]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
mm/hugetlb: count file_region to be added when regions_needed != NULL
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
1a1aad8a 42#include <linux/userfaultfd_k.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
1da177e4 45
c3f38a38 46int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 49
dbda8fea 50#ifdef CONFIG_CMA
cf11e85f 51static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
52#endif
53static unsigned long hugetlb_cma_size __initdata;
cf11e85f 54
641844f5
NH
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 60
53ba51d2
JT
61__initdata LIST_HEAD(huge_boot_pages);
62
e5ff2159
AK
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 66static bool __initdata parsed_valid_hugepagesz = true;
282f4214 67static bool __initdata parsed_default_hugepagesz;
e5ff2159 68
3935baa9 69/*
31caf665
NH
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
3935baa9 72 */
c3f38a38 73DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 74
8382d914
DB
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
c672c7f2 80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 81
7ca02d0a
MK
82/* Forward declaration */
83static int hugetlb_acct_memory(struct hstate *h, long delta);
84
90481622
DG
85static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
86{
87 bool free = (spool->count == 0) && (spool->used_hpages == 0);
88
89 spin_unlock(&spool->lock);
90
91 /* If no pages are used, and no other handles to the subpool
7c8de358 92 * remain, give up any reservations based on minimum size and
7ca02d0a
MK
93 * free the subpool */
94 if (free) {
95 if (spool->min_hpages != -1)
96 hugetlb_acct_memory(spool->hstate,
97 -spool->min_hpages);
90481622 98 kfree(spool);
7ca02d0a 99 }
90481622
DG
100}
101
7ca02d0a
MK
102struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103 long min_hpages)
90481622
DG
104{
105 struct hugepage_subpool *spool;
106
c6a91820 107 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
108 if (!spool)
109 return NULL;
110
111 spin_lock_init(&spool->lock);
112 spool->count = 1;
7ca02d0a
MK
113 spool->max_hpages = max_hpages;
114 spool->hstate = h;
115 spool->min_hpages = min_hpages;
116
117 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118 kfree(spool);
119 return NULL;
120 }
121 spool->rsv_hpages = min_hpages;
90481622
DG
122
123 return spool;
124}
125
126void hugepage_put_subpool(struct hugepage_subpool *spool)
127{
128 spin_lock(&spool->lock);
129 BUG_ON(!spool->count);
130 spool->count--;
131 unlock_or_release_subpool(spool);
132}
133
1c5ecae3
MK
134/*
135 * Subpool accounting for allocating and reserving pages.
136 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 137 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
138 * global pools must be adjusted (upward). The returned value may
139 * only be different than the passed value (delta) in the case where
7c8de358 140 * a subpool minimum size must be maintained.
1c5ecae3
MK
141 */
142static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
143 long delta)
144{
1c5ecae3 145 long ret = delta;
90481622
DG
146
147 if (!spool)
1c5ecae3 148 return ret;
90481622
DG
149
150 spin_lock(&spool->lock);
1c5ecae3
MK
151
152 if (spool->max_hpages != -1) { /* maximum size accounting */
153 if ((spool->used_hpages + delta) <= spool->max_hpages)
154 spool->used_hpages += delta;
155 else {
156 ret = -ENOMEM;
157 goto unlock_ret;
158 }
90481622 159 }
90481622 160
09a95e29
MK
161 /* minimum size accounting */
162 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
163 if (delta > spool->rsv_hpages) {
164 /*
165 * Asking for more reserves than those already taken on
166 * behalf of subpool. Return difference.
167 */
168 ret = delta - spool->rsv_hpages;
169 spool->rsv_hpages = 0;
170 } else {
171 ret = 0; /* reserves already accounted for */
172 spool->rsv_hpages -= delta;
173 }
174 }
175
176unlock_ret:
177 spin_unlock(&spool->lock);
90481622
DG
178 return ret;
179}
180
1c5ecae3
MK
181/*
182 * Subpool accounting for freeing and unreserving pages.
183 * Return the number of global page reservations that must be dropped.
184 * The return value may only be different than the passed value (delta)
185 * in the case where a subpool minimum size must be maintained.
186 */
187static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
188 long delta)
189{
1c5ecae3
MK
190 long ret = delta;
191
90481622 192 if (!spool)
1c5ecae3 193 return delta;
90481622
DG
194
195 spin_lock(&spool->lock);
1c5ecae3
MK
196
197 if (spool->max_hpages != -1) /* maximum size accounting */
198 spool->used_hpages -= delta;
199
09a95e29
MK
200 /* minimum size accounting */
201 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
202 if (spool->rsv_hpages + delta <= spool->min_hpages)
203 ret = 0;
204 else
205 ret = spool->rsv_hpages + delta - spool->min_hpages;
206
207 spool->rsv_hpages += delta;
208 if (spool->rsv_hpages > spool->min_hpages)
209 spool->rsv_hpages = spool->min_hpages;
210 }
211
212 /*
213 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 * quota reference, free it now.
215 */
90481622 216 unlock_or_release_subpool(spool);
1c5ecae3
MK
217
218 return ret;
90481622
DG
219}
220
221static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
222{
223 return HUGETLBFS_SB(inode->i_sb)->spool;
224}
225
226static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
227{
496ad9aa 228 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
229}
230
0db9d74e
MA
231/* Helper that removes a struct file_region from the resv_map cache and returns
232 * it for use.
233 */
234static struct file_region *
235get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
236{
237 struct file_region *nrg = NULL;
238
239 VM_BUG_ON(resv->region_cache_count <= 0);
240
241 resv->region_cache_count--;
242 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
243 list_del(&nrg->link);
244
245 nrg->from = from;
246 nrg->to = to;
247
248 return nrg;
249}
250
075a61d0
MA
251static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
252 struct file_region *rg)
253{
254#ifdef CONFIG_CGROUP_HUGETLB
255 nrg->reservation_counter = rg->reservation_counter;
256 nrg->css = rg->css;
257 if (rg->css)
258 css_get(rg->css);
259#endif
260}
261
262/* Helper that records hugetlb_cgroup uncharge info. */
263static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
264 struct hstate *h,
265 struct resv_map *resv,
266 struct file_region *nrg)
267{
268#ifdef CONFIG_CGROUP_HUGETLB
269 if (h_cg) {
270 nrg->reservation_counter =
271 &h_cg->rsvd_hugepage[hstate_index(h)];
272 nrg->css = &h_cg->css;
273 if (!resv->pages_per_hpage)
274 resv->pages_per_hpage = pages_per_huge_page(h);
275 /* pages_per_hpage should be the same for all entries in
276 * a resv_map.
277 */
278 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
279 } else {
280 nrg->reservation_counter = NULL;
281 nrg->css = NULL;
282 }
283#endif
284}
285
a9b3f867
MA
286static bool has_same_uncharge_info(struct file_region *rg,
287 struct file_region *org)
288{
289#ifdef CONFIG_CGROUP_HUGETLB
290 return rg && org &&
291 rg->reservation_counter == org->reservation_counter &&
292 rg->css == org->css;
293
294#else
295 return true;
296#endif
297}
298
299static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
300{
301 struct file_region *nrg = NULL, *prg = NULL;
302
303 prg = list_prev_entry(rg, link);
304 if (&prg->link != &resv->regions && prg->to == rg->from &&
305 has_same_uncharge_info(prg, rg)) {
306 prg->to = rg->to;
307
308 list_del(&rg->link);
309 kfree(rg);
310
7db5e7b6 311 rg = prg;
a9b3f867
MA
312 }
313
314 nrg = list_next_entry(rg, link);
315 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
316 has_same_uncharge_info(nrg, rg)) {
317 nrg->from = rg->from;
318
319 list_del(&rg->link);
320 kfree(rg);
a9b3f867
MA
321 }
322}
323
972a3da3
WY
324/*
325 * Must be called with resv->lock held.
326 *
327 * Calling this with regions_needed != NULL will count the number of pages
328 * to be added but will not modify the linked list. And regions_needed will
329 * indicate the number of file_regions needed in the cache to carry out to add
330 * the regions for this range.
d75c6af9
MA
331 */
332static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 333 struct hugetlb_cgroup *h_cg,
972a3da3 334 struct hstate *h, long *regions_needed)
d75c6af9 335{
0db9d74e 336 long add = 0;
d75c6af9 337 struct list_head *head = &resv->regions;
0db9d74e 338 long last_accounted_offset = f;
d75c6af9
MA
339 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
340
0db9d74e
MA
341 if (regions_needed)
342 *regions_needed = 0;
d75c6af9 343
0db9d74e
MA
344 /* In this loop, we essentially handle an entry for the range
345 * [last_accounted_offset, rg->from), at every iteration, with some
346 * bounds checking.
347 */
348 list_for_each_entry_safe(rg, trg, head, link) {
349 /* Skip irrelevant regions that start before our range. */
350 if (rg->from < f) {
351 /* If this region ends after the last accounted offset,
352 * then we need to update last_accounted_offset.
353 */
354 if (rg->to > last_accounted_offset)
355 last_accounted_offset = rg->to;
356 continue;
357 }
d75c6af9 358
0db9d74e
MA
359 /* When we find a region that starts beyond our range, we've
360 * finished.
361 */
d75c6af9
MA
362 if (rg->from > t)
363 break;
364
0db9d74e
MA
365 /* Add an entry for last_accounted_offset -> rg->from, and
366 * update last_accounted_offset.
367 */
368 if (rg->from > last_accounted_offset) {
369 add += rg->from - last_accounted_offset;
972a3da3 370 if (!regions_needed) {
0db9d74e
MA
371 nrg = get_file_region_entry_from_cache(
372 resv, last_accounted_offset, rg->from);
075a61d0
MA
373 record_hugetlb_cgroup_uncharge_info(h_cg, h,
374 resv, nrg);
0db9d74e 375 list_add(&nrg->link, rg->link.prev);
a9b3f867 376 coalesce_file_region(resv, nrg);
972a3da3 377 } else
0db9d74e
MA
378 *regions_needed += 1;
379 }
380
381 last_accounted_offset = rg->to;
382 }
383
384 /* Handle the case where our range extends beyond
385 * last_accounted_offset.
386 */
387 if (last_accounted_offset < t) {
388 add += t - last_accounted_offset;
972a3da3 389 if (!regions_needed) {
0db9d74e
MA
390 nrg = get_file_region_entry_from_cache(
391 resv, last_accounted_offset, t);
075a61d0 392 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
0db9d74e 393 list_add(&nrg->link, rg->link.prev);
a9b3f867 394 coalesce_file_region(resv, nrg);
972a3da3 395 } else
0db9d74e
MA
396 *regions_needed += 1;
397 }
398
399 VM_BUG_ON(add < 0);
400 return add;
401}
402
403/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
404 */
405static int allocate_file_region_entries(struct resv_map *resv,
406 int regions_needed)
407 __must_hold(&resv->lock)
408{
409 struct list_head allocated_regions;
410 int to_allocate = 0, i = 0;
411 struct file_region *trg = NULL, *rg = NULL;
412
413 VM_BUG_ON(regions_needed < 0);
414
415 INIT_LIST_HEAD(&allocated_regions);
416
417 /*
418 * Check for sufficient descriptors in the cache to accommodate
419 * the number of in progress add operations plus regions_needed.
420 *
421 * This is a while loop because when we drop the lock, some other call
422 * to region_add or region_del may have consumed some region_entries,
423 * so we keep looping here until we finally have enough entries for
424 * (adds_in_progress + regions_needed).
425 */
426 while (resv->region_cache_count <
427 (resv->adds_in_progress + regions_needed)) {
428 to_allocate = resv->adds_in_progress + regions_needed -
429 resv->region_cache_count;
430
431 /* At this point, we should have enough entries in the cache
432 * for all the existings adds_in_progress. We should only be
433 * needing to allocate for regions_needed.
d75c6af9 434 */
0db9d74e
MA
435 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
436
437 spin_unlock(&resv->lock);
438 for (i = 0; i < to_allocate; i++) {
439 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
440 if (!trg)
441 goto out_of_memory;
442 list_add(&trg->link, &allocated_regions);
d75c6af9 443 }
d75c6af9 444
0db9d74e
MA
445 spin_lock(&resv->lock);
446
d3ec7b6e
WY
447 list_splice(&allocated_regions, &resv->region_cache);
448 resv->region_cache_count += to_allocate;
d75c6af9
MA
449 }
450
0db9d74e 451 return 0;
d75c6af9 452
0db9d74e
MA
453out_of_memory:
454 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
455 list_del(&rg->link);
456 kfree(rg);
457 }
458 return -ENOMEM;
d75c6af9
MA
459}
460
1dd308a7
MK
461/*
462 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
463 * map. Regions will be taken from the cache to fill in this range.
464 * Sufficient regions should exist in the cache due to the previous
465 * call to region_chg with the same range, but in some cases the cache will not
466 * have sufficient entries due to races with other code doing region_add or
467 * region_del. The extra needed entries will be allocated.
cf3ad20b 468 *
0db9d74e
MA
469 * regions_needed is the out value provided by a previous call to region_chg.
470 *
471 * Return the number of new huge pages added to the map. This number is greater
472 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 473 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
474 * region_add of regions of length 1 never allocate file_regions and cannot
475 * fail; region_chg will always allocate at least 1 entry and a region_add for
476 * 1 page will only require at most 1 entry.
1dd308a7 477 */
0db9d74e 478static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
479 long in_regions_needed, struct hstate *h,
480 struct hugetlb_cgroup *h_cg)
96822904 481{
0db9d74e 482 long add = 0, actual_regions_needed = 0;
96822904 483
7b24d861 484 spin_lock(&resv->lock);
0db9d74e
MA
485retry:
486
487 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
488 add_reservation_in_range(resv, f, t, NULL, NULL,
489 &actual_regions_needed);
96822904 490
5e911373 491 /*
0db9d74e
MA
492 * Check for sufficient descriptors in the cache to accommodate
493 * this add operation. Note that actual_regions_needed may be greater
494 * than in_regions_needed, as the resv_map may have been modified since
495 * the region_chg call. In this case, we need to make sure that we
496 * allocate extra entries, such that we have enough for all the
497 * existing adds_in_progress, plus the excess needed for this
498 * operation.
5e911373 499 */
0db9d74e
MA
500 if (actual_regions_needed > in_regions_needed &&
501 resv->region_cache_count <
502 resv->adds_in_progress +
503 (actual_regions_needed - in_regions_needed)) {
504 /* region_add operation of range 1 should never need to
505 * allocate file_region entries.
506 */
507 VM_BUG_ON(t - f <= 1);
5e911373 508
0db9d74e
MA
509 if (allocate_file_region_entries(
510 resv, actual_regions_needed - in_regions_needed)) {
511 return -ENOMEM;
512 }
5e911373 513
0db9d74e 514 goto retry;
5e911373
MK
515 }
516
972a3da3 517 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
518
519 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 520
7b24d861 521 spin_unlock(&resv->lock);
cf3ad20b
MK
522 VM_BUG_ON(add < 0);
523 return add;
96822904
AW
524}
525
1dd308a7
MK
526/*
527 * Examine the existing reserve map and determine how many
528 * huge pages in the specified range [f, t) are NOT currently
529 * represented. This routine is called before a subsequent
530 * call to region_add that will actually modify the reserve
531 * map to add the specified range [f, t). region_chg does
532 * not change the number of huge pages represented by the
0db9d74e
MA
533 * map. A number of new file_region structures is added to the cache as a
534 * placeholder, for the subsequent region_add call to use. At least 1
535 * file_region structure is added.
536 *
537 * out_regions_needed is the number of regions added to the
538 * resv->adds_in_progress. This value needs to be provided to a follow up call
539 * to region_add or region_abort for proper accounting.
5e911373
MK
540 *
541 * Returns the number of huge pages that need to be added to the existing
542 * reservation map for the range [f, t). This number is greater or equal to
543 * zero. -ENOMEM is returned if a new file_region structure or cache entry
544 * is needed and can not be allocated.
1dd308a7 545 */
0db9d74e
MA
546static long region_chg(struct resv_map *resv, long f, long t,
547 long *out_regions_needed)
96822904 548{
96822904
AW
549 long chg = 0;
550
7b24d861 551 spin_lock(&resv->lock);
5e911373 552
972a3da3 553 /* Count how many hugepages in this range are NOT represented. */
075a61d0 554 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 555 out_regions_needed);
5e911373 556
0db9d74e
MA
557 if (*out_regions_needed == 0)
558 *out_regions_needed = 1;
5e911373 559
0db9d74e
MA
560 if (allocate_file_region_entries(resv, *out_regions_needed))
561 return -ENOMEM;
5e911373 562
0db9d74e 563 resv->adds_in_progress += *out_regions_needed;
7b24d861 564
7b24d861 565 spin_unlock(&resv->lock);
96822904
AW
566 return chg;
567}
568
5e911373
MK
569/*
570 * Abort the in progress add operation. The adds_in_progress field
571 * of the resv_map keeps track of the operations in progress between
572 * calls to region_chg and region_add. Operations are sometimes
573 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
574 * is called to decrement the adds_in_progress counter. regions_needed
575 * is the value returned by the region_chg call, it is used to decrement
576 * the adds_in_progress counter.
5e911373
MK
577 *
578 * NOTE: The range arguments [f, t) are not needed or used in this
579 * routine. They are kept to make reading the calling code easier as
580 * arguments will match the associated region_chg call.
581 */
0db9d74e
MA
582static void region_abort(struct resv_map *resv, long f, long t,
583 long regions_needed)
5e911373
MK
584{
585 spin_lock(&resv->lock);
586 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 587 resv->adds_in_progress -= regions_needed;
5e911373
MK
588 spin_unlock(&resv->lock);
589}
590
1dd308a7 591/*
feba16e2
MK
592 * Delete the specified range [f, t) from the reserve map. If the
593 * t parameter is LONG_MAX, this indicates that ALL regions after f
594 * should be deleted. Locate the regions which intersect [f, t)
595 * and either trim, delete or split the existing regions.
596 *
597 * Returns the number of huge pages deleted from the reserve map.
598 * In the normal case, the return value is zero or more. In the
599 * case where a region must be split, a new region descriptor must
600 * be allocated. If the allocation fails, -ENOMEM will be returned.
601 * NOTE: If the parameter t == LONG_MAX, then we will never split
602 * a region and possibly return -ENOMEM. Callers specifying
603 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 604 */
feba16e2 605static long region_del(struct resv_map *resv, long f, long t)
96822904 606{
1406ec9b 607 struct list_head *head = &resv->regions;
96822904 608 struct file_region *rg, *trg;
feba16e2
MK
609 struct file_region *nrg = NULL;
610 long del = 0;
96822904 611
feba16e2 612retry:
7b24d861 613 spin_lock(&resv->lock);
feba16e2 614 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
615 /*
616 * Skip regions before the range to be deleted. file_region
617 * ranges are normally of the form [from, to). However, there
618 * may be a "placeholder" entry in the map which is of the form
619 * (from, to) with from == to. Check for placeholder entries
620 * at the beginning of the range to be deleted.
621 */
622 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 623 continue;
dbe409e4 624
feba16e2 625 if (rg->from >= t)
96822904 626 break;
96822904 627
feba16e2
MK
628 if (f > rg->from && t < rg->to) { /* Must split region */
629 /*
630 * Check for an entry in the cache before dropping
631 * lock and attempting allocation.
632 */
633 if (!nrg &&
634 resv->region_cache_count > resv->adds_in_progress) {
635 nrg = list_first_entry(&resv->region_cache,
636 struct file_region,
637 link);
638 list_del(&nrg->link);
639 resv->region_cache_count--;
640 }
96822904 641
feba16e2
MK
642 if (!nrg) {
643 spin_unlock(&resv->lock);
644 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
645 if (!nrg)
646 return -ENOMEM;
647 goto retry;
648 }
649
650 del += t - f;
651
652 /* New entry for end of split region */
653 nrg->from = t;
654 nrg->to = rg->to;
075a61d0
MA
655
656 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
657
feba16e2
MK
658 INIT_LIST_HEAD(&nrg->link);
659
660 /* Original entry is trimmed */
661 rg->to = f;
662
075a61d0
MA
663 hugetlb_cgroup_uncharge_file_region(
664 resv, rg, nrg->to - nrg->from);
665
feba16e2
MK
666 list_add(&nrg->link, &rg->link);
667 nrg = NULL;
96822904 668 break;
feba16e2
MK
669 }
670
671 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
672 del += rg->to - rg->from;
075a61d0
MA
673 hugetlb_cgroup_uncharge_file_region(resv, rg,
674 rg->to - rg->from);
feba16e2
MK
675 list_del(&rg->link);
676 kfree(rg);
677 continue;
678 }
679
680 if (f <= rg->from) { /* Trim beginning of region */
681 del += t - rg->from;
682 rg->from = t;
075a61d0
MA
683
684 hugetlb_cgroup_uncharge_file_region(resv, rg,
685 t - rg->from);
feba16e2
MK
686 } else { /* Trim end of region */
687 del += rg->to - f;
688 rg->to = f;
075a61d0
MA
689
690 hugetlb_cgroup_uncharge_file_region(resv, rg,
691 rg->to - f);
feba16e2 692 }
96822904 693 }
7b24d861 694
7b24d861 695 spin_unlock(&resv->lock);
feba16e2
MK
696 kfree(nrg);
697 return del;
96822904
AW
698}
699
b5cec28d
MK
700/*
701 * A rare out of memory error was encountered which prevented removal of
702 * the reserve map region for a page. The huge page itself was free'ed
703 * and removed from the page cache. This routine will adjust the subpool
704 * usage count, and the global reserve count if needed. By incrementing
705 * these counts, the reserve map entry which could not be deleted will
706 * appear as a "reserved" entry instead of simply dangling with incorrect
707 * counts.
708 */
72e2936c 709void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
710{
711 struct hugepage_subpool *spool = subpool_inode(inode);
712 long rsv_adjust;
713
714 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 715 if (rsv_adjust) {
b5cec28d
MK
716 struct hstate *h = hstate_inode(inode);
717
718 hugetlb_acct_memory(h, 1);
719 }
720}
721
1dd308a7
MK
722/*
723 * Count and return the number of huge pages in the reserve map
724 * that intersect with the range [f, t).
725 */
1406ec9b 726static long region_count(struct resv_map *resv, long f, long t)
84afd99b 727{
1406ec9b 728 struct list_head *head = &resv->regions;
84afd99b
AW
729 struct file_region *rg;
730 long chg = 0;
731
7b24d861 732 spin_lock(&resv->lock);
84afd99b
AW
733 /* Locate each segment we overlap with, and count that overlap. */
734 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
735 long seg_from;
736 long seg_to;
84afd99b
AW
737
738 if (rg->to <= f)
739 continue;
740 if (rg->from >= t)
741 break;
742
743 seg_from = max(rg->from, f);
744 seg_to = min(rg->to, t);
745
746 chg += seg_to - seg_from;
747 }
7b24d861 748 spin_unlock(&resv->lock);
84afd99b
AW
749
750 return chg;
751}
752
e7c4b0bf
AW
753/*
754 * Convert the address within this vma to the page offset within
755 * the mapping, in pagecache page units; huge pages here.
756 */
a5516438
AK
757static pgoff_t vma_hugecache_offset(struct hstate *h,
758 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 759{
a5516438
AK
760 return ((address - vma->vm_start) >> huge_page_shift(h)) +
761 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
762}
763
0fe6e20b
NH
764pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
765 unsigned long address)
766{
767 return vma_hugecache_offset(hstate_vma(vma), vma, address);
768}
dee41079 769EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 770
08fba699
MG
771/*
772 * Return the size of the pages allocated when backing a VMA. In the majority
773 * cases this will be same size as used by the page table entries.
774 */
775unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
776{
05ea8860
DW
777 if (vma->vm_ops && vma->vm_ops->pagesize)
778 return vma->vm_ops->pagesize(vma);
779 return PAGE_SIZE;
08fba699 780}
f340ca0f 781EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 782
3340289d
MG
783/*
784 * Return the page size being used by the MMU to back a VMA. In the majority
785 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
786 * architectures where it differs, an architecture-specific 'strong'
787 * version of this symbol is required.
3340289d 788 */
09135cc5 789__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
790{
791 return vma_kernel_pagesize(vma);
792}
3340289d 793
84afd99b
AW
794/*
795 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
796 * bits of the reservation map pointer, which are always clear due to
797 * alignment.
798 */
799#define HPAGE_RESV_OWNER (1UL << 0)
800#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 801#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 802
a1e78772
MG
803/*
804 * These helpers are used to track how many pages are reserved for
805 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
806 * is guaranteed to have their future faults succeed.
807 *
808 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
809 * the reserve counters are updated with the hugetlb_lock held. It is safe
810 * to reset the VMA at fork() time as it is not in use yet and there is no
811 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
812 *
813 * The private mapping reservation is represented in a subtly different
814 * manner to a shared mapping. A shared mapping has a region map associated
815 * with the underlying file, this region map represents the backing file
816 * pages which have ever had a reservation assigned which this persists even
817 * after the page is instantiated. A private mapping has a region map
818 * associated with the original mmap which is attached to all VMAs which
819 * reference it, this region map represents those offsets which have consumed
820 * reservation ie. where pages have been instantiated.
a1e78772 821 */
e7c4b0bf
AW
822static unsigned long get_vma_private_data(struct vm_area_struct *vma)
823{
824 return (unsigned long)vma->vm_private_data;
825}
826
827static void set_vma_private_data(struct vm_area_struct *vma,
828 unsigned long value)
829{
830 vma->vm_private_data = (void *)value;
831}
832
e9fe92ae
MA
833static void
834resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
835 struct hugetlb_cgroup *h_cg,
836 struct hstate *h)
837{
838#ifdef CONFIG_CGROUP_HUGETLB
839 if (!h_cg || !h) {
840 resv_map->reservation_counter = NULL;
841 resv_map->pages_per_hpage = 0;
842 resv_map->css = NULL;
843 } else {
844 resv_map->reservation_counter =
845 &h_cg->rsvd_hugepage[hstate_index(h)];
846 resv_map->pages_per_hpage = pages_per_huge_page(h);
847 resv_map->css = &h_cg->css;
848 }
849#endif
850}
851
9119a41e 852struct resv_map *resv_map_alloc(void)
84afd99b
AW
853{
854 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
855 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
856
857 if (!resv_map || !rg) {
858 kfree(resv_map);
859 kfree(rg);
84afd99b 860 return NULL;
5e911373 861 }
84afd99b
AW
862
863 kref_init(&resv_map->refs);
7b24d861 864 spin_lock_init(&resv_map->lock);
84afd99b
AW
865 INIT_LIST_HEAD(&resv_map->regions);
866
5e911373 867 resv_map->adds_in_progress = 0;
e9fe92ae
MA
868 /*
869 * Initialize these to 0. On shared mappings, 0's here indicate these
870 * fields don't do cgroup accounting. On private mappings, these will be
871 * re-initialized to the proper values, to indicate that hugetlb cgroup
872 * reservations are to be un-charged from here.
873 */
874 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
875
876 INIT_LIST_HEAD(&resv_map->region_cache);
877 list_add(&rg->link, &resv_map->region_cache);
878 resv_map->region_cache_count = 1;
879
84afd99b
AW
880 return resv_map;
881}
882
9119a41e 883void resv_map_release(struct kref *ref)
84afd99b
AW
884{
885 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
886 struct list_head *head = &resv_map->region_cache;
887 struct file_region *rg, *trg;
84afd99b
AW
888
889 /* Clear out any active regions before we release the map. */
feba16e2 890 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
891
892 /* ... and any entries left in the cache */
893 list_for_each_entry_safe(rg, trg, head, link) {
894 list_del(&rg->link);
895 kfree(rg);
896 }
897
898 VM_BUG_ON(resv_map->adds_in_progress);
899
84afd99b
AW
900 kfree(resv_map);
901}
902
4e35f483
JK
903static inline struct resv_map *inode_resv_map(struct inode *inode)
904{
f27a5136
MK
905 /*
906 * At inode evict time, i_mapping may not point to the original
907 * address space within the inode. This original address space
908 * contains the pointer to the resv_map. So, always use the
909 * address space embedded within the inode.
910 * The VERY common case is inode->mapping == &inode->i_data but,
911 * this may not be true for device special inodes.
912 */
913 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
914}
915
84afd99b 916static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 917{
81d1b09c 918 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
919 if (vma->vm_flags & VM_MAYSHARE) {
920 struct address_space *mapping = vma->vm_file->f_mapping;
921 struct inode *inode = mapping->host;
922
923 return inode_resv_map(inode);
924
925 } else {
84afd99b
AW
926 return (struct resv_map *)(get_vma_private_data(vma) &
927 ~HPAGE_RESV_MASK);
4e35f483 928 }
a1e78772
MG
929}
930
84afd99b 931static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 932{
81d1b09c
SL
933 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
934 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 935
84afd99b
AW
936 set_vma_private_data(vma, (get_vma_private_data(vma) &
937 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
938}
939
940static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
941{
81d1b09c
SL
942 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
943 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
944
945 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
946}
947
948static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
949{
81d1b09c 950 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
951
952 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
953}
954
04f2cbe3 955/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
956void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
957{
81d1b09c 958 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 959 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
960 vma->vm_private_data = (void *)0;
961}
962
963/* Returns true if the VMA has associated reserve pages */
559ec2f8 964static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 965{
af0ed73e
JK
966 if (vma->vm_flags & VM_NORESERVE) {
967 /*
968 * This address is already reserved by other process(chg == 0),
969 * so, we should decrement reserved count. Without decrementing,
970 * reserve count remains after releasing inode, because this
971 * allocated page will go into page cache and is regarded as
972 * coming from reserved pool in releasing step. Currently, we
973 * don't have any other solution to deal with this situation
974 * properly, so add work-around here.
975 */
976 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 977 return true;
af0ed73e 978 else
559ec2f8 979 return false;
af0ed73e 980 }
a63884e9
JK
981
982 /* Shared mappings always use reserves */
1fb1b0e9
MK
983 if (vma->vm_flags & VM_MAYSHARE) {
984 /*
985 * We know VM_NORESERVE is not set. Therefore, there SHOULD
986 * be a region map for all pages. The only situation where
987 * there is no region map is if a hole was punched via
7c8de358 988 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
989 * use. This situation is indicated if chg != 0.
990 */
991 if (chg)
992 return false;
993 else
994 return true;
995 }
a63884e9
JK
996
997 /*
998 * Only the process that called mmap() has reserves for
999 * private mappings.
1000 */
67961f9d
MK
1001 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1002 /*
1003 * Like the shared case above, a hole punch or truncate
1004 * could have been performed on the private mapping.
1005 * Examine the value of chg to determine if reserves
1006 * actually exist or were previously consumed.
1007 * Very Subtle - The value of chg comes from a previous
1008 * call to vma_needs_reserves(). The reserve map for
1009 * private mappings has different (opposite) semantics
1010 * than that of shared mappings. vma_needs_reserves()
1011 * has already taken this difference in semantics into
1012 * account. Therefore, the meaning of chg is the same
1013 * as in the shared case above. Code could easily be
1014 * combined, but keeping it separate draws attention to
1015 * subtle differences.
1016 */
1017 if (chg)
1018 return false;
1019 else
1020 return true;
1021 }
a63884e9 1022
559ec2f8 1023 return false;
a1e78772
MG
1024}
1025
a5516438 1026static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1027{
1028 int nid = page_to_nid(page);
0edaecfa 1029 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1030 h->free_huge_pages++;
1031 h->free_huge_pages_node[nid]++;
1da177e4
LT
1032}
1033
94310cbc 1034static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1035{
1036 struct page *page;
bbe88753
JK
1037 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1038
1039 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1040 if (nocma && is_migrate_cma_page(page))
1041 continue;
bf50bab2 1042
243abd5b 1043 if (!PageHWPoison(page))
c8721bbb 1044 break;
bbe88753
JK
1045 }
1046
c8721bbb
NH
1047 /*
1048 * if 'non-isolated free hugepage' not found on the list,
1049 * the allocation fails.
1050 */
1051 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 1052 return NULL;
0edaecfa 1053 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 1054 set_page_refcounted(page);
bf50bab2
NH
1055 h->free_huge_pages--;
1056 h->free_huge_pages_node[nid]--;
1057 return page;
1058}
1059
3e59fcb0
MH
1060static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1061 nodemask_t *nmask)
94310cbc 1062{
3e59fcb0
MH
1063 unsigned int cpuset_mems_cookie;
1064 struct zonelist *zonelist;
1065 struct zone *zone;
1066 struct zoneref *z;
98fa15f3 1067 int node = NUMA_NO_NODE;
94310cbc 1068
3e59fcb0
MH
1069 zonelist = node_zonelist(nid, gfp_mask);
1070
1071retry_cpuset:
1072 cpuset_mems_cookie = read_mems_allowed_begin();
1073 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1074 struct page *page;
1075
1076 if (!cpuset_zone_allowed(zone, gfp_mask))
1077 continue;
1078 /*
1079 * no need to ask again on the same node. Pool is node rather than
1080 * zone aware
1081 */
1082 if (zone_to_nid(zone) == node)
1083 continue;
1084 node = zone_to_nid(zone);
94310cbc 1085
94310cbc
AK
1086 page = dequeue_huge_page_node_exact(h, node);
1087 if (page)
1088 return page;
1089 }
3e59fcb0
MH
1090 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1091 goto retry_cpuset;
1092
94310cbc
AK
1093 return NULL;
1094}
1095
a5516438
AK
1096static struct page *dequeue_huge_page_vma(struct hstate *h,
1097 struct vm_area_struct *vma,
af0ed73e
JK
1098 unsigned long address, int avoid_reserve,
1099 long chg)
1da177e4 1100{
3e59fcb0 1101 struct page *page;
480eccf9 1102 struct mempolicy *mpol;
04ec6264 1103 gfp_t gfp_mask;
3e59fcb0 1104 nodemask_t *nodemask;
04ec6264 1105 int nid;
1da177e4 1106
a1e78772
MG
1107 /*
1108 * A child process with MAP_PRIVATE mappings created by their parent
1109 * have no page reserves. This check ensures that reservations are
1110 * not "stolen". The child may still get SIGKILLed
1111 */
af0ed73e 1112 if (!vma_has_reserves(vma, chg) &&
a5516438 1113 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1114 goto err;
a1e78772 1115
04f2cbe3 1116 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1117 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1118 goto err;
04f2cbe3 1119
04ec6264
VB
1120 gfp_mask = htlb_alloc_mask(h);
1121 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1122 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1123 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1124 SetPagePrivate(page);
1125 h->resv_huge_pages--;
1da177e4 1126 }
cc9a6c87 1127
52cd3b07 1128 mpol_cond_put(mpol);
1da177e4 1129 return page;
cc9a6c87
MG
1130
1131err:
cc9a6c87 1132 return NULL;
1da177e4
LT
1133}
1134
1cac6f2c
LC
1135/*
1136 * common helper functions for hstate_next_node_to_{alloc|free}.
1137 * We may have allocated or freed a huge page based on a different
1138 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1139 * be outside of *nodes_allowed. Ensure that we use an allowed
1140 * node for alloc or free.
1141 */
1142static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1143{
0edaf86c 1144 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1145 VM_BUG_ON(nid >= MAX_NUMNODES);
1146
1147 return nid;
1148}
1149
1150static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1151{
1152 if (!node_isset(nid, *nodes_allowed))
1153 nid = next_node_allowed(nid, nodes_allowed);
1154 return nid;
1155}
1156
1157/*
1158 * returns the previously saved node ["this node"] from which to
1159 * allocate a persistent huge page for the pool and advance the
1160 * next node from which to allocate, handling wrap at end of node
1161 * mask.
1162 */
1163static int hstate_next_node_to_alloc(struct hstate *h,
1164 nodemask_t *nodes_allowed)
1165{
1166 int nid;
1167
1168 VM_BUG_ON(!nodes_allowed);
1169
1170 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1171 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1172
1173 return nid;
1174}
1175
1176/*
1177 * helper for free_pool_huge_page() - return the previously saved
1178 * node ["this node"] from which to free a huge page. Advance the
1179 * next node id whether or not we find a free huge page to free so
1180 * that the next attempt to free addresses the next node.
1181 */
1182static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1183{
1184 int nid;
1185
1186 VM_BUG_ON(!nodes_allowed);
1187
1188 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1189 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1190
1191 return nid;
1192}
1193
1194#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1195 for (nr_nodes = nodes_weight(*mask); \
1196 nr_nodes > 0 && \
1197 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1198 nr_nodes--)
1199
1200#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1201 for (nr_nodes = nodes_weight(*mask); \
1202 nr_nodes > 0 && \
1203 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1204 nr_nodes--)
1205
e1073d1e 1206#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1207static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1208 unsigned int order)
944d9fec
LC
1209{
1210 int i;
1211 int nr_pages = 1 << order;
1212 struct page *p = page + 1;
1213
c8cc708a 1214 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1215 if (hpage_pincount_available(page))
1216 atomic_set(compound_pincount_ptr(page), 0);
1217
944d9fec 1218 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1219 clear_compound_head(p);
944d9fec 1220 set_page_refcounted(p);
944d9fec
LC
1221 }
1222
1223 set_compound_order(page, 0);
1224 __ClearPageHead(page);
1225}
1226
d00181b9 1227static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1228{
cf11e85f
RG
1229 /*
1230 * If the page isn't allocated using the cma allocator,
1231 * cma_release() returns false.
1232 */
dbda8fea
BS
1233#ifdef CONFIG_CMA
1234 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1235 return;
dbda8fea 1236#endif
cf11e85f 1237
944d9fec
LC
1238 free_contig_range(page_to_pfn(page), 1 << order);
1239}
1240
4eb0716e 1241#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1242static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1243 int nid, nodemask_t *nodemask)
944d9fec 1244{
5e27a2df 1245 unsigned long nr_pages = 1UL << huge_page_order(h);
953f064a
LX
1246 if (nid == NUMA_NO_NODE)
1247 nid = numa_mem_id();
944d9fec 1248
dbda8fea
BS
1249#ifdef CONFIG_CMA
1250 {
cf11e85f
RG
1251 struct page *page;
1252 int node;
1253
953f064a
LX
1254 if (hugetlb_cma[nid]) {
1255 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1256 huge_page_order(h), true);
cf11e85f
RG
1257 if (page)
1258 return page;
1259 }
953f064a
LX
1260
1261 if (!(gfp_mask & __GFP_THISNODE)) {
1262 for_each_node_mask(node, *nodemask) {
1263 if (node == nid || !hugetlb_cma[node])
1264 continue;
1265
1266 page = cma_alloc(hugetlb_cma[node], nr_pages,
1267 huge_page_order(h), true);
1268 if (page)
1269 return page;
1270 }
1271 }
cf11e85f 1272 }
dbda8fea 1273#endif
cf11e85f 1274
5e27a2df 1275 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1276}
1277
1278static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1279static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1280#else /* !CONFIG_CONTIG_ALLOC */
1281static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1282 int nid, nodemask_t *nodemask)
1283{
1284 return NULL;
1285}
1286#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1287
e1073d1e 1288#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1289static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1290 int nid, nodemask_t *nodemask)
1291{
1292 return NULL;
1293}
d00181b9 1294static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1295static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1296 unsigned int order) { }
944d9fec
LC
1297#endif
1298
a5516438 1299static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1300{
1301 int i;
a5516438 1302
4eb0716e 1303 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1304 return;
18229df5 1305
a5516438
AK
1306 h->nr_huge_pages--;
1307 h->nr_huge_pages_node[page_to_nid(page)]--;
1308 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1309 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1310 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1311 1 << PG_active | 1 << PG_private |
1312 1 << PG_writeback);
6af2acb6 1313 }
309381fe 1314 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1adc4d41 1315 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
f1e61557 1316 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1317 set_page_refcounted(page);
944d9fec 1318 if (hstate_is_gigantic(h)) {
cf11e85f
RG
1319 /*
1320 * Temporarily drop the hugetlb_lock, because
1321 * we might block in free_gigantic_page().
1322 */
1323 spin_unlock(&hugetlb_lock);
944d9fec
LC
1324 destroy_compound_gigantic_page(page, huge_page_order(h));
1325 free_gigantic_page(page, huge_page_order(h));
cf11e85f 1326 spin_lock(&hugetlb_lock);
944d9fec 1327 } else {
944d9fec
LC
1328 __free_pages(page, huge_page_order(h));
1329 }
6af2acb6
AL
1330}
1331
e5ff2159
AK
1332struct hstate *size_to_hstate(unsigned long size)
1333{
1334 struct hstate *h;
1335
1336 for_each_hstate(h) {
1337 if (huge_page_size(h) == size)
1338 return h;
1339 }
1340 return NULL;
1341}
1342
bcc54222
NH
1343/*
1344 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1345 * to hstate->hugepage_activelist.)
1346 *
1347 * This function can be called for tail pages, but never returns true for them.
1348 */
1349bool page_huge_active(struct page *page)
1350{
1351 VM_BUG_ON_PAGE(!PageHuge(page), page);
1352 return PageHead(page) && PagePrivate(&page[1]);
1353}
1354
1355/* never called for tail page */
1356static void set_page_huge_active(struct page *page)
1357{
1358 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1359 SetPagePrivate(&page[1]);
1360}
1361
1362static void clear_page_huge_active(struct page *page)
1363{
1364 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1365 ClearPagePrivate(&page[1]);
1366}
1367
ab5ac90a
MH
1368/*
1369 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1370 * code
1371 */
1372static inline bool PageHugeTemporary(struct page *page)
1373{
1374 if (!PageHuge(page))
1375 return false;
1376
1377 return (unsigned long)page[2].mapping == -1U;
1378}
1379
1380static inline void SetPageHugeTemporary(struct page *page)
1381{
1382 page[2].mapping = (void *)-1U;
1383}
1384
1385static inline void ClearPageHugeTemporary(struct page *page)
1386{
1387 page[2].mapping = NULL;
1388}
1389
c77c0a8a 1390static void __free_huge_page(struct page *page)
27a85ef1 1391{
a5516438
AK
1392 /*
1393 * Can't pass hstate in here because it is called from the
1394 * compound page destructor.
1395 */
e5ff2159 1396 struct hstate *h = page_hstate(page);
7893d1d5 1397 int nid = page_to_nid(page);
90481622
DG
1398 struct hugepage_subpool *spool =
1399 (struct hugepage_subpool *)page_private(page);
07443a85 1400 bool restore_reserve;
27a85ef1 1401
b4330afb
MK
1402 VM_BUG_ON_PAGE(page_count(page), page);
1403 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1404
1405 set_page_private(page, 0);
1406 page->mapping = NULL;
07443a85 1407 restore_reserve = PagePrivate(page);
16c794b4 1408 ClearPagePrivate(page);
27a85ef1 1409
1c5ecae3 1410 /*
0919e1b6
MK
1411 * If PagePrivate() was set on page, page allocation consumed a
1412 * reservation. If the page was associated with a subpool, there
1413 * would have been a page reserved in the subpool before allocation
1414 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1415 * reservtion, do not call hugepage_subpool_put_pages() as this will
1416 * remove the reserved page from the subpool.
1c5ecae3 1417 */
0919e1b6
MK
1418 if (!restore_reserve) {
1419 /*
1420 * A return code of zero implies that the subpool will be
1421 * under its minimum size if the reservation is not restored
1422 * after page is free. Therefore, force restore_reserve
1423 * operation.
1424 */
1425 if (hugepage_subpool_put_pages(spool, 1) == 0)
1426 restore_reserve = true;
1427 }
1c5ecae3 1428
27a85ef1 1429 spin_lock(&hugetlb_lock);
bcc54222 1430 clear_page_huge_active(page);
6d76dcf4
AK
1431 hugetlb_cgroup_uncharge_page(hstate_index(h),
1432 pages_per_huge_page(h), page);
08cf9faf
MA
1433 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1434 pages_per_huge_page(h), page);
07443a85
JK
1435 if (restore_reserve)
1436 h->resv_huge_pages++;
1437
ab5ac90a
MH
1438 if (PageHugeTemporary(page)) {
1439 list_del(&page->lru);
1440 ClearPageHugeTemporary(page);
1441 update_and_free_page(h, page);
1442 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1443 /* remove the page from active list */
1444 list_del(&page->lru);
a5516438
AK
1445 update_and_free_page(h, page);
1446 h->surplus_huge_pages--;
1447 h->surplus_huge_pages_node[nid]--;
7893d1d5 1448 } else {
5d3a551c 1449 arch_clear_hugepage_flags(page);
a5516438 1450 enqueue_huge_page(h, page);
7893d1d5 1451 }
27a85ef1
DG
1452 spin_unlock(&hugetlb_lock);
1453}
1454
c77c0a8a
WL
1455/*
1456 * As free_huge_page() can be called from a non-task context, we have
1457 * to defer the actual freeing in a workqueue to prevent potential
1458 * hugetlb_lock deadlock.
1459 *
1460 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1461 * be freed and frees them one-by-one. As the page->mapping pointer is
1462 * going to be cleared in __free_huge_page() anyway, it is reused as the
1463 * llist_node structure of a lockless linked list of huge pages to be freed.
1464 */
1465static LLIST_HEAD(hpage_freelist);
1466
1467static void free_hpage_workfn(struct work_struct *work)
1468{
1469 struct llist_node *node;
1470 struct page *page;
1471
1472 node = llist_del_all(&hpage_freelist);
1473
1474 while (node) {
1475 page = container_of((struct address_space **)node,
1476 struct page, mapping);
1477 node = node->next;
1478 __free_huge_page(page);
1479 }
1480}
1481static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1482
1483void free_huge_page(struct page *page)
1484{
1485 /*
1486 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1487 */
1488 if (!in_task()) {
1489 /*
1490 * Only call schedule_work() if hpage_freelist is previously
1491 * empty. Otherwise, schedule_work() had been called but the
1492 * workfn hasn't retrieved the list yet.
1493 */
1494 if (llist_add((struct llist_node *)&page->mapping,
1495 &hpage_freelist))
1496 schedule_work(&free_hpage_work);
1497 return;
1498 }
1499
1500 __free_huge_page(page);
1501}
1502
a5516438 1503static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1504{
0edaecfa 1505 INIT_LIST_HEAD(&page->lru);
f1e61557 1506 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1507 spin_lock(&hugetlb_lock);
9dd540e2 1508 set_hugetlb_cgroup(page, NULL);
1adc4d41 1509 set_hugetlb_cgroup_rsvd(page, NULL);
a5516438
AK
1510 h->nr_huge_pages++;
1511 h->nr_huge_pages_node[nid]++;
b7ba30c6 1512 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1513}
1514
d00181b9 1515static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1516{
1517 int i;
1518 int nr_pages = 1 << order;
1519 struct page *p = page + 1;
1520
1521 /* we rely on prep_new_huge_page to set the destructor */
1522 set_compound_order(page, order);
ef5a22be 1523 __ClearPageReserved(page);
de09d31d 1524 __SetPageHead(page);
20a0307c 1525 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1526 /*
1527 * For gigantic hugepages allocated through bootmem at
1528 * boot, it's safer to be consistent with the not-gigantic
1529 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1530 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1531 * pages may get the reference counting wrong if they see
1532 * PG_reserved set on a tail page (despite the head page not
1533 * having PG_reserved set). Enforcing this consistency between
1534 * head and tail pages allows drivers to optimize away a check
1535 * on the head page when they need know if put_page() is needed
1536 * after get_user_pages().
1537 */
1538 __ClearPageReserved(p);
58a84aa9 1539 set_page_count(p, 0);
1d798ca3 1540 set_compound_head(p, page);
20a0307c 1541 }
b4330afb 1542 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
1543
1544 if (hpage_pincount_available(page))
1545 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1546}
1547
7795912c
AM
1548/*
1549 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1550 * transparent huge pages. See the PageTransHuge() documentation for more
1551 * details.
1552 */
20a0307c
WF
1553int PageHuge(struct page *page)
1554{
20a0307c
WF
1555 if (!PageCompound(page))
1556 return 0;
1557
1558 page = compound_head(page);
f1e61557 1559 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1560}
43131e14
NH
1561EXPORT_SYMBOL_GPL(PageHuge);
1562
27c73ae7
AA
1563/*
1564 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1565 * normal or transparent huge pages.
1566 */
1567int PageHeadHuge(struct page *page_head)
1568{
27c73ae7
AA
1569 if (!PageHead(page_head))
1570 return 0;
1571
d4af73e3 1572 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1573}
27c73ae7 1574
c0d0381a
MK
1575/*
1576 * Find address_space associated with hugetlbfs page.
1577 * Upon entry page is locked and page 'was' mapped although mapped state
1578 * could change. If necessary, use anon_vma to find vma and associated
1579 * address space. The returned mapping may be stale, but it can not be
1580 * invalid as page lock (which is held) is required to destroy mapping.
1581 */
1582static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1583{
1584 struct anon_vma *anon_vma;
1585 pgoff_t pgoff_start, pgoff_end;
1586 struct anon_vma_chain *avc;
1587 struct address_space *mapping = page_mapping(hpage);
1588
1589 /* Simple file based mapping */
1590 if (mapping)
1591 return mapping;
1592
1593 /*
1594 * Even anonymous hugetlbfs mappings are associated with an
1595 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1596 * code). Find a vma associated with the anonymous vma, and
1597 * use the file pointer to get address_space.
1598 */
1599 anon_vma = page_lock_anon_vma_read(hpage);
1600 if (!anon_vma)
1601 return mapping; /* NULL */
1602
1603 /* Use first found vma */
1604 pgoff_start = page_to_pgoff(hpage);
1139d336 1605 pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
c0d0381a
MK
1606 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1607 pgoff_start, pgoff_end) {
1608 struct vm_area_struct *vma = avc->vma;
1609
1610 mapping = vma->vm_file->f_mapping;
1611 break;
1612 }
1613
1614 anon_vma_unlock_read(anon_vma);
1615 return mapping;
1616}
1617
1618/*
1619 * Find and lock address space (mapping) in write mode.
1620 *
1621 * Upon entry, the page is locked which allows us to find the mapping
1622 * even in the case of an anon page. However, locking order dictates
1623 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
1624 * specific. So, we first try to lock the sema while still holding the
1625 * page lock. If this works, great! If not, then we need to drop the
1626 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
1627 * course, need to revalidate state along the way.
1628 */
1629struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1630{
1631 struct address_space *mapping, *mapping2;
1632
1633 mapping = _get_hugetlb_page_mapping(hpage);
1634retry:
1635 if (!mapping)
1636 return mapping;
1637
1638 /*
1639 * If no contention, take lock and return
1640 */
1641 if (i_mmap_trylock_write(mapping))
1642 return mapping;
1643
1644 /*
1645 * Must drop page lock and wait on mapping sema.
1646 * Note: Once page lock is dropped, mapping could become invalid.
1647 * As a hack, increase map count until we lock page again.
1648 */
1649 atomic_inc(&hpage->_mapcount);
1650 unlock_page(hpage);
1651 i_mmap_lock_write(mapping);
1652 lock_page(hpage);
1653 atomic_add_negative(-1, &hpage->_mapcount);
1654
1655 /* verify page is still mapped */
1656 if (!page_mapped(hpage)) {
1657 i_mmap_unlock_write(mapping);
1658 return NULL;
1659 }
1660
1661 /*
1662 * Get address space again and verify it is the same one
1663 * we locked. If not, drop lock and retry.
1664 */
1665 mapping2 = _get_hugetlb_page_mapping(hpage);
1666 if (mapping2 != mapping) {
1667 i_mmap_unlock_write(mapping);
1668 mapping = mapping2;
1669 goto retry;
1670 }
1671
1672 return mapping;
1673}
1674
13d60f4b
ZY
1675pgoff_t __basepage_index(struct page *page)
1676{
1677 struct page *page_head = compound_head(page);
1678 pgoff_t index = page_index(page_head);
1679 unsigned long compound_idx;
1680
1681 if (!PageHuge(page_head))
1682 return page_index(page);
1683
1684 if (compound_order(page_head) >= MAX_ORDER)
1685 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1686 else
1687 compound_idx = page - page_head;
1688
1689 return (index << compound_order(page_head)) + compound_idx;
1690}
1691
0c397dae 1692static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1693 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1694 nodemask_t *node_alloc_noretry)
1da177e4 1695{
af0fb9df 1696 int order = huge_page_order(h);
1da177e4 1697 struct page *page;
f60858f9 1698 bool alloc_try_hard = true;
f96efd58 1699
f60858f9
MK
1700 /*
1701 * By default we always try hard to allocate the page with
1702 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1703 * a loop (to adjust global huge page counts) and previous allocation
1704 * failed, do not continue to try hard on the same node. Use the
1705 * node_alloc_noretry bitmap to manage this state information.
1706 */
1707 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1708 alloc_try_hard = false;
1709 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1710 if (alloc_try_hard)
1711 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1712 if (nid == NUMA_NO_NODE)
1713 nid = numa_mem_id();
1714 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1715 if (page)
1716 __count_vm_event(HTLB_BUDDY_PGALLOC);
1717 else
1718 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1719
f60858f9
MK
1720 /*
1721 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1722 * indicates an overall state change. Clear bit so that we resume
1723 * normal 'try hard' allocations.
1724 */
1725 if (node_alloc_noretry && page && !alloc_try_hard)
1726 node_clear(nid, *node_alloc_noretry);
1727
1728 /*
1729 * If we tried hard to get a page but failed, set bit so that
1730 * subsequent attempts will not try as hard until there is an
1731 * overall state change.
1732 */
1733 if (node_alloc_noretry && !page && alloc_try_hard)
1734 node_set(nid, *node_alloc_noretry);
1735
63b4613c
NA
1736 return page;
1737}
1738
0c397dae
MH
1739/*
1740 * Common helper to allocate a fresh hugetlb page. All specific allocators
1741 * should use this function to get new hugetlb pages
1742 */
1743static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1744 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1745 nodemask_t *node_alloc_noretry)
0c397dae
MH
1746{
1747 struct page *page;
1748
1749 if (hstate_is_gigantic(h))
1750 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1751 else
1752 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1753 nid, nmask, node_alloc_noretry);
0c397dae
MH
1754 if (!page)
1755 return NULL;
1756
1757 if (hstate_is_gigantic(h))
1758 prep_compound_gigantic_page(page, huge_page_order(h));
1759 prep_new_huge_page(h, page, page_to_nid(page));
1760
1761 return page;
1762}
1763
af0fb9df
MH
1764/*
1765 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1766 * manner.
1767 */
f60858f9
MK
1768static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1769 nodemask_t *node_alloc_noretry)
b2261026
JK
1770{
1771 struct page *page;
1772 int nr_nodes, node;
af0fb9df 1773 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1774
1775 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1776 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1777 node_alloc_noretry);
af0fb9df 1778 if (page)
b2261026 1779 break;
b2261026
JK
1780 }
1781
af0fb9df
MH
1782 if (!page)
1783 return 0;
b2261026 1784
af0fb9df
MH
1785 put_page(page); /* free it into the hugepage allocator */
1786
1787 return 1;
b2261026
JK
1788}
1789
e8c5c824
LS
1790/*
1791 * Free huge page from pool from next node to free.
1792 * Attempt to keep persistent huge pages more or less
1793 * balanced over allowed nodes.
1794 * Called with hugetlb_lock locked.
1795 */
6ae11b27
LS
1796static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1797 bool acct_surplus)
e8c5c824 1798{
b2261026 1799 int nr_nodes, node;
e8c5c824
LS
1800 int ret = 0;
1801
b2261026 1802 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1803 /*
1804 * If we're returning unused surplus pages, only examine
1805 * nodes with surplus pages.
1806 */
b2261026
JK
1807 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1808 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1809 struct page *page =
b2261026 1810 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1811 struct page, lru);
1812 list_del(&page->lru);
1813 h->free_huge_pages--;
b2261026 1814 h->free_huge_pages_node[node]--;
685f3457
LS
1815 if (acct_surplus) {
1816 h->surplus_huge_pages--;
b2261026 1817 h->surplus_huge_pages_node[node]--;
685f3457 1818 }
e8c5c824
LS
1819 update_and_free_page(h, page);
1820 ret = 1;
9a76db09 1821 break;
e8c5c824 1822 }
b2261026 1823 }
e8c5c824
LS
1824
1825 return ret;
1826}
1827
c8721bbb
NH
1828/*
1829 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1830 * nothing for in-use hugepages and non-hugepages.
1831 * This function returns values like below:
1832 *
1833 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1834 * (allocated or reserved.)
1835 * 0: successfully dissolved free hugepages or the page is not a
1836 * hugepage (considered as already dissolved)
c8721bbb 1837 */
c3114a84 1838int dissolve_free_huge_page(struct page *page)
c8721bbb 1839{
6bc9b564 1840 int rc = -EBUSY;
082d5b6b 1841
faf53def
NH
1842 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1843 if (!PageHuge(page))
1844 return 0;
1845
c8721bbb 1846 spin_lock(&hugetlb_lock);
faf53def
NH
1847 if (!PageHuge(page)) {
1848 rc = 0;
1849 goto out;
1850 }
1851
1852 if (!page_count(page)) {
2247bb33
GS
1853 struct page *head = compound_head(page);
1854 struct hstate *h = page_hstate(head);
1855 int nid = page_to_nid(head);
6bc9b564 1856 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1857 goto out;
c3114a84
AK
1858 /*
1859 * Move PageHWPoison flag from head page to the raw error page,
1860 * which makes any subpages rather than the error page reusable.
1861 */
1862 if (PageHWPoison(head) && page != head) {
1863 SetPageHWPoison(page);
1864 ClearPageHWPoison(head);
1865 }
2247bb33 1866 list_del(&head->lru);
c8721bbb
NH
1867 h->free_huge_pages--;
1868 h->free_huge_pages_node[nid]--;
c1470b33 1869 h->max_huge_pages--;
2247bb33 1870 update_and_free_page(h, head);
6bc9b564 1871 rc = 0;
c8721bbb 1872 }
082d5b6b 1873out:
c8721bbb 1874 spin_unlock(&hugetlb_lock);
082d5b6b 1875 return rc;
c8721bbb
NH
1876}
1877
1878/*
1879 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1880 * make specified memory blocks removable from the system.
2247bb33
GS
1881 * Note that this will dissolve a free gigantic hugepage completely, if any
1882 * part of it lies within the given range.
082d5b6b
GS
1883 * Also note that if dissolve_free_huge_page() returns with an error, all
1884 * free hugepages that were dissolved before that error are lost.
c8721bbb 1885 */
082d5b6b 1886int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1887{
c8721bbb 1888 unsigned long pfn;
eb03aa00 1889 struct page *page;
082d5b6b 1890 int rc = 0;
c8721bbb 1891
d0177639 1892 if (!hugepages_supported())
082d5b6b 1893 return rc;
d0177639 1894
eb03aa00
GS
1895 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1896 page = pfn_to_page(pfn);
faf53def
NH
1897 rc = dissolve_free_huge_page(page);
1898 if (rc)
1899 break;
eb03aa00 1900 }
082d5b6b
GS
1901
1902 return rc;
c8721bbb
NH
1903}
1904
ab5ac90a
MH
1905/*
1906 * Allocates a fresh surplus page from the page allocator.
1907 */
0c397dae 1908static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1909 int nid, nodemask_t *nmask)
7893d1d5 1910{
9980d744 1911 struct page *page = NULL;
7893d1d5 1912
bae7f4ae 1913 if (hstate_is_gigantic(h))
aa888a74
AK
1914 return NULL;
1915
d1c3fb1f 1916 spin_lock(&hugetlb_lock);
9980d744
MH
1917 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1918 goto out_unlock;
d1c3fb1f
NA
1919 spin_unlock(&hugetlb_lock);
1920
f60858f9 1921 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1922 if (!page)
0c397dae 1923 return NULL;
d1c3fb1f
NA
1924
1925 spin_lock(&hugetlb_lock);
9980d744
MH
1926 /*
1927 * We could have raced with the pool size change.
1928 * Double check that and simply deallocate the new page
1929 * if we would end up overcommiting the surpluses. Abuse
1930 * temporary page to workaround the nasty free_huge_page
1931 * codeflow
1932 */
1933 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1934 SetPageHugeTemporary(page);
2bf753e6 1935 spin_unlock(&hugetlb_lock);
9980d744 1936 put_page(page);
2bf753e6 1937 return NULL;
9980d744 1938 } else {
9980d744 1939 h->surplus_huge_pages++;
4704dea3 1940 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1941 }
9980d744
MH
1942
1943out_unlock:
d1c3fb1f 1944 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1945
1946 return page;
1947}
1948
bbe88753 1949static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1950 int nid, nodemask_t *nmask)
ab5ac90a
MH
1951{
1952 struct page *page;
1953
1954 if (hstate_is_gigantic(h))
1955 return NULL;
1956
f60858f9 1957 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1958 if (!page)
1959 return NULL;
1960
1961 /*
1962 * We do not account these pages as surplus because they are only
1963 * temporary and will be released properly on the last reference
1964 */
ab5ac90a
MH
1965 SetPageHugeTemporary(page);
1966
1967 return page;
1968}
1969
099730d6
DH
1970/*
1971 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1972 */
e0ec90ee 1973static
0c397dae 1974struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1975 struct vm_area_struct *vma, unsigned long addr)
1976{
aaf14e40
MH
1977 struct page *page;
1978 struct mempolicy *mpol;
1979 gfp_t gfp_mask = htlb_alloc_mask(h);
1980 int nid;
1981 nodemask_t *nodemask;
1982
1983 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1984 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1985 mpol_cond_put(mpol);
1986
1987 return page;
099730d6
DH
1988}
1989
ab5ac90a 1990/* page migration callback function */
3e59fcb0 1991struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1992 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1993{
4db9b2ef
MH
1994 spin_lock(&hugetlb_lock);
1995 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1996 struct page *page;
1997
1998 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1999 if (page) {
2000 spin_unlock(&hugetlb_lock);
2001 return page;
4db9b2ef
MH
2002 }
2003 }
2004 spin_unlock(&hugetlb_lock);
4db9b2ef 2005
0c397dae 2006 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2007}
2008
ebd63723 2009/* mempolicy aware migration callback */
389c8178
MH
2010struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2011 unsigned long address)
ebd63723
MH
2012{
2013 struct mempolicy *mpol;
2014 nodemask_t *nodemask;
2015 struct page *page;
ebd63723
MH
2016 gfp_t gfp_mask;
2017 int node;
2018
ebd63723
MH
2019 gfp_mask = htlb_alloc_mask(h);
2020 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 2021 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
2022 mpol_cond_put(mpol);
2023
2024 return page;
2025}
2026
e4e574b7 2027/*
25985edc 2028 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2029 * of size 'delta'.
2030 */
a5516438 2031static int gather_surplus_pages(struct hstate *h, int delta)
1b2a1e7b 2032 __must_hold(&hugetlb_lock)
e4e574b7
AL
2033{
2034 struct list_head surplus_list;
2035 struct page *page, *tmp;
2036 int ret, i;
2037 int needed, allocated;
28073b02 2038 bool alloc_ok = true;
e4e574b7 2039
a5516438 2040 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2041 if (needed <= 0) {
a5516438 2042 h->resv_huge_pages += delta;
e4e574b7 2043 return 0;
ac09b3a1 2044 }
e4e574b7
AL
2045
2046 allocated = 0;
2047 INIT_LIST_HEAD(&surplus_list);
2048
2049 ret = -ENOMEM;
2050retry:
2051 spin_unlock(&hugetlb_lock);
2052 for (i = 0; i < needed; i++) {
0c397dae 2053 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 2054 NUMA_NO_NODE, NULL);
28073b02
HD
2055 if (!page) {
2056 alloc_ok = false;
2057 break;
2058 }
e4e574b7 2059 list_add(&page->lru, &surplus_list);
69ed779a 2060 cond_resched();
e4e574b7 2061 }
28073b02 2062 allocated += i;
e4e574b7
AL
2063
2064 /*
2065 * After retaking hugetlb_lock, we need to recalculate 'needed'
2066 * because either resv_huge_pages or free_huge_pages may have changed.
2067 */
2068 spin_lock(&hugetlb_lock);
a5516438
AK
2069 needed = (h->resv_huge_pages + delta) -
2070 (h->free_huge_pages + allocated);
28073b02
HD
2071 if (needed > 0) {
2072 if (alloc_ok)
2073 goto retry;
2074 /*
2075 * We were not able to allocate enough pages to
2076 * satisfy the entire reservation so we free what
2077 * we've allocated so far.
2078 */
2079 goto free;
2080 }
e4e574b7
AL
2081 /*
2082 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2083 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2084 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2085 * allocator. Commit the entire reservation here to prevent another
2086 * process from stealing the pages as they are added to the pool but
2087 * before they are reserved.
e4e574b7
AL
2088 */
2089 needed += allocated;
a5516438 2090 h->resv_huge_pages += delta;
e4e574b7 2091 ret = 0;
a9869b83 2092
19fc3f0a 2093 /* Free the needed pages to the hugetlb pool */
e4e574b7 2094 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
2095 if ((--needed) < 0)
2096 break;
a9869b83
NH
2097 /*
2098 * This page is now managed by the hugetlb allocator and has
2099 * no users -- drop the buddy allocator's reference.
2100 */
2101 put_page_testzero(page);
309381fe 2102 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 2103 enqueue_huge_page(h, page);
19fc3f0a 2104 }
28073b02 2105free:
b0365c8d 2106 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
2107
2108 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2109 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2110 put_page(page);
a9869b83 2111 spin_lock(&hugetlb_lock);
e4e574b7
AL
2112
2113 return ret;
2114}
2115
2116/*
e5bbc8a6
MK
2117 * This routine has two main purposes:
2118 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2119 * in unused_resv_pages. This corresponds to the prior adjustments made
2120 * to the associated reservation map.
2121 * 2) Free any unused surplus pages that may have been allocated to satisfy
2122 * the reservation. As many as unused_resv_pages may be freed.
2123 *
2124 * Called with hugetlb_lock held. However, the lock could be dropped (and
2125 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2126 * we must make sure nobody else can claim pages we are in the process of
2127 * freeing. Do this by ensuring resv_huge_page always is greater than the
2128 * number of huge pages we plan to free when dropping the lock.
e4e574b7 2129 */
a5516438
AK
2130static void return_unused_surplus_pages(struct hstate *h,
2131 unsigned long unused_resv_pages)
e4e574b7 2132{
e4e574b7
AL
2133 unsigned long nr_pages;
2134
aa888a74 2135 /* Cannot return gigantic pages currently */
bae7f4ae 2136 if (hstate_is_gigantic(h))
e5bbc8a6 2137 goto out;
aa888a74 2138
e5bbc8a6
MK
2139 /*
2140 * Part (or even all) of the reservation could have been backed
2141 * by pre-allocated pages. Only free surplus pages.
2142 */
a5516438 2143 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2144
685f3457
LS
2145 /*
2146 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2147 * evenly across all nodes with memory. Iterate across these nodes
2148 * until we can no longer free unreserved surplus pages. This occurs
2149 * when the nodes with surplus pages have no free pages.
9e7ee400 2150 * free_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2151 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
2152 *
2153 * Note that we decrement resv_huge_pages as we free the pages. If
2154 * we drop the lock, resv_huge_pages will still be sufficiently large
2155 * to cover subsequent pages we may free.
685f3457
LS
2156 */
2157 while (nr_pages--) {
e5bbc8a6
MK
2158 h->resv_huge_pages--;
2159 unused_resv_pages--;
8cebfcd0 2160 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 2161 goto out;
7848a4bf 2162 cond_resched_lock(&hugetlb_lock);
e4e574b7 2163 }
e5bbc8a6
MK
2164
2165out:
2166 /* Fully uncommit the reservation */
2167 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
2168}
2169
5e911373 2170
c37f9fb1 2171/*
feba16e2 2172 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2173 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2174 *
2175 * vma_needs_reservation is called to determine if the huge page at addr
2176 * within the vma has an associated reservation. If a reservation is
2177 * needed, the value 1 is returned. The caller is then responsible for
2178 * managing the global reservation and subpool usage counts. After
2179 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2180 * to add the page to the reservation map. If the page allocation fails,
2181 * the reservation must be ended instead of committed. vma_end_reservation
2182 * is called in such cases.
cf3ad20b
MK
2183 *
2184 * In the normal case, vma_commit_reservation returns the same value
2185 * as the preceding vma_needs_reservation call. The only time this
2186 * is not the case is if a reserve map was changed between calls. It
2187 * is the responsibility of the caller to notice the difference and
2188 * take appropriate action.
96b96a96
MK
2189 *
2190 * vma_add_reservation is used in error paths where a reservation must
2191 * be restored when a newly allocated huge page must be freed. It is
2192 * to be called after calling vma_needs_reservation to determine if a
2193 * reservation exists.
c37f9fb1 2194 */
5e911373
MK
2195enum vma_resv_mode {
2196 VMA_NEEDS_RESV,
2197 VMA_COMMIT_RESV,
feba16e2 2198 VMA_END_RESV,
96b96a96 2199 VMA_ADD_RESV,
5e911373 2200};
cf3ad20b
MK
2201static long __vma_reservation_common(struct hstate *h,
2202 struct vm_area_struct *vma, unsigned long addr,
5e911373 2203 enum vma_resv_mode mode)
c37f9fb1 2204{
4e35f483
JK
2205 struct resv_map *resv;
2206 pgoff_t idx;
cf3ad20b 2207 long ret;
0db9d74e 2208 long dummy_out_regions_needed;
c37f9fb1 2209
4e35f483
JK
2210 resv = vma_resv_map(vma);
2211 if (!resv)
84afd99b 2212 return 1;
c37f9fb1 2213
4e35f483 2214 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2215 switch (mode) {
2216 case VMA_NEEDS_RESV:
0db9d74e
MA
2217 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2218 /* We assume that vma_reservation_* routines always operate on
2219 * 1 page, and that adding to resv map a 1 page entry can only
2220 * ever require 1 region.
2221 */
2222 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2223 break;
2224 case VMA_COMMIT_RESV:
075a61d0 2225 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2226 /* region_add calls of range 1 should never fail. */
2227 VM_BUG_ON(ret < 0);
5e911373 2228 break;
feba16e2 2229 case VMA_END_RESV:
0db9d74e 2230 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2231 ret = 0;
2232 break;
96b96a96 2233 case VMA_ADD_RESV:
0db9d74e 2234 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2235 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2236 /* region_add calls of range 1 should never fail. */
2237 VM_BUG_ON(ret < 0);
2238 } else {
2239 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2240 ret = region_del(resv, idx, idx + 1);
2241 }
2242 break;
5e911373
MK
2243 default:
2244 BUG();
2245 }
84afd99b 2246
4e35f483 2247 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2248 return ret;
67961f9d
MK
2249 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2250 /*
2251 * In most cases, reserves always exist for private mappings.
2252 * However, a file associated with mapping could have been
2253 * hole punched or truncated after reserves were consumed.
2254 * As subsequent fault on such a range will not use reserves.
2255 * Subtle - The reserve map for private mappings has the
2256 * opposite meaning than that of shared mappings. If NO
2257 * entry is in the reserve map, it means a reservation exists.
2258 * If an entry exists in the reserve map, it means the
2259 * reservation has already been consumed. As a result, the
2260 * return value of this routine is the opposite of the
2261 * value returned from reserve map manipulation routines above.
2262 */
2263 if (ret)
2264 return 0;
2265 else
2266 return 1;
2267 }
4e35f483 2268 else
cf3ad20b 2269 return ret < 0 ? ret : 0;
c37f9fb1 2270}
cf3ad20b
MK
2271
2272static long vma_needs_reservation(struct hstate *h,
a5516438 2273 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2274{
5e911373 2275 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2276}
84afd99b 2277
cf3ad20b
MK
2278static long vma_commit_reservation(struct hstate *h,
2279 struct vm_area_struct *vma, unsigned long addr)
2280{
5e911373
MK
2281 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2282}
2283
feba16e2 2284static void vma_end_reservation(struct hstate *h,
5e911373
MK
2285 struct vm_area_struct *vma, unsigned long addr)
2286{
feba16e2 2287 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2288}
2289
96b96a96
MK
2290static long vma_add_reservation(struct hstate *h,
2291 struct vm_area_struct *vma, unsigned long addr)
2292{
2293 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2294}
2295
2296/*
2297 * This routine is called to restore a reservation on error paths. In the
2298 * specific error paths, a huge page was allocated (via alloc_huge_page)
2299 * and is about to be freed. If a reservation for the page existed,
2300 * alloc_huge_page would have consumed the reservation and set PagePrivate
2301 * in the newly allocated page. When the page is freed via free_huge_page,
2302 * the global reservation count will be incremented if PagePrivate is set.
2303 * However, free_huge_page can not adjust the reserve map. Adjust the
2304 * reserve map here to be consistent with global reserve count adjustments
2305 * to be made by free_huge_page.
2306 */
2307static void restore_reserve_on_error(struct hstate *h,
2308 struct vm_area_struct *vma, unsigned long address,
2309 struct page *page)
2310{
2311 if (unlikely(PagePrivate(page))) {
2312 long rc = vma_needs_reservation(h, vma, address);
2313
2314 if (unlikely(rc < 0)) {
2315 /*
2316 * Rare out of memory condition in reserve map
2317 * manipulation. Clear PagePrivate so that
2318 * global reserve count will not be incremented
2319 * by free_huge_page. This will make it appear
2320 * as though the reservation for this page was
2321 * consumed. This may prevent the task from
2322 * faulting in the page at a later time. This
2323 * is better than inconsistent global huge page
2324 * accounting of reserve counts.
2325 */
2326 ClearPagePrivate(page);
2327 } else if (rc) {
2328 rc = vma_add_reservation(h, vma, address);
2329 if (unlikely(rc < 0))
2330 /*
2331 * See above comment about rare out of
2332 * memory condition.
2333 */
2334 ClearPagePrivate(page);
2335 } else
2336 vma_end_reservation(h, vma, address);
2337 }
2338}
2339
70c3547e 2340struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2341 unsigned long addr, int avoid_reserve)
1da177e4 2342{
90481622 2343 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2344 struct hstate *h = hstate_vma(vma);
348ea204 2345 struct page *page;
d85f69b0
MK
2346 long map_chg, map_commit;
2347 long gbl_chg;
6d76dcf4
AK
2348 int ret, idx;
2349 struct hugetlb_cgroup *h_cg;
08cf9faf 2350 bool deferred_reserve;
a1e78772 2351
6d76dcf4 2352 idx = hstate_index(h);
a1e78772 2353 /*
d85f69b0
MK
2354 * Examine the region/reserve map to determine if the process
2355 * has a reservation for the page to be allocated. A return
2356 * code of zero indicates a reservation exists (no change).
a1e78772 2357 */
d85f69b0
MK
2358 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2359 if (map_chg < 0)
76dcee75 2360 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2361
2362 /*
2363 * Processes that did not create the mapping will have no
2364 * reserves as indicated by the region/reserve map. Check
2365 * that the allocation will not exceed the subpool limit.
2366 * Allocations for MAP_NORESERVE mappings also need to be
2367 * checked against any subpool limit.
2368 */
2369 if (map_chg || avoid_reserve) {
2370 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2371 if (gbl_chg < 0) {
feba16e2 2372 vma_end_reservation(h, vma, addr);
76dcee75 2373 return ERR_PTR(-ENOSPC);
5e911373 2374 }
1da177e4 2375
d85f69b0
MK
2376 /*
2377 * Even though there was no reservation in the region/reserve
2378 * map, there could be reservations associated with the
2379 * subpool that can be used. This would be indicated if the
2380 * return value of hugepage_subpool_get_pages() is zero.
2381 * However, if avoid_reserve is specified we still avoid even
2382 * the subpool reservations.
2383 */
2384 if (avoid_reserve)
2385 gbl_chg = 1;
2386 }
2387
08cf9faf
MA
2388 /* If this allocation is not consuming a reservation, charge it now.
2389 */
2390 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2391 if (deferred_reserve) {
2392 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2393 idx, pages_per_huge_page(h), &h_cg);
2394 if (ret)
2395 goto out_subpool_put;
2396 }
2397
6d76dcf4 2398 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2399 if (ret)
08cf9faf 2400 goto out_uncharge_cgroup_reservation;
8f34af6f 2401
1da177e4 2402 spin_lock(&hugetlb_lock);
d85f69b0
MK
2403 /*
2404 * glb_chg is passed to indicate whether or not a page must be taken
2405 * from the global free pool (global change). gbl_chg == 0 indicates
2406 * a reservation exists for the allocation.
2407 */
2408 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2409 if (!page) {
94ae8ba7 2410 spin_unlock(&hugetlb_lock);
0c397dae 2411 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2412 if (!page)
2413 goto out_uncharge_cgroup;
a88c7695
NH
2414 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2415 SetPagePrivate(page);
2416 h->resv_huge_pages--;
2417 }
79dbb236
AK
2418 spin_lock(&hugetlb_lock);
2419 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2420 /* Fall through */
68842c9b 2421 }
81a6fcae 2422 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2423 /* If allocation is not consuming a reservation, also store the
2424 * hugetlb_cgroup pointer on the page.
2425 */
2426 if (deferred_reserve) {
2427 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2428 h_cg, page);
2429 }
2430
81a6fcae 2431 spin_unlock(&hugetlb_lock);
348ea204 2432
90481622 2433 set_page_private(page, (unsigned long)spool);
90d8b7e6 2434
d85f69b0
MK
2435 map_commit = vma_commit_reservation(h, vma, addr);
2436 if (unlikely(map_chg > map_commit)) {
33039678
MK
2437 /*
2438 * The page was added to the reservation map between
2439 * vma_needs_reservation and vma_commit_reservation.
2440 * This indicates a race with hugetlb_reserve_pages.
2441 * Adjust for the subpool count incremented above AND
2442 * in hugetlb_reserve_pages for the same page. Also,
2443 * the reservation count added in hugetlb_reserve_pages
2444 * no longer applies.
2445 */
2446 long rsv_adjust;
2447
2448 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2449 hugetlb_acct_memory(h, -rsv_adjust);
2450 }
90d8b7e6 2451 return page;
8f34af6f
JZ
2452
2453out_uncharge_cgroup:
2454 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2455out_uncharge_cgroup_reservation:
2456 if (deferred_reserve)
2457 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2458 h_cg);
8f34af6f 2459out_subpool_put:
d85f69b0 2460 if (map_chg || avoid_reserve)
8f34af6f 2461 hugepage_subpool_put_pages(spool, 1);
feba16e2 2462 vma_end_reservation(h, vma, addr);
8f34af6f 2463 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2464}
2465
e24a1307
AK
2466int alloc_bootmem_huge_page(struct hstate *h)
2467 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2468int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2469{
2470 struct huge_bootmem_page *m;
b2261026 2471 int nr_nodes, node;
aa888a74 2472
b2261026 2473 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2474 void *addr;
2475
eb31d559 2476 addr = memblock_alloc_try_nid_raw(
8b89a116 2477 huge_page_size(h), huge_page_size(h),
97ad1087 2478 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2479 if (addr) {
2480 /*
2481 * Use the beginning of the huge page to store the
2482 * huge_bootmem_page struct (until gather_bootmem
2483 * puts them into the mem_map).
2484 */
2485 m = addr;
91f47662 2486 goto found;
aa888a74 2487 }
aa888a74
AK
2488 }
2489 return 0;
2490
2491found:
df994ead 2492 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2493 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2494 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2495 list_add(&m->list, &huge_boot_pages);
2496 m->hstate = h;
2497 return 1;
2498}
2499
d00181b9
KS
2500static void __init prep_compound_huge_page(struct page *page,
2501 unsigned int order)
18229df5
AW
2502{
2503 if (unlikely(order > (MAX_ORDER - 1)))
2504 prep_compound_gigantic_page(page, order);
2505 else
2506 prep_compound_page(page, order);
2507}
2508
aa888a74
AK
2509/* Put bootmem huge pages into the standard lists after mem_map is up */
2510static void __init gather_bootmem_prealloc(void)
2511{
2512 struct huge_bootmem_page *m;
2513
2514 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2515 struct page *page = virt_to_page(m);
aa888a74 2516 struct hstate *h = m->hstate;
ee8f248d 2517
aa888a74 2518 WARN_ON(page_count(page) != 1);
18229df5 2519 prep_compound_huge_page(page, h->order);
ef5a22be 2520 WARN_ON(PageReserved(page));
aa888a74 2521 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2522 put_page(page); /* free it into the hugepage allocator */
2523
b0320c7b
RA
2524 /*
2525 * If we had gigantic hugepages allocated at boot time, we need
2526 * to restore the 'stolen' pages to totalram_pages in order to
2527 * fix confusing memory reports from free(1) and another
2528 * side-effects, like CommitLimit going negative.
2529 */
bae7f4ae 2530 if (hstate_is_gigantic(h))
3dcc0571 2531 adjust_managed_page_count(page, 1 << h->order);
520495fe 2532 cond_resched();
aa888a74
AK
2533 }
2534}
2535
8faa8b07 2536static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2537{
2538 unsigned long i;
f60858f9
MK
2539 nodemask_t *node_alloc_noretry;
2540
2541 if (!hstate_is_gigantic(h)) {
2542 /*
2543 * Bit mask controlling how hard we retry per-node allocations.
2544 * Ignore errors as lower level routines can deal with
2545 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2546 * time, we are likely in bigger trouble.
2547 */
2548 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2549 GFP_KERNEL);
2550 } else {
2551 /* allocations done at boot time */
2552 node_alloc_noretry = NULL;
2553 }
2554
2555 /* bit mask controlling how hard we retry per-node allocations */
2556 if (node_alloc_noretry)
2557 nodes_clear(*node_alloc_noretry);
a5516438 2558
e5ff2159 2559 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2560 if (hstate_is_gigantic(h)) {
dbda8fea 2561 if (hugetlb_cma_size) {
cf11e85f
RG
2562 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2563 break;
2564 }
aa888a74
AK
2565 if (!alloc_bootmem_huge_page(h))
2566 break;
0c397dae 2567 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2568 &node_states[N_MEMORY],
2569 node_alloc_noretry))
1da177e4 2570 break;
69ed779a 2571 cond_resched();
1da177e4 2572 }
d715cf80
LH
2573 if (i < h->max_huge_pages) {
2574 char buf[32];
2575
c6247f72 2576 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2577 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2578 h->max_huge_pages, buf, i);
2579 h->max_huge_pages = i;
2580 }
f60858f9
MK
2581
2582 kfree(node_alloc_noretry);
e5ff2159
AK
2583}
2584
2585static void __init hugetlb_init_hstates(void)
2586{
2587 struct hstate *h;
2588
2589 for_each_hstate(h) {
641844f5
NH
2590 if (minimum_order > huge_page_order(h))
2591 minimum_order = huge_page_order(h);
2592
8faa8b07 2593 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2594 if (!hstate_is_gigantic(h))
8faa8b07 2595 hugetlb_hstate_alloc_pages(h);
e5ff2159 2596 }
641844f5 2597 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2598}
2599
2600static void __init report_hugepages(void)
2601{
2602 struct hstate *h;
2603
2604 for_each_hstate(h) {
4abd32db 2605 char buf[32];
c6247f72
MW
2606
2607 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2608 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2609 buf, h->free_huge_pages);
e5ff2159
AK
2610 }
2611}
2612
1da177e4 2613#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2614static void try_to_free_low(struct hstate *h, unsigned long count,
2615 nodemask_t *nodes_allowed)
1da177e4 2616{
4415cc8d
CL
2617 int i;
2618
bae7f4ae 2619 if (hstate_is_gigantic(h))
aa888a74
AK
2620 return;
2621
6ae11b27 2622 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2623 struct page *page, *next;
a5516438
AK
2624 struct list_head *freel = &h->hugepage_freelists[i];
2625 list_for_each_entry_safe(page, next, freel, lru) {
2626 if (count >= h->nr_huge_pages)
6b0c880d 2627 return;
1da177e4
LT
2628 if (PageHighMem(page))
2629 continue;
2630 list_del(&page->lru);
e5ff2159 2631 update_and_free_page(h, page);
a5516438
AK
2632 h->free_huge_pages--;
2633 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2634 }
2635 }
2636}
2637#else
6ae11b27
LS
2638static inline void try_to_free_low(struct hstate *h, unsigned long count,
2639 nodemask_t *nodes_allowed)
1da177e4
LT
2640{
2641}
2642#endif
2643
20a0307c
WF
2644/*
2645 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2646 * balanced by operating on them in a round-robin fashion.
2647 * Returns 1 if an adjustment was made.
2648 */
6ae11b27
LS
2649static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2650 int delta)
20a0307c 2651{
b2261026 2652 int nr_nodes, node;
20a0307c
WF
2653
2654 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2655
b2261026
JK
2656 if (delta < 0) {
2657 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2658 if (h->surplus_huge_pages_node[node])
2659 goto found;
e8c5c824 2660 }
b2261026
JK
2661 } else {
2662 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2663 if (h->surplus_huge_pages_node[node] <
2664 h->nr_huge_pages_node[node])
2665 goto found;
e8c5c824 2666 }
b2261026
JK
2667 }
2668 return 0;
20a0307c 2669
b2261026
JK
2670found:
2671 h->surplus_huge_pages += delta;
2672 h->surplus_huge_pages_node[node] += delta;
2673 return 1;
20a0307c
WF
2674}
2675
a5516438 2676#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2677static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2678 nodemask_t *nodes_allowed)
1da177e4 2679{
7893d1d5 2680 unsigned long min_count, ret;
f60858f9
MK
2681 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2682
2683 /*
2684 * Bit mask controlling how hard we retry per-node allocations.
2685 * If we can not allocate the bit mask, do not attempt to allocate
2686 * the requested huge pages.
2687 */
2688 if (node_alloc_noretry)
2689 nodes_clear(*node_alloc_noretry);
2690 else
2691 return -ENOMEM;
1da177e4 2692
4eb0716e
AG
2693 spin_lock(&hugetlb_lock);
2694
fd875dca
MK
2695 /*
2696 * Check for a node specific request.
2697 * Changing node specific huge page count may require a corresponding
2698 * change to the global count. In any case, the passed node mask
2699 * (nodes_allowed) will restrict alloc/free to the specified node.
2700 */
2701 if (nid != NUMA_NO_NODE) {
2702 unsigned long old_count = count;
2703
2704 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2705 /*
2706 * User may have specified a large count value which caused the
2707 * above calculation to overflow. In this case, they wanted
2708 * to allocate as many huge pages as possible. Set count to
2709 * largest possible value to align with their intention.
2710 */
2711 if (count < old_count)
2712 count = ULONG_MAX;
2713 }
2714
4eb0716e
AG
2715 /*
2716 * Gigantic pages runtime allocation depend on the capability for large
2717 * page range allocation.
2718 * If the system does not provide this feature, return an error when
2719 * the user tries to allocate gigantic pages but let the user free the
2720 * boottime allocated gigantic pages.
2721 */
2722 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2723 if (count > persistent_huge_pages(h)) {
2724 spin_unlock(&hugetlb_lock);
f60858f9 2725 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2726 return -EINVAL;
2727 }
2728 /* Fall through to decrease pool */
2729 }
aa888a74 2730
7893d1d5
AL
2731 /*
2732 * Increase the pool size
2733 * First take pages out of surplus state. Then make up the
2734 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2735 *
0c397dae 2736 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2737 * to convert a surplus huge page to a normal huge page. That is
2738 * not critical, though, it just means the overall size of the
2739 * pool might be one hugepage larger than it needs to be, but
2740 * within all the constraints specified by the sysctls.
7893d1d5 2741 */
a5516438 2742 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2743 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2744 break;
2745 }
2746
a5516438 2747 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2748 /*
2749 * If this allocation races such that we no longer need the
2750 * page, free_huge_page will handle it by freeing the page
2751 * and reducing the surplus.
2752 */
2753 spin_unlock(&hugetlb_lock);
649920c6
JH
2754
2755 /* yield cpu to avoid soft lockup */
2756 cond_resched();
2757
f60858f9
MK
2758 ret = alloc_pool_huge_page(h, nodes_allowed,
2759 node_alloc_noretry);
7893d1d5
AL
2760 spin_lock(&hugetlb_lock);
2761 if (!ret)
2762 goto out;
2763
536240f2
MG
2764 /* Bail for signals. Probably ctrl-c from user */
2765 if (signal_pending(current))
2766 goto out;
7893d1d5 2767 }
7893d1d5
AL
2768
2769 /*
2770 * Decrease the pool size
2771 * First return free pages to the buddy allocator (being careful
2772 * to keep enough around to satisfy reservations). Then place
2773 * pages into surplus state as needed so the pool will shrink
2774 * to the desired size as pages become free.
d1c3fb1f
NA
2775 *
2776 * By placing pages into the surplus state independent of the
2777 * overcommit value, we are allowing the surplus pool size to
2778 * exceed overcommit. There are few sane options here. Since
0c397dae 2779 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2780 * though, we'll note that we're not allowed to exceed surplus
2781 * and won't grow the pool anywhere else. Not until one of the
2782 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2783 */
a5516438 2784 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2785 min_count = max(count, min_count);
6ae11b27 2786 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2787 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2788 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2789 break;
55f67141 2790 cond_resched_lock(&hugetlb_lock);
1da177e4 2791 }
a5516438 2792 while (count < persistent_huge_pages(h)) {
6ae11b27 2793 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2794 break;
2795 }
2796out:
4eb0716e 2797 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2798 spin_unlock(&hugetlb_lock);
4eb0716e 2799
f60858f9
MK
2800 NODEMASK_FREE(node_alloc_noretry);
2801
4eb0716e 2802 return 0;
1da177e4
LT
2803}
2804
a3437870
NA
2805#define HSTATE_ATTR_RO(_name) \
2806 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2807
2808#define HSTATE_ATTR(_name) \
2809 static struct kobj_attribute _name##_attr = \
2810 __ATTR(_name, 0644, _name##_show, _name##_store)
2811
2812static struct kobject *hugepages_kobj;
2813static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2814
9a305230
LS
2815static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2816
2817static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2818{
2819 int i;
9a305230 2820
a3437870 2821 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2822 if (hstate_kobjs[i] == kobj) {
2823 if (nidp)
2824 *nidp = NUMA_NO_NODE;
a3437870 2825 return &hstates[i];
9a305230
LS
2826 }
2827
2828 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2829}
2830
06808b08 2831static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2832 struct kobj_attribute *attr, char *buf)
2833{
9a305230
LS
2834 struct hstate *h;
2835 unsigned long nr_huge_pages;
2836 int nid;
2837
2838 h = kobj_to_hstate(kobj, &nid);
2839 if (nid == NUMA_NO_NODE)
2840 nr_huge_pages = h->nr_huge_pages;
2841 else
2842 nr_huge_pages = h->nr_huge_pages_node[nid];
2843
2844 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2845}
adbe8726 2846
238d3c13
DR
2847static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2848 struct hstate *h, int nid,
2849 unsigned long count, size_t len)
a3437870
NA
2850{
2851 int err;
2d0adf7e 2852 nodemask_t nodes_allowed, *n_mask;
a3437870 2853
2d0adf7e
OS
2854 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2855 return -EINVAL;
adbe8726 2856
9a305230
LS
2857 if (nid == NUMA_NO_NODE) {
2858 /*
2859 * global hstate attribute
2860 */
2861 if (!(obey_mempolicy &&
2d0adf7e
OS
2862 init_nodemask_of_mempolicy(&nodes_allowed)))
2863 n_mask = &node_states[N_MEMORY];
2864 else
2865 n_mask = &nodes_allowed;
2866 } else {
9a305230 2867 /*
fd875dca
MK
2868 * Node specific request. count adjustment happens in
2869 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2870 */
2d0adf7e
OS
2871 init_nodemask_of_node(&nodes_allowed, nid);
2872 n_mask = &nodes_allowed;
fd875dca 2873 }
9a305230 2874
2d0adf7e 2875 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2876
4eb0716e 2877 return err ? err : len;
06808b08
LS
2878}
2879
238d3c13
DR
2880static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2881 struct kobject *kobj, const char *buf,
2882 size_t len)
2883{
2884 struct hstate *h;
2885 unsigned long count;
2886 int nid;
2887 int err;
2888
2889 err = kstrtoul(buf, 10, &count);
2890 if (err)
2891 return err;
2892
2893 h = kobj_to_hstate(kobj, &nid);
2894 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2895}
2896
06808b08
LS
2897static ssize_t nr_hugepages_show(struct kobject *kobj,
2898 struct kobj_attribute *attr, char *buf)
2899{
2900 return nr_hugepages_show_common(kobj, attr, buf);
2901}
2902
2903static ssize_t nr_hugepages_store(struct kobject *kobj,
2904 struct kobj_attribute *attr, const char *buf, size_t len)
2905{
238d3c13 2906 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2907}
2908HSTATE_ATTR(nr_hugepages);
2909
06808b08
LS
2910#ifdef CONFIG_NUMA
2911
2912/*
2913 * hstate attribute for optionally mempolicy-based constraint on persistent
2914 * huge page alloc/free.
2915 */
2916static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2917 struct kobj_attribute *attr, char *buf)
2918{
2919 return nr_hugepages_show_common(kobj, attr, buf);
2920}
2921
2922static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2923 struct kobj_attribute *attr, const char *buf, size_t len)
2924{
238d3c13 2925 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2926}
2927HSTATE_ATTR(nr_hugepages_mempolicy);
2928#endif
2929
2930
a3437870
NA
2931static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2932 struct kobj_attribute *attr, char *buf)
2933{
9a305230 2934 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2935 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2936}
adbe8726 2937
a3437870
NA
2938static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2939 struct kobj_attribute *attr, const char *buf, size_t count)
2940{
2941 int err;
2942 unsigned long input;
9a305230 2943 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2944
bae7f4ae 2945 if (hstate_is_gigantic(h))
adbe8726
EM
2946 return -EINVAL;
2947
3dbb95f7 2948 err = kstrtoul(buf, 10, &input);
a3437870 2949 if (err)
73ae31e5 2950 return err;
a3437870
NA
2951
2952 spin_lock(&hugetlb_lock);
2953 h->nr_overcommit_huge_pages = input;
2954 spin_unlock(&hugetlb_lock);
2955
2956 return count;
2957}
2958HSTATE_ATTR(nr_overcommit_hugepages);
2959
2960static ssize_t free_hugepages_show(struct kobject *kobj,
2961 struct kobj_attribute *attr, char *buf)
2962{
9a305230
LS
2963 struct hstate *h;
2964 unsigned long free_huge_pages;
2965 int nid;
2966
2967 h = kobj_to_hstate(kobj, &nid);
2968 if (nid == NUMA_NO_NODE)
2969 free_huge_pages = h->free_huge_pages;
2970 else
2971 free_huge_pages = h->free_huge_pages_node[nid];
2972
2973 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2974}
2975HSTATE_ATTR_RO(free_hugepages);
2976
2977static ssize_t resv_hugepages_show(struct kobject *kobj,
2978 struct kobj_attribute *attr, char *buf)
2979{
9a305230 2980 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2981 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2982}
2983HSTATE_ATTR_RO(resv_hugepages);
2984
2985static ssize_t surplus_hugepages_show(struct kobject *kobj,
2986 struct kobj_attribute *attr, char *buf)
2987{
9a305230
LS
2988 struct hstate *h;
2989 unsigned long surplus_huge_pages;
2990 int nid;
2991
2992 h = kobj_to_hstate(kobj, &nid);
2993 if (nid == NUMA_NO_NODE)
2994 surplus_huge_pages = h->surplus_huge_pages;
2995 else
2996 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2997
2998 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2999}
3000HSTATE_ATTR_RO(surplus_hugepages);
3001
3002static struct attribute *hstate_attrs[] = {
3003 &nr_hugepages_attr.attr,
3004 &nr_overcommit_hugepages_attr.attr,
3005 &free_hugepages_attr.attr,
3006 &resv_hugepages_attr.attr,
3007 &surplus_hugepages_attr.attr,
06808b08
LS
3008#ifdef CONFIG_NUMA
3009 &nr_hugepages_mempolicy_attr.attr,
3010#endif
a3437870
NA
3011 NULL,
3012};
3013
67e5ed96 3014static const struct attribute_group hstate_attr_group = {
a3437870
NA
3015 .attrs = hstate_attrs,
3016};
3017
094e9539
JM
3018static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3019 struct kobject **hstate_kobjs,
67e5ed96 3020 const struct attribute_group *hstate_attr_group)
a3437870
NA
3021{
3022 int retval;
972dc4de 3023 int hi = hstate_index(h);
a3437870 3024
9a305230
LS
3025 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3026 if (!hstate_kobjs[hi])
a3437870
NA
3027 return -ENOMEM;
3028
9a305230 3029 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 3030 if (retval)
9a305230 3031 kobject_put(hstate_kobjs[hi]);
a3437870
NA
3032
3033 return retval;
3034}
3035
3036static void __init hugetlb_sysfs_init(void)
3037{
3038 struct hstate *h;
3039 int err;
3040
3041 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3042 if (!hugepages_kobj)
3043 return;
3044
3045 for_each_hstate(h) {
9a305230
LS
3046 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3047 hstate_kobjs, &hstate_attr_group);
a3437870 3048 if (err)
282f4214 3049 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3050 }
3051}
3052
9a305230
LS
3053#ifdef CONFIG_NUMA
3054
3055/*
3056 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3057 * with node devices in node_devices[] using a parallel array. The array
3058 * index of a node device or _hstate == node id.
3059 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3060 * the base kernel, on the hugetlb module.
3061 */
3062struct node_hstate {
3063 struct kobject *hugepages_kobj;
3064 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3065};
b4e289a6 3066static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3067
3068/*
10fbcf4c 3069 * A subset of global hstate attributes for node devices
9a305230
LS
3070 */
3071static struct attribute *per_node_hstate_attrs[] = {
3072 &nr_hugepages_attr.attr,
3073 &free_hugepages_attr.attr,
3074 &surplus_hugepages_attr.attr,
3075 NULL,
3076};
3077
67e5ed96 3078static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3079 .attrs = per_node_hstate_attrs,
3080};
3081
3082/*
10fbcf4c 3083 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3084 * Returns node id via non-NULL nidp.
3085 */
3086static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3087{
3088 int nid;
3089
3090 for (nid = 0; nid < nr_node_ids; nid++) {
3091 struct node_hstate *nhs = &node_hstates[nid];
3092 int i;
3093 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3094 if (nhs->hstate_kobjs[i] == kobj) {
3095 if (nidp)
3096 *nidp = nid;
3097 return &hstates[i];
3098 }
3099 }
3100
3101 BUG();
3102 return NULL;
3103}
3104
3105/*
10fbcf4c 3106 * Unregister hstate attributes from a single node device.
9a305230
LS
3107 * No-op if no hstate attributes attached.
3108 */
3cd8b44f 3109static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3110{
3111 struct hstate *h;
10fbcf4c 3112 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3113
3114 if (!nhs->hugepages_kobj)
9b5e5d0f 3115 return; /* no hstate attributes */
9a305230 3116
972dc4de
AK
3117 for_each_hstate(h) {
3118 int idx = hstate_index(h);
3119 if (nhs->hstate_kobjs[idx]) {
3120 kobject_put(nhs->hstate_kobjs[idx]);
3121 nhs->hstate_kobjs[idx] = NULL;
9a305230 3122 }
972dc4de 3123 }
9a305230
LS
3124
3125 kobject_put(nhs->hugepages_kobj);
3126 nhs->hugepages_kobj = NULL;
3127}
3128
9a305230
LS
3129
3130/*
10fbcf4c 3131 * Register hstate attributes for a single node device.
9a305230
LS
3132 * No-op if attributes already registered.
3133 */
3cd8b44f 3134static void hugetlb_register_node(struct node *node)
9a305230
LS
3135{
3136 struct hstate *h;
10fbcf4c 3137 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3138 int err;
3139
3140 if (nhs->hugepages_kobj)
3141 return; /* already allocated */
3142
3143 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3144 &node->dev.kobj);
9a305230
LS
3145 if (!nhs->hugepages_kobj)
3146 return;
3147
3148 for_each_hstate(h) {
3149 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3150 nhs->hstate_kobjs,
3151 &per_node_hstate_attr_group);
3152 if (err) {
282f4214 3153 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3154 h->name, node->dev.id);
9a305230
LS
3155 hugetlb_unregister_node(node);
3156 break;
3157 }
3158 }
3159}
3160
3161/*
9b5e5d0f 3162 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3163 * devices of nodes that have memory. All on-line nodes should have
3164 * registered their associated device by this time.
9a305230 3165 */
7d9ca000 3166static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3167{
3168 int nid;
3169
8cebfcd0 3170 for_each_node_state(nid, N_MEMORY) {
8732794b 3171 struct node *node = node_devices[nid];
10fbcf4c 3172 if (node->dev.id == nid)
9a305230
LS
3173 hugetlb_register_node(node);
3174 }
3175
3176 /*
10fbcf4c 3177 * Let the node device driver know we're here so it can
9a305230
LS
3178 * [un]register hstate attributes on node hotplug.
3179 */
3180 register_hugetlbfs_with_node(hugetlb_register_node,
3181 hugetlb_unregister_node);
3182}
3183#else /* !CONFIG_NUMA */
3184
3185static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3186{
3187 BUG();
3188 if (nidp)
3189 *nidp = -1;
3190 return NULL;
3191}
3192
9a305230
LS
3193static void hugetlb_register_all_nodes(void) { }
3194
3195#endif
3196
a3437870
NA
3197static int __init hugetlb_init(void)
3198{
8382d914
DB
3199 int i;
3200
c2833a5b
MK
3201 if (!hugepages_supported()) {
3202 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3203 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3204 return 0;
c2833a5b 3205 }
a3437870 3206
282f4214
MK
3207 /*
3208 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3209 * architectures depend on setup being done here.
3210 */
3211 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3212 if (!parsed_default_hugepagesz) {
3213 /*
3214 * If we did not parse a default huge page size, set
3215 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3216 * number of huge pages for this default size was implicitly
3217 * specified, set that here as well.
3218 * Note that the implicit setting will overwrite an explicit
3219 * setting. A warning will be printed in this case.
3220 */
3221 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3222 if (default_hstate_max_huge_pages) {
3223 if (default_hstate.max_huge_pages) {
3224 char buf[32];
3225
3226 string_get_size(huge_page_size(&default_hstate),
3227 1, STRING_UNITS_2, buf, 32);
3228 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3229 default_hstate.max_huge_pages, buf);
3230 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3231 default_hstate_max_huge_pages);
3232 }
3233 default_hstate.max_huge_pages =
3234 default_hstate_max_huge_pages;
d715cf80 3235 }
f8b74815 3236 }
a3437870 3237
cf11e85f 3238 hugetlb_cma_check();
a3437870 3239 hugetlb_init_hstates();
aa888a74 3240 gather_bootmem_prealloc();
a3437870
NA
3241 report_hugepages();
3242
3243 hugetlb_sysfs_init();
9a305230 3244 hugetlb_register_all_nodes();
7179e7bf 3245 hugetlb_cgroup_file_init();
9a305230 3246
8382d914
DB
3247#ifdef CONFIG_SMP
3248 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3249#else
3250 num_fault_mutexes = 1;
3251#endif
c672c7f2 3252 hugetlb_fault_mutex_table =
6da2ec56
KC
3253 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3254 GFP_KERNEL);
c672c7f2 3255 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3256
3257 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3258 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3259 return 0;
3260}
3e89e1c5 3261subsys_initcall(hugetlb_init);
a3437870 3262
ae94da89
MK
3263/* Overwritten by architectures with more huge page sizes */
3264bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3265{
ae94da89 3266 return size == HPAGE_SIZE;
9fee021d
VT
3267}
3268
d00181b9 3269void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3270{
3271 struct hstate *h;
8faa8b07
AK
3272 unsigned long i;
3273
a3437870 3274 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3275 return;
3276 }
47d38344 3277 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3278 BUG_ON(order == 0);
47d38344 3279 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
3280 h->order = order;
3281 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
3282 h->nr_huge_pages = 0;
3283 h->free_huge_pages = 0;
3284 for (i = 0; i < MAX_NUMNODES; ++i)
3285 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3286 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3287 h->next_nid_to_alloc = first_memory_node;
3288 h->next_nid_to_free = first_memory_node;
a3437870
NA
3289 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3290 huge_page_size(h)/1024);
8faa8b07 3291
a3437870
NA
3292 parsed_hstate = h;
3293}
3294
282f4214
MK
3295/*
3296 * hugepages command line processing
3297 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3298 * specification. If not, ignore the hugepages value. hugepages can also
3299 * be the first huge page command line option in which case it implicitly
3300 * specifies the number of huge pages for the default size.
3301 */
3302static int __init hugepages_setup(char *s)
a3437870
NA
3303{
3304 unsigned long *mhp;
8faa8b07 3305 static unsigned long *last_mhp;
a3437870 3306
9fee021d 3307 if (!parsed_valid_hugepagesz) {
282f4214 3308 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3309 parsed_valid_hugepagesz = true;
282f4214 3310 return 0;
9fee021d 3311 }
282f4214 3312
a3437870 3313 /*
282f4214
MK
3314 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3315 * yet, so this hugepages= parameter goes to the "default hstate".
3316 * Otherwise, it goes with the previously parsed hugepagesz or
3317 * default_hugepagesz.
a3437870 3318 */
9fee021d 3319 else if (!hugetlb_max_hstate)
a3437870
NA
3320 mhp = &default_hstate_max_huge_pages;
3321 else
3322 mhp = &parsed_hstate->max_huge_pages;
3323
8faa8b07 3324 if (mhp == last_mhp) {
282f4214
MK
3325 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3326 return 0;
8faa8b07
AK
3327 }
3328
a3437870
NA
3329 if (sscanf(s, "%lu", mhp) <= 0)
3330 *mhp = 0;
3331
8faa8b07
AK
3332 /*
3333 * Global state is always initialized later in hugetlb_init.
3334 * But we need to allocate >= MAX_ORDER hstates here early to still
3335 * use the bootmem allocator.
3336 */
47d38344 3337 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
3338 hugetlb_hstate_alloc_pages(parsed_hstate);
3339
3340 last_mhp = mhp;
3341
a3437870
NA
3342 return 1;
3343}
282f4214 3344__setup("hugepages=", hugepages_setup);
e11bfbfc 3345
282f4214
MK
3346/*
3347 * hugepagesz command line processing
3348 * A specific huge page size can only be specified once with hugepagesz.
3349 * hugepagesz is followed by hugepages on the command line. The global
3350 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3351 * hugepagesz argument was valid.
3352 */
359f2544 3353static int __init hugepagesz_setup(char *s)
e11bfbfc 3354{
359f2544 3355 unsigned long size;
282f4214
MK
3356 struct hstate *h;
3357
3358 parsed_valid_hugepagesz = false;
359f2544
MK
3359 size = (unsigned long)memparse(s, NULL);
3360
3361 if (!arch_hugetlb_valid_size(size)) {
282f4214 3362 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3363 return 0;
3364 }
3365
282f4214
MK
3366 h = size_to_hstate(size);
3367 if (h) {
3368 /*
3369 * hstate for this size already exists. This is normally
3370 * an error, but is allowed if the existing hstate is the
3371 * default hstate. More specifically, it is only allowed if
3372 * the number of huge pages for the default hstate was not
3373 * previously specified.
3374 */
3375 if (!parsed_default_hugepagesz || h != &default_hstate ||
3376 default_hstate.max_huge_pages) {
3377 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3378 return 0;
3379 }
3380
3381 /*
3382 * No need to call hugetlb_add_hstate() as hstate already
3383 * exists. But, do set parsed_hstate so that a following
3384 * hugepages= parameter will be applied to this hstate.
3385 */
3386 parsed_hstate = h;
3387 parsed_valid_hugepagesz = true;
3388 return 1;
38237830
MK
3389 }
3390
359f2544 3391 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3392 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3393 return 1;
3394}
359f2544
MK
3395__setup("hugepagesz=", hugepagesz_setup);
3396
282f4214
MK
3397/*
3398 * default_hugepagesz command line input
3399 * Only one instance of default_hugepagesz allowed on command line.
3400 */
ae94da89 3401static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3402{
ae94da89
MK
3403 unsigned long size;
3404
282f4214 3405 parsed_valid_hugepagesz = false;
282f4214
MK
3406 if (parsed_default_hugepagesz) {
3407 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3408 return 0;
3409 }
3410
ae94da89
MK
3411 size = (unsigned long)memparse(s, NULL);
3412
3413 if (!arch_hugetlb_valid_size(size)) {
282f4214 3414 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3415 return 0;
3416 }
3417
282f4214
MK
3418 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3419 parsed_valid_hugepagesz = true;
3420 parsed_default_hugepagesz = true;
3421 default_hstate_idx = hstate_index(size_to_hstate(size));
3422
3423 /*
3424 * The number of default huge pages (for this size) could have been
3425 * specified as the first hugetlb parameter: hugepages=X. If so,
3426 * then default_hstate_max_huge_pages is set. If the default huge
3427 * page size is gigantic (>= MAX_ORDER), then the pages must be
3428 * allocated here from bootmem allocator.
3429 */
3430 if (default_hstate_max_huge_pages) {
3431 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3432 if (hstate_is_gigantic(&default_hstate))
3433 hugetlb_hstate_alloc_pages(&default_hstate);
3434 default_hstate_max_huge_pages = 0;
3435 }
3436
e11bfbfc
NP
3437 return 1;
3438}
ae94da89 3439__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3440
8ca39e68 3441static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3442{
3443 int node;
3444 unsigned int nr = 0;
8ca39e68
MS
3445 nodemask_t *mpol_allowed;
3446 unsigned int *array = h->free_huge_pages_node;
3447 gfp_t gfp_mask = htlb_alloc_mask(h);
3448
3449 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3450
8ca39e68
MS
3451 for_each_node_mask(node, cpuset_current_mems_allowed) {
3452 if (!mpol_allowed ||
3453 (mpol_allowed && node_isset(node, *mpol_allowed)))
3454 nr += array[node];
3455 }
8a213460
NA
3456
3457 return nr;
3458}
3459
3460#ifdef CONFIG_SYSCTL
17743798
MS
3461static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3462 void *buffer, size_t *length,
3463 loff_t *ppos, unsigned long *out)
3464{
3465 struct ctl_table dup_table;
3466
3467 /*
3468 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3469 * can duplicate the @table and alter the duplicate of it.
3470 */
3471 dup_table = *table;
3472 dup_table.data = out;
3473
3474 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3475}
3476
06808b08
LS
3477static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3478 struct ctl_table *table, int write,
32927393 3479 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3480{
e5ff2159 3481 struct hstate *h = &default_hstate;
238d3c13 3482 unsigned long tmp = h->max_huge_pages;
08d4a246 3483 int ret;
e5ff2159 3484
457c1b27 3485 if (!hugepages_supported())
86613628 3486 return -EOPNOTSUPP;
457c1b27 3487
17743798
MS
3488 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3489 &tmp);
08d4a246
MH
3490 if (ret)
3491 goto out;
e5ff2159 3492
238d3c13
DR
3493 if (write)
3494 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3495 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3496out:
3497 return ret;
1da177e4 3498}
396faf03 3499
06808b08 3500int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3501 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3502{
3503
3504 return hugetlb_sysctl_handler_common(false, table, write,
3505 buffer, length, ppos);
3506}
3507
3508#ifdef CONFIG_NUMA
3509int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3510 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3511{
3512 return hugetlb_sysctl_handler_common(true, table, write,
3513 buffer, length, ppos);
3514}
3515#endif /* CONFIG_NUMA */
3516
a3d0c6aa 3517int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3518 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3519{
a5516438 3520 struct hstate *h = &default_hstate;
e5ff2159 3521 unsigned long tmp;
08d4a246 3522 int ret;
e5ff2159 3523
457c1b27 3524 if (!hugepages_supported())
86613628 3525 return -EOPNOTSUPP;
457c1b27 3526
c033a93c 3527 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3528
bae7f4ae 3529 if (write && hstate_is_gigantic(h))
adbe8726
EM
3530 return -EINVAL;
3531
17743798
MS
3532 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3533 &tmp);
08d4a246
MH
3534 if (ret)
3535 goto out;
e5ff2159
AK
3536
3537 if (write) {
3538 spin_lock(&hugetlb_lock);
3539 h->nr_overcommit_huge_pages = tmp;
3540 spin_unlock(&hugetlb_lock);
3541 }
08d4a246
MH
3542out:
3543 return ret;
a3d0c6aa
NA
3544}
3545
1da177e4
LT
3546#endif /* CONFIG_SYSCTL */
3547
e1759c21 3548void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3549{
fcb2b0c5
RG
3550 struct hstate *h;
3551 unsigned long total = 0;
3552
457c1b27
NA
3553 if (!hugepages_supported())
3554 return;
fcb2b0c5
RG
3555
3556 for_each_hstate(h) {
3557 unsigned long count = h->nr_huge_pages;
3558
3559 total += (PAGE_SIZE << huge_page_order(h)) * count;
3560
3561 if (h == &default_hstate)
3562 seq_printf(m,
3563 "HugePages_Total: %5lu\n"
3564 "HugePages_Free: %5lu\n"
3565 "HugePages_Rsvd: %5lu\n"
3566 "HugePages_Surp: %5lu\n"
3567 "Hugepagesize: %8lu kB\n",
3568 count,
3569 h->free_huge_pages,
3570 h->resv_huge_pages,
3571 h->surplus_huge_pages,
3572 (PAGE_SIZE << huge_page_order(h)) / 1024);
3573 }
3574
3575 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3576}
3577
3578int hugetlb_report_node_meminfo(int nid, char *buf)
3579{
a5516438 3580 struct hstate *h = &default_hstate;
457c1b27
NA
3581 if (!hugepages_supported())
3582 return 0;
1da177e4
LT
3583 return sprintf(buf,
3584 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3585 "Node %d HugePages_Free: %5u\n"
3586 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3587 nid, h->nr_huge_pages_node[nid],
3588 nid, h->free_huge_pages_node[nid],
3589 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3590}
3591
949f7ec5
DR
3592void hugetlb_show_meminfo(void)
3593{
3594 struct hstate *h;
3595 int nid;
3596
457c1b27
NA
3597 if (!hugepages_supported())
3598 return;
3599
949f7ec5
DR
3600 for_each_node_state(nid, N_MEMORY)
3601 for_each_hstate(h)
3602 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3603 nid,
3604 h->nr_huge_pages_node[nid],
3605 h->free_huge_pages_node[nid],
3606 h->surplus_huge_pages_node[nid],
3607 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3608}
3609
5d317b2b
NH
3610void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3611{
3612 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3613 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3614}
3615
1da177e4
LT
3616/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3617unsigned long hugetlb_total_pages(void)
3618{
d0028588
WL
3619 struct hstate *h;
3620 unsigned long nr_total_pages = 0;
3621
3622 for_each_hstate(h)
3623 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3624 return nr_total_pages;
1da177e4 3625}
1da177e4 3626
a5516438 3627static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3628{
3629 int ret = -ENOMEM;
3630
3631 spin_lock(&hugetlb_lock);
3632 /*
3633 * When cpuset is configured, it breaks the strict hugetlb page
3634 * reservation as the accounting is done on a global variable. Such
3635 * reservation is completely rubbish in the presence of cpuset because
3636 * the reservation is not checked against page availability for the
3637 * current cpuset. Application can still potentially OOM'ed by kernel
3638 * with lack of free htlb page in cpuset that the task is in.
3639 * Attempt to enforce strict accounting with cpuset is almost
3640 * impossible (or too ugly) because cpuset is too fluid that
3641 * task or memory node can be dynamically moved between cpusets.
3642 *
3643 * The change of semantics for shared hugetlb mapping with cpuset is
3644 * undesirable. However, in order to preserve some of the semantics,
3645 * we fall back to check against current free page availability as
3646 * a best attempt and hopefully to minimize the impact of changing
3647 * semantics that cpuset has.
8ca39e68
MS
3648 *
3649 * Apart from cpuset, we also have memory policy mechanism that
3650 * also determines from which node the kernel will allocate memory
3651 * in a NUMA system. So similar to cpuset, we also should consider
3652 * the memory policy of the current task. Similar to the description
3653 * above.
fc1b8a73
MG
3654 */
3655 if (delta > 0) {
a5516438 3656 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3657 goto out;
3658
8ca39e68 3659 if (delta > allowed_mems_nr(h)) {
a5516438 3660 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3661 goto out;
3662 }
3663 }
3664
3665 ret = 0;
3666 if (delta < 0)
a5516438 3667 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3668
3669out:
3670 spin_unlock(&hugetlb_lock);
3671 return ret;
3672}
3673
84afd99b
AW
3674static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3675{
f522c3ac 3676 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3677
3678 /*
3679 * This new VMA should share its siblings reservation map if present.
3680 * The VMA will only ever have a valid reservation map pointer where
3681 * it is being copied for another still existing VMA. As that VMA
25985edc 3682 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3683 * after this open call completes. It is therefore safe to take a
3684 * new reference here without additional locking.
3685 */
4e35f483 3686 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3687 kref_get(&resv->refs);
84afd99b
AW
3688}
3689
a1e78772
MG
3690static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3691{
a5516438 3692 struct hstate *h = hstate_vma(vma);
f522c3ac 3693 struct resv_map *resv = vma_resv_map(vma);
90481622 3694 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3695 unsigned long reserve, start, end;
1c5ecae3 3696 long gbl_reserve;
84afd99b 3697
4e35f483
JK
3698 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3699 return;
84afd99b 3700
4e35f483
JK
3701 start = vma_hugecache_offset(h, vma, vma->vm_start);
3702 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3703
4e35f483 3704 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3705 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3706 if (reserve) {
1c5ecae3
MK
3707 /*
3708 * Decrement reserve counts. The global reserve count may be
3709 * adjusted if the subpool has a minimum size.
3710 */
3711 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3712 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3713 }
e9fe92ae
MA
3714
3715 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3716}
3717
31383c68
DW
3718static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3719{
3720 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3721 return -EINVAL;
3722 return 0;
3723}
3724
05ea8860
DW
3725static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3726{
3727 struct hstate *hstate = hstate_vma(vma);
3728
3729 return 1UL << huge_page_shift(hstate);
3730}
3731
1da177e4
LT
3732/*
3733 * We cannot handle pagefaults against hugetlb pages at all. They cause
3734 * handle_mm_fault() to try to instantiate regular-sized pages in the
3735 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3736 * this far.
3737 */
b3ec9f33 3738static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3739{
3740 BUG();
d0217ac0 3741 return 0;
1da177e4
LT
3742}
3743
eec3636a
JC
3744/*
3745 * When a new function is introduced to vm_operations_struct and added
3746 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3747 * This is because under System V memory model, mappings created via
3748 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3749 * their original vm_ops are overwritten with shm_vm_ops.
3750 */
f0f37e2f 3751const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3752 .fault = hugetlb_vm_op_fault,
84afd99b 3753 .open = hugetlb_vm_op_open,
a1e78772 3754 .close = hugetlb_vm_op_close,
31383c68 3755 .split = hugetlb_vm_op_split,
05ea8860 3756 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3757};
3758
1e8f889b
DG
3759static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3760 int writable)
63551ae0
DG
3761{
3762 pte_t entry;
3763
1e8f889b 3764 if (writable) {
106c992a
GS
3765 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3766 vma->vm_page_prot)));
63551ae0 3767 } else {
106c992a
GS
3768 entry = huge_pte_wrprotect(mk_huge_pte(page,
3769 vma->vm_page_prot));
63551ae0
DG
3770 }
3771 entry = pte_mkyoung(entry);
3772 entry = pte_mkhuge(entry);
d9ed9faa 3773 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3774
3775 return entry;
3776}
3777
1e8f889b
DG
3778static void set_huge_ptep_writable(struct vm_area_struct *vma,
3779 unsigned long address, pte_t *ptep)
3780{
3781 pte_t entry;
3782
106c992a 3783 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3784 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3785 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3786}
3787
d5ed7444 3788bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3789{
3790 swp_entry_t swp;
3791
3792 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3793 return false;
4a705fef 3794 swp = pte_to_swp_entry(pte);
d79d176a 3795 if (is_migration_entry(swp))
d5ed7444 3796 return true;
4a705fef 3797 else
d5ed7444 3798 return false;
4a705fef
NH
3799}
3800
3e5c3600 3801static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
3802{
3803 swp_entry_t swp;
3804
3805 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 3806 return false;
4a705fef 3807 swp = pte_to_swp_entry(pte);
d79d176a 3808 if (is_hwpoison_entry(swp))
3e5c3600 3809 return true;
4a705fef 3810 else
3e5c3600 3811 return false;
4a705fef 3812}
1e8f889b 3813
63551ae0
DG
3814int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3815 struct vm_area_struct *vma)
3816{
5e41540c 3817 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3818 struct page *ptepage;
1c59827d 3819 unsigned long addr;
1e8f889b 3820 int cow;
a5516438
AK
3821 struct hstate *h = hstate_vma(vma);
3822 unsigned long sz = huge_page_size(h);
c0d0381a 3823 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3824 struct mmu_notifier_range range;
e8569dd2 3825 int ret = 0;
1e8f889b
DG
3826
3827 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3828
ac46d4f3 3829 if (cow) {
7269f999 3830 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3831 vma->vm_start,
ac46d4f3
JG
3832 vma->vm_end);
3833 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3834 } else {
3835 /*
3836 * For shared mappings i_mmap_rwsem must be held to call
3837 * huge_pte_alloc, otherwise the returned ptep could go
3838 * away if part of a shared pmd and another thread calls
3839 * huge_pmd_unshare.
3840 */
3841 i_mmap_lock_read(mapping);
ac46d4f3 3842 }
e8569dd2 3843
a5516438 3844 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3845 spinlock_t *src_ptl, *dst_ptl;
7868a208 3846 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3847 if (!src_pte)
3848 continue;
a5516438 3849 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3850 if (!dst_pte) {
3851 ret = -ENOMEM;
3852 break;
3853 }
c5c99429 3854
5e41540c
MK
3855 /*
3856 * If the pagetables are shared don't copy or take references.
3857 * dst_pte == src_pte is the common case of src/dest sharing.
3858 *
3859 * However, src could have 'unshared' and dst shares with
3860 * another vma. If dst_pte !none, this implies sharing.
3861 * Check here before taking page table lock, and once again
3862 * after taking the lock below.
3863 */
3864 dst_entry = huge_ptep_get(dst_pte);
3865 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3866 continue;
3867
cb900f41
KS
3868 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3869 src_ptl = huge_pte_lockptr(h, src, src_pte);
3870 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3871 entry = huge_ptep_get(src_pte);
5e41540c
MK
3872 dst_entry = huge_ptep_get(dst_pte);
3873 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3874 /*
3875 * Skip if src entry none. Also, skip in the
3876 * unlikely case dst entry !none as this implies
3877 * sharing with another vma.
3878 */
4a705fef
NH
3879 ;
3880 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3881 is_hugetlb_entry_hwpoisoned(entry))) {
3882 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3883
3884 if (is_write_migration_entry(swp_entry) && cow) {
3885 /*
3886 * COW mappings require pages in both
3887 * parent and child to be set to read.
3888 */
3889 make_migration_entry_read(&swp_entry);
3890 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3891 set_huge_swap_pte_at(src, addr, src_pte,
3892 entry, sz);
4a705fef 3893 }
e5251fd4 3894 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3895 } else {
34ee645e 3896 if (cow) {
0f10851e
JG
3897 /*
3898 * No need to notify as we are downgrading page
3899 * table protection not changing it to point
3900 * to a new page.
3901 *
ad56b738 3902 * See Documentation/vm/mmu_notifier.rst
0f10851e 3903 */
7f2e9525 3904 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3905 }
0253d634 3906 entry = huge_ptep_get(src_pte);
1c59827d
HD
3907 ptepage = pte_page(entry);
3908 get_page(ptepage);
53f9263b 3909 page_dup_rmap(ptepage, true);
1c59827d 3910 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3911 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3912 }
cb900f41
KS
3913 spin_unlock(src_ptl);
3914 spin_unlock(dst_ptl);
63551ae0 3915 }
63551ae0 3916
e8569dd2 3917 if (cow)
ac46d4f3 3918 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3919 else
3920 i_mmap_unlock_read(mapping);
e8569dd2
AS
3921
3922 return ret;
63551ae0
DG
3923}
3924
24669e58
AK
3925void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3926 unsigned long start, unsigned long end,
3927 struct page *ref_page)
63551ae0
DG
3928{
3929 struct mm_struct *mm = vma->vm_mm;
3930 unsigned long address;
c7546f8f 3931 pte_t *ptep;
63551ae0 3932 pte_t pte;
cb900f41 3933 spinlock_t *ptl;
63551ae0 3934 struct page *page;
a5516438
AK
3935 struct hstate *h = hstate_vma(vma);
3936 unsigned long sz = huge_page_size(h);
ac46d4f3 3937 struct mmu_notifier_range range;
a5516438 3938
63551ae0 3939 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3940 BUG_ON(start & ~huge_page_mask(h));
3941 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3942
07e32661
AK
3943 /*
3944 * This is a hugetlb vma, all the pte entries should point
3945 * to huge page.
3946 */
ed6a7935 3947 tlb_change_page_size(tlb, sz);
24669e58 3948 tlb_start_vma(tlb, vma);
dff11abe
MK
3949
3950 /*
3951 * If sharing possible, alert mmu notifiers of worst case.
3952 */
6f4f13e8
JG
3953 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3954 end);
ac46d4f3
JG
3955 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3956 mmu_notifier_invalidate_range_start(&range);
569f48b8 3957 address = start;
569f48b8 3958 for (; address < end; address += sz) {
7868a208 3959 ptep = huge_pte_offset(mm, address, sz);
4c887265 3960 if (!ptep)
c7546f8f
DG
3961 continue;
3962
cb900f41 3963 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 3964 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 3965 spin_unlock(ptl);
dff11abe
MK
3966 /*
3967 * We just unmapped a page of PMDs by clearing a PUD.
3968 * The caller's TLB flush range should cover this area.
3969 */
31d49da5
AK
3970 continue;
3971 }
39dde65c 3972
6629326b 3973 pte = huge_ptep_get(ptep);
31d49da5
AK
3974 if (huge_pte_none(pte)) {
3975 spin_unlock(ptl);
3976 continue;
3977 }
6629326b
HD
3978
3979 /*
9fbc1f63
NH
3980 * Migrating hugepage or HWPoisoned hugepage is already
3981 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3982 */
9fbc1f63 3983 if (unlikely(!pte_present(pte))) {
9386fac3 3984 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3985 spin_unlock(ptl);
3986 continue;
8c4894c6 3987 }
6629326b
HD
3988
3989 page = pte_page(pte);
04f2cbe3
MG
3990 /*
3991 * If a reference page is supplied, it is because a specific
3992 * page is being unmapped, not a range. Ensure the page we
3993 * are about to unmap is the actual page of interest.
3994 */
3995 if (ref_page) {
31d49da5
AK
3996 if (page != ref_page) {
3997 spin_unlock(ptl);
3998 continue;
3999 }
04f2cbe3
MG
4000 /*
4001 * Mark the VMA as having unmapped its page so that
4002 * future faults in this VMA will fail rather than
4003 * looking like data was lost
4004 */
4005 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4006 }
4007
c7546f8f 4008 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 4009 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 4010 if (huge_pte_dirty(pte))
6649a386 4011 set_page_dirty(page);
9e81130b 4012
5d317b2b 4013 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4014 page_remove_rmap(page, true);
31d49da5 4015
cb900f41 4016 spin_unlock(ptl);
e77b0852 4017 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4018 /*
4019 * Bail out after unmapping reference page if supplied
4020 */
4021 if (ref_page)
4022 break;
fe1668ae 4023 }
ac46d4f3 4024 mmu_notifier_invalidate_range_end(&range);
24669e58 4025 tlb_end_vma(tlb, vma);
1da177e4 4026}
63551ae0 4027
d833352a
MG
4028void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4029 struct vm_area_struct *vma, unsigned long start,
4030 unsigned long end, struct page *ref_page)
4031{
4032 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4033
4034 /*
4035 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4036 * test will fail on a vma being torn down, and not grab a page table
4037 * on its way out. We're lucky that the flag has such an appropriate
4038 * name, and can in fact be safely cleared here. We could clear it
4039 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4040 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4041 * because in the context this is called, the VMA is about to be
c8c06efa 4042 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4043 */
4044 vma->vm_flags &= ~VM_MAYSHARE;
4045}
4046
502717f4 4047void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4048 unsigned long end, struct page *ref_page)
502717f4 4049{
24669e58
AK
4050 struct mm_struct *mm;
4051 struct mmu_gather tlb;
dff11abe
MK
4052 unsigned long tlb_start = start;
4053 unsigned long tlb_end = end;
4054
4055 /*
4056 * If shared PMDs were possibly used within this vma range, adjust
4057 * start/end for worst case tlb flushing.
4058 * Note that we can not be sure if PMDs are shared until we try to
4059 * unmap pages. However, we want to make sure TLB flushing covers
4060 * the largest possible range.
4061 */
4062 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
4063
4064 mm = vma->vm_mm;
4065
dff11abe 4066 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 4067 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 4068 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
KC
4069}
4070
04f2cbe3
MG
4071/*
4072 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4073 * mappping it owns the reserve page for. The intention is to unmap the page
4074 * from other VMAs and let the children be SIGKILLed if they are faulting the
4075 * same region.
4076 */
2f4612af
DB
4077static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4078 struct page *page, unsigned long address)
04f2cbe3 4079{
7526674d 4080 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4081 struct vm_area_struct *iter_vma;
4082 struct address_space *mapping;
04f2cbe3
MG
4083 pgoff_t pgoff;
4084
4085 /*
4086 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4087 * from page cache lookup which is in HPAGE_SIZE units.
4088 */
7526674d 4089 address = address & huge_page_mask(h);
36e4f20a
MH
4090 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4091 vma->vm_pgoff;
93c76a3d 4092 mapping = vma->vm_file->f_mapping;
04f2cbe3 4093
4eb2b1dc
MG
4094 /*
4095 * Take the mapping lock for the duration of the table walk. As
4096 * this mapping should be shared between all the VMAs,
4097 * __unmap_hugepage_range() is called as the lock is already held
4098 */
83cde9e8 4099 i_mmap_lock_write(mapping);
6b2dbba8 4100 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4101 /* Do not unmap the current VMA */
4102 if (iter_vma == vma)
4103 continue;
4104
2f84a899
MG
4105 /*
4106 * Shared VMAs have their own reserves and do not affect
4107 * MAP_PRIVATE accounting but it is possible that a shared
4108 * VMA is using the same page so check and skip such VMAs.
4109 */
4110 if (iter_vma->vm_flags & VM_MAYSHARE)
4111 continue;
4112
04f2cbe3
MG
4113 /*
4114 * Unmap the page from other VMAs without their own reserves.
4115 * They get marked to be SIGKILLed if they fault in these
4116 * areas. This is because a future no-page fault on this VMA
4117 * could insert a zeroed page instead of the data existing
4118 * from the time of fork. This would look like data corruption
4119 */
4120 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4121 unmap_hugepage_range(iter_vma, address,
4122 address + huge_page_size(h), page);
04f2cbe3 4123 }
83cde9e8 4124 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4125}
4126
0fe6e20b
NH
4127/*
4128 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4129 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4130 * cannot race with other handlers or page migration.
4131 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4132 */
2b740303 4133static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4134 unsigned long address, pte_t *ptep,
3999f52e 4135 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4136{
3999f52e 4137 pte_t pte;
a5516438 4138 struct hstate *h = hstate_vma(vma);
1e8f889b 4139 struct page *old_page, *new_page;
2b740303
SJ
4140 int outside_reserve = 0;
4141 vm_fault_t ret = 0;
974e6d66 4142 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4143 struct mmu_notifier_range range;
1e8f889b 4144
3999f52e 4145 pte = huge_ptep_get(ptep);
1e8f889b
DG
4146 old_page = pte_page(pte);
4147
04f2cbe3 4148retry_avoidcopy:
1e8f889b
DG
4149 /* If no-one else is actually using this page, avoid the copy
4150 * and just make the page writable */
37a2140d 4151 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4152 page_move_anon_rmap(old_page, vma);
5b7a1d40 4153 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4154 return 0;
1e8f889b
DG
4155 }
4156
04f2cbe3
MG
4157 /*
4158 * If the process that created a MAP_PRIVATE mapping is about to
4159 * perform a COW due to a shared page count, attempt to satisfy
4160 * the allocation without using the existing reserves. The pagecache
4161 * page is used to determine if the reserve at this address was
4162 * consumed or not. If reserves were used, a partial faulted mapping
4163 * at the time of fork() could consume its reserves on COW instead
4164 * of the full address range.
4165 */
5944d011 4166 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4167 old_page != pagecache_page)
4168 outside_reserve = 1;
4169
09cbfeaf 4170 get_page(old_page);
b76c8cfb 4171
ad4404a2
DB
4172 /*
4173 * Drop page table lock as buddy allocator may be called. It will
4174 * be acquired again before returning to the caller, as expected.
4175 */
cb900f41 4176 spin_unlock(ptl);
5b7a1d40 4177 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4178
2fc39cec 4179 if (IS_ERR(new_page)) {
04f2cbe3
MG
4180 /*
4181 * If a process owning a MAP_PRIVATE mapping fails to COW,
4182 * it is due to references held by a child and an insufficient
4183 * huge page pool. To guarantee the original mappers
4184 * reliability, unmap the page from child processes. The child
4185 * may get SIGKILLed if it later faults.
4186 */
4187 if (outside_reserve) {
09cbfeaf 4188 put_page(old_page);
04f2cbe3 4189 BUG_ON(huge_pte_none(pte));
5b7a1d40 4190 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
4191 BUG_ON(huge_pte_none(pte));
4192 spin_lock(ptl);
5b7a1d40 4193 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4194 if (likely(ptep &&
4195 pte_same(huge_ptep_get(ptep), pte)))
4196 goto retry_avoidcopy;
4197 /*
4198 * race occurs while re-acquiring page table
4199 * lock, and our job is done.
4200 */
4201 return 0;
04f2cbe3
MG
4202 }
4203
2b740303 4204 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4205 goto out_release_old;
1e8f889b
DG
4206 }
4207
0fe6e20b
NH
4208 /*
4209 * When the original hugepage is shared one, it does not have
4210 * anon_vma prepared.
4211 */
44e2aa93 4212 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4213 ret = VM_FAULT_OOM;
4214 goto out_release_all;
44e2aa93 4215 }
0fe6e20b 4216
974e6d66 4217 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4218 pages_per_huge_page(h));
0ed361de 4219 __SetPageUptodate(new_page);
1e8f889b 4220
7269f999 4221 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4222 haddr + huge_page_size(h));
ac46d4f3 4223 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4224
b76c8cfb 4225 /*
cb900f41 4226 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4227 * before the page tables are altered
4228 */
cb900f41 4229 spin_lock(ptl);
5b7a1d40 4230 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4231 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
4232 ClearPagePrivate(new_page);
4233
1e8f889b 4234 /* Break COW */
5b7a1d40 4235 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4236 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4237 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4238 make_huge_pte(vma, new_page, 1));
d281ee61 4239 page_remove_rmap(old_page, true);
5b7a1d40 4240 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 4241 set_page_huge_active(new_page);
1e8f889b
DG
4242 /* Make the old page be freed below */
4243 new_page = old_page;
4244 }
cb900f41 4245 spin_unlock(ptl);
ac46d4f3 4246 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4247out_release_all:
5b7a1d40 4248 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4249 put_page(new_page);
ad4404a2 4250out_release_old:
09cbfeaf 4251 put_page(old_page);
8312034f 4252
ad4404a2
DB
4253 spin_lock(ptl); /* Caller expects lock to be held */
4254 return ret;
1e8f889b
DG
4255}
4256
04f2cbe3 4257/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4258static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4259 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4260{
4261 struct address_space *mapping;
e7c4b0bf 4262 pgoff_t idx;
04f2cbe3
MG
4263
4264 mapping = vma->vm_file->f_mapping;
a5516438 4265 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4266
4267 return find_lock_page(mapping, idx);
4268}
4269
3ae77f43
HD
4270/*
4271 * Return whether there is a pagecache page to back given address within VMA.
4272 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4273 */
4274static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4275 struct vm_area_struct *vma, unsigned long address)
4276{
4277 struct address_space *mapping;
4278 pgoff_t idx;
4279 struct page *page;
4280
4281 mapping = vma->vm_file->f_mapping;
4282 idx = vma_hugecache_offset(h, vma, address);
4283
4284 page = find_get_page(mapping, idx);
4285 if (page)
4286 put_page(page);
4287 return page != NULL;
4288}
4289
ab76ad54
MK
4290int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4291 pgoff_t idx)
4292{
4293 struct inode *inode = mapping->host;
4294 struct hstate *h = hstate_inode(inode);
4295 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4296
4297 if (err)
4298 return err;
4299 ClearPagePrivate(page);
4300
22146c3c
MK
4301 /*
4302 * set page dirty so that it will not be removed from cache/file
4303 * by non-hugetlbfs specific code paths.
4304 */
4305 set_page_dirty(page);
4306
ab76ad54
MK
4307 spin_lock(&inode->i_lock);
4308 inode->i_blocks += blocks_per_huge_page(h);
4309 spin_unlock(&inode->i_lock);
4310 return 0;
4311}
4312
2b740303
SJ
4313static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4314 struct vm_area_struct *vma,
4315 struct address_space *mapping, pgoff_t idx,
4316 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4317{
a5516438 4318 struct hstate *h = hstate_vma(vma);
2b740303 4319 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4320 int anon_rmap = 0;
4c887265 4321 unsigned long size;
4c887265 4322 struct page *page;
1e8f889b 4323 pte_t new_pte;
cb900f41 4324 spinlock_t *ptl;
285b8dca 4325 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4326 bool new_page = false;
4c887265 4327
04f2cbe3
MG
4328 /*
4329 * Currently, we are forced to kill the process in the event the
4330 * original mapper has unmapped pages from the child due to a failed
25985edc 4331 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4332 */
4333 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4334 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4335 current->pid);
04f2cbe3
MG
4336 return ret;
4337 }
4338
4c887265 4339 /*
87bf91d3
MK
4340 * We can not race with truncation due to holding i_mmap_rwsem.
4341 * i_size is modified when holding i_mmap_rwsem, so check here
4342 * once for faults beyond end of file.
4c887265 4343 */
87bf91d3
MK
4344 size = i_size_read(mapping->host) >> huge_page_shift(h);
4345 if (idx >= size)
4346 goto out;
4347
6bda666a
CL
4348retry:
4349 page = find_lock_page(mapping, idx);
4350 if (!page) {
1a1aad8a
MK
4351 /*
4352 * Check for page in userfault range
4353 */
4354 if (userfaultfd_missing(vma)) {
4355 u32 hash;
4356 struct vm_fault vmf = {
4357 .vma = vma,
285b8dca 4358 .address = haddr,
1a1aad8a
MK
4359 .flags = flags,
4360 /*
4361 * Hard to debug if it ends up being
4362 * used by a callee that assumes
4363 * something about the other
4364 * uninitialized fields... same as in
4365 * memory.c
4366 */
4367 };
4368
4369 /*
c0d0381a
MK
4370 * hugetlb_fault_mutex and i_mmap_rwsem must be
4371 * dropped before handling userfault. Reacquire
4372 * after handling fault to make calling code simpler.
1a1aad8a 4373 */
188b04a7 4374 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 4375 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4376 i_mmap_unlock_read(mapping);
1a1aad8a 4377 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 4378 i_mmap_lock_read(mapping);
1a1aad8a
MK
4379 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4380 goto out;
4381 }
4382
285b8dca 4383 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4384 if (IS_ERR(page)) {
4643d67e
MK
4385 /*
4386 * Returning error will result in faulting task being
4387 * sent SIGBUS. The hugetlb fault mutex prevents two
4388 * tasks from racing to fault in the same page which
4389 * could result in false unable to allocate errors.
4390 * Page migration does not take the fault mutex, but
4391 * does a clear then write of pte's under page table
4392 * lock. Page fault code could race with migration,
4393 * notice the clear pte and try to allocate a page
4394 * here. Before returning error, get ptl and make
4395 * sure there really is no pte entry.
4396 */
4397 ptl = huge_pte_lock(h, mm, ptep);
4398 if (!huge_pte_none(huge_ptep_get(ptep))) {
4399 ret = 0;
4400 spin_unlock(ptl);
4401 goto out;
4402 }
4403 spin_unlock(ptl);
2b740303 4404 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
4405 goto out;
4406 }
47ad8475 4407 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4408 __SetPageUptodate(page);
cb6acd01 4409 new_page = true;
ac9b9c66 4410
f83a275d 4411 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4412 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4413 if (err) {
4414 put_page(page);
6bda666a
CL
4415 if (err == -EEXIST)
4416 goto retry;
4417 goto out;
4418 }
23be7468 4419 } else {
6bda666a 4420 lock_page(page);
0fe6e20b
NH
4421 if (unlikely(anon_vma_prepare(vma))) {
4422 ret = VM_FAULT_OOM;
4423 goto backout_unlocked;
4424 }
409eb8c2 4425 anon_rmap = 1;
23be7468 4426 }
0fe6e20b 4427 } else {
998b4382
NH
4428 /*
4429 * If memory error occurs between mmap() and fault, some process
4430 * don't have hwpoisoned swap entry for errored virtual address.
4431 * So we need to block hugepage fault by PG_hwpoison bit check.
4432 */
4433 if (unlikely(PageHWPoison(page))) {
32f84528 4434 ret = VM_FAULT_HWPOISON |
972dc4de 4435 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4436 goto backout_unlocked;
4437 }
6bda666a 4438 }
1e8f889b 4439
57303d80
AW
4440 /*
4441 * If we are going to COW a private mapping later, we examine the
4442 * pending reservations for this page now. This will ensure that
4443 * any allocations necessary to record that reservation occur outside
4444 * the spinlock.
4445 */
5e911373 4446 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4447 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4448 ret = VM_FAULT_OOM;
4449 goto backout_unlocked;
4450 }
5e911373 4451 /* Just decrements count, does not deallocate */
285b8dca 4452 vma_end_reservation(h, vma, haddr);
5e911373 4453 }
57303d80 4454
8bea8052 4455 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4456 ret = 0;
7f2e9525 4457 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4458 goto backout;
4459
07443a85
JK
4460 if (anon_rmap) {
4461 ClearPagePrivate(page);
285b8dca 4462 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4463 } else
53f9263b 4464 page_dup_rmap(page, true);
1e8f889b
DG
4465 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4466 && (vma->vm_flags & VM_SHARED)));
285b8dca 4467 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4468
5d317b2b 4469 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4470 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4471 /* Optimization, do the COW without a second fault */
974e6d66 4472 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4473 }
4474
cb900f41 4475 spin_unlock(ptl);
cb6acd01
MK
4476
4477 /*
4478 * Only make newly allocated pages active. Existing pages found
4479 * in the pagecache could be !page_huge_active() if they have been
4480 * isolated for migration.
4481 */
4482 if (new_page)
4483 set_page_huge_active(page);
4484
4c887265
AL
4485 unlock_page(page);
4486out:
ac9b9c66 4487 return ret;
4c887265
AL
4488
4489backout:
cb900f41 4490 spin_unlock(ptl);
2b26736c 4491backout_unlocked:
4c887265 4492 unlock_page(page);
285b8dca 4493 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4494 put_page(page);
4495 goto out;
ac9b9c66
HD
4496}
4497
8382d914 4498#ifdef CONFIG_SMP
188b04a7 4499u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4500{
4501 unsigned long key[2];
4502 u32 hash;
4503
1b426bac
MK
4504 key[0] = (unsigned long) mapping;
4505 key[1] = idx;
8382d914 4506
55254636 4507 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4508
4509 return hash & (num_fault_mutexes - 1);
4510}
4511#else
4512/*
4513 * For uniprocesor systems we always use a single mutex, so just
4514 * return 0 and avoid the hashing overhead.
4515 */
188b04a7 4516u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4517{
4518 return 0;
4519}
4520#endif
4521
2b740303 4522vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4523 unsigned long address, unsigned int flags)
86e5216f 4524{
8382d914 4525 pte_t *ptep, entry;
cb900f41 4526 spinlock_t *ptl;
2b740303 4527 vm_fault_t ret;
8382d914
DB
4528 u32 hash;
4529 pgoff_t idx;
0fe6e20b 4530 struct page *page = NULL;
57303d80 4531 struct page *pagecache_page = NULL;
a5516438 4532 struct hstate *h = hstate_vma(vma);
8382d914 4533 struct address_space *mapping;
0f792cf9 4534 int need_wait_lock = 0;
285b8dca 4535 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4536
285b8dca 4537 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4538 if (ptep) {
c0d0381a
MK
4539 /*
4540 * Since we hold no locks, ptep could be stale. That is
4541 * OK as we are only making decisions based on content and
4542 * not actually modifying content here.
4543 */
fd6a03ed 4544 entry = huge_ptep_get(ptep);
290408d4 4545 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4546 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4547 return 0;
4548 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4549 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4550 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4551 }
4552
c0d0381a
MK
4553 /*
4554 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4555 * until finished with ptep. This serves two purposes:
4556 * 1) It prevents huge_pmd_unshare from being called elsewhere
4557 * and making the ptep no longer valid.
4558 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4559 *
4560 * ptep could have already be assigned via huge_pte_offset. That
4561 * is OK, as huge_pte_alloc will return the same value unless
4562 * something has changed.
4563 */
8382d914 4564 mapping = vma->vm_file->f_mapping;
c0d0381a
MK
4565 i_mmap_lock_read(mapping);
4566 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4567 if (!ptep) {
4568 i_mmap_unlock_read(mapping);
4569 return VM_FAULT_OOM;
4570 }
8382d914 4571
3935baa9
DG
4572 /*
4573 * Serialize hugepage allocation and instantiation, so that we don't
4574 * get spurious allocation failures if two CPUs race to instantiate
4575 * the same page in the page cache.
4576 */
c0d0381a 4577 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4578 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4579 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4580
7f2e9525
GS
4581 entry = huge_ptep_get(ptep);
4582 if (huge_pte_none(entry)) {
8382d914 4583 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4584 goto out_mutex;
3935baa9 4585 }
86e5216f 4586
83c54070 4587 ret = 0;
1e8f889b 4588
0f792cf9
NH
4589 /*
4590 * entry could be a migration/hwpoison entry at this point, so this
4591 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4592 * an active hugepage in pagecache. This goto expects the 2nd page
4593 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4594 * properly handle it.
0f792cf9
NH
4595 */
4596 if (!pte_present(entry))
4597 goto out_mutex;
4598
57303d80
AW
4599 /*
4600 * If we are going to COW the mapping later, we examine the pending
4601 * reservations for this page now. This will ensure that any
4602 * allocations necessary to record that reservation occur outside the
4603 * spinlock. For private mappings, we also lookup the pagecache
4604 * page now as it is used to determine if a reservation has been
4605 * consumed.
4606 */
106c992a 4607 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4608 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4609 ret = VM_FAULT_OOM;
b4d1d99f 4610 goto out_mutex;
2b26736c 4611 }
5e911373 4612 /* Just decrements count, does not deallocate */
285b8dca 4613 vma_end_reservation(h, vma, haddr);
57303d80 4614
f83a275d 4615 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4616 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4617 vma, haddr);
57303d80
AW
4618 }
4619
0f792cf9
NH
4620 ptl = huge_pte_lock(h, mm, ptep);
4621
4622 /* Check for a racing update before calling hugetlb_cow */
4623 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4624 goto out_ptl;
4625
56c9cfb1
NH
4626 /*
4627 * hugetlb_cow() requires page locks of pte_page(entry) and
4628 * pagecache_page, so here we need take the former one
4629 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4630 */
4631 page = pte_page(entry);
4632 if (page != pagecache_page)
0f792cf9
NH
4633 if (!trylock_page(page)) {
4634 need_wait_lock = 1;
4635 goto out_ptl;
4636 }
b4d1d99f 4637
0f792cf9 4638 get_page(page);
b4d1d99f 4639
788c7df4 4640 if (flags & FAULT_FLAG_WRITE) {
106c992a 4641 if (!huge_pte_write(entry)) {
974e6d66 4642 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4643 pagecache_page, ptl);
0f792cf9 4644 goto out_put_page;
b4d1d99f 4645 }
106c992a 4646 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4647 }
4648 entry = pte_mkyoung(entry);
285b8dca 4649 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4650 flags & FAULT_FLAG_WRITE))
285b8dca 4651 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4652out_put_page:
4653 if (page != pagecache_page)
4654 unlock_page(page);
4655 put_page(page);
cb900f41
KS
4656out_ptl:
4657 spin_unlock(ptl);
57303d80
AW
4658
4659 if (pagecache_page) {
4660 unlock_page(pagecache_page);
4661 put_page(pagecache_page);
4662 }
b4d1d99f 4663out_mutex:
c672c7f2 4664 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4665 i_mmap_unlock_read(mapping);
0f792cf9
NH
4666 /*
4667 * Generally it's safe to hold refcount during waiting page lock. But
4668 * here we just wait to defer the next page fault to avoid busy loop and
4669 * the page is not used after unlocked before returning from the current
4670 * page fault. So we are safe from accessing freed page, even if we wait
4671 * here without taking refcount.
4672 */
4673 if (need_wait_lock)
4674 wait_on_page_locked(page);
1e8f889b 4675 return ret;
86e5216f
AL
4676}
4677
8fb5debc
MK
4678/*
4679 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4680 * modifications for huge pages.
4681 */
4682int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4683 pte_t *dst_pte,
4684 struct vm_area_struct *dst_vma,
4685 unsigned long dst_addr,
4686 unsigned long src_addr,
4687 struct page **pagep)
4688{
1e392147
AA
4689 struct address_space *mapping;
4690 pgoff_t idx;
4691 unsigned long size;
1c9e8def 4692 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4693 struct hstate *h = hstate_vma(dst_vma);
4694 pte_t _dst_pte;
4695 spinlock_t *ptl;
4696 int ret;
4697 struct page *page;
4698
4699 if (!*pagep) {
4700 ret = -ENOMEM;
4701 page = alloc_huge_page(dst_vma, dst_addr, 0);
4702 if (IS_ERR(page))
4703 goto out;
4704
4705 ret = copy_huge_page_from_user(page,
4706 (const void __user *) src_addr,
810a56b9 4707 pages_per_huge_page(h), false);
8fb5debc 4708
c1e8d7c6 4709 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 4710 if (unlikely(ret)) {
9e368259 4711 ret = -ENOENT;
8fb5debc
MK
4712 *pagep = page;
4713 /* don't free the page */
4714 goto out;
4715 }
4716 } else {
4717 page = *pagep;
4718 *pagep = NULL;
4719 }
4720
4721 /*
4722 * The memory barrier inside __SetPageUptodate makes sure that
4723 * preceding stores to the page contents become visible before
4724 * the set_pte_at() write.
4725 */
4726 __SetPageUptodate(page);
8fb5debc 4727
1e392147
AA
4728 mapping = dst_vma->vm_file->f_mapping;
4729 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4730
1c9e8def
MK
4731 /*
4732 * If shared, add to page cache
4733 */
4734 if (vm_shared) {
1e392147
AA
4735 size = i_size_read(mapping->host) >> huge_page_shift(h);
4736 ret = -EFAULT;
4737 if (idx >= size)
4738 goto out_release_nounlock;
1c9e8def 4739
1e392147
AA
4740 /*
4741 * Serialization between remove_inode_hugepages() and
4742 * huge_add_to_page_cache() below happens through the
4743 * hugetlb_fault_mutex_table that here must be hold by
4744 * the caller.
4745 */
1c9e8def
MK
4746 ret = huge_add_to_page_cache(page, mapping, idx);
4747 if (ret)
4748 goto out_release_nounlock;
4749 }
4750
8fb5debc
MK
4751 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4752 spin_lock(ptl);
4753
1e392147
AA
4754 /*
4755 * Recheck the i_size after holding PT lock to make sure not
4756 * to leave any page mapped (as page_mapped()) beyond the end
4757 * of the i_size (remove_inode_hugepages() is strict about
4758 * enforcing that). If we bail out here, we'll also leave a
4759 * page in the radix tree in the vm_shared case beyond the end
4760 * of the i_size, but remove_inode_hugepages() will take care
4761 * of it as soon as we drop the hugetlb_fault_mutex_table.
4762 */
4763 size = i_size_read(mapping->host) >> huge_page_shift(h);
4764 ret = -EFAULT;
4765 if (idx >= size)
4766 goto out_release_unlock;
4767
8fb5debc
MK
4768 ret = -EEXIST;
4769 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4770 goto out_release_unlock;
4771
1c9e8def
MK
4772 if (vm_shared) {
4773 page_dup_rmap(page, true);
4774 } else {
4775 ClearPagePrivate(page);
4776 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4777 }
8fb5debc
MK
4778
4779 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4780 if (dst_vma->vm_flags & VM_WRITE)
4781 _dst_pte = huge_pte_mkdirty(_dst_pte);
4782 _dst_pte = pte_mkyoung(_dst_pte);
4783
4784 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4785
4786 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4787 dst_vma->vm_flags & VM_WRITE);
4788 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4789
4790 /* No need to invalidate - it was non-present before */
4791 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4792
4793 spin_unlock(ptl);
cb6acd01 4794 set_page_huge_active(page);
1c9e8def
MK
4795 if (vm_shared)
4796 unlock_page(page);
8fb5debc
MK
4797 ret = 0;
4798out:
4799 return ret;
4800out_release_unlock:
4801 spin_unlock(ptl);
1c9e8def
MK
4802 if (vm_shared)
4803 unlock_page(page);
5af10dfd 4804out_release_nounlock:
8fb5debc
MK
4805 put_page(page);
4806 goto out;
4807}
4808
28a35716
ML
4809long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4810 struct page **pages, struct vm_area_struct **vmas,
4811 unsigned long *position, unsigned long *nr_pages,
4f6da934 4812 long i, unsigned int flags, int *locked)
63551ae0 4813{
d5d4b0aa
KC
4814 unsigned long pfn_offset;
4815 unsigned long vaddr = *position;
28a35716 4816 unsigned long remainder = *nr_pages;
a5516438 4817 struct hstate *h = hstate_vma(vma);
2be7cfed 4818 int err = -EFAULT;
63551ae0 4819
63551ae0 4820 while (vaddr < vma->vm_end && remainder) {
4c887265 4821 pte_t *pte;
cb900f41 4822 spinlock_t *ptl = NULL;
2a15efc9 4823 int absent;
4c887265 4824 struct page *page;
63551ae0 4825
02057967
DR
4826 /*
4827 * If we have a pending SIGKILL, don't keep faulting pages and
4828 * potentially allocating memory.
4829 */
fa45f116 4830 if (fatal_signal_pending(current)) {
02057967
DR
4831 remainder = 0;
4832 break;
4833 }
4834
4c887265
AL
4835 /*
4836 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4837 * each hugepage. We have to make sure we get the
4c887265 4838 * first, for the page indexing below to work.
cb900f41
KS
4839 *
4840 * Note that page table lock is not held when pte is null.
4c887265 4841 */
7868a208
PA
4842 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4843 huge_page_size(h));
cb900f41
KS
4844 if (pte)
4845 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4846 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4847
4848 /*
4849 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4850 * an error where there's an empty slot with no huge pagecache
4851 * to back it. This way, we avoid allocating a hugepage, and
4852 * the sparse dumpfile avoids allocating disk blocks, but its
4853 * huge holes still show up with zeroes where they need to be.
2a15efc9 4854 */
3ae77f43
HD
4855 if (absent && (flags & FOLL_DUMP) &&
4856 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4857 if (pte)
4858 spin_unlock(ptl);
2a15efc9
HD
4859 remainder = 0;
4860 break;
4861 }
63551ae0 4862
9cc3a5bd
NH
4863 /*
4864 * We need call hugetlb_fault for both hugepages under migration
4865 * (in which case hugetlb_fault waits for the migration,) and
4866 * hwpoisoned hugepages (in which case we need to prevent the
4867 * caller from accessing to them.) In order to do this, we use
4868 * here is_swap_pte instead of is_hugetlb_entry_migration and
4869 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4870 * both cases, and because we can't follow correct pages
4871 * directly from any kind of swap entries.
4872 */
4873 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4874 ((flags & FOLL_WRITE) &&
4875 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4876 vm_fault_t ret;
87ffc118 4877 unsigned int fault_flags = 0;
63551ae0 4878
cb900f41
KS
4879 if (pte)
4880 spin_unlock(ptl);
87ffc118
AA
4881 if (flags & FOLL_WRITE)
4882 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4883 if (locked)
71335f37
PX
4884 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4885 FAULT_FLAG_KILLABLE;
87ffc118
AA
4886 if (flags & FOLL_NOWAIT)
4887 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4888 FAULT_FLAG_RETRY_NOWAIT;
4889 if (flags & FOLL_TRIED) {
4426e945
PX
4890 /*
4891 * Note: FAULT_FLAG_ALLOW_RETRY and
4892 * FAULT_FLAG_TRIED can co-exist
4893 */
87ffc118
AA
4894 fault_flags |= FAULT_FLAG_TRIED;
4895 }
4896 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4897 if (ret & VM_FAULT_ERROR) {
2be7cfed 4898 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4899 remainder = 0;
4900 break;
4901 }
4902 if (ret & VM_FAULT_RETRY) {
4f6da934 4903 if (locked &&
1ac25013 4904 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4905 *locked = 0;
87ffc118
AA
4906 *nr_pages = 0;
4907 /*
4908 * VM_FAULT_RETRY must not return an
4909 * error, it will return zero
4910 * instead.
4911 *
4912 * No need to update "position" as the
4913 * caller will not check it after
4914 * *nr_pages is set to 0.
4915 */
4916 return i;
4917 }
4918 continue;
4c887265
AL
4919 }
4920
a5516438 4921 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4922 page = pte_page(huge_ptep_get(pte));
8fde12ca 4923
acbfb087
ZL
4924 /*
4925 * If subpage information not requested, update counters
4926 * and skip the same_page loop below.
4927 */
4928 if (!pages && !vmas && !pfn_offset &&
4929 (vaddr + huge_page_size(h) < vma->vm_end) &&
4930 (remainder >= pages_per_huge_page(h))) {
4931 vaddr += huge_page_size(h);
4932 remainder -= pages_per_huge_page(h);
4933 i += pages_per_huge_page(h);
4934 spin_unlock(ptl);
4935 continue;
4936 }
4937
d5d4b0aa 4938same_page:
d6692183 4939 if (pages) {
2a15efc9 4940 pages[i] = mem_map_offset(page, pfn_offset);
3faa52c0
JH
4941 /*
4942 * try_grab_page() should always succeed here, because:
4943 * a) we hold the ptl lock, and b) we've just checked
4944 * that the huge page is present in the page tables. If
4945 * the huge page is present, then the tail pages must
4946 * also be present. The ptl prevents the head page and
4947 * tail pages from being rearranged in any way. So this
4948 * page must be available at this point, unless the page
4949 * refcount overflowed:
4950 */
4951 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4952 spin_unlock(ptl);
4953 remainder = 0;
4954 err = -ENOMEM;
4955 break;
4956 }
d6692183 4957 }
63551ae0
DG
4958
4959 if (vmas)
4960 vmas[i] = vma;
4961
4962 vaddr += PAGE_SIZE;
d5d4b0aa 4963 ++pfn_offset;
63551ae0
DG
4964 --remainder;
4965 ++i;
d5d4b0aa 4966 if (vaddr < vma->vm_end && remainder &&
a5516438 4967 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4968 /*
4969 * We use pfn_offset to avoid touching the pageframes
4970 * of this compound page.
4971 */
4972 goto same_page;
4973 }
cb900f41 4974 spin_unlock(ptl);
63551ae0 4975 }
28a35716 4976 *nr_pages = remainder;
87ffc118
AA
4977 /*
4978 * setting position is actually required only if remainder is
4979 * not zero but it's faster not to add a "if (remainder)"
4980 * branch.
4981 */
63551ae0
DG
4982 *position = vaddr;
4983
2be7cfed 4984 return i ? i : err;
63551ae0 4985}
8f860591 4986
5491ae7b
AK
4987#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4988/*
4989 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4990 * implement this.
4991 */
4992#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4993#endif
4994
7da4d641 4995unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4996 unsigned long address, unsigned long end, pgprot_t newprot)
4997{
4998 struct mm_struct *mm = vma->vm_mm;
4999 unsigned long start = address;
5000 pte_t *ptep;
5001 pte_t pte;
a5516438 5002 struct hstate *h = hstate_vma(vma);
7da4d641 5003 unsigned long pages = 0;
dff11abe 5004 bool shared_pmd = false;
ac46d4f3 5005 struct mmu_notifier_range range;
dff11abe
MK
5006
5007 /*
5008 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5009 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5010 * range if PMD sharing is possible.
5011 */
7269f999
JG
5012 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5013 0, vma, mm, start, end);
ac46d4f3 5014 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5015
5016 BUG_ON(address >= end);
ac46d4f3 5017 flush_cache_range(vma, range.start, range.end);
8f860591 5018
ac46d4f3 5019 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5020 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5021 for (; address < end; address += huge_page_size(h)) {
cb900f41 5022 spinlock_t *ptl;
7868a208 5023 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5024 if (!ptep)
5025 continue;
cb900f41 5026 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5027 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5028 pages++;
cb900f41 5029 spin_unlock(ptl);
dff11abe 5030 shared_pmd = true;
39dde65c 5031 continue;
7da4d641 5032 }
a8bda28d
NH
5033 pte = huge_ptep_get(ptep);
5034 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5035 spin_unlock(ptl);
5036 continue;
5037 }
5038 if (unlikely(is_hugetlb_entry_migration(pte))) {
5039 swp_entry_t entry = pte_to_swp_entry(pte);
5040
5041 if (is_write_migration_entry(entry)) {
5042 pte_t newpte;
5043
5044 make_migration_entry_read(&entry);
5045 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5046 set_huge_swap_pte_at(mm, address, ptep,
5047 newpte, huge_page_size(h));
a8bda28d
NH
5048 pages++;
5049 }
5050 spin_unlock(ptl);
5051 continue;
5052 }
5053 if (!huge_pte_none(pte)) {
023bdd00
AK
5054 pte_t old_pte;
5055
5056 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5057 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5058 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5059 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5060 pages++;
8f860591 5061 }
cb900f41 5062 spin_unlock(ptl);
8f860591 5063 }
d833352a 5064 /*
c8c06efa 5065 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5066 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5067 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5068 * and that page table be reused and filled with junk. If we actually
5069 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5070 */
dff11abe 5071 if (shared_pmd)
ac46d4f3 5072 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5073 else
5074 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5075 /*
5076 * No need to call mmu_notifier_invalidate_range() we are downgrading
5077 * page table protection not changing it to point to a new page.
5078 *
ad56b738 5079 * See Documentation/vm/mmu_notifier.rst
0f10851e 5080 */
83cde9e8 5081 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5082 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5083
5084 return pages << h->order;
8f860591
ZY
5085}
5086
a1e78772
MG
5087int hugetlb_reserve_pages(struct inode *inode,
5088 long from, long to,
5a6fe125 5089 struct vm_area_struct *vma,
ca16d140 5090 vm_flags_t vm_flags)
e4e574b7 5091{
0db9d74e 5092 long ret, chg, add = -1;
a5516438 5093 struct hstate *h = hstate_inode(inode);
90481622 5094 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5095 struct resv_map *resv_map;
075a61d0 5096 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5097 long gbl_reserve, regions_needed = 0;
e4e574b7 5098
63489f8e
MK
5099 /* This should never happen */
5100 if (from > to) {
5101 VM_WARN(1, "%s called with a negative range\n", __func__);
5102 return -EINVAL;
5103 }
5104
17c9d12e
MG
5105 /*
5106 * Only apply hugepage reservation if asked. At fault time, an
5107 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5108 * without using reserves
17c9d12e 5109 */
ca16d140 5110 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
5111 return 0;
5112
a1e78772
MG
5113 /*
5114 * Shared mappings base their reservation on the number of pages that
5115 * are already allocated on behalf of the file. Private mappings need
5116 * to reserve the full area even if read-only as mprotect() may be
5117 * called to make the mapping read-write. Assume !vma is a shm mapping
5118 */
9119a41e 5119 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5120 /*
5121 * resv_map can not be NULL as hugetlb_reserve_pages is only
5122 * called for inodes for which resv_maps were created (see
5123 * hugetlbfs_get_inode).
5124 */
4e35f483 5125 resv_map = inode_resv_map(inode);
9119a41e 5126
0db9d74e 5127 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5128
5129 } else {
e9fe92ae 5130 /* Private mapping. */
9119a41e 5131 resv_map = resv_map_alloc();
17c9d12e
MG
5132 if (!resv_map)
5133 return -ENOMEM;
5134
a1e78772 5135 chg = to - from;
84afd99b 5136
17c9d12e
MG
5137 set_vma_resv_map(vma, resv_map);
5138 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5139 }
5140
c50ac050
DH
5141 if (chg < 0) {
5142 ret = chg;
5143 goto out_err;
5144 }
8a630112 5145
075a61d0
MA
5146 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5147 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5148
5149 if (ret < 0) {
5150 ret = -ENOMEM;
5151 goto out_err;
5152 }
5153
5154 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5155 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5156 * of the resv_map.
5157 */
5158 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5159 }
5160
1c5ecae3
MK
5161 /*
5162 * There must be enough pages in the subpool for the mapping. If
5163 * the subpool has a minimum size, there may be some global
5164 * reservations already in place (gbl_reserve).
5165 */
5166 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5167 if (gbl_reserve < 0) {
c50ac050 5168 ret = -ENOSPC;
075a61d0 5169 goto out_uncharge_cgroup;
c50ac050 5170 }
5a6fe125
MG
5171
5172 /*
17c9d12e 5173 * Check enough hugepages are available for the reservation.
90481622 5174 * Hand the pages back to the subpool if there are not
5a6fe125 5175 */
1c5ecae3 5176 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 5177 if (ret < 0) {
075a61d0 5178 goto out_put_pages;
68842c9b 5179 }
17c9d12e
MG
5180
5181 /*
5182 * Account for the reservations made. Shared mappings record regions
5183 * that have reservations as they are shared by multiple VMAs.
5184 * When the last VMA disappears, the region map says how much
5185 * the reservation was and the page cache tells how much of
5186 * the reservation was consumed. Private mappings are per-VMA and
5187 * only the consumed reservations are tracked. When the VMA
5188 * disappears, the original reservation is the VMA size and the
5189 * consumed reservations are stored in the map. Hence, nothing
5190 * else has to be done for private mappings here
5191 */
33039678 5192 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5193 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5194
5195 if (unlikely(add < 0)) {
5196 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5197 goto out_put_pages;
0db9d74e 5198 } else if (unlikely(chg > add)) {
33039678
MK
5199 /*
5200 * pages in this range were added to the reserve
5201 * map between region_chg and region_add. This
5202 * indicates a race with alloc_huge_page. Adjust
5203 * the subpool and reserve counts modified above
5204 * based on the difference.
5205 */
5206 long rsv_adjust;
5207
075a61d0
MA
5208 hugetlb_cgroup_uncharge_cgroup_rsvd(
5209 hstate_index(h),
5210 (chg - add) * pages_per_huge_page(h), h_cg);
5211
33039678
MK
5212 rsv_adjust = hugepage_subpool_put_pages(spool,
5213 chg - add);
5214 hugetlb_acct_memory(h, -rsv_adjust);
5215 }
5216 }
a43a8c39 5217 return 0;
075a61d0
MA
5218out_put_pages:
5219 /* put back original number of pages, chg */
5220 (void)hugepage_subpool_put_pages(spool, chg);
5221out_uncharge_cgroup:
5222 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5223 chg * pages_per_huge_page(h), h_cg);
c50ac050 5224out_err:
5e911373 5225 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5226 /* Only call region_abort if the region_chg succeeded but the
5227 * region_add failed or didn't run.
5228 */
5229 if (chg >= 0 && add < 0)
5230 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5231 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5232 kref_put(&resv_map->refs, resv_map_release);
c50ac050 5233 return ret;
a43a8c39
KC
5234}
5235
b5cec28d
MK
5236long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5237 long freed)
a43a8c39 5238{
a5516438 5239 struct hstate *h = hstate_inode(inode);
4e35f483 5240 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5241 long chg = 0;
90481622 5242 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5243 long gbl_reserve;
45c682a6 5244
f27a5136
MK
5245 /*
5246 * Since this routine can be called in the evict inode path for all
5247 * hugetlbfs inodes, resv_map could be NULL.
5248 */
b5cec28d
MK
5249 if (resv_map) {
5250 chg = region_del(resv_map, start, end);
5251 /*
5252 * region_del() can fail in the rare case where a region
5253 * must be split and another region descriptor can not be
5254 * allocated. If end == LONG_MAX, it will not fail.
5255 */
5256 if (chg < 0)
5257 return chg;
5258 }
5259
45c682a6 5260 spin_lock(&inode->i_lock);
e4c6f8be 5261 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5262 spin_unlock(&inode->i_lock);
5263
1c5ecae3
MK
5264 /*
5265 * If the subpool has a minimum size, the number of global
5266 * reservations to be released may be adjusted.
5267 */
5268 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5269 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5270
5271 return 0;
a43a8c39 5272}
93f70f90 5273
3212b535
SC
5274#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5275static unsigned long page_table_shareable(struct vm_area_struct *svma,
5276 struct vm_area_struct *vma,
5277 unsigned long addr, pgoff_t idx)
5278{
5279 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5280 svma->vm_start;
5281 unsigned long sbase = saddr & PUD_MASK;
5282 unsigned long s_end = sbase + PUD_SIZE;
5283
5284 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5285 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5286 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5287
5288 /*
5289 * match the virtual addresses, permission and the alignment of the
5290 * page table page.
5291 */
5292 if (pmd_index(addr) != pmd_index(saddr) ||
5293 vm_flags != svm_flags ||
5294 sbase < svma->vm_start || svma->vm_end < s_end)
5295 return 0;
5296
5297 return saddr;
5298}
5299
31aafb45 5300static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5301{
5302 unsigned long base = addr & PUD_MASK;
5303 unsigned long end = base + PUD_SIZE;
5304
5305 /*
5306 * check on proper vm_flags and page table alignment
5307 */
017b1660 5308 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5309 return true;
5310 return false;
3212b535
SC
5311}
5312
017b1660
MK
5313/*
5314 * Determine if start,end range within vma could be mapped by shared pmd.
5315 * If yes, adjust start and end to cover range associated with possible
5316 * shared pmd mappings.
5317 */
5318void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5319 unsigned long *start, unsigned long *end)
5320{
75802ca6 5321 unsigned long a_start, a_end;
017b1660
MK
5322
5323 if (!(vma->vm_flags & VM_MAYSHARE))
5324 return;
5325
75802ca6
PX
5326 /* Extend the range to be PUD aligned for a worst case scenario */
5327 a_start = ALIGN_DOWN(*start, PUD_SIZE);
5328 a_end = ALIGN(*end, PUD_SIZE);
017b1660 5329
75802ca6
PX
5330 /*
5331 * Intersect the range with the vma range, since pmd sharing won't be
5332 * across vma after all
5333 */
5334 *start = max(vma->vm_start, a_start);
5335 *end = min(vma->vm_end, a_end);
017b1660
MK
5336}
5337
3212b535
SC
5338/*
5339 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5340 * and returns the corresponding pte. While this is not necessary for the
5341 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5342 * code much cleaner.
5343 *
5344 * This routine must be called with i_mmap_rwsem held in at least read mode.
5345 * For hugetlbfs, this prevents removal of any page table entries associated
5346 * with the address space. This is important as we are setting up sharing
5347 * based on existing page table entries (mappings).
3212b535
SC
5348 */
5349pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5350{
5351 struct vm_area_struct *vma = find_vma(mm, addr);
5352 struct address_space *mapping = vma->vm_file->f_mapping;
5353 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5354 vma->vm_pgoff;
5355 struct vm_area_struct *svma;
5356 unsigned long saddr;
5357 pte_t *spte = NULL;
5358 pte_t *pte;
cb900f41 5359 spinlock_t *ptl;
3212b535
SC
5360
5361 if (!vma_shareable(vma, addr))
5362 return (pte_t *)pmd_alloc(mm, pud, addr);
5363
3212b535
SC
5364 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5365 if (svma == vma)
5366 continue;
5367
5368 saddr = page_table_shareable(svma, vma, addr, idx);
5369 if (saddr) {
7868a208
PA
5370 spte = huge_pte_offset(svma->vm_mm, saddr,
5371 vma_mmu_pagesize(svma));
3212b535
SC
5372 if (spte) {
5373 get_page(virt_to_page(spte));
5374 break;
5375 }
5376 }
5377 }
5378
5379 if (!spte)
5380 goto out;
5381
8bea8052 5382 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5383 if (pud_none(*pud)) {
3212b535
SC
5384 pud_populate(mm, pud,
5385 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5386 mm_inc_nr_pmds(mm);
dc6c9a35 5387 } else {
3212b535 5388 put_page(virt_to_page(spte));
dc6c9a35 5389 }
cb900f41 5390 spin_unlock(ptl);
3212b535
SC
5391out:
5392 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5393 return pte;
5394}
5395
5396/*
5397 * unmap huge page backed by shared pte.
5398 *
5399 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5400 * indicated by page_count > 1, unmap is achieved by clearing pud and
5401 * decrementing the ref count. If count == 1, the pte page is not shared.
5402 *
c0d0381a 5403 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5404 *
5405 * returns: 1 successfully unmapped a shared pte page
5406 * 0 the underlying pte page is not shared, or it is the last user
5407 */
34ae204f
MK
5408int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5409 unsigned long *addr, pte_t *ptep)
3212b535
SC
5410{
5411 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5412 p4d_t *p4d = p4d_offset(pgd, *addr);
5413 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5414
34ae204f 5415 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5416 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5417 if (page_count(virt_to_page(ptep)) == 1)
5418 return 0;
5419
5420 pud_clear(pud);
5421 put_page(virt_to_page(ptep));
dc6c9a35 5422 mm_dec_nr_pmds(mm);
3212b535
SC
5423 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5424 return 1;
5425}
9e5fc74c
SC
5426#define want_pmd_share() (1)
5427#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5428pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5429{
5430 return NULL;
5431}
e81f2d22 5432
34ae204f
MK
5433int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5434 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5435{
5436 return 0;
5437}
017b1660
MK
5438
5439void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5440 unsigned long *start, unsigned long *end)
5441{
5442}
9e5fc74c 5443#define want_pmd_share() (0)
3212b535
SC
5444#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5445
9e5fc74c
SC
5446#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5447pte_t *huge_pte_alloc(struct mm_struct *mm,
5448 unsigned long addr, unsigned long sz)
5449{
5450 pgd_t *pgd;
c2febafc 5451 p4d_t *p4d;
9e5fc74c
SC
5452 pud_t *pud;
5453 pte_t *pte = NULL;
5454
5455 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5456 p4d = p4d_alloc(mm, pgd, addr);
5457 if (!p4d)
5458 return NULL;
c2febafc 5459 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5460 if (pud) {
5461 if (sz == PUD_SIZE) {
5462 pte = (pte_t *)pud;
5463 } else {
5464 BUG_ON(sz != PMD_SIZE);
5465 if (want_pmd_share() && pud_none(*pud))
5466 pte = huge_pmd_share(mm, addr, pud);
5467 else
5468 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5469 }
5470 }
4e666314 5471 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5472
5473 return pte;
5474}
5475
9b19df29
PA
5476/*
5477 * huge_pte_offset() - Walk the page table to resolve the hugepage
5478 * entry at address @addr
5479 *
8ac0b81a
LX
5480 * Return: Pointer to page table entry (PUD or PMD) for
5481 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5482 * size @sz doesn't match the hugepage size at this level of the page
5483 * table.
5484 */
7868a208
PA
5485pte_t *huge_pte_offset(struct mm_struct *mm,
5486 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5487{
5488 pgd_t *pgd;
c2febafc 5489 p4d_t *p4d;
8ac0b81a
LX
5490 pud_t *pud;
5491 pmd_t *pmd;
9e5fc74c
SC
5492
5493 pgd = pgd_offset(mm, addr);
c2febafc
KS
5494 if (!pgd_present(*pgd))
5495 return NULL;
5496 p4d = p4d_offset(pgd, addr);
5497 if (!p4d_present(*p4d))
5498 return NULL;
9b19df29 5499
c2febafc 5500 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5501 if (sz == PUD_SIZE)
5502 /* must be pud huge, non-present or none */
c2febafc 5503 return (pte_t *)pud;
8ac0b81a 5504 if (!pud_present(*pud))
9b19df29 5505 return NULL;
8ac0b81a 5506 /* must have a valid entry and size to go further */
9b19df29 5507
8ac0b81a
LX
5508 pmd = pmd_offset(pud, addr);
5509 /* must be pmd huge, non-present or none */
5510 return (pte_t *)pmd;
9e5fc74c
SC
5511}
5512
61f77eda
NH
5513#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5514
5515/*
5516 * These functions are overwritable if your architecture needs its own
5517 * behavior.
5518 */
5519struct page * __weak
5520follow_huge_addr(struct mm_struct *mm, unsigned long address,
5521 int write)
5522{
5523 return ERR_PTR(-EINVAL);
5524}
5525
4dc71451
AK
5526struct page * __weak
5527follow_huge_pd(struct vm_area_struct *vma,
5528 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5529{
5530 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5531 return NULL;
5532}
5533
61f77eda 5534struct page * __weak
9e5fc74c 5535follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5536 pmd_t *pmd, int flags)
9e5fc74c 5537{
e66f17ff
NH
5538 struct page *page = NULL;
5539 spinlock_t *ptl;
c9d398fa 5540 pte_t pte;
3faa52c0
JH
5541
5542 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5543 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5544 (FOLL_PIN | FOLL_GET)))
5545 return NULL;
5546
e66f17ff
NH
5547retry:
5548 ptl = pmd_lockptr(mm, pmd);
5549 spin_lock(ptl);
5550 /*
5551 * make sure that the address range covered by this pmd is not
5552 * unmapped from other threads.
5553 */
5554 if (!pmd_huge(*pmd))
5555 goto out;
c9d398fa
NH
5556 pte = huge_ptep_get((pte_t *)pmd);
5557 if (pte_present(pte)) {
97534127 5558 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5559 /*
5560 * try_grab_page() should always succeed here, because: a) we
5561 * hold the pmd (ptl) lock, and b) we've just checked that the
5562 * huge pmd (head) page is present in the page tables. The ptl
5563 * prevents the head page and tail pages from being rearranged
5564 * in any way. So this page must be available at this point,
5565 * unless the page refcount overflowed:
5566 */
5567 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5568 page = NULL;
5569 goto out;
5570 }
e66f17ff 5571 } else {
c9d398fa 5572 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5573 spin_unlock(ptl);
5574 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5575 goto retry;
5576 }
5577 /*
5578 * hwpoisoned entry is treated as no_page_table in
5579 * follow_page_mask().
5580 */
5581 }
5582out:
5583 spin_unlock(ptl);
9e5fc74c
SC
5584 return page;
5585}
5586
61f77eda 5587struct page * __weak
9e5fc74c 5588follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5589 pud_t *pud, int flags)
9e5fc74c 5590{
3faa52c0 5591 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5592 return NULL;
9e5fc74c 5593
e66f17ff 5594 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5595}
5596
faaa5b62
AK
5597struct page * __weak
5598follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5599{
3faa52c0 5600 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5601 return NULL;
5602
5603 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5604}
5605
31caf665
NH
5606bool isolate_huge_page(struct page *page, struct list_head *list)
5607{
bcc54222
NH
5608 bool ret = true;
5609
309381fe 5610 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5611 spin_lock(&hugetlb_lock);
bcc54222
NH
5612 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5613 ret = false;
5614 goto unlock;
5615 }
5616 clear_page_huge_active(page);
31caf665 5617 list_move_tail(&page->lru, list);
bcc54222 5618unlock:
31caf665 5619 spin_unlock(&hugetlb_lock);
bcc54222 5620 return ret;
31caf665
NH
5621}
5622
5623void putback_active_hugepage(struct page *page)
5624{
309381fe 5625 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5626 spin_lock(&hugetlb_lock);
bcc54222 5627 set_page_huge_active(page);
31caf665
NH
5628 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5629 spin_unlock(&hugetlb_lock);
5630 put_page(page);
5631}
ab5ac90a
MH
5632
5633void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5634{
5635 struct hstate *h = page_hstate(oldpage);
5636
5637 hugetlb_cgroup_migrate(oldpage, newpage);
5638 set_page_owner_migrate_reason(newpage, reason);
5639
5640 /*
5641 * transfer temporary state of the new huge page. This is
5642 * reverse to other transitions because the newpage is going to
5643 * be final while the old one will be freed so it takes over
5644 * the temporary status.
5645 *
5646 * Also note that we have to transfer the per-node surplus state
5647 * here as well otherwise the global surplus count will not match
5648 * the per-node's.
5649 */
5650 if (PageHugeTemporary(newpage)) {
5651 int old_nid = page_to_nid(oldpage);
5652 int new_nid = page_to_nid(newpage);
5653
5654 SetPageHugeTemporary(oldpage);
5655 ClearPageHugeTemporary(newpage);
5656
5657 spin_lock(&hugetlb_lock);
5658 if (h->surplus_huge_pages_node[old_nid]) {
5659 h->surplus_huge_pages_node[old_nid]--;
5660 h->surplus_huge_pages_node[new_nid]++;
5661 }
5662 spin_unlock(&hugetlb_lock);
5663 }
5664}
cf11e85f
RG
5665
5666#ifdef CONFIG_CMA
cf11e85f
RG
5667static bool cma_reserve_called __initdata;
5668
5669static int __init cmdline_parse_hugetlb_cma(char *p)
5670{
5671 hugetlb_cma_size = memparse(p, &p);
5672 return 0;
5673}
5674
5675early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5676
5677void __init hugetlb_cma_reserve(int order)
5678{
5679 unsigned long size, reserved, per_node;
5680 int nid;
5681
5682 cma_reserve_called = true;
5683
5684 if (!hugetlb_cma_size)
5685 return;
5686
5687 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5688 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5689 (PAGE_SIZE << order) / SZ_1M);
5690 return;
5691 }
5692
5693 /*
5694 * If 3 GB area is requested on a machine with 4 numa nodes,
5695 * let's allocate 1 GB on first three nodes and ignore the last one.
5696 */
5697 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5698 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5699 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5700
5701 reserved = 0;
5702 for_each_node_state(nid, N_ONLINE) {
5703 int res;
29d0f41d 5704 char name[20];
cf11e85f
RG
5705
5706 size = min(per_node, hugetlb_cma_size - reserved);
5707 size = round_up(size, PAGE_SIZE << order);
5708
29d0f41d 5709 snprintf(name, 20, "hugetlb%d", nid);
cf11e85f 5710 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 5711 0, false, name,
cf11e85f
RG
5712 &hugetlb_cma[nid], nid);
5713 if (res) {
5714 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5715 res, nid);
5716 continue;
5717 }
5718
5719 reserved += size;
5720 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5721 size / SZ_1M, nid);
5722
5723 if (reserved >= hugetlb_cma_size)
5724 break;
5725 }
5726}
5727
5728void __init hugetlb_cma_check(void)
5729{
5730 if (!hugetlb_cma_size || cma_reserve_called)
5731 return;
5732
5733 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5734}
5735
5736#endif /* CONFIG_CMA */