huge_page_shift(h);
4745 ret = -EFAULT;
4746 if (idx >= size)
4747 goto out_release_unlock;
4748
8fb5debc
MK
4749 ret = -EEXIST;
4750 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4751 goto out_release_unlock;
4752
1c9e8def
MK
4753 if (vm_shared) {
4754 page_dup_rmap(page, true);
4755 } else {
4756 ClearPagePrivate(page);
4757 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4758 }
8fb5debc
MK
4759
4760 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4761 if (dst_vma->vm_flags & VM_WRITE)
4762 _dst_pte = huge_pte_mkdirty(_dst_pte);
4763 _dst_pte = pte_mkyoung(_dst_pte);
4764
4765 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4766
4767 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4768 dst_vma->vm_flags & VM_WRITE);
4769 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4770
4771 /* No need to invalidate - it was non-present before */
4772 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4773
4774 spin_unlock(ptl);
cb6acd01 4775 set_page_huge_active(page);
1c9e8def
MK
4776 if (vm_shared)
4777 unlock_page(page);
8fb5debc
MK
4778 ret = 0;
4779out:
4780 return ret;
4781out_release_unlock:
4782 spin_unlock(ptl);
1c9e8def
MK
4783 if (vm_shared)
4784 unlock_page(page);
5af10dfd 4785out_release_nounlock:
8fb5debc
MK
4786 put_page(page);
4787 goto out;
4788}
4789
82e5d378
JM
4790static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4791 int refs, struct page **pages,
4792 struct vm_area_struct **vmas)
4793{
4794 int nr;
4795
4796 for (nr = 0; nr < refs; nr++) {
4797 if (likely(pages))
4798 pages[nr] = mem_map_offset(page, nr);
4799 if (vmas)
4800 vmas[nr] = vma;
4801 }
4802}
4803
28a35716
ML
4804long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4805 struct page **pages, struct vm_area_struct **vmas,
4806 unsigned long *position, unsigned long *nr_pages,
4f6da934 4807 long i, unsigned int flags, int *locked)
63551ae0 4808{
d5d4b0aa
KC
4809 unsigned long pfn_offset;
4810 unsigned long vaddr = *position;
28a35716 4811 unsigned long remainder = *nr_pages;
a5516438 4812 struct hstate *h = hstate_vma(vma);
0fa5bc40 4813 int err = -EFAULT, refs;
63551ae0 4814
63551ae0 4815 while (vaddr < vma->vm_end && remainder) {
4c887265 4816 pte_t *pte;
cb900f41 4817 spinlock_t *ptl = NULL;
2a15efc9 4818 int absent;
4c887265 4819 struct page *page;
63551ae0 4820
02057967
DR
4821 /*
4822 * If we have a pending SIGKILL, don't keep faulting pages and
4823 * potentially allocating memory.
4824 */
fa45f116 4825 if (fatal_signal_pending(current)) {
02057967
DR
4826 remainder = 0;
4827 break;
4828 }
4829
4c887265
AL
4830 /*
4831 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4832 * each hugepage. We have to make sure we get the
4c887265 4833 * first, for the page indexing below to work.
cb900f41
KS
4834 *
4835 * Note that page table lock is not held when pte is null.
4c887265 4836 */
7868a208
PA
4837 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4838 huge_page_size(h));
cb900f41
KS
4839 if (pte)
4840 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4841 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4842
4843 /*
4844 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4845 * an error where there's an empty slot with no huge pagecache
4846 * to back it. This way, we avoid allocating a hugepage, and
4847 * the sparse dumpfile avoids allocating disk blocks, but its
4848 * huge holes still show up with zeroes where they need to be.
2a15efc9 4849 */
3ae77f43
HD
4850 if (absent && (flags & FOLL_DUMP) &&
4851 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4852 if (pte)
4853 spin_unlock(ptl);
2a15efc9
HD
4854 remainder = 0;
4855 break;
4856 }
63551ae0 4857
9cc3a5bd
NH
4858 /*
4859 * We need call hugetlb_fault for both hugepages under migration
4860 * (in which case hugetlb_fault waits for the migration,) and
4861 * hwpoisoned hugepages (in which case we need to prevent the
4862 * caller from accessing to them.) In order to do this, we use
4863 * here is_swap_pte instead of is_hugetlb_entry_migration and
4864 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4865 * both cases, and because we can't follow correct pages
4866 * directly from any kind of swap entries.
4867 */
4868 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4869 ((flags & FOLL_WRITE) &&
4870 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4871 vm_fault_t ret;
87ffc118 4872 unsigned int fault_flags = 0;
63551ae0 4873
cb900f41
KS
4874 if (pte)
4875 spin_unlock(ptl);
87ffc118
AA
4876 if (flags & FOLL_WRITE)
4877 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4878 if (locked)
71335f37
PX
4879 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4880 FAULT_FLAG_KILLABLE;
87ffc118
AA
4881 if (flags & FOLL_NOWAIT)
4882 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4883 FAULT_FLAG_RETRY_NOWAIT;
4884 if (flags & FOLL_TRIED) {
4426e945
PX
4885 /*
4886 * Note: FAULT_FLAG_ALLOW_RETRY and
4887 * FAULT_FLAG_TRIED can co-exist
4888 */
87ffc118
AA
4889 fault_flags |= FAULT_FLAG_TRIED;
4890 }
4891 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4892 if (ret & VM_FAULT_ERROR) {
2be7cfed 4893 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4894 remainder = 0;
4895 break;
4896 }
4897 if (ret & VM_FAULT_RETRY) {
4f6da934 4898 if (locked &&
1ac25013 4899 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4900 *locked = 0;
87ffc118
AA
4901 *nr_pages = 0;
4902 /*
4903 * VM_FAULT_RETRY must not return an
4904 * error, it will return zero
4905 * instead.
4906 *
4907 * No need to update "position" as the
4908 * caller will not check it after
4909 * *nr_pages is set to 0.
4910 */
4911 return i;
4912 }
4913 continue;
4c887265
AL
4914 }
4915
a5516438 4916 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4917 page = pte_page(huge_ptep_get(pte));
8fde12ca 4918
acbfb087
ZL
4919 /*
4920 * If subpage information not requested, update counters
4921 * and skip the same_page loop below.
4922 */
4923 if (!pages && !vmas && !pfn_offset &&
4924 (vaddr + huge_page_size(h) < vma->vm_end) &&
4925 (remainder >= pages_per_huge_page(h))) {
4926 vaddr += huge_page_size(h);
4927 remainder -= pages_per_huge_page(h);
4928 i += pages_per_huge_page(h);
4929 spin_unlock(ptl);
4930 continue;
4931 }
4932
82e5d378
JM
4933 refs = min3(pages_per_huge_page(h) - pfn_offset,
4934 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
0fa5bc40 4935
82e5d378
JM
4936 if (pages || vmas)
4937 record_subpages_vmas(mem_map_offset(page, pfn_offset),
4938 vma, refs,
4939 likely(pages) ? pages + i : NULL,
4940 vmas ? vmas + i : NULL);
63551ae0 4941
82e5d378 4942 if (pages) {
0fa5bc40
JM
4943 /*
4944 * try_grab_compound_head() should always succeed here,
4945 * because: a) we hold the ptl lock, and b) we've just
4946 * checked that the huge page is present in the page
4947 * tables. If the huge page is present, then the tail
4948 * pages must also be present. The ptl prevents the
4949 * head page and tail pages from being rearranged in
4950 * any way. So this page must be available at this
4951 * point, unless the page refcount overflowed:
4952 */
82e5d378 4953 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
4954 refs,
4955 flags))) {
4956 spin_unlock(ptl);
4957 remainder = 0;
4958 err = -ENOMEM;
4959 break;
4960 }
d5d4b0aa 4961 }
82e5d378
JM
4962
4963 vaddr += (refs << PAGE_SHIFT);
4964 remainder -= refs;
4965 i += refs;
4966
cb900f41 4967 spin_unlock(ptl);
63551ae0 4968 }
28a35716 4969 *nr_pages = remainder;
87ffc118
AA
4970 /*
4971 * setting position is actually required only if remainder is
4972 * not zero but it's faster not to add a "if (remainder)"
4973 * branch.
4974 */
63551ae0
DG
4975 *position = vaddr;
4976
2be7cfed 4977 return i ? i : err;
63551ae0 4978}
8f860591 4979
5491ae7b
AK
4980#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4981/*
4982 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4983 * implement this.
4984 */
4985#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4986#endif
4987
7da4d641 4988unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4989 unsigned long address, unsigned long end, pgprot_t newprot)
4990{
4991 struct mm_struct *mm = vma->vm_mm;
4992 unsigned long start = address;
4993 pte_t *ptep;
4994 pte_t pte;
a5516438 4995 struct hstate *h = hstate_vma(vma);
7da4d641 4996 unsigned long pages = 0;
dff11abe 4997 bool shared_pmd = false;
ac46d4f3 4998 struct mmu_notifier_range range;
dff11abe
MK
4999
5000 /*
5001 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5002 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5003 * range if PMD sharing is possible.
5004 */
7269f999
JG
5005 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5006 0, vma, mm, start, end);
ac46d4f3 5007 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5008
5009 BUG_ON(address >= end);
ac46d4f3 5010 flush_cache_range(vma, range.start, range.end);
8f860591 5011
ac46d4f3 5012 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5013 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5014 for (; address < end; address += huge_page_size(h)) {
cb900f41 5015 spinlock_t *ptl;
7868a208 5016 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5017 if (!ptep)
5018 continue;
cb900f41 5019 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5020 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5021 pages++;
cb900f41 5022 spin_unlock(ptl);
dff11abe 5023 shared_pmd = true;
39dde65c 5024 continue;
7da4d641 5025 }
a8bda28d
NH
5026 pte = huge_ptep_get(ptep);
5027 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5028 spin_unlock(ptl);
5029 continue;
5030 }
5031 if (unlikely(is_hugetlb_entry_migration(pte))) {
5032 swp_entry_t entry = pte_to_swp_entry(pte);
5033
5034 if (is_write_migration_entry(entry)) {
5035 pte_t newpte;
5036
5037 make_migration_entry_read(&entry);
5038 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5039 set_huge_swap_pte_at(mm, address, ptep,
5040 newpte, huge_page_size(h));
a8bda28d
NH
5041 pages++;
5042 }
5043 spin_unlock(ptl);
5044 continue;
5045 }
5046 if (!huge_pte_none(pte)) {
023bdd00
AK
5047 pte_t old_pte;
5048
5049 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5050 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5051 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5052 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5053 pages++;
8f860591 5054 }
cb900f41 5055 spin_unlock(ptl);
8f860591 5056 }
d833352a 5057 /*
c8c06efa 5058 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5059 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5060 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5061 * and that page table be reused and filled with junk. If we actually
5062 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5063 */
dff11abe 5064 if (shared_pmd)
ac46d4f3 5065 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5066 else
5067 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5068 /*
5069 * No need to call mmu_notifier_invalidate_range() we are downgrading
5070 * page table protection not changing it to point to a new page.
5071 *
ad56b738 5072 * See Documentation/vm/mmu_notifier.rst
0f10851e 5073 */
83cde9e8 5074 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5075 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5076
5077 return pages << h->order;
8f860591
ZY
5078}
5079
a1e78772
MG
5080int hugetlb_reserve_pages(struct inode *inode,
5081 long from, long to,
5a6fe125 5082 struct vm_area_struct *vma,
ca16d140 5083 vm_flags_t vm_flags)
e4e574b7 5084{
0db9d74e 5085 long ret, chg, add = -1;
a5516438 5086 struct hstate *h = hstate_inode(inode);
90481622 5087 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5088 struct resv_map *resv_map;
075a61d0 5089 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5090 long gbl_reserve, regions_needed = 0;
e4e574b7 5091
63489f8e
MK
5092 /* This should never happen */
5093 if (from > to) {
5094 VM_WARN(1, "%s called with a negative range\n", __func__);
5095 return -EINVAL;
5096 }
5097
17c9d12e
MG
5098 /*
5099 * Only apply hugepage reservation if asked. At fault time, an
5100 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5101 * without using reserves
17c9d12e 5102 */
ca16d140 5103 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
5104 return 0;
5105
a1e78772
MG
5106 /*
5107 * Shared mappings base their reservation on the number of pages that
5108 * are already allocated on behalf of the file. Private mappings need
5109 * to reserve the full area even if read-only as mprotect() may be
5110 * called to make the mapping read-write. Assume !vma is a shm mapping
5111 */
9119a41e 5112 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5113 /*
5114 * resv_map can not be NULL as hugetlb_reserve_pages is only
5115 * called for inodes for which resv_maps were created (see
5116 * hugetlbfs_get_inode).
5117 */
4e35f483 5118 resv_map = inode_resv_map(inode);
9119a41e 5119
0db9d74e 5120 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5121
5122 } else {
e9fe92ae 5123 /* Private mapping. */
9119a41e 5124 resv_map = resv_map_alloc();
17c9d12e
MG
5125 if (!resv_map)
5126 return -ENOMEM;
5127
a1e78772 5128 chg = to - from;
84afd99b 5129
17c9d12e
MG
5130 set_vma_resv_map(vma, resv_map);
5131 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5132 }
5133
c50ac050
DH
5134 if (chg < 0) {
5135 ret = chg;
5136 goto out_err;
5137 }
8a630112 5138
075a61d0
MA
5139 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5140 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5141
5142 if (ret < 0) {
5143 ret = -ENOMEM;
5144 goto out_err;
5145 }
5146
5147 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5148 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5149 * of the resv_map.
5150 */
5151 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5152 }
5153
1c5ecae3
MK
5154 /*
5155 * There must be enough pages in the subpool for the mapping. If
5156 * the subpool has a minimum size, there may be some global
5157 * reservations already in place (gbl_reserve).
5158 */
5159 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5160 if (gbl_reserve < 0) {
c50ac050 5161 ret = -ENOSPC;
075a61d0 5162 goto out_uncharge_cgroup;
c50ac050 5163 }
5a6fe125
MG
5164
5165 /*
17c9d12e 5166 * Check enough hugepages are available for the reservation.
90481622 5167 * Hand the pages back to the subpool if there are not
5a6fe125 5168 */
1c5ecae3 5169 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 5170 if (ret < 0) {
075a61d0 5171 goto out_put_pages;
68842c9b 5172 }
17c9d12e
MG
5173
5174 /*
5175 * Account for the reservations made. Shared mappings record regions
5176 * that have reservations as they are shared by multiple VMAs.
5177 * When the last VMA disappears, the region map says how much
5178 * the reservation was and the page cache tells how much of
5179 * the reservation was consumed. Private mappings are per-VMA and
5180 * only the consumed reservations are tracked. When the VMA
5181 * disappears, the original reservation is the VMA size and the
5182 * consumed reservations are stored in the map. Hence, nothing
5183 * else has to be done for private mappings here
5184 */
33039678 5185 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5186 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5187
5188 if (unlikely(add < 0)) {
5189 hugetlb_acct_memory(h, -gbl_reserve);
7fc2513a 5190 ret = add;
075a61d0 5191 goto out_put_pages;
0db9d74e 5192 } else if (unlikely(chg > add)) {
33039678
MK
5193 /*
5194 * pages in this range were added to the reserve
5195 * map between region_chg and region_add. This
5196 * indicates a race with alloc_huge_page. Adjust
5197 * the subpool and reserve counts modified above
5198 * based on the difference.
5199 */
5200 long rsv_adjust;
5201
075a61d0
MA
5202 hugetlb_cgroup_uncharge_cgroup_rsvd(
5203 hstate_index(h),
5204 (chg - add) * pages_per_huge_page(h), h_cg);
5205
33039678
MK
5206 rsv_adjust = hugepage_subpool_put_pages(spool,
5207 chg - add);
5208 hugetlb_acct_memory(h, -rsv_adjust);
5209 }
5210 }
a43a8c39 5211 return 0;
075a61d0
MA
5212out_put_pages:
5213 /* put back original number of pages, chg */
5214 (void)hugepage_subpool_put_pages(spool, chg);
5215out_uncharge_cgroup:
5216 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5217 chg * pages_per_huge_page(h), h_cg);
c50ac050 5218out_err:
5e911373 5219 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5220 /* Only call region_abort if the region_chg succeeded but the
5221 * region_add failed or didn't run.
5222 */
5223 if (chg >= 0 && add < 0)
5224 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5225 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5226 kref_put(&resv_map->refs, resv_map_release);
c50ac050 5227 return ret;
a43a8c39
KC
5228}
5229
b5cec28d
MK
5230long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5231 long freed)
a43a8c39 5232{
a5516438 5233 struct hstate *h = hstate_inode(inode);
4e35f483 5234 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5235 long chg = 0;
90481622 5236 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5237 long gbl_reserve;
45c682a6 5238
f27a5136
MK
5239 /*
5240 * Since this routine can be called in the evict inode path for all
5241 * hugetlbfs inodes, resv_map could be NULL.
5242 */
b5cec28d
MK
5243 if (resv_map) {
5244 chg = region_del(resv_map, start, end);
5245 /*
5246 * region_del() can fail in the rare case where a region
5247 * must be split and another region descriptor can not be
5248 * allocated. If end == LONG_MAX, it will not fail.
5249 */
5250 if (chg < 0)
5251 return chg;
5252 }
5253
45c682a6 5254 spin_lock(&inode->i_lock);
e4c6f8be 5255 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5256 spin_unlock(&inode->i_lock);
5257
1c5ecae3
MK
5258 /*
5259 * If the subpool has a minimum size, the number of global
5260 * reservations to be released may be adjusted.
5261 */
5262 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5263 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5264
5265 return 0;
a43a8c39 5266}
93f70f90 5267
3212b535
SC
5268#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5269static unsigned long page_table_shareable(struct vm_area_struct *svma,
5270 struct vm_area_struct *vma,
5271 unsigned long addr, pgoff_t idx)
5272{
5273 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5274 svma->vm_start;
5275 unsigned long sbase = saddr & PUD_MASK;
5276 unsigned long s_end = sbase + PUD_SIZE;
5277
5278 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5279 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5280 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5281
5282 /*
5283 * match the virtual addresses, permission and the alignment of the
5284 * page table page.
5285 */
5286 if (pmd_index(addr) != pmd_index(saddr) ||
5287 vm_flags != svm_flags ||
5288 sbase < svma->vm_start || svma->vm_end < s_end)
5289 return 0;
5290
5291 return saddr;
5292}
5293
31aafb45 5294static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5295{
5296 unsigned long base = addr & PUD_MASK;
5297 unsigned long end = base + PUD_SIZE;
5298
5299 /*
5300 * check on proper vm_flags and page table alignment
5301 */
017b1660 5302 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5303 return true;
5304 return false;
3212b535
SC
5305}
5306
017b1660
MK
5307/*
5308 * Determine if start,end range within vma could be mapped by shared pmd.
5309 * If yes, adjust start and end to cover range associated with possible
5310 * shared pmd mappings.
5311 */
5312void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5313 unsigned long *start, unsigned long *end)
5314{
a1ba9da8
LX
5315 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5316 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5317
a1ba9da8
LX
5318 /*
5319 * vma need span at least one aligned PUD size and the start,end range
5320 * must at least partialy within it.
5321 */
5322 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5323 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5324 return;
5325
75802ca6 5326 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
5327 if (*start > v_start)
5328 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5329
a1ba9da8
LX
5330 if (*end < v_end)
5331 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5332}
5333
3212b535
SC
5334/*
5335 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5336 * and returns the corresponding pte. While this is not necessary for the
5337 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5338 * code much cleaner.
5339 *
0bf7b64e
MK
5340 * This routine must be called with i_mmap_rwsem held in at least read mode if
5341 * sharing is possible. For hugetlbfs, this prevents removal of any page
5342 * table entries associated with the address space. This is important as we
5343 * are setting up sharing based on existing page table entries (mappings).
5344 *
5345 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5346 * huge_pte_alloc know that sharing is not possible and do not take
5347 * i_mmap_rwsem as a performance optimization. This is handled by the
5348 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5349 * only required for subsequent processing.
3212b535
SC
5350 */
5351pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5352{
5353 struct vm_area_struct *vma = find_vma(mm, addr);
5354 struct address_space *mapping = vma->vm_file->f_mapping;
5355 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5356 vma->vm_pgoff;
5357 struct vm_area_struct *svma;
5358 unsigned long saddr;
5359 pte_t *spte = NULL;
5360 pte_t *pte;
cb900f41 5361 spinlock_t *ptl;
3212b535
SC
5362
5363 if (!vma_shareable(vma, addr))
5364 return (pte_t *)pmd_alloc(mm, pud, addr);
5365
0bf7b64e 5366 i_mmap_assert_locked(mapping);
3212b535
SC
5367 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5368 if (svma == vma)
5369 continue;
5370
5371 saddr = page_table_shareable(svma, vma, addr, idx);
5372 if (saddr) {
7868a208
PA
5373 spte = huge_pte_offset(svma->vm_mm, saddr,
5374 vma_mmu_pagesize(svma));
3212b535
SC
5375 if (spte) {
5376 get_page(virt_to_page(spte));
5377 break;
5378 }
5379 }
5380 }
5381
5382 if (!spte)
5383 goto out;
5384
8bea8052 5385 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5386 if (pud_none(*pud)) {
3212b535
SC
5387 pud_populate(mm, pud,
5388 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5389 mm_inc_nr_pmds(mm);
dc6c9a35 5390 } else {
3212b535 5391 put_page(virt_to_page(spte));
dc6c9a35 5392 }
cb900f41 5393 spin_unlock(ptl);
3212b535
SC
5394out:
5395 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5396 return pte;
5397}
5398
5399/*
5400 * unmap huge page backed by shared pte.
5401 *
5402 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5403 * indicated by page_count > 1, unmap is achieved by clearing pud and
5404 * decrementing the ref count. If count == 1, the pte page is not shared.
5405 *
c0d0381a 5406 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5407 *
5408 * returns: 1 successfully unmapped a shared pte page
5409 * 0 the underlying pte page is not shared, or it is the last user
5410 */
34ae204f
MK
5411int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5412 unsigned long *addr, pte_t *ptep)
3212b535
SC
5413{
5414 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5415 p4d_t *p4d = p4d_offset(pgd, *addr);
5416 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5417
34ae204f 5418 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5419 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5420 if (page_count(virt_to_page(ptep)) == 1)
5421 return 0;
5422
5423 pud_clear(pud);
5424 put_page(virt_to_page(ptep));
dc6c9a35 5425 mm_dec_nr_pmds(mm);
3212b535
SC
5426 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5427 return 1;
5428}
9e5fc74c
SC
5429#define want_pmd_share() (1)
5430#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5431pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5432{
5433 return NULL;
5434}
e81f2d22 5435
34ae204f
MK
5436int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5437 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5438{
5439 return 0;
5440}
017b1660
MK
5441
5442void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5443 unsigned long *start, unsigned long *end)
5444{
5445}
9e5fc74c 5446#define want_pmd_share() (0)
3212b535
SC
5447#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5448
9e5fc74c
SC
5449#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5450pte_t *huge_pte_alloc(struct mm_struct *mm,
5451 unsigned long addr, unsigned long sz)
5452{
5453 pgd_t *pgd;
c2febafc 5454 p4d_t *p4d;
9e5fc74c
SC
5455 pud_t *pud;
5456 pte_t *pte = NULL;
5457
5458 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5459 p4d = p4d_alloc(mm, pgd, addr);
5460 if (!p4d)
5461 return NULL;
c2febafc 5462 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5463 if (pud) {
5464 if (sz == PUD_SIZE) {
5465 pte = (pte_t *)pud;
5466 } else {
5467 BUG_ON(sz != PMD_SIZE);
5468 if (want_pmd_share() && pud_none(*pud))
5469 pte = huge_pmd_share(mm, addr, pud);
5470 else
5471 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5472 }
5473 }
4e666314 5474 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5475
5476 return pte;
5477}
5478
9b19df29
PA
5479/*
5480 * huge_pte_offset() - Walk the page table to resolve the hugepage
5481 * entry at address @addr
5482 *
8ac0b81a
LX
5483 * Return: Pointer to page table entry (PUD or PMD) for
5484 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5485 * size @sz doesn't match the hugepage size at this level of the page
5486 * table.
5487 */
7868a208
PA
5488pte_t *huge_pte_offset(struct mm_struct *mm,
5489 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5490{
5491 pgd_t *pgd;
c2febafc 5492 p4d_t *p4d;
8ac0b81a
LX
5493 pud_t *pud;
5494 pmd_t *pmd;
9e5fc74c
SC
5495
5496 pgd = pgd_offset(mm, addr);
c2febafc
KS
5497 if (!pgd_present(*pgd))
5498 return NULL;
5499 p4d = p4d_offset(pgd, addr);
5500 if (!p4d_present(*p4d))
5501 return NULL;
9b19df29 5502
c2febafc 5503 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5504 if (sz == PUD_SIZE)
5505 /* must be pud huge, non-present or none */
c2febafc 5506 return (pte_t *)pud;
8ac0b81a 5507 if (!pud_present(*pud))
9b19df29 5508 return NULL;
8ac0b81a 5509 /* must have a valid entry and size to go further */
9b19df29 5510
8ac0b81a
LX
5511 pmd = pmd_offset(pud, addr);
5512 /* must be pmd huge, non-present or none */
5513 return (pte_t *)pmd;
9e5fc74c
SC
5514}
5515
61f77eda
NH
5516#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5517
5518/*
5519 * These functions are overwritable if your architecture needs its own
5520 * behavior.
5521 */
5522struct page * __weak
5523follow_huge_addr(struct mm_struct *mm, unsigned long address,
5524 int write)
5525{
5526 return ERR_PTR(-EINVAL);
5527}
5528
4dc71451
AK
5529struct page * __weak
5530follow_huge_pd(struct vm_area_struct *vma,
5531 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5532{
5533 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5534 return NULL;
5535}
5536
61f77eda 5537struct page * __weak
9e5fc74c 5538follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5539 pmd_t *pmd, int flags)
9e5fc74c 5540{
e66f17ff
NH
5541 struct page *page = NULL;
5542 spinlock_t *ptl;
c9d398fa 5543 pte_t pte;
3faa52c0
JH
5544
5545 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5546 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5547 (FOLL_PIN | FOLL_GET)))
5548 return NULL;
5549
e66f17ff
NH
5550retry:
5551 ptl = pmd_lockptr(mm, pmd);
5552 spin_lock(ptl);
5553 /*
5554 * make sure that the address range covered by this pmd is not
5555 * unmapped from other threads.
5556 */
5557 if (!pmd_huge(*pmd))
5558 goto out;
c9d398fa
NH
5559 pte = huge_ptep_get((pte_t *)pmd);
5560 if (pte_present(pte)) {
97534127 5561 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5562 /*
5563 * try_grab_page() should always succeed here, because: a) we
5564 * hold the pmd (ptl) lock, and b) we've just checked that the
5565 * huge pmd (head) page is present in the page tables. The ptl
5566 * prevents the head page and tail pages from being rearranged
5567 * in any way. So this page must be available at this point,
5568 * unless the page refcount overflowed:
5569 */
5570 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5571 page = NULL;
5572 goto out;
5573 }
e66f17ff 5574 } else {
c9d398fa 5575 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5576 spin_unlock(ptl);
5577 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5578 goto retry;
5579 }
5580 /*
5581 * hwpoisoned entry is treated as no_page_table in
5582 * follow_page_mask().
5583 */
5584 }
5585out:
5586 spin_unlock(ptl);
9e5fc74c
SC
5587 return page;
5588}
5589
61f77eda 5590struct page * __weak
9e5fc74c 5591follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5592 pud_t *pud, int flags)
9e5fc74c 5593{
3faa52c0 5594 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5595 return NULL;
9e5fc74c 5596
e66f17ff 5597 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5598}
5599
faaa5b62
AK
5600struct page * __weak
5601follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5602{
3faa52c0 5603 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5604 return NULL;
5605
5606 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5607}
5608
31caf665
NH
5609bool isolate_huge_page(struct page *page, struct list_head *list)
5610{
bcc54222
NH
5611 bool ret = true;
5612
31caf665 5613 spin_lock(&hugetlb_lock);
0eb2df2b
MS
5614 if (!PageHeadHuge(page) || !page_huge_active(page) ||
5615 !get_page_unless_zero(page)) {
bcc54222
NH
5616 ret = false;
5617 goto unlock;
5618 }
5619 clear_page_huge_active(page);
31caf665 5620 list_move_tail(&page->lru, list);
bcc54222 5621unlock:
31caf665 5622 spin_unlock(&hugetlb_lock);
bcc54222 5623 return ret;
31caf665
NH
5624}
5625
5626void putback_active_hugepage(struct page *page)
5627{
309381fe 5628 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5629 spin_lock(&hugetlb_lock);
bcc54222 5630 set_page_huge_active(page);
31caf665
NH
5631 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5632 spin_unlock(&hugetlb_lock);
5633 put_page(page);
5634}
ab5ac90a
MH
5635
5636void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5637{
5638 struct hstate *h = page_hstate(oldpage);
5639
5640 hugetlb_cgroup_migrate(oldpage, newpage);
5641 set_page_owner_migrate_reason(newpage, reason);
5642
5643 /*
5644 * transfer temporary state of the new huge page. This is
5645 * reverse to other transitions because the newpage is going to
5646 * be final while the old one will be freed so it takes over
5647 * the temporary status.
5648 *
5649 * Also note that we have to transfer the per-node surplus state
5650 * here as well otherwise the global surplus count will not match
5651 * the per-node's.
5652 */
5653 if (PageHugeTemporary(newpage)) {
5654 int old_nid = page_to_nid(oldpage);
5655 int new_nid = page_to_nid(newpage);
5656
5657 SetPageHugeTemporary(oldpage);
5658 ClearPageHugeTemporary(newpage);
5659
5660 spin_lock(&hugetlb_lock);
5661 if (h->surplus_huge_pages_node[old_nid]) {
5662 h->surplus_huge_pages_node[old_nid]--;
5663 h->surplus_huge_pages_node[new_nid]++;
5664 }
5665 spin_unlock(&hugetlb_lock);
5666 }
5667}
cf11e85f
RG
5668
5669#ifdef CONFIG_CMA
cf11e85f
RG
5670static bool cma_reserve_called __initdata;
5671
5672static int __init cmdline_parse_hugetlb_cma(char *p)
5673{
5674 hugetlb_cma_size = memparse(p, &p);
5675 return 0;
5676}
5677
5678early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5679
5680void __init hugetlb_cma_reserve(int order)
5681{
5682 unsigned long size, reserved, per_node;
5683 int nid;
5684
5685 cma_reserve_called = true;
5686
5687 if (!hugetlb_cma_size)
5688 return;
5689
5690 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5691 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5692 (PAGE_SIZE << order) / SZ_1M);
5693 return;
5694 }
5695
5696 /*
5697 * If 3 GB area is requested on a machine with 4 numa nodes,
5698 * let's allocate 1 GB on first three nodes and ignore the last one.
5699 */
5700 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5701 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5702 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5703
5704 reserved = 0;
5705 for_each_node_state(nid, N_ONLINE) {
5706 int res;
2281f797 5707 char name[CMA_MAX_NAME];
cf11e85f
RG
5708
5709 size = min(per_node, hugetlb_cma_size - reserved);
5710 size = round_up(size, PAGE_SIZE << order);
5711
2281f797 5712 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 5713 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 5714 0, false, name,
cf11e85f
RG
5715 &hugetlb_cma[nid], nid);
5716 if (res) {
5717 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5718 res, nid);
5719 continue;
5720 }
5721
5722 reserved += size;
5723 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5724 size / SZ_1M, nid);
5725
5726 if (reserved >= hugetlb_cma_size)
5727 break;
5728 }
5729}
5730
5731void __init hugetlb_cma_check(void)
5732{
5733 if (!hugetlb_cma_size || cma_reserve_called)
5734 return;
5735
5736 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5737}
5738
5739#endif /* CONFIG_CMA */