]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/hugetlb.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
8382d914 25#include <linux/jhash.h>
d6606683 26
63551ae0
DG
27#include <asm/page.h>
28#include <asm/pgtable.h>
24669e58 29#include <asm/tlb.h>
63551ae0 30
24669e58 31#include <linux/io.h>
63551ae0 32#include <linux/hugetlb.h>
9dd540e2 33#include <linux/hugetlb_cgroup.h>
9a305230 34#include <linux/node.h>
1a1aad8a 35#include <linux/userfaultfd_k.h>
7835e98b 36#include "internal.h"
1da177e4 37
753162cd 38int hugepages_treat_as_movable;
a5516438 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 48
53ba51d2
JT
49__initdata LIST_HEAD(huge_boot_pages);
50
e5ff2159
AK
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 54static unsigned long __initdata default_hstate_size;
9fee021d 55static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 56
3935baa9 57/*
31caf665
NH
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
3935baa9 60 */
c3f38a38 61DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 62
8382d914
DB
63/*
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 */
67static int num_fault_mutexes;
c672c7f2 68struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 69
7ca02d0a
MK
70/* Forward declaration */
71static int hugetlb_acct_memory(struct hstate *h, long delta);
72
90481622
DG
73static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74{
75 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77 spin_unlock(&spool->lock);
78
79 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
80 * remain, give up any reservations mased on minimum size and
81 * free the subpool */
82 if (free) {
83 if (spool->min_hpages != -1)
84 hugetlb_acct_memory(spool->hstate,
85 -spool->min_hpages);
90481622 86 kfree(spool);
7ca02d0a 87 }
90481622
DG
88}
89
7ca02d0a
MK
90struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91 long min_hpages)
90481622
DG
92{
93 struct hugepage_subpool *spool;
94
c6a91820 95 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
96 if (!spool)
97 return NULL;
98
99 spin_lock_init(&spool->lock);
100 spool->count = 1;
7ca02d0a
MK
101 spool->max_hpages = max_hpages;
102 spool->hstate = h;
103 spool->min_hpages = min_hpages;
104
105 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106 kfree(spool);
107 return NULL;
108 }
109 spool->rsv_hpages = min_hpages;
90481622
DG
110
111 return spool;
112}
113
114void hugepage_put_subpool(struct hugepage_subpool *spool)
115{
116 spin_lock(&spool->lock);
117 BUG_ON(!spool->count);
118 spool->count--;
119 unlock_or_release_subpool(spool);
120}
121
1c5ecae3
MK
122/*
123 * Subpool accounting for allocating and reserving pages.
124 * Return -ENOMEM if there are not enough resources to satisfy the
125 * the request. Otherwise, return the number of pages by which the
126 * global pools must be adjusted (upward). The returned value may
127 * only be different than the passed value (delta) in the case where
128 * a subpool minimum size must be manitained.
129 */
130static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
131 long delta)
132{
1c5ecae3 133 long ret = delta;
90481622
DG
134
135 if (!spool)
1c5ecae3 136 return ret;
90481622
DG
137
138 spin_lock(&spool->lock);
1c5ecae3
MK
139
140 if (spool->max_hpages != -1) { /* maximum size accounting */
141 if ((spool->used_hpages + delta) <= spool->max_hpages)
142 spool->used_hpages += delta;
143 else {
144 ret = -ENOMEM;
145 goto unlock_ret;
146 }
90481622 147 }
90481622 148
09a95e29
MK
149 /* minimum size accounting */
150 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
151 if (delta > spool->rsv_hpages) {
152 /*
153 * Asking for more reserves than those already taken on
154 * behalf of subpool. Return difference.
155 */
156 ret = delta - spool->rsv_hpages;
157 spool->rsv_hpages = 0;
158 } else {
159 ret = 0; /* reserves already accounted for */
160 spool->rsv_hpages -= delta;
161 }
162 }
163
164unlock_ret:
165 spin_unlock(&spool->lock);
90481622
DG
166 return ret;
167}
168
1c5ecae3
MK
169/*
170 * Subpool accounting for freeing and unreserving pages.
171 * Return the number of global page reservations that must be dropped.
172 * The return value may only be different than the passed value (delta)
173 * in the case where a subpool minimum size must be maintained.
174 */
175static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
176 long delta)
177{
1c5ecae3
MK
178 long ret = delta;
179
90481622 180 if (!spool)
1c5ecae3 181 return delta;
90481622
DG
182
183 spin_lock(&spool->lock);
1c5ecae3
MK
184
185 if (spool->max_hpages != -1) /* maximum size accounting */
186 spool->used_hpages -= delta;
187
09a95e29
MK
188 /* minimum size accounting */
189 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
190 if (spool->rsv_hpages + delta <= spool->min_hpages)
191 ret = 0;
192 else
193 ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195 spool->rsv_hpages += delta;
196 if (spool->rsv_hpages > spool->min_hpages)
197 spool->rsv_hpages = spool->min_hpages;
198 }
199
200 /*
201 * If hugetlbfs_put_super couldn't free spool due to an outstanding
202 * quota reference, free it now.
203 */
90481622 204 unlock_or_release_subpool(spool);
1c5ecae3
MK
205
206 return ret;
90481622
DG
207}
208
209static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210{
211 return HUGETLBFS_SB(inode->i_sb)->spool;
212}
213
214static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215{
496ad9aa 216 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
217}
218
96822904
AW
219/*
220 * Region tracking -- allows tracking of reservations and instantiated pages
221 * across the pages in a mapping.
84afd99b 222 *
1dd308a7
MK
223 * The region data structures are embedded into a resv_map and protected
224 * by a resv_map's lock. The set of regions within the resv_map represent
225 * reservations for huge pages, or huge pages that have already been
226 * instantiated within the map. The from and to elements are huge page
227 * indicies into the associated mapping. from indicates the starting index
228 * of the region. to represents the first index past the end of the region.
229 *
230 * For example, a file region structure with from == 0 and to == 4 represents
231 * four huge pages in a mapping. It is important to note that the to element
232 * represents the first element past the end of the region. This is used in
233 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 *
235 * Interval notation of the form [from, to) will be used to indicate that
236 * the endpoint from is inclusive and to is exclusive.
96822904
AW
237 */
238struct file_region {
239 struct list_head link;
240 long from;
241 long to;
242};
243
1dd308a7
MK
244/*
245 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
246 * map. In the normal case, existing regions will be expanded
247 * to accommodate the specified range. Sufficient regions should
248 * exist for expansion due to the previous call to region_chg
249 * with the same range. However, it is possible that region_del
250 * could have been called after region_chg and modifed the map
251 * in such a way that no region exists to be expanded. In this
252 * case, pull a region descriptor from the cache associated with
253 * the map and use that for the new range.
cf3ad20b
MK
254 *
255 * Return the number of new huge pages added to the map. This
256 * number is greater than or equal to zero.
1dd308a7 257 */
1406ec9b 258static long region_add(struct resv_map *resv, long f, long t)
96822904 259{
1406ec9b 260 struct list_head *head = &resv->regions;
96822904 261 struct file_region *rg, *nrg, *trg;
cf3ad20b 262 long add = 0;
96822904 263
7b24d861 264 spin_lock(&resv->lock);
96822904
AW
265 /* Locate the region we are either in or before. */
266 list_for_each_entry(rg, head, link)
267 if (f <= rg->to)
268 break;
269
5e911373
MK
270 /*
271 * If no region exists which can be expanded to include the
272 * specified range, the list must have been modified by an
273 * interleving call to region_del(). Pull a region descriptor
274 * from the cache and use it for this range.
275 */
276 if (&rg->link == head || t < rg->from) {
277 VM_BUG_ON(resv->region_cache_count <= 0);
278
279 resv->region_cache_count--;
280 nrg = list_first_entry(&resv->region_cache, struct file_region,
281 link);
282 list_del(&nrg->link);
283
284 nrg->from = f;
285 nrg->to = t;
286 list_add(&nrg->link, rg->link.prev);
287
288 add += t - f;
289 goto out_locked;
290 }
291
96822904
AW
292 /* Round our left edge to the current segment if it encloses us. */
293 if (f > rg->from)
294 f = rg->from;
295
296 /* Check for and consume any regions we now overlap with. */
297 nrg = rg;
298 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299 if (&rg->link == head)
300 break;
301 if (rg->from > t)
302 break;
303
304 /* If this area reaches higher then extend our area to
305 * include it completely. If this is not the first area
306 * which we intend to reuse, free it. */
307 if (rg->to > t)
308 t = rg->to;
309 if (rg != nrg) {
cf3ad20b
MK
310 /* Decrement return value by the deleted range.
311 * Another range will span this area so that by
312 * end of routine add will be >= zero
313 */
314 add -= (rg->to - rg->from);
96822904
AW
315 list_del(&rg->link);
316 kfree(rg);
317 }
318 }
cf3ad20b
MK
319
320 add += (nrg->from - f); /* Added to beginning of region */
96822904 321 nrg->from = f;
cf3ad20b 322 add += t - nrg->to; /* Added to end of region */
96822904 323 nrg->to = t;
cf3ad20b 324
5e911373
MK
325out_locked:
326 resv->adds_in_progress--;
7b24d861 327 spin_unlock(&resv->lock);
cf3ad20b
MK
328 VM_BUG_ON(add < 0);
329 return add;
96822904
AW
330}
331
1dd308a7
MK
332/*
333 * Examine the existing reserve map and determine how many
334 * huge pages in the specified range [f, t) are NOT currently
335 * represented. This routine is called before a subsequent
336 * call to region_add that will actually modify the reserve
337 * map to add the specified range [f, t). region_chg does
338 * not change the number of huge pages represented by the
339 * map. However, if the existing regions in the map can not
340 * be expanded to represent the new range, a new file_region
341 * structure is added to the map as a placeholder. This is
342 * so that the subsequent region_add call will have all the
343 * regions it needs and will not fail.
344 *
5e911373
MK
345 * Upon entry, region_chg will also examine the cache of region descriptors
346 * associated with the map. If there are not enough descriptors cached, one
347 * will be allocated for the in progress add operation.
348 *
349 * Returns the number of huge pages that need to be added to the existing
350 * reservation map for the range [f, t). This number is greater or equal to
351 * zero. -ENOMEM is returned if a new file_region structure or cache entry
352 * is needed and can not be allocated.
1dd308a7 353 */
1406ec9b 354static long region_chg(struct resv_map *resv, long f, long t)
96822904 355{
1406ec9b 356 struct list_head *head = &resv->regions;
7b24d861 357 struct file_region *rg, *nrg = NULL;
96822904
AW
358 long chg = 0;
359
7b24d861
DB
360retry:
361 spin_lock(&resv->lock);
5e911373
MK
362retry_locked:
363 resv->adds_in_progress++;
364
365 /*
366 * Check for sufficient descriptors in the cache to accommodate
367 * the number of in progress add operations.
368 */
369 if (resv->adds_in_progress > resv->region_cache_count) {
370 struct file_region *trg;
371
372 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373 /* Must drop lock to allocate a new descriptor. */
374 resv->adds_in_progress--;
375 spin_unlock(&resv->lock);
376
377 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
378 if (!trg) {
379 kfree(nrg);
5e911373 380 return -ENOMEM;
dbe409e4 381 }
5e911373
MK
382
383 spin_lock(&resv->lock);
384 list_add(&trg->link, &resv->region_cache);
385 resv->region_cache_count++;
386 goto retry_locked;
387 }
388
96822904
AW
389 /* Locate the region we are before or in. */
390 list_for_each_entry(rg, head, link)
391 if (f <= rg->to)
392 break;
393
394 /* If we are below the current region then a new region is required.
395 * Subtle, allocate a new region at the position but make it zero
396 * size such that we can guarantee to record the reservation. */
397 if (&rg->link == head || t < rg->from) {
7b24d861 398 if (!nrg) {
5e911373 399 resv->adds_in_progress--;
7b24d861
DB
400 spin_unlock(&resv->lock);
401 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402 if (!nrg)
403 return -ENOMEM;
404
405 nrg->from = f;
406 nrg->to = f;
407 INIT_LIST_HEAD(&nrg->link);
408 goto retry;
409 }
96822904 410
7b24d861
DB
411 list_add(&nrg->link, rg->link.prev);
412 chg = t - f;
413 goto out_nrg;
96822904
AW
414 }
415
416 /* Round our left edge to the current segment if it encloses us. */
417 if (f > rg->from)
418 f = rg->from;
419 chg = t - f;
420
421 /* Check for and consume any regions we now overlap with. */
422 list_for_each_entry(rg, rg->link.prev, link) {
423 if (&rg->link == head)
424 break;
425 if (rg->from > t)
7b24d861 426 goto out;
96822904 427
25985edc 428 /* We overlap with this area, if it extends further than
96822904
AW
429 * us then we must extend ourselves. Account for its
430 * existing reservation. */
431 if (rg->to > t) {
432 chg += rg->to - t;
433 t = rg->to;
434 }
435 chg -= rg->to - rg->from;
436 }
7b24d861
DB
437
438out:
439 spin_unlock(&resv->lock);
440 /* We already know we raced and no longer need the new region */
441 kfree(nrg);
442 return chg;
443out_nrg:
444 spin_unlock(&resv->lock);
96822904
AW
445 return chg;
446}
447
5e911373
MK
448/*
449 * Abort the in progress add operation. The adds_in_progress field
450 * of the resv_map keeps track of the operations in progress between
451 * calls to region_chg and region_add. Operations are sometimes
452 * aborted after the call to region_chg. In such cases, region_abort
453 * is called to decrement the adds_in_progress counter.
454 *
455 * NOTE: The range arguments [f, t) are not needed or used in this
456 * routine. They are kept to make reading the calling code easier as
457 * arguments will match the associated region_chg call.
458 */
459static void region_abort(struct resv_map *resv, long f, long t)
460{
461 spin_lock(&resv->lock);
462 VM_BUG_ON(!resv->region_cache_count);
463 resv->adds_in_progress--;
464 spin_unlock(&resv->lock);
465}
466
1dd308a7 467/*
feba16e2
MK
468 * Delete the specified range [f, t) from the reserve map. If the
469 * t parameter is LONG_MAX, this indicates that ALL regions after f
470 * should be deleted. Locate the regions which intersect [f, t)
471 * and either trim, delete or split the existing regions.
472 *
473 * Returns the number of huge pages deleted from the reserve map.
474 * In the normal case, the return value is zero or more. In the
475 * case where a region must be split, a new region descriptor must
476 * be allocated. If the allocation fails, -ENOMEM will be returned.
477 * NOTE: If the parameter t == LONG_MAX, then we will never split
478 * a region and possibly return -ENOMEM. Callers specifying
479 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 480 */
feba16e2 481static long region_del(struct resv_map *resv, long f, long t)
96822904 482{
1406ec9b 483 struct list_head *head = &resv->regions;
96822904 484 struct file_region *rg, *trg;
feba16e2
MK
485 struct file_region *nrg = NULL;
486 long del = 0;
96822904 487
feba16e2 488retry:
7b24d861 489 spin_lock(&resv->lock);
feba16e2 490 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
491 /*
492 * Skip regions before the range to be deleted. file_region
493 * ranges are normally of the form [from, to). However, there
494 * may be a "placeholder" entry in the map which is of the form
495 * (from, to) with from == to. Check for placeholder entries
496 * at the beginning of the range to be deleted.
497 */
498 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 499 continue;
dbe409e4 500
feba16e2 501 if (rg->from >= t)
96822904 502 break;
96822904 503
feba16e2
MK
504 if (f > rg->from && t < rg->to) { /* Must split region */
505 /*
506 * Check for an entry in the cache before dropping
507 * lock and attempting allocation.
508 */
509 if (!nrg &&
510 resv->region_cache_count > resv->adds_in_progress) {
511 nrg = list_first_entry(&resv->region_cache,
512 struct file_region,
513 link);
514 list_del(&nrg->link);
515 resv->region_cache_count--;
516 }
96822904 517
feba16e2
MK
518 if (!nrg) {
519 spin_unlock(&resv->lock);
520 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521 if (!nrg)
522 return -ENOMEM;
523 goto retry;
524 }
525
526 del += t - f;
527
528 /* New entry for end of split region */
529 nrg->from = t;
530 nrg->to = rg->to;
531 INIT_LIST_HEAD(&nrg->link);
532
533 /* Original entry is trimmed */
534 rg->to = f;
535
536 list_add(&nrg->link, &rg->link);
537 nrg = NULL;
96822904 538 break;
feba16e2
MK
539 }
540
541 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542 del += rg->to - rg->from;
543 list_del(&rg->link);
544 kfree(rg);
545 continue;
546 }
547
548 if (f <= rg->from) { /* Trim beginning of region */
549 del += t - rg->from;
550 rg->from = t;
551 } else { /* Trim end of region */
552 del += rg->to - f;
553 rg->to = f;
554 }
96822904 555 }
7b24d861 556
7b24d861 557 spin_unlock(&resv->lock);
feba16e2
MK
558 kfree(nrg);
559 return del;
96822904
AW
560}
561
b5cec28d
MK
562/*
563 * A rare out of memory error was encountered which prevented removal of
564 * the reserve map region for a page. The huge page itself was free'ed
565 * and removed from the page cache. This routine will adjust the subpool
566 * usage count, and the global reserve count if needed. By incrementing
567 * these counts, the reserve map entry which could not be deleted will
568 * appear as a "reserved" entry instead of simply dangling with incorrect
569 * counts.
570 */
72e2936c 571void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
572{
573 struct hugepage_subpool *spool = subpool_inode(inode);
574 long rsv_adjust;
575
576 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 577 if (rsv_adjust) {
b5cec28d
MK
578 struct hstate *h = hstate_inode(inode);
579
580 hugetlb_acct_memory(h, 1);
581 }
582}
583
1dd308a7
MK
584/*
585 * Count and return the number of huge pages in the reserve map
586 * that intersect with the range [f, t).
587 */
1406ec9b 588static long region_count(struct resv_map *resv, long f, long t)
84afd99b 589{
1406ec9b 590 struct list_head *head = &resv->regions;
84afd99b
AW
591 struct file_region *rg;
592 long chg = 0;
593
7b24d861 594 spin_lock(&resv->lock);
84afd99b
AW
595 /* Locate each segment we overlap with, and count that overlap. */
596 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
597 long seg_from;
598 long seg_to;
84afd99b
AW
599
600 if (rg->to <= f)
601 continue;
602 if (rg->from >= t)
603 break;
604
605 seg_from = max(rg->from, f);
606 seg_to = min(rg->to, t);
607
608 chg += seg_to - seg_from;
609 }
7b24d861 610 spin_unlock(&resv->lock);
84afd99b
AW
611
612 return chg;
613}
614
e7c4b0bf
AW
615/*
616 * Convert the address within this vma to the page offset within
617 * the mapping, in pagecache page units; huge pages here.
618 */
a5516438
AK
619static pgoff_t vma_hugecache_offset(struct hstate *h,
620 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 621{
a5516438
AK
622 return ((address - vma->vm_start) >> huge_page_shift(h)) +
623 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
624}
625
0fe6e20b
NH
626pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627 unsigned long address)
628{
629 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630}
dee41079 631EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 632
08fba699
MG
633/*
634 * Return the size of the pages allocated when backing a VMA. In the majority
635 * cases this will be same size as used by the page table entries.
636 */
637unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638{
639 struct hstate *hstate;
640
641 if (!is_vm_hugetlb_page(vma))
642 return PAGE_SIZE;
643
644 hstate = hstate_vma(vma);
645
2415cf12 646 return 1UL << huge_page_shift(hstate);
08fba699 647}
f340ca0f 648EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 649
3340289d
MG
650/*
651 * Return the page size being used by the MMU to back a VMA. In the majority
652 * of cases, the page size used by the kernel matches the MMU size. On
653 * architectures where it differs, an architecture-specific version of this
654 * function is required.
655 */
656#ifndef vma_mmu_pagesize
657unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658{
659 return vma_kernel_pagesize(vma);
660}
661#endif
662
84afd99b
AW
663/*
664 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
665 * bits of the reservation map pointer, which are always clear due to
666 * alignment.
667 */
668#define HPAGE_RESV_OWNER (1UL << 0)
669#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 670#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 671
a1e78772
MG
672/*
673 * These helpers are used to track how many pages are reserved for
674 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675 * is guaranteed to have their future faults succeed.
676 *
677 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678 * the reserve counters are updated with the hugetlb_lock held. It is safe
679 * to reset the VMA at fork() time as it is not in use yet and there is no
680 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
681 *
682 * The private mapping reservation is represented in a subtly different
683 * manner to a shared mapping. A shared mapping has a region map associated
684 * with the underlying file, this region map represents the backing file
685 * pages which have ever had a reservation assigned which this persists even
686 * after the page is instantiated. A private mapping has a region map
687 * associated with the original mmap which is attached to all VMAs which
688 * reference it, this region map represents those offsets which have consumed
689 * reservation ie. where pages have been instantiated.
a1e78772 690 */
e7c4b0bf
AW
691static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692{
693 return (unsigned long)vma->vm_private_data;
694}
695
696static void set_vma_private_data(struct vm_area_struct *vma,
697 unsigned long value)
698{
699 vma->vm_private_data = (void *)value;
700}
701
9119a41e 702struct resv_map *resv_map_alloc(void)
84afd99b
AW
703{
704 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
705 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707 if (!resv_map || !rg) {
708 kfree(resv_map);
709 kfree(rg);
84afd99b 710 return NULL;
5e911373 711 }
84afd99b
AW
712
713 kref_init(&resv_map->refs);
7b24d861 714 spin_lock_init(&resv_map->lock);
84afd99b
AW
715 INIT_LIST_HEAD(&resv_map->regions);
716
5e911373
MK
717 resv_map->adds_in_progress = 0;
718
719 INIT_LIST_HEAD(&resv_map->region_cache);
720 list_add(&rg->link, &resv_map->region_cache);
721 resv_map->region_cache_count = 1;
722
84afd99b
AW
723 return resv_map;
724}
725
9119a41e 726void resv_map_release(struct kref *ref)
84afd99b
AW
727{
728 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
729 struct list_head *head = &resv_map->region_cache;
730 struct file_region *rg, *trg;
84afd99b
AW
731
732 /* Clear out any active regions before we release the map. */
feba16e2 733 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
734
735 /* ... and any entries left in the cache */
736 list_for_each_entry_safe(rg, trg, head, link) {
737 list_del(&rg->link);
738 kfree(rg);
739 }
740
741 VM_BUG_ON(resv_map->adds_in_progress);
742
84afd99b
AW
743 kfree(resv_map);
744}
745
4e35f483
JK
746static inline struct resv_map *inode_resv_map(struct inode *inode)
747{
748 return inode->i_mapping->private_data;
749}
750
84afd99b 751static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 752{
81d1b09c 753 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
754 if (vma->vm_flags & VM_MAYSHARE) {
755 struct address_space *mapping = vma->vm_file->f_mapping;
756 struct inode *inode = mapping->host;
757
758 return inode_resv_map(inode);
759
760 } else {
84afd99b
AW
761 return (struct resv_map *)(get_vma_private_data(vma) &
762 ~HPAGE_RESV_MASK);
4e35f483 763 }
a1e78772
MG
764}
765
84afd99b 766static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 767{
81d1b09c
SL
768 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 770
84afd99b
AW
771 set_vma_private_data(vma, (get_vma_private_data(vma) &
772 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
773}
774
775static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776{
81d1b09c
SL
777 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
779
780 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
781}
782
783static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784{
81d1b09c 785 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
786
787 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
788}
789
04f2cbe3 790/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
791void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792{
81d1b09c 793 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 794 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
795 vma->vm_private_data = (void *)0;
796}
797
798/* Returns true if the VMA has associated reserve pages */
559ec2f8 799static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 800{
af0ed73e
JK
801 if (vma->vm_flags & VM_NORESERVE) {
802 /*
803 * This address is already reserved by other process(chg == 0),
804 * so, we should decrement reserved count. Without decrementing,
805 * reserve count remains after releasing inode, because this
806 * allocated page will go into page cache and is regarded as
807 * coming from reserved pool in releasing step. Currently, we
808 * don't have any other solution to deal with this situation
809 * properly, so add work-around here.
810 */
811 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 812 return true;
af0ed73e 813 else
559ec2f8 814 return false;
af0ed73e 815 }
a63884e9
JK
816
817 /* Shared mappings always use reserves */
1fb1b0e9
MK
818 if (vma->vm_flags & VM_MAYSHARE) {
819 /*
820 * We know VM_NORESERVE is not set. Therefore, there SHOULD
821 * be a region map for all pages. The only situation where
822 * there is no region map is if a hole was punched via
823 * fallocate. In this case, there really are no reverves to
824 * use. This situation is indicated if chg != 0.
825 */
826 if (chg)
827 return false;
828 else
829 return true;
830 }
a63884e9
JK
831
832 /*
833 * Only the process that called mmap() has reserves for
834 * private mappings.
835 */
67961f9d
MK
836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 /*
838 * Like the shared case above, a hole punch or truncate
839 * could have been performed on the private mapping.
840 * Examine the value of chg to determine if reserves
841 * actually exist or were previously consumed.
842 * Very Subtle - The value of chg comes from a previous
843 * call to vma_needs_reserves(). The reserve map for
844 * private mappings has different (opposite) semantics
845 * than that of shared mappings. vma_needs_reserves()
846 * has already taken this difference in semantics into
847 * account. Therefore, the meaning of chg is the same
848 * as in the shared case above. Code could easily be
849 * combined, but keeping it separate draws attention to
850 * subtle differences.
851 */
852 if (chg)
853 return false;
854 else
855 return true;
856 }
a63884e9 857
559ec2f8 858 return false;
a1e78772
MG
859}
860
a5516438 861static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
862{
863 int nid = page_to_nid(page);
0edaecfa 864 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
865 h->free_huge_pages++;
866 h->free_huge_pages_node[nid]++;
1da177e4
LT
867}
868
bf50bab2
NH
869static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
870{
871 struct page *page;
872
c8721bbb
NH
873 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874 if (!is_migrate_isolate_page(page))
875 break;
876 /*
877 * if 'non-isolated free hugepage' not found on the list,
878 * the allocation fails.
879 */
880 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 881 return NULL;
0edaecfa 882 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 883 set_page_refcounted(page);
bf50bab2
NH
884 h->free_huge_pages--;
885 h->free_huge_pages_node[nid]--;
886 return page;
887}
888
86cdb465
NH
889/* Movability of hugepages depends on migration support. */
890static inline gfp_t htlb_alloc_mask(struct hstate *h)
891{
100873d7 892 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
893 return GFP_HIGHUSER_MOVABLE;
894 else
895 return GFP_HIGHUSER;
896}
897
a5516438
AK
898static struct page *dequeue_huge_page_vma(struct hstate *h,
899 struct vm_area_struct *vma,
af0ed73e
JK
900 unsigned long address, int avoid_reserve,
901 long chg)
1da177e4 902{
b1c12cbc 903 struct page *page = NULL;
480eccf9 904 struct mempolicy *mpol;
19770b32 905 nodemask_t *nodemask;
c0ff7453 906 struct zonelist *zonelist;
dd1a239f
MG
907 struct zone *zone;
908 struct zoneref *z;
cc9a6c87 909 unsigned int cpuset_mems_cookie;
1da177e4 910
a1e78772
MG
911 /*
912 * A child process with MAP_PRIVATE mappings created by their parent
913 * have no page reserves. This check ensures that reservations are
914 * not "stolen". The child may still get SIGKILLed
915 */
af0ed73e 916 if (!vma_has_reserves(vma, chg) &&
a5516438 917 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 918 goto err;
a1e78772 919
04f2cbe3 920 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 921 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 922 goto err;
04f2cbe3 923
9966c4bb 924retry_cpuset:
d26914d1 925 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 926 zonelist = huge_zonelist(vma, address,
86cdb465 927 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 928
19770b32
MG
929 for_each_zone_zonelist_nodemask(zone, z, zonelist,
930 MAX_NR_ZONES - 1, nodemask) {
344736f2 931 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
932 page = dequeue_huge_page_node(h, zone_to_nid(zone));
933 if (page) {
af0ed73e
JK
934 if (avoid_reserve)
935 break;
936 if (!vma_has_reserves(vma, chg))
937 break;
938
07443a85 939 SetPagePrivate(page);
af0ed73e 940 h->resv_huge_pages--;
bf50bab2
NH
941 break;
942 }
3abf7afd 943 }
1da177e4 944 }
cc9a6c87 945
52cd3b07 946 mpol_cond_put(mpol);
d26914d1 947 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 948 goto retry_cpuset;
1da177e4 949 return page;
cc9a6c87
MG
950
951err:
cc9a6c87 952 return NULL;
1da177e4
LT
953}
954
1cac6f2c
LC
955/*
956 * common helper functions for hstate_next_node_to_{alloc|free}.
957 * We may have allocated or freed a huge page based on a different
958 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
959 * be outside of *nodes_allowed. Ensure that we use an allowed
960 * node for alloc or free.
961 */
962static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
963{
0edaf86c 964 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
965 VM_BUG_ON(nid >= MAX_NUMNODES);
966
967 return nid;
968}
969
970static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
971{
972 if (!node_isset(nid, *nodes_allowed))
973 nid = next_node_allowed(nid, nodes_allowed);
974 return nid;
975}
976
977/*
978 * returns the previously saved node ["this node"] from which to
979 * allocate a persistent huge page for the pool and advance the
980 * next node from which to allocate, handling wrap at end of node
981 * mask.
982 */
983static int hstate_next_node_to_alloc(struct hstate *h,
984 nodemask_t *nodes_allowed)
985{
986 int nid;
987
988 VM_BUG_ON(!nodes_allowed);
989
990 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
991 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
992
993 return nid;
994}
995
996/*
997 * helper for free_pool_huge_page() - return the previously saved
998 * node ["this node"] from which to free a huge page. Advance the
999 * next node id whether or not we find a free huge page to free so
1000 * that the next attempt to free addresses the next node.
1001 */
1002static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1003{
1004 int nid;
1005
1006 VM_BUG_ON(!nodes_allowed);
1007
1008 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1009 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1010
1011 return nid;
1012}
1013
1014#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1015 for (nr_nodes = nodes_weight(*mask); \
1016 nr_nodes > 0 && \
1017 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1018 nr_nodes--)
1019
1020#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1021 for (nr_nodes = nodes_weight(*mask); \
1022 nr_nodes > 0 && \
1023 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1024 nr_nodes--)
1025
461a7184 1026#if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
d08de8e2
GS
1027 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1028 defined(CONFIG_CMA))
944d9fec 1029static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1030 unsigned int order)
944d9fec
LC
1031{
1032 int i;
1033 int nr_pages = 1 << order;
1034 struct page *p = page + 1;
1035
c8cc708a 1036 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1037 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1038 clear_compound_head(p);
944d9fec 1039 set_page_refcounted(p);
944d9fec
LC
1040 }
1041
1042 set_compound_order(page, 0);
1043 __ClearPageHead(page);
1044}
1045
d00181b9 1046static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1047{
1048 free_contig_range(page_to_pfn(page), 1 << order);
1049}
1050
1051static int __alloc_gigantic_page(unsigned long start_pfn,
1052 unsigned long nr_pages)
1053{
1054 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625
LS
1055 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1056 GFP_KERNEL);
944d9fec
LC
1057}
1058
f44b2dda
JK
1059static bool pfn_range_valid_gigantic(struct zone *z,
1060 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1061{
1062 unsigned long i, end_pfn = start_pfn + nr_pages;
1063 struct page *page;
1064
1065 for (i = start_pfn; i < end_pfn; i++) {
1066 if (!pfn_valid(i))
1067 return false;
1068
1069 page = pfn_to_page(i);
1070
f44b2dda
JK
1071 if (page_zone(page) != z)
1072 return false;
1073
944d9fec
LC
1074 if (PageReserved(page))
1075 return false;
1076
1077 if (page_count(page) > 0)
1078 return false;
1079
1080 if (PageHuge(page))
1081 return false;
1082 }
1083
1084 return true;
1085}
1086
1087static bool zone_spans_last_pfn(const struct zone *zone,
1088 unsigned long start_pfn, unsigned long nr_pages)
1089{
1090 unsigned long last_pfn = start_pfn + nr_pages - 1;
1091 return zone_spans_pfn(zone, last_pfn);
1092}
1093
d00181b9 1094static struct page *alloc_gigantic_page(int nid, unsigned int order)
944d9fec
LC
1095{
1096 unsigned long nr_pages = 1 << order;
1097 unsigned long ret, pfn, flags;
1098 struct zone *z;
1099
1100 z = NODE_DATA(nid)->node_zones;
1101 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1102 spin_lock_irqsave(&z->lock, flags);
1103
1104 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1105 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
f44b2dda 1106 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
944d9fec
LC
1107 /*
1108 * We release the zone lock here because
1109 * alloc_contig_range() will also lock the zone
1110 * at some point. If there's an allocation
1111 * spinning on this lock, it may win the race
1112 * and cause alloc_contig_range() to fail...
1113 */
1114 spin_unlock_irqrestore(&z->lock, flags);
1115 ret = __alloc_gigantic_page(pfn, nr_pages);
1116 if (!ret)
1117 return pfn_to_page(pfn);
1118 spin_lock_irqsave(&z->lock, flags);
1119 }
1120 pfn += nr_pages;
1121 }
1122
1123 spin_unlock_irqrestore(&z->lock, flags);
1124 }
1125
1126 return NULL;
1127}
1128
1129static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1130static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1131
1132static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1133{
1134 struct page *page;
1135
1136 page = alloc_gigantic_page(nid, huge_page_order(h));
1137 if (page) {
1138 prep_compound_gigantic_page(page, huge_page_order(h));
1139 prep_new_huge_page(h, page, nid);
1140 }
1141
1142 return page;
1143}
1144
1145static int alloc_fresh_gigantic_page(struct hstate *h,
1146 nodemask_t *nodes_allowed)
1147{
1148 struct page *page = NULL;
1149 int nr_nodes, node;
1150
1151 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1152 page = alloc_fresh_gigantic_page_node(h, node);
1153 if (page)
1154 return 1;
1155 }
1156
1157 return 0;
1158}
1159
1160static inline bool gigantic_page_supported(void) { return true; }
1161#else
1162static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1163static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1164static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1165 unsigned int order) { }
944d9fec
LC
1166static inline int alloc_fresh_gigantic_page(struct hstate *h,
1167 nodemask_t *nodes_allowed) { return 0; }
1168#endif
1169
a5516438 1170static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1171{
1172 int i;
a5516438 1173
944d9fec
LC
1174 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1175 return;
18229df5 1176
a5516438
AK
1177 h->nr_huge_pages--;
1178 h->nr_huge_pages_node[page_to_nid(page)]--;
1179 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1180 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1181 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1182 1 << PG_active | 1 << PG_private |
1183 1 << PG_writeback);
6af2acb6 1184 }
309381fe 1185 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1186 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1187 set_page_refcounted(page);
944d9fec
LC
1188 if (hstate_is_gigantic(h)) {
1189 destroy_compound_gigantic_page(page, huge_page_order(h));
1190 free_gigantic_page(page, huge_page_order(h));
1191 } else {
944d9fec
LC
1192 __free_pages(page, huge_page_order(h));
1193 }
6af2acb6
AL
1194}
1195
e5ff2159
AK
1196struct hstate *size_to_hstate(unsigned long size)
1197{
1198 struct hstate *h;
1199
1200 for_each_hstate(h) {
1201 if (huge_page_size(h) == size)
1202 return h;
1203 }
1204 return NULL;
1205}
1206
bcc54222
NH
1207/*
1208 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1209 * to hstate->hugepage_activelist.)
1210 *
1211 * This function can be called for tail pages, but never returns true for them.
1212 */
1213bool page_huge_active(struct page *page)
1214{
1215 VM_BUG_ON_PAGE(!PageHuge(page), page);
1216 return PageHead(page) && PagePrivate(&page[1]);
1217}
1218
1219/* never called for tail page */
1220static void set_page_huge_active(struct page *page)
1221{
1222 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1223 SetPagePrivate(&page[1]);
1224}
1225
1226static void clear_page_huge_active(struct page *page)
1227{
1228 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1229 ClearPagePrivate(&page[1]);
1230}
1231
8f1d26d0 1232void free_huge_page(struct page *page)
27a85ef1 1233{
a5516438
AK
1234 /*
1235 * Can't pass hstate in here because it is called from the
1236 * compound page destructor.
1237 */
e5ff2159 1238 struct hstate *h = page_hstate(page);
7893d1d5 1239 int nid = page_to_nid(page);
90481622
DG
1240 struct hugepage_subpool *spool =
1241 (struct hugepage_subpool *)page_private(page);
07443a85 1242 bool restore_reserve;
27a85ef1 1243
e5df70ab 1244 set_page_private(page, 0);
23be7468 1245 page->mapping = NULL;
b4330afb
MK
1246 VM_BUG_ON_PAGE(page_count(page), page);
1247 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1248 restore_reserve = PagePrivate(page);
16c794b4 1249 ClearPagePrivate(page);
27a85ef1 1250
1c5ecae3
MK
1251 /*
1252 * A return code of zero implies that the subpool will be under its
1253 * minimum size if the reservation is not restored after page is free.
1254 * Therefore, force restore_reserve operation.
1255 */
1256 if (hugepage_subpool_put_pages(spool, 1) == 0)
1257 restore_reserve = true;
1258
27a85ef1 1259 spin_lock(&hugetlb_lock);
bcc54222 1260 clear_page_huge_active(page);
6d76dcf4
AK
1261 hugetlb_cgroup_uncharge_page(hstate_index(h),
1262 pages_per_huge_page(h), page);
07443a85
JK
1263 if (restore_reserve)
1264 h->resv_huge_pages++;
1265
944d9fec 1266 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1267 /* remove the page from active list */
1268 list_del(&page->lru);
a5516438
AK
1269 update_and_free_page(h, page);
1270 h->surplus_huge_pages--;
1271 h->surplus_huge_pages_node[nid]--;
7893d1d5 1272 } else {
5d3a551c 1273 arch_clear_hugepage_flags(page);
a5516438 1274 enqueue_huge_page(h, page);
7893d1d5 1275 }
27a85ef1
DG
1276 spin_unlock(&hugetlb_lock);
1277}
1278
a5516438 1279static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1280{
0edaecfa 1281 INIT_LIST_HEAD(&page->lru);
f1e61557 1282 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1283 spin_lock(&hugetlb_lock);
9dd540e2 1284 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1285 h->nr_huge_pages++;
1286 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1287 spin_unlock(&hugetlb_lock);
1288 put_page(page); /* free it into the hugepage allocator */
1289}
1290
d00181b9 1291static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1292{
1293 int i;
1294 int nr_pages = 1 << order;
1295 struct page *p = page + 1;
1296
1297 /* we rely on prep_new_huge_page to set the destructor */
1298 set_compound_order(page, order);
ef5a22be 1299 __ClearPageReserved(page);
de09d31d 1300 __SetPageHead(page);
20a0307c 1301 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1302 /*
1303 * For gigantic hugepages allocated through bootmem at
1304 * boot, it's safer to be consistent with the not-gigantic
1305 * hugepages and clear the PG_reserved bit from all tail pages
1306 * too. Otherwse drivers using get_user_pages() to access tail
1307 * pages may get the reference counting wrong if they see
1308 * PG_reserved set on a tail page (despite the head page not
1309 * having PG_reserved set). Enforcing this consistency between
1310 * head and tail pages allows drivers to optimize away a check
1311 * on the head page when they need know if put_page() is needed
1312 * after get_user_pages().
1313 */
1314 __ClearPageReserved(p);
58a84aa9 1315 set_page_count(p, 0);
1d798ca3 1316 set_compound_head(p, page);
20a0307c 1317 }
b4330afb 1318 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1319}
1320
7795912c
AM
1321/*
1322 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1323 * transparent huge pages. See the PageTransHuge() documentation for more
1324 * details.
1325 */
20a0307c
WF
1326int PageHuge(struct page *page)
1327{
20a0307c
WF
1328 if (!PageCompound(page))
1329 return 0;
1330
1331 page = compound_head(page);
f1e61557 1332 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1333}
43131e14
NH
1334EXPORT_SYMBOL_GPL(PageHuge);
1335
27c73ae7
AA
1336/*
1337 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1338 * normal or transparent huge pages.
1339 */
1340int PageHeadHuge(struct page *page_head)
1341{
27c73ae7
AA
1342 if (!PageHead(page_head))
1343 return 0;
1344
758f66a2 1345 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1346}
27c73ae7 1347
13d60f4b
ZY
1348pgoff_t __basepage_index(struct page *page)
1349{
1350 struct page *page_head = compound_head(page);
1351 pgoff_t index = page_index(page_head);
1352 unsigned long compound_idx;
1353
1354 if (!PageHuge(page_head))
1355 return page_index(page);
1356
1357 if (compound_order(page_head) >= MAX_ORDER)
1358 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1359 else
1360 compound_idx = page - page_head;
1361
1362 return (index << compound_order(page_head)) + compound_idx;
1363}
1364
a5516438 1365static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1366{
1da177e4 1367 struct page *page;
f96efd58 1368
96db800f 1369 page = __alloc_pages_node(nid,
86cdb465 1370 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1371 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1372 huge_page_order(h));
1da177e4 1373 if (page) {
a5516438 1374 prep_new_huge_page(h, page, nid);
1da177e4 1375 }
63b4613c
NA
1376
1377 return page;
1378}
1379
b2261026
JK
1380static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1381{
1382 struct page *page;
1383 int nr_nodes, node;
1384 int ret = 0;
1385
1386 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1387 page = alloc_fresh_huge_page_node(h, node);
1388 if (page) {
1389 ret = 1;
1390 break;
1391 }
1392 }
1393
1394 if (ret)
1395 count_vm_event(HTLB_BUDDY_PGALLOC);
1396 else
1397 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1398
1399 return ret;
1400}
1401
e8c5c824
LS
1402/*
1403 * Free huge page from pool from next node to free.
1404 * Attempt to keep persistent huge pages more or less
1405 * balanced over allowed nodes.
1406 * Called with hugetlb_lock locked.
1407 */
6ae11b27
LS
1408static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1409 bool acct_surplus)
e8c5c824 1410{
b2261026 1411 int nr_nodes, node;
e8c5c824
LS
1412 int ret = 0;
1413
b2261026 1414 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1415 /*
1416 * If we're returning unused surplus pages, only examine
1417 * nodes with surplus pages.
1418 */
b2261026
JK
1419 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1420 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1421 struct page *page =
b2261026 1422 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1423 struct page, lru);
1424 list_del(&page->lru);
1425 h->free_huge_pages--;
b2261026 1426 h->free_huge_pages_node[node]--;
685f3457
LS
1427 if (acct_surplus) {
1428 h->surplus_huge_pages--;
b2261026 1429 h->surplus_huge_pages_node[node]--;
685f3457 1430 }
e8c5c824
LS
1431 update_and_free_page(h, page);
1432 ret = 1;
9a76db09 1433 break;
e8c5c824 1434 }
b2261026 1435 }
e8c5c824
LS
1436
1437 return ret;
1438}
1439
c8721bbb
NH
1440/*
1441 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1442 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1443 * number of free hugepages would be reduced below the number of reserved
1444 * hugepages.
c8721bbb 1445 */
082d5b6b 1446static int dissolve_free_huge_page(struct page *page)
c8721bbb 1447{
082d5b6b
GS
1448 int rc = 0;
1449
c8721bbb
NH
1450 spin_lock(&hugetlb_lock);
1451 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1452 struct page *head = compound_head(page);
1453 struct hstate *h = page_hstate(head);
1454 int nid = page_to_nid(head);
082d5b6b
GS
1455 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1456 rc = -EBUSY;
1457 goto out;
1458 }
2247bb33 1459 list_del(&head->lru);
c8721bbb
NH
1460 h->free_huge_pages--;
1461 h->free_huge_pages_node[nid]--;
c1470b33 1462 h->max_huge_pages--;
2247bb33 1463 update_and_free_page(h, head);
c8721bbb 1464 }
082d5b6b 1465out:
c8721bbb 1466 spin_unlock(&hugetlb_lock);
082d5b6b 1467 return rc;
c8721bbb
NH
1468}
1469
1470/*
1471 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1472 * make specified memory blocks removable from the system.
2247bb33
GS
1473 * Note that this will dissolve a free gigantic hugepage completely, if any
1474 * part of it lies within the given range.
082d5b6b
GS
1475 * Also note that if dissolve_free_huge_page() returns with an error, all
1476 * free hugepages that were dissolved before that error are lost.
c8721bbb 1477 */
082d5b6b 1478int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1479{
c8721bbb 1480 unsigned long pfn;
eb03aa00 1481 struct page *page;
082d5b6b 1482 int rc = 0;
c8721bbb 1483
d0177639 1484 if (!hugepages_supported())
082d5b6b 1485 return rc;
d0177639 1486
eb03aa00
GS
1487 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1488 page = pfn_to_page(pfn);
1489 if (PageHuge(page) && !page_count(page)) {
1490 rc = dissolve_free_huge_page(page);
1491 if (rc)
1492 break;
1493 }
1494 }
082d5b6b
GS
1495
1496 return rc;
c8721bbb
NH
1497}
1498
099730d6
DH
1499/*
1500 * There are 3 ways this can get called:
1501 * 1. With vma+addr: we use the VMA's memory policy
1502 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1503 * page from any node, and let the buddy allocator itself figure
1504 * it out.
1505 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1506 * strictly from 'nid'
1507 */
1508static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1509 struct vm_area_struct *vma, unsigned long addr, int nid)
1510{
1511 int order = huge_page_order(h);
1512 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1513 unsigned int cpuset_mems_cookie;
1514
1515 /*
1516 * We need a VMA to get a memory policy. If we do not
e0ec90ee
DH
1517 * have one, we use the 'nid' argument.
1518 *
1519 * The mempolicy stuff below has some non-inlined bits
1520 * and calls ->vm_ops. That makes it hard to optimize at
1521 * compile-time, even when NUMA is off and it does
1522 * nothing. This helps the compiler optimize it out.
099730d6 1523 */
e0ec90ee 1524 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
099730d6
DH
1525 /*
1526 * If a specific node is requested, make sure to
1527 * get memory from there, but only when a node
1528 * is explicitly specified.
1529 */
1530 if (nid != NUMA_NO_NODE)
1531 gfp |= __GFP_THISNODE;
1532 /*
1533 * Make sure to call something that can handle
1534 * nid=NUMA_NO_NODE
1535 */
1536 return alloc_pages_node(nid, gfp, order);
1537 }
1538
1539 /*
1540 * OK, so we have a VMA. Fetch the mempolicy and try to
e0ec90ee
DH
1541 * allocate a huge page with it. We will only reach this
1542 * when CONFIG_NUMA=y.
099730d6
DH
1543 */
1544 do {
1545 struct page *page;
1546 struct mempolicy *mpol;
1547 struct zonelist *zl;
1548 nodemask_t *nodemask;
1549
1550 cpuset_mems_cookie = read_mems_allowed_begin();
1551 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1552 mpol_cond_put(mpol);
1553 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1554 if (page)
1555 return page;
1556 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1557
1558 return NULL;
1559}
1560
1561/*
1562 * There are two ways to allocate a huge page:
1563 * 1. When you have a VMA and an address (like a fault)
1564 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1565 *
1566 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1567 * this case which signifies that the allocation should be done with
1568 * respect for the VMA's memory policy.
1569 *
1570 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1571 * implies that memory policies will not be taken in to account.
1572 */
1573static struct page *__alloc_buddy_huge_page(struct hstate *h,
1574 struct vm_area_struct *vma, unsigned long addr, int nid)
7893d1d5
AL
1575{
1576 struct page *page;
bf50bab2 1577 unsigned int r_nid;
7893d1d5 1578
bae7f4ae 1579 if (hstate_is_gigantic(h))
aa888a74
AK
1580 return NULL;
1581
099730d6
DH
1582 /*
1583 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1584 * This makes sure the caller is picking _one_ of the modes with which
1585 * we can call this function, not both.
1586 */
1587 if (vma || (addr != -1)) {
e0ec90ee
DH
1588 VM_WARN_ON_ONCE(addr == -1);
1589 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
099730d6 1590 }
d1c3fb1f
NA
1591 /*
1592 * Assume we will successfully allocate the surplus page to
1593 * prevent racing processes from causing the surplus to exceed
1594 * overcommit
1595 *
1596 * This however introduces a different race, where a process B
1597 * tries to grow the static hugepage pool while alloc_pages() is
1598 * called by process A. B will only examine the per-node
1599 * counters in determining if surplus huge pages can be
1600 * converted to normal huge pages in adjust_pool_surplus(). A
1601 * won't be able to increment the per-node counter, until the
1602 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1603 * no more huge pages can be converted from surplus to normal
1604 * state (and doesn't try to convert again). Thus, we have a
1605 * case where a surplus huge page exists, the pool is grown, and
1606 * the surplus huge page still exists after, even though it
1607 * should just have been converted to a normal huge page. This
1608 * does not leak memory, though, as the hugepage will be freed
1609 * once it is out of use. It also does not allow the counters to
1610 * go out of whack in adjust_pool_surplus() as we don't modify
1611 * the node values until we've gotten the hugepage and only the
1612 * per-node value is checked there.
1613 */
1614 spin_lock(&hugetlb_lock);
a5516438 1615 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1616 spin_unlock(&hugetlb_lock);
1617 return NULL;
1618 } else {
a5516438
AK
1619 h->nr_huge_pages++;
1620 h->surplus_huge_pages++;
d1c3fb1f
NA
1621 }
1622 spin_unlock(&hugetlb_lock);
1623
099730d6 1624 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
d1c3fb1f
NA
1625
1626 spin_lock(&hugetlb_lock);
7893d1d5 1627 if (page) {
0edaecfa 1628 INIT_LIST_HEAD(&page->lru);
bf50bab2 1629 r_nid = page_to_nid(page);
f1e61557 1630 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1631 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1632 /*
1633 * We incremented the global counters already
1634 */
bf50bab2
NH
1635 h->nr_huge_pages_node[r_nid]++;
1636 h->surplus_huge_pages_node[r_nid]++;
3b116300 1637 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1638 } else {
a5516438
AK
1639 h->nr_huge_pages--;
1640 h->surplus_huge_pages--;
3b116300 1641 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1642 }
d1c3fb1f 1643 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1644
1645 return page;
1646}
1647
099730d6
DH
1648/*
1649 * Allocate a huge page from 'nid'. Note, 'nid' may be
1650 * NUMA_NO_NODE, which means that it may be allocated
1651 * anywhere.
1652 */
e0ec90ee 1653static
099730d6
DH
1654struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1655{
1656 unsigned long addr = -1;
1657
1658 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1659}
1660
1661/*
1662 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1663 */
e0ec90ee 1664static
099730d6
DH
1665struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1666 struct vm_area_struct *vma, unsigned long addr)
1667{
1668 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1669}
1670
bf50bab2
NH
1671/*
1672 * This allocation function is useful in the context where vma is irrelevant.
1673 * E.g. soft-offlining uses this function because it only cares physical
1674 * address of error page.
1675 */
1676struct page *alloc_huge_page_node(struct hstate *h, int nid)
1677{
4ef91848 1678 struct page *page = NULL;
bf50bab2
NH
1679
1680 spin_lock(&hugetlb_lock);
4ef91848
JK
1681 if (h->free_huge_pages - h->resv_huge_pages > 0)
1682 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1683 spin_unlock(&hugetlb_lock);
1684
94ae8ba7 1685 if (!page)
099730d6 1686 page = __alloc_buddy_huge_page_no_mpol(h, nid);
bf50bab2
NH
1687
1688 return page;
1689}
1690
e4e574b7 1691/*
25985edc 1692 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1693 * of size 'delta'.
1694 */
a5516438 1695static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1696{
1697 struct list_head surplus_list;
1698 struct page *page, *tmp;
1699 int ret, i;
1700 int needed, allocated;
28073b02 1701 bool alloc_ok = true;
e4e574b7 1702
a5516438 1703 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1704 if (needed <= 0) {
a5516438 1705 h->resv_huge_pages += delta;
e4e574b7 1706 return 0;
ac09b3a1 1707 }
e4e574b7
AL
1708
1709 allocated = 0;
1710 INIT_LIST_HEAD(&surplus_list);
1711
1712 ret = -ENOMEM;
1713retry:
1714 spin_unlock(&hugetlb_lock);
1715 for (i = 0; i < needed; i++) {
099730d6 1716 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
28073b02
HD
1717 if (!page) {
1718 alloc_ok = false;
1719 break;
1720 }
e4e574b7
AL
1721 list_add(&page->lru, &surplus_list);
1722 }
28073b02 1723 allocated += i;
e4e574b7
AL
1724
1725 /*
1726 * After retaking hugetlb_lock, we need to recalculate 'needed'
1727 * because either resv_huge_pages or free_huge_pages may have changed.
1728 */
1729 spin_lock(&hugetlb_lock);
a5516438
AK
1730 needed = (h->resv_huge_pages + delta) -
1731 (h->free_huge_pages + allocated);
28073b02
HD
1732 if (needed > 0) {
1733 if (alloc_ok)
1734 goto retry;
1735 /*
1736 * We were not able to allocate enough pages to
1737 * satisfy the entire reservation so we free what
1738 * we've allocated so far.
1739 */
1740 goto free;
1741 }
e4e574b7
AL
1742 /*
1743 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1744 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1745 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1746 * allocator. Commit the entire reservation here to prevent another
1747 * process from stealing the pages as they are added to the pool but
1748 * before they are reserved.
e4e574b7
AL
1749 */
1750 needed += allocated;
a5516438 1751 h->resv_huge_pages += delta;
e4e574b7 1752 ret = 0;
a9869b83 1753
19fc3f0a 1754 /* Free the needed pages to the hugetlb pool */
e4e574b7 1755 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1756 if ((--needed) < 0)
1757 break;
a9869b83
NH
1758 /*
1759 * This page is now managed by the hugetlb allocator and has
1760 * no users -- drop the buddy allocator's reference.
1761 */
1762 put_page_testzero(page);
309381fe 1763 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1764 enqueue_huge_page(h, page);
19fc3f0a 1765 }
28073b02 1766free:
b0365c8d 1767 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1768
1769 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1770 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1771 put_page(page);
a9869b83 1772 spin_lock(&hugetlb_lock);
e4e574b7
AL
1773
1774 return ret;
1775}
1776
1777/*
e5bbc8a6
MK
1778 * This routine has two main purposes:
1779 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1780 * in unused_resv_pages. This corresponds to the prior adjustments made
1781 * to the associated reservation map.
1782 * 2) Free any unused surplus pages that may have been allocated to satisfy
1783 * the reservation. As many as unused_resv_pages may be freed.
1784 *
1785 * Called with hugetlb_lock held. However, the lock could be dropped (and
1786 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1787 * we must make sure nobody else can claim pages we are in the process of
1788 * freeing. Do this by ensuring resv_huge_page always is greater than the
1789 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1790 */
a5516438
AK
1791static void return_unused_surplus_pages(struct hstate *h,
1792 unsigned long unused_resv_pages)
e4e574b7 1793{
e4e574b7
AL
1794 unsigned long nr_pages;
1795
aa888a74 1796 /* Cannot return gigantic pages currently */
bae7f4ae 1797 if (hstate_is_gigantic(h))
e5bbc8a6 1798 goto out;
aa888a74 1799
e5bbc8a6
MK
1800 /*
1801 * Part (or even all) of the reservation could have been backed
1802 * by pre-allocated pages. Only free surplus pages.
1803 */
a5516438 1804 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1805
685f3457
LS
1806 /*
1807 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1808 * evenly across all nodes with memory. Iterate across these nodes
1809 * until we can no longer free unreserved surplus pages. This occurs
1810 * when the nodes with surplus pages have no free pages.
1811 * free_pool_huge_page() will balance the the freed pages across the
1812 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1813 *
1814 * Note that we decrement resv_huge_pages as we free the pages. If
1815 * we drop the lock, resv_huge_pages will still be sufficiently large
1816 * to cover subsequent pages we may free.
685f3457
LS
1817 */
1818 while (nr_pages--) {
e5bbc8a6
MK
1819 h->resv_huge_pages--;
1820 unused_resv_pages--;
8cebfcd0 1821 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1822 goto out;
7848a4bf 1823 cond_resched_lock(&hugetlb_lock);
e4e574b7 1824 }
e5bbc8a6
MK
1825
1826out:
1827 /* Fully uncommit the reservation */
1828 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1829}
1830
5e911373 1831
c37f9fb1 1832/*
feba16e2 1833 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1834 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1835 *
1836 * vma_needs_reservation is called to determine if the huge page at addr
1837 * within the vma has an associated reservation. If a reservation is
1838 * needed, the value 1 is returned. The caller is then responsible for
1839 * managing the global reservation and subpool usage counts. After
1840 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1841 * to add the page to the reservation map. If the page allocation fails,
1842 * the reservation must be ended instead of committed. vma_end_reservation
1843 * is called in such cases.
cf3ad20b
MK
1844 *
1845 * In the normal case, vma_commit_reservation returns the same value
1846 * as the preceding vma_needs_reservation call. The only time this
1847 * is not the case is if a reserve map was changed between calls. It
1848 * is the responsibility of the caller to notice the difference and
1849 * take appropriate action.
96b96a96
MK
1850 *
1851 * vma_add_reservation is used in error paths where a reservation must
1852 * be restored when a newly allocated huge page must be freed. It is
1853 * to be called after calling vma_needs_reservation to determine if a
1854 * reservation exists.
c37f9fb1 1855 */
5e911373
MK
1856enum vma_resv_mode {
1857 VMA_NEEDS_RESV,
1858 VMA_COMMIT_RESV,
feba16e2 1859 VMA_END_RESV,
96b96a96 1860 VMA_ADD_RESV,
5e911373 1861};
cf3ad20b
MK
1862static long __vma_reservation_common(struct hstate *h,
1863 struct vm_area_struct *vma, unsigned long addr,
5e911373 1864 enum vma_resv_mode mode)
c37f9fb1 1865{
4e35f483
JK
1866 struct resv_map *resv;
1867 pgoff_t idx;
cf3ad20b 1868 long ret;
c37f9fb1 1869
4e35f483
JK
1870 resv = vma_resv_map(vma);
1871 if (!resv)
84afd99b 1872 return 1;
c37f9fb1 1873
4e35f483 1874 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1875 switch (mode) {
1876 case VMA_NEEDS_RESV:
cf3ad20b 1877 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1878 break;
1879 case VMA_COMMIT_RESV:
1880 ret = region_add(resv, idx, idx + 1);
1881 break;
feba16e2 1882 case VMA_END_RESV:
5e911373
MK
1883 region_abort(resv, idx, idx + 1);
1884 ret = 0;
1885 break;
96b96a96
MK
1886 case VMA_ADD_RESV:
1887 if (vma->vm_flags & VM_MAYSHARE)
1888 ret = region_add(resv, idx, idx + 1);
1889 else {
1890 region_abort(resv, idx, idx + 1);
1891 ret = region_del(resv, idx, idx + 1);
1892 }
1893 break;
5e911373
MK
1894 default:
1895 BUG();
1896 }
84afd99b 1897
4e35f483 1898 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1899 return ret;
67961f9d
MK
1900 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1901 /*
1902 * In most cases, reserves always exist for private mappings.
1903 * However, a file associated with mapping could have been
1904 * hole punched or truncated after reserves were consumed.
1905 * As subsequent fault on such a range will not use reserves.
1906 * Subtle - The reserve map for private mappings has the
1907 * opposite meaning than that of shared mappings. If NO
1908 * entry is in the reserve map, it means a reservation exists.
1909 * If an entry exists in the reserve map, it means the
1910 * reservation has already been consumed. As a result, the
1911 * return value of this routine is the opposite of the
1912 * value returned from reserve map manipulation routines above.
1913 */
1914 if (ret)
1915 return 0;
1916 else
1917 return 1;
1918 }
4e35f483 1919 else
cf3ad20b 1920 return ret < 0 ? ret : 0;
c37f9fb1 1921}
cf3ad20b
MK
1922
1923static long vma_needs_reservation(struct hstate *h,
a5516438 1924 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1925{
5e911373 1926 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1927}
84afd99b 1928
cf3ad20b
MK
1929static long vma_commit_reservation(struct hstate *h,
1930 struct vm_area_struct *vma, unsigned long addr)
1931{
5e911373
MK
1932 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1933}
1934
feba16e2 1935static void vma_end_reservation(struct hstate *h,
5e911373
MK
1936 struct vm_area_struct *vma, unsigned long addr)
1937{
feba16e2 1938 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1939}
1940
96b96a96
MK
1941static long vma_add_reservation(struct hstate *h,
1942 struct vm_area_struct *vma, unsigned long addr)
1943{
1944 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1945}
1946
1947/*
1948 * This routine is called to restore a reservation on error paths. In the
1949 * specific error paths, a huge page was allocated (via alloc_huge_page)
1950 * and is about to be freed. If a reservation for the page existed,
1951 * alloc_huge_page would have consumed the reservation and set PagePrivate
1952 * in the newly allocated page. When the page is freed via free_huge_page,
1953 * the global reservation count will be incremented if PagePrivate is set.
1954 * However, free_huge_page can not adjust the reserve map. Adjust the
1955 * reserve map here to be consistent with global reserve count adjustments
1956 * to be made by free_huge_page.
1957 */
1958static void restore_reserve_on_error(struct hstate *h,
1959 struct vm_area_struct *vma, unsigned long address,
1960 struct page *page)
1961{
1962 if (unlikely(PagePrivate(page))) {
1963 long rc = vma_needs_reservation(h, vma, address);
1964
1965 if (unlikely(rc < 0)) {
1966 /*
1967 * Rare out of memory condition in reserve map
1968 * manipulation. Clear PagePrivate so that
1969 * global reserve count will not be incremented
1970 * by free_huge_page. This will make it appear
1971 * as though the reservation for this page was
1972 * consumed. This may prevent the task from
1973 * faulting in the page at a later time. This
1974 * is better than inconsistent global huge page
1975 * accounting of reserve counts.
1976 */
1977 ClearPagePrivate(page);
1978 } else if (rc) {
1979 rc = vma_add_reservation(h, vma, address);
1980 if (unlikely(rc < 0))
1981 /*
1982 * See above comment about rare out of
1983 * memory condition.
1984 */
1985 ClearPagePrivate(page);
1986 } else
1987 vma_end_reservation(h, vma, address);
1988 }
1989}
1990
70c3547e 1991struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1992 unsigned long addr, int avoid_reserve)
1da177e4 1993{
90481622 1994 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1995 struct hstate *h = hstate_vma(vma);
348ea204 1996 struct page *page;
d85f69b0
MK
1997 long map_chg, map_commit;
1998 long gbl_chg;
6d76dcf4
AK
1999 int ret, idx;
2000 struct hugetlb_cgroup *h_cg;
a1e78772 2001
6d76dcf4 2002 idx = hstate_index(h);
a1e78772 2003 /*
d85f69b0
MK
2004 * Examine the region/reserve map to determine if the process
2005 * has a reservation for the page to be allocated. A return
2006 * code of zero indicates a reservation exists (no change).
a1e78772 2007 */
d85f69b0
MK
2008 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2009 if (map_chg < 0)
76dcee75 2010 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2011
2012 /*
2013 * Processes that did not create the mapping will have no
2014 * reserves as indicated by the region/reserve map. Check
2015 * that the allocation will not exceed the subpool limit.
2016 * Allocations for MAP_NORESERVE mappings also need to be
2017 * checked against any subpool limit.
2018 */
2019 if (map_chg || avoid_reserve) {
2020 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2021 if (gbl_chg < 0) {
feba16e2 2022 vma_end_reservation(h, vma, addr);
76dcee75 2023 return ERR_PTR(-ENOSPC);
5e911373 2024 }
1da177e4 2025
d85f69b0
MK
2026 /*
2027 * Even though there was no reservation in the region/reserve
2028 * map, there could be reservations associated with the
2029 * subpool that can be used. This would be indicated if the
2030 * return value of hugepage_subpool_get_pages() is zero.
2031 * However, if avoid_reserve is specified we still avoid even
2032 * the subpool reservations.
2033 */
2034 if (avoid_reserve)
2035 gbl_chg = 1;
2036 }
2037
6d76dcf4 2038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2039 if (ret)
2040 goto out_subpool_put;
2041
1da177e4 2042 spin_lock(&hugetlb_lock);
d85f69b0
MK
2043 /*
2044 * glb_chg is passed to indicate whether or not a page must be taken
2045 * from the global free pool (global change). gbl_chg == 0 indicates
2046 * a reservation exists for the allocation.
2047 */
2048 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2049 if (!page) {
94ae8ba7 2050 spin_unlock(&hugetlb_lock);
099730d6 2051 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2052 if (!page)
2053 goto out_uncharge_cgroup;
a88c7695
NH
2054 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2055 SetPagePrivate(page);
2056 h->resv_huge_pages--;
2057 }
79dbb236
AK
2058 spin_lock(&hugetlb_lock);
2059 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2060 /* Fall through */
68842c9b 2061 }
81a6fcae
JK
2062 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2063 spin_unlock(&hugetlb_lock);
348ea204 2064
90481622 2065 set_page_private(page, (unsigned long)spool);
90d8b7e6 2066
d85f69b0
MK
2067 map_commit = vma_commit_reservation(h, vma, addr);
2068 if (unlikely(map_chg > map_commit)) {
33039678
MK
2069 /*
2070 * The page was added to the reservation map between
2071 * vma_needs_reservation and vma_commit_reservation.
2072 * This indicates a race with hugetlb_reserve_pages.
2073 * Adjust for the subpool count incremented above AND
2074 * in hugetlb_reserve_pages for the same page. Also,
2075 * the reservation count added in hugetlb_reserve_pages
2076 * no longer applies.
2077 */
2078 long rsv_adjust;
2079
2080 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2081 hugetlb_acct_memory(h, -rsv_adjust);
2082 }
90d8b7e6 2083 return page;
8f34af6f
JZ
2084
2085out_uncharge_cgroup:
2086 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2087out_subpool_put:
d85f69b0 2088 if (map_chg || avoid_reserve)
8f34af6f 2089 hugepage_subpool_put_pages(spool, 1);
feba16e2 2090 vma_end_reservation(h, vma, addr);
8f34af6f 2091 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2092}
2093
74060e4d
NH
2094/*
2095 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2096 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2097 * where no ERR_VALUE is expected to be returned.
2098 */
2099struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2100 unsigned long addr, int avoid_reserve)
2101{
2102 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2103 if (IS_ERR(page))
2104 page = NULL;
2105 return page;
2106}
2107
91f47662 2108int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2109{
2110 struct huge_bootmem_page *m;
b2261026 2111 int nr_nodes, node;
aa888a74 2112
b2261026 2113 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2114 void *addr;
2115
8b89a116
GS
2116 addr = memblock_virt_alloc_try_nid_nopanic(
2117 huge_page_size(h), huge_page_size(h),
2118 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2119 if (addr) {
2120 /*
2121 * Use the beginning of the huge page to store the
2122 * huge_bootmem_page struct (until gather_bootmem
2123 * puts them into the mem_map).
2124 */
2125 m = addr;
91f47662 2126 goto found;
aa888a74 2127 }
aa888a74
AK
2128 }
2129 return 0;
2130
2131found:
df994ead 2132 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2133 /* Put them into a private list first because mem_map is not up yet */
2134 list_add(&m->list, &huge_boot_pages);
2135 m->hstate = h;
2136 return 1;
2137}
2138
d00181b9
KS
2139static void __init prep_compound_huge_page(struct page *page,
2140 unsigned int order)
18229df5
AW
2141{
2142 if (unlikely(order > (MAX_ORDER - 1)))
2143 prep_compound_gigantic_page(page, order);
2144 else
2145 prep_compound_page(page, order);
2146}
2147
aa888a74
AK
2148/* Put bootmem huge pages into the standard lists after mem_map is up */
2149static void __init gather_bootmem_prealloc(void)
2150{
2151 struct huge_bootmem_page *m;
2152
2153 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2154 struct hstate *h = m->hstate;
ee8f248d
BB
2155 struct page *page;
2156
2157#ifdef CONFIG_HIGHMEM
2158 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2159 memblock_free_late(__pa(m),
2160 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2161#else
2162 page = virt_to_page(m);
2163#endif
aa888a74 2164 WARN_ON(page_count(page) != 1);
18229df5 2165 prep_compound_huge_page(page, h->order);
ef5a22be 2166 WARN_ON(PageReserved(page));
aa888a74 2167 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2168 /*
2169 * If we had gigantic hugepages allocated at boot time, we need
2170 * to restore the 'stolen' pages to totalram_pages in order to
2171 * fix confusing memory reports from free(1) and another
2172 * side-effects, like CommitLimit going negative.
2173 */
bae7f4ae 2174 if (hstate_is_gigantic(h))
3dcc0571 2175 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2176 }
2177}
2178
8faa8b07 2179static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2180{
2181 unsigned long i;
a5516438 2182
e5ff2159 2183 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2184 if (hstate_is_gigantic(h)) {
aa888a74
AK
2185 if (!alloc_bootmem_huge_page(h))
2186 break;
9b5e5d0f 2187 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2188 &node_states[N_MEMORY]))
1da177e4 2189 break;
1da177e4 2190 }
8faa8b07 2191 h->max_huge_pages = i;
e5ff2159
AK
2192}
2193
2194static void __init hugetlb_init_hstates(void)
2195{
2196 struct hstate *h;
2197
2198 for_each_hstate(h) {
641844f5
NH
2199 if (minimum_order > huge_page_order(h))
2200 minimum_order = huge_page_order(h);
2201
8faa8b07 2202 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2203 if (!hstate_is_gigantic(h))
8faa8b07 2204 hugetlb_hstate_alloc_pages(h);
e5ff2159 2205 }
641844f5 2206 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2207}
2208
4abd32db
AK
2209static char * __init memfmt(char *buf, unsigned long n)
2210{
2211 if (n >= (1UL << 30))
2212 sprintf(buf, "%lu GB", n >> 30);
2213 else if (n >= (1UL << 20))
2214 sprintf(buf, "%lu MB", n >> 20);
2215 else
2216 sprintf(buf, "%lu KB", n >> 10);
2217 return buf;
2218}
2219
e5ff2159
AK
2220static void __init report_hugepages(void)
2221{
2222 struct hstate *h;
2223
2224 for_each_hstate(h) {
4abd32db 2225 char buf[32];
ffb22af5 2226 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
2227 memfmt(buf, huge_page_size(h)),
2228 h->free_huge_pages);
e5ff2159
AK
2229 }
2230}
2231
1da177e4 2232#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2233static void try_to_free_low(struct hstate *h, unsigned long count,
2234 nodemask_t *nodes_allowed)
1da177e4 2235{
4415cc8d
CL
2236 int i;
2237
bae7f4ae 2238 if (hstate_is_gigantic(h))
aa888a74
AK
2239 return;
2240
6ae11b27 2241 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2242 struct page *page, *next;
a5516438
AK
2243 struct list_head *freel = &h->hugepage_freelists[i];
2244 list_for_each_entry_safe(page, next, freel, lru) {
2245 if (count >= h->nr_huge_pages)
6b0c880d 2246 return;
1da177e4
LT
2247 if (PageHighMem(page))
2248 continue;
2249 list_del(&page->lru);
e5ff2159 2250 update_and_free_page(h, page);
a5516438
AK
2251 h->free_huge_pages--;
2252 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2253 }
2254 }
2255}
2256#else
6ae11b27
LS
2257static inline void try_to_free_low(struct hstate *h, unsigned long count,
2258 nodemask_t *nodes_allowed)
1da177e4
LT
2259{
2260}
2261#endif
2262
20a0307c
WF
2263/*
2264 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2265 * balanced by operating on them in a round-robin fashion.
2266 * Returns 1 if an adjustment was made.
2267 */
6ae11b27
LS
2268static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2269 int delta)
20a0307c 2270{
b2261026 2271 int nr_nodes, node;
20a0307c
WF
2272
2273 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2274
b2261026
JK
2275 if (delta < 0) {
2276 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2277 if (h->surplus_huge_pages_node[node])
2278 goto found;
e8c5c824 2279 }
b2261026
JK
2280 } else {
2281 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2282 if (h->surplus_huge_pages_node[node] <
2283 h->nr_huge_pages_node[node])
2284 goto found;
e8c5c824 2285 }
b2261026
JK
2286 }
2287 return 0;
20a0307c 2288
b2261026
JK
2289found:
2290 h->surplus_huge_pages += delta;
2291 h->surplus_huge_pages_node[node] += delta;
2292 return 1;
20a0307c
WF
2293}
2294
a5516438 2295#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2296static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2297 nodemask_t *nodes_allowed)
1da177e4 2298{
7893d1d5 2299 unsigned long min_count, ret;
1da177e4 2300
944d9fec 2301 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2302 return h->max_huge_pages;
2303
7893d1d5
AL
2304 /*
2305 * Increase the pool size
2306 * First take pages out of surplus state. Then make up the
2307 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2308 *
d15c7c09 2309 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2310 * to convert a surplus huge page to a normal huge page. That is
2311 * not critical, though, it just means the overall size of the
2312 * pool might be one hugepage larger than it needs to be, but
2313 * within all the constraints specified by the sysctls.
7893d1d5 2314 */
1da177e4 2315 spin_lock(&hugetlb_lock);
a5516438 2316 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2317 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2318 break;
2319 }
2320
a5516438 2321 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2322 /*
2323 * If this allocation races such that we no longer need the
2324 * page, free_huge_page will handle it by freeing the page
2325 * and reducing the surplus.
2326 */
2327 spin_unlock(&hugetlb_lock);
649920c6
JH
2328
2329 /* yield cpu to avoid soft lockup */
2330 cond_resched();
2331
944d9fec
LC
2332 if (hstate_is_gigantic(h))
2333 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2334 else
2335 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2336 spin_lock(&hugetlb_lock);
2337 if (!ret)
2338 goto out;
2339
536240f2
MG
2340 /* Bail for signals. Probably ctrl-c from user */
2341 if (signal_pending(current))
2342 goto out;
7893d1d5 2343 }
7893d1d5
AL
2344
2345 /*
2346 * Decrease the pool size
2347 * First return free pages to the buddy allocator (being careful
2348 * to keep enough around to satisfy reservations). Then place
2349 * pages into surplus state as needed so the pool will shrink
2350 * to the desired size as pages become free.
d1c3fb1f
NA
2351 *
2352 * By placing pages into the surplus state independent of the
2353 * overcommit value, we are allowing the surplus pool size to
2354 * exceed overcommit. There are few sane options here. Since
d15c7c09 2355 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2356 * though, we'll note that we're not allowed to exceed surplus
2357 * and won't grow the pool anywhere else. Not until one of the
2358 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2359 */
a5516438 2360 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2361 min_count = max(count, min_count);
6ae11b27 2362 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2363 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2364 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2365 break;
55f67141 2366 cond_resched_lock(&hugetlb_lock);
1da177e4 2367 }
a5516438 2368 while (count < persistent_huge_pages(h)) {
6ae11b27 2369 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2370 break;
2371 }
2372out:
a5516438 2373 ret = persistent_huge_pages(h);
1da177e4 2374 spin_unlock(&hugetlb_lock);
7893d1d5 2375 return ret;
1da177e4
LT
2376}
2377
a3437870
NA
2378#define HSTATE_ATTR_RO(_name) \
2379 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2380
2381#define HSTATE_ATTR(_name) \
2382 static struct kobj_attribute _name##_attr = \
2383 __ATTR(_name, 0644, _name##_show, _name##_store)
2384
2385static struct kobject *hugepages_kobj;
2386static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2387
9a305230
LS
2388static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2389
2390static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2391{
2392 int i;
9a305230 2393
a3437870 2394 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2395 if (hstate_kobjs[i] == kobj) {
2396 if (nidp)
2397 *nidp = NUMA_NO_NODE;
a3437870 2398 return &hstates[i];
9a305230
LS
2399 }
2400
2401 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2402}
2403
06808b08 2404static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2405 struct kobj_attribute *attr, char *buf)
2406{
9a305230
LS
2407 struct hstate *h;
2408 unsigned long nr_huge_pages;
2409 int nid;
2410
2411 h = kobj_to_hstate(kobj, &nid);
2412 if (nid == NUMA_NO_NODE)
2413 nr_huge_pages = h->nr_huge_pages;
2414 else
2415 nr_huge_pages = h->nr_huge_pages_node[nid];
2416
2417 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2418}
adbe8726 2419
238d3c13
DR
2420static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2421 struct hstate *h, int nid,
2422 unsigned long count, size_t len)
a3437870
NA
2423{
2424 int err;
bad44b5b 2425 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2426
944d9fec 2427 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2428 err = -EINVAL;
2429 goto out;
2430 }
2431
9a305230
LS
2432 if (nid == NUMA_NO_NODE) {
2433 /*
2434 * global hstate attribute
2435 */
2436 if (!(obey_mempolicy &&
2437 init_nodemask_of_mempolicy(nodes_allowed))) {
2438 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2439 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2440 }
2441 } else if (nodes_allowed) {
2442 /*
2443 * per node hstate attribute: adjust count to global,
2444 * but restrict alloc/free to the specified node.
2445 */
2446 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2447 init_nodemask_of_node(nodes_allowed, nid);
2448 } else
8cebfcd0 2449 nodes_allowed = &node_states[N_MEMORY];
9a305230 2450
06808b08 2451 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2452
8cebfcd0 2453 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2454 NODEMASK_FREE(nodes_allowed);
2455
2456 return len;
adbe8726
EM
2457out:
2458 NODEMASK_FREE(nodes_allowed);
2459 return err;
06808b08
LS
2460}
2461
238d3c13
DR
2462static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2463 struct kobject *kobj, const char *buf,
2464 size_t len)
2465{
2466 struct hstate *h;
2467 unsigned long count;
2468 int nid;
2469 int err;
2470
2471 err = kstrtoul(buf, 10, &count);
2472 if (err)
2473 return err;
2474
2475 h = kobj_to_hstate(kobj, &nid);
2476 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2477}
2478
06808b08
LS
2479static ssize_t nr_hugepages_show(struct kobject *kobj,
2480 struct kobj_attribute *attr, char *buf)
2481{
2482 return nr_hugepages_show_common(kobj, attr, buf);
2483}
2484
2485static ssize_t nr_hugepages_store(struct kobject *kobj,
2486 struct kobj_attribute *attr, const char *buf, size_t len)
2487{
238d3c13 2488 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2489}
2490HSTATE_ATTR(nr_hugepages);
2491
06808b08
LS
2492#ifdef CONFIG_NUMA
2493
2494/*
2495 * hstate attribute for optionally mempolicy-based constraint on persistent
2496 * huge page alloc/free.
2497 */
2498static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2499 struct kobj_attribute *attr, char *buf)
2500{
2501 return nr_hugepages_show_common(kobj, attr, buf);
2502}
2503
2504static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2505 struct kobj_attribute *attr, const char *buf, size_t len)
2506{
238d3c13 2507 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2508}
2509HSTATE_ATTR(nr_hugepages_mempolicy);
2510#endif
2511
2512
a3437870
NA
2513static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2514 struct kobj_attribute *attr, char *buf)
2515{
9a305230 2516 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2517 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2518}
adbe8726 2519
a3437870
NA
2520static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2521 struct kobj_attribute *attr, const char *buf, size_t count)
2522{
2523 int err;
2524 unsigned long input;
9a305230 2525 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2526
bae7f4ae 2527 if (hstate_is_gigantic(h))
adbe8726
EM
2528 return -EINVAL;
2529
3dbb95f7 2530 err = kstrtoul(buf, 10, &input);
a3437870 2531 if (err)
73ae31e5 2532 return err;
a3437870
NA
2533
2534 spin_lock(&hugetlb_lock);
2535 h->nr_overcommit_huge_pages = input;
2536 spin_unlock(&hugetlb_lock);
2537
2538 return count;
2539}
2540HSTATE_ATTR(nr_overcommit_hugepages);
2541
2542static ssize_t free_hugepages_show(struct kobject *kobj,
2543 struct kobj_attribute *attr, char *buf)
2544{
9a305230
LS
2545 struct hstate *h;
2546 unsigned long free_huge_pages;
2547 int nid;
2548
2549 h = kobj_to_hstate(kobj, &nid);
2550 if (nid == NUMA_NO_NODE)
2551 free_huge_pages = h->free_huge_pages;
2552 else
2553 free_huge_pages = h->free_huge_pages_node[nid];
2554
2555 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2556}
2557HSTATE_ATTR_RO(free_hugepages);
2558
2559static ssize_t resv_hugepages_show(struct kobject *kobj,
2560 struct kobj_attribute *attr, char *buf)
2561{
9a305230 2562 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2563 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2564}
2565HSTATE_ATTR_RO(resv_hugepages);
2566
2567static ssize_t surplus_hugepages_show(struct kobject *kobj,
2568 struct kobj_attribute *attr, char *buf)
2569{
9a305230
LS
2570 struct hstate *h;
2571 unsigned long surplus_huge_pages;
2572 int nid;
2573
2574 h = kobj_to_hstate(kobj, &nid);
2575 if (nid == NUMA_NO_NODE)
2576 surplus_huge_pages = h->surplus_huge_pages;
2577 else
2578 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2579
2580 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2581}
2582HSTATE_ATTR_RO(surplus_hugepages);
2583
2584static struct attribute *hstate_attrs[] = {
2585 &nr_hugepages_attr.attr,
2586 &nr_overcommit_hugepages_attr.attr,
2587 &free_hugepages_attr.attr,
2588 &resv_hugepages_attr.attr,
2589 &surplus_hugepages_attr.attr,
06808b08
LS
2590#ifdef CONFIG_NUMA
2591 &nr_hugepages_mempolicy_attr.attr,
2592#endif
a3437870
NA
2593 NULL,
2594};
2595
2596static struct attribute_group hstate_attr_group = {
2597 .attrs = hstate_attrs,
2598};
2599
094e9539
JM
2600static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2601 struct kobject **hstate_kobjs,
2602 struct attribute_group *hstate_attr_group)
a3437870
NA
2603{
2604 int retval;
972dc4de 2605 int hi = hstate_index(h);
a3437870 2606
9a305230
LS
2607 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2608 if (!hstate_kobjs[hi])
a3437870
NA
2609 return -ENOMEM;
2610
9a305230 2611 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2612 if (retval)
9a305230 2613 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2614
2615 return retval;
2616}
2617
2618static void __init hugetlb_sysfs_init(void)
2619{
2620 struct hstate *h;
2621 int err;
2622
2623 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2624 if (!hugepages_kobj)
2625 return;
2626
2627 for_each_hstate(h) {
9a305230
LS
2628 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2629 hstate_kobjs, &hstate_attr_group);
a3437870 2630 if (err)
ffb22af5 2631 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2632 }
2633}
2634
9a305230
LS
2635#ifdef CONFIG_NUMA
2636
2637/*
2638 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2639 * with node devices in node_devices[] using a parallel array. The array
2640 * index of a node device or _hstate == node id.
2641 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2642 * the base kernel, on the hugetlb module.
2643 */
2644struct node_hstate {
2645 struct kobject *hugepages_kobj;
2646 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2647};
b4e289a6 2648static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2649
2650/*
10fbcf4c 2651 * A subset of global hstate attributes for node devices
9a305230
LS
2652 */
2653static struct attribute *per_node_hstate_attrs[] = {
2654 &nr_hugepages_attr.attr,
2655 &free_hugepages_attr.attr,
2656 &surplus_hugepages_attr.attr,
2657 NULL,
2658};
2659
2660static struct attribute_group per_node_hstate_attr_group = {
2661 .attrs = per_node_hstate_attrs,
2662};
2663
2664/*
10fbcf4c 2665 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2666 * Returns node id via non-NULL nidp.
2667 */
2668static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2669{
2670 int nid;
2671
2672 for (nid = 0; nid < nr_node_ids; nid++) {
2673 struct node_hstate *nhs = &node_hstates[nid];
2674 int i;
2675 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2676 if (nhs->hstate_kobjs[i] == kobj) {
2677 if (nidp)
2678 *nidp = nid;
2679 return &hstates[i];
2680 }
2681 }
2682
2683 BUG();
2684 return NULL;
2685}
2686
2687/*
10fbcf4c 2688 * Unregister hstate attributes from a single node device.
9a305230
LS
2689 * No-op if no hstate attributes attached.
2690 */
3cd8b44f 2691static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2692{
2693 struct hstate *h;
10fbcf4c 2694 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2695
2696 if (!nhs->hugepages_kobj)
9b5e5d0f 2697 return; /* no hstate attributes */
9a305230 2698
972dc4de
AK
2699 for_each_hstate(h) {
2700 int idx = hstate_index(h);
2701 if (nhs->hstate_kobjs[idx]) {
2702 kobject_put(nhs->hstate_kobjs[idx]);
2703 nhs->hstate_kobjs[idx] = NULL;
9a305230 2704 }
972dc4de 2705 }
9a305230
LS
2706
2707 kobject_put(nhs->hugepages_kobj);
2708 nhs->hugepages_kobj = NULL;
2709}
2710
9a305230
LS
2711
2712/*
10fbcf4c 2713 * Register hstate attributes for a single node device.
9a305230
LS
2714 * No-op if attributes already registered.
2715 */
3cd8b44f 2716static void hugetlb_register_node(struct node *node)
9a305230
LS
2717{
2718 struct hstate *h;
10fbcf4c 2719 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2720 int err;
2721
2722 if (nhs->hugepages_kobj)
2723 return; /* already allocated */
2724
2725 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2726 &node->dev.kobj);
9a305230
LS
2727 if (!nhs->hugepages_kobj)
2728 return;
2729
2730 for_each_hstate(h) {
2731 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2732 nhs->hstate_kobjs,
2733 &per_node_hstate_attr_group);
2734 if (err) {
ffb22af5
AM
2735 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2736 h->name, node->dev.id);
9a305230
LS
2737 hugetlb_unregister_node(node);
2738 break;
2739 }
2740 }
2741}
2742
2743/*
9b5e5d0f 2744 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2745 * devices of nodes that have memory. All on-line nodes should have
2746 * registered their associated device by this time.
9a305230 2747 */
7d9ca000 2748static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2749{
2750 int nid;
2751
8cebfcd0 2752 for_each_node_state(nid, N_MEMORY) {
8732794b 2753 struct node *node = node_devices[nid];
10fbcf4c 2754 if (node->dev.id == nid)
9a305230
LS
2755 hugetlb_register_node(node);
2756 }
2757
2758 /*
10fbcf4c 2759 * Let the node device driver know we're here so it can
9a305230
LS
2760 * [un]register hstate attributes on node hotplug.
2761 */
2762 register_hugetlbfs_with_node(hugetlb_register_node,
2763 hugetlb_unregister_node);
2764}
2765#else /* !CONFIG_NUMA */
2766
2767static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2768{
2769 BUG();
2770 if (nidp)
2771 *nidp = -1;
2772 return NULL;
2773}
2774
9a305230
LS
2775static void hugetlb_register_all_nodes(void) { }
2776
2777#endif
2778
a3437870
NA
2779static int __init hugetlb_init(void)
2780{
8382d914
DB
2781 int i;
2782
457c1b27 2783 if (!hugepages_supported())
0ef89d25 2784 return 0;
a3437870 2785
e11bfbfc
NP
2786 if (!size_to_hstate(default_hstate_size)) {
2787 default_hstate_size = HPAGE_SIZE;
2788 if (!size_to_hstate(default_hstate_size))
2789 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2790 }
972dc4de 2791 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2792 if (default_hstate_max_huge_pages) {
2793 if (!default_hstate.max_huge_pages)
2794 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2795 }
a3437870
NA
2796
2797 hugetlb_init_hstates();
aa888a74 2798 gather_bootmem_prealloc();
a3437870
NA
2799 report_hugepages();
2800
2801 hugetlb_sysfs_init();
9a305230 2802 hugetlb_register_all_nodes();
7179e7bf 2803 hugetlb_cgroup_file_init();
9a305230 2804
8382d914
DB
2805#ifdef CONFIG_SMP
2806 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2807#else
2808 num_fault_mutexes = 1;
2809#endif
c672c7f2 2810 hugetlb_fault_mutex_table =
8382d914 2811 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2812 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2813
2814 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2815 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2816 return 0;
2817}
3e89e1c5 2818subsys_initcall(hugetlb_init);
a3437870
NA
2819
2820/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2821void __init hugetlb_bad_size(void)
2822{
2823 parsed_valid_hugepagesz = false;
2824}
2825
d00181b9 2826void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2827{
2828 struct hstate *h;
8faa8b07
AK
2829 unsigned long i;
2830
a3437870 2831 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2832 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2833 return;
2834 }
47d38344 2835 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2836 BUG_ON(order == 0);
47d38344 2837 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2838 h->order = order;
2839 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2840 h->nr_huge_pages = 0;
2841 h->free_huge_pages = 0;
2842 for (i = 0; i < MAX_NUMNODES; ++i)
2843 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2844 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2845 h->next_nid_to_alloc = first_memory_node;
2846 h->next_nid_to_free = first_memory_node;
a3437870
NA
2847 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2848 huge_page_size(h)/1024);
8faa8b07 2849
a3437870
NA
2850 parsed_hstate = h;
2851}
2852
e11bfbfc 2853static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2854{
2855 unsigned long *mhp;
8faa8b07 2856 static unsigned long *last_mhp;
a3437870 2857
9fee021d
VT
2858 if (!parsed_valid_hugepagesz) {
2859 pr_warn("hugepages = %s preceded by "
2860 "an unsupported hugepagesz, ignoring\n", s);
2861 parsed_valid_hugepagesz = true;
2862 return 1;
2863 }
a3437870 2864 /*
47d38344 2865 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2866 * so this hugepages= parameter goes to the "default hstate".
2867 */
9fee021d 2868 else if (!hugetlb_max_hstate)
a3437870
NA
2869 mhp = &default_hstate_max_huge_pages;
2870 else
2871 mhp = &parsed_hstate->max_huge_pages;
2872
8faa8b07 2873 if (mhp == last_mhp) {
598d8091 2874 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2875 return 1;
2876 }
2877
a3437870
NA
2878 if (sscanf(s, "%lu", mhp) <= 0)
2879 *mhp = 0;
2880
8faa8b07
AK
2881 /*
2882 * Global state is always initialized later in hugetlb_init.
2883 * But we need to allocate >= MAX_ORDER hstates here early to still
2884 * use the bootmem allocator.
2885 */
47d38344 2886 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2887 hugetlb_hstate_alloc_pages(parsed_hstate);
2888
2889 last_mhp = mhp;
2890
a3437870
NA
2891 return 1;
2892}
e11bfbfc
NP
2893__setup("hugepages=", hugetlb_nrpages_setup);
2894
2895static int __init hugetlb_default_setup(char *s)
2896{
2897 default_hstate_size = memparse(s, &s);
2898 return 1;
2899}
2900__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2901
8a213460
NA
2902static unsigned int cpuset_mems_nr(unsigned int *array)
2903{
2904 int node;
2905 unsigned int nr = 0;
2906
2907 for_each_node_mask(node, cpuset_current_mems_allowed)
2908 nr += array[node];
2909
2910 return nr;
2911}
2912
2913#ifdef CONFIG_SYSCTL
06808b08
LS
2914static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2915 struct ctl_table *table, int write,
2916 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2917{
e5ff2159 2918 struct hstate *h = &default_hstate;
238d3c13 2919 unsigned long tmp = h->max_huge_pages;
08d4a246 2920 int ret;
e5ff2159 2921
457c1b27 2922 if (!hugepages_supported())
86613628 2923 return -EOPNOTSUPP;
457c1b27 2924
e5ff2159
AK
2925 table->data = &tmp;
2926 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2927 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2928 if (ret)
2929 goto out;
e5ff2159 2930
238d3c13
DR
2931 if (write)
2932 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2933 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2934out:
2935 return ret;
1da177e4 2936}
396faf03 2937
06808b08
LS
2938int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2939 void __user *buffer, size_t *length, loff_t *ppos)
2940{
2941
2942 return hugetlb_sysctl_handler_common(false, table, write,
2943 buffer, length, ppos);
2944}
2945
2946#ifdef CONFIG_NUMA
2947int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2948 void __user *buffer, size_t *length, loff_t *ppos)
2949{
2950 return hugetlb_sysctl_handler_common(true, table, write,
2951 buffer, length, ppos);
2952}
2953#endif /* CONFIG_NUMA */
2954
a3d0c6aa 2955int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2956 void __user *buffer,
a3d0c6aa
NA
2957 size_t *length, loff_t *ppos)
2958{
a5516438 2959 struct hstate *h = &default_hstate;
e5ff2159 2960 unsigned long tmp;
08d4a246 2961 int ret;
e5ff2159 2962
457c1b27 2963 if (!hugepages_supported())
86613628 2964 return -EOPNOTSUPP;
457c1b27 2965
c033a93c 2966 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2967
bae7f4ae 2968 if (write && hstate_is_gigantic(h))
adbe8726
EM
2969 return -EINVAL;
2970
e5ff2159
AK
2971 table->data = &tmp;
2972 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2973 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2974 if (ret)
2975 goto out;
e5ff2159
AK
2976
2977 if (write) {
2978 spin_lock(&hugetlb_lock);
2979 h->nr_overcommit_huge_pages = tmp;
2980 spin_unlock(&hugetlb_lock);
2981 }
08d4a246
MH
2982out:
2983 return ret;
a3d0c6aa
NA
2984}
2985
1da177e4
LT
2986#endif /* CONFIG_SYSCTL */
2987
e1759c21 2988void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2989{
a5516438 2990 struct hstate *h = &default_hstate;
457c1b27
NA
2991 if (!hugepages_supported())
2992 return;
e1759c21 2993 seq_printf(m,
4f98a2fe
RR
2994 "HugePages_Total: %5lu\n"
2995 "HugePages_Free: %5lu\n"
2996 "HugePages_Rsvd: %5lu\n"
2997 "HugePages_Surp: %5lu\n"
2998 "Hugepagesize: %8lu kB\n",
a5516438
AK
2999 h->nr_huge_pages,
3000 h->free_huge_pages,
3001 h->resv_huge_pages,
3002 h->surplus_huge_pages,
3003 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
3004}
3005
3006int hugetlb_report_node_meminfo(int nid, char *buf)
3007{
a5516438 3008 struct hstate *h = &default_hstate;
457c1b27
NA
3009 if (!hugepages_supported())
3010 return 0;
1da177e4
LT
3011 return sprintf(buf,
3012 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3013 "Node %d HugePages_Free: %5u\n"
3014 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3015 nid, h->nr_huge_pages_node[nid],
3016 nid, h->free_huge_pages_node[nid],
3017 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3018}
3019
949f7ec5
DR
3020void hugetlb_show_meminfo(void)
3021{
3022 struct hstate *h;
3023 int nid;
3024
457c1b27
NA
3025 if (!hugepages_supported())
3026 return;
3027
949f7ec5
DR
3028 for_each_node_state(nid, N_MEMORY)
3029 for_each_hstate(h)
3030 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3031 nid,
3032 h->nr_huge_pages_node[nid],
3033 h->free_huge_pages_node[nid],
3034 h->surplus_huge_pages_node[nid],
3035 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3036}
3037
5d317b2b
NH
3038void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3039{
3040 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3041 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3042}
3043
1da177e4
LT
3044/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3045unsigned long hugetlb_total_pages(void)
3046{
d0028588
WL
3047 struct hstate *h;
3048 unsigned long nr_total_pages = 0;
3049
3050 for_each_hstate(h)
3051 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3052 return nr_total_pages;
1da177e4 3053}
1da177e4 3054
a5516438 3055static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3056{
3057 int ret = -ENOMEM;
3058
3059 spin_lock(&hugetlb_lock);
3060 /*
3061 * When cpuset is configured, it breaks the strict hugetlb page
3062 * reservation as the accounting is done on a global variable. Such
3063 * reservation is completely rubbish in the presence of cpuset because
3064 * the reservation is not checked against page availability for the
3065 * current cpuset. Application can still potentially OOM'ed by kernel
3066 * with lack of free htlb page in cpuset that the task is in.
3067 * Attempt to enforce strict accounting with cpuset is almost
3068 * impossible (or too ugly) because cpuset is too fluid that
3069 * task or memory node can be dynamically moved between cpusets.
3070 *
3071 * The change of semantics for shared hugetlb mapping with cpuset is
3072 * undesirable. However, in order to preserve some of the semantics,
3073 * we fall back to check against current free page availability as
3074 * a best attempt and hopefully to minimize the impact of changing
3075 * semantics that cpuset has.
3076 */
3077 if (delta > 0) {
a5516438 3078 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3079 goto out;
3080
a5516438
AK
3081 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3082 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3083 goto out;
3084 }
3085 }
3086
3087 ret = 0;
3088 if (delta < 0)
a5516438 3089 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3090
3091out:
3092 spin_unlock(&hugetlb_lock);
3093 return ret;
3094}
3095
84afd99b
AW
3096static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3097{
f522c3ac 3098 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3099
3100 /*
3101 * This new VMA should share its siblings reservation map if present.
3102 * The VMA will only ever have a valid reservation map pointer where
3103 * it is being copied for another still existing VMA. As that VMA
25985edc 3104 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3105 * after this open call completes. It is therefore safe to take a
3106 * new reference here without additional locking.
3107 */
4e35f483 3108 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3109 kref_get(&resv->refs);
84afd99b
AW
3110}
3111
a1e78772
MG
3112static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3113{
a5516438 3114 struct hstate *h = hstate_vma(vma);
f522c3ac 3115 struct resv_map *resv = vma_resv_map(vma);
90481622 3116 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3117 unsigned long reserve, start, end;
1c5ecae3 3118 long gbl_reserve;
84afd99b 3119
4e35f483
JK
3120 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3121 return;
84afd99b 3122
4e35f483
JK
3123 start = vma_hugecache_offset(h, vma, vma->vm_start);
3124 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3125
4e35f483 3126 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3127
4e35f483
JK
3128 kref_put(&resv->refs, resv_map_release);
3129
3130 if (reserve) {
1c5ecae3
MK
3131 /*
3132 * Decrement reserve counts. The global reserve count may be
3133 * adjusted if the subpool has a minimum size.
3134 */
3135 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3136 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3137 }
a1e78772
MG
3138}
3139
1da177e4
LT
3140/*
3141 * We cannot handle pagefaults against hugetlb pages at all. They cause
3142 * handle_mm_fault() to try to instantiate regular-sized pages in the
3143 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3144 * this far.
3145 */
11bac800 3146static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3147{
3148 BUG();
d0217ac0 3149 return 0;
1da177e4
LT
3150}
3151
f0f37e2f 3152const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3153 .fault = hugetlb_vm_op_fault,
84afd99b 3154 .open = hugetlb_vm_op_open,
a1e78772 3155 .close = hugetlb_vm_op_close,
1da177e4
LT
3156};
3157
1e8f889b
DG
3158static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3159 int writable)
63551ae0
DG
3160{
3161 pte_t entry;
3162
1e8f889b 3163 if (writable) {
106c992a
GS
3164 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3165 vma->vm_page_prot)));
63551ae0 3166 } else {
106c992a
GS
3167 entry = huge_pte_wrprotect(mk_huge_pte(page,
3168 vma->vm_page_prot));
63551ae0
DG
3169 }
3170 entry = pte_mkyoung(entry);
3171 entry = pte_mkhuge(entry);
d9ed9faa 3172 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3173
3174 return entry;
3175}
3176
1e8f889b
DG
3177static void set_huge_ptep_writable(struct vm_area_struct *vma,
3178 unsigned long address, pte_t *ptep)
3179{
3180 pte_t entry;
3181
106c992a 3182 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3183 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3184 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3185}
3186
4a705fef
NH
3187static int is_hugetlb_entry_migration(pte_t pte)
3188{
3189 swp_entry_t swp;
3190
3191 if (huge_pte_none(pte) || pte_present(pte))
3192 return 0;
3193 swp = pte_to_swp_entry(pte);
3194 if (non_swap_entry(swp) && is_migration_entry(swp))
3195 return 1;
3196 else
3197 return 0;
3198}
3199
3200static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3201{
3202 swp_entry_t swp;
3203
3204 if (huge_pte_none(pte) || pte_present(pte))
3205 return 0;
3206 swp = pte_to_swp_entry(pte);
3207 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3208 return 1;
3209 else
3210 return 0;
3211}
1e8f889b 3212
63551ae0
DG
3213int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3214 struct vm_area_struct *vma)
3215{
3216 pte_t *src_pte, *dst_pte, entry;
3217 struct page *ptepage;
1c59827d 3218 unsigned long addr;
1e8f889b 3219 int cow;
a5516438
AK
3220 struct hstate *h = hstate_vma(vma);
3221 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3222 unsigned long mmun_start; /* For mmu_notifiers */
3223 unsigned long mmun_end; /* For mmu_notifiers */
3224 int ret = 0;
1e8f889b
DG
3225
3226 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3227
e8569dd2
AS
3228 mmun_start = vma->vm_start;
3229 mmun_end = vma->vm_end;
3230 if (cow)
3231 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3232
a5516438 3233 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3234 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
3235 src_pte = huge_pte_offset(src, addr);
3236 if (!src_pte)
3237 continue;
a5516438 3238 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3239 if (!dst_pte) {
3240 ret = -ENOMEM;
3241 break;
3242 }
c5c99429
LW
3243
3244 /* If the pagetables are shared don't copy or take references */
3245 if (dst_pte == src_pte)
3246 continue;
3247
cb900f41
KS
3248 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3249 src_ptl = huge_pte_lockptr(h, src, src_pte);
3250 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3251 entry = huge_ptep_get(src_pte);
3252 if (huge_pte_none(entry)) { /* skip none entry */
3253 ;
3254 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3255 is_hugetlb_entry_hwpoisoned(entry))) {
3256 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3257
3258 if (is_write_migration_entry(swp_entry) && cow) {
3259 /*
3260 * COW mappings require pages in both
3261 * parent and child to be set to read.
3262 */
3263 make_migration_entry_read(&swp_entry);
3264 entry = swp_entry_to_pte(swp_entry);
3265 set_huge_pte_at(src, addr, src_pte, entry);
3266 }
3267 set_huge_pte_at(dst, addr, dst_pte, entry);
3268 } else {
34ee645e 3269 if (cow) {
7f2e9525 3270 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3271 mmu_notifier_invalidate_range(src, mmun_start,
3272 mmun_end);
3273 }
0253d634 3274 entry = huge_ptep_get(src_pte);
1c59827d
HD
3275 ptepage = pte_page(entry);
3276 get_page(ptepage);
53f9263b 3277 page_dup_rmap(ptepage, true);
1c59827d 3278 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3279 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3280 }
cb900f41
KS
3281 spin_unlock(src_ptl);
3282 spin_unlock(dst_ptl);
63551ae0 3283 }
63551ae0 3284
e8569dd2
AS
3285 if (cow)
3286 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3287
3288 return ret;
63551ae0
DG
3289}
3290
24669e58
AK
3291void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3292 unsigned long start, unsigned long end,
3293 struct page *ref_page)
63551ae0
DG
3294{
3295 struct mm_struct *mm = vma->vm_mm;
3296 unsigned long address;
c7546f8f 3297 pte_t *ptep;
63551ae0 3298 pte_t pte;
cb900f41 3299 spinlock_t *ptl;
63551ae0 3300 struct page *page;
a5516438
AK
3301 struct hstate *h = hstate_vma(vma);
3302 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3303 const unsigned long mmun_start = start; /* For mmu_notifiers */
3304 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3305
63551ae0 3306 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3307 BUG_ON(start & ~huge_page_mask(h));
3308 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3309
07e32661
AK
3310 /*
3311 * This is a hugetlb vma, all the pte entries should point
3312 * to huge page.
3313 */
3314 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3315 tlb_start_vma(tlb, vma);
2ec74c3e 3316 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3317 address = start;
569f48b8 3318 for (; address < end; address += sz) {
c7546f8f 3319 ptep = huge_pte_offset(mm, address);
4c887265 3320 if (!ptep)
c7546f8f
DG
3321 continue;
3322
cb900f41 3323 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3324 if (huge_pmd_unshare(mm, &address, ptep)) {
3325 spin_unlock(ptl);
3326 continue;
3327 }
39dde65c 3328
6629326b 3329 pte = huge_ptep_get(ptep);
31d49da5
AK
3330 if (huge_pte_none(pte)) {
3331 spin_unlock(ptl);
3332 continue;
3333 }
6629326b
HD
3334
3335 /*
9fbc1f63
NH
3336 * Migrating hugepage or HWPoisoned hugepage is already
3337 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3338 */
9fbc1f63 3339 if (unlikely(!pte_present(pte))) {
106c992a 3340 huge_pte_clear(mm, address, ptep);
31d49da5
AK
3341 spin_unlock(ptl);
3342 continue;
8c4894c6 3343 }
6629326b
HD
3344
3345 page = pte_page(pte);
04f2cbe3
MG
3346 /*
3347 * If a reference page is supplied, it is because a specific
3348 * page is being unmapped, not a range. Ensure the page we
3349 * are about to unmap is the actual page of interest.
3350 */
3351 if (ref_page) {
31d49da5
AK
3352 if (page != ref_page) {
3353 spin_unlock(ptl);
3354 continue;
3355 }
04f2cbe3
MG
3356 /*
3357 * Mark the VMA as having unmapped its page so that
3358 * future faults in this VMA will fail rather than
3359 * looking like data was lost
3360 */
3361 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3362 }
3363
c7546f8f 3364 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3365 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3366 if (huge_pte_dirty(pte))
6649a386 3367 set_page_dirty(page);
9e81130b 3368
5d317b2b 3369 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3370 page_remove_rmap(page, true);
31d49da5 3371
cb900f41 3372 spin_unlock(ptl);
e77b0852 3373 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3374 /*
3375 * Bail out after unmapping reference page if supplied
3376 */
3377 if (ref_page)
3378 break;
fe1668ae 3379 }
2ec74c3e 3380 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3381 tlb_end_vma(tlb, vma);
1da177e4 3382}
63551ae0 3383
d833352a
MG
3384void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3385 struct vm_area_struct *vma, unsigned long start,
3386 unsigned long end, struct page *ref_page)
3387{
3388 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3389
3390 /*
3391 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3392 * test will fail on a vma being torn down, and not grab a page table
3393 * on its way out. We're lucky that the flag has such an appropriate
3394 * name, and can in fact be safely cleared here. We could clear it
3395 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3396 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3397 * because in the context this is called, the VMA is about to be
c8c06efa 3398 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3399 */
3400 vma->vm_flags &= ~VM_MAYSHARE;
3401}
3402
502717f4 3403void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3404 unsigned long end, struct page *ref_page)
502717f4 3405{
24669e58
AK
3406 struct mm_struct *mm;
3407 struct mmu_gather tlb;
3408
3409 mm = vma->vm_mm;
3410
2b047252 3411 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3412 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3413 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3414}
3415
04f2cbe3
MG
3416/*
3417 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3418 * mappping it owns the reserve page for. The intention is to unmap the page
3419 * from other VMAs and let the children be SIGKILLed if they are faulting the
3420 * same region.
3421 */
2f4612af
DB
3422static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3423 struct page *page, unsigned long address)
04f2cbe3 3424{
7526674d 3425 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3426 struct vm_area_struct *iter_vma;
3427 struct address_space *mapping;
04f2cbe3
MG
3428 pgoff_t pgoff;
3429
3430 /*
3431 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3432 * from page cache lookup which is in HPAGE_SIZE units.
3433 */
7526674d 3434 address = address & huge_page_mask(h);
36e4f20a
MH
3435 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3436 vma->vm_pgoff;
93c76a3d 3437 mapping = vma->vm_file->f_mapping;
04f2cbe3 3438
4eb2b1dc
MG
3439 /*
3440 * Take the mapping lock for the duration of the table walk. As
3441 * this mapping should be shared between all the VMAs,
3442 * __unmap_hugepage_range() is called as the lock is already held
3443 */
83cde9e8 3444 i_mmap_lock_write(mapping);
6b2dbba8 3445 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3446 /* Do not unmap the current VMA */
3447 if (iter_vma == vma)
3448 continue;
3449
2f84a899
MG
3450 /*
3451 * Shared VMAs have their own reserves and do not affect
3452 * MAP_PRIVATE accounting but it is possible that a shared
3453 * VMA is using the same page so check and skip such VMAs.
3454 */
3455 if (iter_vma->vm_flags & VM_MAYSHARE)
3456 continue;
3457
04f2cbe3
MG
3458 /*
3459 * Unmap the page from other VMAs without their own reserves.
3460 * They get marked to be SIGKILLed if they fault in these
3461 * areas. This is because a future no-page fault on this VMA
3462 * could insert a zeroed page instead of the data existing
3463 * from the time of fork. This would look like data corruption
3464 */
3465 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3466 unmap_hugepage_range(iter_vma, address,
3467 address + huge_page_size(h), page);
04f2cbe3 3468 }
83cde9e8 3469 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3470}
3471
0fe6e20b
NH
3472/*
3473 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3474 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3475 * cannot race with other handlers or page migration.
3476 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3477 */
1e8f889b 3478static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3479 unsigned long address, pte_t *ptep,
3480 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3481{
3999f52e 3482 pte_t pte;
a5516438 3483 struct hstate *h = hstate_vma(vma);
1e8f889b 3484 struct page *old_page, *new_page;
ad4404a2 3485 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3486 unsigned long mmun_start; /* For mmu_notifiers */
3487 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3488
3999f52e 3489 pte = huge_ptep_get(ptep);
1e8f889b
DG
3490 old_page = pte_page(pte);
3491
04f2cbe3 3492retry_avoidcopy:
1e8f889b
DG
3493 /* If no-one else is actually using this page, avoid the copy
3494 * and just make the page writable */
37a2140d 3495 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3496 page_move_anon_rmap(old_page, vma);
1e8f889b 3497 set_huge_ptep_writable(vma, address, ptep);
83c54070 3498 return 0;
1e8f889b
DG
3499 }
3500
04f2cbe3
MG
3501 /*
3502 * If the process that created a MAP_PRIVATE mapping is about to
3503 * perform a COW due to a shared page count, attempt to satisfy
3504 * the allocation without using the existing reserves. The pagecache
3505 * page is used to determine if the reserve at this address was
3506 * consumed or not. If reserves were used, a partial faulted mapping
3507 * at the time of fork() could consume its reserves on COW instead
3508 * of the full address range.
3509 */
5944d011 3510 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3511 old_page != pagecache_page)
3512 outside_reserve = 1;
3513
09cbfeaf 3514 get_page(old_page);
b76c8cfb 3515
ad4404a2
DB
3516 /*
3517 * Drop page table lock as buddy allocator may be called. It will
3518 * be acquired again before returning to the caller, as expected.
3519 */
cb900f41 3520 spin_unlock(ptl);
04f2cbe3 3521 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3522
2fc39cec 3523 if (IS_ERR(new_page)) {
04f2cbe3
MG
3524 /*
3525 * If a process owning a MAP_PRIVATE mapping fails to COW,
3526 * it is due to references held by a child and an insufficient
3527 * huge page pool. To guarantee the original mappers
3528 * reliability, unmap the page from child processes. The child
3529 * may get SIGKILLed if it later faults.
3530 */
3531 if (outside_reserve) {
09cbfeaf 3532 put_page(old_page);
04f2cbe3 3533 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3534 unmap_ref_private(mm, vma, old_page, address);
3535 BUG_ON(huge_pte_none(pte));
3536 spin_lock(ptl);
3537 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3538 if (likely(ptep &&
3539 pte_same(huge_ptep_get(ptep), pte)))
3540 goto retry_avoidcopy;
3541 /*
3542 * race occurs while re-acquiring page table
3543 * lock, and our job is done.
3544 */
3545 return 0;
04f2cbe3
MG
3546 }
3547
ad4404a2
DB
3548 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3549 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3550 goto out_release_old;
1e8f889b
DG
3551 }
3552
0fe6e20b
NH
3553 /*
3554 * When the original hugepage is shared one, it does not have
3555 * anon_vma prepared.
3556 */
44e2aa93 3557 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3558 ret = VM_FAULT_OOM;
3559 goto out_release_all;
44e2aa93 3560 }
0fe6e20b 3561
47ad8475
AA
3562 copy_user_huge_page(new_page, old_page, address, vma,
3563 pages_per_huge_page(h));
0ed361de 3564 __SetPageUptodate(new_page);
bcc54222 3565 set_page_huge_active(new_page);
1e8f889b 3566
2ec74c3e
SG
3567 mmun_start = address & huge_page_mask(h);
3568 mmun_end = mmun_start + huge_page_size(h);
3569 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3570
b76c8cfb 3571 /*
cb900f41 3572 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3573 * before the page tables are altered
3574 */
cb900f41 3575 spin_lock(ptl);
a5516438 3576 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 3577 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3578 ClearPagePrivate(new_page);
3579
1e8f889b 3580 /* Break COW */
8fe627ec 3581 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3582 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3583 set_huge_pte_at(mm, address, ptep,
3584 make_huge_pte(vma, new_page, 1));
d281ee61 3585 page_remove_rmap(old_page, true);
cd67f0d2 3586 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3587 /* Make the old page be freed below */
3588 new_page = old_page;
3589 }
cb900f41 3590 spin_unlock(ptl);
2ec74c3e 3591 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3592out_release_all:
96b96a96 3593 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3594 put_page(new_page);
ad4404a2 3595out_release_old:
09cbfeaf 3596 put_page(old_page);
8312034f 3597
ad4404a2
DB
3598 spin_lock(ptl); /* Caller expects lock to be held */
3599 return ret;
1e8f889b
DG
3600}
3601
04f2cbe3 3602/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3603static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3604 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3605{
3606 struct address_space *mapping;
e7c4b0bf 3607 pgoff_t idx;
04f2cbe3
MG
3608
3609 mapping = vma->vm_file->f_mapping;
a5516438 3610 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3611
3612 return find_lock_page(mapping, idx);
3613}
3614
3ae77f43
HD
3615/*
3616 * Return whether there is a pagecache page to back given address within VMA.
3617 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3618 */
3619static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3620 struct vm_area_struct *vma, unsigned long address)
3621{
3622 struct address_space *mapping;
3623 pgoff_t idx;
3624 struct page *page;
3625
3626 mapping = vma->vm_file->f_mapping;
3627 idx = vma_hugecache_offset(h, vma, address);
3628
3629 page = find_get_page(mapping, idx);
3630 if (page)
3631 put_page(page);
3632 return page != NULL;
3633}
3634
ab76ad54
MK
3635int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3636 pgoff_t idx)
3637{
3638 struct inode *inode = mapping->host;
3639 struct hstate *h = hstate_inode(inode);
3640 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3641
3642 if (err)
3643 return err;
3644 ClearPagePrivate(page);
3645
3646 spin_lock(&inode->i_lock);
3647 inode->i_blocks += blocks_per_huge_page(h);
3648 spin_unlock(&inode->i_lock);
3649 return 0;
3650}
3651
a1ed3dda 3652static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3653 struct address_space *mapping, pgoff_t idx,
3654 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3655{
a5516438 3656 struct hstate *h = hstate_vma(vma);
ac9b9c66 3657 int ret = VM_FAULT_SIGBUS;
409eb8c2 3658 int anon_rmap = 0;
4c887265 3659 unsigned long size;
4c887265 3660 struct page *page;
1e8f889b 3661 pte_t new_pte;
cb900f41 3662 spinlock_t *ptl;
4c887265 3663
04f2cbe3
MG
3664 /*
3665 * Currently, we are forced to kill the process in the event the
3666 * original mapper has unmapped pages from the child due to a failed
25985edc 3667 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3668 */
3669 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3670 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3671 current->pid);
04f2cbe3
MG
3672 return ret;
3673 }
3674
4c887265
AL
3675 /*
3676 * Use page lock to guard against racing truncation
3677 * before we get page_table_lock.
3678 */
6bda666a
CL
3679retry:
3680 page = find_lock_page(mapping, idx);
3681 if (!page) {
a5516438 3682 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3683 if (idx >= size)
3684 goto out;
1a1aad8a
MK
3685
3686 /*
3687 * Check for page in userfault range
3688 */
3689 if (userfaultfd_missing(vma)) {
3690 u32 hash;
3691 struct vm_fault vmf = {
3692 .vma = vma,
3693 .address = address,
3694 .flags = flags,
3695 /*
3696 * Hard to debug if it ends up being
3697 * used by a callee that assumes
3698 * something about the other
3699 * uninitialized fields... same as in
3700 * memory.c
3701 */
3702 };
3703
3704 /*
3705 * hugetlb_fault_mutex must be dropped before
3706 * handling userfault. Reacquire after handling
3707 * fault to make calling code simpler.
3708 */
3709 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3710 idx, address);
3711 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3712 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3713 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3714 goto out;
3715 }
3716
04f2cbe3 3717 page = alloc_huge_page(vma, address, 0);
2fc39cec 3718 if (IS_ERR(page)) {
76dcee75
AK
3719 ret = PTR_ERR(page);
3720 if (ret == -ENOMEM)
3721 ret = VM_FAULT_OOM;
3722 else
3723 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3724 goto out;
3725 }
47ad8475 3726 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3727 __SetPageUptodate(page);
bcc54222 3728 set_page_huge_active(page);
ac9b9c66 3729
f83a275d 3730 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3731 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3732 if (err) {
3733 put_page(page);
6bda666a
CL
3734 if (err == -EEXIST)
3735 goto retry;
3736 goto out;
3737 }
23be7468 3738 } else {
6bda666a 3739 lock_page(page);
0fe6e20b
NH
3740 if (unlikely(anon_vma_prepare(vma))) {
3741 ret = VM_FAULT_OOM;
3742 goto backout_unlocked;
3743 }
409eb8c2 3744 anon_rmap = 1;
23be7468 3745 }
0fe6e20b 3746 } else {
998b4382
NH
3747 /*
3748 * If memory error occurs between mmap() and fault, some process
3749 * don't have hwpoisoned swap entry for errored virtual address.
3750 * So we need to block hugepage fault by PG_hwpoison bit check.
3751 */
3752 if (unlikely(PageHWPoison(page))) {
32f84528 3753 ret = VM_FAULT_HWPOISON |
972dc4de 3754 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3755 goto backout_unlocked;
3756 }
6bda666a 3757 }
1e8f889b 3758
57303d80
AW
3759 /*
3760 * If we are going to COW a private mapping later, we examine the
3761 * pending reservations for this page now. This will ensure that
3762 * any allocations necessary to record that reservation occur outside
3763 * the spinlock.
3764 */
5e911373 3765 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3766 if (vma_needs_reservation(h, vma, address) < 0) {
3767 ret = VM_FAULT_OOM;
3768 goto backout_unlocked;
3769 }
5e911373 3770 /* Just decrements count, does not deallocate */
feba16e2 3771 vma_end_reservation(h, vma, address);
5e911373 3772 }
57303d80 3773
8bea8052 3774 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3775 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3776 if (idx >= size)
3777 goto backout;
3778
83c54070 3779 ret = 0;
7f2e9525 3780 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3781 goto backout;
3782
07443a85
JK
3783 if (anon_rmap) {
3784 ClearPagePrivate(page);
409eb8c2 3785 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3786 } else
53f9263b 3787 page_dup_rmap(page, true);
1e8f889b
DG
3788 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3789 && (vma->vm_flags & VM_SHARED)));
3790 set_huge_pte_at(mm, address, ptep, new_pte);
3791
5d317b2b 3792 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3793 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3794 /* Optimization, do the COW without a second fault */
3999f52e 3795 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3796 }
3797
cb900f41 3798 spin_unlock(ptl);
4c887265
AL
3799 unlock_page(page);
3800out:
ac9b9c66 3801 return ret;
4c887265
AL
3802
3803backout:
cb900f41 3804 spin_unlock(ptl);
2b26736c 3805backout_unlocked:
4c887265 3806 unlock_page(page);
96b96a96 3807 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3808 put_page(page);
3809 goto out;
ac9b9c66
HD
3810}
3811
8382d914 3812#ifdef CONFIG_SMP
c672c7f2 3813u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3814 struct vm_area_struct *vma,
3815 struct address_space *mapping,
3816 pgoff_t idx, unsigned long address)
3817{
3818 unsigned long key[2];
3819 u32 hash;
3820
3821 if (vma->vm_flags & VM_SHARED) {
3822 key[0] = (unsigned long) mapping;
3823 key[1] = idx;
3824 } else {
3825 key[0] = (unsigned long) mm;
3826 key[1] = address >> huge_page_shift(h);
3827 }
3828
3829 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3830
3831 return hash & (num_fault_mutexes - 1);
3832}
3833#else
3834/*
3835 * For uniprocesor systems we always use a single mutex, so just
3836 * return 0 and avoid the hashing overhead.
3837 */
c672c7f2 3838u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3839 struct vm_area_struct *vma,
3840 struct address_space *mapping,
3841 pgoff_t idx, unsigned long address)
3842{
3843 return 0;
3844}
3845#endif
3846
86e5216f 3847int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3848 unsigned long address, unsigned int flags)
86e5216f 3849{
8382d914 3850 pte_t *ptep, entry;
cb900f41 3851 spinlock_t *ptl;
1e8f889b 3852 int ret;
8382d914
DB
3853 u32 hash;
3854 pgoff_t idx;
0fe6e20b 3855 struct page *page = NULL;
57303d80 3856 struct page *pagecache_page = NULL;
a5516438 3857 struct hstate *h = hstate_vma(vma);
8382d914 3858 struct address_space *mapping;
0f792cf9 3859 int need_wait_lock = 0;
86e5216f 3860
1e16a539
KH
3861 address &= huge_page_mask(h);
3862
fd6a03ed
NH
3863 ptep = huge_pte_offset(mm, address);
3864 if (ptep) {
3865 entry = huge_ptep_get(ptep);
290408d4 3866 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3867 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3868 return 0;
3869 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3870 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3871 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3872 } else {
3873 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3874 if (!ptep)
3875 return VM_FAULT_OOM;
fd6a03ed
NH
3876 }
3877
8382d914
DB
3878 mapping = vma->vm_file->f_mapping;
3879 idx = vma_hugecache_offset(h, vma, address);
3880
3935baa9
DG
3881 /*
3882 * Serialize hugepage allocation and instantiation, so that we don't
3883 * get spurious allocation failures if two CPUs race to instantiate
3884 * the same page in the page cache.
3885 */
c672c7f2
MK
3886 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3887 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3888
7f2e9525
GS
3889 entry = huge_ptep_get(ptep);
3890 if (huge_pte_none(entry)) {
8382d914 3891 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3892 goto out_mutex;
3935baa9 3893 }
86e5216f 3894
83c54070 3895 ret = 0;
1e8f889b 3896
0f792cf9
NH
3897 /*
3898 * entry could be a migration/hwpoison entry at this point, so this
3899 * check prevents the kernel from going below assuming that we have
3900 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3901 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3902 * handle it.
3903 */
3904 if (!pte_present(entry))
3905 goto out_mutex;
3906
57303d80
AW
3907 /*
3908 * If we are going to COW the mapping later, we examine the pending
3909 * reservations for this page now. This will ensure that any
3910 * allocations necessary to record that reservation occur outside the
3911 * spinlock. For private mappings, we also lookup the pagecache
3912 * page now as it is used to determine if a reservation has been
3913 * consumed.
3914 */
106c992a 3915 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3916 if (vma_needs_reservation(h, vma, address) < 0) {
3917 ret = VM_FAULT_OOM;
b4d1d99f 3918 goto out_mutex;
2b26736c 3919 }
5e911373 3920 /* Just decrements count, does not deallocate */
feba16e2 3921 vma_end_reservation(h, vma, address);
57303d80 3922
f83a275d 3923 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3924 pagecache_page = hugetlbfs_pagecache_page(h,
3925 vma, address);
3926 }
3927
0f792cf9
NH
3928 ptl = huge_pte_lock(h, mm, ptep);
3929
3930 /* Check for a racing update before calling hugetlb_cow */
3931 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3932 goto out_ptl;
3933
56c9cfb1
NH
3934 /*
3935 * hugetlb_cow() requires page locks of pte_page(entry) and
3936 * pagecache_page, so here we need take the former one
3937 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3938 */
3939 page = pte_page(entry);
3940 if (page != pagecache_page)
0f792cf9
NH
3941 if (!trylock_page(page)) {
3942 need_wait_lock = 1;
3943 goto out_ptl;
3944 }
b4d1d99f 3945
0f792cf9 3946 get_page(page);
b4d1d99f 3947
788c7df4 3948 if (flags & FAULT_FLAG_WRITE) {
106c992a 3949 if (!huge_pte_write(entry)) {
3999f52e
AK
3950 ret = hugetlb_cow(mm, vma, address, ptep,
3951 pagecache_page, ptl);
0f792cf9 3952 goto out_put_page;
b4d1d99f 3953 }
106c992a 3954 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3955 }
3956 entry = pte_mkyoung(entry);
788c7df4
HD
3957 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3958 flags & FAULT_FLAG_WRITE))
4b3073e1 3959 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3960out_put_page:
3961 if (page != pagecache_page)
3962 unlock_page(page);
3963 put_page(page);
cb900f41
KS
3964out_ptl:
3965 spin_unlock(ptl);
57303d80
AW
3966
3967 if (pagecache_page) {
3968 unlock_page(pagecache_page);
3969 put_page(pagecache_page);
3970 }
b4d1d99f 3971out_mutex:
c672c7f2 3972 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3973 /*
3974 * Generally it's safe to hold refcount during waiting page lock. But
3975 * here we just wait to defer the next page fault to avoid busy loop and
3976 * the page is not used after unlocked before returning from the current
3977 * page fault. So we are safe from accessing freed page, even if we wait
3978 * here without taking refcount.
3979 */
3980 if (need_wait_lock)
3981 wait_on_page_locked(page);
1e8f889b 3982 return ret;
86e5216f
AL
3983}
3984
8fb5debc
MK
3985/*
3986 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
3987 * modifications for huge pages.
3988 */
3989int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3990 pte_t *dst_pte,
3991 struct vm_area_struct *dst_vma,
3992 unsigned long dst_addr,
3993 unsigned long src_addr,
3994 struct page **pagep)
3995{
1c9e8def 3996 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
3997 struct hstate *h = hstate_vma(dst_vma);
3998 pte_t _dst_pte;
3999 spinlock_t *ptl;
4000 int ret;
4001 struct page *page;
4002
4003 if (!*pagep) {
4004 ret = -ENOMEM;
4005 page = alloc_huge_page(dst_vma, dst_addr, 0);
4006 if (IS_ERR(page))
4007 goto out;
4008
4009 ret = copy_huge_page_from_user(page,
4010 (const void __user *) src_addr,
810a56b9 4011 pages_per_huge_page(h), false);
8fb5debc
MK
4012
4013 /* fallback to copy_from_user outside mmap_sem */
4014 if (unlikely(ret)) {
4015 ret = -EFAULT;
4016 *pagep = page;
4017 /* don't free the page */
4018 goto out;
4019 }
4020 } else {
4021 page = *pagep;
4022 *pagep = NULL;
4023 }
4024
4025 /*
4026 * The memory barrier inside __SetPageUptodate makes sure that
4027 * preceding stores to the page contents become visible before
4028 * the set_pte_at() write.
4029 */
4030 __SetPageUptodate(page);
4031 set_page_huge_active(page);
4032
1c9e8def
MK
4033 /*
4034 * If shared, add to page cache
4035 */
4036 if (vm_shared) {
4037 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4038 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4039
4040 ret = huge_add_to_page_cache(page, mapping, idx);
4041 if (ret)
4042 goto out_release_nounlock;
4043 }
4044
8fb5debc
MK
4045 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4046 spin_lock(ptl);
4047
4048 ret = -EEXIST;
4049 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4050 goto out_release_unlock;
4051
1c9e8def
MK
4052 if (vm_shared) {
4053 page_dup_rmap(page, true);
4054 } else {
4055 ClearPagePrivate(page);
4056 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4057 }
8fb5debc
MK
4058
4059 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4060 if (dst_vma->vm_flags & VM_WRITE)
4061 _dst_pte = huge_pte_mkdirty(_dst_pte);
4062 _dst_pte = pte_mkyoung(_dst_pte);
4063
4064 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4065
4066 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4067 dst_vma->vm_flags & VM_WRITE);
4068 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4069
4070 /* No need to invalidate - it was non-present before */
4071 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4072
4073 spin_unlock(ptl);
1c9e8def
MK
4074 if (vm_shared)
4075 unlock_page(page);
8fb5debc
MK
4076 ret = 0;
4077out:
4078 return ret;
4079out_release_unlock:
4080 spin_unlock(ptl);
1c9e8def
MK
4081out_release_nounlock:
4082 if (vm_shared)
4083 unlock_page(page);
8fb5debc
MK
4084 put_page(page);
4085 goto out;
4086}
4087
28a35716
ML
4088long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4089 struct page **pages, struct vm_area_struct **vmas,
4090 unsigned long *position, unsigned long *nr_pages,
87ffc118 4091 long i, unsigned int flags, int *nonblocking)
63551ae0 4092{
d5d4b0aa
KC
4093 unsigned long pfn_offset;
4094 unsigned long vaddr = *position;
28a35716 4095 unsigned long remainder = *nr_pages;
a5516438 4096 struct hstate *h = hstate_vma(vma);
63551ae0 4097
63551ae0 4098 while (vaddr < vma->vm_end && remainder) {
4c887265 4099 pte_t *pte;
cb900f41 4100 spinlock_t *ptl = NULL;
2a15efc9 4101 int absent;
4c887265 4102 struct page *page;
63551ae0 4103
02057967
DR
4104 /*
4105 * If we have a pending SIGKILL, don't keep faulting pages and
4106 * potentially allocating memory.
4107 */
4108 if (unlikely(fatal_signal_pending(current))) {
4109 remainder = 0;
4110 break;
4111 }
4112
4c887265
AL
4113 /*
4114 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4115 * each hugepage. We have to make sure we get the
4c887265 4116 * first, for the page indexing below to work.
cb900f41
KS
4117 *
4118 * Note that page table lock is not held when pte is null.
4c887265 4119 */
a5516438 4120 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
4121 if (pte)
4122 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4123 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4124
4125 /*
4126 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4127 * an error where there's an empty slot with no huge pagecache
4128 * to back it. This way, we avoid allocating a hugepage, and
4129 * the sparse dumpfile avoids allocating disk blocks, but its
4130 * huge holes still show up with zeroes where they need to be.
2a15efc9 4131 */
3ae77f43
HD
4132 if (absent && (flags & FOLL_DUMP) &&
4133 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4134 if (pte)
4135 spin_unlock(ptl);
2a15efc9
HD
4136 remainder = 0;
4137 break;
4138 }
63551ae0 4139
9cc3a5bd
NH
4140 /*
4141 * We need call hugetlb_fault for both hugepages under migration
4142 * (in which case hugetlb_fault waits for the migration,) and
4143 * hwpoisoned hugepages (in which case we need to prevent the
4144 * caller from accessing to them.) In order to do this, we use
4145 * here is_swap_pte instead of is_hugetlb_entry_migration and
4146 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4147 * both cases, and because we can't follow correct pages
4148 * directly from any kind of swap entries.
4149 */
4150 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4151 ((flags & FOLL_WRITE) &&
4152 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4153 int ret;
87ffc118 4154 unsigned int fault_flags = 0;
63551ae0 4155
cb900f41
KS
4156 if (pte)
4157 spin_unlock(ptl);
87ffc118
AA
4158 if (flags & FOLL_WRITE)
4159 fault_flags |= FAULT_FLAG_WRITE;
4160 if (nonblocking)
4161 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4162 if (flags & FOLL_NOWAIT)
4163 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4164 FAULT_FLAG_RETRY_NOWAIT;
4165 if (flags & FOLL_TRIED) {
4166 VM_WARN_ON_ONCE(fault_flags &
4167 FAULT_FLAG_ALLOW_RETRY);
4168 fault_flags |= FAULT_FLAG_TRIED;
4169 }
4170 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4171 if (ret & VM_FAULT_ERROR) {
4172 remainder = 0;
4173 break;
4174 }
4175 if (ret & VM_FAULT_RETRY) {
4176 if (nonblocking)
4177 *nonblocking = 0;
4178 *nr_pages = 0;
4179 /*
4180 * VM_FAULT_RETRY must not return an
4181 * error, it will return zero
4182 * instead.
4183 *
4184 * No need to update "position" as the
4185 * caller will not check it after
4186 * *nr_pages is set to 0.
4187 */
4188 return i;
4189 }
4190 continue;
4c887265
AL
4191 }
4192
a5516438 4193 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4194 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4195same_page:
d6692183 4196 if (pages) {
2a15efc9 4197 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4198 get_page(pages[i]);
d6692183 4199 }
63551ae0
DG
4200
4201 if (vmas)
4202 vmas[i] = vma;
4203
4204 vaddr += PAGE_SIZE;
d5d4b0aa 4205 ++pfn_offset;
63551ae0
DG
4206 --remainder;
4207 ++i;
d5d4b0aa 4208 if (vaddr < vma->vm_end && remainder &&
a5516438 4209 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4210 /*
4211 * We use pfn_offset to avoid touching the pageframes
4212 * of this compound page.
4213 */
4214 goto same_page;
4215 }
cb900f41 4216 spin_unlock(ptl);
63551ae0 4217 }
28a35716 4218 *nr_pages = remainder;
87ffc118
AA
4219 /*
4220 * setting position is actually required only if remainder is
4221 * not zero but it's faster not to add a "if (remainder)"
4222 * branch.
4223 */
63551ae0
DG
4224 *position = vaddr;
4225
2a15efc9 4226 return i ? i : -EFAULT;
63551ae0 4227}
8f860591 4228
5491ae7b
AK
4229#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4230/*
4231 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4232 * implement this.
4233 */
4234#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4235#endif
4236
7da4d641 4237unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4238 unsigned long address, unsigned long end, pgprot_t newprot)
4239{
4240 struct mm_struct *mm = vma->vm_mm;
4241 unsigned long start = address;
4242 pte_t *ptep;
4243 pte_t pte;
a5516438 4244 struct hstate *h = hstate_vma(vma);
7da4d641 4245 unsigned long pages = 0;
8f860591
ZY
4246
4247 BUG_ON(address >= end);
4248 flush_cache_range(vma, address, end);
4249
a5338093 4250 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4251 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4252 for (; address < end; address += huge_page_size(h)) {
cb900f41 4253 spinlock_t *ptl;
8f860591
ZY
4254 ptep = huge_pte_offset(mm, address);
4255 if (!ptep)
4256 continue;
cb900f41 4257 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4258 if (huge_pmd_unshare(mm, &address, ptep)) {
4259 pages++;
cb900f41 4260 spin_unlock(ptl);
39dde65c 4261 continue;
7da4d641 4262 }
a8bda28d
NH
4263 pte = huge_ptep_get(ptep);
4264 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4265 spin_unlock(ptl);
4266 continue;
4267 }
4268 if (unlikely(is_hugetlb_entry_migration(pte))) {
4269 swp_entry_t entry = pte_to_swp_entry(pte);
4270
4271 if (is_write_migration_entry(entry)) {
4272 pte_t newpte;
4273
4274 make_migration_entry_read(&entry);
4275 newpte = swp_entry_to_pte(entry);
4276 set_huge_pte_at(mm, address, ptep, newpte);
4277 pages++;
4278 }
4279 spin_unlock(ptl);
4280 continue;
4281 }
4282 if (!huge_pte_none(pte)) {
8f860591 4283 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4284 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4285 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4286 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4287 pages++;
8f860591 4288 }
cb900f41 4289 spin_unlock(ptl);
8f860591 4290 }
d833352a 4291 /*
c8c06efa 4292 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4293 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4294 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4295 * and that page table be reused and filled with junk.
4296 */
5491ae7b 4297 flush_hugetlb_tlb_range(vma, start, end);
34ee645e 4298 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 4299 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4300 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4301
4302 return pages << h->order;
8f860591
ZY
4303}
4304
a1e78772
MG
4305int hugetlb_reserve_pages(struct inode *inode,
4306 long from, long to,
5a6fe125 4307 struct vm_area_struct *vma,
ca16d140 4308 vm_flags_t vm_flags)
e4e574b7 4309{
17c9d12e 4310 long ret, chg;
a5516438 4311 struct hstate *h = hstate_inode(inode);
90481622 4312 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4313 struct resv_map *resv_map;
1c5ecae3 4314 long gbl_reserve;
e4e574b7 4315
17c9d12e
MG
4316 /*
4317 * Only apply hugepage reservation if asked. At fault time, an
4318 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4319 * without using reserves
17c9d12e 4320 */
ca16d140 4321 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4322 return 0;
4323
a1e78772
MG
4324 /*
4325 * Shared mappings base their reservation on the number of pages that
4326 * are already allocated on behalf of the file. Private mappings need
4327 * to reserve the full area even if read-only as mprotect() may be
4328 * called to make the mapping read-write. Assume !vma is a shm mapping
4329 */
9119a41e 4330 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4331 resv_map = inode_resv_map(inode);
9119a41e 4332
1406ec9b 4333 chg = region_chg(resv_map, from, to);
9119a41e
JK
4334
4335 } else {
4336 resv_map = resv_map_alloc();
17c9d12e
MG
4337 if (!resv_map)
4338 return -ENOMEM;
4339
a1e78772 4340 chg = to - from;
84afd99b 4341
17c9d12e
MG
4342 set_vma_resv_map(vma, resv_map);
4343 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4344 }
4345
c50ac050
DH
4346 if (chg < 0) {
4347 ret = chg;
4348 goto out_err;
4349 }
8a630112 4350
1c5ecae3
MK
4351 /*
4352 * There must be enough pages in the subpool for the mapping. If
4353 * the subpool has a minimum size, there may be some global
4354 * reservations already in place (gbl_reserve).
4355 */
4356 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4357 if (gbl_reserve < 0) {
c50ac050
DH
4358 ret = -ENOSPC;
4359 goto out_err;
4360 }
5a6fe125
MG
4361
4362 /*
17c9d12e 4363 * Check enough hugepages are available for the reservation.
90481622 4364 * Hand the pages back to the subpool if there are not
5a6fe125 4365 */
1c5ecae3 4366 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4367 if (ret < 0) {
1c5ecae3
MK
4368 /* put back original number of pages, chg */
4369 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4370 goto out_err;
68842c9b 4371 }
17c9d12e
MG
4372
4373 /*
4374 * Account for the reservations made. Shared mappings record regions
4375 * that have reservations as they are shared by multiple VMAs.
4376 * When the last VMA disappears, the region map says how much
4377 * the reservation was and the page cache tells how much of
4378 * the reservation was consumed. Private mappings are per-VMA and
4379 * only the consumed reservations are tracked. When the VMA
4380 * disappears, the original reservation is the VMA size and the
4381 * consumed reservations are stored in the map. Hence, nothing
4382 * else has to be done for private mappings here
4383 */
33039678
MK
4384 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4385 long add = region_add(resv_map, from, to);
4386
4387 if (unlikely(chg > add)) {
4388 /*
4389 * pages in this range were added to the reserve
4390 * map between region_chg and region_add. This
4391 * indicates a race with alloc_huge_page. Adjust
4392 * the subpool and reserve counts modified above
4393 * based on the difference.
4394 */
4395 long rsv_adjust;
4396
4397 rsv_adjust = hugepage_subpool_put_pages(spool,
4398 chg - add);
4399 hugetlb_acct_memory(h, -rsv_adjust);
4400 }
4401 }
a43a8c39 4402 return 0;
c50ac050 4403out_err:
5e911373
MK
4404 if (!vma || vma->vm_flags & VM_MAYSHARE)
4405 region_abort(resv_map, from, to);
f031dd27
JK
4406 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4407 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4408 return ret;
a43a8c39
KC
4409}
4410
b5cec28d
MK
4411long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4412 long freed)
a43a8c39 4413{
a5516438 4414 struct hstate *h = hstate_inode(inode);
4e35f483 4415 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4416 long chg = 0;
90481622 4417 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4418 long gbl_reserve;
45c682a6 4419
b5cec28d
MK
4420 if (resv_map) {
4421 chg = region_del(resv_map, start, end);
4422 /*
4423 * region_del() can fail in the rare case where a region
4424 * must be split and another region descriptor can not be
4425 * allocated. If end == LONG_MAX, it will not fail.
4426 */
4427 if (chg < 0)
4428 return chg;
4429 }
4430
45c682a6 4431 spin_lock(&inode->i_lock);
e4c6f8be 4432 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4433 spin_unlock(&inode->i_lock);
4434
1c5ecae3
MK
4435 /*
4436 * If the subpool has a minimum size, the number of global
4437 * reservations to be released may be adjusted.
4438 */
4439 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4440 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4441
4442 return 0;
a43a8c39 4443}
93f70f90 4444
3212b535
SC
4445#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4446static unsigned long page_table_shareable(struct vm_area_struct *svma,
4447 struct vm_area_struct *vma,
4448 unsigned long addr, pgoff_t idx)
4449{
4450 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4451 svma->vm_start;
4452 unsigned long sbase = saddr & PUD_MASK;
4453 unsigned long s_end = sbase + PUD_SIZE;
4454
4455 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4456 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4457 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4458
4459 /*
4460 * match the virtual addresses, permission and the alignment of the
4461 * page table page.
4462 */
4463 if (pmd_index(addr) != pmd_index(saddr) ||
4464 vm_flags != svm_flags ||
4465 sbase < svma->vm_start || svma->vm_end < s_end)
4466 return 0;
4467
4468 return saddr;
4469}
4470
31aafb45 4471static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4472{
4473 unsigned long base = addr & PUD_MASK;
4474 unsigned long end = base + PUD_SIZE;
4475
4476 /*
4477 * check on proper vm_flags and page table alignment
4478 */
4479 if (vma->vm_flags & VM_MAYSHARE &&
4480 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4481 return true;
4482 return false;
3212b535
SC
4483}
4484
4485/*
4486 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4487 * and returns the corresponding pte. While this is not necessary for the
4488 * !shared pmd case because we can allocate the pmd later as well, it makes the
4489 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4490 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4491 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4492 * bad pmd for sharing.
4493 */
4494pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4495{
4496 struct vm_area_struct *vma = find_vma(mm, addr);
4497 struct address_space *mapping = vma->vm_file->f_mapping;
4498 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4499 vma->vm_pgoff;
4500 struct vm_area_struct *svma;
4501 unsigned long saddr;
4502 pte_t *spte = NULL;
4503 pte_t *pte;
cb900f41 4504 spinlock_t *ptl;
3212b535
SC
4505
4506 if (!vma_shareable(vma, addr))
4507 return (pte_t *)pmd_alloc(mm, pud, addr);
4508
83cde9e8 4509 i_mmap_lock_write(mapping);
3212b535
SC
4510 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4511 if (svma == vma)
4512 continue;
4513
4514 saddr = page_table_shareable(svma, vma, addr, idx);
4515 if (saddr) {
4516 spte = huge_pte_offset(svma->vm_mm, saddr);
4517 if (spte) {
4518 get_page(virt_to_page(spte));
4519 break;
4520 }
4521 }
4522 }
4523
4524 if (!spte)
4525 goto out;
4526
8bea8052 4527 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4528 if (pud_none(*pud)) {
3212b535
SC
4529 pud_populate(mm, pud,
4530 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4531 mm_inc_nr_pmds(mm);
dc6c9a35 4532 } else {
3212b535 4533 put_page(virt_to_page(spte));
dc6c9a35 4534 }
cb900f41 4535 spin_unlock(ptl);
3212b535
SC
4536out:
4537 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4538 i_mmap_unlock_write(mapping);
3212b535
SC
4539 return pte;
4540}
4541
4542/*
4543 * unmap huge page backed by shared pte.
4544 *
4545 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4546 * indicated by page_count > 1, unmap is achieved by clearing pud and
4547 * decrementing the ref count. If count == 1, the pte page is not shared.
4548 *
cb900f41 4549 * called with page table lock held.
3212b535
SC
4550 *
4551 * returns: 1 successfully unmapped a shared pte page
4552 * 0 the underlying pte page is not shared, or it is the last user
4553 */
4554int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4555{
4556 pgd_t *pgd = pgd_offset(mm, *addr);
4557 pud_t *pud = pud_offset(pgd, *addr);
4558
4559 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4560 if (page_count(virt_to_page(ptep)) == 1)
4561 return 0;
4562
4563 pud_clear(pud);
4564 put_page(virt_to_page(ptep));
dc6c9a35 4565 mm_dec_nr_pmds(mm);
3212b535
SC
4566 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4567 return 1;
4568}
9e5fc74c
SC
4569#define want_pmd_share() (1)
4570#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4571pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4572{
4573 return NULL;
4574}
e81f2d22
ZZ
4575
4576int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4577{
4578 return 0;
4579}
9e5fc74c 4580#define want_pmd_share() (0)
3212b535
SC
4581#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4582
9e5fc74c
SC
4583#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4584pte_t *huge_pte_alloc(struct mm_struct *mm,
4585 unsigned long addr, unsigned long sz)
4586{
4587 pgd_t *pgd;
4588 pud_t *pud;
4589 pte_t *pte = NULL;
4590
4591 pgd = pgd_offset(mm, addr);
4592 pud = pud_alloc(mm, pgd, addr);
4593 if (pud) {
4594 if (sz == PUD_SIZE) {
4595 pte = (pte_t *)pud;
4596 } else {
4597 BUG_ON(sz != PMD_SIZE);
4598 if (want_pmd_share() && pud_none(*pud))
4599 pte = huge_pmd_share(mm, addr, pud);
4600 else
4601 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4602 }
4603 }
4e666314 4604 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4605
4606 return pte;
4607}
4608
4609pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4610{
4611 pgd_t *pgd;
4612 pud_t *pud;
4613 pmd_t *pmd = NULL;
4614
4615 pgd = pgd_offset(mm, addr);
4616 if (pgd_present(*pgd)) {
4617 pud = pud_offset(pgd, addr);
4618 if (pud_present(*pud)) {
4619 if (pud_huge(*pud))
4620 return (pte_t *)pud;
4621 pmd = pmd_offset(pud, addr);
4622 }
4623 }
4624 return (pte_t *) pmd;
4625}
4626
61f77eda
NH
4627#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4628
4629/*
4630 * These functions are overwritable if your architecture needs its own
4631 * behavior.
4632 */
4633struct page * __weak
4634follow_huge_addr(struct mm_struct *mm, unsigned long address,
4635 int write)
4636{
4637 return ERR_PTR(-EINVAL);
4638}
4639
4640struct page * __weak
9e5fc74c 4641follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4642 pmd_t *pmd, int flags)
9e5fc74c 4643{
e66f17ff
NH
4644 struct page *page = NULL;
4645 spinlock_t *ptl;
4646retry:
4647 ptl = pmd_lockptr(mm, pmd);
4648 spin_lock(ptl);
4649 /*
4650 * make sure that the address range covered by this pmd is not
4651 * unmapped from other threads.
4652 */
4653 if (!pmd_huge(*pmd))
4654 goto out;
4655 if (pmd_present(*pmd)) {
97534127 4656 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4657 if (flags & FOLL_GET)
4658 get_page(page);
4659 } else {
4660 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4661 spin_unlock(ptl);
4662 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4663 goto retry;
4664 }
4665 /*
4666 * hwpoisoned entry is treated as no_page_table in
4667 * follow_page_mask().
4668 */
4669 }
4670out:
4671 spin_unlock(ptl);
9e5fc74c
SC
4672 return page;
4673}
4674
61f77eda 4675struct page * __weak
9e5fc74c 4676follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4677 pud_t *pud, int flags)
9e5fc74c 4678{
e66f17ff
NH
4679 if (flags & FOLL_GET)
4680 return NULL;
9e5fc74c 4681
e66f17ff 4682 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4683}
4684
d5bd9106
AK
4685#ifdef CONFIG_MEMORY_FAILURE
4686
93f70f90
NH
4687/*
4688 * This function is called from memory failure code.
93f70f90 4689 */
6de2b1aa 4690int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
4691{
4692 struct hstate *h = page_hstate(hpage);
4693 int nid = page_to_nid(hpage);
6de2b1aa 4694 int ret = -EBUSY;
93f70f90
NH
4695
4696 spin_lock(&hugetlb_lock);
7e1f049e
NH
4697 /*
4698 * Just checking !page_huge_active is not enough, because that could be
4699 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4700 */
4701 if (!page_huge_active(hpage) && !page_count(hpage)) {
56f2fb14
NH
4702 /*
4703 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4704 * but dangling hpage->lru can trigger list-debug warnings
4705 * (this happens when we call unpoison_memory() on it),
4706 * so let it point to itself with list_del_init().
4707 */
4708 list_del_init(&hpage->lru);
8c6c2ecb 4709 set_page_refcounted(hpage);
6de2b1aa
NH
4710 h->free_huge_pages--;
4711 h->free_huge_pages_node[nid]--;
4712 ret = 0;
4713 }
93f70f90 4714 spin_unlock(&hugetlb_lock);
6de2b1aa 4715 return ret;
93f70f90 4716}
6de2b1aa 4717#endif
31caf665
NH
4718
4719bool isolate_huge_page(struct page *page, struct list_head *list)
4720{
bcc54222
NH
4721 bool ret = true;
4722
309381fe 4723 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4724 spin_lock(&hugetlb_lock);
bcc54222
NH
4725 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4726 ret = false;
4727 goto unlock;
4728 }
4729 clear_page_huge_active(page);
31caf665 4730 list_move_tail(&page->lru, list);
bcc54222 4731unlock:
31caf665 4732 spin_unlock(&hugetlb_lock);
bcc54222 4733 return ret;
31caf665
NH
4734}
4735
4736void putback_active_hugepage(struct page *page)
4737{
309381fe 4738 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4739 spin_lock(&hugetlb_lock);
bcc54222 4740 set_page_huge_active(page);
31caf665
NH
4741 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4742 spin_unlock(&hugetlb_lock);
4743 put_page(page);
4744}