]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
mm: remove special swap entry functions
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
8cc5fcbb 33#include <linux/migrate.h>
d6606683 34
63551ae0 35#include <asm/page.h>
ca15ca40 36#include <asm/pgalloc.h>
24669e58 37#include <asm/tlb.h>
63551ae0 38
24669e58 39#include <linux/io.h>
63551ae0 40#include <linux/hugetlb.h>
9dd540e2 41#include <linux/hugetlb_cgroup.h>
9a305230 42#include <linux/node.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
f41f2ed4 45#include "hugetlb_vmemmap.h"
1da177e4 46
c3f38a38 47int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
48unsigned int default_hstate_idx;
49struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 50
dbda8fea 51#ifdef CONFIG_CMA
cf11e85f 52static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
53#endif
54static unsigned long hugetlb_cma_size __initdata;
cf11e85f 55
641844f5
NH
56/*
57 * Minimum page order among possible hugepage sizes, set to a proper value
58 * at boot time.
59 */
60static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 61
53ba51d2
JT
62__initdata LIST_HEAD(huge_boot_pages);
63
e5ff2159
AK
64/* for command line parsing */
65static struct hstate * __initdata parsed_hstate;
66static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 67static bool __initdata parsed_valid_hugepagesz = true;
282f4214 68static bool __initdata parsed_default_hugepagesz;
e5ff2159 69
3935baa9 70/*
31caf665
NH
71 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72 * free_huge_pages, and surplus_huge_pages.
3935baa9 73 */
c3f38a38 74DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 75
8382d914
DB
76/*
77 * Serializes faults on the same logical page. This is used to
78 * prevent spurious OOMs when the hugepage pool is fully utilized.
79 */
80static int num_fault_mutexes;
c672c7f2 81struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 82
7ca02d0a
MK
83/* Forward declaration */
84static int hugetlb_acct_memory(struct hstate *h, long delta);
85
1d88433b 86static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 87{
1d88433b
ML
88 if (spool->count)
89 return false;
90 if (spool->max_hpages != -1)
91 return spool->used_hpages == 0;
92 if (spool->min_hpages != -1)
93 return spool->rsv_hpages == spool->min_hpages;
94
95 return true;
96}
90481622 97
db71ef79
MK
98static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
99 unsigned long irq_flags)
1d88433b 100{
db71ef79 101 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
102
103 /* If no pages are used, and no other handles to the subpool
7c8de358 104 * remain, give up any reservations based on minimum size and
7ca02d0a 105 * free the subpool */
1d88433b 106 if (subpool_is_free(spool)) {
7ca02d0a
MK
107 if (spool->min_hpages != -1)
108 hugetlb_acct_memory(spool->hstate,
109 -spool->min_hpages);
90481622 110 kfree(spool);
7ca02d0a 111 }
90481622
DG
112}
113
7ca02d0a
MK
114struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
115 long min_hpages)
90481622
DG
116{
117 struct hugepage_subpool *spool;
118
c6a91820 119 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
120 if (!spool)
121 return NULL;
122
123 spin_lock_init(&spool->lock);
124 spool->count = 1;
7ca02d0a
MK
125 spool->max_hpages = max_hpages;
126 spool->hstate = h;
127 spool->min_hpages = min_hpages;
128
129 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
130 kfree(spool);
131 return NULL;
132 }
133 spool->rsv_hpages = min_hpages;
90481622
DG
134
135 return spool;
136}
137
138void hugepage_put_subpool(struct hugepage_subpool *spool)
139{
db71ef79
MK
140 unsigned long flags;
141
142 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
143 BUG_ON(!spool->count);
144 spool->count--;
db71ef79 145 unlock_or_release_subpool(spool, flags);
90481622
DG
146}
147
1c5ecae3
MK
148/*
149 * Subpool accounting for allocating and reserving pages.
150 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 151 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
152 * global pools must be adjusted (upward). The returned value may
153 * only be different than the passed value (delta) in the case where
7c8de358 154 * a subpool minimum size must be maintained.
1c5ecae3
MK
155 */
156static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
157 long delta)
158{
1c5ecae3 159 long ret = delta;
90481622
DG
160
161 if (!spool)
1c5ecae3 162 return ret;
90481622 163
db71ef79 164 spin_lock_irq(&spool->lock);
1c5ecae3
MK
165
166 if (spool->max_hpages != -1) { /* maximum size accounting */
167 if ((spool->used_hpages + delta) <= spool->max_hpages)
168 spool->used_hpages += delta;
169 else {
170 ret = -ENOMEM;
171 goto unlock_ret;
172 }
90481622 173 }
90481622 174
09a95e29
MK
175 /* minimum size accounting */
176 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
177 if (delta > spool->rsv_hpages) {
178 /*
179 * Asking for more reserves than those already taken on
180 * behalf of subpool. Return difference.
181 */
182 ret = delta - spool->rsv_hpages;
183 spool->rsv_hpages = 0;
184 } else {
185 ret = 0; /* reserves already accounted for */
186 spool->rsv_hpages -= delta;
187 }
188 }
189
190unlock_ret:
db71ef79 191 spin_unlock_irq(&spool->lock);
90481622
DG
192 return ret;
193}
194
1c5ecae3
MK
195/*
196 * Subpool accounting for freeing and unreserving pages.
197 * Return the number of global page reservations that must be dropped.
198 * The return value may only be different than the passed value (delta)
199 * in the case where a subpool minimum size must be maintained.
200 */
201static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
202 long delta)
203{
1c5ecae3 204 long ret = delta;
db71ef79 205 unsigned long flags;
1c5ecae3 206
90481622 207 if (!spool)
1c5ecae3 208 return delta;
90481622 209
db71ef79 210 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
211
212 if (spool->max_hpages != -1) /* maximum size accounting */
213 spool->used_hpages -= delta;
214
09a95e29
MK
215 /* minimum size accounting */
216 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
217 if (spool->rsv_hpages + delta <= spool->min_hpages)
218 ret = 0;
219 else
220 ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222 spool->rsv_hpages += delta;
223 if (spool->rsv_hpages > spool->min_hpages)
224 spool->rsv_hpages = spool->min_hpages;
225 }
226
227 /*
228 * If hugetlbfs_put_super couldn't free spool due to an outstanding
229 * quota reference, free it now.
230 */
db71ef79 231 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
232
233 return ret;
90481622
DG
234}
235
236static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237{
238 return HUGETLBFS_SB(inode->i_sb)->spool;
239}
240
241static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242{
496ad9aa 243 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
244}
245
0db9d74e
MA
246/* Helper that removes a struct file_region from the resv_map cache and returns
247 * it for use.
248 */
249static struct file_region *
250get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251{
252 struct file_region *nrg = NULL;
253
254 VM_BUG_ON(resv->region_cache_count <= 0);
255
256 resv->region_cache_count--;
257 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
258 list_del(&nrg->link);
259
260 nrg->from = from;
261 nrg->to = to;
262
263 return nrg;
264}
265
075a61d0
MA
266static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267 struct file_region *rg)
268{
269#ifdef CONFIG_CGROUP_HUGETLB
270 nrg->reservation_counter = rg->reservation_counter;
271 nrg->css = rg->css;
272 if (rg->css)
273 css_get(rg->css);
274#endif
275}
276
277/* Helper that records hugetlb_cgroup uncharge info. */
278static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279 struct hstate *h,
280 struct resv_map *resv,
281 struct file_region *nrg)
282{
283#ifdef CONFIG_CGROUP_HUGETLB
284 if (h_cg) {
285 nrg->reservation_counter =
286 &h_cg->rsvd_hugepage[hstate_index(h)];
287 nrg->css = &h_cg->css;
d85aecf2
ML
288 /*
289 * The caller will hold exactly one h_cg->css reference for the
290 * whole contiguous reservation region. But this area might be
291 * scattered when there are already some file_regions reside in
292 * it. As a result, many file_regions may share only one css
293 * reference. In order to ensure that one file_region must hold
294 * exactly one h_cg->css reference, we should do css_get for
295 * each file_region and leave the reference held by caller
296 * untouched.
297 */
298 css_get(&h_cg->css);
075a61d0
MA
299 if (!resv->pages_per_hpage)
300 resv->pages_per_hpage = pages_per_huge_page(h);
301 /* pages_per_hpage should be the same for all entries in
302 * a resv_map.
303 */
304 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305 } else {
306 nrg->reservation_counter = NULL;
307 nrg->css = NULL;
308 }
309#endif
310}
311
d85aecf2
ML
312static void put_uncharge_info(struct file_region *rg)
313{
314#ifdef CONFIG_CGROUP_HUGETLB
315 if (rg->css)
316 css_put(rg->css);
317#endif
318}
319
a9b3f867
MA
320static bool has_same_uncharge_info(struct file_region *rg,
321 struct file_region *org)
322{
323#ifdef CONFIG_CGROUP_HUGETLB
324 return rg && org &&
325 rg->reservation_counter == org->reservation_counter &&
326 rg->css == org->css;
327
328#else
329 return true;
330#endif
331}
332
333static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334{
335 struct file_region *nrg = NULL, *prg = NULL;
336
337 prg = list_prev_entry(rg, link);
338 if (&prg->link != &resv->regions && prg->to == rg->from &&
339 has_same_uncharge_info(prg, rg)) {
340 prg->to = rg->to;
341
342 list_del(&rg->link);
d85aecf2 343 put_uncharge_info(rg);
a9b3f867
MA
344 kfree(rg);
345
7db5e7b6 346 rg = prg;
a9b3f867
MA
347 }
348
349 nrg = list_next_entry(rg, link);
350 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351 has_same_uncharge_info(nrg, rg)) {
352 nrg->from = rg->from;
353
354 list_del(&rg->link);
d85aecf2 355 put_uncharge_info(rg);
a9b3f867 356 kfree(rg);
a9b3f867
MA
357 }
358}
359
2103cf9c
PX
360static inline long
361hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
362 long to, struct hstate *h, struct hugetlb_cgroup *cg,
363 long *regions_needed)
364{
365 struct file_region *nrg;
366
367 if (!regions_needed) {
368 nrg = get_file_region_entry_from_cache(map, from, to);
369 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
370 list_add(&nrg->link, rg->link.prev);
371 coalesce_file_region(map, nrg);
372 } else
373 *regions_needed += 1;
374
375 return to - from;
376}
377
972a3da3
WY
378/*
379 * Must be called with resv->lock held.
380 *
381 * Calling this with regions_needed != NULL will count the number of pages
382 * to be added but will not modify the linked list. And regions_needed will
383 * indicate the number of file_regions needed in the cache to carry out to add
384 * the regions for this range.
d75c6af9
MA
385 */
386static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 387 struct hugetlb_cgroup *h_cg,
972a3da3 388 struct hstate *h, long *regions_needed)
d75c6af9 389{
0db9d74e 390 long add = 0;
d75c6af9 391 struct list_head *head = &resv->regions;
0db9d74e 392 long last_accounted_offset = f;
2103cf9c 393 struct file_region *rg = NULL, *trg = NULL;
d75c6af9 394
0db9d74e
MA
395 if (regions_needed)
396 *regions_needed = 0;
d75c6af9 397
0db9d74e
MA
398 /* In this loop, we essentially handle an entry for the range
399 * [last_accounted_offset, rg->from), at every iteration, with some
400 * bounds checking.
401 */
402 list_for_each_entry_safe(rg, trg, head, link) {
403 /* Skip irrelevant regions that start before our range. */
404 if (rg->from < f) {
405 /* If this region ends after the last accounted offset,
406 * then we need to update last_accounted_offset.
407 */
408 if (rg->to > last_accounted_offset)
409 last_accounted_offset = rg->to;
410 continue;
411 }
d75c6af9 412
0db9d74e
MA
413 /* When we find a region that starts beyond our range, we've
414 * finished.
415 */
ca7e0457 416 if (rg->from >= t)
d75c6af9
MA
417 break;
418
0db9d74e
MA
419 /* Add an entry for last_accounted_offset -> rg->from, and
420 * update last_accounted_offset.
421 */
2103cf9c
PX
422 if (rg->from > last_accounted_offset)
423 add += hugetlb_resv_map_add(resv, rg,
424 last_accounted_offset,
425 rg->from, h, h_cg,
426 regions_needed);
0db9d74e
MA
427
428 last_accounted_offset = rg->to;
429 }
430
431 /* Handle the case where our range extends beyond
432 * last_accounted_offset.
433 */
2103cf9c
PX
434 if (last_accounted_offset < t)
435 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
436 t, h, h_cg, regions_needed);
0db9d74e
MA
437
438 VM_BUG_ON(add < 0);
439 return add;
440}
441
442/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
443 */
444static int allocate_file_region_entries(struct resv_map *resv,
445 int regions_needed)
446 __must_hold(&resv->lock)
447{
448 struct list_head allocated_regions;
449 int to_allocate = 0, i = 0;
450 struct file_region *trg = NULL, *rg = NULL;
451
452 VM_BUG_ON(regions_needed < 0);
453
454 INIT_LIST_HEAD(&allocated_regions);
455
456 /*
457 * Check for sufficient descriptors in the cache to accommodate
458 * the number of in progress add operations plus regions_needed.
459 *
460 * This is a while loop because when we drop the lock, some other call
461 * to region_add or region_del may have consumed some region_entries,
462 * so we keep looping here until we finally have enough entries for
463 * (adds_in_progress + regions_needed).
464 */
465 while (resv->region_cache_count <
466 (resv->adds_in_progress + regions_needed)) {
467 to_allocate = resv->adds_in_progress + regions_needed -
468 resv->region_cache_count;
469
470 /* At this point, we should have enough entries in the cache
f0953a1b 471 * for all the existing adds_in_progress. We should only be
0db9d74e 472 * needing to allocate for regions_needed.
d75c6af9 473 */
0db9d74e
MA
474 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
475
476 spin_unlock(&resv->lock);
477 for (i = 0; i < to_allocate; i++) {
478 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
479 if (!trg)
480 goto out_of_memory;
481 list_add(&trg->link, &allocated_regions);
d75c6af9 482 }
d75c6af9 483
0db9d74e
MA
484 spin_lock(&resv->lock);
485
d3ec7b6e
WY
486 list_splice(&allocated_regions, &resv->region_cache);
487 resv->region_cache_count += to_allocate;
d75c6af9
MA
488 }
489
0db9d74e 490 return 0;
d75c6af9 491
0db9d74e
MA
492out_of_memory:
493 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
494 list_del(&rg->link);
495 kfree(rg);
496 }
497 return -ENOMEM;
d75c6af9
MA
498}
499
1dd308a7
MK
500/*
501 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
502 * map. Regions will be taken from the cache to fill in this range.
503 * Sufficient regions should exist in the cache due to the previous
504 * call to region_chg with the same range, but in some cases the cache will not
505 * have sufficient entries due to races with other code doing region_add or
506 * region_del. The extra needed entries will be allocated.
cf3ad20b 507 *
0db9d74e
MA
508 * regions_needed is the out value provided by a previous call to region_chg.
509 *
510 * Return the number of new huge pages added to the map. This number is greater
511 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 512 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
513 * region_add of regions of length 1 never allocate file_regions and cannot
514 * fail; region_chg will always allocate at least 1 entry and a region_add for
515 * 1 page will only require at most 1 entry.
1dd308a7 516 */
0db9d74e 517static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
518 long in_regions_needed, struct hstate *h,
519 struct hugetlb_cgroup *h_cg)
96822904 520{
0db9d74e 521 long add = 0, actual_regions_needed = 0;
96822904 522
7b24d861 523 spin_lock(&resv->lock);
0db9d74e
MA
524retry:
525
526 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
527 add_reservation_in_range(resv, f, t, NULL, NULL,
528 &actual_regions_needed);
96822904 529
5e911373 530 /*
0db9d74e
MA
531 * Check for sufficient descriptors in the cache to accommodate
532 * this add operation. Note that actual_regions_needed may be greater
533 * than in_regions_needed, as the resv_map may have been modified since
534 * the region_chg call. In this case, we need to make sure that we
535 * allocate extra entries, such that we have enough for all the
536 * existing adds_in_progress, plus the excess needed for this
537 * operation.
5e911373 538 */
0db9d74e
MA
539 if (actual_regions_needed > in_regions_needed &&
540 resv->region_cache_count <
541 resv->adds_in_progress +
542 (actual_regions_needed - in_regions_needed)) {
543 /* region_add operation of range 1 should never need to
544 * allocate file_region entries.
545 */
546 VM_BUG_ON(t - f <= 1);
5e911373 547
0db9d74e
MA
548 if (allocate_file_region_entries(
549 resv, actual_regions_needed - in_regions_needed)) {
550 return -ENOMEM;
551 }
5e911373 552
0db9d74e 553 goto retry;
5e911373
MK
554 }
555
972a3da3 556 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
557
558 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 559
7b24d861 560 spin_unlock(&resv->lock);
cf3ad20b 561 return add;
96822904
AW
562}
563
1dd308a7
MK
564/*
565 * Examine the existing reserve map and determine how many
566 * huge pages in the specified range [f, t) are NOT currently
567 * represented. This routine is called before a subsequent
568 * call to region_add that will actually modify the reserve
569 * map to add the specified range [f, t). region_chg does
570 * not change the number of huge pages represented by the
0db9d74e
MA
571 * map. A number of new file_region structures is added to the cache as a
572 * placeholder, for the subsequent region_add call to use. At least 1
573 * file_region structure is added.
574 *
575 * out_regions_needed is the number of regions added to the
576 * resv->adds_in_progress. This value needs to be provided to a follow up call
577 * to region_add or region_abort for proper accounting.
5e911373
MK
578 *
579 * Returns the number of huge pages that need to be added to the existing
580 * reservation map for the range [f, t). This number is greater or equal to
581 * zero. -ENOMEM is returned if a new file_region structure or cache entry
582 * is needed and can not be allocated.
1dd308a7 583 */
0db9d74e
MA
584static long region_chg(struct resv_map *resv, long f, long t,
585 long *out_regions_needed)
96822904 586{
96822904
AW
587 long chg = 0;
588
7b24d861 589 spin_lock(&resv->lock);
5e911373 590
972a3da3 591 /* Count how many hugepages in this range are NOT represented. */
075a61d0 592 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 593 out_regions_needed);
5e911373 594
0db9d74e
MA
595 if (*out_regions_needed == 0)
596 *out_regions_needed = 1;
5e911373 597
0db9d74e
MA
598 if (allocate_file_region_entries(resv, *out_regions_needed))
599 return -ENOMEM;
5e911373 600
0db9d74e 601 resv->adds_in_progress += *out_regions_needed;
7b24d861 602
7b24d861 603 spin_unlock(&resv->lock);
96822904
AW
604 return chg;
605}
606
5e911373
MK
607/*
608 * Abort the in progress add operation. The adds_in_progress field
609 * of the resv_map keeps track of the operations in progress between
610 * calls to region_chg and region_add. Operations are sometimes
611 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
612 * is called to decrement the adds_in_progress counter. regions_needed
613 * is the value returned by the region_chg call, it is used to decrement
614 * the adds_in_progress counter.
5e911373
MK
615 *
616 * NOTE: The range arguments [f, t) are not needed or used in this
617 * routine. They are kept to make reading the calling code easier as
618 * arguments will match the associated region_chg call.
619 */
0db9d74e
MA
620static void region_abort(struct resv_map *resv, long f, long t,
621 long regions_needed)
5e911373
MK
622{
623 spin_lock(&resv->lock);
624 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 625 resv->adds_in_progress -= regions_needed;
5e911373
MK
626 spin_unlock(&resv->lock);
627}
628
1dd308a7 629/*
feba16e2
MK
630 * Delete the specified range [f, t) from the reserve map. If the
631 * t parameter is LONG_MAX, this indicates that ALL regions after f
632 * should be deleted. Locate the regions which intersect [f, t)
633 * and either trim, delete or split the existing regions.
634 *
635 * Returns the number of huge pages deleted from the reserve map.
636 * In the normal case, the return value is zero or more. In the
637 * case where a region must be split, a new region descriptor must
638 * be allocated. If the allocation fails, -ENOMEM will be returned.
639 * NOTE: If the parameter t == LONG_MAX, then we will never split
640 * a region and possibly return -ENOMEM. Callers specifying
641 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 642 */
feba16e2 643static long region_del(struct resv_map *resv, long f, long t)
96822904 644{
1406ec9b 645 struct list_head *head = &resv->regions;
96822904 646 struct file_region *rg, *trg;
feba16e2
MK
647 struct file_region *nrg = NULL;
648 long del = 0;
96822904 649
feba16e2 650retry:
7b24d861 651 spin_lock(&resv->lock);
feba16e2 652 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
653 /*
654 * Skip regions before the range to be deleted. file_region
655 * ranges are normally of the form [from, to). However, there
656 * may be a "placeholder" entry in the map which is of the form
657 * (from, to) with from == to. Check for placeholder entries
658 * at the beginning of the range to be deleted.
659 */
660 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 661 continue;
dbe409e4 662
feba16e2 663 if (rg->from >= t)
96822904 664 break;
96822904 665
feba16e2
MK
666 if (f > rg->from && t < rg->to) { /* Must split region */
667 /*
668 * Check for an entry in the cache before dropping
669 * lock and attempting allocation.
670 */
671 if (!nrg &&
672 resv->region_cache_count > resv->adds_in_progress) {
673 nrg = list_first_entry(&resv->region_cache,
674 struct file_region,
675 link);
676 list_del(&nrg->link);
677 resv->region_cache_count--;
678 }
96822904 679
feba16e2
MK
680 if (!nrg) {
681 spin_unlock(&resv->lock);
682 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
683 if (!nrg)
684 return -ENOMEM;
685 goto retry;
686 }
687
688 del += t - f;
79aa925b 689 hugetlb_cgroup_uncharge_file_region(
d85aecf2 690 resv, rg, t - f, false);
feba16e2
MK
691
692 /* New entry for end of split region */
693 nrg->from = t;
694 nrg->to = rg->to;
075a61d0
MA
695
696 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
697
feba16e2
MK
698 INIT_LIST_HEAD(&nrg->link);
699
700 /* Original entry is trimmed */
701 rg->to = f;
702
703 list_add(&nrg->link, &rg->link);
704 nrg = NULL;
96822904 705 break;
feba16e2
MK
706 }
707
708 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
709 del += rg->to - rg->from;
075a61d0 710 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 711 rg->to - rg->from, true);
feba16e2
MK
712 list_del(&rg->link);
713 kfree(rg);
714 continue;
715 }
716
717 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 718 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 719 t - rg->from, false);
075a61d0 720
79aa925b
MK
721 del += t - rg->from;
722 rg->from = t;
723 } else { /* Trim end of region */
075a61d0 724 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 725 rg->to - f, false);
79aa925b
MK
726
727 del += rg->to - f;
728 rg->to = f;
feba16e2 729 }
96822904 730 }
7b24d861 731
7b24d861 732 spin_unlock(&resv->lock);
feba16e2
MK
733 kfree(nrg);
734 return del;
96822904
AW
735}
736
b5cec28d
MK
737/*
738 * A rare out of memory error was encountered which prevented removal of
739 * the reserve map region for a page. The huge page itself was free'ed
740 * and removed from the page cache. This routine will adjust the subpool
741 * usage count, and the global reserve count if needed. By incrementing
742 * these counts, the reserve map entry which could not be deleted will
743 * appear as a "reserved" entry instead of simply dangling with incorrect
744 * counts.
745 */
72e2936c 746void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
747{
748 struct hugepage_subpool *spool = subpool_inode(inode);
749 long rsv_adjust;
da56388c 750 bool reserved = false;
b5cec28d
MK
751
752 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 753 if (rsv_adjust > 0) {
b5cec28d
MK
754 struct hstate *h = hstate_inode(inode);
755
da56388c
ML
756 if (!hugetlb_acct_memory(h, 1))
757 reserved = true;
758 } else if (!rsv_adjust) {
759 reserved = true;
b5cec28d 760 }
da56388c
ML
761
762 if (!reserved)
763 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
764}
765
1dd308a7
MK
766/*
767 * Count and return the number of huge pages in the reserve map
768 * that intersect with the range [f, t).
769 */
1406ec9b 770static long region_count(struct resv_map *resv, long f, long t)
84afd99b 771{
1406ec9b 772 struct list_head *head = &resv->regions;
84afd99b
AW
773 struct file_region *rg;
774 long chg = 0;
775
7b24d861 776 spin_lock(&resv->lock);
84afd99b
AW
777 /* Locate each segment we overlap with, and count that overlap. */
778 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
779 long seg_from;
780 long seg_to;
84afd99b
AW
781
782 if (rg->to <= f)
783 continue;
784 if (rg->from >= t)
785 break;
786
787 seg_from = max(rg->from, f);
788 seg_to = min(rg->to, t);
789
790 chg += seg_to - seg_from;
791 }
7b24d861 792 spin_unlock(&resv->lock);
84afd99b
AW
793
794 return chg;
795}
796
e7c4b0bf
AW
797/*
798 * Convert the address within this vma to the page offset within
799 * the mapping, in pagecache page units; huge pages here.
800 */
a5516438
AK
801static pgoff_t vma_hugecache_offset(struct hstate *h,
802 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 803{
a5516438
AK
804 return ((address - vma->vm_start) >> huge_page_shift(h)) +
805 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
806}
807
0fe6e20b
NH
808pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
809 unsigned long address)
810{
811 return vma_hugecache_offset(hstate_vma(vma), vma, address);
812}
dee41079 813EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 814
08fba699
MG
815/*
816 * Return the size of the pages allocated when backing a VMA. In the majority
817 * cases this will be same size as used by the page table entries.
818 */
819unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
820{
05ea8860
DW
821 if (vma->vm_ops && vma->vm_ops->pagesize)
822 return vma->vm_ops->pagesize(vma);
823 return PAGE_SIZE;
08fba699 824}
f340ca0f 825EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 826
3340289d
MG
827/*
828 * Return the page size being used by the MMU to back a VMA. In the majority
829 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
830 * architectures where it differs, an architecture-specific 'strong'
831 * version of this symbol is required.
3340289d 832 */
09135cc5 833__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
834{
835 return vma_kernel_pagesize(vma);
836}
3340289d 837
84afd99b
AW
838/*
839 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
840 * bits of the reservation map pointer, which are always clear due to
841 * alignment.
842 */
843#define HPAGE_RESV_OWNER (1UL << 0)
844#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 845#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 846
a1e78772
MG
847/*
848 * These helpers are used to track how many pages are reserved for
849 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
850 * is guaranteed to have their future faults succeed.
851 *
852 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
853 * the reserve counters are updated with the hugetlb_lock held. It is safe
854 * to reset the VMA at fork() time as it is not in use yet and there is no
855 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
856 *
857 * The private mapping reservation is represented in a subtly different
858 * manner to a shared mapping. A shared mapping has a region map associated
859 * with the underlying file, this region map represents the backing file
860 * pages which have ever had a reservation assigned which this persists even
861 * after the page is instantiated. A private mapping has a region map
862 * associated with the original mmap which is attached to all VMAs which
863 * reference it, this region map represents those offsets which have consumed
864 * reservation ie. where pages have been instantiated.
a1e78772 865 */
e7c4b0bf
AW
866static unsigned long get_vma_private_data(struct vm_area_struct *vma)
867{
868 return (unsigned long)vma->vm_private_data;
869}
870
871static void set_vma_private_data(struct vm_area_struct *vma,
872 unsigned long value)
873{
874 vma->vm_private_data = (void *)value;
875}
876
e9fe92ae
MA
877static void
878resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
879 struct hugetlb_cgroup *h_cg,
880 struct hstate *h)
881{
882#ifdef CONFIG_CGROUP_HUGETLB
883 if (!h_cg || !h) {
884 resv_map->reservation_counter = NULL;
885 resv_map->pages_per_hpage = 0;
886 resv_map->css = NULL;
887 } else {
888 resv_map->reservation_counter =
889 &h_cg->rsvd_hugepage[hstate_index(h)];
890 resv_map->pages_per_hpage = pages_per_huge_page(h);
891 resv_map->css = &h_cg->css;
892 }
893#endif
894}
895
9119a41e 896struct resv_map *resv_map_alloc(void)
84afd99b
AW
897{
898 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
899 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
900
901 if (!resv_map || !rg) {
902 kfree(resv_map);
903 kfree(rg);
84afd99b 904 return NULL;
5e911373 905 }
84afd99b
AW
906
907 kref_init(&resv_map->refs);
7b24d861 908 spin_lock_init(&resv_map->lock);
84afd99b
AW
909 INIT_LIST_HEAD(&resv_map->regions);
910
5e911373 911 resv_map->adds_in_progress = 0;
e9fe92ae
MA
912 /*
913 * Initialize these to 0. On shared mappings, 0's here indicate these
914 * fields don't do cgroup accounting. On private mappings, these will be
915 * re-initialized to the proper values, to indicate that hugetlb cgroup
916 * reservations are to be un-charged from here.
917 */
918 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
919
920 INIT_LIST_HEAD(&resv_map->region_cache);
921 list_add(&rg->link, &resv_map->region_cache);
922 resv_map->region_cache_count = 1;
923
84afd99b
AW
924 return resv_map;
925}
926
9119a41e 927void resv_map_release(struct kref *ref)
84afd99b
AW
928{
929 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
930 struct list_head *head = &resv_map->region_cache;
931 struct file_region *rg, *trg;
84afd99b
AW
932
933 /* Clear out any active regions before we release the map. */
feba16e2 934 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
935
936 /* ... and any entries left in the cache */
937 list_for_each_entry_safe(rg, trg, head, link) {
938 list_del(&rg->link);
939 kfree(rg);
940 }
941
942 VM_BUG_ON(resv_map->adds_in_progress);
943
84afd99b
AW
944 kfree(resv_map);
945}
946
4e35f483
JK
947static inline struct resv_map *inode_resv_map(struct inode *inode)
948{
f27a5136
MK
949 /*
950 * At inode evict time, i_mapping may not point to the original
951 * address space within the inode. This original address space
952 * contains the pointer to the resv_map. So, always use the
953 * address space embedded within the inode.
954 * The VERY common case is inode->mapping == &inode->i_data but,
955 * this may not be true for device special inodes.
956 */
957 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
958}
959
84afd99b 960static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 961{
81d1b09c 962 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
963 if (vma->vm_flags & VM_MAYSHARE) {
964 struct address_space *mapping = vma->vm_file->f_mapping;
965 struct inode *inode = mapping->host;
966
967 return inode_resv_map(inode);
968
969 } else {
84afd99b
AW
970 return (struct resv_map *)(get_vma_private_data(vma) &
971 ~HPAGE_RESV_MASK);
4e35f483 972 }
a1e78772
MG
973}
974
84afd99b 975static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 976{
81d1b09c
SL
977 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
978 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 979
84afd99b
AW
980 set_vma_private_data(vma, (get_vma_private_data(vma) &
981 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
982}
983
984static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
985{
81d1b09c
SL
986 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
987 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
988
989 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
990}
991
992static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
993{
81d1b09c 994 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
995
996 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
997}
998
04f2cbe3 999/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
1000void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1001{
81d1b09c 1002 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 1003 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
1004 vma->vm_private_data = (void *)0;
1005}
1006
1007/* Returns true if the VMA has associated reserve pages */
559ec2f8 1008static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1009{
af0ed73e
JK
1010 if (vma->vm_flags & VM_NORESERVE) {
1011 /*
1012 * This address is already reserved by other process(chg == 0),
1013 * so, we should decrement reserved count. Without decrementing,
1014 * reserve count remains after releasing inode, because this
1015 * allocated page will go into page cache and is regarded as
1016 * coming from reserved pool in releasing step. Currently, we
1017 * don't have any other solution to deal with this situation
1018 * properly, so add work-around here.
1019 */
1020 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1021 return true;
af0ed73e 1022 else
559ec2f8 1023 return false;
af0ed73e 1024 }
a63884e9
JK
1025
1026 /* Shared mappings always use reserves */
1fb1b0e9
MK
1027 if (vma->vm_flags & VM_MAYSHARE) {
1028 /*
1029 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1030 * be a region map for all pages. The only situation where
1031 * there is no region map is if a hole was punched via
7c8de358 1032 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1033 * use. This situation is indicated if chg != 0.
1034 */
1035 if (chg)
1036 return false;
1037 else
1038 return true;
1039 }
a63884e9
JK
1040
1041 /*
1042 * Only the process that called mmap() has reserves for
1043 * private mappings.
1044 */
67961f9d
MK
1045 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1046 /*
1047 * Like the shared case above, a hole punch or truncate
1048 * could have been performed on the private mapping.
1049 * Examine the value of chg to determine if reserves
1050 * actually exist or were previously consumed.
1051 * Very Subtle - The value of chg comes from a previous
1052 * call to vma_needs_reserves(). The reserve map for
1053 * private mappings has different (opposite) semantics
1054 * than that of shared mappings. vma_needs_reserves()
1055 * has already taken this difference in semantics into
1056 * account. Therefore, the meaning of chg is the same
1057 * as in the shared case above. Code could easily be
1058 * combined, but keeping it separate draws attention to
1059 * subtle differences.
1060 */
1061 if (chg)
1062 return false;
1063 else
1064 return true;
1065 }
a63884e9 1066
559ec2f8 1067 return false;
a1e78772
MG
1068}
1069
a5516438 1070static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1071{
1072 int nid = page_to_nid(page);
9487ca60
MK
1073
1074 lockdep_assert_held(&hugetlb_lock);
0edaecfa 1075 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1076 h->free_huge_pages++;
1077 h->free_huge_pages_node[nid]++;
6c037149 1078 SetHPageFreed(page);
1da177e4
LT
1079}
1080
94310cbc 1081static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1082{
1083 struct page *page;
1a08ae36 1084 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1085
9487ca60 1086 lockdep_assert_held(&hugetlb_lock);
bbe88753 1087 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
8e3560d9 1088 if (pin && !is_pinnable_page(page))
bbe88753 1089 continue;
bf50bab2 1090
6664bfc8
WY
1091 if (PageHWPoison(page))
1092 continue;
1093
1094 list_move(&page->lru, &h->hugepage_activelist);
1095 set_page_refcounted(page);
6c037149 1096 ClearHPageFreed(page);
6664bfc8
WY
1097 h->free_huge_pages--;
1098 h->free_huge_pages_node[nid]--;
1099 return page;
bbe88753
JK
1100 }
1101
6664bfc8 1102 return NULL;
bf50bab2
NH
1103}
1104
3e59fcb0
MH
1105static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1106 nodemask_t *nmask)
94310cbc 1107{
3e59fcb0
MH
1108 unsigned int cpuset_mems_cookie;
1109 struct zonelist *zonelist;
1110 struct zone *zone;
1111 struct zoneref *z;
98fa15f3 1112 int node = NUMA_NO_NODE;
94310cbc 1113
3e59fcb0
MH
1114 zonelist = node_zonelist(nid, gfp_mask);
1115
1116retry_cpuset:
1117 cpuset_mems_cookie = read_mems_allowed_begin();
1118 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1119 struct page *page;
1120
1121 if (!cpuset_zone_allowed(zone, gfp_mask))
1122 continue;
1123 /*
1124 * no need to ask again on the same node. Pool is node rather than
1125 * zone aware
1126 */
1127 if (zone_to_nid(zone) == node)
1128 continue;
1129 node = zone_to_nid(zone);
94310cbc 1130
94310cbc
AK
1131 page = dequeue_huge_page_node_exact(h, node);
1132 if (page)
1133 return page;
1134 }
3e59fcb0
MH
1135 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1136 goto retry_cpuset;
1137
94310cbc
AK
1138 return NULL;
1139}
1140
a5516438
AK
1141static struct page *dequeue_huge_page_vma(struct hstate *h,
1142 struct vm_area_struct *vma,
af0ed73e
JK
1143 unsigned long address, int avoid_reserve,
1144 long chg)
1da177e4 1145{
3e59fcb0 1146 struct page *page;
480eccf9 1147 struct mempolicy *mpol;
04ec6264 1148 gfp_t gfp_mask;
3e59fcb0 1149 nodemask_t *nodemask;
04ec6264 1150 int nid;
1da177e4 1151
a1e78772
MG
1152 /*
1153 * A child process with MAP_PRIVATE mappings created by their parent
1154 * have no page reserves. This check ensures that reservations are
1155 * not "stolen". The child may still get SIGKILLed
1156 */
af0ed73e 1157 if (!vma_has_reserves(vma, chg) &&
a5516438 1158 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1159 goto err;
a1e78772 1160
04f2cbe3 1161 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1162 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1163 goto err;
04f2cbe3 1164
04ec6264
VB
1165 gfp_mask = htlb_alloc_mask(h);
1166 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1167 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1168 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1169 SetHPageRestoreReserve(page);
3e59fcb0 1170 h->resv_huge_pages--;
1da177e4 1171 }
cc9a6c87 1172
52cd3b07 1173 mpol_cond_put(mpol);
1da177e4 1174 return page;
cc9a6c87
MG
1175
1176err:
cc9a6c87 1177 return NULL;
1da177e4
LT
1178}
1179
1cac6f2c
LC
1180/*
1181 * common helper functions for hstate_next_node_to_{alloc|free}.
1182 * We may have allocated or freed a huge page based on a different
1183 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1184 * be outside of *nodes_allowed. Ensure that we use an allowed
1185 * node for alloc or free.
1186 */
1187static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1188{
0edaf86c 1189 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1190 VM_BUG_ON(nid >= MAX_NUMNODES);
1191
1192 return nid;
1193}
1194
1195static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1196{
1197 if (!node_isset(nid, *nodes_allowed))
1198 nid = next_node_allowed(nid, nodes_allowed);
1199 return nid;
1200}
1201
1202/*
1203 * returns the previously saved node ["this node"] from which to
1204 * allocate a persistent huge page for the pool and advance the
1205 * next node from which to allocate, handling wrap at end of node
1206 * mask.
1207 */
1208static int hstate_next_node_to_alloc(struct hstate *h,
1209 nodemask_t *nodes_allowed)
1210{
1211 int nid;
1212
1213 VM_BUG_ON(!nodes_allowed);
1214
1215 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1216 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1217
1218 return nid;
1219}
1220
1221/*
10c6ec49 1222 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1223 * node ["this node"] from which to free a huge page. Advance the
1224 * next node id whether or not we find a free huge page to free so
1225 * that the next attempt to free addresses the next node.
1226 */
1227static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1228{
1229 int nid;
1230
1231 VM_BUG_ON(!nodes_allowed);
1232
1233 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1234 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1235
1236 return nid;
1237}
1238
1239#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1240 for (nr_nodes = nodes_weight(*mask); \
1241 nr_nodes > 0 && \
1242 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1243 nr_nodes--)
1244
1245#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1246 for (nr_nodes = nodes_weight(*mask); \
1247 nr_nodes > 0 && \
1248 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1249 nr_nodes--)
1250
e1073d1e 1251#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1252static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1253 unsigned int order)
944d9fec
LC
1254{
1255 int i;
1256 int nr_pages = 1 << order;
1257 struct page *p = page + 1;
1258
c8cc708a 1259 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1260 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1261
944d9fec 1262 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1263 clear_compound_head(p);
944d9fec 1264 set_page_refcounted(p);
944d9fec
LC
1265 }
1266
1267 set_compound_order(page, 0);
ba9c1201 1268 page[1].compound_nr = 0;
944d9fec
LC
1269 __ClearPageHead(page);
1270}
1271
d00181b9 1272static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1273{
cf11e85f
RG
1274 /*
1275 * If the page isn't allocated using the cma allocator,
1276 * cma_release() returns false.
1277 */
dbda8fea
BS
1278#ifdef CONFIG_CMA
1279 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1280 return;
dbda8fea 1281#endif
cf11e85f 1282
944d9fec
LC
1283 free_contig_range(page_to_pfn(page), 1 << order);
1284}
1285
4eb0716e 1286#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1287static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1288 int nid, nodemask_t *nodemask)
944d9fec 1289{
04adbc3f 1290 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1291 if (nid == NUMA_NO_NODE)
1292 nid = numa_mem_id();
944d9fec 1293
dbda8fea
BS
1294#ifdef CONFIG_CMA
1295 {
cf11e85f
RG
1296 struct page *page;
1297 int node;
1298
953f064a
LX
1299 if (hugetlb_cma[nid]) {
1300 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1301 huge_page_order(h), true);
cf11e85f
RG
1302 if (page)
1303 return page;
1304 }
953f064a
LX
1305
1306 if (!(gfp_mask & __GFP_THISNODE)) {
1307 for_each_node_mask(node, *nodemask) {
1308 if (node == nid || !hugetlb_cma[node])
1309 continue;
1310
1311 page = cma_alloc(hugetlb_cma[node], nr_pages,
1312 huge_page_order(h), true);
1313 if (page)
1314 return page;
1315 }
1316 }
cf11e85f 1317 }
dbda8fea 1318#endif
cf11e85f 1319
5e27a2df 1320 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1321}
1322
4eb0716e
AG
1323#else /* !CONFIG_CONTIG_ALLOC */
1324static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1325 int nid, nodemask_t *nodemask)
1326{
1327 return NULL;
1328}
1329#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1330
e1073d1e 1331#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1332static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1333 int nid, nodemask_t *nodemask)
1334{
1335 return NULL;
1336}
d00181b9 1337static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1338static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1339 unsigned int order) { }
944d9fec
LC
1340#endif
1341
6eb4e88a
MK
1342/*
1343 * Remove hugetlb page from lists, and update dtor so that page appears
1344 * as just a compound page. A reference is held on the page.
1345 *
1346 * Must be called with hugetlb lock held.
1347 */
1348static void remove_hugetlb_page(struct hstate *h, struct page *page,
1349 bool adjust_surplus)
1350{
1351 int nid = page_to_nid(page);
1352
1353 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1354 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1355
9487ca60 1356 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1357 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1358 return;
1359
1360 list_del(&page->lru);
1361
1362 if (HPageFreed(page)) {
1363 h->free_huge_pages--;
1364 h->free_huge_pages_node[nid]--;
1365 }
1366 if (adjust_surplus) {
1367 h->surplus_huge_pages--;
1368 h->surplus_huge_pages_node[nid]--;
1369 }
1370
1371 set_page_refcounted(page);
1372 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1373
1374 h->nr_huge_pages--;
1375 h->nr_huge_pages_node[nid]--;
1376}
1377
ad2fa371
MS
1378static void add_hugetlb_page(struct hstate *h, struct page *page,
1379 bool adjust_surplus)
1380{
1381 int zeroed;
1382 int nid = page_to_nid(page);
1383
1384 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1385
1386 lockdep_assert_held(&hugetlb_lock);
1387
1388 INIT_LIST_HEAD(&page->lru);
1389 h->nr_huge_pages++;
1390 h->nr_huge_pages_node[nid]++;
1391
1392 if (adjust_surplus) {
1393 h->surplus_huge_pages++;
1394 h->surplus_huge_pages_node[nid]++;
1395 }
1396
1397 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1398 set_page_private(page, 0);
1399 SetHPageVmemmapOptimized(page);
1400
1401 /*
1402 * This page is now managed by the hugetlb allocator and has
1403 * no users -- drop the last reference.
1404 */
1405 zeroed = put_page_testzero(page);
1406 VM_BUG_ON_PAGE(!zeroed, page);
1407 arch_clear_hugepage_flags(page);
1408 enqueue_huge_page(h, page);
1409}
1410
b65d4adb 1411static void __update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1412{
1413 int i;
dbfee5ae 1414 struct page *subpage = page;
a5516438 1415
4eb0716e 1416 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1417 return;
18229df5 1418
ad2fa371
MS
1419 if (alloc_huge_page_vmemmap(h, page)) {
1420 spin_lock_irq(&hugetlb_lock);
1421 /*
1422 * If we cannot allocate vmemmap pages, just refuse to free the
1423 * page and put the page back on the hugetlb free list and treat
1424 * as a surplus page.
1425 */
1426 add_hugetlb_page(h, page, true);
1427 spin_unlock_irq(&hugetlb_lock);
1428 return;
1429 }
1430
dbfee5ae
MK
1431 for (i = 0; i < pages_per_huge_page(h);
1432 i++, subpage = mem_map_next(subpage, page, i)) {
1433 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1434 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1435 1 << PG_active | 1 << PG_private |
1436 1 << PG_writeback);
6af2acb6 1437 }
944d9fec
LC
1438 if (hstate_is_gigantic(h)) {
1439 destroy_compound_gigantic_page(page, huge_page_order(h));
1440 free_gigantic_page(page, huge_page_order(h));
1441 } else {
944d9fec
LC
1442 __free_pages(page, huge_page_order(h));
1443 }
6af2acb6
AL
1444}
1445
b65d4adb
MS
1446/*
1447 * As update_and_free_page() can be called under any context, so we cannot
1448 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1449 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1450 * the vmemmap pages.
1451 *
1452 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1453 * freed and frees them one-by-one. As the page->mapping pointer is going
1454 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1455 * structure of a lockless linked list of huge pages to be freed.
1456 */
1457static LLIST_HEAD(hpage_freelist);
1458
1459static void free_hpage_workfn(struct work_struct *work)
1460{
1461 struct llist_node *node;
1462
1463 node = llist_del_all(&hpage_freelist);
1464
1465 while (node) {
1466 struct page *page;
1467 struct hstate *h;
1468
1469 page = container_of((struct address_space **)node,
1470 struct page, mapping);
1471 node = node->next;
1472 page->mapping = NULL;
1473 /*
1474 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1475 * is going to trigger because a previous call to
1476 * remove_hugetlb_page() will set_compound_page_dtor(page,
1477 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1478 */
1479 h = size_to_hstate(page_size(page));
1480
1481 __update_and_free_page(h, page);
1482
1483 cond_resched();
1484 }
1485}
1486static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1487
1488static inline void flush_free_hpage_work(struct hstate *h)
1489{
1490 if (free_vmemmap_pages_per_hpage(h))
1491 flush_work(&free_hpage_work);
1492}
1493
1494static void update_and_free_page(struct hstate *h, struct page *page,
1495 bool atomic)
1496{
ad2fa371 1497 if (!HPageVmemmapOptimized(page) || !atomic) {
b65d4adb
MS
1498 __update_and_free_page(h, page);
1499 return;
1500 }
1501
1502 /*
1503 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1504 *
1505 * Only call schedule_work() if hpage_freelist is previously
1506 * empty. Otherwise, schedule_work() had been called but the workfn
1507 * hasn't retrieved the list yet.
1508 */
1509 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1510 schedule_work(&free_hpage_work);
1511}
1512
10c6ec49
MK
1513static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1514{
1515 struct page *page, *t_page;
1516
1517 list_for_each_entry_safe(page, t_page, list, lru) {
b65d4adb 1518 update_and_free_page(h, page, false);
10c6ec49
MK
1519 cond_resched();
1520 }
1521}
1522
e5ff2159
AK
1523struct hstate *size_to_hstate(unsigned long size)
1524{
1525 struct hstate *h;
1526
1527 for_each_hstate(h) {
1528 if (huge_page_size(h) == size)
1529 return h;
1530 }
1531 return NULL;
1532}
1533
db71ef79 1534void free_huge_page(struct page *page)
27a85ef1 1535{
a5516438
AK
1536 /*
1537 * Can't pass hstate in here because it is called from the
1538 * compound page destructor.
1539 */
e5ff2159 1540 struct hstate *h = page_hstate(page);
7893d1d5 1541 int nid = page_to_nid(page);
d6995da3 1542 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1543 bool restore_reserve;
db71ef79 1544 unsigned long flags;
27a85ef1 1545
b4330afb
MK
1546 VM_BUG_ON_PAGE(page_count(page), page);
1547 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1548
d6995da3 1549 hugetlb_set_page_subpool(page, NULL);
8ace22bc 1550 page->mapping = NULL;
d6995da3
MK
1551 restore_reserve = HPageRestoreReserve(page);
1552 ClearHPageRestoreReserve(page);
27a85ef1 1553
1c5ecae3 1554 /*
d6995da3 1555 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1556 * reservation. If the page was associated with a subpool, there
1557 * would have been a page reserved in the subpool before allocation
1558 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1559 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1560 * remove the reserved page from the subpool.
1c5ecae3 1561 */
0919e1b6
MK
1562 if (!restore_reserve) {
1563 /*
1564 * A return code of zero implies that the subpool will be
1565 * under its minimum size if the reservation is not restored
1566 * after page is free. Therefore, force restore_reserve
1567 * operation.
1568 */
1569 if (hugepage_subpool_put_pages(spool, 1) == 0)
1570 restore_reserve = true;
1571 }
1c5ecae3 1572
db71ef79 1573 spin_lock_irqsave(&hugetlb_lock, flags);
8f251a3d 1574 ClearHPageMigratable(page);
6d76dcf4
AK
1575 hugetlb_cgroup_uncharge_page(hstate_index(h),
1576 pages_per_huge_page(h), page);
08cf9faf
MA
1577 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1578 pages_per_huge_page(h), page);
07443a85
JK
1579 if (restore_reserve)
1580 h->resv_huge_pages++;
1581
9157c311 1582 if (HPageTemporary(page)) {
6eb4e88a 1583 remove_hugetlb_page(h, page, false);
db71ef79 1584 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1585 update_and_free_page(h, page, true);
ab5ac90a 1586 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1587 /* remove the page from active list */
6eb4e88a 1588 remove_hugetlb_page(h, page, true);
db71ef79 1589 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1590 update_and_free_page(h, page, true);
7893d1d5 1591 } else {
5d3a551c 1592 arch_clear_hugepage_flags(page);
a5516438 1593 enqueue_huge_page(h, page);
db71ef79 1594 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1595 }
c77c0a8a
WL
1596}
1597
d3d99fcc
OS
1598/*
1599 * Must be called with the hugetlb lock held
1600 */
1601static void __prep_account_new_huge_page(struct hstate *h, int nid)
1602{
1603 lockdep_assert_held(&hugetlb_lock);
1604 h->nr_huge_pages++;
1605 h->nr_huge_pages_node[nid]++;
1606}
1607
f41f2ed4 1608static void __prep_new_huge_page(struct hstate *h, struct page *page)
b7ba30c6 1609{
f41f2ed4 1610 free_huge_page_vmemmap(h, page);
0edaecfa 1611 INIT_LIST_HEAD(&page->lru);
f1e61557 1612 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1613 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1614 set_hugetlb_cgroup(page, NULL);
1adc4d41 1615 set_hugetlb_cgroup_rsvd(page, NULL);
d3d99fcc
OS
1616}
1617
1618static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1619{
f41f2ed4 1620 __prep_new_huge_page(h, page);
db71ef79 1621 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1622 __prep_account_new_huge_page(h, nid);
db71ef79 1623 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1624}
1625
7118fc29 1626static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c 1627{
7118fc29 1628 int i, j;
20a0307c
WF
1629 int nr_pages = 1 << order;
1630 struct page *p = page + 1;
1631
1632 /* we rely on prep_new_huge_page to set the destructor */
1633 set_compound_order(page, order);
ef5a22be 1634 __ClearPageReserved(page);
de09d31d 1635 __SetPageHead(page);
20a0307c 1636 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1637 /*
1638 * For gigantic hugepages allocated through bootmem at
1639 * boot, it's safer to be consistent with the not-gigantic
1640 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1641 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1642 * pages may get the reference counting wrong if they see
1643 * PG_reserved set on a tail page (despite the head page not
1644 * having PG_reserved set). Enforcing this consistency between
1645 * head and tail pages allows drivers to optimize away a check
1646 * on the head page when they need know if put_page() is needed
1647 * after get_user_pages().
1648 */
1649 __ClearPageReserved(p);
7118fc29
MK
1650 /*
1651 * Subtle and very unlikely
1652 *
1653 * Gigantic 'page allocators' such as memblock or cma will
1654 * return a set of pages with each page ref counted. We need
1655 * to turn this set of pages into a compound page with tail
1656 * page ref counts set to zero. Code such as speculative page
1657 * cache adding could take a ref on a 'to be' tail page.
1658 * We need to respect any increased ref count, and only set
1659 * the ref count to zero if count is currently 1. If count
1660 * is not 1, we call synchronize_rcu in the hope that a rcu
1661 * grace period will cause ref count to drop and then retry.
1662 * If count is still inflated on retry we return an error and
1663 * must discard the pages.
1664 */
1665 if (!page_ref_freeze(p, 1)) {
1666 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
1667 synchronize_rcu();
1668 if (!page_ref_freeze(p, 1))
1669 goto out_error;
1670 }
58a84aa9 1671 set_page_count(p, 0);
1d798ca3 1672 set_compound_head(p, page);
20a0307c 1673 }
b4330afb 1674 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1675 atomic_set(compound_pincount_ptr(page), 0);
7118fc29
MK
1676 return true;
1677
1678out_error:
1679 /* undo tail page modifications made above */
1680 p = page + 1;
1681 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1682 clear_compound_head(p);
1683 set_page_refcounted(p);
1684 }
1685 /* need to clear PG_reserved on remaining tail pages */
1686 for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1687 __ClearPageReserved(p);
1688 set_compound_order(page, 0);
1689 page[1].compound_nr = 0;
1690 __ClearPageHead(page);
1691 return false;
20a0307c
WF
1692}
1693
7795912c
AM
1694/*
1695 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1696 * transparent huge pages. See the PageTransHuge() documentation for more
1697 * details.
1698 */
20a0307c
WF
1699int PageHuge(struct page *page)
1700{
20a0307c
WF
1701 if (!PageCompound(page))
1702 return 0;
1703
1704 page = compound_head(page);
f1e61557 1705 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1706}
43131e14
NH
1707EXPORT_SYMBOL_GPL(PageHuge);
1708
27c73ae7
AA
1709/*
1710 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1711 * normal or transparent huge pages.
1712 */
1713int PageHeadHuge(struct page *page_head)
1714{
27c73ae7
AA
1715 if (!PageHead(page_head))
1716 return 0;
1717
d4af73e3 1718 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1719}
27c73ae7 1720
c0d0381a
MK
1721/*
1722 * Find and lock address space (mapping) in write mode.
1723 *
336bf30e
MK
1724 * Upon entry, the page is locked which means that page_mapping() is
1725 * stable. Due to locking order, we can only trylock_write. If we can
1726 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1727 */
1728struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1729{
336bf30e 1730 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1731
c0d0381a
MK
1732 if (!mapping)
1733 return mapping;
1734
c0d0381a
MK
1735 if (i_mmap_trylock_write(mapping))
1736 return mapping;
1737
336bf30e 1738 return NULL;
c0d0381a
MK
1739}
1740
fe19bd3d 1741pgoff_t hugetlb_basepage_index(struct page *page)
13d60f4b
ZY
1742{
1743 struct page *page_head = compound_head(page);
1744 pgoff_t index = page_index(page_head);
1745 unsigned long compound_idx;
1746
13d60f4b
ZY
1747 if (compound_order(page_head) >= MAX_ORDER)
1748 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1749 else
1750 compound_idx = page - page_head;
1751
1752 return (index << compound_order(page_head)) + compound_idx;
1753}
1754
0c397dae 1755static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1756 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1757 nodemask_t *node_alloc_noretry)
1da177e4 1758{
af0fb9df 1759 int order = huge_page_order(h);
1da177e4 1760 struct page *page;
f60858f9 1761 bool alloc_try_hard = true;
f96efd58 1762
f60858f9
MK
1763 /*
1764 * By default we always try hard to allocate the page with
1765 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1766 * a loop (to adjust global huge page counts) and previous allocation
1767 * failed, do not continue to try hard on the same node. Use the
1768 * node_alloc_noretry bitmap to manage this state information.
1769 */
1770 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1771 alloc_try_hard = false;
1772 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1773 if (alloc_try_hard)
1774 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1775 if (nid == NUMA_NO_NODE)
1776 nid = numa_mem_id();
84172f4b 1777 page = __alloc_pages(gfp_mask, order, nid, nmask);
af0fb9df
MH
1778 if (page)
1779 __count_vm_event(HTLB_BUDDY_PGALLOC);
1780 else
1781 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1782
f60858f9
MK
1783 /*
1784 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1785 * indicates an overall state change. Clear bit so that we resume
1786 * normal 'try hard' allocations.
1787 */
1788 if (node_alloc_noretry && page && !alloc_try_hard)
1789 node_clear(nid, *node_alloc_noretry);
1790
1791 /*
1792 * If we tried hard to get a page but failed, set bit so that
1793 * subsequent attempts will not try as hard until there is an
1794 * overall state change.
1795 */
1796 if (node_alloc_noretry && !page && alloc_try_hard)
1797 node_set(nid, *node_alloc_noretry);
1798
63b4613c
NA
1799 return page;
1800}
1801
0c397dae
MH
1802/*
1803 * Common helper to allocate a fresh hugetlb page. All specific allocators
1804 * should use this function to get new hugetlb pages
1805 */
1806static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1807 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1808 nodemask_t *node_alloc_noretry)
0c397dae
MH
1809{
1810 struct page *page;
7118fc29 1811 bool retry = false;
0c397dae 1812
7118fc29 1813retry:
0c397dae
MH
1814 if (hstate_is_gigantic(h))
1815 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1816 else
1817 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1818 nid, nmask, node_alloc_noretry);
0c397dae
MH
1819 if (!page)
1820 return NULL;
1821
7118fc29
MK
1822 if (hstate_is_gigantic(h)) {
1823 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1824 /*
1825 * Rare failure to convert pages to compound page.
1826 * Free pages and try again - ONCE!
1827 */
1828 free_gigantic_page(page, huge_page_order(h));
1829 if (!retry) {
1830 retry = true;
1831 goto retry;
1832 }
1833 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1834 return NULL;
1835 }
1836 }
0c397dae
MH
1837 prep_new_huge_page(h, page, page_to_nid(page));
1838
1839 return page;
1840}
1841
af0fb9df
MH
1842/*
1843 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1844 * manner.
1845 */
f60858f9
MK
1846static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1847 nodemask_t *node_alloc_noretry)
b2261026
JK
1848{
1849 struct page *page;
1850 int nr_nodes, node;
af0fb9df 1851 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1852
1853 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1854 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1855 node_alloc_noretry);
af0fb9df 1856 if (page)
b2261026 1857 break;
b2261026
JK
1858 }
1859
af0fb9df
MH
1860 if (!page)
1861 return 0;
b2261026 1862
af0fb9df
MH
1863 put_page(page); /* free it into the hugepage allocator */
1864
1865 return 1;
b2261026
JK
1866}
1867
e8c5c824 1868/*
10c6ec49
MK
1869 * Remove huge page from pool from next node to free. Attempt to keep
1870 * persistent huge pages more or less balanced over allowed nodes.
1871 * This routine only 'removes' the hugetlb page. The caller must make
1872 * an additional call to free the page to low level allocators.
e8c5c824
LS
1873 * Called with hugetlb_lock locked.
1874 */
10c6ec49
MK
1875static struct page *remove_pool_huge_page(struct hstate *h,
1876 nodemask_t *nodes_allowed,
1877 bool acct_surplus)
e8c5c824 1878{
b2261026 1879 int nr_nodes, node;
10c6ec49 1880 struct page *page = NULL;
e8c5c824 1881
9487ca60 1882 lockdep_assert_held(&hugetlb_lock);
b2261026 1883 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1884 /*
1885 * If we're returning unused surplus pages, only examine
1886 * nodes with surplus pages.
1887 */
b2261026
JK
1888 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1889 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 1890 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 1891 struct page, lru);
6eb4e88a 1892 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 1893 break;
e8c5c824 1894 }
b2261026 1895 }
e8c5c824 1896
10c6ec49 1897 return page;
e8c5c824
LS
1898}
1899
c8721bbb
NH
1900/*
1901 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1902 * nothing for in-use hugepages and non-hugepages.
1903 * This function returns values like below:
1904 *
ad2fa371
MS
1905 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1906 * when the system is under memory pressure and the feature of
1907 * freeing unused vmemmap pages associated with each hugetlb page
1908 * is enabled.
1909 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1910 * (allocated or reserved.)
1911 * 0: successfully dissolved free hugepages or the page is not a
1912 * hugepage (considered as already dissolved)
c8721bbb 1913 */
c3114a84 1914int dissolve_free_huge_page(struct page *page)
c8721bbb 1915{
6bc9b564 1916 int rc = -EBUSY;
082d5b6b 1917
7ffddd49 1918retry:
faf53def
NH
1919 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1920 if (!PageHuge(page))
1921 return 0;
1922
db71ef79 1923 spin_lock_irq(&hugetlb_lock);
faf53def
NH
1924 if (!PageHuge(page)) {
1925 rc = 0;
1926 goto out;
1927 }
1928
1929 if (!page_count(page)) {
2247bb33
GS
1930 struct page *head = compound_head(page);
1931 struct hstate *h = page_hstate(head);
6bc9b564 1932 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1933 goto out;
7ffddd49
MS
1934
1935 /*
1936 * We should make sure that the page is already on the free list
1937 * when it is dissolved.
1938 */
6c037149 1939 if (unlikely(!HPageFreed(head))) {
db71ef79 1940 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
1941 cond_resched();
1942
1943 /*
1944 * Theoretically, we should return -EBUSY when we
1945 * encounter this race. In fact, we have a chance
1946 * to successfully dissolve the page if we do a
1947 * retry. Because the race window is quite small.
1948 * If we seize this opportunity, it is an optimization
1949 * for increasing the success rate of dissolving page.
1950 */
1951 goto retry;
1952 }
1953
0c5da357 1954 remove_hugetlb_page(h, head, false);
c1470b33 1955 h->max_huge_pages--;
db71ef79 1956 spin_unlock_irq(&hugetlb_lock);
ad2fa371
MS
1957
1958 /*
1959 * Normally update_and_free_page will allocate required vmemmmap
1960 * before freeing the page. update_and_free_page will fail to
1961 * free the page if it can not allocate required vmemmap. We
1962 * need to adjust max_huge_pages if the page is not freed.
1963 * Attempt to allocate vmemmmap here so that we can take
1964 * appropriate action on failure.
1965 */
1966 rc = alloc_huge_page_vmemmap(h, head);
1967 if (!rc) {
1968 /*
1969 * Move PageHWPoison flag from head page to the raw
1970 * error page, which makes any subpages rather than
1971 * the error page reusable.
1972 */
1973 if (PageHWPoison(head) && page != head) {
1974 SetPageHWPoison(page);
1975 ClearPageHWPoison(head);
1976 }
1977 update_and_free_page(h, head, false);
1978 } else {
1979 spin_lock_irq(&hugetlb_lock);
1980 add_hugetlb_page(h, head, false);
1981 h->max_huge_pages++;
1982 spin_unlock_irq(&hugetlb_lock);
1983 }
1984
1985 return rc;
c8721bbb 1986 }
082d5b6b 1987out:
db71ef79 1988 spin_unlock_irq(&hugetlb_lock);
082d5b6b 1989 return rc;
c8721bbb
NH
1990}
1991
1992/*
1993 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1994 * make specified memory blocks removable from the system.
2247bb33
GS
1995 * Note that this will dissolve a free gigantic hugepage completely, if any
1996 * part of it lies within the given range.
082d5b6b
GS
1997 * Also note that if dissolve_free_huge_page() returns with an error, all
1998 * free hugepages that were dissolved before that error are lost.
c8721bbb 1999 */
082d5b6b 2000int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 2001{
c8721bbb 2002 unsigned long pfn;
eb03aa00 2003 struct page *page;
082d5b6b 2004 int rc = 0;
c8721bbb 2005
d0177639 2006 if (!hugepages_supported())
082d5b6b 2007 return rc;
d0177639 2008
eb03aa00
GS
2009 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2010 page = pfn_to_page(pfn);
faf53def
NH
2011 rc = dissolve_free_huge_page(page);
2012 if (rc)
2013 break;
eb03aa00 2014 }
082d5b6b
GS
2015
2016 return rc;
c8721bbb
NH
2017}
2018
ab5ac90a
MH
2019/*
2020 * Allocates a fresh surplus page from the page allocator.
2021 */
0c397dae 2022static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 2023 int nid, nodemask_t *nmask)
7893d1d5 2024{
9980d744 2025 struct page *page = NULL;
7893d1d5 2026
bae7f4ae 2027 if (hstate_is_gigantic(h))
aa888a74
AK
2028 return NULL;
2029
db71ef79 2030 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2031 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2032 goto out_unlock;
db71ef79 2033 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 2034
f60858f9 2035 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 2036 if (!page)
0c397dae 2037 return NULL;
d1c3fb1f 2038
db71ef79 2039 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2040 /*
2041 * We could have raced with the pool size change.
2042 * Double check that and simply deallocate the new page
2043 * if we would end up overcommiting the surpluses. Abuse
2044 * temporary page to workaround the nasty free_huge_page
2045 * codeflow
2046 */
2047 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 2048 SetHPageTemporary(page);
db71ef79 2049 spin_unlock_irq(&hugetlb_lock);
9980d744 2050 put_page(page);
2bf753e6 2051 return NULL;
9980d744 2052 } else {
9980d744 2053 h->surplus_huge_pages++;
4704dea3 2054 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 2055 }
9980d744
MH
2056
2057out_unlock:
db71ef79 2058 spin_unlock_irq(&hugetlb_lock);
7893d1d5
AL
2059
2060 return page;
2061}
2062
bbe88753 2063static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 2064 int nid, nodemask_t *nmask)
ab5ac90a
MH
2065{
2066 struct page *page;
2067
2068 if (hstate_is_gigantic(h))
2069 return NULL;
2070
f60858f9 2071 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
2072 if (!page)
2073 return NULL;
2074
2075 /*
2076 * We do not account these pages as surplus because they are only
2077 * temporary and will be released properly on the last reference
2078 */
9157c311 2079 SetHPageTemporary(page);
ab5ac90a
MH
2080
2081 return page;
2082}
2083
099730d6
DH
2084/*
2085 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2086 */
e0ec90ee 2087static
0c397dae 2088struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
2089 struct vm_area_struct *vma, unsigned long addr)
2090{
aaf14e40
MH
2091 struct page *page;
2092 struct mempolicy *mpol;
2093 gfp_t gfp_mask = htlb_alloc_mask(h);
2094 int nid;
2095 nodemask_t *nodemask;
2096
2097 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 2098 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
2099 mpol_cond_put(mpol);
2100
2101 return page;
099730d6
DH
2102}
2103
ab5ac90a 2104/* page migration callback function */
3e59fcb0 2105struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 2106 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 2107{
db71ef79 2108 spin_lock_irq(&hugetlb_lock);
4db9b2ef 2109 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
2110 struct page *page;
2111
2112 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2113 if (page) {
db71ef79 2114 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 2115 return page;
4db9b2ef
MH
2116 }
2117 }
db71ef79 2118 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 2119
0c397dae 2120 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2121}
2122
ebd63723 2123/* mempolicy aware migration callback */
389c8178
MH
2124struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2125 unsigned long address)
ebd63723
MH
2126{
2127 struct mempolicy *mpol;
2128 nodemask_t *nodemask;
2129 struct page *page;
ebd63723
MH
2130 gfp_t gfp_mask;
2131 int node;
2132
ebd63723
MH
2133 gfp_mask = htlb_alloc_mask(h);
2134 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 2135 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
2136 mpol_cond_put(mpol);
2137
2138 return page;
2139}
2140
e4e574b7 2141/*
25985edc 2142 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2143 * of size 'delta'.
2144 */
0a4f3d1b 2145static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 2146 __must_hold(&hugetlb_lock)
e4e574b7
AL
2147{
2148 struct list_head surplus_list;
2149 struct page *page, *tmp;
0a4f3d1b
LX
2150 int ret;
2151 long i;
2152 long needed, allocated;
28073b02 2153 bool alloc_ok = true;
e4e574b7 2154
9487ca60 2155 lockdep_assert_held(&hugetlb_lock);
a5516438 2156 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2157 if (needed <= 0) {
a5516438 2158 h->resv_huge_pages += delta;
e4e574b7 2159 return 0;
ac09b3a1 2160 }
e4e574b7
AL
2161
2162 allocated = 0;
2163 INIT_LIST_HEAD(&surplus_list);
2164
2165 ret = -ENOMEM;
2166retry:
db71ef79 2167 spin_unlock_irq(&hugetlb_lock);
e4e574b7 2168 for (i = 0; i < needed; i++) {
0c397dae 2169 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 2170 NUMA_NO_NODE, NULL);
28073b02
HD
2171 if (!page) {
2172 alloc_ok = false;
2173 break;
2174 }
e4e574b7 2175 list_add(&page->lru, &surplus_list);
69ed779a 2176 cond_resched();
e4e574b7 2177 }
28073b02 2178 allocated += i;
e4e574b7
AL
2179
2180 /*
2181 * After retaking hugetlb_lock, we need to recalculate 'needed'
2182 * because either resv_huge_pages or free_huge_pages may have changed.
2183 */
db71ef79 2184 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2185 needed = (h->resv_huge_pages + delta) -
2186 (h->free_huge_pages + allocated);
28073b02
HD
2187 if (needed > 0) {
2188 if (alloc_ok)
2189 goto retry;
2190 /*
2191 * We were not able to allocate enough pages to
2192 * satisfy the entire reservation so we free what
2193 * we've allocated so far.
2194 */
2195 goto free;
2196 }
e4e574b7
AL
2197 /*
2198 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2199 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2200 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2201 * allocator. Commit the entire reservation here to prevent another
2202 * process from stealing the pages as they are added to the pool but
2203 * before they are reserved.
e4e574b7
AL
2204 */
2205 needed += allocated;
a5516438 2206 h->resv_huge_pages += delta;
e4e574b7 2207 ret = 0;
a9869b83 2208
19fc3f0a 2209 /* Free the needed pages to the hugetlb pool */
e4e574b7 2210 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
e558464b
MS
2211 int zeroed;
2212
19fc3f0a
AL
2213 if ((--needed) < 0)
2214 break;
a9869b83
NH
2215 /*
2216 * This page is now managed by the hugetlb allocator and has
2217 * no users -- drop the buddy allocator's reference.
2218 */
e558464b
MS
2219 zeroed = put_page_testzero(page);
2220 VM_BUG_ON_PAGE(!zeroed, page);
a5516438 2221 enqueue_huge_page(h, page);
19fc3f0a 2222 }
28073b02 2223free:
db71ef79 2224 spin_unlock_irq(&hugetlb_lock);
19fc3f0a
AL
2225
2226 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2227 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2228 put_page(page);
db71ef79 2229 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2230
2231 return ret;
2232}
2233
2234/*
e5bbc8a6
MK
2235 * This routine has two main purposes:
2236 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2237 * in unused_resv_pages. This corresponds to the prior adjustments made
2238 * to the associated reservation map.
2239 * 2) Free any unused surplus pages that may have been allocated to satisfy
2240 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2241 */
a5516438
AK
2242static void return_unused_surplus_pages(struct hstate *h,
2243 unsigned long unused_resv_pages)
e4e574b7 2244{
e4e574b7 2245 unsigned long nr_pages;
10c6ec49
MK
2246 struct page *page;
2247 LIST_HEAD(page_list);
2248
9487ca60 2249 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2250 /* Uncommit the reservation */
2251 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2252
aa888a74 2253 /* Cannot return gigantic pages currently */
bae7f4ae 2254 if (hstate_is_gigantic(h))
e5bbc8a6 2255 goto out;
aa888a74 2256
e5bbc8a6
MK
2257 /*
2258 * Part (or even all) of the reservation could have been backed
2259 * by pre-allocated pages. Only free surplus pages.
2260 */
a5516438 2261 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2262
685f3457
LS
2263 /*
2264 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2265 * evenly across all nodes with memory. Iterate across these nodes
2266 * until we can no longer free unreserved surplus pages. This occurs
2267 * when the nodes with surplus pages have no free pages.
10c6ec49 2268 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2269 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2270 */
2271 while (nr_pages--) {
10c6ec49
MK
2272 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2273 if (!page)
e5bbc8a6 2274 goto out;
10c6ec49
MK
2275
2276 list_add(&page->lru, &page_list);
e4e574b7 2277 }
e5bbc8a6
MK
2278
2279out:
db71ef79 2280 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2281 update_and_free_pages_bulk(h, &page_list);
db71ef79 2282 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2283}
2284
5e911373 2285
c37f9fb1 2286/*
feba16e2 2287 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2288 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2289 *
2290 * vma_needs_reservation is called to determine if the huge page at addr
2291 * within the vma has an associated reservation. If a reservation is
2292 * needed, the value 1 is returned. The caller is then responsible for
2293 * managing the global reservation and subpool usage counts. After
2294 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2295 * to add the page to the reservation map. If the page allocation fails,
2296 * the reservation must be ended instead of committed. vma_end_reservation
2297 * is called in such cases.
cf3ad20b
MK
2298 *
2299 * In the normal case, vma_commit_reservation returns the same value
2300 * as the preceding vma_needs_reservation call. The only time this
2301 * is not the case is if a reserve map was changed between calls. It
2302 * is the responsibility of the caller to notice the difference and
2303 * take appropriate action.
96b96a96
MK
2304 *
2305 * vma_add_reservation is used in error paths where a reservation must
2306 * be restored when a newly allocated huge page must be freed. It is
2307 * to be called after calling vma_needs_reservation to determine if a
2308 * reservation exists.
846be085
MK
2309 *
2310 * vma_del_reservation is used in error paths where an entry in the reserve
2311 * map was created during huge page allocation and must be removed. It is to
2312 * be called after calling vma_needs_reservation to determine if a reservation
2313 * exists.
c37f9fb1 2314 */
5e911373
MK
2315enum vma_resv_mode {
2316 VMA_NEEDS_RESV,
2317 VMA_COMMIT_RESV,
feba16e2 2318 VMA_END_RESV,
96b96a96 2319 VMA_ADD_RESV,
846be085 2320 VMA_DEL_RESV,
5e911373 2321};
cf3ad20b
MK
2322static long __vma_reservation_common(struct hstate *h,
2323 struct vm_area_struct *vma, unsigned long addr,
5e911373 2324 enum vma_resv_mode mode)
c37f9fb1 2325{
4e35f483
JK
2326 struct resv_map *resv;
2327 pgoff_t idx;
cf3ad20b 2328 long ret;
0db9d74e 2329 long dummy_out_regions_needed;
c37f9fb1 2330
4e35f483
JK
2331 resv = vma_resv_map(vma);
2332 if (!resv)
84afd99b 2333 return 1;
c37f9fb1 2334
4e35f483 2335 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2336 switch (mode) {
2337 case VMA_NEEDS_RESV:
0db9d74e
MA
2338 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2339 /* We assume that vma_reservation_* routines always operate on
2340 * 1 page, and that adding to resv map a 1 page entry can only
2341 * ever require 1 region.
2342 */
2343 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2344 break;
2345 case VMA_COMMIT_RESV:
075a61d0 2346 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2347 /* region_add calls of range 1 should never fail. */
2348 VM_BUG_ON(ret < 0);
5e911373 2349 break;
feba16e2 2350 case VMA_END_RESV:
0db9d74e 2351 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2352 ret = 0;
2353 break;
96b96a96 2354 case VMA_ADD_RESV:
0db9d74e 2355 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2356 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2357 /* region_add calls of range 1 should never fail. */
2358 VM_BUG_ON(ret < 0);
2359 } else {
2360 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2361 ret = region_del(resv, idx, idx + 1);
2362 }
2363 break;
846be085
MK
2364 case VMA_DEL_RESV:
2365 if (vma->vm_flags & VM_MAYSHARE) {
2366 region_abort(resv, idx, idx + 1, 1);
2367 ret = region_del(resv, idx, idx + 1);
2368 } else {
2369 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2370 /* region_add calls of range 1 should never fail. */
2371 VM_BUG_ON(ret < 0);
2372 }
2373 break;
5e911373
MK
2374 default:
2375 BUG();
2376 }
84afd99b 2377
846be085 2378 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
cf3ad20b 2379 return ret;
bf3d12b9
ML
2380 /*
2381 * We know private mapping must have HPAGE_RESV_OWNER set.
2382 *
2383 * In most cases, reserves always exist for private mappings.
2384 * However, a file associated with mapping could have been
2385 * hole punched or truncated after reserves were consumed.
2386 * As subsequent fault on such a range will not use reserves.
2387 * Subtle - The reserve map for private mappings has the
2388 * opposite meaning than that of shared mappings. If NO
2389 * entry is in the reserve map, it means a reservation exists.
2390 * If an entry exists in the reserve map, it means the
2391 * reservation has already been consumed. As a result, the
2392 * return value of this routine is the opposite of the
2393 * value returned from reserve map manipulation routines above.
2394 */
2395 if (ret > 0)
2396 return 0;
2397 if (ret == 0)
2398 return 1;
2399 return ret;
c37f9fb1 2400}
cf3ad20b
MK
2401
2402static long vma_needs_reservation(struct hstate *h,
a5516438 2403 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2404{
5e911373 2405 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2406}
84afd99b 2407
cf3ad20b
MK
2408static long vma_commit_reservation(struct hstate *h,
2409 struct vm_area_struct *vma, unsigned long addr)
2410{
5e911373
MK
2411 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2412}
2413
feba16e2 2414static void vma_end_reservation(struct hstate *h,
5e911373
MK
2415 struct vm_area_struct *vma, unsigned long addr)
2416{
feba16e2 2417 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2418}
2419
96b96a96
MK
2420static long vma_add_reservation(struct hstate *h,
2421 struct vm_area_struct *vma, unsigned long addr)
2422{
2423 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2424}
2425
846be085
MK
2426static long vma_del_reservation(struct hstate *h,
2427 struct vm_area_struct *vma, unsigned long addr)
2428{
2429 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2430}
2431
96b96a96 2432/*
846be085
MK
2433 * This routine is called to restore reservation information on error paths.
2434 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2435 * the hugetlb mutex should remain held when calling this routine.
2436 *
2437 * It handles two specific cases:
2438 * 1) A reservation was in place and the page consumed the reservation.
2439 * HPageRestoreReserve is set in the page.
2440 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2441 * not set. However, alloc_huge_page always updates the reserve map.
2442 *
2443 * In case 1, free_huge_page later in the error path will increment the
2444 * global reserve count. But, free_huge_page does not have enough context
2445 * to adjust the reservation map. This case deals primarily with private
2446 * mappings. Adjust the reserve map here to be consistent with global
2447 * reserve count adjustments to be made by free_huge_page. Make sure the
2448 * reserve map indicates there is a reservation present.
2449 *
2450 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
96b96a96 2451 */
846be085
MK
2452void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2453 unsigned long address, struct page *page)
96b96a96 2454{
846be085 2455 long rc = vma_needs_reservation(h, vma, address);
96b96a96 2456
846be085
MK
2457 if (HPageRestoreReserve(page)) {
2458 if (unlikely(rc < 0))
96b96a96
MK
2459 /*
2460 * Rare out of memory condition in reserve map
d6995da3 2461 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2462 * global reserve count will not be incremented
2463 * by free_huge_page. This will make it appear
2464 * as though the reservation for this page was
2465 * consumed. This may prevent the task from
2466 * faulting in the page at a later time. This
2467 * is better than inconsistent global huge page
2468 * accounting of reserve counts.
2469 */
d6995da3 2470 ClearHPageRestoreReserve(page);
846be085
MK
2471 else if (rc)
2472 (void)vma_add_reservation(h, vma, address);
2473 else
2474 vma_end_reservation(h, vma, address);
2475 } else {
2476 if (!rc) {
2477 /*
2478 * This indicates there is an entry in the reserve map
2479 * added by alloc_huge_page. We know it was added
2480 * before the alloc_huge_page call, otherwise
2481 * HPageRestoreReserve would be set on the page.
2482 * Remove the entry so that a subsequent allocation
2483 * does not consume a reservation.
2484 */
2485 rc = vma_del_reservation(h, vma, address);
2486 if (rc < 0)
96b96a96 2487 /*
846be085
MK
2488 * VERY rare out of memory condition. Since
2489 * we can not delete the entry, set
2490 * HPageRestoreReserve so that the reserve
2491 * count will be incremented when the page
2492 * is freed. This reserve will be consumed
2493 * on a subsequent allocation.
96b96a96 2494 */
846be085
MK
2495 SetHPageRestoreReserve(page);
2496 } else if (rc < 0) {
2497 /*
2498 * Rare out of memory condition from
2499 * vma_needs_reservation call. Memory allocation is
2500 * only attempted if a new entry is needed. Therefore,
2501 * this implies there is not an entry in the
2502 * reserve map.
2503 *
2504 * For shared mappings, no entry in the map indicates
2505 * no reservation. We are done.
2506 */
2507 if (!(vma->vm_flags & VM_MAYSHARE))
2508 /*
2509 * For private mappings, no entry indicates
2510 * a reservation is present. Since we can
2511 * not add an entry, set SetHPageRestoreReserve
2512 * on the page so reserve count will be
2513 * incremented when freed. This reserve will
2514 * be consumed on a subsequent allocation.
2515 */
2516 SetHPageRestoreReserve(page);
96b96a96 2517 } else
846be085
MK
2518 /*
2519 * No reservation present, do nothing
2520 */
2521 vma_end_reservation(h, vma, address);
96b96a96
MK
2522 }
2523}
2524
369fa227
OS
2525/*
2526 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2527 * @h: struct hstate old page belongs to
2528 * @old_page: Old page to dissolve
ae37c7ff 2529 * @list: List to isolate the page in case we need to
369fa227
OS
2530 * Returns 0 on success, otherwise negated error.
2531 */
ae37c7ff
OS
2532static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2533 struct list_head *list)
369fa227
OS
2534{
2535 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2536 int nid = page_to_nid(old_page);
2537 struct page *new_page;
2538 int ret = 0;
2539
2540 /*
2541 * Before dissolving the page, we need to allocate a new one for the
f41f2ed4
MS
2542 * pool to remain stable. Here, we allocate the page and 'prep' it
2543 * by doing everything but actually updating counters and adding to
2544 * the pool. This simplifies and let us do most of the processing
2545 * under the lock.
369fa227
OS
2546 */
2547 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2548 if (!new_page)
2549 return -ENOMEM;
f41f2ed4 2550 __prep_new_huge_page(h, new_page);
369fa227
OS
2551
2552retry:
2553 spin_lock_irq(&hugetlb_lock);
2554 if (!PageHuge(old_page)) {
2555 /*
2556 * Freed from under us. Drop new_page too.
2557 */
2558 goto free_new;
2559 } else if (page_count(old_page)) {
2560 /*
ae37c7ff
OS
2561 * Someone has grabbed the page, try to isolate it here.
2562 * Fail with -EBUSY if not possible.
369fa227 2563 */
ae37c7ff
OS
2564 spin_unlock_irq(&hugetlb_lock);
2565 if (!isolate_huge_page(old_page, list))
2566 ret = -EBUSY;
2567 spin_lock_irq(&hugetlb_lock);
369fa227
OS
2568 goto free_new;
2569 } else if (!HPageFreed(old_page)) {
2570 /*
2571 * Page's refcount is 0 but it has not been enqueued in the
2572 * freelist yet. Race window is small, so we can succeed here if
2573 * we retry.
2574 */
2575 spin_unlock_irq(&hugetlb_lock);
2576 cond_resched();
2577 goto retry;
2578 } else {
2579 /*
2580 * Ok, old_page is still a genuine free hugepage. Remove it from
2581 * the freelist and decrease the counters. These will be
2582 * incremented again when calling __prep_account_new_huge_page()
2583 * and enqueue_huge_page() for new_page. The counters will remain
2584 * stable since this happens under the lock.
2585 */
2586 remove_hugetlb_page(h, old_page, false);
2587
2588 /*
369fa227
OS
2589 * Reference count trick is needed because allocator gives us
2590 * referenced page but the pool requires pages with 0 refcount.
2591 */
369fa227
OS
2592 __prep_account_new_huge_page(h, nid);
2593 page_ref_dec(new_page);
2594 enqueue_huge_page(h, new_page);
2595
2596 /*
2597 * Pages have been replaced, we can safely free the old one.
2598 */
2599 spin_unlock_irq(&hugetlb_lock);
b65d4adb 2600 update_and_free_page(h, old_page, false);
369fa227
OS
2601 }
2602
2603 return ret;
2604
2605free_new:
2606 spin_unlock_irq(&hugetlb_lock);
b65d4adb 2607 update_and_free_page(h, new_page, false);
369fa227
OS
2608
2609 return ret;
2610}
2611
ae37c7ff 2612int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2613{
2614 struct hstate *h;
2615 struct page *head;
ae37c7ff 2616 int ret = -EBUSY;
369fa227
OS
2617
2618 /*
2619 * The page might have been dissolved from under our feet, so make sure
2620 * to carefully check the state under the lock.
2621 * Return success when racing as if we dissolved the page ourselves.
2622 */
2623 spin_lock_irq(&hugetlb_lock);
2624 if (PageHuge(page)) {
2625 head = compound_head(page);
2626 h = page_hstate(head);
2627 } else {
2628 spin_unlock_irq(&hugetlb_lock);
2629 return 0;
2630 }
2631 spin_unlock_irq(&hugetlb_lock);
2632
2633 /*
2634 * Fence off gigantic pages as there is a cyclic dependency between
2635 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2636 * of bailing out right away without further retrying.
2637 */
2638 if (hstate_is_gigantic(h))
2639 return -ENOMEM;
2640
ae37c7ff
OS
2641 if (page_count(head) && isolate_huge_page(head, list))
2642 ret = 0;
2643 else if (!page_count(head))
2644 ret = alloc_and_dissolve_huge_page(h, head, list);
2645
2646 return ret;
369fa227
OS
2647}
2648
70c3547e 2649struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2650 unsigned long addr, int avoid_reserve)
1da177e4 2651{
90481622 2652 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2653 struct hstate *h = hstate_vma(vma);
348ea204 2654 struct page *page;
d85f69b0
MK
2655 long map_chg, map_commit;
2656 long gbl_chg;
6d76dcf4
AK
2657 int ret, idx;
2658 struct hugetlb_cgroup *h_cg;
08cf9faf 2659 bool deferred_reserve;
a1e78772 2660
6d76dcf4 2661 idx = hstate_index(h);
a1e78772 2662 /*
d85f69b0
MK
2663 * Examine the region/reserve map to determine if the process
2664 * has a reservation for the page to be allocated. A return
2665 * code of zero indicates a reservation exists (no change).
a1e78772 2666 */
d85f69b0
MK
2667 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2668 if (map_chg < 0)
76dcee75 2669 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2670
2671 /*
2672 * Processes that did not create the mapping will have no
2673 * reserves as indicated by the region/reserve map. Check
2674 * that the allocation will not exceed the subpool limit.
2675 * Allocations for MAP_NORESERVE mappings also need to be
2676 * checked against any subpool limit.
2677 */
2678 if (map_chg || avoid_reserve) {
2679 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2680 if (gbl_chg < 0) {
feba16e2 2681 vma_end_reservation(h, vma, addr);
76dcee75 2682 return ERR_PTR(-ENOSPC);
5e911373 2683 }
1da177e4 2684
d85f69b0
MK
2685 /*
2686 * Even though there was no reservation in the region/reserve
2687 * map, there could be reservations associated with the
2688 * subpool that can be used. This would be indicated if the
2689 * return value of hugepage_subpool_get_pages() is zero.
2690 * However, if avoid_reserve is specified we still avoid even
2691 * the subpool reservations.
2692 */
2693 if (avoid_reserve)
2694 gbl_chg = 1;
2695 }
2696
08cf9faf
MA
2697 /* If this allocation is not consuming a reservation, charge it now.
2698 */
6501fe5f 2699 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2700 if (deferred_reserve) {
2701 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2702 idx, pages_per_huge_page(h), &h_cg);
2703 if (ret)
2704 goto out_subpool_put;
2705 }
2706
6d76dcf4 2707 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2708 if (ret)
08cf9faf 2709 goto out_uncharge_cgroup_reservation;
8f34af6f 2710
db71ef79 2711 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
2712 /*
2713 * glb_chg is passed to indicate whether or not a page must be taken
2714 * from the global free pool (global change). gbl_chg == 0 indicates
2715 * a reservation exists for the allocation.
2716 */
2717 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2718 if (!page) {
db71ef79 2719 spin_unlock_irq(&hugetlb_lock);
0c397dae 2720 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2721 if (!page)
2722 goto out_uncharge_cgroup;
a88c7695 2723 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2724 SetHPageRestoreReserve(page);
a88c7695
NH
2725 h->resv_huge_pages--;
2726 }
db71ef79 2727 spin_lock_irq(&hugetlb_lock);
15a8d68e 2728 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2729 /* Fall through */
68842c9b 2730 }
81a6fcae 2731 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2732 /* If allocation is not consuming a reservation, also store the
2733 * hugetlb_cgroup pointer on the page.
2734 */
2735 if (deferred_reserve) {
2736 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2737 h_cg, page);
2738 }
2739
db71ef79 2740 spin_unlock_irq(&hugetlb_lock);
348ea204 2741
d6995da3 2742 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2743
d85f69b0
MK
2744 map_commit = vma_commit_reservation(h, vma, addr);
2745 if (unlikely(map_chg > map_commit)) {
33039678
MK
2746 /*
2747 * The page was added to the reservation map between
2748 * vma_needs_reservation and vma_commit_reservation.
2749 * This indicates a race with hugetlb_reserve_pages.
2750 * Adjust for the subpool count incremented above AND
2751 * in hugetlb_reserve_pages for the same page. Also,
2752 * the reservation count added in hugetlb_reserve_pages
2753 * no longer applies.
2754 */
2755 long rsv_adjust;
2756
2757 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2758 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2759 if (deferred_reserve)
2760 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2761 pages_per_huge_page(h), page);
33039678 2762 }
90d8b7e6 2763 return page;
8f34af6f
JZ
2764
2765out_uncharge_cgroup:
2766 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2767out_uncharge_cgroup_reservation:
2768 if (deferred_reserve)
2769 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2770 h_cg);
8f34af6f 2771out_subpool_put:
d85f69b0 2772 if (map_chg || avoid_reserve)
8f34af6f 2773 hugepage_subpool_put_pages(spool, 1);
feba16e2 2774 vma_end_reservation(h, vma, addr);
8f34af6f 2775 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2776}
2777
e24a1307
AK
2778int alloc_bootmem_huge_page(struct hstate *h)
2779 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2780int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2781{
2782 struct huge_bootmem_page *m;
b2261026 2783 int nr_nodes, node;
aa888a74 2784
b2261026 2785 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2786 void *addr;
2787
eb31d559 2788 addr = memblock_alloc_try_nid_raw(
8b89a116 2789 huge_page_size(h), huge_page_size(h),
97ad1087 2790 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2791 if (addr) {
2792 /*
2793 * Use the beginning of the huge page to store the
2794 * huge_bootmem_page struct (until gather_bootmem
2795 * puts them into the mem_map).
2796 */
2797 m = addr;
91f47662 2798 goto found;
aa888a74 2799 }
aa888a74
AK
2800 }
2801 return 0;
2802
2803found:
df994ead 2804 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2805 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2806 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2807 list_add(&m->list, &huge_boot_pages);
2808 m->hstate = h;
2809 return 1;
2810}
2811
48b8d744
MK
2812/*
2813 * Put bootmem huge pages into the standard lists after mem_map is up.
2814 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2815 */
aa888a74
AK
2816static void __init gather_bootmem_prealloc(void)
2817{
2818 struct huge_bootmem_page *m;
2819
2820 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2821 struct page *page = virt_to_page(m);
aa888a74 2822 struct hstate *h = m->hstate;
ee8f248d 2823
48b8d744 2824 VM_BUG_ON(!hstate_is_gigantic(h));
aa888a74 2825 WARN_ON(page_count(page) != 1);
7118fc29
MK
2826 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2827 WARN_ON(PageReserved(page));
2828 prep_new_huge_page(h, page, page_to_nid(page));
2829 put_page(page); /* add to the hugepage allocator */
2830 } else {
2831 free_gigantic_page(page, huge_page_order(h));
2832 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2833 }
af0fb9df 2834
b0320c7b 2835 /*
48b8d744
MK
2836 * We need to restore the 'stolen' pages to totalram_pages
2837 * in order to fix confusing memory reports from free(1) and
2838 * other side-effects, like CommitLimit going negative.
b0320c7b 2839 */
48b8d744 2840 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 2841 cond_resched();
aa888a74
AK
2842 }
2843}
2844
8faa8b07 2845static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2846{
2847 unsigned long i;
f60858f9
MK
2848 nodemask_t *node_alloc_noretry;
2849
2850 if (!hstate_is_gigantic(h)) {
2851 /*
2852 * Bit mask controlling how hard we retry per-node allocations.
2853 * Ignore errors as lower level routines can deal with
2854 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2855 * time, we are likely in bigger trouble.
2856 */
2857 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2858 GFP_KERNEL);
2859 } else {
2860 /* allocations done at boot time */
2861 node_alloc_noretry = NULL;
2862 }
2863
2864 /* bit mask controlling how hard we retry per-node allocations */
2865 if (node_alloc_noretry)
2866 nodes_clear(*node_alloc_noretry);
a5516438 2867
e5ff2159 2868 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2869 if (hstate_is_gigantic(h)) {
dbda8fea 2870 if (hugetlb_cma_size) {
cf11e85f 2871 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
7ecc9565 2872 goto free;
cf11e85f 2873 }
aa888a74
AK
2874 if (!alloc_bootmem_huge_page(h))
2875 break;
0c397dae 2876 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2877 &node_states[N_MEMORY],
2878 node_alloc_noretry))
1da177e4 2879 break;
69ed779a 2880 cond_resched();
1da177e4 2881 }
d715cf80
LH
2882 if (i < h->max_huge_pages) {
2883 char buf[32];
2884
c6247f72 2885 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2886 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2887 h->max_huge_pages, buf, i);
2888 h->max_huge_pages = i;
2889 }
7ecc9565 2890free:
f60858f9 2891 kfree(node_alloc_noretry);
e5ff2159
AK
2892}
2893
2894static void __init hugetlb_init_hstates(void)
2895{
2896 struct hstate *h;
2897
2898 for_each_hstate(h) {
641844f5
NH
2899 if (minimum_order > huge_page_order(h))
2900 minimum_order = huge_page_order(h);
2901
8faa8b07 2902 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2903 if (!hstate_is_gigantic(h))
8faa8b07 2904 hugetlb_hstate_alloc_pages(h);
e5ff2159 2905 }
641844f5 2906 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2907}
2908
2909static void __init report_hugepages(void)
2910{
2911 struct hstate *h;
2912
2913 for_each_hstate(h) {
4abd32db 2914 char buf[32];
c6247f72
MW
2915
2916 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2917 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2918 buf, h->free_huge_pages);
e5ff2159
AK
2919 }
2920}
2921
1da177e4 2922#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2923static void try_to_free_low(struct hstate *h, unsigned long count,
2924 nodemask_t *nodes_allowed)
1da177e4 2925{
4415cc8d 2926 int i;
1121828a 2927 LIST_HEAD(page_list);
4415cc8d 2928
9487ca60 2929 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 2930 if (hstate_is_gigantic(h))
aa888a74
AK
2931 return;
2932
1121828a
MK
2933 /*
2934 * Collect pages to be freed on a list, and free after dropping lock
2935 */
6ae11b27 2936 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 2937 struct page *page, *next;
a5516438
AK
2938 struct list_head *freel = &h->hugepage_freelists[i];
2939 list_for_each_entry_safe(page, next, freel, lru) {
2940 if (count >= h->nr_huge_pages)
1121828a 2941 goto out;
1da177e4
LT
2942 if (PageHighMem(page))
2943 continue;
6eb4e88a 2944 remove_hugetlb_page(h, page, false);
1121828a 2945 list_add(&page->lru, &page_list);
1da177e4
LT
2946 }
2947 }
1121828a
MK
2948
2949out:
db71ef79 2950 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2951 update_and_free_pages_bulk(h, &page_list);
db71ef79 2952 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
2953}
2954#else
6ae11b27
LS
2955static inline void try_to_free_low(struct hstate *h, unsigned long count,
2956 nodemask_t *nodes_allowed)
1da177e4
LT
2957{
2958}
2959#endif
2960
20a0307c
WF
2961/*
2962 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2963 * balanced by operating on them in a round-robin fashion.
2964 * Returns 1 if an adjustment was made.
2965 */
6ae11b27
LS
2966static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2967 int delta)
20a0307c 2968{
b2261026 2969 int nr_nodes, node;
20a0307c 2970
9487ca60 2971 lockdep_assert_held(&hugetlb_lock);
20a0307c 2972 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2973
b2261026
JK
2974 if (delta < 0) {
2975 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2976 if (h->surplus_huge_pages_node[node])
2977 goto found;
e8c5c824 2978 }
b2261026
JK
2979 } else {
2980 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2981 if (h->surplus_huge_pages_node[node] <
2982 h->nr_huge_pages_node[node])
2983 goto found;
e8c5c824 2984 }
b2261026
JK
2985 }
2986 return 0;
20a0307c 2987
b2261026
JK
2988found:
2989 h->surplus_huge_pages += delta;
2990 h->surplus_huge_pages_node[node] += delta;
2991 return 1;
20a0307c
WF
2992}
2993
a5516438 2994#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2995static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2996 nodemask_t *nodes_allowed)
1da177e4 2997{
7893d1d5 2998 unsigned long min_count, ret;
10c6ec49
MK
2999 struct page *page;
3000 LIST_HEAD(page_list);
f60858f9
MK
3001 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3002
3003 /*
3004 * Bit mask controlling how hard we retry per-node allocations.
3005 * If we can not allocate the bit mask, do not attempt to allocate
3006 * the requested huge pages.
3007 */
3008 if (node_alloc_noretry)
3009 nodes_clear(*node_alloc_noretry);
3010 else
3011 return -ENOMEM;
1da177e4 3012
29383967
MK
3013 /*
3014 * resize_lock mutex prevents concurrent adjustments to number of
3015 * pages in hstate via the proc/sysfs interfaces.
3016 */
3017 mutex_lock(&h->resize_lock);
b65d4adb 3018 flush_free_hpage_work(h);
db71ef79 3019 spin_lock_irq(&hugetlb_lock);
4eb0716e 3020
fd875dca
MK
3021 /*
3022 * Check for a node specific request.
3023 * Changing node specific huge page count may require a corresponding
3024 * change to the global count. In any case, the passed node mask
3025 * (nodes_allowed) will restrict alloc/free to the specified node.
3026 */
3027 if (nid != NUMA_NO_NODE) {
3028 unsigned long old_count = count;
3029
3030 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3031 /*
3032 * User may have specified a large count value which caused the
3033 * above calculation to overflow. In this case, they wanted
3034 * to allocate as many huge pages as possible. Set count to
3035 * largest possible value to align with their intention.
3036 */
3037 if (count < old_count)
3038 count = ULONG_MAX;
3039 }
3040
4eb0716e
AG
3041 /*
3042 * Gigantic pages runtime allocation depend on the capability for large
3043 * page range allocation.
3044 * If the system does not provide this feature, return an error when
3045 * the user tries to allocate gigantic pages but let the user free the
3046 * boottime allocated gigantic pages.
3047 */
3048 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3049 if (count > persistent_huge_pages(h)) {
db71ef79 3050 spin_unlock_irq(&hugetlb_lock);
29383967 3051 mutex_unlock(&h->resize_lock);
f60858f9 3052 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
3053 return -EINVAL;
3054 }
3055 /* Fall through to decrease pool */
3056 }
aa888a74 3057
7893d1d5
AL
3058 /*
3059 * Increase the pool size
3060 * First take pages out of surplus state. Then make up the
3061 * remaining difference by allocating fresh huge pages.
d1c3fb1f 3062 *
0c397dae 3063 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
3064 * to convert a surplus huge page to a normal huge page. That is
3065 * not critical, though, it just means the overall size of the
3066 * pool might be one hugepage larger than it needs to be, but
3067 * within all the constraints specified by the sysctls.
7893d1d5 3068 */
a5516438 3069 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 3070 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
3071 break;
3072 }
3073
a5516438 3074 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
3075 /*
3076 * If this allocation races such that we no longer need the
3077 * page, free_huge_page will handle it by freeing the page
3078 * and reducing the surplus.
3079 */
db71ef79 3080 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
3081
3082 /* yield cpu to avoid soft lockup */
3083 cond_resched();
3084
f60858f9
MK
3085 ret = alloc_pool_huge_page(h, nodes_allowed,
3086 node_alloc_noretry);
db71ef79 3087 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
3088 if (!ret)
3089 goto out;
3090
536240f2
MG
3091 /* Bail for signals. Probably ctrl-c from user */
3092 if (signal_pending(current))
3093 goto out;
7893d1d5 3094 }
7893d1d5
AL
3095
3096 /*
3097 * Decrease the pool size
3098 * First return free pages to the buddy allocator (being careful
3099 * to keep enough around to satisfy reservations). Then place
3100 * pages into surplus state as needed so the pool will shrink
3101 * to the desired size as pages become free.
d1c3fb1f
NA
3102 *
3103 * By placing pages into the surplus state independent of the
3104 * overcommit value, we are allowing the surplus pool size to
3105 * exceed overcommit. There are few sane options here. Since
0c397dae 3106 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
3107 * though, we'll note that we're not allowed to exceed surplus
3108 * and won't grow the pool anywhere else. Not until one of the
3109 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 3110 */
a5516438 3111 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 3112 min_count = max(count, min_count);
6ae11b27 3113 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
3114
3115 /*
3116 * Collect pages to be removed on list without dropping lock
3117 */
a5516438 3118 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
3119 page = remove_pool_huge_page(h, nodes_allowed, 0);
3120 if (!page)
1da177e4 3121 break;
10c6ec49
MK
3122
3123 list_add(&page->lru, &page_list);
1da177e4 3124 }
10c6ec49 3125 /* free the pages after dropping lock */
db71ef79 3126 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3127 update_and_free_pages_bulk(h, &page_list);
b65d4adb 3128 flush_free_hpage_work(h);
db71ef79 3129 spin_lock_irq(&hugetlb_lock);
10c6ec49 3130
a5516438 3131 while (count < persistent_huge_pages(h)) {
6ae11b27 3132 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
3133 break;
3134 }
3135out:
4eb0716e 3136 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 3137 spin_unlock_irq(&hugetlb_lock);
29383967 3138 mutex_unlock(&h->resize_lock);
4eb0716e 3139
f60858f9
MK
3140 NODEMASK_FREE(node_alloc_noretry);
3141
4eb0716e 3142 return 0;
1da177e4
LT
3143}
3144
a3437870
NA
3145#define HSTATE_ATTR_RO(_name) \
3146 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3147
3148#define HSTATE_ATTR(_name) \
3149 static struct kobj_attribute _name##_attr = \
3150 __ATTR(_name, 0644, _name##_show, _name##_store)
3151
3152static struct kobject *hugepages_kobj;
3153static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3154
9a305230
LS
3155static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3156
3157static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
3158{
3159 int i;
9a305230 3160
a3437870 3161 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
3162 if (hstate_kobjs[i] == kobj) {
3163 if (nidp)
3164 *nidp = NUMA_NO_NODE;
a3437870 3165 return &hstates[i];
9a305230
LS
3166 }
3167
3168 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
3169}
3170
06808b08 3171static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
3172 struct kobj_attribute *attr, char *buf)
3173{
9a305230
LS
3174 struct hstate *h;
3175 unsigned long nr_huge_pages;
3176 int nid;
3177
3178 h = kobj_to_hstate(kobj, &nid);
3179 if (nid == NUMA_NO_NODE)
3180 nr_huge_pages = h->nr_huge_pages;
3181 else
3182 nr_huge_pages = h->nr_huge_pages_node[nid];
3183
ae7a927d 3184 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 3185}
adbe8726 3186
238d3c13
DR
3187static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3188 struct hstate *h, int nid,
3189 unsigned long count, size_t len)
a3437870
NA
3190{
3191 int err;
2d0adf7e 3192 nodemask_t nodes_allowed, *n_mask;
a3437870 3193
2d0adf7e
OS
3194 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3195 return -EINVAL;
adbe8726 3196
9a305230
LS
3197 if (nid == NUMA_NO_NODE) {
3198 /*
3199 * global hstate attribute
3200 */
3201 if (!(obey_mempolicy &&
2d0adf7e
OS
3202 init_nodemask_of_mempolicy(&nodes_allowed)))
3203 n_mask = &node_states[N_MEMORY];
3204 else
3205 n_mask = &nodes_allowed;
3206 } else {
9a305230 3207 /*
fd875dca
MK
3208 * Node specific request. count adjustment happens in
3209 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 3210 */
2d0adf7e
OS
3211 init_nodemask_of_node(&nodes_allowed, nid);
3212 n_mask = &nodes_allowed;
fd875dca 3213 }
9a305230 3214
2d0adf7e 3215 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 3216
4eb0716e 3217 return err ? err : len;
06808b08
LS
3218}
3219
238d3c13
DR
3220static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3221 struct kobject *kobj, const char *buf,
3222 size_t len)
3223{
3224 struct hstate *h;
3225 unsigned long count;
3226 int nid;
3227 int err;
3228
3229 err = kstrtoul(buf, 10, &count);
3230 if (err)
3231 return err;
3232
3233 h = kobj_to_hstate(kobj, &nid);
3234 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3235}
3236
06808b08
LS
3237static ssize_t nr_hugepages_show(struct kobject *kobj,
3238 struct kobj_attribute *attr, char *buf)
3239{
3240 return nr_hugepages_show_common(kobj, attr, buf);
3241}
3242
3243static ssize_t nr_hugepages_store(struct kobject *kobj,
3244 struct kobj_attribute *attr, const char *buf, size_t len)
3245{
238d3c13 3246 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
3247}
3248HSTATE_ATTR(nr_hugepages);
3249
06808b08
LS
3250#ifdef CONFIG_NUMA
3251
3252/*
3253 * hstate attribute for optionally mempolicy-based constraint on persistent
3254 * huge page alloc/free.
3255 */
3256static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3257 struct kobj_attribute *attr,
3258 char *buf)
06808b08
LS
3259{
3260 return nr_hugepages_show_common(kobj, attr, buf);
3261}
3262
3263static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3264 struct kobj_attribute *attr, const char *buf, size_t len)
3265{
238d3c13 3266 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3267}
3268HSTATE_ATTR(nr_hugepages_mempolicy);
3269#endif
3270
3271
a3437870
NA
3272static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3273 struct kobj_attribute *attr, char *buf)
3274{
9a305230 3275 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3276 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3277}
adbe8726 3278
a3437870
NA
3279static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3280 struct kobj_attribute *attr, const char *buf, size_t count)
3281{
3282 int err;
3283 unsigned long input;
9a305230 3284 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3285
bae7f4ae 3286 if (hstate_is_gigantic(h))
adbe8726
EM
3287 return -EINVAL;
3288
3dbb95f7 3289 err = kstrtoul(buf, 10, &input);
a3437870 3290 if (err)
73ae31e5 3291 return err;
a3437870 3292
db71ef79 3293 spin_lock_irq(&hugetlb_lock);
a3437870 3294 h->nr_overcommit_huge_pages = input;
db71ef79 3295 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3296
3297 return count;
3298}
3299HSTATE_ATTR(nr_overcommit_hugepages);
3300
3301static ssize_t free_hugepages_show(struct kobject *kobj,
3302 struct kobj_attribute *attr, char *buf)
3303{
9a305230
LS
3304 struct hstate *h;
3305 unsigned long free_huge_pages;
3306 int nid;
3307
3308 h = kobj_to_hstate(kobj, &nid);
3309 if (nid == NUMA_NO_NODE)
3310 free_huge_pages = h->free_huge_pages;
3311 else
3312 free_huge_pages = h->free_huge_pages_node[nid];
3313
ae7a927d 3314 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3315}
3316HSTATE_ATTR_RO(free_hugepages);
3317
3318static ssize_t resv_hugepages_show(struct kobject *kobj,
3319 struct kobj_attribute *attr, char *buf)
3320{
9a305230 3321 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3322 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3323}
3324HSTATE_ATTR_RO(resv_hugepages);
3325
3326static ssize_t surplus_hugepages_show(struct kobject *kobj,
3327 struct kobj_attribute *attr, char *buf)
3328{
9a305230
LS
3329 struct hstate *h;
3330 unsigned long surplus_huge_pages;
3331 int nid;
3332
3333 h = kobj_to_hstate(kobj, &nid);
3334 if (nid == NUMA_NO_NODE)
3335 surplus_huge_pages = h->surplus_huge_pages;
3336 else
3337 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3338
ae7a927d 3339 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3340}
3341HSTATE_ATTR_RO(surplus_hugepages);
3342
3343static struct attribute *hstate_attrs[] = {
3344 &nr_hugepages_attr.attr,
3345 &nr_overcommit_hugepages_attr.attr,
3346 &free_hugepages_attr.attr,
3347 &resv_hugepages_attr.attr,
3348 &surplus_hugepages_attr.attr,
06808b08
LS
3349#ifdef CONFIG_NUMA
3350 &nr_hugepages_mempolicy_attr.attr,
3351#endif
a3437870
NA
3352 NULL,
3353};
3354
67e5ed96 3355static const struct attribute_group hstate_attr_group = {
a3437870
NA
3356 .attrs = hstate_attrs,
3357};
3358
094e9539
JM
3359static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3360 struct kobject **hstate_kobjs,
67e5ed96 3361 const struct attribute_group *hstate_attr_group)
a3437870
NA
3362{
3363 int retval;
972dc4de 3364 int hi = hstate_index(h);
a3437870 3365
9a305230
LS
3366 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3367 if (!hstate_kobjs[hi])
a3437870
NA
3368 return -ENOMEM;
3369
9a305230 3370 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 3371 if (retval) {
9a305230 3372 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
3373 hstate_kobjs[hi] = NULL;
3374 }
a3437870
NA
3375
3376 return retval;
3377}
3378
3379static void __init hugetlb_sysfs_init(void)
3380{
3381 struct hstate *h;
3382 int err;
3383
3384 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3385 if (!hugepages_kobj)
3386 return;
3387
3388 for_each_hstate(h) {
9a305230
LS
3389 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3390 hstate_kobjs, &hstate_attr_group);
a3437870 3391 if (err)
282f4214 3392 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3393 }
3394}
3395
9a305230
LS
3396#ifdef CONFIG_NUMA
3397
3398/*
3399 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3400 * with node devices in node_devices[] using a parallel array. The array
3401 * index of a node device or _hstate == node id.
3402 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3403 * the base kernel, on the hugetlb module.
3404 */
3405struct node_hstate {
3406 struct kobject *hugepages_kobj;
3407 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3408};
b4e289a6 3409static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3410
3411/*
10fbcf4c 3412 * A subset of global hstate attributes for node devices
9a305230
LS
3413 */
3414static struct attribute *per_node_hstate_attrs[] = {
3415 &nr_hugepages_attr.attr,
3416 &free_hugepages_attr.attr,
3417 &surplus_hugepages_attr.attr,
3418 NULL,
3419};
3420
67e5ed96 3421static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3422 .attrs = per_node_hstate_attrs,
3423};
3424
3425/*
10fbcf4c 3426 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3427 * Returns node id via non-NULL nidp.
3428 */
3429static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3430{
3431 int nid;
3432
3433 for (nid = 0; nid < nr_node_ids; nid++) {
3434 struct node_hstate *nhs = &node_hstates[nid];
3435 int i;
3436 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3437 if (nhs->hstate_kobjs[i] == kobj) {
3438 if (nidp)
3439 *nidp = nid;
3440 return &hstates[i];
3441 }
3442 }
3443
3444 BUG();
3445 return NULL;
3446}
3447
3448/*
10fbcf4c 3449 * Unregister hstate attributes from a single node device.
9a305230
LS
3450 * No-op if no hstate attributes attached.
3451 */
3cd8b44f 3452static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3453{
3454 struct hstate *h;
10fbcf4c 3455 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3456
3457 if (!nhs->hugepages_kobj)
9b5e5d0f 3458 return; /* no hstate attributes */
9a305230 3459
972dc4de
AK
3460 for_each_hstate(h) {
3461 int idx = hstate_index(h);
3462 if (nhs->hstate_kobjs[idx]) {
3463 kobject_put(nhs->hstate_kobjs[idx]);
3464 nhs->hstate_kobjs[idx] = NULL;
9a305230 3465 }
972dc4de 3466 }
9a305230
LS
3467
3468 kobject_put(nhs->hugepages_kobj);
3469 nhs->hugepages_kobj = NULL;
3470}
3471
9a305230
LS
3472
3473/*
10fbcf4c 3474 * Register hstate attributes for a single node device.
9a305230
LS
3475 * No-op if attributes already registered.
3476 */
3cd8b44f 3477static void hugetlb_register_node(struct node *node)
9a305230
LS
3478{
3479 struct hstate *h;
10fbcf4c 3480 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3481 int err;
3482
3483 if (nhs->hugepages_kobj)
3484 return; /* already allocated */
3485
3486 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3487 &node->dev.kobj);
9a305230
LS
3488 if (!nhs->hugepages_kobj)
3489 return;
3490
3491 for_each_hstate(h) {
3492 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3493 nhs->hstate_kobjs,
3494 &per_node_hstate_attr_group);
3495 if (err) {
282f4214 3496 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3497 h->name, node->dev.id);
9a305230
LS
3498 hugetlb_unregister_node(node);
3499 break;
3500 }
3501 }
3502}
3503
3504/*
9b5e5d0f 3505 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3506 * devices of nodes that have memory. All on-line nodes should have
3507 * registered their associated device by this time.
9a305230 3508 */
7d9ca000 3509static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3510{
3511 int nid;
3512
8cebfcd0 3513 for_each_node_state(nid, N_MEMORY) {
8732794b 3514 struct node *node = node_devices[nid];
10fbcf4c 3515 if (node->dev.id == nid)
9a305230
LS
3516 hugetlb_register_node(node);
3517 }
3518
3519 /*
10fbcf4c 3520 * Let the node device driver know we're here so it can
9a305230
LS
3521 * [un]register hstate attributes on node hotplug.
3522 */
3523 register_hugetlbfs_with_node(hugetlb_register_node,
3524 hugetlb_unregister_node);
3525}
3526#else /* !CONFIG_NUMA */
3527
3528static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3529{
3530 BUG();
3531 if (nidp)
3532 *nidp = -1;
3533 return NULL;
3534}
3535
9a305230
LS
3536static void hugetlb_register_all_nodes(void) { }
3537
3538#endif
3539
a3437870
NA
3540static int __init hugetlb_init(void)
3541{
8382d914
DB
3542 int i;
3543
d6995da3
MK
3544 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3545 __NR_HPAGEFLAGS);
3546
c2833a5b
MK
3547 if (!hugepages_supported()) {
3548 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3549 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3550 return 0;
c2833a5b 3551 }
a3437870 3552
282f4214
MK
3553 /*
3554 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3555 * architectures depend on setup being done here.
3556 */
3557 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3558 if (!parsed_default_hugepagesz) {
3559 /*
3560 * If we did not parse a default huge page size, set
3561 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3562 * number of huge pages for this default size was implicitly
3563 * specified, set that here as well.
3564 * Note that the implicit setting will overwrite an explicit
3565 * setting. A warning will be printed in this case.
3566 */
3567 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3568 if (default_hstate_max_huge_pages) {
3569 if (default_hstate.max_huge_pages) {
3570 char buf[32];
3571
3572 string_get_size(huge_page_size(&default_hstate),
3573 1, STRING_UNITS_2, buf, 32);
3574 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3575 default_hstate.max_huge_pages, buf);
3576 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3577 default_hstate_max_huge_pages);
3578 }
3579 default_hstate.max_huge_pages =
3580 default_hstate_max_huge_pages;
d715cf80 3581 }
f8b74815 3582 }
a3437870 3583
cf11e85f 3584 hugetlb_cma_check();
a3437870 3585 hugetlb_init_hstates();
aa888a74 3586 gather_bootmem_prealloc();
a3437870
NA
3587 report_hugepages();
3588
3589 hugetlb_sysfs_init();
9a305230 3590 hugetlb_register_all_nodes();
7179e7bf 3591 hugetlb_cgroup_file_init();
9a305230 3592
8382d914
DB
3593#ifdef CONFIG_SMP
3594 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3595#else
3596 num_fault_mutexes = 1;
3597#endif
c672c7f2 3598 hugetlb_fault_mutex_table =
6da2ec56
KC
3599 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3600 GFP_KERNEL);
c672c7f2 3601 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3602
3603 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3604 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3605 return 0;
3606}
3e89e1c5 3607subsys_initcall(hugetlb_init);
a3437870 3608
ae94da89
MK
3609/* Overwritten by architectures with more huge page sizes */
3610bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3611{
ae94da89 3612 return size == HPAGE_SIZE;
9fee021d
VT
3613}
3614
d00181b9 3615void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3616{
3617 struct hstate *h;
8faa8b07
AK
3618 unsigned long i;
3619
a3437870 3620 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3621 return;
3622 }
47d38344 3623 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3624 BUG_ON(order == 0);
47d38344 3625 h = &hstates[hugetlb_max_hstate++];
29383967 3626 mutex_init(&h->resize_lock);
a3437870 3627 h->order = order;
aca78307 3628 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
3629 for (i = 0; i < MAX_NUMNODES; ++i)
3630 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3631 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3632 h->next_nid_to_alloc = first_memory_node;
3633 h->next_nid_to_free = first_memory_node;
a3437870
NA
3634 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3635 huge_page_size(h)/1024);
77490587 3636 hugetlb_vmemmap_init(h);
8faa8b07 3637
a3437870
NA
3638 parsed_hstate = h;
3639}
3640
282f4214
MK
3641/*
3642 * hugepages command line processing
3643 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3644 * specification. If not, ignore the hugepages value. hugepages can also
3645 * be the first huge page command line option in which case it implicitly
3646 * specifies the number of huge pages for the default size.
3647 */
3648static int __init hugepages_setup(char *s)
a3437870
NA
3649{
3650 unsigned long *mhp;
8faa8b07 3651 static unsigned long *last_mhp;
a3437870 3652
9fee021d 3653 if (!parsed_valid_hugepagesz) {
282f4214 3654 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3655 parsed_valid_hugepagesz = true;
282f4214 3656 return 0;
9fee021d 3657 }
282f4214 3658
a3437870 3659 /*
282f4214
MK
3660 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3661 * yet, so this hugepages= parameter goes to the "default hstate".
3662 * Otherwise, it goes with the previously parsed hugepagesz or
3663 * default_hugepagesz.
a3437870 3664 */
9fee021d 3665 else if (!hugetlb_max_hstate)
a3437870
NA
3666 mhp = &default_hstate_max_huge_pages;
3667 else
3668 mhp = &parsed_hstate->max_huge_pages;
3669
8faa8b07 3670 if (mhp == last_mhp) {
282f4214
MK
3671 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3672 return 0;
8faa8b07
AK
3673 }
3674
a3437870
NA
3675 if (sscanf(s, "%lu", mhp) <= 0)
3676 *mhp = 0;
3677
8faa8b07
AK
3678 /*
3679 * Global state is always initialized later in hugetlb_init.
04adbc3f 3680 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
3681 * use the bootmem allocator.
3682 */
04adbc3f 3683 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
3684 hugetlb_hstate_alloc_pages(parsed_hstate);
3685
3686 last_mhp = mhp;
3687
a3437870
NA
3688 return 1;
3689}
282f4214 3690__setup("hugepages=", hugepages_setup);
e11bfbfc 3691
282f4214
MK
3692/*
3693 * hugepagesz command line processing
3694 * A specific huge page size can only be specified once with hugepagesz.
3695 * hugepagesz is followed by hugepages on the command line. The global
3696 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3697 * hugepagesz argument was valid.
3698 */
359f2544 3699static int __init hugepagesz_setup(char *s)
e11bfbfc 3700{
359f2544 3701 unsigned long size;
282f4214
MK
3702 struct hstate *h;
3703
3704 parsed_valid_hugepagesz = false;
359f2544
MK
3705 size = (unsigned long)memparse(s, NULL);
3706
3707 if (!arch_hugetlb_valid_size(size)) {
282f4214 3708 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3709 return 0;
3710 }
3711
282f4214
MK
3712 h = size_to_hstate(size);
3713 if (h) {
3714 /*
3715 * hstate for this size already exists. This is normally
3716 * an error, but is allowed if the existing hstate is the
3717 * default hstate. More specifically, it is only allowed if
3718 * the number of huge pages for the default hstate was not
3719 * previously specified.
3720 */
3721 if (!parsed_default_hugepagesz || h != &default_hstate ||
3722 default_hstate.max_huge_pages) {
3723 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3724 return 0;
3725 }
3726
3727 /*
3728 * No need to call hugetlb_add_hstate() as hstate already
3729 * exists. But, do set parsed_hstate so that a following
3730 * hugepages= parameter will be applied to this hstate.
3731 */
3732 parsed_hstate = h;
3733 parsed_valid_hugepagesz = true;
3734 return 1;
38237830
MK
3735 }
3736
359f2544 3737 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3738 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3739 return 1;
3740}
359f2544
MK
3741__setup("hugepagesz=", hugepagesz_setup);
3742
282f4214
MK
3743/*
3744 * default_hugepagesz command line input
3745 * Only one instance of default_hugepagesz allowed on command line.
3746 */
ae94da89 3747static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3748{
ae94da89
MK
3749 unsigned long size;
3750
282f4214 3751 parsed_valid_hugepagesz = false;
282f4214
MK
3752 if (parsed_default_hugepagesz) {
3753 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3754 return 0;
3755 }
3756
ae94da89
MK
3757 size = (unsigned long)memparse(s, NULL);
3758
3759 if (!arch_hugetlb_valid_size(size)) {
282f4214 3760 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3761 return 0;
3762 }
3763
282f4214
MK
3764 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3765 parsed_valid_hugepagesz = true;
3766 parsed_default_hugepagesz = true;
3767 default_hstate_idx = hstate_index(size_to_hstate(size));
3768
3769 /*
3770 * The number of default huge pages (for this size) could have been
3771 * specified as the first hugetlb parameter: hugepages=X. If so,
3772 * then default_hstate_max_huge_pages is set. If the default huge
3773 * page size is gigantic (>= MAX_ORDER), then the pages must be
3774 * allocated here from bootmem allocator.
3775 */
3776 if (default_hstate_max_huge_pages) {
3777 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3778 if (hstate_is_gigantic(&default_hstate))
3779 hugetlb_hstate_alloc_pages(&default_hstate);
3780 default_hstate_max_huge_pages = 0;
3781 }
3782
e11bfbfc
NP
3783 return 1;
3784}
ae94da89 3785__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3786
8ca39e68 3787static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3788{
3789 int node;
3790 unsigned int nr = 0;
8ca39e68
MS
3791 nodemask_t *mpol_allowed;
3792 unsigned int *array = h->free_huge_pages_node;
3793 gfp_t gfp_mask = htlb_alloc_mask(h);
3794
3795 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3796
8ca39e68 3797 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 3798 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
3799 nr += array[node];
3800 }
8a213460
NA
3801
3802 return nr;
3803}
3804
3805#ifdef CONFIG_SYSCTL
17743798
MS
3806static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3807 void *buffer, size_t *length,
3808 loff_t *ppos, unsigned long *out)
3809{
3810 struct ctl_table dup_table;
3811
3812 /*
3813 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3814 * can duplicate the @table and alter the duplicate of it.
3815 */
3816 dup_table = *table;
3817 dup_table.data = out;
3818
3819 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3820}
3821
06808b08
LS
3822static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3823 struct ctl_table *table, int write,
32927393 3824 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3825{
e5ff2159 3826 struct hstate *h = &default_hstate;
238d3c13 3827 unsigned long tmp = h->max_huge_pages;
08d4a246 3828 int ret;
e5ff2159 3829
457c1b27 3830 if (!hugepages_supported())
86613628 3831 return -EOPNOTSUPP;
457c1b27 3832
17743798
MS
3833 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3834 &tmp);
08d4a246
MH
3835 if (ret)
3836 goto out;
e5ff2159 3837
238d3c13
DR
3838 if (write)
3839 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3840 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3841out:
3842 return ret;
1da177e4 3843}
396faf03 3844
06808b08 3845int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3846 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3847{
3848
3849 return hugetlb_sysctl_handler_common(false, table, write,
3850 buffer, length, ppos);
3851}
3852
3853#ifdef CONFIG_NUMA
3854int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3855 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3856{
3857 return hugetlb_sysctl_handler_common(true, table, write,
3858 buffer, length, ppos);
3859}
3860#endif /* CONFIG_NUMA */
3861
a3d0c6aa 3862int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3863 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3864{
a5516438 3865 struct hstate *h = &default_hstate;
e5ff2159 3866 unsigned long tmp;
08d4a246 3867 int ret;
e5ff2159 3868
457c1b27 3869 if (!hugepages_supported())
86613628 3870 return -EOPNOTSUPP;
457c1b27 3871
c033a93c 3872 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3873
bae7f4ae 3874 if (write && hstate_is_gigantic(h))
adbe8726
EM
3875 return -EINVAL;
3876
17743798
MS
3877 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3878 &tmp);
08d4a246
MH
3879 if (ret)
3880 goto out;
e5ff2159
AK
3881
3882 if (write) {
db71ef79 3883 spin_lock_irq(&hugetlb_lock);
e5ff2159 3884 h->nr_overcommit_huge_pages = tmp;
db71ef79 3885 spin_unlock_irq(&hugetlb_lock);
e5ff2159 3886 }
08d4a246
MH
3887out:
3888 return ret;
a3d0c6aa
NA
3889}
3890
1da177e4
LT
3891#endif /* CONFIG_SYSCTL */
3892
e1759c21 3893void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3894{
fcb2b0c5
RG
3895 struct hstate *h;
3896 unsigned long total = 0;
3897
457c1b27
NA
3898 if (!hugepages_supported())
3899 return;
fcb2b0c5
RG
3900
3901 for_each_hstate(h) {
3902 unsigned long count = h->nr_huge_pages;
3903
aca78307 3904 total += huge_page_size(h) * count;
fcb2b0c5
RG
3905
3906 if (h == &default_hstate)
3907 seq_printf(m,
3908 "HugePages_Total: %5lu\n"
3909 "HugePages_Free: %5lu\n"
3910 "HugePages_Rsvd: %5lu\n"
3911 "HugePages_Surp: %5lu\n"
3912 "Hugepagesize: %8lu kB\n",
3913 count,
3914 h->free_huge_pages,
3915 h->resv_huge_pages,
3916 h->surplus_huge_pages,
aca78307 3917 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
3918 }
3919
aca78307 3920 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
3921}
3922
7981593b 3923int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3924{
a5516438 3925 struct hstate *h = &default_hstate;
7981593b 3926
457c1b27
NA
3927 if (!hugepages_supported())
3928 return 0;
7981593b
JP
3929
3930 return sysfs_emit_at(buf, len,
3931 "Node %d HugePages_Total: %5u\n"
3932 "Node %d HugePages_Free: %5u\n"
3933 "Node %d HugePages_Surp: %5u\n",
3934 nid, h->nr_huge_pages_node[nid],
3935 nid, h->free_huge_pages_node[nid],
3936 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3937}
3938
949f7ec5
DR
3939void hugetlb_show_meminfo(void)
3940{
3941 struct hstate *h;
3942 int nid;
3943
457c1b27
NA
3944 if (!hugepages_supported())
3945 return;
3946
949f7ec5
DR
3947 for_each_node_state(nid, N_MEMORY)
3948 for_each_hstate(h)
3949 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3950 nid,
3951 h->nr_huge_pages_node[nid],
3952 h->free_huge_pages_node[nid],
3953 h->surplus_huge_pages_node[nid],
aca78307 3954 huge_page_size(h) / SZ_1K);
949f7ec5
DR
3955}
3956
5d317b2b
NH
3957void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3958{
3959 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3960 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3961}
3962
1da177e4
LT
3963/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3964unsigned long hugetlb_total_pages(void)
3965{
d0028588
WL
3966 struct hstate *h;
3967 unsigned long nr_total_pages = 0;
3968
3969 for_each_hstate(h)
3970 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3971 return nr_total_pages;
1da177e4 3972}
1da177e4 3973
a5516438 3974static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3975{
3976 int ret = -ENOMEM;
3977
0aa7f354
ML
3978 if (!delta)
3979 return 0;
3980
db71ef79 3981 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
3982 /*
3983 * When cpuset is configured, it breaks the strict hugetlb page
3984 * reservation as the accounting is done on a global variable. Such
3985 * reservation is completely rubbish in the presence of cpuset because
3986 * the reservation is not checked against page availability for the
3987 * current cpuset. Application can still potentially OOM'ed by kernel
3988 * with lack of free htlb page in cpuset that the task is in.
3989 * Attempt to enforce strict accounting with cpuset is almost
3990 * impossible (or too ugly) because cpuset is too fluid that
3991 * task or memory node can be dynamically moved between cpusets.
3992 *
3993 * The change of semantics for shared hugetlb mapping with cpuset is
3994 * undesirable. However, in order to preserve some of the semantics,
3995 * we fall back to check against current free page availability as
3996 * a best attempt and hopefully to minimize the impact of changing
3997 * semantics that cpuset has.
8ca39e68
MS
3998 *
3999 * Apart from cpuset, we also have memory policy mechanism that
4000 * also determines from which node the kernel will allocate memory
4001 * in a NUMA system. So similar to cpuset, we also should consider
4002 * the memory policy of the current task. Similar to the description
4003 * above.
fc1b8a73
MG
4004 */
4005 if (delta > 0) {
a5516438 4006 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
4007 goto out;
4008
8ca39e68 4009 if (delta > allowed_mems_nr(h)) {
a5516438 4010 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
4011 goto out;
4012 }
4013 }
4014
4015 ret = 0;
4016 if (delta < 0)
a5516438 4017 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
4018
4019out:
db71ef79 4020 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
4021 return ret;
4022}
4023
84afd99b
AW
4024static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4025{
f522c3ac 4026 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
4027
4028 /*
4029 * This new VMA should share its siblings reservation map if present.
4030 * The VMA will only ever have a valid reservation map pointer where
4031 * it is being copied for another still existing VMA. As that VMA
25985edc 4032 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
4033 * after this open call completes. It is therefore safe to take a
4034 * new reference here without additional locking.
4035 */
4e35f483 4036 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 4037 kref_get(&resv->refs);
84afd99b
AW
4038}
4039
a1e78772
MG
4040static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4041{
a5516438 4042 struct hstate *h = hstate_vma(vma);
f522c3ac 4043 struct resv_map *resv = vma_resv_map(vma);
90481622 4044 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 4045 unsigned long reserve, start, end;
1c5ecae3 4046 long gbl_reserve;
84afd99b 4047
4e35f483
JK
4048 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4049 return;
84afd99b 4050
4e35f483
JK
4051 start = vma_hugecache_offset(h, vma, vma->vm_start);
4052 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 4053
4e35f483 4054 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 4055 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 4056 if (reserve) {
1c5ecae3
MK
4057 /*
4058 * Decrement reserve counts. The global reserve count may be
4059 * adjusted if the subpool has a minimum size.
4060 */
4061 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4062 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 4063 }
e9fe92ae
MA
4064
4065 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
4066}
4067
31383c68
DW
4068static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4069{
4070 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4071 return -EINVAL;
4072 return 0;
4073}
4074
05ea8860
DW
4075static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4076{
aca78307 4077 return huge_page_size(hstate_vma(vma));
05ea8860
DW
4078}
4079
1da177e4
LT
4080/*
4081 * We cannot handle pagefaults against hugetlb pages at all. They cause
4082 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 4083 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
4084 * this far.
4085 */
b3ec9f33 4086static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
4087{
4088 BUG();
d0217ac0 4089 return 0;
1da177e4
LT
4090}
4091
eec3636a
JC
4092/*
4093 * When a new function is introduced to vm_operations_struct and added
4094 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4095 * This is because under System V memory model, mappings created via
4096 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4097 * their original vm_ops are overwritten with shm_vm_ops.
4098 */
f0f37e2f 4099const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 4100 .fault = hugetlb_vm_op_fault,
84afd99b 4101 .open = hugetlb_vm_op_open,
a1e78772 4102 .close = hugetlb_vm_op_close,
dd3b614f 4103 .may_split = hugetlb_vm_op_split,
05ea8860 4104 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
4105};
4106
1e8f889b
DG
4107static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4108 int writable)
63551ae0
DG
4109{
4110 pte_t entry;
79c1c594 4111 unsigned int shift = huge_page_shift(hstate_vma(vma));
63551ae0 4112
1e8f889b 4113 if (writable) {
106c992a
GS
4114 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4115 vma->vm_page_prot)));
63551ae0 4116 } else {
106c992a
GS
4117 entry = huge_pte_wrprotect(mk_huge_pte(page,
4118 vma->vm_page_prot));
63551ae0
DG
4119 }
4120 entry = pte_mkyoung(entry);
4121 entry = pte_mkhuge(entry);
79c1c594 4122 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
63551ae0
DG
4123
4124 return entry;
4125}
4126
1e8f889b
DG
4127static void set_huge_ptep_writable(struct vm_area_struct *vma,
4128 unsigned long address, pte_t *ptep)
4129{
4130 pte_t entry;
4131
106c992a 4132 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 4133 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 4134 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
4135}
4136
d5ed7444 4137bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
4138{
4139 swp_entry_t swp;
4140
4141 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 4142 return false;
4a705fef 4143 swp = pte_to_swp_entry(pte);
d79d176a 4144 if (is_migration_entry(swp))
d5ed7444 4145 return true;
4a705fef 4146 else
d5ed7444 4147 return false;
4a705fef
NH
4148}
4149
3e5c3600 4150static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
4151{
4152 swp_entry_t swp;
4153
4154 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 4155 return false;
4a705fef 4156 swp = pte_to_swp_entry(pte);
d79d176a 4157 if (is_hwpoison_entry(swp))
3e5c3600 4158 return true;
4a705fef 4159 else
3e5c3600 4160 return false;
4a705fef 4161}
1e8f889b 4162
4eae4efa
PX
4163static void
4164hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4165 struct page *new_page)
4166{
4167 __SetPageUptodate(new_page);
4168 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4169 hugepage_add_new_anon_rmap(new_page, vma, addr);
4170 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4171 ClearHPageRestoreReserve(new_page);
4172 SetHPageMigratable(new_page);
4173}
4174
63551ae0
DG
4175int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4176 struct vm_area_struct *vma)
4177{
5e41540c 4178 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 4179 struct page *ptepage;
1c59827d 4180 unsigned long addr;
ca6eb14d 4181 bool cow = is_cow_mapping(vma->vm_flags);
a5516438
AK
4182 struct hstate *h = hstate_vma(vma);
4183 unsigned long sz = huge_page_size(h);
4eae4efa 4184 unsigned long npages = pages_per_huge_page(h);
c0d0381a 4185 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 4186 struct mmu_notifier_range range;
e8569dd2 4187 int ret = 0;
1e8f889b 4188
ac46d4f3 4189 if (cow) {
7269f999 4190 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 4191 vma->vm_start,
ac46d4f3
JG
4192 vma->vm_end);
4193 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
4194 } else {
4195 /*
4196 * For shared mappings i_mmap_rwsem must be held to call
4197 * huge_pte_alloc, otherwise the returned ptep could go
4198 * away if part of a shared pmd and another thread calls
4199 * huge_pmd_unshare.
4200 */
4201 i_mmap_lock_read(mapping);
ac46d4f3 4202 }
e8569dd2 4203
a5516438 4204 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 4205 spinlock_t *src_ptl, *dst_ptl;
7868a208 4206 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
4207 if (!src_pte)
4208 continue;
aec44e0f 4209 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
e8569dd2
AS
4210 if (!dst_pte) {
4211 ret = -ENOMEM;
4212 break;
4213 }
c5c99429 4214
5e41540c
MK
4215 /*
4216 * If the pagetables are shared don't copy or take references.
4217 * dst_pte == src_pte is the common case of src/dest sharing.
4218 *
4219 * However, src could have 'unshared' and dst shares with
4220 * another vma. If dst_pte !none, this implies sharing.
4221 * Check here before taking page table lock, and once again
4222 * after taking the lock below.
4223 */
4224 dst_entry = huge_ptep_get(dst_pte);
4225 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
4226 continue;
4227
cb900f41
KS
4228 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4229 src_ptl = huge_pte_lockptr(h, src, src_pte);
4230 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 4231 entry = huge_ptep_get(src_pte);
5e41540c 4232 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 4233again:
5e41540c
MK
4234 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4235 /*
4236 * Skip if src entry none. Also, skip in the
4237 * unlikely case dst entry !none as this implies
4238 * sharing with another vma.
4239 */
4a705fef
NH
4240 ;
4241 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4242 is_hugetlb_entry_hwpoisoned(entry))) {
4243 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4244
4245 if (is_write_migration_entry(swp_entry) && cow) {
4246 /*
4247 * COW mappings require pages in both
4248 * parent and child to be set to read.
4249 */
4250 make_migration_entry_read(&swp_entry);
4251 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
4252 set_huge_swap_pte_at(src, addr, src_pte,
4253 entry, sz);
4a705fef 4254 }
e5251fd4 4255 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 4256 } else {
4eae4efa
PX
4257 entry = huge_ptep_get(src_pte);
4258 ptepage = pte_page(entry);
4259 get_page(ptepage);
4260
4261 /*
4262 * This is a rare case where we see pinned hugetlb
4263 * pages while they're prone to COW. We need to do the
4264 * COW earlier during fork.
4265 *
4266 * When pre-allocating the page or copying data, we
4267 * need to be without the pgtable locks since we could
4268 * sleep during the process.
4269 */
4270 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4271 pte_t src_pte_old = entry;
4272 struct page *new;
4273
4274 spin_unlock(src_ptl);
4275 spin_unlock(dst_ptl);
4276 /* Do not use reserve as it's private owned */
4277 new = alloc_huge_page(vma, addr, 1);
4278 if (IS_ERR(new)) {
4279 put_page(ptepage);
4280 ret = PTR_ERR(new);
4281 break;
4282 }
4283 copy_user_huge_page(new, ptepage, addr, vma,
4284 npages);
4285 put_page(ptepage);
4286
4287 /* Install the new huge page if src pte stable */
4288 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4289 src_ptl = huge_pte_lockptr(h, src, src_pte);
4290 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4291 entry = huge_ptep_get(src_pte);
4292 if (!pte_same(src_pte_old, entry)) {
846be085
MK
4293 restore_reserve_on_error(h, vma, addr,
4294 new);
4eae4efa
PX
4295 put_page(new);
4296 /* dst_entry won't change as in child */
4297 goto again;
4298 }
4299 hugetlb_install_page(vma, dst_pte, addr, new);
4300 spin_unlock(src_ptl);
4301 spin_unlock(dst_ptl);
4302 continue;
4303 }
4304
34ee645e 4305 if (cow) {
0f10851e
JG
4306 /*
4307 * No need to notify as we are downgrading page
4308 * table protection not changing it to point
4309 * to a new page.
4310 *
ad56b738 4311 * See Documentation/vm/mmu_notifier.rst
0f10851e 4312 */
7f2e9525 4313 huge_ptep_set_wrprotect(src, addr, src_pte);
84894e1c 4314 entry = huge_pte_wrprotect(entry);
34ee645e 4315 }
4eae4efa 4316
53f9263b 4317 page_dup_rmap(ptepage, true);
1c59827d 4318 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 4319 hugetlb_count_add(npages, dst);
1c59827d 4320 }
cb900f41
KS
4321 spin_unlock(src_ptl);
4322 spin_unlock(dst_ptl);
63551ae0 4323 }
63551ae0 4324
e8569dd2 4325 if (cow)
ac46d4f3 4326 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
4327 else
4328 i_mmap_unlock_read(mapping);
e8569dd2
AS
4329
4330 return ret;
63551ae0
DG
4331}
4332
24669e58
AK
4333void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4334 unsigned long start, unsigned long end,
4335 struct page *ref_page)
63551ae0
DG
4336{
4337 struct mm_struct *mm = vma->vm_mm;
4338 unsigned long address;
c7546f8f 4339 pte_t *ptep;
63551ae0 4340 pte_t pte;
cb900f41 4341 spinlock_t *ptl;
63551ae0 4342 struct page *page;
a5516438
AK
4343 struct hstate *h = hstate_vma(vma);
4344 unsigned long sz = huge_page_size(h);
ac46d4f3 4345 struct mmu_notifier_range range;
a5516438 4346
63551ae0 4347 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
4348 BUG_ON(start & ~huge_page_mask(h));
4349 BUG_ON(end & ~huge_page_mask(h));
63551ae0 4350
07e32661
AK
4351 /*
4352 * This is a hugetlb vma, all the pte entries should point
4353 * to huge page.
4354 */
ed6a7935 4355 tlb_change_page_size(tlb, sz);
24669e58 4356 tlb_start_vma(tlb, vma);
dff11abe
MK
4357
4358 /*
4359 * If sharing possible, alert mmu notifiers of worst case.
4360 */
6f4f13e8
JG
4361 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4362 end);
ac46d4f3
JG
4363 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4364 mmu_notifier_invalidate_range_start(&range);
569f48b8 4365 address = start;
569f48b8 4366 for (; address < end; address += sz) {
7868a208 4367 ptep = huge_pte_offset(mm, address, sz);
4c887265 4368 if (!ptep)
c7546f8f
DG
4369 continue;
4370
cb900f41 4371 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 4372 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 4373 spin_unlock(ptl);
dff11abe
MK
4374 /*
4375 * We just unmapped a page of PMDs by clearing a PUD.
4376 * The caller's TLB flush range should cover this area.
4377 */
31d49da5
AK
4378 continue;
4379 }
39dde65c 4380
6629326b 4381 pte = huge_ptep_get(ptep);
31d49da5
AK
4382 if (huge_pte_none(pte)) {
4383 spin_unlock(ptl);
4384 continue;
4385 }
6629326b
HD
4386
4387 /*
9fbc1f63
NH
4388 * Migrating hugepage or HWPoisoned hugepage is already
4389 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 4390 */
9fbc1f63 4391 if (unlikely(!pte_present(pte))) {
9386fac3 4392 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
4393 spin_unlock(ptl);
4394 continue;
8c4894c6 4395 }
6629326b
HD
4396
4397 page = pte_page(pte);
04f2cbe3
MG
4398 /*
4399 * If a reference page is supplied, it is because a specific
4400 * page is being unmapped, not a range. Ensure the page we
4401 * are about to unmap is the actual page of interest.
4402 */
4403 if (ref_page) {
31d49da5
AK
4404 if (page != ref_page) {
4405 spin_unlock(ptl);
4406 continue;
4407 }
04f2cbe3
MG
4408 /*
4409 * Mark the VMA as having unmapped its page so that
4410 * future faults in this VMA will fail rather than
4411 * looking like data was lost
4412 */
4413 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4414 }
4415
c7546f8f 4416 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 4417 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 4418 if (huge_pte_dirty(pte))
6649a386 4419 set_page_dirty(page);
9e81130b 4420
5d317b2b 4421 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4422 page_remove_rmap(page, true);
31d49da5 4423
cb900f41 4424 spin_unlock(ptl);
e77b0852 4425 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4426 /*
4427 * Bail out after unmapping reference page if supplied
4428 */
4429 if (ref_page)
4430 break;
fe1668ae 4431 }
ac46d4f3 4432 mmu_notifier_invalidate_range_end(&range);
24669e58 4433 tlb_end_vma(tlb, vma);
1da177e4 4434}
63551ae0 4435
d833352a
MG
4436void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4437 struct vm_area_struct *vma, unsigned long start,
4438 unsigned long end, struct page *ref_page)
4439{
4440 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4441
4442 /*
4443 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4444 * test will fail on a vma being torn down, and not grab a page table
4445 * on its way out. We're lucky that the flag has such an appropriate
4446 * name, and can in fact be safely cleared here. We could clear it
4447 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4448 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4449 * because in the context this is called, the VMA is about to be
c8c06efa 4450 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4451 */
4452 vma->vm_flags &= ~VM_MAYSHARE;
4453}
4454
502717f4 4455void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4456 unsigned long end, struct page *ref_page)
502717f4 4457{
24669e58 4458 struct mmu_gather tlb;
dff11abe 4459
a72afd87 4460 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 4461 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 4462 tlb_finish_mmu(&tlb);
502717f4
KC
4463}
4464
04f2cbe3
MG
4465/*
4466 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 4467 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
4468 * from other VMAs and let the children be SIGKILLed if they are faulting the
4469 * same region.
4470 */
2f4612af
DB
4471static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4472 struct page *page, unsigned long address)
04f2cbe3 4473{
7526674d 4474 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4475 struct vm_area_struct *iter_vma;
4476 struct address_space *mapping;
04f2cbe3
MG
4477 pgoff_t pgoff;
4478
4479 /*
4480 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4481 * from page cache lookup which is in HPAGE_SIZE units.
4482 */
7526674d 4483 address = address & huge_page_mask(h);
36e4f20a
MH
4484 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4485 vma->vm_pgoff;
93c76a3d 4486 mapping = vma->vm_file->f_mapping;
04f2cbe3 4487
4eb2b1dc
MG
4488 /*
4489 * Take the mapping lock for the duration of the table walk. As
4490 * this mapping should be shared between all the VMAs,
4491 * __unmap_hugepage_range() is called as the lock is already held
4492 */
83cde9e8 4493 i_mmap_lock_write(mapping);
6b2dbba8 4494 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4495 /* Do not unmap the current VMA */
4496 if (iter_vma == vma)
4497 continue;
4498
2f84a899
MG
4499 /*
4500 * Shared VMAs have their own reserves and do not affect
4501 * MAP_PRIVATE accounting but it is possible that a shared
4502 * VMA is using the same page so check and skip such VMAs.
4503 */
4504 if (iter_vma->vm_flags & VM_MAYSHARE)
4505 continue;
4506
04f2cbe3
MG
4507 /*
4508 * Unmap the page from other VMAs without their own reserves.
4509 * They get marked to be SIGKILLed if they fault in these
4510 * areas. This is because a future no-page fault on this VMA
4511 * could insert a zeroed page instead of the data existing
4512 * from the time of fork. This would look like data corruption
4513 */
4514 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4515 unmap_hugepage_range(iter_vma, address,
4516 address + huge_page_size(h), page);
04f2cbe3 4517 }
83cde9e8 4518 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4519}
4520
0fe6e20b
NH
4521/*
4522 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4523 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4524 * cannot race with other handlers or page migration.
4525 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4526 */
2b740303 4527static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4528 unsigned long address, pte_t *ptep,
3999f52e 4529 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4530{
3999f52e 4531 pte_t pte;
a5516438 4532 struct hstate *h = hstate_vma(vma);
1e8f889b 4533 struct page *old_page, *new_page;
2b740303
SJ
4534 int outside_reserve = 0;
4535 vm_fault_t ret = 0;
974e6d66 4536 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4537 struct mmu_notifier_range range;
1e8f889b 4538
3999f52e 4539 pte = huge_ptep_get(ptep);
1e8f889b
DG
4540 old_page = pte_page(pte);
4541
04f2cbe3 4542retry_avoidcopy:
1e8f889b
DG
4543 /* If no-one else is actually using this page, avoid the copy
4544 * and just make the page writable */
37a2140d 4545 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4546 page_move_anon_rmap(old_page, vma);
5b7a1d40 4547 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4548 return 0;
1e8f889b
DG
4549 }
4550
04f2cbe3
MG
4551 /*
4552 * If the process that created a MAP_PRIVATE mapping is about to
4553 * perform a COW due to a shared page count, attempt to satisfy
4554 * the allocation without using the existing reserves. The pagecache
4555 * page is used to determine if the reserve at this address was
4556 * consumed or not. If reserves were used, a partial faulted mapping
4557 * at the time of fork() could consume its reserves on COW instead
4558 * of the full address range.
4559 */
5944d011 4560 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4561 old_page != pagecache_page)
4562 outside_reserve = 1;
4563
09cbfeaf 4564 get_page(old_page);
b76c8cfb 4565
ad4404a2
DB
4566 /*
4567 * Drop page table lock as buddy allocator may be called. It will
4568 * be acquired again before returning to the caller, as expected.
4569 */
cb900f41 4570 spin_unlock(ptl);
5b7a1d40 4571 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4572
2fc39cec 4573 if (IS_ERR(new_page)) {
04f2cbe3
MG
4574 /*
4575 * If a process owning a MAP_PRIVATE mapping fails to COW,
4576 * it is due to references held by a child and an insufficient
4577 * huge page pool. To guarantee the original mappers
4578 * reliability, unmap the page from child processes. The child
4579 * may get SIGKILLed if it later faults.
4580 */
4581 if (outside_reserve) {
e7dd91c4
MK
4582 struct address_space *mapping = vma->vm_file->f_mapping;
4583 pgoff_t idx;
4584 u32 hash;
4585
09cbfeaf 4586 put_page(old_page);
04f2cbe3 4587 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4588 /*
4589 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4590 * unmapping. unmapping needs to hold i_mmap_rwsem
4591 * in write mode. Dropping i_mmap_rwsem in read mode
4592 * here is OK as COW mappings do not interact with
4593 * PMD sharing.
4594 *
4595 * Reacquire both after unmap operation.
4596 */
4597 idx = vma_hugecache_offset(h, vma, haddr);
4598 hash = hugetlb_fault_mutex_hash(mapping, idx);
4599 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4600 i_mmap_unlock_read(mapping);
4601
5b7a1d40 4602 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4603
4604 i_mmap_lock_read(mapping);
4605 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4606 spin_lock(ptl);
5b7a1d40 4607 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4608 if (likely(ptep &&
4609 pte_same(huge_ptep_get(ptep), pte)))
4610 goto retry_avoidcopy;
4611 /*
4612 * race occurs while re-acquiring page table
4613 * lock, and our job is done.
4614 */
4615 return 0;
04f2cbe3
MG
4616 }
4617
2b740303 4618 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4619 goto out_release_old;
1e8f889b
DG
4620 }
4621
0fe6e20b
NH
4622 /*
4623 * When the original hugepage is shared one, it does not have
4624 * anon_vma prepared.
4625 */
44e2aa93 4626 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4627 ret = VM_FAULT_OOM;
4628 goto out_release_all;
44e2aa93 4629 }
0fe6e20b 4630
974e6d66 4631 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4632 pages_per_huge_page(h));
0ed361de 4633 __SetPageUptodate(new_page);
1e8f889b 4634
7269f999 4635 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4636 haddr + huge_page_size(h));
ac46d4f3 4637 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4638
b76c8cfb 4639 /*
cb900f41 4640 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4641 * before the page tables are altered
4642 */
cb900f41 4643 spin_lock(ptl);
5b7a1d40 4644 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4645 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 4646 ClearHPageRestoreReserve(new_page);
07443a85 4647
1e8f889b 4648 /* Break COW */
5b7a1d40 4649 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4650 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4651 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4652 make_huge_pte(vma, new_page, 1));
d281ee61 4653 page_remove_rmap(old_page, true);
5b7a1d40 4654 hugepage_add_new_anon_rmap(new_page, vma, haddr);
8f251a3d 4655 SetHPageMigratable(new_page);
1e8f889b
DG
4656 /* Make the old page be freed below */
4657 new_page = old_page;
4658 }
cb900f41 4659 spin_unlock(ptl);
ac46d4f3 4660 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4661out_release_all:
5b7a1d40 4662 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4663 put_page(new_page);
ad4404a2 4664out_release_old:
09cbfeaf 4665 put_page(old_page);
8312034f 4666
ad4404a2
DB
4667 spin_lock(ptl); /* Caller expects lock to be held */
4668 return ret;
1e8f889b
DG
4669}
4670
04f2cbe3 4671/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4672static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4673 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4674{
4675 struct address_space *mapping;
e7c4b0bf 4676 pgoff_t idx;
04f2cbe3
MG
4677
4678 mapping = vma->vm_file->f_mapping;
a5516438 4679 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4680
4681 return find_lock_page(mapping, idx);
4682}
4683
3ae77f43
HD
4684/*
4685 * Return whether there is a pagecache page to back given address within VMA.
4686 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4687 */
4688static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4689 struct vm_area_struct *vma, unsigned long address)
4690{
4691 struct address_space *mapping;
4692 pgoff_t idx;
4693 struct page *page;
4694
4695 mapping = vma->vm_file->f_mapping;
4696 idx = vma_hugecache_offset(h, vma, address);
4697
4698 page = find_get_page(mapping, idx);
4699 if (page)
4700 put_page(page);
4701 return page != NULL;
4702}
4703
ab76ad54
MK
4704int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4705 pgoff_t idx)
4706{
4707 struct inode *inode = mapping->host;
4708 struct hstate *h = hstate_inode(inode);
4709 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4710
4711 if (err)
4712 return err;
d6995da3 4713 ClearHPageRestoreReserve(page);
ab76ad54 4714
22146c3c
MK
4715 /*
4716 * set page dirty so that it will not be removed from cache/file
4717 * by non-hugetlbfs specific code paths.
4718 */
4719 set_page_dirty(page);
4720
ab76ad54
MK
4721 spin_lock(&inode->i_lock);
4722 inode->i_blocks += blocks_per_huge_page(h);
4723 spin_unlock(&inode->i_lock);
4724 return 0;
4725}
4726
7677f7fd
AR
4727static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4728 struct address_space *mapping,
4729 pgoff_t idx,
4730 unsigned int flags,
4731 unsigned long haddr,
4732 unsigned long reason)
4733{
4734 vm_fault_t ret;
4735 u32 hash;
4736 struct vm_fault vmf = {
4737 .vma = vma,
4738 .address = haddr,
4739 .flags = flags,
4740
4741 /*
4742 * Hard to debug if it ends up being
4743 * used by a callee that assumes
4744 * something about the other
4745 * uninitialized fields... same as in
4746 * memory.c
4747 */
4748 };
4749
4750 /*
4751 * hugetlb_fault_mutex and i_mmap_rwsem must be
4752 * dropped before handling userfault. Reacquire
4753 * after handling fault to make calling code simpler.
4754 */
4755 hash = hugetlb_fault_mutex_hash(mapping, idx);
4756 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4757 i_mmap_unlock_read(mapping);
4758 ret = handle_userfault(&vmf, reason);
4759 i_mmap_lock_read(mapping);
4760 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4761
4762 return ret;
4763}
4764
2b740303
SJ
4765static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4766 struct vm_area_struct *vma,
4767 struct address_space *mapping, pgoff_t idx,
4768 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4769{
a5516438 4770 struct hstate *h = hstate_vma(vma);
2b740303 4771 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4772 int anon_rmap = 0;
4c887265 4773 unsigned long size;
4c887265 4774 struct page *page;
1e8f889b 4775 pte_t new_pte;
cb900f41 4776 spinlock_t *ptl;
285b8dca 4777 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4778 bool new_page = false;
4c887265 4779
04f2cbe3
MG
4780 /*
4781 * Currently, we are forced to kill the process in the event the
4782 * original mapper has unmapped pages from the child due to a failed
25985edc 4783 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4784 */
4785 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4786 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4787 current->pid);
04f2cbe3
MG
4788 return ret;
4789 }
4790
4c887265 4791 /*
87bf91d3
MK
4792 * We can not race with truncation due to holding i_mmap_rwsem.
4793 * i_size is modified when holding i_mmap_rwsem, so check here
4794 * once for faults beyond end of file.
4c887265 4795 */
87bf91d3
MK
4796 size = i_size_read(mapping->host) >> huge_page_shift(h);
4797 if (idx >= size)
4798 goto out;
4799
6bda666a
CL
4800retry:
4801 page = find_lock_page(mapping, idx);
4802 if (!page) {
7677f7fd 4803 /* Check for page in userfault range */
1a1aad8a 4804 if (userfaultfd_missing(vma)) {
7677f7fd
AR
4805 ret = hugetlb_handle_userfault(vma, mapping, idx,
4806 flags, haddr,
4807 VM_UFFD_MISSING);
1a1aad8a
MK
4808 goto out;
4809 }
4810
285b8dca 4811 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4812 if (IS_ERR(page)) {
4643d67e
MK
4813 /*
4814 * Returning error will result in faulting task being
4815 * sent SIGBUS. The hugetlb fault mutex prevents two
4816 * tasks from racing to fault in the same page which
4817 * could result in false unable to allocate errors.
4818 * Page migration does not take the fault mutex, but
4819 * does a clear then write of pte's under page table
4820 * lock. Page fault code could race with migration,
4821 * notice the clear pte and try to allocate a page
4822 * here. Before returning error, get ptl and make
4823 * sure there really is no pte entry.
4824 */
4825 ptl = huge_pte_lock(h, mm, ptep);
d83e6c8a
ML
4826 ret = 0;
4827 if (huge_pte_none(huge_ptep_get(ptep)))
4828 ret = vmf_error(PTR_ERR(page));
4643d67e 4829 spin_unlock(ptl);
6bda666a
CL
4830 goto out;
4831 }
47ad8475 4832 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4833 __SetPageUptodate(page);
cb6acd01 4834 new_page = true;
ac9b9c66 4835
f83a275d 4836 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4837 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4838 if (err) {
4839 put_page(page);
6bda666a
CL
4840 if (err == -EEXIST)
4841 goto retry;
4842 goto out;
4843 }
23be7468 4844 } else {
6bda666a 4845 lock_page(page);
0fe6e20b
NH
4846 if (unlikely(anon_vma_prepare(vma))) {
4847 ret = VM_FAULT_OOM;
4848 goto backout_unlocked;
4849 }
409eb8c2 4850 anon_rmap = 1;
23be7468 4851 }
0fe6e20b 4852 } else {
998b4382
NH
4853 /*
4854 * If memory error occurs between mmap() and fault, some process
4855 * don't have hwpoisoned swap entry for errored virtual address.
4856 * So we need to block hugepage fault by PG_hwpoison bit check.
4857 */
4858 if (unlikely(PageHWPoison(page))) {
0eb98f15 4859 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4860 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4861 goto backout_unlocked;
4862 }
7677f7fd
AR
4863
4864 /* Check for page in userfault range. */
4865 if (userfaultfd_minor(vma)) {
4866 unlock_page(page);
4867 put_page(page);
4868 ret = hugetlb_handle_userfault(vma, mapping, idx,
4869 flags, haddr,
4870 VM_UFFD_MINOR);
4871 goto out;
4872 }
6bda666a 4873 }
1e8f889b 4874
57303d80
AW
4875 /*
4876 * If we are going to COW a private mapping later, we examine the
4877 * pending reservations for this page now. This will ensure that
4878 * any allocations necessary to record that reservation occur outside
4879 * the spinlock.
4880 */
5e911373 4881 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4882 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4883 ret = VM_FAULT_OOM;
4884 goto backout_unlocked;
4885 }
5e911373 4886 /* Just decrements count, does not deallocate */
285b8dca 4887 vma_end_reservation(h, vma, haddr);
5e911373 4888 }
57303d80 4889
8bea8052 4890 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4891 ret = 0;
7f2e9525 4892 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4893 goto backout;
4894
07443a85 4895 if (anon_rmap) {
d6995da3 4896 ClearHPageRestoreReserve(page);
285b8dca 4897 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4898 } else
53f9263b 4899 page_dup_rmap(page, true);
1e8f889b
DG
4900 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4901 && (vma->vm_flags & VM_SHARED)));
285b8dca 4902 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4903
5d317b2b 4904 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4905 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4906 /* Optimization, do the COW without a second fault */
974e6d66 4907 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4908 }
4909
cb900f41 4910 spin_unlock(ptl);
cb6acd01
MK
4911
4912 /*
8f251a3d
MK
4913 * Only set HPageMigratable in newly allocated pages. Existing pages
4914 * found in the pagecache may not have HPageMigratableset if they have
4915 * been isolated for migration.
cb6acd01
MK
4916 */
4917 if (new_page)
8f251a3d 4918 SetHPageMigratable(page);
cb6acd01 4919
4c887265
AL
4920 unlock_page(page);
4921out:
ac9b9c66 4922 return ret;
4c887265
AL
4923
4924backout:
cb900f41 4925 spin_unlock(ptl);
2b26736c 4926backout_unlocked:
4c887265 4927 unlock_page(page);
285b8dca 4928 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4929 put_page(page);
4930 goto out;
ac9b9c66
HD
4931}
4932
8382d914 4933#ifdef CONFIG_SMP
188b04a7 4934u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4935{
4936 unsigned long key[2];
4937 u32 hash;
4938
1b426bac
MK
4939 key[0] = (unsigned long) mapping;
4940 key[1] = idx;
8382d914 4941
55254636 4942 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4943
4944 return hash & (num_fault_mutexes - 1);
4945}
4946#else
4947/*
6c26d310 4948 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
4949 * return 0 and avoid the hashing overhead.
4950 */
188b04a7 4951u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4952{
4953 return 0;
4954}
4955#endif
4956
2b740303 4957vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4958 unsigned long address, unsigned int flags)
86e5216f 4959{
8382d914 4960 pte_t *ptep, entry;
cb900f41 4961 spinlock_t *ptl;
2b740303 4962 vm_fault_t ret;
8382d914
DB
4963 u32 hash;
4964 pgoff_t idx;
0fe6e20b 4965 struct page *page = NULL;
57303d80 4966 struct page *pagecache_page = NULL;
a5516438 4967 struct hstate *h = hstate_vma(vma);
8382d914 4968 struct address_space *mapping;
0f792cf9 4969 int need_wait_lock = 0;
285b8dca 4970 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4971
285b8dca 4972 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4973 if (ptep) {
c0d0381a
MK
4974 /*
4975 * Since we hold no locks, ptep could be stale. That is
4976 * OK as we are only making decisions based on content and
4977 * not actually modifying content here.
4978 */
fd6a03ed 4979 entry = huge_ptep_get(ptep);
290408d4 4980 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4981 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4982 return 0;
4983 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4984 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4985 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4986 }
4987
c0d0381a
MK
4988 /*
4989 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4990 * until finished with ptep. This serves two purposes:
4991 * 1) It prevents huge_pmd_unshare from being called elsewhere
4992 * and making the ptep no longer valid.
4993 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4994 *
4995 * ptep could have already be assigned via huge_pte_offset. That
4996 * is OK, as huge_pte_alloc will return the same value unless
4997 * something has changed.
4998 */
8382d914 4999 mapping = vma->vm_file->f_mapping;
c0d0381a 5000 i_mmap_lock_read(mapping);
aec44e0f 5001 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
c0d0381a
MK
5002 if (!ptep) {
5003 i_mmap_unlock_read(mapping);
5004 return VM_FAULT_OOM;
5005 }
8382d914 5006
3935baa9
DG
5007 /*
5008 * Serialize hugepage allocation and instantiation, so that we don't
5009 * get spurious allocation failures if two CPUs race to instantiate
5010 * the same page in the page cache.
5011 */
c0d0381a 5012 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 5013 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 5014 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 5015
7f2e9525
GS
5016 entry = huge_ptep_get(ptep);
5017 if (huge_pte_none(entry)) {
8382d914 5018 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 5019 goto out_mutex;
3935baa9 5020 }
86e5216f 5021
83c54070 5022 ret = 0;
1e8f889b 5023
0f792cf9
NH
5024 /*
5025 * entry could be a migration/hwpoison entry at this point, so this
5026 * check prevents the kernel from going below assuming that we have
7c8de358
EP
5027 * an active hugepage in pagecache. This goto expects the 2nd page
5028 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5029 * properly handle it.
0f792cf9
NH
5030 */
5031 if (!pte_present(entry))
5032 goto out_mutex;
5033
57303d80
AW
5034 /*
5035 * If we are going to COW the mapping later, we examine the pending
5036 * reservations for this page now. This will ensure that any
5037 * allocations necessary to record that reservation occur outside the
5038 * spinlock. For private mappings, we also lookup the pagecache
5039 * page now as it is used to determine if a reservation has been
5040 * consumed.
5041 */
106c992a 5042 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 5043 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 5044 ret = VM_FAULT_OOM;
b4d1d99f 5045 goto out_mutex;
2b26736c 5046 }
5e911373 5047 /* Just decrements count, does not deallocate */
285b8dca 5048 vma_end_reservation(h, vma, haddr);
57303d80 5049
f83a275d 5050 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 5051 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 5052 vma, haddr);
57303d80
AW
5053 }
5054
0f792cf9
NH
5055 ptl = huge_pte_lock(h, mm, ptep);
5056
5057 /* Check for a racing update before calling hugetlb_cow */
5058 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5059 goto out_ptl;
5060
56c9cfb1
NH
5061 /*
5062 * hugetlb_cow() requires page locks of pte_page(entry) and
5063 * pagecache_page, so here we need take the former one
5064 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
5065 */
5066 page = pte_page(entry);
5067 if (page != pagecache_page)
0f792cf9
NH
5068 if (!trylock_page(page)) {
5069 need_wait_lock = 1;
5070 goto out_ptl;
5071 }
b4d1d99f 5072
0f792cf9 5073 get_page(page);
b4d1d99f 5074
788c7df4 5075 if (flags & FAULT_FLAG_WRITE) {
106c992a 5076 if (!huge_pte_write(entry)) {
974e6d66 5077 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 5078 pagecache_page, ptl);
0f792cf9 5079 goto out_put_page;
b4d1d99f 5080 }
106c992a 5081 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
5082 }
5083 entry = pte_mkyoung(entry);
285b8dca 5084 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 5085 flags & FAULT_FLAG_WRITE))
285b8dca 5086 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
5087out_put_page:
5088 if (page != pagecache_page)
5089 unlock_page(page);
5090 put_page(page);
cb900f41
KS
5091out_ptl:
5092 spin_unlock(ptl);
57303d80
AW
5093
5094 if (pagecache_page) {
5095 unlock_page(pagecache_page);
5096 put_page(pagecache_page);
5097 }
b4d1d99f 5098out_mutex:
c672c7f2 5099 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 5100 i_mmap_unlock_read(mapping);
0f792cf9
NH
5101 /*
5102 * Generally it's safe to hold refcount during waiting page lock. But
5103 * here we just wait to defer the next page fault to avoid busy loop and
5104 * the page is not used after unlocked before returning from the current
5105 * page fault. So we are safe from accessing freed page, even if we wait
5106 * here without taking refcount.
5107 */
5108 if (need_wait_lock)
5109 wait_on_page_locked(page);
1e8f889b 5110 return ret;
86e5216f
AL
5111}
5112
714c1891 5113#ifdef CONFIG_USERFAULTFD
8fb5debc
MK
5114/*
5115 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5116 * modifications for huge pages.
5117 */
5118int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5119 pte_t *dst_pte,
5120 struct vm_area_struct *dst_vma,
5121 unsigned long dst_addr,
5122 unsigned long src_addr,
f6191471 5123 enum mcopy_atomic_mode mode,
8fb5debc
MK
5124 struct page **pagep)
5125{
f6191471 5126 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
8cc5fcbb
MA
5127 struct hstate *h = hstate_vma(dst_vma);
5128 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5129 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
1e392147 5130 unsigned long size;
1c9e8def 5131 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
5132 pte_t _dst_pte;
5133 spinlock_t *ptl;
8cc5fcbb 5134 int ret = -ENOMEM;
8fb5debc 5135 struct page *page;
f6191471 5136 int writable;
8fb5debc 5137
f6191471
AR
5138 if (is_continue) {
5139 ret = -EFAULT;
5140 page = find_lock_page(mapping, idx);
5141 if (!page)
5142 goto out;
5143 } else if (!*pagep) {
d84cf06e
MA
5144 /* If a page already exists, then it's UFFDIO_COPY for
5145 * a non-missing case. Return -EEXIST.
5146 */
5147 if (vm_shared &&
5148 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5149 ret = -EEXIST;
5150 goto out;
5151 }
5152
8fb5debc 5153 page = alloc_huge_page(dst_vma, dst_addr, 0);
d84cf06e
MA
5154 if (IS_ERR(page)) {
5155 ret = -ENOMEM;
8fb5debc 5156 goto out;
d84cf06e 5157 }
8fb5debc
MK
5158
5159 ret = copy_huge_page_from_user(page,
5160 (const void __user *) src_addr,
810a56b9 5161 pages_per_huge_page(h), false);
8fb5debc 5162
c1e8d7c6 5163 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 5164 if (unlikely(ret)) {
9e368259 5165 ret = -ENOENT;
8cc5fcbb
MA
5166 /* Free the allocated page which may have
5167 * consumed a reservation.
5168 */
5169 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5170 put_page(page);
5171
5172 /* Allocate a temporary page to hold the copied
5173 * contents.
5174 */
5175 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5176 if (!page) {
5177 ret = -ENOMEM;
5178 goto out;
5179 }
8fb5debc 5180 *pagep = page;
8cc5fcbb
MA
5181 /* Set the outparam pagep and return to the caller to
5182 * copy the contents outside the lock. Don't free the
5183 * page.
5184 */
8fb5debc
MK
5185 goto out;
5186 }
5187 } else {
8cc5fcbb
MA
5188 if (vm_shared &&
5189 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5190 put_page(*pagep);
5191 ret = -EEXIST;
5192 *pagep = NULL;
5193 goto out;
5194 }
5195
5196 page = alloc_huge_page(dst_vma, dst_addr, 0);
5197 if (IS_ERR(page)) {
5198 ret = -ENOMEM;
5199 *pagep = NULL;
5200 goto out;
5201 }
5202 copy_huge_page(page, *pagep);
5203 put_page(*pagep);
8fb5debc
MK
5204 *pagep = NULL;
5205 }
5206
5207 /*
5208 * The memory barrier inside __SetPageUptodate makes sure that
5209 * preceding stores to the page contents become visible before
5210 * the set_pte_at() write.
5211 */
5212 __SetPageUptodate(page);
8fb5debc 5213
f6191471
AR
5214 /* Add shared, newly allocated pages to the page cache. */
5215 if (vm_shared && !is_continue) {
1e392147
AA
5216 size = i_size_read(mapping->host) >> huge_page_shift(h);
5217 ret = -EFAULT;
5218 if (idx >= size)
5219 goto out_release_nounlock;
1c9e8def 5220
1e392147
AA
5221 /*
5222 * Serialization between remove_inode_hugepages() and
5223 * huge_add_to_page_cache() below happens through the
5224 * hugetlb_fault_mutex_table that here must be hold by
5225 * the caller.
5226 */
1c9e8def
MK
5227 ret = huge_add_to_page_cache(page, mapping, idx);
5228 if (ret)
5229 goto out_release_nounlock;
5230 }
5231
8fb5debc
MK
5232 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5233 spin_lock(ptl);
5234
1e392147
AA
5235 /*
5236 * Recheck the i_size after holding PT lock to make sure not
5237 * to leave any page mapped (as page_mapped()) beyond the end
5238 * of the i_size (remove_inode_hugepages() is strict about
5239 * enforcing that). If we bail out here, we'll also leave a
5240 * page in the radix tree in the vm_shared case beyond the end
5241 * of the i_size, but remove_inode_hugepages() will take care
5242 * of it as soon as we drop the hugetlb_fault_mutex_table.
5243 */
5244 size = i_size_read(mapping->host) >> huge_page_shift(h);
5245 ret = -EFAULT;
5246 if (idx >= size)
5247 goto out_release_unlock;
5248
8fb5debc
MK
5249 ret = -EEXIST;
5250 if (!huge_pte_none(huge_ptep_get(dst_pte)))
5251 goto out_release_unlock;
5252
1c9e8def
MK
5253 if (vm_shared) {
5254 page_dup_rmap(page, true);
5255 } else {
d6995da3 5256 ClearHPageRestoreReserve(page);
1c9e8def
MK
5257 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5258 }
8fb5debc 5259
f6191471
AR
5260 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5261 if (is_continue && !vm_shared)
5262 writable = 0;
5263 else
5264 writable = dst_vma->vm_flags & VM_WRITE;
5265
5266 _dst_pte = make_huge_pte(dst_vma, page, writable);
5267 if (writable)
8fb5debc
MK
5268 _dst_pte = huge_pte_mkdirty(_dst_pte);
5269 _dst_pte = pte_mkyoung(_dst_pte);
5270
5271 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5272
5273 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5274 dst_vma->vm_flags & VM_WRITE);
5275 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5276
5277 /* No need to invalidate - it was non-present before */
5278 update_mmu_cache(dst_vma, dst_addr, dst_pte);
5279
5280 spin_unlock(ptl);
f6191471
AR
5281 if (!is_continue)
5282 SetHPageMigratable(page);
5283 if (vm_shared || is_continue)
1c9e8def 5284 unlock_page(page);
8fb5debc
MK
5285 ret = 0;
5286out:
5287 return ret;
5288out_release_unlock:
5289 spin_unlock(ptl);
f6191471 5290 if (vm_shared || is_continue)
1c9e8def 5291 unlock_page(page);
5af10dfd 5292out_release_nounlock:
846be085 5293 restore_reserve_on_error(h, dst_vma, dst_addr, page);
8fb5debc
MK
5294 put_page(page);
5295 goto out;
5296}
714c1891 5297#endif /* CONFIG_USERFAULTFD */
8fb5debc 5298
82e5d378
JM
5299static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5300 int refs, struct page **pages,
5301 struct vm_area_struct **vmas)
5302{
5303 int nr;
5304
5305 for (nr = 0; nr < refs; nr++) {
5306 if (likely(pages))
5307 pages[nr] = mem_map_offset(page, nr);
5308 if (vmas)
5309 vmas[nr] = vma;
5310 }
5311}
5312
28a35716
ML
5313long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5314 struct page **pages, struct vm_area_struct **vmas,
5315 unsigned long *position, unsigned long *nr_pages,
4f6da934 5316 long i, unsigned int flags, int *locked)
63551ae0 5317{
d5d4b0aa
KC
5318 unsigned long pfn_offset;
5319 unsigned long vaddr = *position;
28a35716 5320 unsigned long remainder = *nr_pages;
a5516438 5321 struct hstate *h = hstate_vma(vma);
0fa5bc40 5322 int err = -EFAULT, refs;
63551ae0 5323
63551ae0 5324 while (vaddr < vma->vm_end && remainder) {
4c887265 5325 pte_t *pte;
cb900f41 5326 spinlock_t *ptl = NULL;
2a15efc9 5327 int absent;
4c887265 5328 struct page *page;
63551ae0 5329
02057967
DR
5330 /*
5331 * If we have a pending SIGKILL, don't keep faulting pages and
5332 * potentially allocating memory.
5333 */
fa45f116 5334 if (fatal_signal_pending(current)) {
02057967
DR
5335 remainder = 0;
5336 break;
5337 }
5338
4c887265
AL
5339 /*
5340 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 5341 * each hugepage. We have to make sure we get the
4c887265 5342 * first, for the page indexing below to work.
cb900f41
KS
5343 *
5344 * Note that page table lock is not held when pte is null.
4c887265 5345 */
7868a208
PA
5346 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5347 huge_page_size(h));
cb900f41
KS
5348 if (pte)
5349 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
5350 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5351
5352 /*
5353 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
5354 * an error where there's an empty slot with no huge pagecache
5355 * to back it. This way, we avoid allocating a hugepage, and
5356 * the sparse dumpfile avoids allocating disk blocks, but its
5357 * huge holes still show up with zeroes where they need to be.
2a15efc9 5358 */
3ae77f43
HD
5359 if (absent && (flags & FOLL_DUMP) &&
5360 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
5361 if (pte)
5362 spin_unlock(ptl);
2a15efc9
HD
5363 remainder = 0;
5364 break;
5365 }
63551ae0 5366
9cc3a5bd
NH
5367 /*
5368 * We need call hugetlb_fault for both hugepages under migration
5369 * (in which case hugetlb_fault waits for the migration,) and
5370 * hwpoisoned hugepages (in which case we need to prevent the
5371 * caller from accessing to them.) In order to do this, we use
5372 * here is_swap_pte instead of is_hugetlb_entry_migration and
5373 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5374 * both cases, and because we can't follow correct pages
5375 * directly from any kind of swap entries.
5376 */
5377 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
5378 ((flags & FOLL_WRITE) &&
5379 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 5380 vm_fault_t ret;
87ffc118 5381 unsigned int fault_flags = 0;
63551ae0 5382
cb900f41
KS
5383 if (pte)
5384 spin_unlock(ptl);
87ffc118
AA
5385 if (flags & FOLL_WRITE)
5386 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 5387 if (locked)
71335f37
PX
5388 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5389 FAULT_FLAG_KILLABLE;
87ffc118
AA
5390 if (flags & FOLL_NOWAIT)
5391 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5392 FAULT_FLAG_RETRY_NOWAIT;
5393 if (flags & FOLL_TRIED) {
4426e945
PX
5394 /*
5395 * Note: FAULT_FLAG_ALLOW_RETRY and
5396 * FAULT_FLAG_TRIED can co-exist
5397 */
87ffc118
AA
5398 fault_flags |= FAULT_FLAG_TRIED;
5399 }
5400 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5401 if (ret & VM_FAULT_ERROR) {
2be7cfed 5402 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
5403 remainder = 0;
5404 break;
5405 }
5406 if (ret & VM_FAULT_RETRY) {
4f6da934 5407 if (locked &&
1ac25013 5408 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 5409 *locked = 0;
87ffc118
AA
5410 *nr_pages = 0;
5411 /*
5412 * VM_FAULT_RETRY must not return an
5413 * error, it will return zero
5414 * instead.
5415 *
5416 * No need to update "position" as the
5417 * caller will not check it after
5418 * *nr_pages is set to 0.
5419 */
5420 return i;
5421 }
5422 continue;
4c887265
AL
5423 }
5424
a5516438 5425 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 5426 page = pte_page(huge_ptep_get(pte));
8fde12ca 5427
acbfb087
ZL
5428 /*
5429 * If subpage information not requested, update counters
5430 * and skip the same_page loop below.
5431 */
5432 if (!pages && !vmas && !pfn_offset &&
5433 (vaddr + huge_page_size(h) < vma->vm_end) &&
5434 (remainder >= pages_per_huge_page(h))) {
5435 vaddr += huge_page_size(h);
5436 remainder -= pages_per_huge_page(h);
5437 i += pages_per_huge_page(h);
5438 spin_unlock(ptl);
5439 continue;
5440 }
5441
82e5d378
JM
5442 refs = min3(pages_per_huge_page(h) - pfn_offset,
5443 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
0fa5bc40 5444
82e5d378
JM
5445 if (pages || vmas)
5446 record_subpages_vmas(mem_map_offset(page, pfn_offset),
5447 vma, refs,
5448 likely(pages) ? pages + i : NULL,
5449 vmas ? vmas + i : NULL);
63551ae0 5450
82e5d378 5451 if (pages) {
0fa5bc40
JM
5452 /*
5453 * try_grab_compound_head() should always succeed here,
5454 * because: a) we hold the ptl lock, and b) we've just
5455 * checked that the huge page is present in the page
5456 * tables. If the huge page is present, then the tail
5457 * pages must also be present. The ptl prevents the
5458 * head page and tail pages from being rearranged in
5459 * any way. So this page must be available at this
5460 * point, unless the page refcount overflowed:
5461 */
82e5d378 5462 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
5463 refs,
5464 flags))) {
5465 spin_unlock(ptl);
5466 remainder = 0;
5467 err = -ENOMEM;
5468 break;
5469 }
d5d4b0aa 5470 }
82e5d378
JM
5471
5472 vaddr += (refs << PAGE_SHIFT);
5473 remainder -= refs;
5474 i += refs;
5475
cb900f41 5476 spin_unlock(ptl);
63551ae0 5477 }
28a35716 5478 *nr_pages = remainder;
87ffc118
AA
5479 /*
5480 * setting position is actually required only if remainder is
5481 * not zero but it's faster not to add a "if (remainder)"
5482 * branch.
5483 */
63551ae0
DG
5484 *position = vaddr;
5485
2be7cfed 5486 return i ? i : err;
63551ae0 5487}
8f860591 5488
7da4d641 5489unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
5490 unsigned long address, unsigned long end, pgprot_t newprot)
5491{
5492 struct mm_struct *mm = vma->vm_mm;
5493 unsigned long start = address;
5494 pte_t *ptep;
5495 pte_t pte;
a5516438 5496 struct hstate *h = hstate_vma(vma);
7da4d641 5497 unsigned long pages = 0;
dff11abe 5498 bool shared_pmd = false;
ac46d4f3 5499 struct mmu_notifier_range range;
dff11abe
MK
5500
5501 /*
5502 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5503 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5504 * range if PMD sharing is possible.
5505 */
7269f999
JG
5506 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5507 0, vma, mm, start, end);
ac46d4f3 5508 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5509
5510 BUG_ON(address >= end);
ac46d4f3 5511 flush_cache_range(vma, range.start, range.end);
8f860591 5512
ac46d4f3 5513 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5514 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5515 for (; address < end; address += huge_page_size(h)) {
cb900f41 5516 spinlock_t *ptl;
7868a208 5517 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5518 if (!ptep)
5519 continue;
cb900f41 5520 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5521 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5522 pages++;
cb900f41 5523 spin_unlock(ptl);
dff11abe 5524 shared_pmd = true;
39dde65c 5525 continue;
7da4d641 5526 }
a8bda28d
NH
5527 pte = huge_ptep_get(ptep);
5528 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5529 spin_unlock(ptl);
5530 continue;
5531 }
5532 if (unlikely(is_hugetlb_entry_migration(pte))) {
5533 swp_entry_t entry = pte_to_swp_entry(pte);
5534
5535 if (is_write_migration_entry(entry)) {
5536 pte_t newpte;
5537
5538 make_migration_entry_read(&entry);
5539 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5540 set_huge_swap_pte_at(mm, address, ptep,
5541 newpte, huge_page_size(h));
a8bda28d
NH
5542 pages++;
5543 }
5544 spin_unlock(ptl);
5545 continue;
5546 }
5547 if (!huge_pte_none(pte)) {
023bdd00 5548 pte_t old_pte;
79c1c594 5549 unsigned int shift = huge_page_shift(hstate_vma(vma));
023bdd00
AK
5550
5551 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5552 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
79c1c594 5553 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
023bdd00 5554 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5555 pages++;
8f860591 5556 }
cb900f41 5557 spin_unlock(ptl);
8f860591 5558 }
d833352a 5559 /*
c8c06efa 5560 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5561 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5562 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5563 * and that page table be reused and filled with junk. If we actually
5564 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5565 */
dff11abe 5566 if (shared_pmd)
ac46d4f3 5567 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5568 else
5569 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5570 /*
5571 * No need to call mmu_notifier_invalidate_range() we are downgrading
5572 * page table protection not changing it to point to a new page.
5573 *
ad56b738 5574 * See Documentation/vm/mmu_notifier.rst
0f10851e 5575 */
83cde9e8 5576 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5577 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5578
5579 return pages << h->order;
8f860591
ZY
5580}
5581
33b8f84a
MK
5582/* Return true if reservation was successful, false otherwise. */
5583bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 5584 long from, long to,
5a6fe125 5585 struct vm_area_struct *vma,
ca16d140 5586 vm_flags_t vm_flags)
e4e574b7 5587{
33b8f84a 5588 long chg, add = -1;
a5516438 5589 struct hstate *h = hstate_inode(inode);
90481622 5590 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5591 struct resv_map *resv_map;
075a61d0 5592 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5593 long gbl_reserve, regions_needed = 0;
e4e574b7 5594
63489f8e
MK
5595 /* This should never happen */
5596 if (from > to) {
5597 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 5598 return false;
63489f8e
MK
5599 }
5600
17c9d12e
MG
5601 /*
5602 * Only apply hugepage reservation if asked. At fault time, an
5603 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5604 * without using reserves
17c9d12e 5605 */
ca16d140 5606 if (vm_flags & VM_NORESERVE)
33b8f84a 5607 return true;
17c9d12e 5608
a1e78772
MG
5609 /*
5610 * Shared mappings base their reservation on the number of pages that
5611 * are already allocated on behalf of the file. Private mappings need
5612 * to reserve the full area even if read-only as mprotect() may be
5613 * called to make the mapping read-write. Assume !vma is a shm mapping
5614 */
9119a41e 5615 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5616 /*
5617 * resv_map can not be NULL as hugetlb_reserve_pages is only
5618 * called for inodes for which resv_maps were created (see
5619 * hugetlbfs_get_inode).
5620 */
4e35f483 5621 resv_map = inode_resv_map(inode);
9119a41e 5622
0db9d74e 5623 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5624
5625 } else {
e9fe92ae 5626 /* Private mapping. */
9119a41e 5627 resv_map = resv_map_alloc();
17c9d12e 5628 if (!resv_map)
33b8f84a 5629 return false;
17c9d12e 5630
a1e78772 5631 chg = to - from;
84afd99b 5632
17c9d12e
MG
5633 set_vma_resv_map(vma, resv_map);
5634 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5635 }
5636
33b8f84a 5637 if (chg < 0)
c50ac050 5638 goto out_err;
8a630112 5639
33b8f84a
MK
5640 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5641 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 5642 goto out_err;
075a61d0
MA
5643
5644 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5645 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5646 * of the resv_map.
5647 */
5648 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5649 }
5650
1c5ecae3
MK
5651 /*
5652 * There must be enough pages in the subpool for the mapping. If
5653 * the subpool has a minimum size, there may be some global
5654 * reservations already in place (gbl_reserve).
5655 */
5656 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 5657 if (gbl_reserve < 0)
075a61d0 5658 goto out_uncharge_cgroup;
5a6fe125
MG
5659
5660 /*
17c9d12e 5661 * Check enough hugepages are available for the reservation.
90481622 5662 * Hand the pages back to the subpool if there are not
5a6fe125 5663 */
33b8f84a 5664 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 5665 goto out_put_pages;
17c9d12e
MG
5666
5667 /*
5668 * Account for the reservations made. Shared mappings record regions
5669 * that have reservations as they are shared by multiple VMAs.
5670 * When the last VMA disappears, the region map says how much
5671 * the reservation was and the page cache tells how much of
5672 * the reservation was consumed. Private mappings are per-VMA and
5673 * only the consumed reservations are tracked. When the VMA
5674 * disappears, the original reservation is the VMA size and the
5675 * consumed reservations are stored in the map. Hence, nothing
5676 * else has to be done for private mappings here
5677 */
33039678 5678 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5679 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5680
5681 if (unlikely(add < 0)) {
5682 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5683 goto out_put_pages;
0db9d74e 5684 } else if (unlikely(chg > add)) {
33039678
MK
5685 /*
5686 * pages in this range were added to the reserve
5687 * map between region_chg and region_add. This
5688 * indicates a race with alloc_huge_page. Adjust
5689 * the subpool and reserve counts modified above
5690 * based on the difference.
5691 */
5692 long rsv_adjust;
5693
d85aecf2
ML
5694 /*
5695 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5696 * reference to h_cg->css. See comment below for detail.
5697 */
075a61d0
MA
5698 hugetlb_cgroup_uncharge_cgroup_rsvd(
5699 hstate_index(h),
5700 (chg - add) * pages_per_huge_page(h), h_cg);
5701
33039678
MK
5702 rsv_adjust = hugepage_subpool_put_pages(spool,
5703 chg - add);
5704 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
5705 } else if (h_cg) {
5706 /*
5707 * The file_regions will hold their own reference to
5708 * h_cg->css. So we should release the reference held
5709 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5710 * done.
5711 */
5712 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
5713 }
5714 }
33b8f84a
MK
5715 return true;
5716
075a61d0
MA
5717out_put_pages:
5718 /* put back original number of pages, chg */
5719 (void)hugepage_subpool_put_pages(spool, chg);
5720out_uncharge_cgroup:
5721 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5722 chg * pages_per_huge_page(h), h_cg);
c50ac050 5723out_err:
5e911373 5724 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5725 /* Only call region_abort if the region_chg succeeded but the
5726 * region_add failed or didn't run.
5727 */
5728 if (chg >= 0 && add < 0)
5729 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5730 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5731 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 5732 return false;
a43a8c39
KC
5733}
5734
b5cec28d
MK
5735long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5736 long freed)
a43a8c39 5737{
a5516438 5738 struct hstate *h = hstate_inode(inode);
4e35f483 5739 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5740 long chg = 0;
90481622 5741 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5742 long gbl_reserve;
45c682a6 5743
f27a5136
MK
5744 /*
5745 * Since this routine can be called in the evict inode path for all
5746 * hugetlbfs inodes, resv_map could be NULL.
5747 */
b5cec28d
MK
5748 if (resv_map) {
5749 chg = region_del(resv_map, start, end);
5750 /*
5751 * region_del() can fail in the rare case where a region
5752 * must be split and another region descriptor can not be
5753 * allocated. If end == LONG_MAX, it will not fail.
5754 */
5755 if (chg < 0)
5756 return chg;
5757 }
5758
45c682a6 5759 spin_lock(&inode->i_lock);
e4c6f8be 5760 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5761 spin_unlock(&inode->i_lock);
5762
1c5ecae3
MK
5763 /*
5764 * If the subpool has a minimum size, the number of global
5765 * reservations to be released may be adjusted.
dddf31a4
ML
5766 *
5767 * Note that !resv_map implies freed == 0. So (chg - freed)
5768 * won't go negative.
1c5ecae3
MK
5769 */
5770 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5771 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5772
5773 return 0;
a43a8c39 5774}
93f70f90 5775
3212b535
SC
5776#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5777static unsigned long page_table_shareable(struct vm_area_struct *svma,
5778 struct vm_area_struct *vma,
5779 unsigned long addr, pgoff_t idx)
5780{
5781 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5782 svma->vm_start;
5783 unsigned long sbase = saddr & PUD_MASK;
5784 unsigned long s_end = sbase + PUD_SIZE;
5785
5786 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5787 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5788 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5789
5790 /*
5791 * match the virtual addresses, permission and the alignment of the
5792 * page table page.
5793 */
5794 if (pmd_index(addr) != pmd_index(saddr) ||
5795 vm_flags != svm_flags ||
07e51edf 5796 !range_in_vma(svma, sbase, s_end))
3212b535
SC
5797 return 0;
5798
5799 return saddr;
5800}
5801
31aafb45 5802static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5803{
5804 unsigned long base = addr & PUD_MASK;
5805 unsigned long end = base + PUD_SIZE;
5806
5807 /*
5808 * check on proper vm_flags and page table alignment
5809 */
017b1660 5810 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5811 return true;
5812 return false;
3212b535
SC
5813}
5814
c1991e07
PX
5815bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5816{
5817#ifdef CONFIG_USERFAULTFD
5818 if (uffd_disable_huge_pmd_share(vma))
5819 return false;
5820#endif
5821 return vma_shareable(vma, addr);
5822}
5823
017b1660
MK
5824/*
5825 * Determine if start,end range within vma could be mapped by shared pmd.
5826 * If yes, adjust start and end to cover range associated with possible
5827 * shared pmd mappings.
5828 */
5829void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5830 unsigned long *start, unsigned long *end)
5831{
a1ba9da8
LX
5832 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5833 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5834
a1ba9da8 5835 /*
f0953a1b
IM
5836 * vma needs to span at least one aligned PUD size, and the range
5837 * must be at least partially within in.
a1ba9da8
LX
5838 */
5839 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5840 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5841 return;
5842
75802ca6 5843 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
5844 if (*start > v_start)
5845 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5846
a1ba9da8
LX
5847 if (*end < v_end)
5848 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5849}
5850
3212b535
SC
5851/*
5852 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5853 * and returns the corresponding pte. While this is not necessary for the
5854 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5855 * code much cleaner.
5856 *
0bf7b64e
MK
5857 * This routine must be called with i_mmap_rwsem held in at least read mode if
5858 * sharing is possible. For hugetlbfs, this prevents removal of any page
5859 * table entries associated with the address space. This is important as we
5860 * are setting up sharing based on existing page table entries (mappings).
5861 *
5862 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5863 * huge_pte_alloc know that sharing is not possible and do not take
5864 * i_mmap_rwsem as a performance optimization. This is handled by the
5865 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5866 * only required for subsequent processing.
3212b535 5867 */
aec44e0f
PX
5868pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5869 unsigned long addr, pud_t *pud)
3212b535 5870{
3212b535
SC
5871 struct address_space *mapping = vma->vm_file->f_mapping;
5872 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5873 vma->vm_pgoff;
5874 struct vm_area_struct *svma;
5875 unsigned long saddr;
5876 pte_t *spte = NULL;
5877 pte_t *pte;
cb900f41 5878 spinlock_t *ptl;
3212b535 5879
0bf7b64e 5880 i_mmap_assert_locked(mapping);
3212b535
SC
5881 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5882 if (svma == vma)
5883 continue;
5884
5885 saddr = page_table_shareable(svma, vma, addr, idx);
5886 if (saddr) {
7868a208
PA
5887 spte = huge_pte_offset(svma->vm_mm, saddr,
5888 vma_mmu_pagesize(svma));
3212b535
SC
5889 if (spte) {
5890 get_page(virt_to_page(spte));
5891 break;
5892 }
5893 }
5894 }
5895
5896 if (!spte)
5897 goto out;
5898
8bea8052 5899 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5900 if (pud_none(*pud)) {
3212b535
SC
5901 pud_populate(mm, pud,
5902 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5903 mm_inc_nr_pmds(mm);
dc6c9a35 5904 } else {
3212b535 5905 put_page(virt_to_page(spte));
dc6c9a35 5906 }
cb900f41 5907 spin_unlock(ptl);
3212b535
SC
5908out:
5909 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5910 return pte;
5911}
5912
5913/*
5914 * unmap huge page backed by shared pte.
5915 *
5916 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5917 * indicated by page_count > 1, unmap is achieved by clearing pud and
5918 * decrementing the ref count. If count == 1, the pte page is not shared.
5919 *
c0d0381a 5920 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5921 *
5922 * returns: 1 successfully unmapped a shared pte page
5923 * 0 the underlying pte page is not shared, or it is the last user
5924 */
34ae204f
MK
5925int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5926 unsigned long *addr, pte_t *ptep)
3212b535
SC
5927{
5928 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5929 p4d_t *p4d = p4d_offset(pgd, *addr);
5930 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5931
34ae204f 5932 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5933 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5934 if (page_count(virt_to_page(ptep)) == 1)
5935 return 0;
5936
5937 pud_clear(pud);
5938 put_page(virt_to_page(ptep));
dc6c9a35 5939 mm_dec_nr_pmds(mm);
3212b535
SC
5940 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5941 return 1;
5942}
c1991e07 5943
9e5fc74c 5944#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
aec44e0f
PX
5945pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5946 unsigned long addr, pud_t *pud)
9e5fc74c
SC
5947{
5948 return NULL;
5949}
e81f2d22 5950
34ae204f
MK
5951int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5952 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5953{
5954 return 0;
5955}
017b1660
MK
5956
5957void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5958 unsigned long *start, unsigned long *end)
5959{
5960}
c1991e07
PX
5961
5962bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5963{
5964 return false;
5965}
3212b535
SC
5966#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5967
9e5fc74c 5968#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 5969pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
5970 unsigned long addr, unsigned long sz)
5971{
5972 pgd_t *pgd;
c2febafc 5973 p4d_t *p4d;
9e5fc74c
SC
5974 pud_t *pud;
5975 pte_t *pte = NULL;
5976
5977 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5978 p4d = p4d_alloc(mm, pgd, addr);
5979 if (!p4d)
5980 return NULL;
c2febafc 5981 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5982 if (pud) {
5983 if (sz == PUD_SIZE) {
5984 pte = (pte_t *)pud;
5985 } else {
5986 BUG_ON(sz != PMD_SIZE);
c1991e07 5987 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 5988 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
5989 else
5990 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5991 }
5992 }
4e666314 5993 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5994
5995 return pte;
5996}
5997
9b19df29
PA
5998/*
5999 * huge_pte_offset() - Walk the page table to resolve the hugepage
6000 * entry at address @addr
6001 *
8ac0b81a
LX
6002 * Return: Pointer to page table entry (PUD or PMD) for
6003 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
6004 * size @sz doesn't match the hugepage size at this level of the page
6005 * table.
6006 */
7868a208
PA
6007pte_t *huge_pte_offset(struct mm_struct *mm,
6008 unsigned long addr, unsigned long sz)
9e5fc74c
SC
6009{
6010 pgd_t *pgd;
c2febafc 6011 p4d_t *p4d;
8ac0b81a
LX
6012 pud_t *pud;
6013 pmd_t *pmd;
9e5fc74c
SC
6014
6015 pgd = pgd_offset(mm, addr);
c2febafc
KS
6016 if (!pgd_present(*pgd))
6017 return NULL;
6018 p4d = p4d_offset(pgd, addr);
6019 if (!p4d_present(*p4d))
6020 return NULL;
9b19df29 6021
c2febafc 6022 pud = pud_offset(p4d, addr);
8ac0b81a
LX
6023 if (sz == PUD_SIZE)
6024 /* must be pud huge, non-present or none */
c2febafc 6025 return (pte_t *)pud;
8ac0b81a 6026 if (!pud_present(*pud))
9b19df29 6027 return NULL;
8ac0b81a 6028 /* must have a valid entry and size to go further */
9b19df29 6029
8ac0b81a
LX
6030 pmd = pmd_offset(pud, addr);
6031 /* must be pmd huge, non-present or none */
6032 return (pte_t *)pmd;
9e5fc74c
SC
6033}
6034
61f77eda
NH
6035#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6036
6037/*
6038 * These functions are overwritable if your architecture needs its own
6039 * behavior.
6040 */
6041struct page * __weak
6042follow_huge_addr(struct mm_struct *mm, unsigned long address,
6043 int write)
6044{
6045 return ERR_PTR(-EINVAL);
6046}
6047
4dc71451
AK
6048struct page * __weak
6049follow_huge_pd(struct vm_area_struct *vma,
6050 unsigned long address, hugepd_t hpd, int flags, int pdshift)
6051{
6052 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6053 return NULL;
6054}
6055
61f77eda 6056struct page * __weak
9e5fc74c 6057follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 6058 pmd_t *pmd, int flags)
9e5fc74c 6059{
e66f17ff
NH
6060 struct page *page = NULL;
6061 spinlock_t *ptl;
c9d398fa 6062 pte_t pte;
3faa52c0
JH
6063
6064 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6065 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6066 (FOLL_PIN | FOLL_GET)))
6067 return NULL;
6068
e66f17ff
NH
6069retry:
6070 ptl = pmd_lockptr(mm, pmd);
6071 spin_lock(ptl);
6072 /*
6073 * make sure that the address range covered by this pmd is not
6074 * unmapped from other threads.
6075 */
6076 if (!pmd_huge(*pmd))
6077 goto out;
c9d398fa
NH
6078 pte = huge_ptep_get((pte_t *)pmd);
6079 if (pte_present(pte)) {
97534127 6080 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
6081 /*
6082 * try_grab_page() should always succeed here, because: a) we
6083 * hold the pmd (ptl) lock, and b) we've just checked that the
6084 * huge pmd (head) page is present in the page tables. The ptl
6085 * prevents the head page and tail pages from being rearranged
6086 * in any way. So this page must be available at this point,
6087 * unless the page refcount overflowed:
6088 */
6089 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6090 page = NULL;
6091 goto out;
6092 }
e66f17ff 6093 } else {
c9d398fa 6094 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
6095 spin_unlock(ptl);
6096 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6097 goto retry;
6098 }
6099 /*
6100 * hwpoisoned entry is treated as no_page_table in
6101 * follow_page_mask().
6102 */
6103 }
6104out:
6105 spin_unlock(ptl);
9e5fc74c
SC
6106 return page;
6107}
6108
61f77eda 6109struct page * __weak
9e5fc74c 6110follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 6111 pud_t *pud, int flags)
9e5fc74c 6112{
3faa52c0 6113 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 6114 return NULL;
9e5fc74c 6115
e66f17ff 6116 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
6117}
6118
faaa5b62
AK
6119struct page * __weak
6120follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6121{
3faa52c0 6122 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
6123 return NULL;
6124
6125 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6126}
6127
31caf665
NH
6128bool isolate_huge_page(struct page *page, struct list_head *list)
6129{
bcc54222
NH
6130 bool ret = true;
6131
db71ef79 6132 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
6133 if (!PageHeadHuge(page) ||
6134 !HPageMigratable(page) ||
0eb2df2b 6135 !get_page_unless_zero(page)) {
bcc54222
NH
6136 ret = false;
6137 goto unlock;
6138 }
8f251a3d 6139 ClearHPageMigratable(page);
31caf665 6140 list_move_tail(&page->lru, list);
bcc54222 6141unlock:
db71ef79 6142 spin_unlock_irq(&hugetlb_lock);
bcc54222 6143 return ret;
31caf665
NH
6144}
6145
25182f05
NH
6146int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6147{
6148 int ret = 0;
6149
6150 *hugetlb = false;
6151 spin_lock_irq(&hugetlb_lock);
6152 if (PageHeadHuge(page)) {
6153 *hugetlb = true;
6154 if (HPageFreed(page) || HPageMigratable(page))
6155 ret = get_page_unless_zero(page);
0ed950d1
NH
6156 else
6157 ret = -EBUSY;
25182f05
NH
6158 }
6159 spin_unlock_irq(&hugetlb_lock);
6160 return ret;
6161}
6162
31caf665
NH
6163void putback_active_hugepage(struct page *page)
6164{
db71ef79 6165 spin_lock_irq(&hugetlb_lock);
8f251a3d 6166 SetHPageMigratable(page);
31caf665 6167 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 6168 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
6169 put_page(page);
6170}
ab5ac90a
MH
6171
6172void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6173{
6174 struct hstate *h = page_hstate(oldpage);
6175
6176 hugetlb_cgroup_migrate(oldpage, newpage);
6177 set_page_owner_migrate_reason(newpage, reason);
6178
6179 /*
6180 * transfer temporary state of the new huge page. This is
6181 * reverse to other transitions because the newpage is going to
6182 * be final while the old one will be freed so it takes over
6183 * the temporary status.
6184 *
6185 * Also note that we have to transfer the per-node surplus state
6186 * here as well otherwise the global surplus count will not match
6187 * the per-node's.
6188 */
9157c311 6189 if (HPageTemporary(newpage)) {
ab5ac90a
MH
6190 int old_nid = page_to_nid(oldpage);
6191 int new_nid = page_to_nid(newpage);
6192
9157c311
MK
6193 SetHPageTemporary(oldpage);
6194 ClearHPageTemporary(newpage);
ab5ac90a 6195
5af1ab1d
ML
6196 /*
6197 * There is no need to transfer the per-node surplus state
6198 * when we do not cross the node.
6199 */
6200 if (new_nid == old_nid)
6201 return;
db71ef79 6202 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
6203 if (h->surplus_huge_pages_node[old_nid]) {
6204 h->surplus_huge_pages_node[old_nid]--;
6205 h->surplus_huge_pages_node[new_nid]++;
6206 }
db71ef79 6207 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
6208 }
6209}
cf11e85f 6210
6dfeaff9
PX
6211/*
6212 * This function will unconditionally remove all the shared pmd pgtable entries
6213 * within the specific vma for a hugetlbfs memory range.
6214 */
6215void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6216{
6217 struct hstate *h = hstate_vma(vma);
6218 unsigned long sz = huge_page_size(h);
6219 struct mm_struct *mm = vma->vm_mm;
6220 struct mmu_notifier_range range;
6221 unsigned long address, start, end;
6222 spinlock_t *ptl;
6223 pte_t *ptep;
6224
6225 if (!(vma->vm_flags & VM_MAYSHARE))
6226 return;
6227
6228 start = ALIGN(vma->vm_start, PUD_SIZE);
6229 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6230
6231 if (start >= end)
6232 return;
6233
6234 /*
6235 * No need to call adjust_range_if_pmd_sharing_possible(), because
6236 * we have already done the PUD_SIZE alignment.
6237 */
6238 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6239 start, end);
6240 mmu_notifier_invalidate_range_start(&range);
6241 i_mmap_lock_write(vma->vm_file->f_mapping);
6242 for (address = start; address < end; address += PUD_SIZE) {
6243 unsigned long tmp = address;
6244
6245 ptep = huge_pte_offset(mm, address, sz);
6246 if (!ptep)
6247 continue;
6248 ptl = huge_pte_lock(h, mm, ptep);
6249 /* We don't want 'address' to be changed */
6250 huge_pmd_unshare(mm, vma, &tmp, ptep);
6251 spin_unlock(ptl);
6252 }
6253 flush_hugetlb_tlb_range(vma, start, end);
6254 i_mmap_unlock_write(vma->vm_file->f_mapping);
6255 /*
6256 * No need to call mmu_notifier_invalidate_range(), see
6257 * Documentation/vm/mmu_notifier.rst.
6258 */
6259 mmu_notifier_invalidate_range_end(&range);
6260}
6261
cf11e85f 6262#ifdef CONFIG_CMA
cf11e85f
RG
6263static bool cma_reserve_called __initdata;
6264
6265static int __init cmdline_parse_hugetlb_cma(char *p)
6266{
6267 hugetlb_cma_size = memparse(p, &p);
6268 return 0;
6269}
6270
6271early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6272
6273void __init hugetlb_cma_reserve(int order)
6274{
6275 unsigned long size, reserved, per_node;
6276 int nid;
6277
6278 cma_reserve_called = true;
6279
6280 if (!hugetlb_cma_size)
6281 return;
6282
6283 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6284 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6285 (PAGE_SIZE << order) / SZ_1M);
6286 return;
6287 }
6288
6289 /*
6290 * If 3 GB area is requested on a machine with 4 numa nodes,
6291 * let's allocate 1 GB on first three nodes and ignore the last one.
6292 */
6293 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6294 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6295 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6296
6297 reserved = 0;
6298 for_each_node_state(nid, N_ONLINE) {
6299 int res;
2281f797 6300 char name[CMA_MAX_NAME];
cf11e85f
RG
6301
6302 size = min(per_node, hugetlb_cma_size - reserved);
6303 size = round_up(size, PAGE_SIZE << order);
6304
2281f797 6305 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 6306 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 6307 0, false, name,
cf11e85f
RG
6308 &hugetlb_cma[nid], nid);
6309 if (res) {
6310 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6311 res, nid);
6312 continue;
6313 }
6314
6315 reserved += size;
6316 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6317 size / SZ_1M, nid);
6318
6319 if (reserved >= hugetlb_cma_size)
6320 break;
6321 }
6322}
6323
6324void __init hugetlb_cma_check(void)
6325{
6326 if (!hugetlb_cma_size || cma_reserve_called)
6327 return;
6328
6329 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6330}
6331
6332#endif /* CONFIG_CMA */