]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
Linux 5.2-rc1
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
97ad1087 18#include <linux/memblock.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
63489f8e 21#include <linux/mmdebug.h>
174cd4b1 22#include <linux/sched/signal.h>
0fe6e20b 23#include <linux/rmap.h>
c6247f72 24#include <linux/string_helpers.h>
fd6a03ed
NH
25#include <linux/swap.h>
26#include <linux/swapops.h>
8382d914 27#include <linux/jhash.h>
98fa15f3 28#include <linux/numa.h>
d6606683 29
63551ae0
DG
30#include <asm/page.h>
31#include <asm/pgtable.h>
24669e58 32#include <asm/tlb.h>
63551ae0 33
24669e58 34#include <linux/io.h>
63551ae0 35#include <linux/hugetlb.h>
9dd540e2 36#include <linux/hugetlb_cgroup.h>
9a305230 37#include <linux/node.h>
1a1aad8a 38#include <linux/userfaultfd_k.h>
ab5ac90a 39#include <linux/page_owner.h>
7835e98b 40#include "internal.h"
1da177e4 41
c3f38a38 42int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
43unsigned int default_hstate_idx;
44struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
45/*
46 * Minimum page order among possible hugepage sizes, set to a proper value
47 * at boot time.
48 */
49static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 50
53ba51d2
JT
51__initdata LIST_HEAD(huge_boot_pages);
52
e5ff2159
AK
53/* for command line parsing */
54static struct hstate * __initdata parsed_hstate;
55static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 56static unsigned long __initdata default_hstate_size;
9fee021d 57static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 58
3935baa9 59/*
31caf665
NH
60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61 * free_huge_pages, and surplus_huge_pages.
3935baa9 62 */
c3f38a38 63DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 64
8382d914
DB
65/*
66 * Serializes faults on the same logical page. This is used to
67 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 */
69static int num_fault_mutexes;
c672c7f2 70struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 71
7ca02d0a
MK
72/* Forward declaration */
73static int hugetlb_acct_memory(struct hstate *h, long delta);
74
90481622
DG
75static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76{
77 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79 spin_unlock(&spool->lock);
80
81 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
82 * remain, give up any reservations mased on minimum size and
83 * free the subpool */
84 if (free) {
85 if (spool->min_hpages != -1)
86 hugetlb_acct_memory(spool->hstate,
87 -spool->min_hpages);
90481622 88 kfree(spool);
7ca02d0a 89 }
90481622
DG
90}
91
7ca02d0a
MK
92struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 long min_hpages)
90481622
DG
94{
95 struct hugepage_subpool *spool;
96
c6a91820 97 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
98 if (!spool)
99 return NULL;
100
101 spin_lock_init(&spool->lock);
102 spool->count = 1;
7ca02d0a
MK
103 spool->max_hpages = max_hpages;
104 spool->hstate = h;
105 spool->min_hpages = min_hpages;
106
107 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 kfree(spool);
109 return NULL;
110 }
111 spool->rsv_hpages = min_hpages;
90481622
DG
112
113 return spool;
114}
115
116void hugepage_put_subpool(struct hugepage_subpool *spool)
117{
118 spin_lock(&spool->lock);
119 BUG_ON(!spool->count);
120 spool->count--;
121 unlock_or_release_subpool(spool);
122}
123
1c5ecae3
MK
124/*
125 * Subpool accounting for allocating and reserving pages.
126 * Return -ENOMEM if there are not enough resources to satisfy the
127 * the request. Otherwise, return the number of pages by which the
128 * global pools must be adjusted (upward). The returned value may
129 * only be different than the passed value (delta) in the case where
130 * a subpool minimum size must be manitained.
131 */
132static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
133 long delta)
134{
1c5ecae3 135 long ret = delta;
90481622
DG
136
137 if (!spool)
1c5ecae3 138 return ret;
90481622
DG
139
140 spin_lock(&spool->lock);
1c5ecae3
MK
141
142 if (spool->max_hpages != -1) { /* maximum size accounting */
143 if ((spool->used_hpages + delta) <= spool->max_hpages)
144 spool->used_hpages += delta;
145 else {
146 ret = -ENOMEM;
147 goto unlock_ret;
148 }
90481622 149 }
90481622 150
09a95e29
MK
151 /* minimum size accounting */
152 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
153 if (delta > spool->rsv_hpages) {
154 /*
155 * Asking for more reserves than those already taken on
156 * behalf of subpool. Return difference.
157 */
158 ret = delta - spool->rsv_hpages;
159 spool->rsv_hpages = 0;
160 } else {
161 ret = 0; /* reserves already accounted for */
162 spool->rsv_hpages -= delta;
163 }
164 }
165
166unlock_ret:
167 spin_unlock(&spool->lock);
90481622
DG
168 return ret;
169}
170
1c5ecae3
MK
171/*
172 * Subpool accounting for freeing and unreserving pages.
173 * Return the number of global page reservations that must be dropped.
174 * The return value may only be different than the passed value (delta)
175 * in the case where a subpool minimum size must be maintained.
176 */
177static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
178 long delta)
179{
1c5ecae3
MK
180 long ret = delta;
181
90481622 182 if (!spool)
1c5ecae3 183 return delta;
90481622
DG
184
185 spin_lock(&spool->lock);
1c5ecae3
MK
186
187 if (spool->max_hpages != -1) /* maximum size accounting */
188 spool->used_hpages -= delta;
189
09a95e29
MK
190 /* minimum size accounting */
191 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
192 if (spool->rsv_hpages + delta <= spool->min_hpages)
193 ret = 0;
194 else
195 ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197 spool->rsv_hpages += delta;
198 if (spool->rsv_hpages > spool->min_hpages)
199 spool->rsv_hpages = spool->min_hpages;
200 }
201
202 /*
203 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 * quota reference, free it now.
205 */
90481622 206 unlock_or_release_subpool(spool);
1c5ecae3
MK
207
208 return ret;
90481622
DG
209}
210
211static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212{
213 return HUGETLBFS_SB(inode->i_sb)->spool;
214}
215
216static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217{
496ad9aa 218 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
219}
220
96822904
AW
221/*
222 * Region tracking -- allows tracking of reservations and instantiated pages
223 * across the pages in a mapping.
84afd99b 224 *
1dd308a7
MK
225 * The region data structures are embedded into a resv_map and protected
226 * by a resv_map's lock. The set of regions within the resv_map represent
227 * reservations for huge pages, or huge pages that have already been
228 * instantiated within the map. The from and to elements are huge page
229 * indicies into the associated mapping. from indicates the starting index
230 * of the region. to represents the first index past the end of the region.
231 *
232 * For example, a file region structure with from == 0 and to == 4 represents
233 * four huge pages in a mapping. It is important to note that the to element
234 * represents the first element past the end of the region. This is used in
235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 *
237 * Interval notation of the form [from, to) will be used to indicate that
238 * the endpoint from is inclusive and to is exclusive.
96822904
AW
239 */
240struct file_region {
241 struct list_head link;
242 long from;
243 long to;
244};
245
1dd308a7
MK
246/*
247 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
248 * map. In the normal case, existing regions will be expanded
249 * to accommodate the specified range. Sufficient regions should
250 * exist for expansion due to the previous call to region_chg
251 * with the same range. However, it is possible that region_del
252 * could have been called after region_chg and modifed the map
253 * in such a way that no region exists to be expanded. In this
254 * case, pull a region descriptor from the cache associated with
255 * the map and use that for the new range.
cf3ad20b
MK
256 *
257 * Return the number of new huge pages added to the map. This
258 * number is greater than or equal to zero.
1dd308a7 259 */
1406ec9b 260static long region_add(struct resv_map *resv, long f, long t)
96822904 261{
1406ec9b 262 struct list_head *head = &resv->regions;
96822904 263 struct file_region *rg, *nrg, *trg;
cf3ad20b 264 long add = 0;
96822904 265
7b24d861 266 spin_lock(&resv->lock);
96822904
AW
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (f <= rg->to)
270 break;
271
5e911373
MK
272 /*
273 * If no region exists which can be expanded to include the
274 * specified range, the list must have been modified by an
275 * interleving call to region_del(). Pull a region descriptor
276 * from the cache and use it for this range.
277 */
278 if (&rg->link == head || t < rg->from) {
279 VM_BUG_ON(resv->region_cache_count <= 0);
280
281 resv->region_cache_count--;
282 nrg = list_first_entry(&resv->region_cache, struct file_region,
283 link);
284 list_del(&nrg->link);
285
286 nrg->from = f;
287 nrg->to = t;
288 list_add(&nrg->link, rg->link.prev);
289
290 add += t - f;
291 goto out_locked;
292 }
293
96822904
AW
294 /* Round our left edge to the current segment if it encloses us. */
295 if (f > rg->from)
296 f = rg->from;
297
298 /* Check for and consume any regions we now overlap with. */
299 nrg = rg;
300 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301 if (&rg->link == head)
302 break;
303 if (rg->from > t)
304 break;
305
306 /* If this area reaches higher then extend our area to
307 * include it completely. If this is not the first area
308 * which we intend to reuse, free it. */
309 if (rg->to > t)
310 t = rg->to;
311 if (rg != nrg) {
cf3ad20b
MK
312 /* Decrement return value by the deleted range.
313 * Another range will span this area so that by
314 * end of routine add will be >= zero
315 */
316 add -= (rg->to - rg->from);
96822904
AW
317 list_del(&rg->link);
318 kfree(rg);
319 }
320 }
cf3ad20b
MK
321
322 add += (nrg->from - f); /* Added to beginning of region */
96822904 323 nrg->from = f;
cf3ad20b 324 add += t - nrg->to; /* Added to end of region */
96822904 325 nrg->to = t;
cf3ad20b 326
5e911373
MK
327out_locked:
328 resv->adds_in_progress--;
7b24d861 329 spin_unlock(&resv->lock);
cf3ad20b
MK
330 VM_BUG_ON(add < 0);
331 return add;
96822904
AW
332}
333
1dd308a7
MK
334/*
335 * Examine the existing reserve map and determine how many
336 * huge pages in the specified range [f, t) are NOT currently
337 * represented. This routine is called before a subsequent
338 * call to region_add that will actually modify the reserve
339 * map to add the specified range [f, t). region_chg does
340 * not change the number of huge pages represented by the
341 * map. However, if the existing regions in the map can not
342 * be expanded to represent the new range, a new file_region
343 * structure is added to the map as a placeholder. This is
344 * so that the subsequent region_add call will have all the
345 * regions it needs and will not fail.
346 *
5e911373
MK
347 * Upon entry, region_chg will also examine the cache of region descriptors
348 * associated with the map. If there are not enough descriptors cached, one
349 * will be allocated for the in progress add operation.
350 *
351 * Returns the number of huge pages that need to be added to the existing
352 * reservation map for the range [f, t). This number is greater or equal to
353 * zero. -ENOMEM is returned if a new file_region structure or cache entry
354 * is needed and can not be allocated.
1dd308a7 355 */
1406ec9b 356static long region_chg(struct resv_map *resv, long f, long t)
96822904 357{
1406ec9b 358 struct list_head *head = &resv->regions;
7b24d861 359 struct file_region *rg, *nrg = NULL;
96822904
AW
360 long chg = 0;
361
7b24d861
DB
362retry:
363 spin_lock(&resv->lock);
5e911373
MK
364retry_locked:
365 resv->adds_in_progress++;
366
367 /*
368 * Check for sufficient descriptors in the cache to accommodate
369 * the number of in progress add operations.
370 */
371 if (resv->adds_in_progress > resv->region_cache_count) {
372 struct file_region *trg;
373
374 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375 /* Must drop lock to allocate a new descriptor. */
376 resv->adds_in_progress--;
377 spin_unlock(&resv->lock);
378
379 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
380 if (!trg) {
381 kfree(nrg);
5e911373 382 return -ENOMEM;
dbe409e4 383 }
5e911373
MK
384
385 spin_lock(&resv->lock);
386 list_add(&trg->link, &resv->region_cache);
387 resv->region_cache_count++;
388 goto retry_locked;
389 }
390
96822904
AW
391 /* Locate the region we are before or in. */
392 list_for_each_entry(rg, head, link)
393 if (f <= rg->to)
394 break;
395
396 /* If we are below the current region then a new region is required.
397 * Subtle, allocate a new region at the position but make it zero
398 * size such that we can guarantee to record the reservation. */
399 if (&rg->link == head || t < rg->from) {
7b24d861 400 if (!nrg) {
5e911373 401 resv->adds_in_progress--;
7b24d861
DB
402 spin_unlock(&resv->lock);
403 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404 if (!nrg)
405 return -ENOMEM;
406
407 nrg->from = f;
408 nrg->to = f;
409 INIT_LIST_HEAD(&nrg->link);
410 goto retry;
411 }
96822904 412
7b24d861
DB
413 list_add(&nrg->link, rg->link.prev);
414 chg = t - f;
415 goto out_nrg;
96822904
AW
416 }
417
418 /* Round our left edge to the current segment if it encloses us. */
419 if (f > rg->from)
420 f = rg->from;
421 chg = t - f;
422
423 /* Check for and consume any regions we now overlap with. */
424 list_for_each_entry(rg, rg->link.prev, link) {
425 if (&rg->link == head)
426 break;
427 if (rg->from > t)
7b24d861 428 goto out;
96822904 429
25985edc 430 /* We overlap with this area, if it extends further than
96822904
AW
431 * us then we must extend ourselves. Account for its
432 * existing reservation. */
433 if (rg->to > t) {
434 chg += rg->to - t;
435 t = rg->to;
436 }
437 chg -= rg->to - rg->from;
438 }
7b24d861
DB
439
440out:
441 spin_unlock(&resv->lock);
442 /* We already know we raced and no longer need the new region */
443 kfree(nrg);
444 return chg;
445out_nrg:
446 spin_unlock(&resv->lock);
96822904
AW
447 return chg;
448}
449
5e911373
MK
450/*
451 * Abort the in progress add operation. The adds_in_progress field
452 * of the resv_map keeps track of the operations in progress between
453 * calls to region_chg and region_add. Operations are sometimes
454 * aborted after the call to region_chg. In such cases, region_abort
455 * is called to decrement the adds_in_progress counter.
456 *
457 * NOTE: The range arguments [f, t) are not needed or used in this
458 * routine. They are kept to make reading the calling code easier as
459 * arguments will match the associated region_chg call.
460 */
461static void region_abort(struct resv_map *resv, long f, long t)
462{
463 spin_lock(&resv->lock);
464 VM_BUG_ON(!resv->region_cache_count);
465 resv->adds_in_progress--;
466 spin_unlock(&resv->lock);
467}
468
1dd308a7 469/*
feba16e2
MK
470 * Delete the specified range [f, t) from the reserve map. If the
471 * t parameter is LONG_MAX, this indicates that ALL regions after f
472 * should be deleted. Locate the regions which intersect [f, t)
473 * and either trim, delete or split the existing regions.
474 *
475 * Returns the number of huge pages deleted from the reserve map.
476 * In the normal case, the return value is zero or more. In the
477 * case where a region must be split, a new region descriptor must
478 * be allocated. If the allocation fails, -ENOMEM will be returned.
479 * NOTE: If the parameter t == LONG_MAX, then we will never split
480 * a region and possibly return -ENOMEM. Callers specifying
481 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 482 */
feba16e2 483static long region_del(struct resv_map *resv, long f, long t)
96822904 484{
1406ec9b 485 struct list_head *head = &resv->regions;
96822904 486 struct file_region *rg, *trg;
feba16e2
MK
487 struct file_region *nrg = NULL;
488 long del = 0;
96822904 489
feba16e2 490retry:
7b24d861 491 spin_lock(&resv->lock);
feba16e2 492 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
493 /*
494 * Skip regions before the range to be deleted. file_region
495 * ranges are normally of the form [from, to). However, there
496 * may be a "placeholder" entry in the map which is of the form
497 * (from, to) with from == to. Check for placeholder entries
498 * at the beginning of the range to be deleted.
499 */
500 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 501 continue;
dbe409e4 502
feba16e2 503 if (rg->from >= t)
96822904 504 break;
96822904 505
feba16e2
MK
506 if (f > rg->from && t < rg->to) { /* Must split region */
507 /*
508 * Check for an entry in the cache before dropping
509 * lock and attempting allocation.
510 */
511 if (!nrg &&
512 resv->region_cache_count > resv->adds_in_progress) {
513 nrg = list_first_entry(&resv->region_cache,
514 struct file_region,
515 link);
516 list_del(&nrg->link);
517 resv->region_cache_count--;
518 }
96822904 519
feba16e2
MK
520 if (!nrg) {
521 spin_unlock(&resv->lock);
522 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523 if (!nrg)
524 return -ENOMEM;
525 goto retry;
526 }
527
528 del += t - f;
529
530 /* New entry for end of split region */
531 nrg->from = t;
532 nrg->to = rg->to;
533 INIT_LIST_HEAD(&nrg->link);
534
535 /* Original entry is trimmed */
536 rg->to = f;
537
538 list_add(&nrg->link, &rg->link);
539 nrg = NULL;
96822904 540 break;
feba16e2
MK
541 }
542
543 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544 del += rg->to - rg->from;
545 list_del(&rg->link);
546 kfree(rg);
547 continue;
548 }
549
550 if (f <= rg->from) { /* Trim beginning of region */
551 del += t - rg->from;
552 rg->from = t;
553 } else { /* Trim end of region */
554 del += rg->to - f;
555 rg->to = f;
556 }
96822904 557 }
7b24d861 558
7b24d861 559 spin_unlock(&resv->lock);
feba16e2
MK
560 kfree(nrg);
561 return del;
96822904
AW
562}
563
b5cec28d
MK
564/*
565 * A rare out of memory error was encountered which prevented removal of
566 * the reserve map region for a page. The huge page itself was free'ed
567 * and removed from the page cache. This routine will adjust the subpool
568 * usage count, and the global reserve count if needed. By incrementing
569 * these counts, the reserve map entry which could not be deleted will
570 * appear as a "reserved" entry instead of simply dangling with incorrect
571 * counts.
572 */
72e2936c 573void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
574{
575 struct hugepage_subpool *spool = subpool_inode(inode);
576 long rsv_adjust;
577
578 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 579 if (rsv_adjust) {
b5cec28d
MK
580 struct hstate *h = hstate_inode(inode);
581
582 hugetlb_acct_memory(h, 1);
583 }
584}
585
1dd308a7
MK
586/*
587 * Count and return the number of huge pages in the reserve map
588 * that intersect with the range [f, t).
589 */
1406ec9b 590static long region_count(struct resv_map *resv, long f, long t)
84afd99b 591{
1406ec9b 592 struct list_head *head = &resv->regions;
84afd99b
AW
593 struct file_region *rg;
594 long chg = 0;
595
7b24d861 596 spin_lock(&resv->lock);
84afd99b
AW
597 /* Locate each segment we overlap with, and count that overlap. */
598 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
599 long seg_from;
600 long seg_to;
84afd99b
AW
601
602 if (rg->to <= f)
603 continue;
604 if (rg->from >= t)
605 break;
606
607 seg_from = max(rg->from, f);
608 seg_to = min(rg->to, t);
609
610 chg += seg_to - seg_from;
611 }
7b24d861 612 spin_unlock(&resv->lock);
84afd99b
AW
613
614 return chg;
615}
616
e7c4b0bf
AW
617/*
618 * Convert the address within this vma to the page offset within
619 * the mapping, in pagecache page units; huge pages here.
620 */
a5516438
AK
621static pgoff_t vma_hugecache_offset(struct hstate *h,
622 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 623{
a5516438
AK
624 return ((address - vma->vm_start) >> huge_page_shift(h)) +
625 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
626}
627
0fe6e20b
NH
628pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629 unsigned long address)
630{
631 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632}
dee41079 633EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 634
08fba699
MG
635/*
636 * Return the size of the pages allocated when backing a VMA. In the majority
637 * cases this will be same size as used by the page table entries.
638 */
639unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640{
05ea8860
DW
641 if (vma->vm_ops && vma->vm_ops->pagesize)
642 return vma->vm_ops->pagesize(vma);
643 return PAGE_SIZE;
08fba699 644}
f340ca0f 645EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 646
3340289d
MG
647/*
648 * Return the page size being used by the MMU to back a VMA. In the majority
649 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
650 * architectures where it differs, an architecture-specific 'strong'
651 * version of this symbol is required.
3340289d 652 */
09135cc5 653__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
654{
655 return vma_kernel_pagesize(vma);
656}
3340289d 657
84afd99b
AW
658/*
659 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
660 * bits of the reservation map pointer, which are always clear due to
661 * alignment.
662 */
663#define HPAGE_RESV_OWNER (1UL << 0)
664#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 665#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 666
a1e78772
MG
667/*
668 * These helpers are used to track how many pages are reserved for
669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670 * is guaranteed to have their future faults succeed.
671 *
672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673 * the reserve counters are updated with the hugetlb_lock held. It is safe
674 * to reset the VMA at fork() time as it is not in use yet and there is no
675 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
676 *
677 * The private mapping reservation is represented in a subtly different
678 * manner to a shared mapping. A shared mapping has a region map associated
679 * with the underlying file, this region map represents the backing file
680 * pages which have ever had a reservation assigned which this persists even
681 * after the page is instantiated. A private mapping has a region map
682 * associated with the original mmap which is attached to all VMAs which
683 * reference it, this region map represents those offsets which have consumed
684 * reservation ie. where pages have been instantiated.
a1e78772 685 */
e7c4b0bf
AW
686static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687{
688 return (unsigned long)vma->vm_private_data;
689}
690
691static void set_vma_private_data(struct vm_area_struct *vma,
692 unsigned long value)
693{
694 vma->vm_private_data = (void *)value;
695}
696
9119a41e 697struct resv_map *resv_map_alloc(void)
84afd99b
AW
698{
699 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
700 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702 if (!resv_map || !rg) {
703 kfree(resv_map);
704 kfree(rg);
84afd99b 705 return NULL;
5e911373 706 }
84afd99b
AW
707
708 kref_init(&resv_map->refs);
7b24d861 709 spin_lock_init(&resv_map->lock);
84afd99b
AW
710 INIT_LIST_HEAD(&resv_map->regions);
711
5e911373
MK
712 resv_map->adds_in_progress = 0;
713
714 INIT_LIST_HEAD(&resv_map->region_cache);
715 list_add(&rg->link, &resv_map->region_cache);
716 resv_map->region_cache_count = 1;
717
84afd99b
AW
718 return resv_map;
719}
720
9119a41e 721void resv_map_release(struct kref *ref)
84afd99b
AW
722{
723 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
724 struct list_head *head = &resv_map->region_cache;
725 struct file_region *rg, *trg;
84afd99b
AW
726
727 /* Clear out any active regions before we release the map. */
feba16e2 728 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
729
730 /* ... and any entries left in the cache */
731 list_for_each_entry_safe(rg, trg, head, link) {
732 list_del(&rg->link);
733 kfree(rg);
734 }
735
736 VM_BUG_ON(resv_map->adds_in_progress);
737
84afd99b
AW
738 kfree(resv_map);
739}
740
4e35f483
JK
741static inline struct resv_map *inode_resv_map(struct inode *inode)
742{
f27a5136
MK
743 /*
744 * At inode evict time, i_mapping may not point to the original
745 * address space within the inode. This original address space
746 * contains the pointer to the resv_map. So, always use the
747 * address space embedded within the inode.
748 * The VERY common case is inode->mapping == &inode->i_data but,
749 * this may not be true for device special inodes.
750 */
751 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
752}
753
84afd99b 754static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 755{
81d1b09c 756 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
757 if (vma->vm_flags & VM_MAYSHARE) {
758 struct address_space *mapping = vma->vm_file->f_mapping;
759 struct inode *inode = mapping->host;
760
761 return inode_resv_map(inode);
762
763 } else {
84afd99b
AW
764 return (struct resv_map *)(get_vma_private_data(vma) &
765 ~HPAGE_RESV_MASK);
4e35f483 766 }
a1e78772
MG
767}
768
84afd99b 769static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 770{
81d1b09c
SL
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 773
84afd99b
AW
774 set_vma_private_data(vma, (get_vma_private_data(vma) &
775 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
776}
777
778static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
779{
81d1b09c
SL
780 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
782
783 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
784}
785
786static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
787{
81d1b09c 788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
789
790 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
791}
792
04f2cbe3 793/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
794void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
795{
81d1b09c 796 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 797 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
798 vma->vm_private_data = (void *)0;
799}
800
801/* Returns true if the VMA has associated reserve pages */
559ec2f8 802static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 803{
af0ed73e
JK
804 if (vma->vm_flags & VM_NORESERVE) {
805 /*
806 * This address is already reserved by other process(chg == 0),
807 * so, we should decrement reserved count. Without decrementing,
808 * reserve count remains after releasing inode, because this
809 * allocated page will go into page cache and is regarded as
810 * coming from reserved pool in releasing step. Currently, we
811 * don't have any other solution to deal with this situation
812 * properly, so add work-around here.
813 */
814 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 815 return true;
af0ed73e 816 else
559ec2f8 817 return false;
af0ed73e 818 }
a63884e9
JK
819
820 /* Shared mappings always use reserves */
1fb1b0e9
MK
821 if (vma->vm_flags & VM_MAYSHARE) {
822 /*
823 * We know VM_NORESERVE is not set. Therefore, there SHOULD
824 * be a region map for all pages. The only situation where
825 * there is no region map is if a hole was punched via
826 * fallocate. In this case, there really are no reverves to
827 * use. This situation is indicated if chg != 0.
828 */
829 if (chg)
830 return false;
831 else
832 return true;
833 }
a63884e9
JK
834
835 /*
836 * Only the process that called mmap() has reserves for
837 * private mappings.
838 */
67961f9d
MK
839 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
840 /*
841 * Like the shared case above, a hole punch or truncate
842 * could have been performed on the private mapping.
843 * Examine the value of chg to determine if reserves
844 * actually exist or were previously consumed.
845 * Very Subtle - The value of chg comes from a previous
846 * call to vma_needs_reserves(). The reserve map for
847 * private mappings has different (opposite) semantics
848 * than that of shared mappings. vma_needs_reserves()
849 * has already taken this difference in semantics into
850 * account. Therefore, the meaning of chg is the same
851 * as in the shared case above. Code could easily be
852 * combined, but keeping it separate draws attention to
853 * subtle differences.
854 */
855 if (chg)
856 return false;
857 else
858 return true;
859 }
a63884e9 860
559ec2f8 861 return false;
a1e78772
MG
862}
863
a5516438 864static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
865{
866 int nid = page_to_nid(page);
0edaecfa 867 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
868 h->free_huge_pages++;
869 h->free_huge_pages_node[nid]++;
1da177e4
LT
870}
871
94310cbc 872static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
873{
874 struct page *page;
875
c8721bbb 876 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 877 if (!PageHWPoison(page))
c8721bbb
NH
878 break;
879 /*
880 * if 'non-isolated free hugepage' not found on the list,
881 * the allocation fails.
882 */
883 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 884 return NULL;
0edaecfa 885 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 886 set_page_refcounted(page);
bf50bab2
NH
887 h->free_huge_pages--;
888 h->free_huge_pages_node[nid]--;
889 return page;
890}
891
3e59fcb0
MH
892static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
893 nodemask_t *nmask)
94310cbc 894{
3e59fcb0
MH
895 unsigned int cpuset_mems_cookie;
896 struct zonelist *zonelist;
897 struct zone *zone;
898 struct zoneref *z;
98fa15f3 899 int node = NUMA_NO_NODE;
94310cbc 900
3e59fcb0
MH
901 zonelist = node_zonelist(nid, gfp_mask);
902
903retry_cpuset:
904 cpuset_mems_cookie = read_mems_allowed_begin();
905 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
906 struct page *page;
907
908 if (!cpuset_zone_allowed(zone, gfp_mask))
909 continue;
910 /*
911 * no need to ask again on the same node. Pool is node rather than
912 * zone aware
913 */
914 if (zone_to_nid(zone) == node)
915 continue;
916 node = zone_to_nid(zone);
94310cbc 917
94310cbc
AK
918 page = dequeue_huge_page_node_exact(h, node);
919 if (page)
920 return page;
921 }
3e59fcb0
MH
922 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
923 goto retry_cpuset;
924
94310cbc
AK
925 return NULL;
926}
927
86cdb465
NH
928/* Movability of hugepages depends on migration support. */
929static inline gfp_t htlb_alloc_mask(struct hstate *h)
930{
7ed2c31d 931 if (hugepage_movable_supported(h))
86cdb465
NH
932 return GFP_HIGHUSER_MOVABLE;
933 else
934 return GFP_HIGHUSER;
935}
936
a5516438
AK
937static struct page *dequeue_huge_page_vma(struct hstate *h,
938 struct vm_area_struct *vma,
af0ed73e
JK
939 unsigned long address, int avoid_reserve,
940 long chg)
1da177e4 941{
3e59fcb0 942 struct page *page;
480eccf9 943 struct mempolicy *mpol;
04ec6264 944 gfp_t gfp_mask;
3e59fcb0 945 nodemask_t *nodemask;
04ec6264 946 int nid;
1da177e4 947
a1e78772
MG
948 /*
949 * A child process with MAP_PRIVATE mappings created by their parent
950 * have no page reserves. This check ensures that reservations are
951 * not "stolen". The child may still get SIGKILLed
952 */
af0ed73e 953 if (!vma_has_reserves(vma, chg) &&
a5516438 954 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 955 goto err;
a1e78772 956
04f2cbe3 957 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 958 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 959 goto err;
04f2cbe3 960
04ec6264
VB
961 gfp_mask = htlb_alloc_mask(h);
962 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
963 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
964 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
965 SetPagePrivate(page);
966 h->resv_huge_pages--;
1da177e4 967 }
cc9a6c87 968
52cd3b07 969 mpol_cond_put(mpol);
1da177e4 970 return page;
cc9a6c87
MG
971
972err:
cc9a6c87 973 return NULL;
1da177e4
LT
974}
975
1cac6f2c
LC
976/*
977 * common helper functions for hstate_next_node_to_{alloc|free}.
978 * We may have allocated or freed a huge page based on a different
979 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
980 * be outside of *nodes_allowed. Ensure that we use an allowed
981 * node for alloc or free.
982 */
983static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
984{
0edaf86c 985 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
986 VM_BUG_ON(nid >= MAX_NUMNODES);
987
988 return nid;
989}
990
991static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
992{
993 if (!node_isset(nid, *nodes_allowed))
994 nid = next_node_allowed(nid, nodes_allowed);
995 return nid;
996}
997
998/*
999 * returns the previously saved node ["this node"] from which to
1000 * allocate a persistent huge page for the pool and advance the
1001 * next node from which to allocate, handling wrap at end of node
1002 * mask.
1003 */
1004static int hstate_next_node_to_alloc(struct hstate *h,
1005 nodemask_t *nodes_allowed)
1006{
1007 int nid;
1008
1009 VM_BUG_ON(!nodes_allowed);
1010
1011 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1012 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1013
1014 return nid;
1015}
1016
1017/*
1018 * helper for free_pool_huge_page() - return the previously saved
1019 * node ["this node"] from which to free a huge page. Advance the
1020 * next node id whether or not we find a free huge page to free so
1021 * that the next attempt to free addresses the next node.
1022 */
1023static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1024{
1025 int nid;
1026
1027 VM_BUG_ON(!nodes_allowed);
1028
1029 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1030 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1031
1032 return nid;
1033}
1034
1035#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1036 for (nr_nodes = nodes_weight(*mask); \
1037 nr_nodes > 0 && \
1038 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1039 nr_nodes--)
1040
1041#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1042 for (nr_nodes = nodes_weight(*mask); \
1043 nr_nodes > 0 && \
1044 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1045 nr_nodes--)
1046
e1073d1e 1047#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1048static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1049 unsigned int order)
944d9fec
LC
1050{
1051 int i;
1052 int nr_pages = 1 << order;
1053 struct page *p = page + 1;
1054
c8cc708a 1055 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1056 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1057 clear_compound_head(p);
944d9fec 1058 set_page_refcounted(p);
944d9fec
LC
1059 }
1060
1061 set_compound_order(page, 0);
1062 __ClearPageHead(page);
1063}
1064
d00181b9 1065static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1066{
1067 free_contig_range(page_to_pfn(page), 1 << order);
1068}
1069
4eb0716e 1070#ifdef CONFIG_CONTIG_ALLOC
944d9fec 1071static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1072 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1073{
1074 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1075 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1076 gfp_mask);
944d9fec
LC
1077}
1078
f44b2dda
JK
1079static bool pfn_range_valid_gigantic(struct zone *z,
1080 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1081{
1082 unsigned long i, end_pfn = start_pfn + nr_pages;
1083 struct page *page;
1084
1085 for (i = start_pfn; i < end_pfn; i++) {
1086 if (!pfn_valid(i))
1087 return false;
1088
1089 page = pfn_to_page(i);
1090
f44b2dda
JK
1091 if (page_zone(page) != z)
1092 return false;
1093
944d9fec
LC
1094 if (PageReserved(page))
1095 return false;
1096
1097 if (page_count(page) > 0)
1098 return false;
1099
1100 if (PageHuge(page))
1101 return false;
1102 }
1103
1104 return true;
1105}
1106
1107static bool zone_spans_last_pfn(const struct zone *zone,
1108 unsigned long start_pfn, unsigned long nr_pages)
1109{
1110 unsigned long last_pfn = start_pfn + nr_pages - 1;
1111 return zone_spans_pfn(zone, last_pfn);
1112}
1113
d9cc948f
MH
1114static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1115 int nid, nodemask_t *nodemask)
944d9fec 1116{
79b63f12 1117 unsigned int order = huge_page_order(h);
944d9fec
LC
1118 unsigned long nr_pages = 1 << order;
1119 unsigned long ret, pfn, flags;
79b63f12
MH
1120 struct zonelist *zonelist;
1121 struct zone *zone;
1122 struct zoneref *z;
944d9fec 1123
79b63f12 1124 zonelist = node_zonelist(nid, gfp_mask);
d9cc948f 1125 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
79b63f12 1126 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1127
79b63f12
MH
1128 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1129 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1130 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1131 /*
1132 * We release the zone lock here because
1133 * alloc_contig_range() will also lock the zone
1134 * at some point. If there's an allocation
1135 * spinning on this lock, it may win the race
1136 * and cause alloc_contig_range() to fail...
1137 */
79b63f12
MH
1138 spin_unlock_irqrestore(&zone->lock, flags);
1139 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1140 if (!ret)
1141 return pfn_to_page(pfn);
79b63f12 1142 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1143 }
1144 pfn += nr_pages;
1145 }
1146
79b63f12 1147 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1148 }
1149
1150 return NULL;
1151}
1152
1153static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1154static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1155#else /* !CONFIG_CONTIG_ALLOC */
1156static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157 int nid, nodemask_t *nodemask)
1158{
1159 return NULL;
1160}
1161#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1162
e1073d1e 1163#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1164static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1165 int nid, nodemask_t *nodemask)
1166{
1167 return NULL;
1168}
d00181b9 1169static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1170static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1171 unsigned int order) { }
944d9fec
LC
1172#endif
1173
a5516438 1174static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1175{
1176 int i;
a5516438 1177
4eb0716e 1178 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1179 return;
18229df5 1180
a5516438
AK
1181 h->nr_huge_pages--;
1182 h->nr_huge_pages_node[page_to_nid(page)]--;
1183 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1184 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1185 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1186 1 << PG_active | 1 << PG_private |
1187 1 << PG_writeback);
6af2acb6 1188 }
309381fe 1189 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1190 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1191 set_page_refcounted(page);
944d9fec
LC
1192 if (hstate_is_gigantic(h)) {
1193 destroy_compound_gigantic_page(page, huge_page_order(h));
1194 free_gigantic_page(page, huge_page_order(h));
1195 } else {
944d9fec
LC
1196 __free_pages(page, huge_page_order(h));
1197 }
6af2acb6
AL
1198}
1199
e5ff2159
AK
1200struct hstate *size_to_hstate(unsigned long size)
1201{
1202 struct hstate *h;
1203
1204 for_each_hstate(h) {
1205 if (huge_page_size(h) == size)
1206 return h;
1207 }
1208 return NULL;
1209}
1210
bcc54222
NH
1211/*
1212 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1213 * to hstate->hugepage_activelist.)
1214 *
1215 * This function can be called for tail pages, but never returns true for them.
1216 */
1217bool page_huge_active(struct page *page)
1218{
1219 VM_BUG_ON_PAGE(!PageHuge(page), page);
1220 return PageHead(page) && PagePrivate(&page[1]);
1221}
1222
1223/* never called for tail page */
1224static void set_page_huge_active(struct page *page)
1225{
1226 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227 SetPagePrivate(&page[1]);
1228}
1229
1230static void clear_page_huge_active(struct page *page)
1231{
1232 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1233 ClearPagePrivate(&page[1]);
1234}
1235
ab5ac90a
MH
1236/*
1237 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1238 * code
1239 */
1240static inline bool PageHugeTemporary(struct page *page)
1241{
1242 if (!PageHuge(page))
1243 return false;
1244
1245 return (unsigned long)page[2].mapping == -1U;
1246}
1247
1248static inline void SetPageHugeTemporary(struct page *page)
1249{
1250 page[2].mapping = (void *)-1U;
1251}
1252
1253static inline void ClearPageHugeTemporary(struct page *page)
1254{
1255 page[2].mapping = NULL;
1256}
1257
8f1d26d0 1258void free_huge_page(struct page *page)
27a85ef1 1259{
a5516438
AK
1260 /*
1261 * Can't pass hstate in here because it is called from the
1262 * compound page destructor.
1263 */
e5ff2159 1264 struct hstate *h = page_hstate(page);
7893d1d5 1265 int nid = page_to_nid(page);
90481622
DG
1266 struct hugepage_subpool *spool =
1267 (struct hugepage_subpool *)page_private(page);
07443a85 1268 bool restore_reserve;
27a85ef1 1269
b4330afb
MK
1270 VM_BUG_ON_PAGE(page_count(page), page);
1271 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1272
1273 set_page_private(page, 0);
1274 page->mapping = NULL;
07443a85 1275 restore_reserve = PagePrivate(page);
16c794b4 1276 ClearPagePrivate(page);
27a85ef1 1277
1c5ecae3 1278 /*
0919e1b6
MK
1279 * If PagePrivate() was set on page, page allocation consumed a
1280 * reservation. If the page was associated with a subpool, there
1281 * would have been a page reserved in the subpool before allocation
1282 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1283 * reservtion, do not call hugepage_subpool_put_pages() as this will
1284 * remove the reserved page from the subpool.
1c5ecae3 1285 */
0919e1b6
MK
1286 if (!restore_reserve) {
1287 /*
1288 * A return code of zero implies that the subpool will be
1289 * under its minimum size if the reservation is not restored
1290 * after page is free. Therefore, force restore_reserve
1291 * operation.
1292 */
1293 if (hugepage_subpool_put_pages(spool, 1) == 0)
1294 restore_reserve = true;
1295 }
1c5ecae3 1296
27a85ef1 1297 spin_lock(&hugetlb_lock);
bcc54222 1298 clear_page_huge_active(page);
6d76dcf4
AK
1299 hugetlb_cgroup_uncharge_page(hstate_index(h),
1300 pages_per_huge_page(h), page);
07443a85
JK
1301 if (restore_reserve)
1302 h->resv_huge_pages++;
1303
ab5ac90a
MH
1304 if (PageHugeTemporary(page)) {
1305 list_del(&page->lru);
1306 ClearPageHugeTemporary(page);
1307 update_and_free_page(h, page);
1308 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1309 /* remove the page from active list */
1310 list_del(&page->lru);
a5516438
AK
1311 update_and_free_page(h, page);
1312 h->surplus_huge_pages--;
1313 h->surplus_huge_pages_node[nid]--;
7893d1d5 1314 } else {
5d3a551c 1315 arch_clear_hugepage_flags(page);
a5516438 1316 enqueue_huge_page(h, page);
7893d1d5 1317 }
27a85ef1
DG
1318 spin_unlock(&hugetlb_lock);
1319}
1320
a5516438 1321static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1322{
0edaecfa 1323 INIT_LIST_HEAD(&page->lru);
f1e61557 1324 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1325 spin_lock(&hugetlb_lock);
9dd540e2 1326 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1327 h->nr_huge_pages++;
1328 h->nr_huge_pages_node[nid]++;
b7ba30c6 1329 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1330}
1331
d00181b9 1332static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1333{
1334 int i;
1335 int nr_pages = 1 << order;
1336 struct page *p = page + 1;
1337
1338 /* we rely on prep_new_huge_page to set the destructor */
1339 set_compound_order(page, order);
ef5a22be 1340 __ClearPageReserved(page);
de09d31d 1341 __SetPageHead(page);
20a0307c 1342 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1343 /*
1344 * For gigantic hugepages allocated through bootmem at
1345 * boot, it's safer to be consistent with the not-gigantic
1346 * hugepages and clear the PG_reserved bit from all tail pages
1347 * too. Otherwse drivers using get_user_pages() to access tail
1348 * pages may get the reference counting wrong if they see
1349 * PG_reserved set on a tail page (despite the head page not
1350 * having PG_reserved set). Enforcing this consistency between
1351 * head and tail pages allows drivers to optimize away a check
1352 * on the head page when they need know if put_page() is needed
1353 * after get_user_pages().
1354 */
1355 __ClearPageReserved(p);
58a84aa9 1356 set_page_count(p, 0);
1d798ca3 1357 set_compound_head(p, page);
20a0307c 1358 }
b4330afb 1359 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1360}
1361
7795912c
AM
1362/*
1363 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1364 * transparent huge pages. See the PageTransHuge() documentation for more
1365 * details.
1366 */
20a0307c
WF
1367int PageHuge(struct page *page)
1368{
20a0307c
WF
1369 if (!PageCompound(page))
1370 return 0;
1371
1372 page = compound_head(page);
f1e61557 1373 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1374}
43131e14
NH
1375EXPORT_SYMBOL_GPL(PageHuge);
1376
27c73ae7
AA
1377/*
1378 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1379 * normal or transparent huge pages.
1380 */
1381int PageHeadHuge(struct page *page_head)
1382{
27c73ae7
AA
1383 if (!PageHead(page_head))
1384 return 0;
1385
758f66a2 1386 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1387}
27c73ae7 1388
13d60f4b
ZY
1389pgoff_t __basepage_index(struct page *page)
1390{
1391 struct page *page_head = compound_head(page);
1392 pgoff_t index = page_index(page_head);
1393 unsigned long compound_idx;
1394
1395 if (!PageHuge(page_head))
1396 return page_index(page);
1397
1398 if (compound_order(page_head) >= MAX_ORDER)
1399 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1400 else
1401 compound_idx = page - page_head;
1402
1403 return (index << compound_order(page_head)) + compound_idx;
1404}
1405
0c397dae 1406static struct page *alloc_buddy_huge_page(struct hstate *h,
af0fb9df 1407 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1da177e4 1408{
af0fb9df 1409 int order = huge_page_order(h);
1da177e4 1410 struct page *page;
f96efd58 1411
af0fb9df
MH
1412 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1413 if (nid == NUMA_NO_NODE)
1414 nid = numa_mem_id();
1415 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1416 if (page)
1417 __count_vm_event(HTLB_BUDDY_PGALLOC);
1418 else
1419 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c
NA
1420
1421 return page;
1422}
1423
0c397dae
MH
1424/*
1425 * Common helper to allocate a fresh hugetlb page. All specific allocators
1426 * should use this function to get new hugetlb pages
1427 */
1428static struct page *alloc_fresh_huge_page(struct hstate *h,
1429 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1430{
1431 struct page *page;
1432
1433 if (hstate_is_gigantic(h))
1434 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1435 else
1436 page = alloc_buddy_huge_page(h, gfp_mask,
1437 nid, nmask);
1438 if (!page)
1439 return NULL;
1440
1441 if (hstate_is_gigantic(h))
1442 prep_compound_gigantic_page(page, huge_page_order(h));
1443 prep_new_huge_page(h, page, page_to_nid(page));
1444
1445 return page;
1446}
1447
af0fb9df
MH
1448/*
1449 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1450 * manner.
1451 */
0c397dae 1452static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
b2261026
JK
1453{
1454 struct page *page;
1455 int nr_nodes, node;
af0fb9df 1456 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1457
1458 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
0c397dae 1459 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
af0fb9df 1460 if (page)
b2261026 1461 break;
b2261026
JK
1462 }
1463
af0fb9df
MH
1464 if (!page)
1465 return 0;
b2261026 1466
af0fb9df
MH
1467 put_page(page); /* free it into the hugepage allocator */
1468
1469 return 1;
b2261026
JK
1470}
1471
e8c5c824
LS
1472/*
1473 * Free huge page from pool from next node to free.
1474 * Attempt to keep persistent huge pages more or less
1475 * balanced over allowed nodes.
1476 * Called with hugetlb_lock locked.
1477 */
6ae11b27
LS
1478static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1479 bool acct_surplus)
e8c5c824 1480{
b2261026 1481 int nr_nodes, node;
e8c5c824
LS
1482 int ret = 0;
1483
b2261026 1484 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1485 /*
1486 * If we're returning unused surplus pages, only examine
1487 * nodes with surplus pages.
1488 */
b2261026
JK
1489 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1490 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1491 struct page *page =
b2261026 1492 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1493 struct page, lru);
1494 list_del(&page->lru);
1495 h->free_huge_pages--;
b2261026 1496 h->free_huge_pages_node[node]--;
685f3457
LS
1497 if (acct_surplus) {
1498 h->surplus_huge_pages--;
b2261026 1499 h->surplus_huge_pages_node[node]--;
685f3457 1500 }
e8c5c824
LS
1501 update_and_free_page(h, page);
1502 ret = 1;
9a76db09 1503 break;
e8c5c824 1504 }
b2261026 1505 }
e8c5c824
LS
1506
1507 return ret;
1508}
1509
c8721bbb
NH
1510/*
1511 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b 1512 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
6bc9b564
NH
1513 * dissolution fails because a give page is not a free hugepage, or because
1514 * free hugepages are fully reserved.
c8721bbb 1515 */
c3114a84 1516int dissolve_free_huge_page(struct page *page)
c8721bbb 1517{
6bc9b564 1518 int rc = -EBUSY;
082d5b6b 1519
c8721bbb
NH
1520 spin_lock(&hugetlb_lock);
1521 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1522 struct page *head = compound_head(page);
1523 struct hstate *h = page_hstate(head);
1524 int nid = page_to_nid(head);
6bc9b564 1525 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1526 goto out;
c3114a84
AK
1527 /*
1528 * Move PageHWPoison flag from head page to the raw error page,
1529 * which makes any subpages rather than the error page reusable.
1530 */
1531 if (PageHWPoison(head) && page != head) {
1532 SetPageHWPoison(page);
1533 ClearPageHWPoison(head);
1534 }
2247bb33 1535 list_del(&head->lru);
c8721bbb
NH
1536 h->free_huge_pages--;
1537 h->free_huge_pages_node[nid]--;
c1470b33 1538 h->max_huge_pages--;
2247bb33 1539 update_and_free_page(h, head);
6bc9b564 1540 rc = 0;
c8721bbb 1541 }
082d5b6b 1542out:
c8721bbb 1543 spin_unlock(&hugetlb_lock);
082d5b6b 1544 return rc;
c8721bbb
NH
1545}
1546
1547/*
1548 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1549 * make specified memory blocks removable from the system.
2247bb33
GS
1550 * Note that this will dissolve a free gigantic hugepage completely, if any
1551 * part of it lies within the given range.
082d5b6b
GS
1552 * Also note that if dissolve_free_huge_page() returns with an error, all
1553 * free hugepages that were dissolved before that error are lost.
c8721bbb 1554 */
082d5b6b 1555int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1556{
c8721bbb 1557 unsigned long pfn;
eb03aa00 1558 struct page *page;
082d5b6b 1559 int rc = 0;
c8721bbb 1560
d0177639 1561 if (!hugepages_supported())
082d5b6b 1562 return rc;
d0177639 1563
eb03aa00
GS
1564 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1565 page = pfn_to_page(pfn);
1566 if (PageHuge(page) && !page_count(page)) {
1567 rc = dissolve_free_huge_page(page);
1568 if (rc)
1569 break;
1570 }
1571 }
082d5b6b
GS
1572
1573 return rc;
c8721bbb
NH
1574}
1575
ab5ac90a
MH
1576/*
1577 * Allocates a fresh surplus page from the page allocator.
1578 */
0c397dae 1579static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1580 int nid, nodemask_t *nmask)
7893d1d5 1581{
9980d744 1582 struct page *page = NULL;
7893d1d5 1583
bae7f4ae 1584 if (hstate_is_gigantic(h))
aa888a74
AK
1585 return NULL;
1586
d1c3fb1f 1587 spin_lock(&hugetlb_lock);
9980d744
MH
1588 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1589 goto out_unlock;
d1c3fb1f
NA
1590 spin_unlock(&hugetlb_lock);
1591
0c397dae 1592 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
9980d744 1593 if (!page)
0c397dae 1594 return NULL;
d1c3fb1f
NA
1595
1596 spin_lock(&hugetlb_lock);
9980d744
MH
1597 /*
1598 * We could have raced with the pool size change.
1599 * Double check that and simply deallocate the new page
1600 * if we would end up overcommiting the surpluses. Abuse
1601 * temporary page to workaround the nasty free_huge_page
1602 * codeflow
1603 */
1604 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1605 SetPageHugeTemporary(page);
2bf753e6 1606 spin_unlock(&hugetlb_lock);
9980d744 1607 put_page(page);
2bf753e6 1608 return NULL;
9980d744 1609 } else {
9980d744 1610 h->surplus_huge_pages++;
4704dea3 1611 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1612 }
9980d744
MH
1613
1614out_unlock:
d1c3fb1f 1615 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1616
1617 return page;
1618}
1619
9a4e9f3b
AK
1620struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1621 int nid, nodemask_t *nmask)
ab5ac90a
MH
1622{
1623 struct page *page;
1624
1625 if (hstate_is_gigantic(h))
1626 return NULL;
1627
0c397dae 1628 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
ab5ac90a
MH
1629 if (!page)
1630 return NULL;
1631
1632 /*
1633 * We do not account these pages as surplus because they are only
1634 * temporary and will be released properly on the last reference
1635 */
ab5ac90a
MH
1636 SetPageHugeTemporary(page);
1637
1638 return page;
1639}
1640
099730d6
DH
1641/*
1642 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1643 */
e0ec90ee 1644static
0c397dae 1645struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1646 struct vm_area_struct *vma, unsigned long addr)
1647{
aaf14e40
MH
1648 struct page *page;
1649 struct mempolicy *mpol;
1650 gfp_t gfp_mask = htlb_alloc_mask(h);
1651 int nid;
1652 nodemask_t *nodemask;
1653
1654 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1655 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1656 mpol_cond_put(mpol);
1657
1658 return page;
099730d6
DH
1659}
1660
ab5ac90a 1661/* page migration callback function */
bf50bab2
NH
1662struct page *alloc_huge_page_node(struct hstate *h, int nid)
1663{
aaf14e40 1664 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1665 struct page *page = NULL;
bf50bab2 1666
aaf14e40
MH
1667 if (nid != NUMA_NO_NODE)
1668 gfp_mask |= __GFP_THISNODE;
1669
bf50bab2 1670 spin_lock(&hugetlb_lock);
4ef91848 1671 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1672 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1673 spin_unlock(&hugetlb_lock);
1674
94ae8ba7 1675 if (!page)
0c397dae 1676 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1677
1678 return page;
1679}
1680
ab5ac90a 1681/* page migration callback function */
3e59fcb0
MH
1682struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1683 nodemask_t *nmask)
4db9b2ef 1684{
aaf14e40 1685 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1686
1687 spin_lock(&hugetlb_lock);
1688 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1689 struct page *page;
1690
1691 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1692 if (page) {
1693 spin_unlock(&hugetlb_lock);
1694 return page;
4db9b2ef
MH
1695 }
1696 }
1697 spin_unlock(&hugetlb_lock);
4db9b2ef 1698
0c397dae 1699 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1700}
1701
ebd63723 1702/* mempolicy aware migration callback */
389c8178
MH
1703struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1704 unsigned long address)
ebd63723
MH
1705{
1706 struct mempolicy *mpol;
1707 nodemask_t *nodemask;
1708 struct page *page;
ebd63723
MH
1709 gfp_t gfp_mask;
1710 int node;
1711
ebd63723
MH
1712 gfp_mask = htlb_alloc_mask(h);
1713 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1714 page = alloc_huge_page_nodemask(h, node, nodemask);
1715 mpol_cond_put(mpol);
1716
1717 return page;
1718}
1719
e4e574b7 1720/*
25985edc 1721 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1722 * of size 'delta'.
1723 */
a5516438 1724static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1725{
1726 struct list_head surplus_list;
1727 struct page *page, *tmp;
1728 int ret, i;
1729 int needed, allocated;
28073b02 1730 bool alloc_ok = true;
e4e574b7 1731
a5516438 1732 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1733 if (needed <= 0) {
a5516438 1734 h->resv_huge_pages += delta;
e4e574b7 1735 return 0;
ac09b3a1 1736 }
e4e574b7
AL
1737
1738 allocated = 0;
1739 INIT_LIST_HEAD(&surplus_list);
1740
1741 ret = -ENOMEM;
1742retry:
1743 spin_unlock(&hugetlb_lock);
1744 for (i = 0; i < needed; i++) {
0c397dae 1745 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1746 NUMA_NO_NODE, NULL);
28073b02
HD
1747 if (!page) {
1748 alloc_ok = false;
1749 break;
1750 }
e4e574b7 1751 list_add(&page->lru, &surplus_list);
69ed779a 1752 cond_resched();
e4e574b7 1753 }
28073b02 1754 allocated += i;
e4e574b7
AL
1755
1756 /*
1757 * After retaking hugetlb_lock, we need to recalculate 'needed'
1758 * because either resv_huge_pages or free_huge_pages may have changed.
1759 */
1760 spin_lock(&hugetlb_lock);
a5516438
AK
1761 needed = (h->resv_huge_pages + delta) -
1762 (h->free_huge_pages + allocated);
28073b02
HD
1763 if (needed > 0) {
1764 if (alloc_ok)
1765 goto retry;
1766 /*
1767 * We were not able to allocate enough pages to
1768 * satisfy the entire reservation so we free what
1769 * we've allocated so far.
1770 */
1771 goto free;
1772 }
e4e574b7
AL
1773 /*
1774 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1775 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1776 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1777 * allocator. Commit the entire reservation here to prevent another
1778 * process from stealing the pages as they are added to the pool but
1779 * before they are reserved.
e4e574b7
AL
1780 */
1781 needed += allocated;
a5516438 1782 h->resv_huge_pages += delta;
e4e574b7 1783 ret = 0;
a9869b83 1784
19fc3f0a 1785 /* Free the needed pages to the hugetlb pool */
e4e574b7 1786 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1787 if ((--needed) < 0)
1788 break;
a9869b83
NH
1789 /*
1790 * This page is now managed by the hugetlb allocator and has
1791 * no users -- drop the buddy allocator's reference.
1792 */
1793 put_page_testzero(page);
309381fe 1794 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1795 enqueue_huge_page(h, page);
19fc3f0a 1796 }
28073b02 1797free:
b0365c8d 1798 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1799
1800 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1801 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1802 put_page(page);
a9869b83 1803 spin_lock(&hugetlb_lock);
e4e574b7
AL
1804
1805 return ret;
1806}
1807
1808/*
e5bbc8a6
MK
1809 * This routine has two main purposes:
1810 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1811 * in unused_resv_pages. This corresponds to the prior adjustments made
1812 * to the associated reservation map.
1813 * 2) Free any unused surplus pages that may have been allocated to satisfy
1814 * the reservation. As many as unused_resv_pages may be freed.
1815 *
1816 * Called with hugetlb_lock held. However, the lock could be dropped (and
1817 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1818 * we must make sure nobody else can claim pages we are in the process of
1819 * freeing. Do this by ensuring resv_huge_page always is greater than the
1820 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1821 */
a5516438
AK
1822static void return_unused_surplus_pages(struct hstate *h,
1823 unsigned long unused_resv_pages)
e4e574b7 1824{
e4e574b7
AL
1825 unsigned long nr_pages;
1826
aa888a74 1827 /* Cannot return gigantic pages currently */
bae7f4ae 1828 if (hstate_is_gigantic(h))
e5bbc8a6 1829 goto out;
aa888a74 1830
e5bbc8a6
MK
1831 /*
1832 * Part (or even all) of the reservation could have been backed
1833 * by pre-allocated pages. Only free surplus pages.
1834 */
a5516438 1835 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1836
685f3457
LS
1837 /*
1838 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1839 * evenly across all nodes with memory. Iterate across these nodes
1840 * until we can no longer free unreserved surplus pages. This occurs
1841 * when the nodes with surplus pages have no free pages.
1842 * free_pool_huge_page() will balance the the freed pages across the
1843 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1844 *
1845 * Note that we decrement resv_huge_pages as we free the pages. If
1846 * we drop the lock, resv_huge_pages will still be sufficiently large
1847 * to cover subsequent pages we may free.
685f3457
LS
1848 */
1849 while (nr_pages--) {
e5bbc8a6
MK
1850 h->resv_huge_pages--;
1851 unused_resv_pages--;
8cebfcd0 1852 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1853 goto out;
7848a4bf 1854 cond_resched_lock(&hugetlb_lock);
e4e574b7 1855 }
e5bbc8a6
MK
1856
1857out:
1858 /* Fully uncommit the reservation */
1859 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1860}
1861
5e911373 1862
c37f9fb1 1863/*
feba16e2 1864 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1865 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1866 *
1867 * vma_needs_reservation is called to determine if the huge page at addr
1868 * within the vma has an associated reservation. If a reservation is
1869 * needed, the value 1 is returned. The caller is then responsible for
1870 * managing the global reservation and subpool usage counts. After
1871 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1872 * to add the page to the reservation map. If the page allocation fails,
1873 * the reservation must be ended instead of committed. vma_end_reservation
1874 * is called in such cases.
cf3ad20b
MK
1875 *
1876 * In the normal case, vma_commit_reservation returns the same value
1877 * as the preceding vma_needs_reservation call. The only time this
1878 * is not the case is if a reserve map was changed between calls. It
1879 * is the responsibility of the caller to notice the difference and
1880 * take appropriate action.
96b96a96
MK
1881 *
1882 * vma_add_reservation is used in error paths where a reservation must
1883 * be restored when a newly allocated huge page must be freed. It is
1884 * to be called after calling vma_needs_reservation to determine if a
1885 * reservation exists.
c37f9fb1 1886 */
5e911373
MK
1887enum vma_resv_mode {
1888 VMA_NEEDS_RESV,
1889 VMA_COMMIT_RESV,
feba16e2 1890 VMA_END_RESV,
96b96a96 1891 VMA_ADD_RESV,
5e911373 1892};
cf3ad20b
MK
1893static long __vma_reservation_common(struct hstate *h,
1894 struct vm_area_struct *vma, unsigned long addr,
5e911373 1895 enum vma_resv_mode mode)
c37f9fb1 1896{
4e35f483
JK
1897 struct resv_map *resv;
1898 pgoff_t idx;
cf3ad20b 1899 long ret;
c37f9fb1 1900
4e35f483
JK
1901 resv = vma_resv_map(vma);
1902 if (!resv)
84afd99b 1903 return 1;
c37f9fb1 1904
4e35f483 1905 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1906 switch (mode) {
1907 case VMA_NEEDS_RESV:
cf3ad20b 1908 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1909 break;
1910 case VMA_COMMIT_RESV:
1911 ret = region_add(resv, idx, idx + 1);
1912 break;
feba16e2 1913 case VMA_END_RESV:
5e911373
MK
1914 region_abort(resv, idx, idx + 1);
1915 ret = 0;
1916 break;
96b96a96
MK
1917 case VMA_ADD_RESV:
1918 if (vma->vm_flags & VM_MAYSHARE)
1919 ret = region_add(resv, idx, idx + 1);
1920 else {
1921 region_abort(resv, idx, idx + 1);
1922 ret = region_del(resv, idx, idx + 1);
1923 }
1924 break;
5e911373
MK
1925 default:
1926 BUG();
1927 }
84afd99b 1928
4e35f483 1929 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1930 return ret;
67961f9d
MK
1931 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1932 /*
1933 * In most cases, reserves always exist for private mappings.
1934 * However, a file associated with mapping could have been
1935 * hole punched or truncated after reserves were consumed.
1936 * As subsequent fault on such a range will not use reserves.
1937 * Subtle - The reserve map for private mappings has the
1938 * opposite meaning than that of shared mappings. If NO
1939 * entry is in the reserve map, it means a reservation exists.
1940 * If an entry exists in the reserve map, it means the
1941 * reservation has already been consumed. As a result, the
1942 * return value of this routine is the opposite of the
1943 * value returned from reserve map manipulation routines above.
1944 */
1945 if (ret)
1946 return 0;
1947 else
1948 return 1;
1949 }
4e35f483 1950 else
cf3ad20b 1951 return ret < 0 ? ret : 0;
c37f9fb1 1952}
cf3ad20b
MK
1953
1954static long vma_needs_reservation(struct hstate *h,
a5516438 1955 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1956{
5e911373 1957 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1958}
84afd99b 1959
cf3ad20b
MK
1960static long vma_commit_reservation(struct hstate *h,
1961 struct vm_area_struct *vma, unsigned long addr)
1962{
5e911373
MK
1963 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1964}
1965
feba16e2 1966static void vma_end_reservation(struct hstate *h,
5e911373
MK
1967 struct vm_area_struct *vma, unsigned long addr)
1968{
feba16e2 1969 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1970}
1971
96b96a96
MK
1972static long vma_add_reservation(struct hstate *h,
1973 struct vm_area_struct *vma, unsigned long addr)
1974{
1975 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1976}
1977
1978/*
1979 * This routine is called to restore a reservation on error paths. In the
1980 * specific error paths, a huge page was allocated (via alloc_huge_page)
1981 * and is about to be freed. If a reservation for the page existed,
1982 * alloc_huge_page would have consumed the reservation and set PagePrivate
1983 * in the newly allocated page. When the page is freed via free_huge_page,
1984 * the global reservation count will be incremented if PagePrivate is set.
1985 * However, free_huge_page can not adjust the reserve map. Adjust the
1986 * reserve map here to be consistent with global reserve count adjustments
1987 * to be made by free_huge_page.
1988 */
1989static void restore_reserve_on_error(struct hstate *h,
1990 struct vm_area_struct *vma, unsigned long address,
1991 struct page *page)
1992{
1993 if (unlikely(PagePrivate(page))) {
1994 long rc = vma_needs_reservation(h, vma, address);
1995
1996 if (unlikely(rc < 0)) {
1997 /*
1998 * Rare out of memory condition in reserve map
1999 * manipulation. Clear PagePrivate so that
2000 * global reserve count will not be incremented
2001 * by free_huge_page. This will make it appear
2002 * as though the reservation for this page was
2003 * consumed. This may prevent the task from
2004 * faulting in the page at a later time. This
2005 * is better than inconsistent global huge page
2006 * accounting of reserve counts.
2007 */
2008 ClearPagePrivate(page);
2009 } else if (rc) {
2010 rc = vma_add_reservation(h, vma, address);
2011 if (unlikely(rc < 0))
2012 /*
2013 * See above comment about rare out of
2014 * memory condition.
2015 */
2016 ClearPagePrivate(page);
2017 } else
2018 vma_end_reservation(h, vma, address);
2019 }
2020}
2021
70c3547e 2022struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2023 unsigned long addr, int avoid_reserve)
1da177e4 2024{
90481622 2025 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2026 struct hstate *h = hstate_vma(vma);
348ea204 2027 struct page *page;
d85f69b0
MK
2028 long map_chg, map_commit;
2029 long gbl_chg;
6d76dcf4
AK
2030 int ret, idx;
2031 struct hugetlb_cgroup *h_cg;
a1e78772 2032
6d76dcf4 2033 idx = hstate_index(h);
a1e78772 2034 /*
d85f69b0
MK
2035 * Examine the region/reserve map to determine if the process
2036 * has a reservation for the page to be allocated. A return
2037 * code of zero indicates a reservation exists (no change).
a1e78772 2038 */
d85f69b0
MK
2039 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2040 if (map_chg < 0)
76dcee75 2041 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2042
2043 /*
2044 * Processes that did not create the mapping will have no
2045 * reserves as indicated by the region/reserve map. Check
2046 * that the allocation will not exceed the subpool limit.
2047 * Allocations for MAP_NORESERVE mappings also need to be
2048 * checked against any subpool limit.
2049 */
2050 if (map_chg || avoid_reserve) {
2051 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2052 if (gbl_chg < 0) {
feba16e2 2053 vma_end_reservation(h, vma, addr);
76dcee75 2054 return ERR_PTR(-ENOSPC);
5e911373 2055 }
1da177e4 2056
d85f69b0
MK
2057 /*
2058 * Even though there was no reservation in the region/reserve
2059 * map, there could be reservations associated with the
2060 * subpool that can be used. This would be indicated if the
2061 * return value of hugepage_subpool_get_pages() is zero.
2062 * However, if avoid_reserve is specified we still avoid even
2063 * the subpool reservations.
2064 */
2065 if (avoid_reserve)
2066 gbl_chg = 1;
2067 }
2068
6d76dcf4 2069 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2070 if (ret)
2071 goto out_subpool_put;
2072
1da177e4 2073 spin_lock(&hugetlb_lock);
d85f69b0
MK
2074 /*
2075 * glb_chg is passed to indicate whether or not a page must be taken
2076 * from the global free pool (global change). gbl_chg == 0 indicates
2077 * a reservation exists for the allocation.
2078 */
2079 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2080 if (!page) {
94ae8ba7 2081 spin_unlock(&hugetlb_lock);
0c397dae 2082 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2083 if (!page)
2084 goto out_uncharge_cgroup;
a88c7695
NH
2085 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2086 SetPagePrivate(page);
2087 h->resv_huge_pages--;
2088 }
79dbb236
AK
2089 spin_lock(&hugetlb_lock);
2090 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2091 /* Fall through */
68842c9b 2092 }
81a6fcae
JK
2093 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2094 spin_unlock(&hugetlb_lock);
348ea204 2095
90481622 2096 set_page_private(page, (unsigned long)spool);
90d8b7e6 2097
d85f69b0
MK
2098 map_commit = vma_commit_reservation(h, vma, addr);
2099 if (unlikely(map_chg > map_commit)) {
33039678
MK
2100 /*
2101 * The page was added to the reservation map between
2102 * vma_needs_reservation and vma_commit_reservation.
2103 * This indicates a race with hugetlb_reserve_pages.
2104 * Adjust for the subpool count incremented above AND
2105 * in hugetlb_reserve_pages for the same page. Also,
2106 * the reservation count added in hugetlb_reserve_pages
2107 * no longer applies.
2108 */
2109 long rsv_adjust;
2110
2111 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2112 hugetlb_acct_memory(h, -rsv_adjust);
2113 }
90d8b7e6 2114 return page;
8f34af6f
JZ
2115
2116out_uncharge_cgroup:
2117 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2118out_subpool_put:
d85f69b0 2119 if (map_chg || avoid_reserve)
8f34af6f 2120 hugepage_subpool_put_pages(spool, 1);
feba16e2 2121 vma_end_reservation(h, vma, addr);
8f34af6f 2122 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2123}
2124
e24a1307
AK
2125int alloc_bootmem_huge_page(struct hstate *h)
2126 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2127int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2128{
2129 struct huge_bootmem_page *m;
b2261026 2130 int nr_nodes, node;
aa888a74 2131
b2261026 2132 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2133 void *addr;
2134
eb31d559 2135 addr = memblock_alloc_try_nid_raw(
8b89a116 2136 huge_page_size(h), huge_page_size(h),
97ad1087 2137 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2138 if (addr) {
2139 /*
2140 * Use the beginning of the huge page to store the
2141 * huge_bootmem_page struct (until gather_bootmem
2142 * puts them into the mem_map).
2143 */
2144 m = addr;
91f47662 2145 goto found;
aa888a74 2146 }
aa888a74
AK
2147 }
2148 return 0;
2149
2150found:
df994ead 2151 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2152 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2153 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2154 list_add(&m->list, &huge_boot_pages);
2155 m->hstate = h;
2156 return 1;
2157}
2158
d00181b9
KS
2159static void __init prep_compound_huge_page(struct page *page,
2160 unsigned int order)
18229df5
AW
2161{
2162 if (unlikely(order > (MAX_ORDER - 1)))
2163 prep_compound_gigantic_page(page, order);
2164 else
2165 prep_compound_page(page, order);
2166}
2167
aa888a74
AK
2168/* Put bootmem huge pages into the standard lists after mem_map is up */
2169static void __init gather_bootmem_prealloc(void)
2170{
2171 struct huge_bootmem_page *m;
2172
2173 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2174 struct page *page = virt_to_page(m);
aa888a74 2175 struct hstate *h = m->hstate;
ee8f248d 2176
aa888a74 2177 WARN_ON(page_count(page) != 1);
18229df5 2178 prep_compound_huge_page(page, h->order);
ef5a22be 2179 WARN_ON(PageReserved(page));
aa888a74 2180 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2181 put_page(page); /* free it into the hugepage allocator */
2182
b0320c7b
RA
2183 /*
2184 * If we had gigantic hugepages allocated at boot time, we need
2185 * to restore the 'stolen' pages to totalram_pages in order to
2186 * fix confusing memory reports from free(1) and another
2187 * side-effects, like CommitLimit going negative.
2188 */
bae7f4ae 2189 if (hstate_is_gigantic(h))
3dcc0571 2190 adjust_managed_page_count(page, 1 << h->order);
520495fe 2191 cond_resched();
aa888a74
AK
2192 }
2193}
2194
8faa8b07 2195static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2196{
2197 unsigned long i;
a5516438 2198
e5ff2159 2199 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2200 if (hstate_is_gigantic(h)) {
aa888a74
AK
2201 if (!alloc_bootmem_huge_page(h))
2202 break;
0c397dae 2203 } else if (!alloc_pool_huge_page(h,
8cebfcd0 2204 &node_states[N_MEMORY]))
1da177e4 2205 break;
69ed779a 2206 cond_resched();
1da177e4 2207 }
d715cf80
LH
2208 if (i < h->max_huge_pages) {
2209 char buf[32];
2210
c6247f72 2211 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2212 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2213 h->max_huge_pages, buf, i);
2214 h->max_huge_pages = i;
2215 }
e5ff2159
AK
2216}
2217
2218static void __init hugetlb_init_hstates(void)
2219{
2220 struct hstate *h;
2221
2222 for_each_hstate(h) {
641844f5
NH
2223 if (minimum_order > huge_page_order(h))
2224 minimum_order = huge_page_order(h);
2225
8faa8b07 2226 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2227 if (!hstate_is_gigantic(h))
8faa8b07 2228 hugetlb_hstate_alloc_pages(h);
e5ff2159 2229 }
641844f5 2230 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2231}
2232
2233static void __init report_hugepages(void)
2234{
2235 struct hstate *h;
2236
2237 for_each_hstate(h) {
4abd32db 2238 char buf[32];
c6247f72
MW
2239
2240 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2241 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2242 buf, h->free_huge_pages);
e5ff2159
AK
2243 }
2244}
2245
1da177e4 2246#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2247static void try_to_free_low(struct hstate *h, unsigned long count,
2248 nodemask_t *nodes_allowed)
1da177e4 2249{
4415cc8d
CL
2250 int i;
2251
bae7f4ae 2252 if (hstate_is_gigantic(h))
aa888a74
AK
2253 return;
2254
6ae11b27 2255 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2256 struct page *page, *next;
a5516438
AK
2257 struct list_head *freel = &h->hugepage_freelists[i];
2258 list_for_each_entry_safe(page, next, freel, lru) {
2259 if (count >= h->nr_huge_pages)
6b0c880d 2260 return;
1da177e4
LT
2261 if (PageHighMem(page))
2262 continue;
2263 list_del(&page->lru);
e5ff2159 2264 update_and_free_page(h, page);
a5516438
AK
2265 h->free_huge_pages--;
2266 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2267 }
2268 }
2269}
2270#else
6ae11b27
LS
2271static inline void try_to_free_low(struct hstate *h, unsigned long count,
2272 nodemask_t *nodes_allowed)
1da177e4
LT
2273{
2274}
2275#endif
2276
20a0307c
WF
2277/*
2278 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2279 * balanced by operating on them in a round-robin fashion.
2280 * Returns 1 if an adjustment was made.
2281 */
6ae11b27
LS
2282static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2283 int delta)
20a0307c 2284{
b2261026 2285 int nr_nodes, node;
20a0307c
WF
2286
2287 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2288
b2261026
JK
2289 if (delta < 0) {
2290 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2291 if (h->surplus_huge_pages_node[node])
2292 goto found;
e8c5c824 2293 }
b2261026
JK
2294 } else {
2295 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2296 if (h->surplus_huge_pages_node[node] <
2297 h->nr_huge_pages_node[node])
2298 goto found;
e8c5c824 2299 }
b2261026
JK
2300 }
2301 return 0;
20a0307c 2302
b2261026
JK
2303found:
2304 h->surplus_huge_pages += delta;
2305 h->surplus_huge_pages_node[node] += delta;
2306 return 1;
20a0307c
WF
2307}
2308
a5516438 2309#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2310static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2311 nodemask_t *nodes_allowed)
1da177e4 2312{
7893d1d5 2313 unsigned long min_count, ret;
1da177e4 2314
4eb0716e
AG
2315 spin_lock(&hugetlb_lock);
2316
fd875dca
MK
2317 /*
2318 * Check for a node specific request.
2319 * Changing node specific huge page count may require a corresponding
2320 * change to the global count. In any case, the passed node mask
2321 * (nodes_allowed) will restrict alloc/free to the specified node.
2322 */
2323 if (nid != NUMA_NO_NODE) {
2324 unsigned long old_count = count;
2325
2326 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2327 /*
2328 * User may have specified a large count value which caused the
2329 * above calculation to overflow. In this case, they wanted
2330 * to allocate as many huge pages as possible. Set count to
2331 * largest possible value to align with their intention.
2332 */
2333 if (count < old_count)
2334 count = ULONG_MAX;
2335 }
2336
4eb0716e
AG
2337 /*
2338 * Gigantic pages runtime allocation depend on the capability for large
2339 * page range allocation.
2340 * If the system does not provide this feature, return an error when
2341 * the user tries to allocate gigantic pages but let the user free the
2342 * boottime allocated gigantic pages.
2343 */
2344 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2345 if (count > persistent_huge_pages(h)) {
2346 spin_unlock(&hugetlb_lock);
2347 return -EINVAL;
2348 }
2349 /* Fall through to decrease pool */
2350 }
aa888a74 2351
7893d1d5
AL
2352 /*
2353 * Increase the pool size
2354 * First take pages out of surplus state. Then make up the
2355 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2356 *
0c397dae 2357 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2358 * to convert a surplus huge page to a normal huge page. That is
2359 * not critical, though, it just means the overall size of the
2360 * pool might be one hugepage larger than it needs to be, but
2361 * within all the constraints specified by the sysctls.
7893d1d5 2362 */
a5516438 2363 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2364 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2365 break;
2366 }
2367
a5516438 2368 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2369 /*
2370 * If this allocation races such that we no longer need the
2371 * page, free_huge_page will handle it by freeing the page
2372 * and reducing the surplus.
2373 */
2374 spin_unlock(&hugetlb_lock);
649920c6
JH
2375
2376 /* yield cpu to avoid soft lockup */
2377 cond_resched();
2378
0c397dae 2379 ret = alloc_pool_huge_page(h, nodes_allowed);
7893d1d5
AL
2380 spin_lock(&hugetlb_lock);
2381 if (!ret)
2382 goto out;
2383
536240f2
MG
2384 /* Bail for signals. Probably ctrl-c from user */
2385 if (signal_pending(current))
2386 goto out;
7893d1d5 2387 }
7893d1d5
AL
2388
2389 /*
2390 * Decrease the pool size
2391 * First return free pages to the buddy allocator (being careful
2392 * to keep enough around to satisfy reservations). Then place
2393 * pages into surplus state as needed so the pool will shrink
2394 * to the desired size as pages become free.
d1c3fb1f
NA
2395 *
2396 * By placing pages into the surplus state independent of the
2397 * overcommit value, we are allowing the surplus pool size to
2398 * exceed overcommit. There are few sane options here. Since
0c397dae 2399 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2400 * though, we'll note that we're not allowed to exceed surplus
2401 * and won't grow the pool anywhere else. Not until one of the
2402 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2403 */
a5516438 2404 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2405 min_count = max(count, min_count);
6ae11b27 2406 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2407 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2408 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2409 break;
55f67141 2410 cond_resched_lock(&hugetlb_lock);
1da177e4 2411 }
a5516438 2412 while (count < persistent_huge_pages(h)) {
6ae11b27 2413 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2414 break;
2415 }
2416out:
4eb0716e 2417 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2418 spin_unlock(&hugetlb_lock);
4eb0716e
AG
2419
2420 return 0;
1da177e4
LT
2421}
2422
a3437870
NA
2423#define HSTATE_ATTR_RO(_name) \
2424 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2425
2426#define HSTATE_ATTR(_name) \
2427 static struct kobj_attribute _name##_attr = \
2428 __ATTR(_name, 0644, _name##_show, _name##_store)
2429
2430static struct kobject *hugepages_kobj;
2431static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2432
9a305230
LS
2433static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2434
2435static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2436{
2437 int i;
9a305230 2438
a3437870 2439 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2440 if (hstate_kobjs[i] == kobj) {
2441 if (nidp)
2442 *nidp = NUMA_NO_NODE;
a3437870 2443 return &hstates[i];
9a305230
LS
2444 }
2445
2446 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2447}
2448
06808b08 2449static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2450 struct kobj_attribute *attr, char *buf)
2451{
9a305230
LS
2452 struct hstate *h;
2453 unsigned long nr_huge_pages;
2454 int nid;
2455
2456 h = kobj_to_hstate(kobj, &nid);
2457 if (nid == NUMA_NO_NODE)
2458 nr_huge_pages = h->nr_huge_pages;
2459 else
2460 nr_huge_pages = h->nr_huge_pages_node[nid];
2461
2462 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2463}
adbe8726 2464
238d3c13
DR
2465static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2466 struct hstate *h, int nid,
2467 unsigned long count, size_t len)
a3437870
NA
2468{
2469 int err;
2d0adf7e 2470 nodemask_t nodes_allowed, *n_mask;
a3437870 2471
2d0adf7e
OS
2472 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2473 return -EINVAL;
adbe8726 2474
9a305230
LS
2475 if (nid == NUMA_NO_NODE) {
2476 /*
2477 * global hstate attribute
2478 */
2479 if (!(obey_mempolicy &&
2d0adf7e
OS
2480 init_nodemask_of_mempolicy(&nodes_allowed)))
2481 n_mask = &node_states[N_MEMORY];
2482 else
2483 n_mask = &nodes_allowed;
2484 } else {
9a305230 2485 /*
fd875dca
MK
2486 * Node specific request. count adjustment happens in
2487 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2488 */
2d0adf7e
OS
2489 init_nodemask_of_node(&nodes_allowed, nid);
2490 n_mask = &nodes_allowed;
fd875dca 2491 }
9a305230 2492
2d0adf7e 2493 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2494
4eb0716e 2495 return err ? err : len;
06808b08
LS
2496}
2497
238d3c13
DR
2498static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2499 struct kobject *kobj, const char *buf,
2500 size_t len)
2501{
2502 struct hstate *h;
2503 unsigned long count;
2504 int nid;
2505 int err;
2506
2507 err = kstrtoul(buf, 10, &count);
2508 if (err)
2509 return err;
2510
2511 h = kobj_to_hstate(kobj, &nid);
2512 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2513}
2514
06808b08
LS
2515static ssize_t nr_hugepages_show(struct kobject *kobj,
2516 struct kobj_attribute *attr, char *buf)
2517{
2518 return nr_hugepages_show_common(kobj, attr, buf);
2519}
2520
2521static ssize_t nr_hugepages_store(struct kobject *kobj,
2522 struct kobj_attribute *attr, const char *buf, size_t len)
2523{
238d3c13 2524 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2525}
2526HSTATE_ATTR(nr_hugepages);
2527
06808b08
LS
2528#ifdef CONFIG_NUMA
2529
2530/*
2531 * hstate attribute for optionally mempolicy-based constraint on persistent
2532 * huge page alloc/free.
2533 */
2534static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2535 struct kobj_attribute *attr, char *buf)
2536{
2537 return nr_hugepages_show_common(kobj, attr, buf);
2538}
2539
2540static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2541 struct kobj_attribute *attr, const char *buf, size_t len)
2542{
238d3c13 2543 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2544}
2545HSTATE_ATTR(nr_hugepages_mempolicy);
2546#endif
2547
2548
a3437870
NA
2549static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2550 struct kobj_attribute *attr, char *buf)
2551{
9a305230 2552 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2553 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2554}
adbe8726 2555
a3437870
NA
2556static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2557 struct kobj_attribute *attr, const char *buf, size_t count)
2558{
2559 int err;
2560 unsigned long input;
9a305230 2561 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2562
bae7f4ae 2563 if (hstate_is_gigantic(h))
adbe8726
EM
2564 return -EINVAL;
2565
3dbb95f7 2566 err = kstrtoul(buf, 10, &input);
a3437870 2567 if (err)
73ae31e5 2568 return err;
a3437870
NA
2569
2570 spin_lock(&hugetlb_lock);
2571 h->nr_overcommit_huge_pages = input;
2572 spin_unlock(&hugetlb_lock);
2573
2574 return count;
2575}
2576HSTATE_ATTR(nr_overcommit_hugepages);
2577
2578static ssize_t free_hugepages_show(struct kobject *kobj,
2579 struct kobj_attribute *attr, char *buf)
2580{
9a305230
LS
2581 struct hstate *h;
2582 unsigned long free_huge_pages;
2583 int nid;
2584
2585 h = kobj_to_hstate(kobj, &nid);
2586 if (nid == NUMA_NO_NODE)
2587 free_huge_pages = h->free_huge_pages;
2588 else
2589 free_huge_pages = h->free_huge_pages_node[nid];
2590
2591 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2592}
2593HSTATE_ATTR_RO(free_hugepages);
2594
2595static ssize_t resv_hugepages_show(struct kobject *kobj,
2596 struct kobj_attribute *attr, char *buf)
2597{
9a305230 2598 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2599 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2600}
2601HSTATE_ATTR_RO(resv_hugepages);
2602
2603static ssize_t surplus_hugepages_show(struct kobject *kobj,
2604 struct kobj_attribute *attr, char *buf)
2605{
9a305230
LS
2606 struct hstate *h;
2607 unsigned long surplus_huge_pages;
2608 int nid;
2609
2610 h = kobj_to_hstate(kobj, &nid);
2611 if (nid == NUMA_NO_NODE)
2612 surplus_huge_pages = h->surplus_huge_pages;
2613 else
2614 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2615
2616 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2617}
2618HSTATE_ATTR_RO(surplus_hugepages);
2619
2620static struct attribute *hstate_attrs[] = {
2621 &nr_hugepages_attr.attr,
2622 &nr_overcommit_hugepages_attr.attr,
2623 &free_hugepages_attr.attr,
2624 &resv_hugepages_attr.attr,
2625 &surplus_hugepages_attr.attr,
06808b08
LS
2626#ifdef CONFIG_NUMA
2627 &nr_hugepages_mempolicy_attr.attr,
2628#endif
a3437870
NA
2629 NULL,
2630};
2631
67e5ed96 2632static const struct attribute_group hstate_attr_group = {
a3437870
NA
2633 .attrs = hstate_attrs,
2634};
2635
094e9539
JM
2636static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2637 struct kobject **hstate_kobjs,
67e5ed96 2638 const struct attribute_group *hstate_attr_group)
a3437870
NA
2639{
2640 int retval;
972dc4de 2641 int hi = hstate_index(h);
a3437870 2642
9a305230
LS
2643 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2644 if (!hstate_kobjs[hi])
a3437870
NA
2645 return -ENOMEM;
2646
9a305230 2647 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2648 if (retval)
9a305230 2649 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2650
2651 return retval;
2652}
2653
2654static void __init hugetlb_sysfs_init(void)
2655{
2656 struct hstate *h;
2657 int err;
2658
2659 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2660 if (!hugepages_kobj)
2661 return;
2662
2663 for_each_hstate(h) {
9a305230
LS
2664 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2665 hstate_kobjs, &hstate_attr_group);
a3437870 2666 if (err)
ffb22af5 2667 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2668 }
2669}
2670
9a305230
LS
2671#ifdef CONFIG_NUMA
2672
2673/*
2674 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2675 * with node devices in node_devices[] using a parallel array. The array
2676 * index of a node device or _hstate == node id.
2677 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2678 * the base kernel, on the hugetlb module.
2679 */
2680struct node_hstate {
2681 struct kobject *hugepages_kobj;
2682 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2683};
b4e289a6 2684static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2685
2686/*
10fbcf4c 2687 * A subset of global hstate attributes for node devices
9a305230
LS
2688 */
2689static struct attribute *per_node_hstate_attrs[] = {
2690 &nr_hugepages_attr.attr,
2691 &free_hugepages_attr.attr,
2692 &surplus_hugepages_attr.attr,
2693 NULL,
2694};
2695
67e5ed96 2696static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2697 .attrs = per_node_hstate_attrs,
2698};
2699
2700/*
10fbcf4c 2701 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2702 * Returns node id via non-NULL nidp.
2703 */
2704static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2705{
2706 int nid;
2707
2708 for (nid = 0; nid < nr_node_ids; nid++) {
2709 struct node_hstate *nhs = &node_hstates[nid];
2710 int i;
2711 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2712 if (nhs->hstate_kobjs[i] == kobj) {
2713 if (nidp)
2714 *nidp = nid;
2715 return &hstates[i];
2716 }
2717 }
2718
2719 BUG();
2720 return NULL;
2721}
2722
2723/*
10fbcf4c 2724 * Unregister hstate attributes from a single node device.
9a305230
LS
2725 * No-op if no hstate attributes attached.
2726 */
3cd8b44f 2727static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2728{
2729 struct hstate *h;
10fbcf4c 2730 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2731
2732 if (!nhs->hugepages_kobj)
9b5e5d0f 2733 return; /* no hstate attributes */
9a305230 2734
972dc4de
AK
2735 for_each_hstate(h) {
2736 int idx = hstate_index(h);
2737 if (nhs->hstate_kobjs[idx]) {
2738 kobject_put(nhs->hstate_kobjs[idx]);
2739 nhs->hstate_kobjs[idx] = NULL;
9a305230 2740 }
972dc4de 2741 }
9a305230
LS
2742
2743 kobject_put(nhs->hugepages_kobj);
2744 nhs->hugepages_kobj = NULL;
2745}
2746
9a305230
LS
2747
2748/*
10fbcf4c 2749 * Register hstate attributes for a single node device.
9a305230
LS
2750 * No-op if attributes already registered.
2751 */
3cd8b44f 2752static void hugetlb_register_node(struct node *node)
9a305230
LS
2753{
2754 struct hstate *h;
10fbcf4c 2755 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2756 int err;
2757
2758 if (nhs->hugepages_kobj)
2759 return; /* already allocated */
2760
2761 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2762 &node->dev.kobj);
9a305230
LS
2763 if (!nhs->hugepages_kobj)
2764 return;
2765
2766 for_each_hstate(h) {
2767 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2768 nhs->hstate_kobjs,
2769 &per_node_hstate_attr_group);
2770 if (err) {
ffb22af5
AM
2771 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2772 h->name, node->dev.id);
9a305230
LS
2773 hugetlb_unregister_node(node);
2774 break;
2775 }
2776 }
2777}
2778
2779/*
9b5e5d0f 2780 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2781 * devices of nodes that have memory. All on-line nodes should have
2782 * registered their associated device by this time.
9a305230 2783 */
7d9ca000 2784static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2785{
2786 int nid;
2787
8cebfcd0 2788 for_each_node_state(nid, N_MEMORY) {
8732794b 2789 struct node *node = node_devices[nid];
10fbcf4c 2790 if (node->dev.id == nid)
9a305230
LS
2791 hugetlb_register_node(node);
2792 }
2793
2794 /*
10fbcf4c 2795 * Let the node device driver know we're here so it can
9a305230
LS
2796 * [un]register hstate attributes on node hotplug.
2797 */
2798 register_hugetlbfs_with_node(hugetlb_register_node,
2799 hugetlb_unregister_node);
2800}
2801#else /* !CONFIG_NUMA */
2802
2803static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2804{
2805 BUG();
2806 if (nidp)
2807 *nidp = -1;
2808 return NULL;
2809}
2810
9a305230
LS
2811static void hugetlb_register_all_nodes(void) { }
2812
2813#endif
2814
a3437870
NA
2815static int __init hugetlb_init(void)
2816{
8382d914
DB
2817 int i;
2818
457c1b27 2819 if (!hugepages_supported())
0ef89d25 2820 return 0;
a3437870 2821
e11bfbfc 2822 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2823 if (default_hstate_size != 0) {
2824 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2825 default_hstate_size, HPAGE_SIZE);
2826 }
2827
e11bfbfc
NP
2828 default_hstate_size = HPAGE_SIZE;
2829 if (!size_to_hstate(default_hstate_size))
2830 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2831 }
972dc4de 2832 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2833 if (default_hstate_max_huge_pages) {
2834 if (!default_hstate.max_huge_pages)
2835 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2836 }
a3437870
NA
2837
2838 hugetlb_init_hstates();
aa888a74 2839 gather_bootmem_prealloc();
a3437870
NA
2840 report_hugepages();
2841
2842 hugetlb_sysfs_init();
9a305230 2843 hugetlb_register_all_nodes();
7179e7bf 2844 hugetlb_cgroup_file_init();
9a305230 2845
8382d914
DB
2846#ifdef CONFIG_SMP
2847 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2848#else
2849 num_fault_mutexes = 1;
2850#endif
c672c7f2 2851 hugetlb_fault_mutex_table =
6da2ec56
KC
2852 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2853 GFP_KERNEL);
c672c7f2 2854 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2855
2856 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2857 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2858 return 0;
2859}
3e89e1c5 2860subsys_initcall(hugetlb_init);
a3437870
NA
2861
2862/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2863void __init hugetlb_bad_size(void)
2864{
2865 parsed_valid_hugepagesz = false;
2866}
2867
d00181b9 2868void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2869{
2870 struct hstate *h;
8faa8b07
AK
2871 unsigned long i;
2872
a3437870 2873 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2874 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2875 return;
2876 }
47d38344 2877 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2878 BUG_ON(order == 0);
47d38344 2879 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2880 h->order = order;
2881 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2882 h->nr_huge_pages = 0;
2883 h->free_huge_pages = 0;
2884 for (i = 0; i < MAX_NUMNODES; ++i)
2885 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2886 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2887 h->next_nid_to_alloc = first_memory_node;
2888 h->next_nid_to_free = first_memory_node;
a3437870
NA
2889 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2890 huge_page_size(h)/1024);
8faa8b07 2891
a3437870
NA
2892 parsed_hstate = h;
2893}
2894
e11bfbfc 2895static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2896{
2897 unsigned long *mhp;
8faa8b07 2898 static unsigned long *last_mhp;
a3437870 2899
9fee021d
VT
2900 if (!parsed_valid_hugepagesz) {
2901 pr_warn("hugepages = %s preceded by "
2902 "an unsupported hugepagesz, ignoring\n", s);
2903 parsed_valid_hugepagesz = true;
2904 return 1;
2905 }
a3437870 2906 /*
47d38344 2907 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2908 * so this hugepages= parameter goes to the "default hstate".
2909 */
9fee021d 2910 else if (!hugetlb_max_hstate)
a3437870
NA
2911 mhp = &default_hstate_max_huge_pages;
2912 else
2913 mhp = &parsed_hstate->max_huge_pages;
2914
8faa8b07 2915 if (mhp == last_mhp) {
598d8091 2916 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2917 return 1;
2918 }
2919
a3437870
NA
2920 if (sscanf(s, "%lu", mhp) <= 0)
2921 *mhp = 0;
2922
8faa8b07
AK
2923 /*
2924 * Global state is always initialized later in hugetlb_init.
2925 * But we need to allocate >= MAX_ORDER hstates here early to still
2926 * use the bootmem allocator.
2927 */
47d38344 2928 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2929 hugetlb_hstate_alloc_pages(parsed_hstate);
2930
2931 last_mhp = mhp;
2932
a3437870
NA
2933 return 1;
2934}
e11bfbfc
NP
2935__setup("hugepages=", hugetlb_nrpages_setup);
2936
2937static int __init hugetlb_default_setup(char *s)
2938{
2939 default_hstate_size = memparse(s, &s);
2940 return 1;
2941}
2942__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2943
8a213460
NA
2944static unsigned int cpuset_mems_nr(unsigned int *array)
2945{
2946 int node;
2947 unsigned int nr = 0;
2948
2949 for_each_node_mask(node, cpuset_current_mems_allowed)
2950 nr += array[node];
2951
2952 return nr;
2953}
2954
2955#ifdef CONFIG_SYSCTL
06808b08
LS
2956static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2957 struct ctl_table *table, int write,
2958 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2959{
e5ff2159 2960 struct hstate *h = &default_hstate;
238d3c13 2961 unsigned long tmp = h->max_huge_pages;
08d4a246 2962 int ret;
e5ff2159 2963
457c1b27 2964 if (!hugepages_supported())
86613628 2965 return -EOPNOTSUPP;
457c1b27 2966
e5ff2159
AK
2967 table->data = &tmp;
2968 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2969 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2970 if (ret)
2971 goto out;
e5ff2159 2972
238d3c13
DR
2973 if (write)
2974 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2975 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2976out:
2977 return ret;
1da177e4 2978}
396faf03 2979
06808b08
LS
2980int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2981 void __user *buffer, size_t *length, loff_t *ppos)
2982{
2983
2984 return hugetlb_sysctl_handler_common(false, table, write,
2985 buffer, length, ppos);
2986}
2987
2988#ifdef CONFIG_NUMA
2989int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2990 void __user *buffer, size_t *length, loff_t *ppos)
2991{
2992 return hugetlb_sysctl_handler_common(true, table, write,
2993 buffer, length, ppos);
2994}
2995#endif /* CONFIG_NUMA */
2996
a3d0c6aa 2997int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2998 void __user *buffer,
a3d0c6aa
NA
2999 size_t *length, loff_t *ppos)
3000{
a5516438 3001 struct hstate *h = &default_hstate;
e5ff2159 3002 unsigned long tmp;
08d4a246 3003 int ret;
e5ff2159 3004
457c1b27 3005 if (!hugepages_supported())
86613628 3006 return -EOPNOTSUPP;
457c1b27 3007
c033a93c 3008 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3009
bae7f4ae 3010 if (write && hstate_is_gigantic(h))
adbe8726
EM
3011 return -EINVAL;
3012
e5ff2159
AK
3013 table->data = &tmp;
3014 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3015 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3016 if (ret)
3017 goto out;
e5ff2159
AK
3018
3019 if (write) {
3020 spin_lock(&hugetlb_lock);
3021 h->nr_overcommit_huge_pages = tmp;
3022 spin_unlock(&hugetlb_lock);
3023 }
08d4a246
MH
3024out:
3025 return ret;
a3d0c6aa
NA
3026}
3027
1da177e4
LT
3028#endif /* CONFIG_SYSCTL */
3029
e1759c21 3030void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3031{
fcb2b0c5
RG
3032 struct hstate *h;
3033 unsigned long total = 0;
3034
457c1b27
NA
3035 if (!hugepages_supported())
3036 return;
fcb2b0c5
RG
3037
3038 for_each_hstate(h) {
3039 unsigned long count = h->nr_huge_pages;
3040
3041 total += (PAGE_SIZE << huge_page_order(h)) * count;
3042
3043 if (h == &default_hstate)
3044 seq_printf(m,
3045 "HugePages_Total: %5lu\n"
3046 "HugePages_Free: %5lu\n"
3047 "HugePages_Rsvd: %5lu\n"
3048 "HugePages_Surp: %5lu\n"
3049 "Hugepagesize: %8lu kB\n",
3050 count,
3051 h->free_huge_pages,
3052 h->resv_huge_pages,
3053 h->surplus_huge_pages,
3054 (PAGE_SIZE << huge_page_order(h)) / 1024);
3055 }
3056
3057 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3058}
3059
3060int hugetlb_report_node_meminfo(int nid, char *buf)
3061{
a5516438 3062 struct hstate *h = &default_hstate;
457c1b27
NA
3063 if (!hugepages_supported())
3064 return 0;
1da177e4
LT
3065 return sprintf(buf,
3066 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3067 "Node %d HugePages_Free: %5u\n"
3068 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3069 nid, h->nr_huge_pages_node[nid],
3070 nid, h->free_huge_pages_node[nid],
3071 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3072}
3073
949f7ec5
DR
3074void hugetlb_show_meminfo(void)
3075{
3076 struct hstate *h;
3077 int nid;
3078
457c1b27
NA
3079 if (!hugepages_supported())
3080 return;
3081
949f7ec5
DR
3082 for_each_node_state(nid, N_MEMORY)
3083 for_each_hstate(h)
3084 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3085 nid,
3086 h->nr_huge_pages_node[nid],
3087 h->free_huge_pages_node[nid],
3088 h->surplus_huge_pages_node[nid],
3089 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3090}
3091
5d317b2b
NH
3092void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3093{
3094 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3095 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3096}
3097
1da177e4
LT
3098/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3099unsigned long hugetlb_total_pages(void)
3100{
d0028588
WL
3101 struct hstate *h;
3102 unsigned long nr_total_pages = 0;
3103
3104 for_each_hstate(h)
3105 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3106 return nr_total_pages;
1da177e4 3107}
1da177e4 3108
a5516438 3109static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3110{
3111 int ret = -ENOMEM;
3112
3113 spin_lock(&hugetlb_lock);
3114 /*
3115 * When cpuset is configured, it breaks the strict hugetlb page
3116 * reservation as the accounting is done on a global variable. Such
3117 * reservation is completely rubbish in the presence of cpuset because
3118 * the reservation is not checked against page availability for the
3119 * current cpuset. Application can still potentially OOM'ed by kernel
3120 * with lack of free htlb page in cpuset that the task is in.
3121 * Attempt to enforce strict accounting with cpuset is almost
3122 * impossible (or too ugly) because cpuset is too fluid that
3123 * task or memory node can be dynamically moved between cpusets.
3124 *
3125 * The change of semantics for shared hugetlb mapping with cpuset is
3126 * undesirable. However, in order to preserve some of the semantics,
3127 * we fall back to check against current free page availability as
3128 * a best attempt and hopefully to minimize the impact of changing
3129 * semantics that cpuset has.
3130 */
3131 if (delta > 0) {
a5516438 3132 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3133 goto out;
3134
a5516438
AK
3135 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3136 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3137 goto out;
3138 }
3139 }
3140
3141 ret = 0;
3142 if (delta < 0)
a5516438 3143 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3144
3145out:
3146 spin_unlock(&hugetlb_lock);
3147 return ret;
3148}
3149
84afd99b
AW
3150static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3151{
f522c3ac 3152 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3153
3154 /*
3155 * This new VMA should share its siblings reservation map if present.
3156 * The VMA will only ever have a valid reservation map pointer where
3157 * it is being copied for another still existing VMA. As that VMA
25985edc 3158 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3159 * after this open call completes. It is therefore safe to take a
3160 * new reference here without additional locking.
3161 */
4e35f483 3162 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3163 kref_get(&resv->refs);
84afd99b
AW
3164}
3165
a1e78772
MG
3166static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3167{
a5516438 3168 struct hstate *h = hstate_vma(vma);
f522c3ac 3169 struct resv_map *resv = vma_resv_map(vma);
90481622 3170 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3171 unsigned long reserve, start, end;
1c5ecae3 3172 long gbl_reserve;
84afd99b 3173
4e35f483
JK
3174 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3175 return;
84afd99b 3176
4e35f483
JK
3177 start = vma_hugecache_offset(h, vma, vma->vm_start);
3178 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3179
4e35f483 3180 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3181
4e35f483
JK
3182 kref_put(&resv->refs, resv_map_release);
3183
3184 if (reserve) {
1c5ecae3
MK
3185 /*
3186 * Decrement reserve counts. The global reserve count may be
3187 * adjusted if the subpool has a minimum size.
3188 */
3189 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3190 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3191 }
a1e78772
MG
3192}
3193
31383c68
DW
3194static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3195{
3196 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3197 return -EINVAL;
3198 return 0;
3199}
3200
05ea8860
DW
3201static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3202{
3203 struct hstate *hstate = hstate_vma(vma);
3204
3205 return 1UL << huge_page_shift(hstate);
3206}
3207
1da177e4
LT
3208/*
3209 * We cannot handle pagefaults against hugetlb pages at all. They cause
3210 * handle_mm_fault() to try to instantiate regular-sized pages in the
3211 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3212 * this far.
3213 */
b3ec9f33 3214static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3215{
3216 BUG();
d0217ac0 3217 return 0;
1da177e4
LT
3218}
3219
eec3636a
JC
3220/*
3221 * When a new function is introduced to vm_operations_struct and added
3222 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3223 * This is because under System V memory model, mappings created via
3224 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3225 * their original vm_ops are overwritten with shm_vm_ops.
3226 */
f0f37e2f 3227const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3228 .fault = hugetlb_vm_op_fault,
84afd99b 3229 .open = hugetlb_vm_op_open,
a1e78772 3230 .close = hugetlb_vm_op_close,
31383c68 3231 .split = hugetlb_vm_op_split,
05ea8860 3232 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3233};
3234
1e8f889b
DG
3235static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3236 int writable)
63551ae0
DG
3237{
3238 pte_t entry;
3239
1e8f889b 3240 if (writable) {
106c992a
GS
3241 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3242 vma->vm_page_prot)));
63551ae0 3243 } else {
106c992a
GS
3244 entry = huge_pte_wrprotect(mk_huge_pte(page,
3245 vma->vm_page_prot));
63551ae0
DG
3246 }
3247 entry = pte_mkyoung(entry);
3248 entry = pte_mkhuge(entry);
d9ed9faa 3249 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3250
3251 return entry;
3252}
3253
1e8f889b
DG
3254static void set_huge_ptep_writable(struct vm_area_struct *vma,
3255 unsigned long address, pte_t *ptep)
3256{
3257 pte_t entry;
3258
106c992a 3259 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3260 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3261 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3262}
3263
d5ed7444 3264bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3265{
3266 swp_entry_t swp;
3267
3268 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3269 return false;
4a705fef
NH
3270 swp = pte_to_swp_entry(pte);
3271 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3272 return true;
4a705fef 3273 else
d5ed7444 3274 return false;
4a705fef
NH
3275}
3276
3277static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3278{
3279 swp_entry_t swp;
3280
3281 if (huge_pte_none(pte) || pte_present(pte))
3282 return 0;
3283 swp = pte_to_swp_entry(pte);
3284 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3285 return 1;
3286 else
3287 return 0;
3288}
1e8f889b 3289
63551ae0
DG
3290int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3291 struct vm_area_struct *vma)
3292{
5e41540c 3293 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3294 struct page *ptepage;
1c59827d 3295 unsigned long addr;
1e8f889b 3296 int cow;
a5516438
AK
3297 struct hstate *h = hstate_vma(vma);
3298 unsigned long sz = huge_page_size(h);
ac46d4f3 3299 struct mmu_notifier_range range;
e8569dd2 3300 int ret = 0;
1e8f889b
DG
3301
3302 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3303
ac46d4f3 3304 if (cow) {
7269f999 3305 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3306 vma->vm_start,
ac46d4f3
JG
3307 vma->vm_end);
3308 mmu_notifier_invalidate_range_start(&range);
3309 }
e8569dd2 3310
a5516438 3311 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3312 spinlock_t *src_ptl, *dst_ptl;
7868a208 3313 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3314 if (!src_pte)
3315 continue;
a5516438 3316 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3317 if (!dst_pte) {
3318 ret = -ENOMEM;
3319 break;
3320 }
c5c99429 3321
5e41540c
MK
3322 /*
3323 * If the pagetables are shared don't copy or take references.
3324 * dst_pte == src_pte is the common case of src/dest sharing.
3325 *
3326 * However, src could have 'unshared' and dst shares with
3327 * another vma. If dst_pte !none, this implies sharing.
3328 * Check here before taking page table lock, and once again
3329 * after taking the lock below.
3330 */
3331 dst_entry = huge_ptep_get(dst_pte);
3332 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3333 continue;
3334
cb900f41
KS
3335 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3336 src_ptl = huge_pte_lockptr(h, src, src_pte);
3337 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3338 entry = huge_ptep_get(src_pte);
5e41540c
MK
3339 dst_entry = huge_ptep_get(dst_pte);
3340 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3341 /*
3342 * Skip if src entry none. Also, skip in the
3343 * unlikely case dst entry !none as this implies
3344 * sharing with another vma.
3345 */
4a705fef
NH
3346 ;
3347 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3348 is_hugetlb_entry_hwpoisoned(entry))) {
3349 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3350
3351 if (is_write_migration_entry(swp_entry) && cow) {
3352 /*
3353 * COW mappings require pages in both
3354 * parent and child to be set to read.
3355 */
3356 make_migration_entry_read(&swp_entry);
3357 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3358 set_huge_swap_pte_at(src, addr, src_pte,
3359 entry, sz);
4a705fef 3360 }
e5251fd4 3361 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3362 } else {
34ee645e 3363 if (cow) {
0f10851e
JG
3364 /*
3365 * No need to notify as we are downgrading page
3366 * table protection not changing it to point
3367 * to a new page.
3368 *
ad56b738 3369 * See Documentation/vm/mmu_notifier.rst
0f10851e 3370 */
7f2e9525 3371 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3372 }
0253d634 3373 entry = huge_ptep_get(src_pte);
1c59827d
HD
3374 ptepage = pte_page(entry);
3375 get_page(ptepage);
53f9263b 3376 page_dup_rmap(ptepage, true);
1c59827d 3377 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3378 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3379 }
cb900f41
KS
3380 spin_unlock(src_ptl);
3381 spin_unlock(dst_ptl);
63551ae0 3382 }
63551ae0 3383
e8569dd2 3384 if (cow)
ac46d4f3 3385 mmu_notifier_invalidate_range_end(&range);
e8569dd2
AS
3386
3387 return ret;
63551ae0
DG
3388}
3389
24669e58
AK
3390void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3391 unsigned long start, unsigned long end,
3392 struct page *ref_page)
63551ae0
DG
3393{
3394 struct mm_struct *mm = vma->vm_mm;
3395 unsigned long address;
c7546f8f 3396 pte_t *ptep;
63551ae0 3397 pte_t pte;
cb900f41 3398 spinlock_t *ptl;
63551ae0 3399 struct page *page;
a5516438
AK
3400 struct hstate *h = hstate_vma(vma);
3401 unsigned long sz = huge_page_size(h);
ac46d4f3 3402 struct mmu_notifier_range range;
a5516438 3403
63551ae0 3404 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3405 BUG_ON(start & ~huge_page_mask(h));
3406 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3407
07e32661
AK
3408 /*
3409 * This is a hugetlb vma, all the pte entries should point
3410 * to huge page.
3411 */
ed6a7935 3412 tlb_change_page_size(tlb, sz);
24669e58 3413 tlb_start_vma(tlb, vma);
dff11abe
MK
3414
3415 /*
3416 * If sharing possible, alert mmu notifiers of worst case.
3417 */
6f4f13e8
JG
3418 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3419 end);
ac46d4f3
JG
3420 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3421 mmu_notifier_invalidate_range_start(&range);
569f48b8 3422 address = start;
569f48b8 3423 for (; address < end; address += sz) {
7868a208 3424 ptep = huge_pte_offset(mm, address, sz);
4c887265 3425 if (!ptep)
c7546f8f
DG
3426 continue;
3427
cb900f41 3428 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3429 if (huge_pmd_unshare(mm, &address, ptep)) {
3430 spin_unlock(ptl);
dff11abe
MK
3431 /*
3432 * We just unmapped a page of PMDs by clearing a PUD.
3433 * The caller's TLB flush range should cover this area.
3434 */
31d49da5
AK
3435 continue;
3436 }
39dde65c 3437
6629326b 3438 pte = huge_ptep_get(ptep);
31d49da5
AK
3439 if (huge_pte_none(pte)) {
3440 spin_unlock(ptl);
3441 continue;
3442 }
6629326b
HD
3443
3444 /*
9fbc1f63
NH
3445 * Migrating hugepage or HWPoisoned hugepage is already
3446 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3447 */
9fbc1f63 3448 if (unlikely(!pte_present(pte))) {
9386fac3 3449 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3450 spin_unlock(ptl);
3451 continue;
8c4894c6 3452 }
6629326b
HD
3453
3454 page = pte_page(pte);
04f2cbe3
MG
3455 /*
3456 * If a reference page is supplied, it is because a specific
3457 * page is being unmapped, not a range. Ensure the page we
3458 * are about to unmap is the actual page of interest.
3459 */
3460 if (ref_page) {
31d49da5
AK
3461 if (page != ref_page) {
3462 spin_unlock(ptl);
3463 continue;
3464 }
04f2cbe3
MG
3465 /*
3466 * Mark the VMA as having unmapped its page so that
3467 * future faults in this VMA will fail rather than
3468 * looking like data was lost
3469 */
3470 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3471 }
3472
c7546f8f 3473 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3474 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3475 if (huge_pte_dirty(pte))
6649a386 3476 set_page_dirty(page);
9e81130b 3477
5d317b2b 3478 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3479 page_remove_rmap(page, true);
31d49da5 3480
cb900f41 3481 spin_unlock(ptl);
e77b0852 3482 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3483 /*
3484 * Bail out after unmapping reference page if supplied
3485 */
3486 if (ref_page)
3487 break;
fe1668ae 3488 }
ac46d4f3 3489 mmu_notifier_invalidate_range_end(&range);
24669e58 3490 tlb_end_vma(tlb, vma);
1da177e4 3491}
63551ae0 3492
d833352a
MG
3493void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3494 struct vm_area_struct *vma, unsigned long start,
3495 unsigned long end, struct page *ref_page)
3496{
3497 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3498
3499 /*
3500 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3501 * test will fail on a vma being torn down, and not grab a page table
3502 * on its way out. We're lucky that the flag has such an appropriate
3503 * name, and can in fact be safely cleared here. We could clear it
3504 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3505 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3506 * because in the context this is called, the VMA is about to be
c8c06efa 3507 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3508 */
3509 vma->vm_flags &= ~VM_MAYSHARE;
3510}
3511
502717f4 3512void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3513 unsigned long end, struct page *ref_page)
502717f4 3514{
24669e58
AK
3515 struct mm_struct *mm;
3516 struct mmu_gather tlb;
dff11abe
MK
3517 unsigned long tlb_start = start;
3518 unsigned long tlb_end = end;
3519
3520 /*
3521 * If shared PMDs were possibly used within this vma range, adjust
3522 * start/end for worst case tlb flushing.
3523 * Note that we can not be sure if PMDs are shared until we try to
3524 * unmap pages. However, we want to make sure TLB flushing covers
3525 * the largest possible range.
3526 */
3527 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
3528
3529 mm = vma->vm_mm;
3530
dff11abe 3531 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 3532 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 3533 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
KC
3534}
3535
04f2cbe3
MG
3536/*
3537 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3538 * mappping it owns the reserve page for. The intention is to unmap the page
3539 * from other VMAs and let the children be SIGKILLed if they are faulting the
3540 * same region.
3541 */
2f4612af
DB
3542static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3543 struct page *page, unsigned long address)
04f2cbe3 3544{
7526674d 3545 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3546 struct vm_area_struct *iter_vma;
3547 struct address_space *mapping;
04f2cbe3
MG
3548 pgoff_t pgoff;
3549
3550 /*
3551 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3552 * from page cache lookup which is in HPAGE_SIZE units.
3553 */
7526674d 3554 address = address & huge_page_mask(h);
36e4f20a
MH
3555 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3556 vma->vm_pgoff;
93c76a3d 3557 mapping = vma->vm_file->f_mapping;
04f2cbe3 3558
4eb2b1dc
MG
3559 /*
3560 * Take the mapping lock for the duration of the table walk. As
3561 * this mapping should be shared between all the VMAs,
3562 * __unmap_hugepage_range() is called as the lock is already held
3563 */
83cde9e8 3564 i_mmap_lock_write(mapping);
6b2dbba8 3565 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3566 /* Do not unmap the current VMA */
3567 if (iter_vma == vma)
3568 continue;
3569
2f84a899
MG
3570 /*
3571 * Shared VMAs have their own reserves and do not affect
3572 * MAP_PRIVATE accounting but it is possible that a shared
3573 * VMA is using the same page so check and skip such VMAs.
3574 */
3575 if (iter_vma->vm_flags & VM_MAYSHARE)
3576 continue;
3577
04f2cbe3
MG
3578 /*
3579 * Unmap the page from other VMAs without their own reserves.
3580 * They get marked to be SIGKILLed if they fault in these
3581 * areas. This is because a future no-page fault on this VMA
3582 * could insert a zeroed page instead of the data existing
3583 * from the time of fork. This would look like data corruption
3584 */
3585 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3586 unmap_hugepage_range(iter_vma, address,
3587 address + huge_page_size(h), page);
04f2cbe3 3588 }
83cde9e8 3589 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3590}
3591
0fe6e20b
NH
3592/*
3593 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3594 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3595 * cannot race with other handlers or page migration.
3596 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3597 */
2b740303 3598static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3599 unsigned long address, pte_t *ptep,
3999f52e 3600 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3601{
3999f52e 3602 pte_t pte;
a5516438 3603 struct hstate *h = hstate_vma(vma);
1e8f889b 3604 struct page *old_page, *new_page;
2b740303
SJ
3605 int outside_reserve = 0;
3606 vm_fault_t ret = 0;
974e6d66 3607 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 3608 struct mmu_notifier_range range;
1e8f889b 3609
3999f52e 3610 pte = huge_ptep_get(ptep);
1e8f889b
DG
3611 old_page = pte_page(pte);
3612
04f2cbe3 3613retry_avoidcopy:
1e8f889b
DG
3614 /* If no-one else is actually using this page, avoid the copy
3615 * and just make the page writable */
37a2140d 3616 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3617 page_move_anon_rmap(old_page, vma);
5b7a1d40 3618 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3619 return 0;
1e8f889b
DG
3620 }
3621
04f2cbe3
MG
3622 /*
3623 * If the process that created a MAP_PRIVATE mapping is about to
3624 * perform a COW due to a shared page count, attempt to satisfy
3625 * the allocation without using the existing reserves. The pagecache
3626 * page is used to determine if the reserve at this address was
3627 * consumed or not. If reserves were used, a partial faulted mapping
3628 * at the time of fork() could consume its reserves on COW instead
3629 * of the full address range.
3630 */
5944d011 3631 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3632 old_page != pagecache_page)
3633 outside_reserve = 1;
3634
09cbfeaf 3635 get_page(old_page);
b76c8cfb 3636
ad4404a2
DB
3637 /*
3638 * Drop page table lock as buddy allocator may be called. It will
3639 * be acquired again before returning to the caller, as expected.
3640 */
cb900f41 3641 spin_unlock(ptl);
5b7a1d40 3642 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 3643
2fc39cec 3644 if (IS_ERR(new_page)) {
04f2cbe3
MG
3645 /*
3646 * If a process owning a MAP_PRIVATE mapping fails to COW,
3647 * it is due to references held by a child and an insufficient
3648 * huge page pool. To guarantee the original mappers
3649 * reliability, unmap the page from child processes. The child
3650 * may get SIGKILLed if it later faults.
3651 */
3652 if (outside_reserve) {
09cbfeaf 3653 put_page(old_page);
04f2cbe3 3654 BUG_ON(huge_pte_none(pte));
5b7a1d40 3655 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
3656 BUG_ON(huge_pte_none(pte));
3657 spin_lock(ptl);
5b7a1d40 3658 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
3659 if (likely(ptep &&
3660 pte_same(huge_ptep_get(ptep), pte)))
3661 goto retry_avoidcopy;
3662 /*
3663 * race occurs while re-acquiring page table
3664 * lock, and our job is done.
3665 */
3666 return 0;
04f2cbe3
MG
3667 }
3668
2b740303 3669 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 3670 goto out_release_old;
1e8f889b
DG
3671 }
3672
0fe6e20b
NH
3673 /*
3674 * When the original hugepage is shared one, it does not have
3675 * anon_vma prepared.
3676 */
44e2aa93 3677 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3678 ret = VM_FAULT_OOM;
3679 goto out_release_all;
44e2aa93 3680 }
0fe6e20b 3681
974e6d66 3682 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 3683 pages_per_huge_page(h));
0ed361de 3684 __SetPageUptodate(new_page);
1e8f889b 3685
7269f999 3686 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 3687 haddr + huge_page_size(h));
ac46d4f3 3688 mmu_notifier_invalidate_range_start(&range);
ad4404a2 3689
b76c8cfb 3690 /*
cb900f41 3691 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3692 * before the page tables are altered
3693 */
cb900f41 3694 spin_lock(ptl);
5b7a1d40 3695 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 3696 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3697 ClearPagePrivate(new_page);
3698
1e8f889b 3699 /* Break COW */
5b7a1d40 3700 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 3701 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 3702 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 3703 make_huge_pte(vma, new_page, 1));
d281ee61 3704 page_remove_rmap(old_page, true);
5b7a1d40 3705 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 3706 set_page_huge_active(new_page);
1e8f889b
DG
3707 /* Make the old page be freed below */
3708 new_page = old_page;
3709 }
cb900f41 3710 spin_unlock(ptl);
ac46d4f3 3711 mmu_notifier_invalidate_range_end(&range);
ad4404a2 3712out_release_all:
5b7a1d40 3713 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 3714 put_page(new_page);
ad4404a2 3715out_release_old:
09cbfeaf 3716 put_page(old_page);
8312034f 3717
ad4404a2
DB
3718 spin_lock(ptl); /* Caller expects lock to be held */
3719 return ret;
1e8f889b
DG
3720}
3721
04f2cbe3 3722/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3723static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3724 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3725{
3726 struct address_space *mapping;
e7c4b0bf 3727 pgoff_t idx;
04f2cbe3
MG
3728
3729 mapping = vma->vm_file->f_mapping;
a5516438 3730 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3731
3732 return find_lock_page(mapping, idx);
3733}
3734
3ae77f43
HD
3735/*
3736 * Return whether there is a pagecache page to back given address within VMA.
3737 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3738 */
3739static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3740 struct vm_area_struct *vma, unsigned long address)
3741{
3742 struct address_space *mapping;
3743 pgoff_t idx;
3744 struct page *page;
3745
3746 mapping = vma->vm_file->f_mapping;
3747 idx = vma_hugecache_offset(h, vma, address);
3748
3749 page = find_get_page(mapping, idx);
3750 if (page)
3751 put_page(page);
3752 return page != NULL;
3753}
3754
ab76ad54
MK
3755int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3756 pgoff_t idx)
3757{
3758 struct inode *inode = mapping->host;
3759 struct hstate *h = hstate_inode(inode);
3760 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3761
3762 if (err)
3763 return err;
3764 ClearPagePrivate(page);
3765
22146c3c
MK
3766 /*
3767 * set page dirty so that it will not be removed from cache/file
3768 * by non-hugetlbfs specific code paths.
3769 */
3770 set_page_dirty(page);
3771
ab76ad54
MK
3772 spin_lock(&inode->i_lock);
3773 inode->i_blocks += blocks_per_huge_page(h);
3774 spin_unlock(&inode->i_lock);
3775 return 0;
3776}
3777
2b740303
SJ
3778static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3779 struct vm_area_struct *vma,
3780 struct address_space *mapping, pgoff_t idx,
3781 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3782{
a5516438 3783 struct hstate *h = hstate_vma(vma);
2b740303 3784 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 3785 int anon_rmap = 0;
4c887265 3786 unsigned long size;
4c887265 3787 struct page *page;
1e8f889b 3788 pte_t new_pte;
cb900f41 3789 spinlock_t *ptl;
285b8dca 3790 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 3791 bool new_page = false;
4c887265 3792
04f2cbe3
MG
3793 /*
3794 * Currently, we are forced to kill the process in the event the
3795 * original mapper has unmapped pages from the child due to a failed
25985edc 3796 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3797 */
3798 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3799 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3800 current->pid);
04f2cbe3
MG
3801 return ret;
3802 }
3803
4c887265 3804 /*
e7c58097
MK
3805 * Use page lock to guard against racing truncation
3806 * before we get page_table_lock.
4c887265 3807 */
6bda666a
CL
3808retry:
3809 page = find_lock_page(mapping, idx);
3810 if (!page) {
e7c58097
MK
3811 size = i_size_read(mapping->host) >> huge_page_shift(h);
3812 if (idx >= size)
3813 goto out;
3814
1a1aad8a
MK
3815 /*
3816 * Check for page in userfault range
3817 */
3818 if (userfaultfd_missing(vma)) {
3819 u32 hash;
3820 struct vm_fault vmf = {
3821 .vma = vma,
285b8dca 3822 .address = haddr,
1a1aad8a
MK
3823 .flags = flags,
3824 /*
3825 * Hard to debug if it ends up being
3826 * used by a callee that assumes
3827 * something about the other
3828 * uninitialized fields... same as in
3829 * memory.c
3830 */
3831 };
3832
3833 /*
ddeaab32
MK
3834 * hugetlb_fault_mutex must be dropped before
3835 * handling userfault. Reacquire after handling
3836 * fault to make calling code simpler.
1a1aad8a 3837 */
1b426bac 3838 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
1a1aad8a
MK
3839 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3840 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3841 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3842 goto out;
3843 }
3844
285b8dca 3845 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 3846 if (IS_ERR(page)) {
2b740303 3847 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
3848 goto out;
3849 }
47ad8475 3850 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3851 __SetPageUptodate(page);
cb6acd01 3852 new_page = true;
ac9b9c66 3853
f83a275d 3854 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3855 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3856 if (err) {
3857 put_page(page);
6bda666a
CL
3858 if (err == -EEXIST)
3859 goto retry;
3860 goto out;
3861 }
23be7468 3862 } else {
6bda666a 3863 lock_page(page);
0fe6e20b
NH
3864 if (unlikely(anon_vma_prepare(vma))) {
3865 ret = VM_FAULT_OOM;
3866 goto backout_unlocked;
3867 }
409eb8c2 3868 anon_rmap = 1;
23be7468 3869 }
0fe6e20b 3870 } else {
998b4382
NH
3871 /*
3872 * If memory error occurs between mmap() and fault, some process
3873 * don't have hwpoisoned swap entry for errored virtual address.
3874 * So we need to block hugepage fault by PG_hwpoison bit check.
3875 */
3876 if (unlikely(PageHWPoison(page))) {
32f84528 3877 ret = VM_FAULT_HWPOISON |
972dc4de 3878 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3879 goto backout_unlocked;
3880 }
6bda666a 3881 }
1e8f889b 3882
57303d80
AW
3883 /*
3884 * If we are going to COW a private mapping later, we examine the
3885 * pending reservations for this page now. This will ensure that
3886 * any allocations necessary to record that reservation occur outside
3887 * the spinlock.
3888 */
5e911373 3889 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 3890 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
3891 ret = VM_FAULT_OOM;
3892 goto backout_unlocked;
3893 }
5e911373 3894 /* Just decrements count, does not deallocate */
285b8dca 3895 vma_end_reservation(h, vma, haddr);
5e911373 3896 }
57303d80 3897
8bea8052 3898 ptl = huge_pte_lock(h, mm, ptep);
e7c58097
MK
3899 size = i_size_read(mapping->host) >> huge_page_shift(h);
3900 if (idx >= size)
3901 goto backout;
4c887265 3902
83c54070 3903 ret = 0;
7f2e9525 3904 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3905 goto backout;
3906
07443a85
JK
3907 if (anon_rmap) {
3908 ClearPagePrivate(page);
285b8dca 3909 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 3910 } else
53f9263b 3911 page_dup_rmap(page, true);
1e8f889b
DG
3912 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3913 && (vma->vm_flags & VM_SHARED)));
285b8dca 3914 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 3915
5d317b2b 3916 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3917 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3918 /* Optimization, do the COW without a second fault */
974e6d66 3919 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3920 }
3921
cb900f41 3922 spin_unlock(ptl);
cb6acd01
MK
3923
3924 /*
3925 * Only make newly allocated pages active. Existing pages found
3926 * in the pagecache could be !page_huge_active() if they have been
3927 * isolated for migration.
3928 */
3929 if (new_page)
3930 set_page_huge_active(page);
3931
4c887265
AL
3932 unlock_page(page);
3933out:
ac9b9c66 3934 return ret;
4c887265
AL
3935
3936backout:
cb900f41 3937 spin_unlock(ptl);
2b26736c 3938backout_unlocked:
4c887265 3939 unlock_page(page);
285b8dca 3940 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
3941 put_page(page);
3942 goto out;
ac9b9c66
HD
3943}
3944
8382d914 3945#ifdef CONFIG_SMP
1b426bac 3946u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
3947 pgoff_t idx, unsigned long address)
3948{
3949 unsigned long key[2];
3950 u32 hash;
3951
1b426bac
MK
3952 key[0] = (unsigned long) mapping;
3953 key[1] = idx;
8382d914
DB
3954
3955 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3956
3957 return hash & (num_fault_mutexes - 1);
3958}
3959#else
3960/*
3961 * For uniprocesor systems we always use a single mutex, so just
3962 * return 0 and avoid the hashing overhead.
3963 */
1b426bac 3964u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
3965 pgoff_t idx, unsigned long address)
3966{
3967 return 0;
3968}
3969#endif
3970
2b740303 3971vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3972 unsigned long address, unsigned int flags)
86e5216f 3973{
8382d914 3974 pte_t *ptep, entry;
cb900f41 3975 spinlock_t *ptl;
2b740303 3976 vm_fault_t ret;
8382d914
DB
3977 u32 hash;
3978 pgoff_t idx;
0fe6e20b 3979 struct page *page = NULL;
57303d80 3980 struct page *pagecache_page = NULL;
a5516438 3981 struct hstate *h = hstate_vma(vma);
8382d914 3982 struct address_space *mapping;
0f792cf9 3983 int need_wait_lock = 0;
285b8dca 3984 unsigned long haddr = address & huge_page_mask(h);
86e5216f 3985
285b8dca 3986 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed
NH
3987 if (ptep) {
3988 entry = huge_ptep_get(ptep);
290408d4 3989 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3990 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3991 return 0;
3992 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3993 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3994 VM_FAULT_SET_HINDEX(hstate_index(h));
ddeaab32
MK
3995 } else {
3996 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3997 if (!ptep)
3998 return VM_FAULT_OOM;
fd6a03ed
NH
3999 }
4000
8382d914 4001 mapping = vma->vm_file->f_mapping;
ddeaab32 4002 idx = vma_hugecache_offset(h, vma, haddr);
8382d914 4003
3935baa9
DG
4004 /*
4005 * Serialize hugepage allocation and instantiation, so that we don't
4006 * get spurious allocation failures if two CPUs race to instantiate
4007 * the same page in the page cache.
4008 */
1b426bac 4009 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
c672c7f2 4010 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4011
7f2e9525
GS
4012 entry = huge_ptep_get(ptep);
4013 if (huge_pte_none(entry)) {
8382d914 4014 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4015 goto out_mutex;
3935baa9 4016 }
86e5216f 4017
83c54070 4018 ret = 0;
1e8f889b 4019
0f792cf9
NH
4020 /*
4021 * entry could be a migration/hwpoison entry at this point, so this
4022 * check prevents the kernel from going below assuming that we have
4023 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4024 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4025 * handle it.
4026 */
4027 if (!pte_present(entry))
4028 goto out_mutex;
4029
57303d80
AW
4030 /*
4031 * If we are going to COW the mapping later, we examine the pending
4032 * reservations for this page now. This will ensure that any
4033 * allocations necessary to record that reservation occur outside the
4034 * spinlock. For private mappings, we also lookup the pagecache
4035 * page now as it is used to determine if a reservation has been
4036 * consumed.
4037 */
106c992a 4038 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4039 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4040 ret = VM_FAULT_OOM;
b4d1d99f 4041 goto out_mutex;
2b26736c 4042 }
5e911373 4043 /* Just decrements count, does not deallocate */
285b8dca 4044 vma_end_reservation(h, vma, haddr);
57303d80 4045
f83a275d 4046 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4047 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4048 vma, haddr);
57303d80
AW
4049 }
4050
0f792cf9
NH
4051 ptl = huge_pte_lock(h, mm, ptep);
4052
4053 /* Check for a racing update before calling hugetlb_cow */
4054 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4055 goto out_ptl;
4056
56c9cfb1
NH
4057 /*
4058 * hugetlb_cow() requires page locks of pte_page(entry) and
4059 * pagecache_page, so here we need take the former one
4060 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4061 */
4062 page = pte_page(entry);
4063 if (page != pagecache_page)
0f792cf9
NH
4064 if (!trylock_page(page)) {
4065 need_wait_lock = 1;
4066 goto out_ptl;
4067 }
b4d1d99f 4068
0f792cf9 4069 get_page(page);
b4d1d99f 4070
788c7df4 4071 if (flags & FAULT_FLAG_WRITE) {
106c992a 4072 if (!huge_pte_write(entry)) {
974e6d66 4073 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4074 pagecache_page, ptl);
0f792cf9 4075 goto out_put_page;
b4d1d99f 4076 }
106c992a 4077 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4078 }
4079 entry = pte_mkyoung(entry);
285b8dca 4080 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4081 flags & FAULT_FLAG_WRITE))
285b8dca 4082 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4083out_put_page:
4084 if (page != pagecache_page)
4085 unlock_page(page);
4086 put_page(page);
cb900f41
KS
4087out_ptl:
4088 spin_unlock(ptl);
57303d80
AW
4089
4090 if (pagecache_page) {
4091 unlock_page(pagecache_page);
4092 put_page(pagecache_page);
4093 }
b4d1d99f 4094out_mutex:
c672c7f2 4095 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4096 /*
4097 * Generally it's safe to hold refcount during waiting page lock. But
4098 * here we just wait to defer the next page fault to avoid busy loop and
4099 * the page is not used after unlocked before returning from the current
4100 * page fault. So we are safe from accessing freed page, even if we wait
4101 * here without taking refcount.
4102 */
4103 if (need_wait_lock)
4104 wait_on_page_locked(page);
1e8f889b 4105 return ret;
86e5216f
AL
4106}
4107
8fb5debc
MK
4108/*
4109 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4110 * modifications for huge pages.
4111 */
4112int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4113 pte_t *dst_pte,
4114 struct vm_area_struct *dst_vma,
4115 unsigned long dst_addr,
4116 unsigned long src_addr,
4117 struct page **pagep)
4118{
1e392147
AA
4119 struct address_space *mapping;
4120 pgoff_t idx;
4121 unsigned long size;
1c9e8def 4122 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4123 struct hstate *h = hstate_vma(dst_vma);
4124 pte_t _dst_pte;
4125 spinlock_t *ptl;
4126 int ret;
4127 struct page *page;
4128
4129 if (!*pagep) {
4130 ret = -ENOMEM;
4131 page = alloc_huge_page(dst_vma, dst_addr, 0);
4132 if (IS_ERR(page))
4133 goto out;
4134
4135 ret = copy_huge_page_from_user(page,
4136 (const void __user *) src_addr,
810a56b9 4137 pages_per_huge_page(h), false);
8fb5debc
MK
4138
4139 /* fallback to copy_from_user outside mmap_sem */
4140 if (unlikely(ret)) {
9e368259 4141 ret = -ENOENT;
8fb5debc
MK
4142 *pagep = page;
4143 /* don't free the page */
4144 goto out;
4145 }
4146 } else {
4147 page = *pagep;
4148 *pagep = NULL;
4149 }
4150
4151 /*
4152 * The memory barrier inside __SetPageUptodate makes sure that
4153 * preceding stores to the page contents become visible before
4154 * the set_pte_at() write.
4155 */
4156 __SetPageUptodate(page);
8fb5debc 4157
1e392147
AA
4158 mapping = dst_vma->vm_file->f_mapping;
4159 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4160
1c9e8def
MK
4161 /*
4162 * If shared, add to page cache
4163 */
4164 if (vm_shared) {
1e392147
AA
4165 size = i_size_read(mapping->host) >> huge_page_shift(h);
4166 ret = -EFAULT;
4167 if (idx >= size)
4168 goto out_release_nounlock;
1c9e8def 4169
1e392147
AA
4170 /*
4171 * Serialization between remove_inode_hugepages() and
4172 * huge_add_to_page_cache() below happens through the
4173 * hugetlb_fault_mutex_table that here must be hold by
4174 * the caller.
4175 */
1c9e8def
MK
4176 ret = huge_add_to_page_cache(page, mapping, idx);
4177 if (ret)
4178 goto out_release_nounlock;
4179 }
4180
8fb5debc
MK
4181 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4182 spin_lock(ptl);
4183
1e392147
AA
4184 /*
4185 * Recheck the i_size after holding PT lock to make sure not
4186 * to leave any page mapped (as page_mapped()) beyond the end
4187 * of the i_size (remove_inode_hugepages() is strict about
4188 * enforcing that). If we bail out here, we'll also leave a
4189 * page in the radix tree in the vm_shared case beyond the end
4190 * of the i_size, but remove_inode_hugepages() will take care
4191 * of it as soon as we drop the hugetlb_fault_mutex_table.
4192 */
4193 size = i_size_read(mapping->host) >> huge_page_shift(h);
4194 ret = -EFAULT;
4195 if (idx >= size)
4196 goto out_release_unlock;
4197
8fb5debc
MK
4198 ret = -EEXIST;
4199 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4200 goto out_release_unlock;
4201
1c9e8def
MK
4202 if (vm_shared) {
4203 page_dup_rmap(page, true);
4204 } else {
4205 ClearPagePrivate(page);
4206 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4207 }
8fb5debc
MK
4208
4209 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4210 if (dst_vma->vm_flags & VM_WRITE)
4211 _dst_pte = huge_pte_mkdirty(_dst_pte);
4212 _dst_pte = pte_mkyoung(_dst_pte);
4213
4214 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4215
4216 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4217 dst_vma->vm_flags & VM_WRITE);
4218 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4219
4220 /* No need to invalidate - it was non-present before */
4221 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4222
4223 spin_unlock(ptl);
cb6acd01 4224 set_page_huge_active(page);
1c9e8def
MK
4225 if (vm_shared)
4226 unlock_page(page);
8fb5debc
MK
4227 ret = 0;
4228out:
4229 return ret;
4230out_release_unlock:
4231 spin_unlock(ptl);
1c9e8def
MK
4232 if (vm_shared)
4233 unlock_page(page);
5af10dfd 4234out_release_nounlock:
8fb5debc
MK
4235 put_page(page);
4236 goto out;
4237}
4238
28a35716
ML
4239long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4240 struct page **pages, struct vm_area_struct **vmas,
4241 unsigned long *position, unsigned long *nr_pages,
87ffc118 4242 long i, unsigned int flags, int *nonblocking)
63551ae0 4243{
d5d4b0aa
KC
4244 unsigned long pfn_offset;
4245 unsigned long vaddr = *position;
28a35716 4246 unsigned long remainder = *nr_pages;
a5516438 4247 struct hstate *h = hstate_vma(vma);
2be7cfed 4248 int err = -EFAULT;
63551ae0 4249
63551ae0 4250 while (vaddr < vma->vm_end && remainder) {
4c887265 4251 pte_t *pte;
cb900f41 4252 spinlock_t *ptl = NULL;
2a15efc9 4253 int absent;
4c887265 4254 struct page *page;
63551ae0 4255
02057967
DR
4256 /*
4257 * If we have a pending SIGKILL, don't keep faulting pages and
4258 * potentially allocating memory.
4259 */
fa45f116 4260 if (fatal_signal_pending(current)) {
02057967
DR
4261 remainder = 0;
4262 break;
4263 }
4264
4c887265
AL
4265 /*
4266 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4267 * each hugepage. We have to make sure we get the
4c887265 4268 * first, for the page indexing below to work.
cb900f41
KS
4269 *
4270 * Note that page table lock is not held when pte is null.
4c887265 4271 */
7868a208
PA
4272 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4273 huge_page_size(h));
cb900f41
KS
4274 if (pte)
4275 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4276 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4277
4278 /*
4279 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4280 * an error where there's an empty slot with no huge pagecache
4281 * to back it. This way, we avoid allocating a hugepage, and
4282 * the sparse dumpfile avoids allocating disk blocks, but its
4283 * huge holes still show up with zeroes where they need to be.
2a15efc9 4284 */
3ae77f43
HD
4285 if (absent && (flags & FOLL_DUMP) &&
4286 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4287 if (pte)
4288 spin_unlock(ptl);
2a15efc9
HD
4289 remainder = 0;
4290 break;
4291 }
63551ae0 4292
9cc3a5bd
NH
4293 /*
4294 * We need call hugetlb_fault for both hugepages under migration
4295 * (in which case hugetlb_fault waits for the migration,) and
4296 * hwpoisoned hugepages (in which case we need to prevent the
4297 * caller from accessing to them.) In order to do this, we use
4298 * here is_swap_pte instead of is_hugetlb_entry_migration and
4299 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4300 * both cases, and because we can't follow correct pages
4301 * directly from any kind of swap entries.
4302 */
4303 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4304 ((flags & FOLL_WRITE) &&
4305 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4306 vm_fault_t ret;
87ffc118 4307 unsigned int fault_flags = 0;
63551ae0 4308
cb900f41
KS
4309 if (pte)
4310 spin_unlock(ptl);
87ffc118
AA
4311 if (flags & FOLL_WRITE)
4312 fault_flags |= FAULT_FLAG_WRITE;
4313 if (nonblocking)
4314 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4315 if (flags & FOLL_NOWAIT)
4316 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4317 FAULT_FLAG_RETRY_NOWAIT;
4318 if (flags & FOLL_TRIED) {
4319 VM_WARN_ON_ONCE(fault_flags &
4320 FAULT_FLAG_ALLOW_RETRY);
4321 fault_flags |= FAULT_FLAG_TRIED;
4322 }
4323 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4324 if (ret & VM_FAULT_ERROR) {
2be7cfed 4325 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4326 remainder = 0;
4327 break;
4328 }
4329 if (ret & VM_FAULT_RETRY) {
1ac25013
AA
4330 if (nonblocking &&
4331 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
87ffc118
AA
4332 *nonblocking = 0;
4333 *nr_pages = 0;
4334 /*
4335 * VM_FAULT_RETRY must not return an
4336 * error, it will return zero
4337 * instead.
4338 *
4339 * No need to update "position" as the
4340 * caller will not check it after
4341 * *nr_pages is set to 0.
4342 */
4343 return i;
4344 }
4345 continue;
4c887265
AL
4346 }
4347
a5516438 4348 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4349 page = pte_page(huge_ptep_get(pte));
8fde12ca
LT
4350
4351 /*
4352 * Instead of doing 'try_get_page()' below in the same_page
4353 * loop, just check the count once here.
4354 */
4355 if (unlikely(page_count(page) <= 0)) {
4356 if (pages) {
4357 spin_unlock(ptl);
4358 remainder = 0;
4359 err = -ENOMEM;
4360 break;
4361 }
4362 }
d5d4b0aa 4363same_page:
d6692183 4364 if (pages) {
2a15efc9 4365 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4366 get_page(pages[i]);
d6692183 4367 }
63551ae0
DG
4368
4369 if (vmas)
4370 vmas[i] = vma;
4371
4372 vaddr += PAGE_SIZE;
d5d4b0aa 4373 ++pfn_offset;
63551ae0
DG
4374 --remainder;
4375 ++i;
d5d4b0aa 4376 if (vaddr < vma->vm_end && remainder &&
a5516438 4377 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4378 /*
4379 * We use pfn_offset to avoid touching the pageframes
4380 * of this compound page.
4381 */
4382 goto same_page;
4383 }
cb900f41 4384 spin_unlock(ptl);
63551ae0 4385 }
28a35716 4386 *nr_pages = remainder;
87ffc118
AA
4387 /*
4388 * setting position is actually required only if remainder is
4389 * not zero but it's faster not to add a "if (remainder)"
4390 * branch.
4391 */
63551ae0
DG
4392 *position = vaddr;
4393
2be7cfed 4394 return i ? i : err;
63551ae0 4395}
8f860591 4396
5491ae7b
AK
4397#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4398/*
4399 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4400 * implement this.
4401 */
4402#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4403#endif
4404
7da4d641 4405unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4406 unsigned long address, unsigned long end, pgprot_t newprot)
4407{
4408 struct mm_struct *mm = vma->vm_mm;
4409 unsigned long start = address;
4410 pte_t *ptep;
4411 pte_t pte;
a5516438 4412 struct hstate *h = hstate_vma(vma);
7da4d641 4413 unsigned long pages = 0;
dff11abe 4414 bool shared_pmd = false;
ac46d4f3 4415 struct mmu_notifier_range range;
dff11abe
MK
4416
4417 /*
4418 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4419 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
4420 * range if PMD sharing is possible.
4421 */
7269f999
JG
4422 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4423 0, vma, mm, start, end);
ac46d4f3 4424 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
4425
4426 BUG_ON(address >= end);
ac46d4f3 4427 flush_cache_range(vma, range.start, range.end);
8f860591 4428
ac46d4f3 4429 mmu_notifier_invalidate_range_start(&range);
83cde9e8 4430 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4431 for (; address < end; address += huge_page_size(h)) {
cb900f41 4432 spinlock_t *ptl;
7868a208 4433 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4434 if (!ptep)
4435 continue;
cb900f41 4436 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4437 if (huge_pmd_unshare(mm, &address, ptep)) {
4438 pages++;
cb900f41 4439 spin_unlock(ptl);
dff11abe 4440 shared_pmd = true;
39dde65c 4441 continue;
7da4d641 4442 }
a8bda28d
NH
4443 pte = huge_ptep_get(ptep);
4444 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4445 spin_unlock(ptl);
4446 continue;
4447 }
4448 if (unlikely(is_hugetlb_entry_migration(pte))) {
4449 swp_entry_t entry = pte_to_swp_entry(pte);
4450
4451 if (is_write_migration_entry(entry)) {
4452 pte_t newpte;
4453
4454 make_migration_entry_read(&entry);
4455 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4456 set_huge_swap_pte_at(mm, address, ptep,
4457 newpte, huge_page_size(h));
a8bda28d
NH
4458 pages++;
4459 }
4460 spin_unlock(ptl);
4461 continue;
4462 }
4463 if (!huge_pte_none(pte)) {
023bdd00
AK
4464 pte_t old_pte;
4465
4466 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4467 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 4468 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 4469 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 4470 pages++;
8f860591 4471 }
cb900f41 4472 spin_unlock(ptl);
8f860591 4473 }
d833352a 4474 /*
c8c06efa 4475 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4476 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4477 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
4478 * and that page table be reused and filled with junk. If we actually
4479 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 4480 */
dff11abe 4481 if (shared_pmd)
ac46d4f3 4482 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
4483 else
4484 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4485 /*
4486 * No need to call mmu_notifier_invalidate_range() we are downgrading
4487 * page table protection not changing it to point to a new page.
4488 *
ad56b738 4489 * See Documentation/vm/mmu_notifier.rst
0f10851e 4490 */
83cde9e8 4491 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 4492 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
4493
4494 return pages << h->order;
8f860591
ZY
4495}
4496
a1e78772
MG
4497int hugetlb_reserve_pages(struct inode *inode,
4498 long from, long to,
5a6fe125 4499 struct vm_area_struct *vma,
ca16d140 4500 vm_flags_t vm_flags)
e4e574b7 4501{
17c9d12e 4502 long ret, chg;
a5516438 4503 struct hstate *h = hstate_inode(inode);
90481622 4504 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4505 struct resv_map *resv_map;
1c5ecae3 4506 long gbl_reserve;
e4e574b7 4507
63489f8e
MK
4508 /* This should never happen */
4509 if (from > to) {
4510 VM_WARN(1, "%s called with a negative range\n", __func__);
4511 return -EINVAL;
4512 }
4513
17c9d12e
MG
4514 /*
4515 * Only apply hugepage reservation if asked. At fault time, an
4516 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4517 * without using reserves
17c9d12e 4518 */
ca16d140 4519 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4520 return 0;
4521
a1e78772
MG
4522 /*
4523 * Shared mappings base their reservation on the number of pages that
4524 * are already allocated on behalf of the file. Private mappings need
4525 * to reserve the full area even if read-only as mprotect() may be
4526 * called to make the mapping read-write. Assume !vma is a shm mapping
4527 */
9119a41e 4528 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
4529 /*
4530 * resv_map can not be NULL as hugetlb_reserve_pages is only
4531 * called for inodes for which resv_maps were created (see
4532 * hugetlbfs_get_inode).
4533 */
4e35f483 4534 resv_map = inode_resv_map(inode);
9119a41e 4535
1406ec9b 4536 chg = region_chg(resv_map, from, to);
9119a41e
JK
4537
4538 } else {
4539 resv_map = resv_map_alloc();
17c9d12e
MG
4540 if (!resv_map)
4541 return -ENOMEM;
4542
a1e78772 4543 chg = to - from;
84afd99b 4544
17c9d12e
MG
4545 set_vma_resv_map(vma, resv_map);
4546 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4547 }
4548
c50ac050
DH
4549 if (chg < 0) {
4550 ret = chg;
4551 goto out_err;
4552 }
8a630112 4553
1c5ecae3
MK
4554 /*
4555 * There must be enough pages in the subpool for the mapping. If
4556 * the subpool has a minimum size, there may be some global
4557 * reservations already in place (gbl_reserve).
4558 */
4559 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4560 if (gbl_reserve < 0) {
c50ac050
DH
4561 ret = -ENOSPC;
4562 goto out_err;
4563 }
5a6fe125
MG
4564
4565 /*
17c9d12e 4566 * Check enough hugepages are available for the reservation.
90481622 4567 * Hand the pages back to the subpool if there are not
5a6fe125 4568 */
1c5ecae3 4569 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4570 if (ret < 0) {
1c5ecae3
MK
4571 /* put back original number of pages, chg */
4572 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4573 goto out_err;
68842c9b 4574 }
17c9d12e
MG
4575
4576 /*
4577 * Account for the reservations made. Shared mappings record regions
4578 * that have reservations as they are shared by multiple VMAs.
4579 * When the last VMA disappears, the region map says how much
4580 * the reservation was and the page cache tells how much of
4581 * the reservation was consumed. Private mappings are per-VMA and
4582 * only the consumed reservations are tracked. When the VMA
4583 * disappears, the original reservation is the VMA size and the
4584 * consumed reservations are stored in the map. Hence, nothing
4585 * else has to be done for private mappings here
4586 */
33039678
MK
4587 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4588 long add = region_add(resv_map, from, to);
4589
4590 if (unlikely(chg > add)) {
4591 /*
4592 * pages in this range were added to the reserve
4593 * map between region_chg and region_add. This
4594 * indicates a race with alloc_huge_page. Adjust
4595 * the subpool and reserve counts modified above
4596 * based on the difference.
4597 */
4598 long rsv_adjust;
4599
4600 rsv_adjust = hugepage_subpool_put_pages(spool,
4601 chg - add);
4602 hugetlb_acct_memory(h, -rsv_adjust);
4603 }
4604 }
a43a8c39 4605 return 0;
c50ac050 4606out_err:
5e911373 4607 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4608 /* Don't call region_abort if region_chg failed */
4609 if (chg >= 0)
4610 region_abort(resv_map, from, to);
f031dd27
JK
4611 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4612 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4613 return ret;
a43a8c39
KC
4614}
4615
b5cec28d
MK
4616long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4617 long freed)
a43a8c39 4618{
a5516438 4619 struct hstate *h = hstate_inode(inode);
4e35f483 4620 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4621 long chg = 0;
90481622 4622 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4623 long gbl_reserve;
45c682a6 4624
f27a5136
MK
4625 /*
4626 * Since this routine can be called in the evict inode path for all
4627 * hugetlbfs inodes, resv_map could be NULL.
4628 */
b5cec28d
MK
4629 if (resv_map) {
4630 chg = region_del(resv_map, start, end);
4631 /*
4632 * region_del() can fail in the rare case where a region
4633 * must be split and another region descriptor can not be
4634 * allocated. If end == LONG_MAX, it will not fail.
4635 */
4636 if (chg < 0)
4637 return chg;
4638 }
4639
45c682a6 4640 spin_lock(&inode->i_lock);
e4c6f8be 4641 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4642 spin_unlock(&inode->i_lock);
4643
1c5ecae3
MK
4644 /*
4645 * If the subpool has a minimum size, the number of global
4646 * reservations to be released may be adjusted.
4647 */
4648 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4649 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4650
4651 return 0;
a43a8c39 4652}
93f70f90 4653
3212b535
SC
4654#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4655static unsigned long page_table_shareable(struct vm_area_struct *svma,
4656 struct vm_area_struct *vma,
4657 unsigned long addr, pgoff_t idx)
4658{
4659 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4660 svma->vm_start;
4661 unsigned long sbase = saddr & PUD_MASK;
4662 unsigned long s_end = sbase + PUD_SIZE;
4663
4664 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4665 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4666 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4667
4668 /*
4669 * match the virtual addresses, permission and the alignment of the
4670 * page table page.
4671 */
4672 if (pmd_index(addr) != pmd_index(saddr) ||
4673 vm_flags != svm_flags ||
4674 sbase < svma->vm_start || svma->vm_end < s_end)
4675 return 0;
4676
4677 return saddr;
4678}
4679
31aafb45 4680static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4681{
4682 unsigned long base = addr & PUD_MASK;
4683 unsigned long end = base + PUD_SIZE;
4684
4685 /*
4686 * check on proper vm_flags and page table alignment
4687 */
017b1660 4688 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
4689 return true;
4690 return false;
3212b535
SC
4691}
4692
017b1660
MK
4693/*
4694 * Determine if start,end range within vma could be mapped by shared pmd.
4695 * If yes, adjust start and end to cover range associated with possible
4696 * shared pmd mappings.
4697 */
4698void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4699 unsigned long *start, unsigned long *end)
4700{
4701 unsigned long check_addr = *start;
4702
4703 if (!(vma->vm_flags & VM_MAYSHARE))
4704 return;
4705
4706 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4707 unsigned long a_start = check_addr & PUD_MASK;
4708 unsigned long a_end = a_start + PUD_SIZE;
4709
4710 /*
4711 * If sharing is possible, adjust start/end if necessary.
4712 */
4713 if (range_in_vma(vma, a_start, a_end)) {
4714 if (a_start < *start)
4715 *start = a_start;
4716 if (a_end > *end)
4717 *end = a_end;
4718 }
4719 }
4720}
4721
3212b535
SC
4722/*
4723 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4724 * and returns the corresponding pte. While this is not necessary for the
4725 * !shared pmd case because we can allocate the pmd later as well, it makes the
ddeaab32
MK
4726 * code much cleaner. pmd allocation is essential for the shared case because
4727 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4728 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4729 * bad pmd for sharing.
3212b535
SC
4730 */
4731pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4732{
4733 struct vm_area_struct *vma = find_vma(mm, addr);
4734 struct address_space *mapping = vma->vm_file->f_mapping;
4735 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4736 vma->vm_pgoff;
4737 struct vm_area_struct *svma;
4738 unsigned long saddr;
4739 pte_t *spte = NULL;
4740 pte_t *pte;
cb900f41 4741 spinlock_t *ptl;
3212b535
SC
4742
4743 if (!vma_shareable(vma, addr))
4744 return (pte_t *)pmd_alloc(mm, pud, addr);
4745
ddeaab32 4746 i_mmap_lock_write(mapping);
3212b535
SC
4747 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4748 if (svma == vma)
4749 continue;
4750
4751 saddr = page_table_shareable(svma, vma, addr, idx);
4752 if (saddr) {
7868a208
PA
4753 spte = huge_pte_offset(svma->vm_mm, saddr,
4754 vma_mmu_pagesize(svma));
3212b535
SC
4755 if (spte) {
4756 get_page(virt_to_page(spte));
4757 break;
4758 }
4759 }
4760 }
4761
4762 if (!spte)
4763 goto out;
4764
8bea8052 4765 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4766 if (pud_none(*pud)) {
3212b535
SC
4767 pud_populate(mm, pud,
4768 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4769 mm_inc_nr_pmds(mm);
dc6c9a35 4770 } else {
3212b535 4771 put_page(virt_to_page(spte));
dc6c9a35 4772 }
cb900f41 4773 spin_unlock(ptl);
3212b535
SC
4774out:
4775 pte = (pte_t *)pmd_alloc(mm, pud, addr);
ddeaab32 4776 i_mmap_unlock_write(mapping);
3212b535
SC
4777 return pte;
4778}
4779
4780/*
4781 * unmap huge page backed by shared pte.
4782 *
4783 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4784 * indicated by page_count > 1, unmap is achieved by clearing pud and
4785 * decrementing the ref count. If count == 1, the pte page is not shared.
4786 *
ddeaab32 4787 * called with page table lock held.
3212b535
SC
4788 *
4789 * returns: 1 successfully unmapped a shared pte page
4790 * 0 the underlying pte page is not shared, or it is the last user
4791 */
4792int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4793{
4794 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4795 p4d_t *p4d = p4d_offset(pgd, *addr);
4796 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4797
4798 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4799 if (page_count(virt_to_page(ptep)) == 1)
4800 return 0;
4801
4802 pud_clear(pud);
4803 put_page(virt_to_page(ptep));
dc6c9a35 4804 mm_dec_nr_pmds(mm);
3212b535
SC
4805 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4806 return 1;
4807}
9e5fc74c
SC
4808#define want_pmd_share() (1)
4809#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4810pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4811{
4812 return NULL;
4813}
e81f2d22
ZZ
4814
4815int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4816{
4817 return 0;
4818}
017b1660
MK
4819
4820void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4821 unsigned long *start, unsigned long *end)
4822{
4823}
9e5fc74c 4824#define want_pmd_share() (0)
3212b535
SC
4825#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4826
9e5fc74c
SC
4827#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4828pte_t *huge_pte_alloc(struct mm_struct *mm,
4829 unsigned long addr, unsigned long sz)
4830{
4831 pgd_t *pgd;
c2febafc 4832 p4d_t *p4d;
9e5fc74c
SC
4833 pud_t *pud;
4834 pte_t *pte = NULL;
4835
4836 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4837 p4d = p4d_alloc(mm, pgd, addr);
4838 if (!p4d)
4839 return NULL;
c2febafc 4840 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4841 if (pud) {
4842 if (sz == PUD_SIZE) {
4843 pte = (pte_t *)pud;
4844 } else {
4845 BUG_ON(sz != PMD_SIZE);
4846 if (want_pmd_share() && pud_none(*pud))
4847 pte = huge_pmd_share(mm, addr, pud);
4848 else
4849 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4850 }
4851 }
4e666314 4852 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4853
4854 return pte;
4855}
4856
9b19df29
PA
4857/*
4858 * huge_pte_offset() - Walk the page table to resolve the hugepage
4859 * entry at address @addr
4860 *
4861 * Return: Pointer to page table or swap entry (PUD or PMD) for
4862 * address @addr, or NULL if a p*d_none() entry is encountered and the
4863 * size @sz doesn't match the hugepage size at this level of the page
4864 * table.
4865 */
7868a208
PA
4866pte_t *huge_pte_offset(struct mm_struct *mm,
4867 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4868{
4869 pgd_t *pgd;
c2febafc 4870 p4d_t *p4d;
9e5fc74c 4871 pud_t *pud;
c2febafc 4872 pmd_t *pmd;
9e5fc74c
SC
4873
4874 pgd = pgd_offset(mm, addr);
c2febafc
KS
4875 if (!pgd_present(*pgd))
4876 return NULL;
4877 p4d = p4d_offset(pgd, addr);
4878 if (!p4d_present(*p4d))
4879 return NULL;
9b19df29 4880
c2febafc 4881 pud = pud_offset(p4d, addr);
9b19df29 4882 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4883 return NULL;
9b19df29
PA
4884 /* hugepage or swap? */
4885 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4886 return (pte_t *)pud;
9b19df29 4887
c2febafc 4888 pmd = pmd_offset(pud, addr);
9b19df29
PA
4889 if (sz != PMD_SIZE && pmd_none(*pmd))
4890 return NULL;
4891 /* hugepage or swap? */
4892 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4893 return (pte_t *)pmd;
4894
4895 return NULL;
9e5fc74c
SC
4896}
4897
61f77eda
NH
4898#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4899
4900/*
4901 * These functions are overwritable if your architecture needs its own
4902 * behavior.
4903 */
4904struct page * __weak
4905follow_huge_addr(struct mm_struct *mm, unsigned long address,
4906 int write)
4907{
4908 return ERR_PTR(-EINVAL);
4909}
4910
4dc71451
AK
4911struct page * __weak
4912follow_huge_pd(struct vm_area_struct *vma,
4913 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4914{
4915 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4916 return NULL;
4917}
4918
61f77eda 4919struct page * __weak
9e5fc74c 4920follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4921 pmd_t *pmd, int flags)
9e5fc74c 4922{
e66f17ff
NH
4923 struct page *page = NULL;
4924 spinlock_t *ptl;
c9d398fa 4925 pte_t pte;
e66f17ff
NH
4926retry:
4927 ptl = pmd_lockptr(mm, pmd);
4928 spin_lock(ptl);
4929 /*
4930 * make sure that the address range covered by this pmd is not
4931 * unmapped from other threads.
4932 */
4933 if (!pmd_huge(*pmd))
4934 goto out;
c9d398fa
NH
4935 pte = huge_ptep_get((pte_t *)pmd);
4936 if (pte_present(pte)) {
97534127 4937 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4938 if (flags & FOLL_GET)
4939 get_page(page);
4940 } else {
c9d398fa 4941 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4942 spin_unlock(ptl);
4943 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4944 goto retry;
4945 }
4946 /*
4947 * hwpoisoned entry is treated as no_page_table in
4948 * follow_page_mask().
4949 */
4950 }
4951out:
4952 spin_unlock(ptl);
9e5fc74c
SC
4953 return page;
4954}
4955
61f77eda 4956struct page * __weak
9e5fc74c 4957follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4958 pud_t *pud, int flags)
9e5fc74c 4959{
e66f17ff
NH
4960 if (flags & FOLL_GET)
4961 return NULL;
9e5fc74c 4962
e66f17ff 4963 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4964}
4965
faaa5b62
AK
4966struct page * __weak
4967follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4968{
4969 if (flags & FOLL_GET)
4970 return NULL;
4971
4972 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4973}
4974
31caf665
NH
4975bool isolate_huge_page(struct page *page, struct list_head *list)
4976{
bcc54222
NH
4977 bool ret = true;
4978
309381fe 4979 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4980 spin_lock(&hugetlb_lock);
bcc54222
NH
4981 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4982 ret = false;
4983 goto unlock;
4984 }
4985 clear_page_huge_active(page);
31caf665 4986 list_move_tail(&page->lru, list);
bcc54222 4987unlock:
31caf665 4988 spin_unlock(&hugetlb_lock);
bcc54222 4989 return ret;
31caf665
NH
4990}
4991
4992void putback_active_hugepage(struct page *page)
4993{
309381fe 4994 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4995 spin_lock(&hugetlb_lock);
bcc54222 4996 set_page_huge_active(page);
31caf665
NH
4997 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4998 spin_unlock(&hugetlb_lock);
4999 put_page(page);
5000}
ab5ac90a
MH
5001
5002void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5003{
5004 struct hstate *h = page_hstate(oldpage);
5005
5006 hugetlb_cgroup_migrate(oldpage, newpage);
5007 set_page_owner_migrate_reason(newpage, reason);
5008
5009 /*
5010 * transfer temporary state of the new huge page. This is
5011 * reverse to other transitions because the newpage is going to
5012 * be final while the old one will be freed so it takes over
5013 * the temporary status.
5014 *
5015 * Also note that we have to transfer the per-node surplus state
5016 * here as well otherwise the global surplus count will not match
5017 * the per-node's.
5018 */
5019 if (PageHugeTemporary(newpage)) {
5020 int old_nid = page_to_nid(oldpage);
5021 int new_nid = page_to_nid(newpage);
5022
5023 SetPageHugeTemporary(oldpage);
5024 ClearPageHugeTemporary(newpage);
5025
5026 spin_lock(&hugetlb_lock);
5027 if (h->surplus_huge_pages_node[old_nid]) {
5028 h->surplus_huge_pages_node[old_nid]--;
5029 h->surplus_huge_pages_node[new_nid]++;
5030 }
5031 spin_unlock(&hugetlb_lock);
5032 }
5033}