]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
mm, hugetlb: fix and clean-up node iteration code to alloc or free
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
d6606683 24
63551ae0
DG
25#include <asm/page.h>
26#include <asm/pgtable.h>
24669e58 27#include <asm/tlb.h>
63551ae0 28
24669e58 29#include <linux/io.h>
63551ae0 30#include <linux/hugetlb.h>
9dd540e2 31#include <linux/hugetlb_cgroup.h>
9a305230 32#include <linux/node.h>
7835e98b 33#include "internal.h"
1da177e4
LT
34
35const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03
MG
36static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
37unsigned long hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
53ba51d2
JT
43__initdata LIST_HEAD(huge_boot_pages);
44
e5ff2159
AK
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 48static unsigned long __initdata default_hstate_size;
e5ff2159 49
3935baa9
DG
50/*
51 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 */
c3f38a38 53DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 54
90481622
DG
55static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
56{
57 bool free = (spool->count == 0) && (spool->used_hpages == 0);
58
59 spin_unlock(&spool->lock);
60
61 /* If no pages are used, and no other handles to the subpool
62 * remain, free the subpool the subpool remain */
63 if (free)
64 kfree(spool);
65}
66
67struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
68{
69 struct hugepage_subpool *spool;
70
71 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
72 if (!spool)
73 return NULL;
74
75 spin_lock_init(&spool->lock);
76 spool->count = 1;
77 spool->max_hpages = nr_blocks;
78 spool->used_hpages = 0;
79
80 return spool;
81}
82
83void hugepage_put_subpool(struct hugepage_subpool *spool)
84{
85 spin_lock(&spool->lock);
86 BUG_ON(!spool->count);
87 spool->count--;
88 unlock_or_release_subpool(spool);
89}
90
91static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
92 long delta)
93{
94 int ret = 0;
95
96 if (!spool)
97 return 0;
98
99 spin_lock(&spool->lock);
100 if ((spool->used_hpages + delta) <= spool->max_hpages) {
101 spool->used_hpages += delta;
102 } else {
103 ret = -ENOMEM;
104 }
105 spin_unlock(&spool->lock);
106
107 return ret;
108}
109
110static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
111 long delta)
112{
113 if (!spool)
114 return;
115
116 spin_lock(&spool->lock);
117 spool->used_hpages -= delta;
118 /* If hugetlbfs_put_super couldn't free spool due to
119 * an outstanding quota reference, free it now. */
120 unlock_or_release_subpool(spool);
121}
122
123static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
124{
125 return HUGETLBFS_SB(inode->i_sb)->spool;
126}
127
128static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
129{
496ad9aa 130 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
131}
132
96822904
AW
133/*
134 * Region tracking -- allows tracking of reservations and instantiated pages
135 * across the pages in a mapping.
84afd99b
AW
136 *
137 * The region data structures are protected by a combination of the mmap_sem
c748c262 138 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
84afd99b 139 * must either hold the mmap_sem for write, or the mmap_sem for read and
c748c262 140 * the hugetlb_instantiation_mutex:
84afd99b 141 *
32f84528 142 * down_write(&mm->mmap_sem);
84afd99b 143 * or
32f84528
CF
144 * down_read(&mm->mmap_sem);
145 * mutex_lock(&hugetlb_instantiation_mutex);
96822904
AW
146 */
147struct file_region {
148 struct list_head link;
149 long from;
150 long to;
151};
152
153static long region_add(struct list_head *head, long f, long t)
154{
155 struct file_region *rg, *nrg, *trg;
156
157 /* Locate the region we are either in or before. */
158 list_for_each_entry(rg, head, link)
159 if (f <= rg->to)
160 break;
161
162 /* Round our left edge to the current segment if it encloses us. */
163 if (f > rg->from)
164 f = rg->from;
165
166 /* Check for and consume any regions we now overlap with. */
167 nrg = rg;
168 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
169 if (&rg->link == head)
170 break;
171 if (rg->from > t)
172 break;
173
174 /* If this area reaches higher then extend our area to
175 * include it completely. If this is not the first area
176 * which we intend to reuse, free it. */
177 if (rg->to > t)
178 t = rg->to;
179 if (rg != nrg) {
180 list_del(&rg->link);
181 kfree(rg);
182 }
183 }
184 nrg->from = f;
185 nrg->to = t;
186 return 0;
187}
188
189static long region_chg(struct list_head *head, long f, long t)
190{
191 struct file_region *rg, *nrg;
192 long chg = 0;
193
194 /* Locate the region we are before or in. */
195 list_for_each_entry(rg, head, link)
196 if (f <= rg->to)
197 break;
198
199 /* If we are below the current region then a new region is required.
200 * Subtle, allocate a new region at the position but make it zero
201 * size such that we can guarantee to record the reservation. */
202 if (&rg->link == head || t < rg->from) {
203 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
204 if (!nrg)
205 return -ENOMEM;
206 nrg->from = f;
207 nrg->to = f;
208 INIT_LIST_HEAD(&nrg->link);
209 list_add(&nrg->link, rg->link.prev);
210
211 return t - f;
212 }
213
214 /* Round our left edge to the current segment if it encloses us. */
215 if (f > rg->from)
216 f = rg->from;
217 chg = t - f;
218
219 /* Check for and consume any regions we now overlap with. */
220 list_for_each_entry(rg, rg->link.prev, link) {
221 if (&rg->link == head)
222 break;
223 if (rg->from > t)
224 return chg;
225
25985edc 226 /* We overlap with this area, if it extends further than
96822904
AW
227 * us then we must extend ourselves. Account for its
228 * existing reservation. */
229 if (rg->to > t) {
230 chg += rg->to - t;
231 t = rg->to;
232 }
233 chg -= rg->to - rg->from;
234 }
235 return chg;
236}
237
238static long region_truncate(struct list_head *head, long end)
239{
240 struct file_region *rg, *trg;
241 long chg = 0;
242
243 /* Locate the region we are either in or before. */
244 list_for_each_entry(rg, head, link)
245 if (end <= rg->to)
246 break;
247 if (&rg->link == head)
248 return 0;
249
250 /* If we are in the middle of a region then adjust it. */
251 if (end > rg->from) {
252 chg = rg->to - end;
253 rg->to = end;
254 rg = list_entry(rg->link.next, typeof(*rg), link);
255 }
256
257 /* Drop any remaining regions. */
258 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
259 if (&rg->link == head)
260 break;
261 chg += rg->to - rg->from;
262 list_del(&rg->link);
263 kfree(rg);
264 }
265 return chg;
266}
267
84afd99b
AW
268static long region_count(struct list_head *head, long f, long t)
269{
270 struct file_region *rg;
271 long chg = 0;
272
273 /* Locate each segment we overlap with, and count that overlap. */
274 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
275 long seg_from;
276 long seg_to;
84afd99b
AW
277
278 if (rg->to <= f)
279 continue;
280 if (rg->from >= t)
281 break;
282
283 seg_from = max(rg->from, f);
284 seg_to = min(rg->to, t);
285
286 chg += seg_to - seg_from;
287 }
288
289 return chg;
290}
291
e7c4b0bf
AW
292/*
293 * Convert the address within this vma to the page offset within
294 * the mapping, in pagecache page units; huge pages here.
295 */
a5516438
AK
296static pgoff_t vma_hugecache_offset(struct hstate *h,
297 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 298{
a5516438
AK
299 return ((address - vma->vm_start) >> huge_page_shift(h)) +
300 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
301}
302
0fe6e20b
NH
303pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
304 unsigned long address)
305{
306 return vma_hugecache_offset(hstate_vma(vma), vma, address);
307}
308
08fba699
MG
309/*
310 * Return the size of the pages allocated when backing a VMA. In the majority
311 * cases this will be same size as used by the page table entries.
312 */
313unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
314{
315 struct hstate *hstate;
316
317 if (!is_vm_hugetlb_page(vma))
318 return PAGE_SIZE;
319
320 hstate = hstate_vma(vma);
321
2415cf12 322 return 1UL << huge_page_shift(hstate);
08fba699 323}
f340ca0f 324EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 325
3340289d
MG
326/*
327 * Return the page size being used by the MMU to back a VMA. In the majority
328 * of cases, the page size used by the kernel matches the MMU size. On
329 * architectures where it differs, an architecture-specific version of this
330 * function is required.
331 */
332#ifndef vma_mmu_pagesize
333unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
334{
335 return vma_kernel_pagesize(vma);
336}
337#endif
338
84afd99b
AW
339/*
340 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
341 * bits of the reservation map pointer, which are always clear due to
342 * alignment.
343 */
344#define HPAGE_RESV_OWNER (1UL << 0)
345#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 346#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 347
a1e78772
MG
348/*
349 * These helpers are used to track how many pages are reserved for
350 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
351 * is guaranteed to have their future faults succeed.
352 *
353 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
354 * the reserve counters are updated with the hugetlb_lock held. It is safe
355 * to reset the VMA at fork() time as it is not in use yet and there is no
356 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
357 *
358 * The private mapping reservation is represented in a subtly different
359 * manner to a shared mapping. A shared mapping has a region map associated
360 * with the underlying file, this region map represents the backing file
361 * pages which have ever had a reservation assigned which this persists even
362 * after the page is instantiated. A private mapping has a region map
363 * associated with the original mmap which is attached to all VMAs which
364 * reference it, this region map represents those offsets which have consumed
365 * reservation ie. where pages have been instantiated.
a1e78772 366 */
e7c4b0bf
AW
367static unsigned long get_vma_private_data(struct vm_area_struct *vma)
368{
369 return (unsigned long)vma->vm_private_data;
370}
371
372static void set_vma_private_data(struct vm_area_struct *vma,
373 unsigned long value)
374{
375 vma->vm_private_data = (void *)value;
376}
377
84afd99b
AW
378struct resv_map {
379 struct kref refs;
380 struct list_head regions;
381};
382
2a4b3ded 383static struct resv_map *resv_map_alloc(void)
84afd99b
AW
384{
385 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
386 if (!resv_map)
387 return NULL;
388
389 kref_init(&resv_map->refs);
390 INIT_LIST_HEAD(&resv_map->regions);
391
392 return resv_map;
393}
394
2a4b3ded 395static void resv_map_release(struct kref *ref)
84afd99b
AW
396{
397 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
398
399 /* Clear out any active regions before we release the map. */
400 region_truncate(&resv_map->regions, 0);
401 kfree(resv_map);
402}
403
404static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
405{
406 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 407 if (!(vma->vm_flags & VM_MAYSHARE))
84afd99b
AW
408 return (struct resv_map *)(get_vma_private_data(vma) &
409 ~HPAGE_RESV_MASK);
2a4b3ded 410 return NULL;
a1e78772
MG
411}
412
84afd99b 413static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
414{
415 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 416 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 417
84afd99b
AW
418 set_vma_private_data(vma, (get_vma_private_data(vma) &
419 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
420}
421
422static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
423{
04f2cbe3 424 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 425 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
426
427 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
428}
429
430static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
431{
432 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
433
434 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
435}
436
437/* Decrement the reserved pages in the hugepage pool by one */
a5516438
AK
438static void decrement_hugepage_resv_vma(struct hstate *h,
439 struct vm_area_struct *vma)
a1e78772 440{
c37f9fb1
AW
441 if (vma->vm_flags & VM_NORESERVE)
442 return;
443
f83a275d 444 if (vma->vm_flags & VM_MAYSHARE) {
a1e78772 445 /* Shared mappings always use reserves */
a5516438 446 h->resv_huge_pages--;
84afd99b 447 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a1e78772
MG
448 /*
449 * Only the process that called mmap() has reserves for
450 * private mappings.
451 */
a5516438 452 h->resv_huge_pages--;
a1e78772
MG
453 }
454}
455
04f2cbe3 456/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
457void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
458{
459 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 460 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
461 vma->vm_private_data = (void *)0;
462}
463
464/* Returns true if the VMA has associated reserve pages */
7f09ca51 465static int vma_has_reserves(struct vm_area_struct *vma)
a1e78772 466{
f83a275d 467 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51
MG
468 return 1;
469 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
470 return 1;
471 return 0;
a1e78772
MG
472}
473
0ebabb41
NH
474static void copy_gigantic_page(struct page *dst, struct page *src)
475{
476 int i;
477 struct hstate *h = page_hstate(src);
478 struct page *dst_base = dst;
479 struct page *src_base = src;
480
481 for (i = 0; i < pages_per_huge_page(h); ) {
482 cond_resched();
483 copy_highpage(dst, src);
484
485 i++;
486 dst = mem_map_next(dst, dst_base, i);
487 src = mem_map_next(src, src_base, i);
488 }
489}
490
491void copy_huge_page(struct page *dst, struct page *src)
492{
493 int i;
494 struct hstate *h = page_hstate(src);
495
496 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
497 copy_gigantic_page(dst, src);
498 return;
499 }
500
501 might_sleep();
502 for (i = 0; i < pages_per_huge_page(h); i++) {
503 cond_resched();
504 copy_highpage(dst + i, src + i);
505 }
506}
507
a5516438 508static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
509{
510 int nid = page_to_nid(page);
0edaecfa 511 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
512 h->free_huge_pages++;
513 h->free_huge_pages_node[nid]++;
1da177e4
LT
514}
515
bf50bab2
NH
516static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
517{
518 struct page *page;
519
520 if (list_empty(&h->hugepage_freelists[nid]))
521 return NULL;
522 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
0edaecfa 523 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 524 set_page_refcounted(page);
bf50bab2
NH
525 h->free_huge_pages--;
526 h->free_huge_pages_node[nid]--;
527 return page;
528}
529
a5516438
AK
530static struct page *dequeue_huge_page_vma(struct hstate *h,
531 struct vm_area_struct *vma,
04f2cbe3 532 unsigned long address, int avoid_reserve)
1da177e4 533{
b1c12cbc 534 struct page *page = NULL;
480eccf9 535 struct mempolicy *mpol;
19770b32 536 nodemask_t *nodemask;
c0ff7453 537 struct zonelist *zonelist;
dd1a239f
MG
538 struct zone *zone;
539 struct zoneref *z;
cc9a6c87 540 unsigned int cpuset_mems_cookie;
1da177e4 541
a1e78772
MG
542 /*
543 * A child process with MAP_PRIVATE mappings created by their parent
544 * have no page reserves. This check ensures that reservations are
545 * not "stolen". The child may still get SIGKILLed
546 */
7f09ca51 547 if (!vma_has_reserves(vma) &&
a5516438 548 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 549 goto err;
a1e78772 550
04f2cbe3 551 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 552 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 553 goto err;
04f2cbe3 554
9966c4bb
JK
555retry_cpuset:
556 cpuset_mems_cookie = get_mems_allowed();
557 zonelist = huge_zonelist(vma, address,
558 htlb_alloc_mask, &mpol, &nodemask);
559
19770b32
MG
560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
561 MAX_NR_ZONES - 1, nodemask) {
bf50bab2
NH
562 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
563 page = dequeue_huge_page_node(h, zone_to_nid(zone));
564 if (page) {
565 if (!avoid_reserve)
566 decrement_hugepage_resv_vma(h, vma);
567 break;
568 }
3abf7afd 569 }
1da177e4 570 }
cc9a6c87 571
52cd3b07 572 mpol_cond_put(mpol);
cc9a6c87
MG
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
574 goto retry_cpuset;
1da177e4 575 return page;
cc9a6c87
MG
576
577err:
cc9a6c87 578 return NULL;
1da177e4
LT
579}
580
a5516438 581static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
582{
583 int i;
a5516438 584
18229df5
AW
585 VM_BUG_ON(h->order >= MAX_ORDER);
586
a5516438
AK
587 h->nr_huge_pages--;
588 h->nr_huge_pages_node[page_to_nid(page)]--;
589 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
590 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
591 1 << PG_referenced | 1 << PG_dirty |
592 1 << PG_active | 1 << PG_reserved |
593 1 << PG_private | 1 << PG_writeback);
6af2acb6 594 }
9dd540e2 595 VM_BUG_ON(hugetlb_cgroup_from_page(page));
6af2acb6
AL
596 set_compound_page_dtor(page, NULL);
597 set_page_refcounted(page);
7f2e9525 598 arch_release_hugepage(page);
a5516438 599 __free_pages(page, huge_page_order(h));
6af2acb6
AL
600}
601
e5ff2159
AK
602struct hstate *size_to_hstate(unsigned long size)
603{
604 struct hstate *h;
605
606 for_each_hstate(h) {
607 if (huge_page_size(h) == size)
608 return h;
609 }
610 return NULL;
611}
612
27a85ef1
DG
613static void free_huge_page(struct page *page)
614{
a5516438
AK
615 /*
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
618 */
e5ff2159 619 struct hstate *h = page_hstate(page);
7893d1d5 620 int nid = page_to_nid(page);
90481622
DG
621 struct hugepage_subpool *spool =
622 (struct hugepage_subpool *)page_private(page);
27a85ef1 623
e5df70ab 624 set_page_private(page, 0);
23be7468 625 page->mapping = NULL;
7893d1d5 626 BUG_ON(page_count(page));
0fe6e20b 627 BUG_ON(page_mapcount(page));
27a85ef1
DG
628
629 spin_lock(&hugetlb_lock);
6d76dcf4
AK
630 hugetlb_cgroup_uncharge_page(hstate_index(h),
631 pages_per_huge_page(h), page);
aa888a74 632 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
633 /* remove the page from active list */
634 list_del(&page->lru);
a5516438
AK
635 update_and_free_page(h, page);
636 h->surplus_huge_pages--;
637 h->surplus_huge_pages_node[nid]--;
7893d1d5 638 } else {
5d3a551c 639 arch_clear_hugepage_flags(page);
a5516438 640 enqueue_huge_page(h, page);
7893d1d5 641 }
27a85ef1 642 spin_unlock(&hugetlb_lock);
90481622 643 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
644}
645
a5516438 646static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 647{
0edaecfa 648 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
649 set_compound_page_dtor(page, free_huge_page);
650 spin_lock(&hugetlb_lock);
9dd540e2 651 set_hugetlb_cgroup(page, NULL);
a5516438
AK
652 h->nr_huge_pages++;
653 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
654 spin_unlock(&hugetlb_lock);
655 put_page(page); /* free it into the hugepage allocator */
656}
657
20a0307c
WF
658static void prep_compound_gigantic_page(struct page *page, unsigned long order)
659{
660 int i;
661 int nr_pages = 1 << order;
662 struct page *p = page + 1;
663
664 /* we rely on prep_new_huge_page to set the destructor */
665 set_compound_order(page, order);
666 __SetPageHead(page);
667 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
668 __SetPageTail(p);
58a84aa9 669 set_page_count(p, 0);
20a0307c
WF
670 p->first_page = page;
671 }
672}
673
7795912c
AM
674/*
675 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
676 * transparent huge pages. See the PageTransHuge() documentation for more
677 * details.
678 */
20a0307c
WF
679int PageHuge(struct page *page)
680{
681 compound_page_dtor *dtor;
682
683 if (!PageCompound(page))
684 return 0;
685
686 page = compound_head(page);
687 dtor = get_compound_page_dtor(page);
688
689 return dtor == free_huge_page;
690}
43131e14
NH
691EXPORT_SYMBOL_GPL(PageHuge);
692
13d60f4b
ZY
693pgoff_t __basepage_index(struct page *page)
694{
695 struct page *page_head = compound_head(page);
696 pgoff_t index = page_index(page_head);
697 unsigned long compound_idx;
698
699 if (!PageHuge(page_head))
700 return page_index(page);
701
702 if (compound_order(page_head) >= MAX_ORDER)
703 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
704 else
705 compound_idx = page - page_head;
706
707 return (index << compound_order(page_head)) + compound_idx;
708}
709
a5516438 710static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 711{
1da177e4 712 struct page *page;
f96efd58 713
aa888a74
AK
714 if (h->order >= MAX_ORDER)
715 return NULL;
716
6484eb3e 717 page = alloc_pages_exact_node(nid,
551883ae
NA
718 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
719 __GFP_REPEAT|__GFP_NOWARN,
a5516438 720 huge_page_order(h));
1da177e4 721 if (page) {
7f2e9525 722 if (arch_prepare_hugepage(page)) {
caff3a2c 723 __free_pages(page, huge_page_order(h));
7b8ee84d 724 return NULL;
7f2e9525 725 }
a5516438 726 prep_new_huge_page(h, page, nid);
1da177e4 727 }
63b4613c
NA
728
729 return page;
730}
731
9a76db09 732/*
6ae11b27
LS
733 * common helper functions for hstate_next_node_to_{alloc|free}.
734 * We may have allocated or freed a huge page based on a different
735 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
736 * be outside of *nodes_allowed. Ensure that we use an allowed
737 * node for alloc or free.
9a76db09 738 */
6ae11b27 739static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 740{
6ae11b27 741 nid = next_node(nid, *nodes_allowed);
9a76db09 742 if (nid == MAX_NUMNODES)
6ae11b27 743 nid = first_node(*nodes_allowed);
9a76db09
LS
744 VM_BUG_ON(nid >= MAX_NUMNODES);
745
746 return nid;
747}
748
6ae11b27
LS
749static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
750{
751 if (!node_isset(nid, *nodes_allowed))
752 nid = next_node_allowed(nid, nodes_allowed);
753 return nid;
754}
755
5ced66c9 756/*
6ae11b27
LS
757 * returns the previously saved node ["this node"] from which to
758 * allocate a persistent huge page for the pool and advance the
759 * next node from which to allocate, handling wrap at end of node
760 * mask.
5ced66c9 761 */
6ae11b27
LS
762static int hstate_next_node_to_alloc(struct hstate *h,
763 nodemask_t *nodes_allowed)
5ced66c9 764{
6ae11b27
LS
765 int nid;
766
767 VM_BUG_ON(!nodes_allowed);
768
769 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
770 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 771
9a76db09 772 return nid;
5ced66c9
AK
773}
774
e8c5c824 775/*
6ae11b27
LS
776 * helper for free_pool_huge_page() - return the previously saved
777 * node ["this node"] from which to free a huge page. Advance the
778 * next node id whether or not we find a free huge page to free so
779 * that the next attempt to free addresses the next node.
e8c5c824 780 */
6ae11b27 781static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 782{
6ae11b27
LS
783 int nid;
784
785 VM_BUG_ON(!nodes_allowed);
786
787 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
788 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 789
9a76db09 790 return nid;
e8c5c824
LS
791}
792
b2261026
JK
793#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
794 for (nr_nodes = nodes_weight(*mask); \
795 nr_nodes > 0 && \
796 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
797 nr_nodes--)
798
799#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
800 for (nr_nodes = nodes_weight(*mask); \
801 nr_nodes > 0 && \
802 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
803 nr_nodes--)
804
805static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
806{
807 struct page *page;
808 int nr_nodes, node;
809 int ret = 0;
810
811 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
812 page = alloc_fresh_huge_page_node(h, node);
813 if (page) {
814 ret = 1;
815 break;
816 }
817 }
818
819 if (ret)
820 count_vm_event(HTLB_BUDDY_PGALLOC);
821 else
822 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
823
824 return ret;
825}
826
e8c5c824
LS
827/*
828 * Free huge page from pool from next node to free.
829 * Attempt to keep persistent huge pages more or less
830 * balanced over allowed nodes.
831 * Called with hugetlb_lock locked.
832 */
6ae11b27
LS
833static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
834 bool acct_surplus)
e8c5c824 835{
b2261026 836 int nr_nodes, node;
e8c5c824
LS
837 int ret = 0;
838
b2261026 839 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
840 /*
841 * If we're returning unused surplus pages, only examine
842 * nodes with surplus pages.
843 */
b2261026
JK
844 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
845 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 846 struct page *page =
b2261026 847 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
848 struct page, lru);
849 list_del(&page->lru);
850 h->free_huge_pages--;
b2261026 851 h->free_huge_pages_node[node]--;
685f3457
LS
852 if (acct_surplus) {
853 h->surplus_huge_pages--;
b2261026 854 h->surplus_huge_pages_node[node]--;
685f3457 855 }
e8c5c824
LS
856 update_and_free_page(h, page);
857 ret = 1;
9a76db09 858 break;
e8c5c824 859 }
b2261026 860 }
e8c5c824
LS
861
862 return ret;
863}
864
bf50bab2 865static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
866{
867 struct page *page;
bf50bab2 868 unsigned int r_nid;
7893d1d5 869
aa888a74
AK
870 if (h->order >= MAX_ORDER)
871 return NULL;
872
d1c3fb1f
NA
873 /*
874 * Assume we will successfully allocate the surplus page to
875 * prevent racing processes from causing the surplus to exceed
876 * overcommit
877 *
878 * This however introduces a different race, where a process B
879 * tries to grow the static hugepage pool while alloc_pages() is
880 * called by process A. B will only examine the per-node
881 * counters in determining if surplus huge pages can be
882 * converted to normal huge pages in adjust_pool_surplus(). A
883 * won't be able to increment the per-node counter, until the
884 * lock is dropped by B, but B doesn't drop hugetlb_lock until
885 * no more huge pages can be converted from surplus to normal
886 * state (and doesn't try to convert again). Thus, we have a
887 * case where a surplus huge page exists, the pool is grown, and
888 * the surplus huge page still exists after, even though it
889 * should just have been converted to a normal huge page. This
890 * does not leak memory, though, as the hugepage will be freed
891 * once it is out of use. It also does not allow the counters to
892 * go out of whack in adjust_pool_surplus() as we don't modify
893 * the node values until we've gotten the hugepage and only the
894 * per-node value is checked there.
895 */
896 spin_lock(&hugetlb_lock);
a5516438 897 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
898 spin_unlock(&hugetlb_lock);
899 return NULL;
900 } else {
a5516438
AK
901 h->nr_huge_pages++;
902 h->surplus_huge_pages++;
d1c3fb1f
NA
903 }
904 spin_unlock(&hugetlb_lock);
905
bf50bab2
NH
906 if (nid == NUMA_NO_NODE)
907 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
908 __GFP_REPEAT|__GFP_NOWARN,
909 huge_page_order(h));
910 else
911 page = alloc_pages_exact_node(nid,
912 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
913 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 914
caff3a2c
GS
915 if (page && arch_prepare_hugepage(page)) {
916 __free_pages(page, huge_page_order(h));
ea5768c7 917 page = NULL;
caff3a2c
GS
918 }
919
d1c3fb1f 920 spin_lock(&hugetlb_lock);
7893d1d5 921 if (page) {
0edaecfa 922 INIT_LIST_HEAD(&page->lru);
bf50bab2 923 r_nid = page_to_nid(page);
7893d1d5 924 set_compound_page_dtor(page, free_huge_page);
9dd540e2 925 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
926 /*
927 * We incremented the global counters already
928 */
bf50bab2
NH
929 h->nr_huge_pages_node[r_nid]++;
930 h->surplus_huge_pages_node[r_nid]++;
3b116300 931 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 932 } else {
a5516438
AK
933 h->nr_huge_pages--;
934 h->surplus_huge_pages--;
3b116300 935 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 936 }
d1c3fb1f 937 spin_unlock(&hugetlb_lock);
7893d1d5
AL
938
939 return page;
940}
941
bf50bab2
NH
942/*
943 * This allocation function is useful in the context where vma is irrelevant.
944 * E.g. soft-offlining uses this function because it only cares physical
945 * address of error page.
946 */
947struct page *alloc_huge_page_node(struct hstate *h, int nid)
948{
949 struct page *page;
950
951 spin_lock(&hugetlb_lock);
952 page = dequeue_huge_page_node(h, nid);
953 spin_unlock(&hugetlb_lock);
954
94ae8ba7 955 if (!page)
bf50bab2
NH
956 page = alloc_buddy_huge_page(h, nid);
957
958 return page;
959}
960
e4e574b7 961/*
25985edc 962 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
963 * of size 'delta'.
964 */
a5516438 965static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
966{
967 struct list_head surplus_list;
968 struct page *page, *tmp;
969 int ret, i;
970 int needed, allocated;
28073b02 971 bool alloc_ok = true;
e4e574b7 972
a5516438 973 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 974 if (needed <= 0) {
a5516438 975 h->resv_huge_pages += delta;
e4e574b7 976 return 0;
ac09b3a1 977 }
e4e574b7
AL
978
979 allocated = 0;
980 INIT_LIST_HEAD(&surplus_list);
981
982 ret = -ENOMEM;
983retry:
984 spin_unlock(&hugetlb_lock);
985 for (i = 0; i < needed; i++) {
bf50bab2 986 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
987 if (!page) {
988 alloc_ok = false;
989 break;
990 }
e4e574b7
AL
991 list_add(&page->lru, &surplus_list);
992 }
28073b02 993 allocated += i;
e4e574b7
AL
994
995 /*
996 * After retaking hugetlb_lock, we need to recalculate 'needed'
997 * because either resv_huge_pages or free_huge_pages may have changed.
998 */
999 spin_lock(&hugetlb_lock);
a5516438
AK
1000 needed = (h->resv_huge_pages + delta) -
1001 (h->free_huge_pages + allocated);
28073b02
HD
1002 if (needed > 0) {
1003 if (alloc_ok)
1004 goto retry;
1005 /*
1006 * We were not able to allocate enough pages to
1007 * satisfy the entire reservation so we free what
1008 * we've allocated so far.
1009 */
1010 goto free;
1011 }
e4e574b7
AL
1012 /*
1013 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1014 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1015 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1016 * allocator. Commit the entire reservation here to prevent another
1017 * process from stealing the pages as they are added to the pool but
1018 * before they are reserved.
e4e574b7
AL
1019 */
1020 needed += allocated;
a5516438 1021 h->resv_huge_pages += delta;
e4e574b7 1022 ret = 0;
a9869b83 1023
19fc3f0a 1024 /* Free the needed pages to the hugetlb pool */
e4e574b7 1025 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1026 if ((--needed) < 0)
1027 break;
a9869b83
NH
1028 /*
1029 * This page is now managed by the hugetlb allocator and has
1030 * no users -- drop the buddy allocator's reference.
1031 */
1032 put_page_testzero(page);
1033 VM_BUG_ON(page_count(page));
a5516438 1034 enqueue_huge_page(h, page);
19fc3f0a 1035 }
28073b02 1036free:
b0365c8d 1037 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1038
1039 /* Free unnecessary surplus pages to the buddy allocator */
1040 if (!list_empty(&surplus_list)) {
19fc3f0a 1041 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
a9869b83 1042 put_page(page);
af767cbd 1043 }
e4e574b7 1044 }
a9869b83 1045 spin_lock(&hugetlb_lock);
e4e574b7
AL
1046
1047 return ret;
1048}
1049
1050/*
1051 * When releasing a hugetlb pool reservation, any surplus pages that were
1052 * allocated to satisfy the reservation must be explicitly freed if they were
1053 * never used.
685f3457 1054 * Called with hugetlb_lock held.
e4e574b7 1055 */
a5516438
AK
1056static void return_unused_surplus_pages(struct hstate *h,
1057 unsigned long unused_resv_pages)
e4e574b7 1058{
e4e574b7
AL
1059 unsigned long nr_pages;
1060
ac09b3a1 1061 /* Uncommit the reservation */
a5516438 1062 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1063
aa888a74
AK
1064 /* Cannot return gigantic pages currently */
1065 if (h->order >= MAX_ORDER)
1066 return;
1067
a5516438 1068 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1069
685f3457
LS
1070 /*
1071 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1072 * evenly across all nodes with memory. Iterate across these nodes
1073 * until we can no longer free unreserved surplus pages. This occurs
1074 * when the nodes with surplus pages have no free pages.
1075 * free_pool_huge_page() will balance the the freed pages across the
1076 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1077 */
1078 while (nr_pages--) {
8cebfcd0 1079 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1080 break;
e4e574b7
AL
1081 }
1082}
1083
c37f9fb1
AW
1084/*
1085 * Determine if the huge page at addr within the vma has an associated
1086 * reservation. Where it does not we will need to logically increase
90481622
DG
1087 * reservation and actually increase subpool usage before an allocation
1088 * can occur. Where any new reservation would be required the
1089 * reservation change is prepared, but not committed. Once the page
1090 * has been allocated from the subpool and instantiated the change should
1091 * be committed via vma_commit_reservation. No action is required on
1092 * failure.
c37f9fb1 1093 */
e2f17d94 1094static long vma_needs_reservation(struct hstate *h,
a5516438 1095 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1096{
1097 struct address_space *mapping = vma->vm_file->f_mapping;
1098 struct inode *inode = mapping->host;
1099
f83a275d 1100 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1101 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1
AW
1102 return region_chg(&inode->i_mapping->private_list,
1103 idx, idx + 1);
1104
84afd99b
AW
1105 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106 return 1;
c37f9fb1 1107
84afd99b 1108 } else {
e2f17d94 1109 long err;
a5516438 1110 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1111 struct resv_map *reservations = vma_resv_map(vma);
1112
1113 err = region_chg(&reservations->regions, idx, idx + 1);
1114 if (err < 0)
1115 return err;
1116 return 0;
1117 }
c37f9fb1 1118}
a5516438
AK
1119static void vma_commit_reservation(struct hstate *h,
1120 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1
AW
1121{
1122 struct address_space *mapping = vma->vm_file->f_mapping;
1123 struct inode *inode = mapping->host;
1124
f83a275d 1125 if (vma->vm_flags & VM_MAYSHARE) {
a5516438 1126 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
c37f9fb1 1127 region_add(&inode->i_mapping->private_list, idx, idx + 1);
84afd99b
AW
1128
1129 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
a5516438 1130 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
84afd99b
AW
1131 struct resv_map *reservations = vma_resv_map(vma);
1132
1133 /* Mark this page used in the map. */
1134 region_add(&reservations->regions, idx, idx + 1);
c37f9fb1
AW
1135 }
1136}
1137
a1e78772 1138static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1139 unsigned long addr, int avoid_reserve)
1da177e4 1140{
90481622 1141 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1142 struct hstate *h = hstate_vma(vma);
348ea204 1143 struct page *page;
e2f17d94 1144 long chg;
6d76dcf4
AK
1145 int ret, idx;
1146 struct hugetlb_cgroup *h_cg;
a1e78772 1147
6d76dcf4 1148 idx = hstate_index(h);
a1e78772 1149 /*
90481622
DG
1150 * Processes that did not create the mapping will have no
1151 * reserves and will not have accounted against subpool
1152 * limit. Check that the subpool limit can be made before
1153 * satisfying the allocation MAP_NORESERVE mappings may also
1154 * need pages and subpool limit allocated allocated if no reserve
1155 * mapping overlaps.
a1e78772 1156 */
a5516438 1157 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1158 if (chg < 0)
76dcee75 1159 return ERR_PTR(-ENOMEM);
c37f9fb1 1160 if (chg)
90481622 1161 if (hugepage_subpool_get_pages(spool, chg))
76dcee75 1162 return ERR_PTR(-ENOSPC);
1da177e4 1163
6d76dcf4
AK
1164 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1165 if (ret) {
1166 hugepage_subpool_put_pages(spool, chg);
1167 return ERR_PTR(-ENOSPC);
1168 }
1da177e4 1169 spin_lock(&hugetlb_lock);
a5516438 1170 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
81a6fcae 1171 if (!page) {
94ae8ba7 1172 spin_unlock(&hugetlb_lock);
bf50bab2 1173 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1174 if (!page) {
6d76dcf4
AK
1175 hugetlb_cgroup_uncharge_cgroup(idx,
1176 pages_per_huge_page(h),
1177 h_cg);
90481622 1178 hugepage_subpool_put_pages(spool, chg);
76dcee75 1179 return ERR_PTR(-ENOSPC);
68842c9b 1180 }
79dbb236
AK
1181 spin_lock(&hugetlb_lock);
1182 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1183 /* Fall through */
68842c9b 1184 }
81a6fcae
JK
1185 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1186 spin_unlock(&hugetlb_lock);
348ea204 1187
90481622 1188 set_page_private(page, (unsigned long)spool);
90d8b7e6 1189
a5516438 1190 vma_commit_reservation(h, vma, addr);
90d8b7e6 1191 return page;
b45b5bd6
DG
1192}
1193
91f47662 1194int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1195{
1196 struct huge_bootmem_page *m;
b2261026 1197 int nr_nodes, node;
aa888a74 1198
b2261026 1199 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1200 void *addr;
1201
b2261026 1202 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
aa888a74
AK
1203 huge_page_size(h), huge_page_size(h), 0);
1204
1205 if (addr) {
1206 /*
1207 * Use the beginning of the huge page to store the
1208 * huge_bootmem_page struct (until gather_bootmem
1209 * puts them into the mem_map).
1210 */
1211 m = addr;
91f47662 1212 goto found;
aa888a74 1213 }
aa888a74
AK
1214 }
1215 return 0;
1216
1217found:
1218 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1219 /* Put them into a private list first because mem_map is not up yet */
1220 list_add(&m->list, &huge_boot_pages);
1221 m->hstate = h;
1222 return 1;
1223}
1224
18229df5
AW
1225static void prep_compound_huge_page(struct page *page, int order)
1226{
1227 if (unlikely(order > (MAX_ORDER - 1)))
1228 prep_compound_gigantic_page(page, order);
1229 else
1230 prep_compound_page(page, order);
1231}
1232
aa888a74
AK
1233/* Put bootmem huge pages into the standard lists after mem_map is up */
1234static void __init gather_bootmem_prealloc(void)
1235{
1236 struct huge_bootmem_page *m;
1237
1238 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1239 struct hstate *h = m->hstate;
ee8f248d
BB
1240 struct page *page;
1241
1242#ifdef CONFIG_HIGHMEM
1243 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1244 free_bootmem_late((unsigned long)m,
1245 sizeof(struct huge_bootmem_page));
1246#else
1247 page = virt_to_page(m);
1248#endif
aa888a74
AK
1249 __ClearPageReserved(page);
1250 WARN_ON(page_count(page) != 1);
18229df5 1251 prep_compound_huge_page(page, h->order);
aa888a74 1252 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1253 /*
1254 * If we had gigantic hugepages allocated at boot time, we need
1255 * to restore the 'stolen' pages to totalram_pages in order to
1256 * fix confusing memory reports from free(1) and another
1257 * side-effects, like CommitLimit going negative.
1258 */
1259 if (h->order > (MAX_ORDER - 1))
3dcc0571 1260 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1261 }
1262}
1263
8faa8b07 1264static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1265{
1266 unsigned long i;
a5516438 1267
e5ff2159 1268 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1269 if (h->order >= MAX_ORDER) {
1270 if (!alloc_bootmem_huge_page(h))
1271 break;
9b5e5d0f 1272 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1273 &node_states[N_MEMORY]))
1da177e4 1274 break;
1da177e4 1275 }
8faa8b07 1276 h->max_huge_pages = i;
e5ff2159
AK
1277}
1278
1279static void __init hugetlb_init_hstates(void)
1280{
1281 struct hstate *h;
1282
1283 for_each_hstate(h) {
8faa8b07
AK
1284 /* oversize hugepages were init'ed in early boot */
1285 if (h->order < MAX_ORDER)
1286 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1287 }
1288}
1289
4abd32db
AK
1290static char * __init memfmt(char *buf, unsigned long n)
1291{
1292 if (n >= (1UL << 30))
1293 sprintf(buf, "%lu GB", n >> 30);
1294 else if (n >= (1UL << 20))
1295 sprintf(buf, "%lu MB", n >> 20);
1296 else
1297 sprintf(buf, "%lu KB", n >> 10);
1298 return buf;
1299}
1300
e5ff2159
AK
1301static void __init report_hugepages(void)
1302{
1303 struct hstate *h;
1304
1305 for_each_hstate(h) {
4abd32db 1306 char buf[32];
ffb22af5 1307 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1308 memfmt(buf, huge_page_size(h)),
1309 h->free_huge_pages);
e5ff2159
AK
1310 }
1311}
1312
1da177e4 1313#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1314static void try_to_free_low(struct hstate *h, unsigned long count,
1315 nodemask_t *nodes_allowed)
1da177e4 1316{
4415cc8d
CL
1317 int i;
1318
aa888a74
AK
1319 if (h->order >= MAX_ORDER)
1320 return;
1321
6ae11b27 1322 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1323 struct page *page, *next;
a5516438
AK
1324 struct list_head *freel = &h->hugepage_freelists[i];
1325 list_for_each_entry_safe(page, next, freel, lru) {
1326 if (count >= h->nr_huge_pages)
6b0c880d 1327 return;
1da177e4
LT
1328 if (PageHighMem(page))
1329 continue;
1330 list_del(&page->lru);
e5ff2159 1331 update_and_free_page(h, page);
a5516438
AK
1332 h->free_huge_pages--;
1333 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1334 }
1335 }
1336}
1337#else
6ae11b27
LS
1338static inline void try_to_free_low(struct hstate *h, unsigned long count,
1339 nodemask_t *nodes_allowed)
1da177e4
LT
1340{
1341}
1342#endif
1343
20a0307c
WF
1344/*
1345 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1346 * balanced by operating on them in a round-robin fashion.
1347 * Returns 1 if an adjustment was made.
1348 */
6ae11b27
LS
1349static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1350 int delta)
20a0307c 1351{
b2261026 1352 int nr_nodes, node;
20a0307c
WF
1353
1354 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1355
b2261026
JK
1356 if (delta < 0) {
1357 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358 if (h->surplus_huge_pages_node[node])
1359 goto found;
e8c5c824 1360 }
b2261026
JK
1361 } else {
1362 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1363 if (h->surplus_huge_pages_node[node] <
1364 h->nr_huge_pages_node[node])
1365 goto found;
e8c5c824 1366 }
b2261026
JK
1367 }
1368 return 0;
20a0307c 1369
b2261026
JK
1370found:
1371 h->surplus_huge_pages += delta;
1372 h->surplus_huge_pages_node[node] += delta;
1373 return 1;
20a0307c
WF
1374}
1375
a5516438 1376#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1377static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1378 nodemask_t *nodes_allowed)
1da177e4 1379{
7893d1d5 1380 unsigned long min_count, ret;
1da177e4 1381
aa888a74
AK
1382 if (h->order >= MAX_ORDER)
1383 return h->max_huge_pages;
1384
7893d1d5
AL
1385 /*
1386 * Increase the pool size
1387 * First take pages out of surplus state. Then make up the
1388 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1389 *
1390 * We might race with alloc_buddy_huge_page() here and be unable
1391 * to convert a surplus huge page to a normal huge page. That is
1392 * not critical, though, it just means the overall size of the
1393 * pool might be one hugepage larger than it needs to be, but
1394 * within all the constraints specified by the sysctls.
7893d1d5 1395 */
1da177e4 1396 spin_lock(&hugetlb_lock);
a5516438 1397 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1398 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1399 break;
1400 }
1401
a5516438 1402 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1403 /*
1404 * If this allocation races such that we no longer need the
1405 * page, free_huge_page will handle it by freeing the page
1406 * and reducing the surplus.
1407 */
1408 spin_unlock(&hugetlb_lock);
6ae11b27 1409 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1410 spin_lock(&hugetlb_lock);
1411 if (!ret)
1412 goto out;
1413
536240f2
MG
1414 /* Bail for signals. Probably ctrl-c from user */
1415 if (signal_pending(current))
1416 goto out;
7893d1d5 1417 }
7893d1d5
AL
1418
1419 /*
1420 * Decrease the pool size
1421 * First return free pages to the buddy allocator (being careful
1422 * to keep enough around to satisfy reservations). Then place
1423 * pages into surplus state as needed so the pool will shrink
1424 * to the desired size as pages become free.
d1c3fb1f
NA
1425 *
1426 * By placing pages into the surplus state independent of the
1427 * overcommit value, we are allowing the surplus pool size to
1428 * exceed overcommit. There are few sane options here. Since
1429 * alloc_buddy_huge_page() is checking the global counter,
1430 * though, we'll note that we're not allowed to exceed surplus
1431 * and won't grow the pool anywhere else. Not until one of the
1432 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1433 */
a5516438 1434 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1435 min_count = max(count, min_count);
6ae11b27 1436 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1437 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1438 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1439 break;
1da177e4 1440 }
a5516438 1441 while (count < persistent_huge_pages(h)) {
6ae11b27 1442 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1443 break;
1444 }
1445out:
a5516438 1446 ret = persistent_huge_pages(h);
1da177e4 1447 spin_unlock(&hugetlb_lock);
7893d1d5 1448 return ret;
1da177e4
LT
1449}
1450
a3437870
NA
1451#define HSTATE_ATTR_RO(_name) \
1452 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1453
1454#define HSTATE_ATTR(_name) \
1455 static struct kobj_attribute _name##_attr = \
1456 __ATTR(_name, 0644, _name##_show, _name##_store)
1457
1458static struct kobject *hugepages_kobj;
1459static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1460
9a305230
LS
1461static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1462
1463static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1464{
1465 int i;
9a305230 1466
a3437870 1467 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1468 if (hstate_kobjs[i] == kobj) {
1469 if (nidp)
1470 *nidp = NUMA_NO_NODE;
a3437870 1471 return &hstates[i];
9a305230
LS
1472 }
1473
1474 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1475}
1476
06808b08 1477static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1478 struct kobj_attribute *attr, char *buf)
1479{
9a305230
LS
1480 struct hstate *h;
1481 unsigned long nr_huge_pages;
1482 int nid;
1483
1484 h = kobj_to_hstate(kobj, &nid);
1485 if (nid == NUMA_NO_NODE)
1486 nr_huge_pages = h->nr_huge_pages;
1487 else
1488 nr_huge_pages = h->nr_huge_pages_node[nid];
1489
1490 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1491}
adbe8726 1492
06808b08
LS
1493static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1494 struct kobject *kobj, struct kobj_attribute *attr,
1495 const char *buf, size_t len)
a3437870
NA
1496{
1497 int err;
9a305230 1498 int nid;
06808b08 1499 unsigned long count;
9a305230 1500 struct hstate *h;
bad44b5b 1501 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1502
3dbb95f7 1503 err = kstrtoul(buf, 10, &count);
73ae31e5 1504 if (err)
adbe8726 1505 goto out;
a3437870 1506
9a305230 1507 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1508 if (h->order >= MAX_ORDER) {
1509 err = -EINVAL;
1510 goto out;
1511 }
1512
9a305230
LS
1513 if (nid == NUMA_NO_NODE) {
1514 /*
1515 * global hstate attribute
1516 */
1517 if (!(obey_mempolicy &&
1518 init_nodemask_of_mempolicy(nodes_allowed))) {
1519 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1520 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1521 }
1522 } else if (nodes_allowed) {
1523 /*
1524 * per node hstate attribute: adjust count to global,
1525 * but restrict alloc/free to the specified node.
1526 */
1527 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1528 init_nodemask_of_node(nodes_allowed, nid);
1529 } else
8cebfcd0 1530 nodes_allowed = &node_states[N_MEMORY];
9a305230 1531
06808b08 1532 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1533
8cebfcd0 1534 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1535 NODEMASK_FREE(nodes_allowed);
1536
1537 return len;
adbe8726
EM
1538out:
1539 NODEMASK_FREE(nodes_allowed);
1540 return err;
06808b08
LS
1541}
1542
1543static ssize_t nr_hugepages_show(struct kobject *kobj,
1544 struct kobj_attribute *attr, char *buf)
1545{
1546 return nr_hugepages_show_common(kobj, attr, buf);
1547}
1548
1549static ssize_t nr_hugepages_store(struct kobject *kobj,
1550 struct kobj_attribute *attr, const char *buf, size_t len)
1551{
1552 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1553}
1554HSTATE_ATTR(nr_hugepages);
1555
06808b08
LS
1556#ifdef CONFIG_NUMA
1557
1558/*
1559 * hstate attribute for optionally mempolicy-based constraint on persistent
1560 * huge page alloc/free.
1561 */
1562static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1563 struct kobj_attribute *attr, char *buf)
1564{
1565 return nr_hugepages_show_common(kobj, attr, buf);
1566}
1567
1568static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1569 struct kobj_attribute *attr, const char *buf, size_t len)
1570{
1571 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1572}
1573HSTATE_ATTR(nr_hugepages_mempolicy);
1574#endif
1575
1576
a3437870
NA
1577static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1578 struct kobj_attribute *attr, char *buf)
1579{
9a305230 1580 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1581 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1582}
adbe8726 1583
a3437870
NA
1584static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1585 struct kobj_attribute *attr, const char *buf, size_t count)
1586{
1587 int err;
1588 unsigned long input;
9a305230 1589 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1590
adbe8726
EM
1591 if (h->order >= MAX_ORDER)
1592 return -EINVAL;
1593
3dbb95f7 1594 err = kstrtoul(buf, 10, &input);
a3437870 1595 if (err)
73ae31e5 1596 return err;
a3437870
NA
1597
1598 spin_lock(&hugetlb_lock);
1599 h->nr_overcommit_huge_pages = input;
1600 spin_unlock(&hugetlb_lock);
1601
1602 return count;
1603}
1604HSTATE_ATTR(nr_overcommit_hugepages);
1605
1606static ssize_t free_hugepages_show(struct kobject *kobj,
1607 struct kobj_attribute *attr, char *buf)
1608{
9a305230
LS
1609 struct hstate *h;
1610 unsigned long free_huge_pages;
1611 int nid;
1612
1613 h = kobj_to_hstate(kobj, &nid);
1614 if (nid == NUMA_NO_NODE)
1615 free_huge_pages = h->free_huge_pages;
1616 else
1617 free_huge_pages = h->free_huge_pages_node[nid];
1618
1619 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1620}
1621HSTATE_ATTR_RO(free_hugepages);
1622
1623static ssize_t resv_hugepages_show(struct kobject *kobj,
1624 struct kobj_attribute *attr, char *buf)
1625{
9a305230 1626 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1627 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1628}
1629HSTATE_ATTR_RO(resv_hugepages);
1630
1631static ssize_t surplus_hugepages_show(struct kobject *kobj,
1632 struct kobj_attribute *attr, char *buf)
1633{
9a305230
LS
1634 struct hstate *h;
1635 unsigned long surplus_huge_pages;
1636 int nid;
1637
1638 h = kobj_to_hstate(kobj, &nid);
1639 if (nid == NUMA_NO_NODE)
1640 surplus_huge_pages = h->surplus_huge_pages;
1641 else
1642 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1643
1644 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1645}
1646HSTATE_ATTR_RO(surplus_hugepages);
1647
1648static struct attribute *hstate_attrs[] = {
1649 &nr_hugepages_attr.attr,
1650 &nr_overcommit_hugepages_attr.attr,
1651 &free_hugepages_attr.attr,
1652 &resv_hugepages_attr.attr,
1653 &surplus_hugepages_attr.attr,
06808b08
LS
1654#ifdef CONFIG_NUMA
1655 &nr_hugepages_mempolicy_attr.attr,
1656#endif
a3437870
NA
1657 NULL,
1658};
1659
1660static struct attribute_group hstate_attr_group = {
1661 .attrs = hstate_attrs,
1662};
1663
094e9539
JM
1664static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1665 struct kobject **hstate_kobjs,
1666 struct attribute_group *hstate_attr_group)
a3437870
NA
1667{
1668 int retval;
972dc4de 1669 int hi = hstate_index(h);
a3437870 1670
9a305230
LS
1671 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1672 if (!hstate_kobjs[hi])
a3437870
NA
1673 return -ENOMEM;
1674
9a305230 1675 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1676 if (retval)
9a305230 1677 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1678
1679 return retval;
1680}
1681
1682static void __init hugetlb_sysfs_init(void)
1683{
1684 struct hstate *h;
1685 int err;
1686
1687 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1688 if (!hugepages_kobj)
1689 return;
1690
1691 for_each_hstate(h) {
9a305230
LS
1692 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1693 hstate_kobjs, &hstate_attr_group);
a3437870 1694 if (err)
ffb22af5 1695 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1696 }
1697}
1698
9a305230
LS
1699#ifdef CONFIG_NUMA
1700
1701/*
1702 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1703 * with node devices in node_devices[] using a parallel array. The array
1704 * index of a node device or _hstate == node id.
1705 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1706 * the base kernel, on the hugetlb module.
1707 */
1708struct node_hstate {
1709 struct kobject *hugepages_kobj;
1710 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1711};
1712struct node_hstate node_hstates[MAX_NUMNODES];
1713
1714/*
10fbcf4c 1715 * A subset of global hstate attributes for node devices
9a305230
LS
1716 */
1717static struct attribute *per_node_hstate_attrs[] = {
1718 &nr_hugepages_attr.attr,
1719 &free_hugepages_attr.attr,
1720 &surplus_hugepages_attr.attr,
1721 NULL,
1722};
1723
1724static struct attribute_group per_node_hstate_attr_group = {
1725 .attrs = per_node_hstate_attrs,
1726};
1727
1728/*
10fbcf4c 1729 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1730 * Returns node id via non-NULL nidp.
1731 */
1732static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1733{
1734 int nid;
1735
1736 for (nid = 0; nid < nr_node_ids; nid++) {
1737 struct node_hstate *nhs = &node_hstates[nid];
1738 int i;
1739 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1740 if (nhs->hstate_kobjs[i] == kobj) {
1741 if (nidp)
1742 *nidp = nid;
1743 return &hstates[i];
1744 }
1745 }
1746
1747 BUG();
1748 return NULL;
1749}
1750
1751/*
10fbcf4c 1752 * Unregister hstate attributes from a single node device.
9a305230
LS
1753 * No-op if no hstate attributes attached.
1754 */
3cd8b44f 1755static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1756{
1757 struct hstate *h;
10fbcf4c 1758 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1759
1760 if (!nhs->hugepages_kobj)
9b5e5d0f 1761 return; /* no hstate attributes */
9a305230 1762
972dc4de
AK
1763 for_each_hstate(h) {
1764 int idx = hstate_index(h);
1765 if (nhs->hstate_kobjs[idx]) {
1766 kobject_put(nhs->hstate_kobjs[idx]);
1767 nhs->hstate_kobjs[idx] = NULL;
9a305230 1768 }
972dc4de 1769 }
9a305230
LS
1770
1771 kobject_put(nhs->hugepages_kobj);
1772 nhs->hugepages_kobj = NULL;
1773}
1774
1775/*
10fbcf4c 1776 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1777 * that have them.
1778 */
1779static void hugetlb_unregister_all_nodes(void)
1780{
1781 int nid;
1782
1783 /*
10fbcf4c 1784 * disable node device registrations.
9a305230
LS
1785 */
1786 register_hugetlbfs_with_node(NULL, NULL);
1787
1788 /*
1789 * remove hstate attributes from any nodes that have them.
1790 */
1791 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1792 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1793}
1794
1795/*
10fbcf4c 1796 * Register hstate attributes for a single node device.
9a305230
LS
1797 * No-op if attributes already registered.
1798 */
3cd8b44f 1799static void hugetlb_register_node(struct node *node)
9a305230
LS
1800{
1801 struct hstate *h;
10fbcf4c 1802 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1803 int err;
1804
1805 if (nhs->hugepages_kobj)
1806 return; /* already allocated */
1807
1808 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1809 &node->dev.kobj);
9a305230
LS
1810 if (!nhs->hugepages_kobj)
1811 return;
1812
1813 for_each_hstate(h) {
1814 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1815 nhs->hstate_kobjs,
1816 &per_node_hstate_attr_group);
1817 if (err) {
ffb22af5
AM
1818 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1819 h->name, node->dev.id);
9a305230
LS
1820 hugetlb_unregister_node(node);
1821 break;
1822 }
1823 }
1824}
1825
1826/*
9b5e5d0f 1827 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1828 * devices of nodes that have memory. All on-line nodes should have
1829 * registered their associated device by this time.
9a305230
LS
1830 */
1831static void hugetlb_register_all_nodes(void)
1832{
1833 int nid;
1834
8cebfcd0 1835 for_each_node_state(nid, N_MEMORY) {
8732794b 1836 struct node *node = node_devices[nid];
10fbcf4c 1837 if (node->dev.id == nid)
9a305230
LS
1838 hugetlb_register_node(node);
1839 }
1840
1841 /*
10fbcf4c 1842 * Let the node device driver know we're here so it can
9a305230
LS
1843 * [un]register hstate attributes on node hotplug.
1844 */
1845 register_hugetlbfs_with_node(hugetlb_register_node,
1846 hugetlb_unregister_node);
1847}
1848#else /* !CONFIG_NUMA */
1849
1850static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1851{
1852 BUG();
1853 if (nidp)
1854 *nidp = -1;
1855 return NULL;
1856}
1857
1858static void hugetlb_unregister_all_nodes(void) { }
1859
1860static void hugetlb_register_all_nodes(void) { }
1861
1862#endif
1863
a3437870
NA
1864static void __exit hugetlb_exit(void)
1865{
1866 struct hstate *h;
1867
9a305230
LS
1868 hugetlb_unregister_all_nodes();
1869
a3437870 1870 for_each_hstate(h) {
972dc4de 1871 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1872 }
1873
1874 kobject_put(hugepages_kobj);
1875}
1876module_exit(hugetlb_exit);
1877
1878static int __init hugetlb_init(void)
1879{
0ef89d25
BH
1880 /* Some platform decide whether they support huge pages at boot
1881 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1882 * there is no such support
1883 */
1884 if (HPAGE_SHIFT == 0)
1885 return 0;
a3437870 1886
e11bfbfc
NP
1887 if (!size_to_hstate(default_hstate_size)) {
1888 default_hstate_size = HPAGE_SIZE;
1889 if (!size_to_hstate(default_hstate_size))
1890 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1891 }
972dc4de 1892 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1893 if (default_hstate_max_huge_pages)
1894 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1895
1896 hugetlb_init_hstates();
aa888a74 1897 gather_bootmem_prealloc();
a3437870
NA
1898 report_hugepages();
1899
1900 hugetlb_sysfs_init();
9a305230 1901 hugetlb_register_all_nodes();
7179e7bf 1902 hugetlb_cgroup_file_init();
9a305230 1903
a3437870
NA
1904 return 0;
1905}
1906module_init(hugetlb_init);
1907
1908/* Should be called on processing a hugepagesz=... option */
1909void __init hugetlb_add_hstate(unsigned order)
1910{
1911 struct hstate *h;
8faa8b07
AK
1912 unsigned long i;
1913
a3437870 1914 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 1915 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
1916 return;
1917 }
47d38344 1918 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 1919 BUG_ON(order == 0);
47d38344 1920 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
1921 h->order = order;
1922 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
1923 h->nr_huge_pages = 0;
1924 h->free_huge_pages = 0;
1925 for (i = 0; i < MAX_NUMNODES; ++i)
1926 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 1927 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
1928 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
1929 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
1930 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1931 huge_page_size(h)/1024);
8faa8b07 1932
a3437870
NA
1933 parsed_hstate = h;
1934}
1935
e11bfbfc 1936static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
1937{
1938 unsigned long *mhp;
8faa8b07 1939 static unsigned long *last_mhp;
a3437870
NA
1940
1941 /*
47d38344 1942 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
1943 * so this hugepages= parameter goes to the "default hstate".
1944 */
47d38344 1945 if (!hugetlb_max_hstate)
a3437870
NA
1946 mhp = &default_hstate_max_huge_pages;
1947 else
1948 mhp = &parsed_hstate->max_huge_pages;
1949
8faa8b07 1950 if (mhp == last_mhp) {
ffb22af5
AM
1951 pr_warning("hugepages= specified twice without "
1952 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
1953 return 1;
1954 }
1955
a3437870
NA
1956 if (sscanf(s, "%lu", mhp) <= 0)
1957 *mhp = 0;
1958
8faa8b07
AK
1959 /*
1960 * Global state is always initialized later in hugetlb_init.
1961 * But we need to allocate >= MAX_ORDER hstates here early to still
1962 * use the bootmem allocator.
1963 */
47d38344 1964 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
1965 hugetlb_hstate_alloc_pages(parsed_hstate);
1966
1967 last_mhp = mhp;
1968
a3437870
NA
1969 return 1;
1970}
e11bfbfc
NP
1971__setup("hugepages=", hugetlb_nrpages_setup);
1972
1973static int __init hugetlb_default_setup(char *s)
1974{
1975 default_hstate_size = memparse(s, &s);
1976 return 1;
1977}
1978__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 1979
8a213460
NA
1980static unsigned int cpuset_mems_nr(unsigned int *array)
1981{
1982 int node;
1983 unsigned int nr = 0;
1984
1985 for_each_node_mask(node, cpuset_current_mems_allowed)
1986 nr += array[node];
1987
1988 return nr;
1989}
1990
1991#ifdef CONFIG_SYSCTL
06808b08
LS
1992static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1993 struct ctl_table *table, int write,
1994 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1995{
e5ff2159
AK
1996 struct hstate *h = &default_hstate;
1997 unsigned long tmp;
08d4a246 1998 int ret;
e5ff2159 1999
c033a93c 2000 tmp = h->max_huge_pages;
e5ff2159 2001
adbe8726
EM
2002 if (write && h->order >= MAX_ORDER)
2003 return -EINVAL;
2004
e5ff2159
AK
2005 table->data = &tmp;
2006 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2007 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2008 if (ret)
2009 goto out;
e5ff2159 2010
06808b08 2011 if (write) {
bad44b5b
DR
2012 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2013 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2014 if (!(obey_mempolicy &&
2015 init_nodemask_of_mempolicy(nodes_allowed))) {
2016 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2017 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2018 }
2019 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2020
8cebfcd0 2021 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2022 NODEMASK_FREE(nodes_allowed);
2023 }
08d4a246
MH
2024out:
2025 return ret;
1da177e4 2026}
396faf03 2027
06808b08
LS
2028int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2029 void __user *buffer, size_t *length, loff_t *ppos)
2030{
2031
2032 return hugetlb_sysctl_handler_common(false, table, write,
2033 buffer, length, ppos);
2034}
2035
2036#ifdef CONFIG_NUMA
2037int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2038 void __user *buffer, size_t *length, loff_t *ppos)
2039{
2040 return hugetlb_sysctl_handler_common(true, table, write,
2041 buffer, length, ppos);
2042}
2043#endif /* CONFIG_NUMA */
2044
396faf03 2045int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
8d65af78 2046 void __user *buffer,
396faf03
MG
2047 size_t *length, loff_t *ppos)
2048{
8d65af78 2049 proc_dointvec(table, write, buffer, length, ppos);
396faf03
MG
2050 if (hugepages_treat_as_movable)
2051 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
2052 else
2053 htlb_alloc_mask = GFP_HIGHUSER;
2054 return 0;
2055}
2056
a3d0c6aa 2057int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2058 void __user *buffer,
a3d0c6aa
NA
2059 size_t *length, loff_t *ppos)
2060{
a5516438 2061 struct hstate *h = &default_hstate;
e5ff2159 2062 unsigned long tmp;
08d4a246 2063 int ret;
e5ff2159 2064
c033a93c 2065 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2066
adbe8726
EM
2067 if (write && h->order >= MAX_ORDER)
2068 return -EINVAL;
2069
e5ff2159
AK
2070 table->data = &tmp;
2071 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2072 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2073 if (ret)
2074 goto out;
e5ff2159
AK
2075
2076 if (write) {
2077 spin_lock(&hugetlb_lock);
2078 h->nr_overcommit_huge_pages = tmp;
2079 spin_unlock(&hugetlb_lock);
2080 }
08d4a246
MH
2081out:
2082 return ret;
a3d0c6aa
NA
2083}
2084
1da177e4
LT
2085#endif /* CONFIG_SYSCTL */
2086
e1759c21 2087void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2088{
a5516438 2089 struct hstate *h = &default_hstate;
e1759c21 2090 seq_printf(m,
4f98a2fe
RR
2091 "HugePages_Total: %5lu\n"
2092 "HugePages_Free: %5lu\n"
2093 "HugePages_Rsvd: %5lu\n"
2094 "HugePages_Surp: %5lu\n"
2095 "Hugepagesize: %8lu kB\n",
a5516438
AK
2096 h->nr_huge_pages,
2097 h->free_huge_pages,
2098 h->resv_huge_pages,
2099 h->surplus_huge_pages,
2100 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2101}
2102
2103int hugetlb_report_node_meminfo(int nid, char *buf)
2104{
a5516438 2105 struct hstate *h = &default_hstate;
1da177e4
LT
2106 return sprintf(buf,
2107 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2108 "Node %d HugePages_Free: %5u\n"
2109 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2110 nid, h->nr_huge_pages_node[nid],
2111 nid, h->free_huge_pages_node[nid],
2112 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2113}
2114
949f7ec5
DR
2115void hugetlb_show_meminfo(void)
2116{
2117 struct hstate *h;
2118 int nid;
2119
2120 for_each_node_state(nid, N_MEMORY)
2121 for_each_hstate(h)
2122 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2123 nid,
2124 h->nr_huge_pages_node[nid],
2125 h->free_huge_pages_node[nid],
2126 h->surplus_huge_pages_node[nid],
2127 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2128}
2129
1da177e4
LT
2130/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2131unsigned long hugetlb_total_pages(void)
2132{
d0028588
WL
2133 struct hstate *h;
2134 unsigned long nr_total_pages = 0;
2135
2136 for_each_hstate(h)
2137 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2138 return nr_total_pages;
1da177e4 2139}
1da177e4 2140
a5516438 2141static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2142{
2143 int ret = -ENOMEM;
2144
2145 spin_lock(&hugetlb_lock);
2146 /*
2147 * When cpuset is configured, it breaks the strict hugetlb page
2148 * reservation as the accounting is done on a global variable. Such
2149 * reservation is completely rubbish in the presence of cpuset because
2150 * the reservation is not checked against page availability for the
2151 * current cpuset. Application can still potentially OOM'ed by kernel
2152 * with lack of free htlb page in cpuset that the task is in.
2153 * Attempt to enforce strict accounting with cpuset is almost
2154 * impossible (or too ugly) because cpuset is too fluid that
2155 * task or memory node can be dynamically moved between cpusets.
2156 *
2157 * The change of semantics for shared hugetlb mapping with cpuset is
2158 * undesirable. However, in order to preserve some of the semantics,
2159 * we fall back to check against current free page availability as
2160 * a best attempt and hopefully to minimize the impact of changing
2161 * semantics that cpuset has.
2162 */
2163 if (delta > 0) {
a5516438 2164 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2165 goto out;
2166
a5516438
AK
2167 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2168 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2169 goto out;
2170 }
2171 }
2172
2173 ret = 0;
2174 if (delta < 0)
a5516438 2175 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2176
2177out:
2178 spin_unlock(&hugetlb_lock);
2179 return ret;
2180}
2181
84afd99b
AW
2182static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2183{
2184 struct resv_map *reservations = vma_resv_map(vma);
2185
2186 /*
2187 * This new VMA should share its siblings reservation map if present.
2188 * The VMA will only ever have a valid reservation map pointer where
2189 * it is being copied for another still existing VMA. As that VMA
25985edc 2190 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2191 * after this open call completes. It is therefore safe to take a
2192 * new reference here without additional locking.
2193 */
2194 if (reservations)
2195 kref_get(&reservations->refs);
2196}
2197
c50ac050
DH
2198static void resv_map_put(struct vm_area_struct *vma)
2199{
2200 struct resv_map *reservations = vma_resv_map(vma);
2201
2202 if (!reservations)
2203 return;
2204 kref_put(&reservations->refs, resv_map_release);
2205}
2206
a1e78772
MG
2207static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2208{
a5516438 2209 struct hstate *h = hstate_vma(vma);
84afd99b 2210 struct resv_map *reservations = vma_resv_map(vma);
90481622 2211 struct hugepage_subpool *spool = subpool_vma(vma);
84afd99b
AW
2212 unsigned long reserve;
2213 unsigned long start;
2214 unsigned long end;
2215
2216 if (reservations) {
a5516438
AK
2217 start = vma_hugecache_offset(h, vma, vma->vm_start);
2218 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b
AW
2219
2220 reserve = (end - start) -
2221 region_count(&reservations->regions, start, end);
2222
c50ac050 2223 resv_map_put(vma);
84afd99b 2224
7251ff78 2225 if (reserve) {
a5516438 2226 hugetlb_acct_memory(h, -reserve);
90481622 2227 hugepage_subpool_put_pages(spool, reserve);
7251ff78 2228 }
84afd99b 2229 }
a1e78772
MG
2230}
2231
1da177e4
LT
2232/*
2233 * We cannot handle pagefaults against hugetlb pages at all. They cause
2234 * handle_mm_fault() to try to instantiate regular-sized pages in the
2235 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2236 * this far.
2237 */
d0217ac0 2238static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2239{
2240 BUG();
d0217ac0 2241 return 0;
1da177e4
LT
2242}
2243
f0f37e2f 2244const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2245 .fault = hugetlb_vm_op_fault,
84afd99b 2246 .open = hugetlb_vm_op_open,
a1e78772 2247 .close = hugetlb_vm_op_close,
1da177e4
LT
2248};
2249
1e8f889b
DG
2250static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2251 int writable)
63551ae0
DG
2252{
2253 pte_t entry;
2254
1e8f889b 2255 if (writable) {
106c992a
GS
2256 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2257 vma->vm_page_prot)));
63551ae0 2258 } else {
106c992a
GS
2259 entry = huge_pte_wrprotect(mk_huge_pte(page,
2260 vma->vm_page_prot));
63551ae0
DG
2261 }
2262 entry = pte_mkyoung(entry);
2263 entry = pte_mkhuge(entry);
d9ed9faa 2264 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2265
2266 return entry;
2267}
2268
1e8f889b
DG
2269static void set_huge_ptep_writable(struct vm_area_struct *vma,
2270 unsigned long address, pte_t *ptep)
2271{
2272 pte_t entry;
2273
106c992a 2274 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2275 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2276 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2277}
2278
2279
63551ae0
DG
2280int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2281 struct vm_area_struct *vma)
2282{
2283 pte_t *src_pte, *dst_pte, entry;
2284 struct page *ptepage;
1c59827d 2285 unsigned long addr;
1e8f889b 2286 int cow;
a5516438
AK
2287 struct hstate *h = hstate_vma(vma);
2288 unsigned long sz = huge_page_size(h);
1e8f889b
DG
2289
2290 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2291
a5516438 2292 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
c74df32c
HD
2293 src_pte = huge_pte_offset(src, addr);
2294 if (!src_pte)
2295 continue;
a5516438 2296 dst_pte = huge_pte_alloc(dst, addr, sz);
63551ae0
DG
2297 if (!dst_pte)
2298 goto nomem;
c5c99429
LW
2299
2300 /* If the pagetables are shared don't copy or take references */
2301 if (dst_pte == src_pte)
2302 continue;
2303
c74df32c 2304 spin_lock(&dst->page_table_lock);
46478758 2305 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
7f2e9525 2306 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2307 if (cow)
7f2e9525
GS
2308 huge_ptep_set_wrprotect(src, addr, src_pte);
2309 entry = huge_ptep_get(src_pte);
1c59827d
HD
2310 ptepage = pte_page(entry);
2311 get_page(ptepage);
0fe6e20b 2312 page_dup_rmap(ptepage);
1c59827d
HD
2313 set_huge_pte_at(dst, addr, dst_pte, entry);
2314 }
2315 spin_unlock(&src->page_table_lock);
c74df32c 2316 spin_unlock(&dst->page_table_lock);
63551ae0
DG
2317 }
2318 return 0;
2319
2320nomem:
2321 return -ENOMEM;
2322}
2323
290408d4
NH
2324static int is_hugetlb_entry_migration(pte_t pte)
2325{
2326 swp_entry_t swp;
2327
2328 if (huge_pte_none(pte) || pte_present(pte))
2329 return 0;
2330 swp = pte_to_swp_entry(pte);
32f84528 2331 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2332 return 1;
32f84528 2333 else
290408d4
NH
2334 return 0;
2335}
2336
fd6a03ed
NH
2337static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2338{
2339 swp_entry_t swp;
2340
2341 if (huge_pte_none(pte) || pte_present(pte))
2342 return 0;
2343 swp = pte_to_swp_entry(pte);
32f84528 2344 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2345 return 1;
32f84528 2346 else
fd6a03ed
NH
2347 return 0;
2348}
2349
24669e58
AK
2350void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2351 unsigned long start, unsigned long end,
2352 struct page *ref_page)
63551ae0 2353{
24669e58 2354 int force_flush = 0;
63551ae0
DG
2355 struct mm_struct *mm = vma->vm_mm;
2356 unsigned long address;
c7546f8f 2357 pte_t *ptep;
63551ae0
DG
2358 pte_t pte;
2359 struct page *page;
a5516438
AK
2360 struct hstate *h = hstate_vma(vma);
2361 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2362 const unsigned long mmun_start = start; /* For mmu_notifiers */
2363 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2364
63551ae0 2365 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2366 BUG_ON(start & ~huge_page_mask(h));
2367 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2368
24669e58 2369 tlb_start_vma(tlb, vma);
2ec74c3e 2370 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2371again:
508034a3 2372 spin_lock(&mm->page_table_lock);
a5516438 2373 for (address = start; address < end; address += sz) {
c7546f8f 2374 ptep = huge_pte_offset(mm, address);
4c887265 2375 if (!ptep)
c7546f8f
DG
2376 continue;
2377
39dde65c
KC
2378 if (huge_pmd_unshare(mm, &address, ptep))
2379 continue;
2380
6629326b
HD
2381 pte = huge_ptep_get(ptep);
2382 if (huge_pte_none(pte))
2383 continue;
2384
2385 /*
2386 * HWPoisoned hugepage is already unmapped and dropped reference
2387 */
8c4894c6 2388 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2389 huge_pte_clear(mm, address, ptep);
6629326b 2390 continue;
8c4894c6 2391 }
6629326b
HD
2392
2393 page = pte_page(pte);
04f2cbe3
MG
2394 /*
2395 * If a reference page is supplied, it is because a specific
2396 * page is being unmapped, not a range. Ensure the page we
2397 * are about to unmap is the actual page of interest.
2398 */
2399 if (ref_page) {
04f2cbe3
MG
2400 if (page != ref_page)
2401 continue;
2402
2403 /*
2404 * Mark the VMA as having unmapped its page so that
2405 * future faults in this VMA will fail rather than
2406 * looking like data was lost
2407 */
2408 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2409 }
2410
c7546f8f 2411 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2412 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2413 if (huge_pte_dirty(pte))
6649a386 2414 set_page_dirty(page);
9e81130b 2415
24669e58
AK
2416 page_remove_rmap(page);
2417 force_flush = !__tlb_remove_page(tlb, page);
2418 if (force_flush)
2419 break;
9e81130b
HD
2420 /* Bail out after unmapping reference page if supplied */
2421 if (ref_page)
2422 break;
63551ae0 2423 }
cd2934a3 2424 spin_unlock(&mm->page_table_lock);
24669e58
AK
2425 /*
2426 * mmu_gather ran out of room to batch pages, we break out of
2427 * the PTE lock to avoid doing the potential expensive TLB invalidate
2428 * and page-free while holding it.
2429 */
2430 if (force_flush) {
2431 force_flush = 0;
2432 tlb_flush_mmu(tlb);
2433 if (address < end && !ref_page)
2434 goto again;
fe1668ae 2435 }
2ec74c3e 2436 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2437 tlb_end_vma(tlb, vma);
1da177e4 2438}
63551ae0 2439
d833352a
MG
2440void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2441 struct vm_area_struct *vma, unsigned long start,
2442 unsigned long end, struct page *ref_page)
2443{
2444 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2445
2446 /*
2447 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2448 * test will fail on a vma being torn down, and not grab a page table
2449 * on its way out. We're lucky that the flag has such an appropriate
2450 * name, and can in fact be safely cleared here. We could clear it
2451 * before the __unmap_hugepage_range above, but all that's necessary
2452 * is to clear it before releasing the i_mmap_mutex. This works
2453 * because in the context this is called, the VMA is about to be
2454 * destroyed and the i_mmap_mutex is held.
2455 */
2456 vma->vm_flags &= ~VM_MAYSHARE;
2457}
2458
502717f4 2459void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2460 unsigned long end, struct page *ref_page)
502717f4 2461{
24669e58
AK
2462 struct mm_struct *mm;
2463 struct mmu_gather tlb;
2464
2465 mm = vma->vm_mm;
2466
2b047252 2467 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2468 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2469 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2470}
2471
04f2cbe3
MG
2472/*
2473 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2474 * mappping it owns the reserve page for. The intention is to unmap the page
2475 * from other VMAs and let the children be SIGKILLed if they are faulting the
2476 * same region.
2477 */
2a4b3ded
HH
2478static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2479 struct page *page, unsigned long address)
04f2cbe3 2480{
7526674d 2481 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2482 struct vm_area_struct *iter_vma;
2483 struct address_space *mapping;
04f2cbe3
MG
2484 pgoff_t pgoff;
2485
2486 /*
2487 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2488 * from page cache lookup which is in HPAGE_SIZE units.
2489 */
7526674d 2490 address = address & huge_page_mask(h);
36e4f20a
MH
2491 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2492 vma->vm_pgoff;
496ad9aa 2493 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2494
4eb2b1dc
MG
2495 /*
2496 * Take the mapping lock for the duration of the table walk. As
2497 * this mapping should be shared between all the VMAs,
2498 * __unmap_hugepage_range() is called as the lock is already held
2499 */
3d48ae45 2500 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2501 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2502 /* Do not unmap the current VMA */
2503 if (iter_vma == vma)
2504 continue;
2505
2506 /*
2507 * Unmap the page from other VMAs without their own reserves.
2508 * They get marked to be SIGKILLed if they fault in these
2509 * areas. This is because a future no-page fault on this VMA
2510 * could insert a zeroed page instead of the data existing
2511 * from the time of fork. This would look like data corruption
2512 */
2513 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2514 unmap_hugepage_range(iter_vma, address,
2515 address + huge_page_size(h), page);
04f2cbe3 2516 }
3d48ae45 2517 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2518
2519 return 1;
2520}
2521
0fe6e20b
NH
2522/*
2523 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2524 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2525 * cannot race with other handlers or page migration.
2526 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2527 */
1e8f889b 2528static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3
MG
2529 unsigned long address, pte_t *ptep, pte_t pte,
2530 struct page *pagecache_page)
1e8f889b 2531{
a5516438 2532 struct hstate *h = hstate_vma(vma);
1e8f889b 2533 struct page *old_page, *new_page;
79ac6ba4 2534 int avoidcopy;
04f2cbe3 2535 int outside_reserve = 0;
2ec74c3e
SG
2536 unsigned long mmun_start; /* For mmu_notifiers */
2537 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2538
2539 old_page = pte_page(pte);
2540
04f2cbe3 2541retry_avoidcopy:
1e8f889b
DG
2542 /* If no-one else is actually using this page, avoid the copy
2543 * and just make the page writable */
0fe6e20b 2544 avoidcopy = (page_mapcount(old_page) == 1);
1e8f889b 2545 if (avoidcopy) {
56c9cfb1
NH
2546 if (PageAnon(old_page))
2547 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2548 set_huge_ptep_writable(vma, address, ptep);
83c54070 2549 return 0;
1e8f889b
DG
2550 }
2551
04f2cbe3
MG
2552 /*
2553 * If the process that created a MAP_PRIVATE mapping is about to
2554 * perform a COW due to a shared page count, attempt to satisfy
2555 * the allocation without using the existing reserves. The pagecache
2556 * page is used to determine if the reserve at this address was
2557 * consumed or not. If reserves were used, a partial faulted mapping
2558 * at the time of fork() could consume its reserves on COW instead
2559 * of the full address range.
2560 */
f83a275d 2561 if (!(vma->vm_flags & VM_MAYSHARE) &&
04f2cbe3
MG
2562 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2563 old_page != pagecache_page)
2564 outside_reserve = 1;
2565
1e8f889b 2566 page_cache_get(old_page);
b76c8cfb
LW
2567
2568 /* Drop page_table_lock as buddy allocator may be called */
2569 spin_unlock(&mm->page_table_lock);
04f2cbe3 2570 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2571
2fc39cec 2572 if (IS_ERR(new_page)) {
76dcee75 2573 long err = PTR_ERR(new_page);
1e8f889b 2574 page_cache_release(old_page);
04f2cbe3
MG
2575
2576 /*
2577 * If a process owning a MAP_PRIVATE mapping fails to COW,
2578 * it is due to references held by a child and an insufficient
2579 * huge page pool. To guarantee the original mappers
2580 * reliability, unmap the page from child processes. The child
2581 * may get SIGKILLed if it later faults.
2582 */
2583 if (outside_reserve) {
2584 BUG_ON(huge_pte_none(pte));
2585 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2586 BUG_ON(huge_pte_none(pte));
b76c8cfb 2587 spin_lock(&mm->page_table_lock);
a734bcc8
HD
2588 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2589 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2590 goto retry_avoidcopy;
2591 /*
2592 * race occurs while re-acquiring page_table_lock, and
2593 * our job is done.
2594 */
2595 return 0;
04f2cbe3
MG
2596 }
2597 WARN_ON_ONCE(1);
2598 }
2599
b76c8cfb
LW
2600 /* Caller expects lock to be held */
2601 spin_lock(&mm->page_table_lock);
76dcee75
AK
2602 if (err == -ENOMEM)
2603 return VM_FAULT_OOM;
2604 else
2605 return VM_FAULT_SIGBUS;
1e8f889b
DG
2606 }
2607
0fe6e20b
NH
2608 /*
2609 * When the original hugepage is shared one, it does not have
2610 * anon_vma prepared.
2611 */
44e2aa93 2612 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2613 page_cache_release(new_page);
2614 page_cache_release(old_page);
44e2aa93
DN
2615 /* Caller expects lock to be held */
2616 spin_lock(&mm->page_table_lock);
0fe6e20b 2617 return VM_FAULT_OOM;
44e2aa93 2618 }
0fe6e20b 2619
47ad8475
AA
2620 copy_user_huge_page(new_page, old_page, address, vma,
2621 pages_per_huge_page(h));
0ed361de 2622 __SetPageUptodate(new_page);
1e8f889b 2623
2ec74c3e
SG
2624 mmun_start = address & huge_page_mask(h);
2625 mmun_end = mmun_start + huge_page_size(h);
2626 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb
LW
2627 /*
2628 * Retake the page_table_lock to check for racing updates
2629 * before the page tables are altered
2630 */
2631 spin_lock(&mm->page_table_lock);
a5516438 2632 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
7f2e9525 2633 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 2634 /* Break COW */
8fe627ec 2635 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2636 set_huge_pte_at(mm, address, ptep,
2637 make_huge_pte(vma, new_page, 1));
0fe6e20b 2638 page_remove_rmap(old_page);
cd67f0d2 2639 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2640 /* Make the old page be freed below */
2641 new_page = old_page;
2642 }
2ec74c3e
SG
2643 spin_unlock(&mm->page_table_lock);
2644 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2645 /* Caller expects lock to be held */
2646 spin_lock(&mm->page_table_lock);
1e8f889b
DG
2647 page_cache_release(new_page);
2648 page_cache_release(old_page);
83c54070 2649 return 0;
1e8f889b
DG
2650}
2651
04f2cbe3 2652/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2653static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2654 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2655{
2656 struct address_space *mapping;
e7c4b0bf 2657 pgoff_t idx;
04f2cbe3
MG
2658
2659 mapping = vma->vm_file->f_mapping;
a5516438 2660 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2661
2662 return find_lock_page(mapping, idx);
2663}
2664
3ae77f43
HD
2665/*
2666 * Return whether there is a pagecache page to back given address within VMA.
2667 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2668 */
2669static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2670 struct vm_area_struct *vma, unsigned long address)
2671{
2672 struct address_space *mapping;
2673 pgoff_t idx;
2674 struct page *page;
2675
2676 mapping = vma->vm_file->f_mapping;
2677 idx = vma_hugecache_offset(h, vma, address);
2678
2679 page = find_get_page(mapping, idx);
2680 if (page)
2681 put_page(page);
2682 return page != NULL;
2683}
2684
a1ed3dda 2685static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2686 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2687{
a5516438 2688 struct hstate *h = hstate_vma(vma);
ac9b9c66 2689 int ret = VM_FAULT_SIGBUS;
409eb8c2 2690 int anon_rmap = 0;
e7c4b0bf 2691 pgoff_t idx;
4c887265 2692 unsigned long size;
4c887265
AL
2693 struct page *page;
2694 struct address_space *mapping;
1e8f889b 2695 pte_t new_pte;
4c887265 2696
04f2cbe3
MG
2697 /*
2698 * Currently, we are forced to kill the process in the event the
2699 * original mapper has unmapped pages from the child due to a failed
25985edc 2700 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2701 */
2702 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2703 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2704 current->pid);
04f2cbe3
MG
2705 return ret;
2706 }
2707
4c887265 2708 mapping = vma->vm_file->f_mapping;
a5516438 2709 idx = vma_hugecache_offset(h, vma, address);
4c887265
AL
2710
2711 /*
2712 * Use page lock to guard against racing truncation
2713 * before we get page_table_lock.
2714 */
6bda666a
CL
2715retry:
2716 page = find_lock_page(mapping, idx);
2717 if (!page) {
a5516438 2718 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2719 if (idx >= size)
2720 goto out;
04f2cbe3 2721 page = alloc_huge_page(vma, address, 0);
2fc39cec 2722 if (IS_ERR(page)) {
76dcee75
AK
2723 ret = PTR_ERR(page);
2724 if (ret == -ENOMEM)
2725 ret = VM_FAULT_OOM;
2726 else
2727 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2728 goto out;
2729 }
47ad8475 2730 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2731 __SetPageUptodate(page);
ac9b9c66 2732
f83a275d 2733 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2734 int err;
45c682a6 2735 struct inode *inode = mapping->host;
6bda666a
CL
2736
2737 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2738 if (err) {
2739 put_page(page);
6bda666a
CL
2740 if (err == -EEXIST)
2741 goto retry;
2742 goto out;
2743 }
45c682a6
KC
2744
2745 spin_lock(&inode->i_lock);
a5516438 2746 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2747 spin_unlock(&inode->i_lock);
23be7468 2748 } else {
6bda666a 2749 lock_page(page);
0fe6e20b
NH
2750 if (unlikely(anon_vma_prepare(vma))) {
2751 ret = VM_FAULT_OOM;
2752 goto backout_unlocked;
2753 }
409eb8c2 2754 anon_rmap = 1;
23be7468 2755 }
0fe6e20b 2756 } else {
998b4382
NH
2757 /*
2758 * If memory error occurs between mmap() and fault, some process
2759 * don't have hwpoisoned swap entry for errored virtual address.
2760 * So we need to block hugepage fault by PG_hwpoison bit check.
2761 */
2762 if (unlikely(PageHWPoison(page))) {
32f84528 2763 ret = VM_FAULT_HWPOISON |
972dc4de 2764 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2765 goto backout_unlocked;
2766 }
6bda666a 2767 }
1e8f889b 2768
57303d80
AW
2769 /*
2770 * If we are going to COW a private mapping later, we examine the
2771 * pending reservations for this page now. This will ensure that
2772 * any allocations necessary to record that reservation occur outside
2773 * the spinlock.
2774 */
788c7df4 2775 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2776 if (vma_needs_reservation(h, vma, address) < 0) {
2777 ret = VM_FAULT_OOM;
2778 goto backout_unlocked;
2779 }
57303d80 2780
ac9b9c66 2781 spin_lock(&mm->page_table_lock);
a5516438 2782 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2783 if (idx >= size)
2784 goto backout;
2785
83c54070 2786 ret = 0;
7f2e9525 2787 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2788 goto backout;
2789
409eb8c2
HD
2790 if (anon_rmap)
2791 hugepage_add_new_anon_rmap(page, vma, address);
2792 else
2793 page_dup_rmap(page);
1e8f889b
DG
2794 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2795 && (vma->vm_flags & VM_SHARED)));
2796 set_huge_pte_at(mm, address, ptep, new_pte);
2797
788c7df4 2798 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2799 /* Optimization, do the COW without a second fault */
04f2cbe3 2800 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1e8f889b
DG
2801 }
2802
ac9b9c66 2803 spin_unlock(&mm->page_table_lock);
4c887265
AL
2804 unlock_page(page);
2805out:
ac9b9c66 2806 return ret;
4c887265
AL
2807
2808backout:
2809 spin_unlock(&mm->page_table_lock);
2b26736c 2810backout_unlocked:
4c887265
AL
2811 unlock_page(page);
2812 put_page(page);
2813 goto out;
ac9b9c66
HD
2814}
2815
86e5216f 2816int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2817 unsigned long address, unsigned int flags)
86e5216f
AL
2818{
2819 pte_t *ptep;
2820 pte_t entry;
1e8f889b 2821 int ret;
0fe6e20b 2822 struct page *page = NULL;
57303d80 2823 struct page *pagecache_page = NULL;
3935baa9 2824 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
a5516438 2825 struct hstate *h = hstate_vma(vma);
86e5216f 2826
1e16a539
KH
2827 address &= huge_page_mask(h);
2828
fd6a03ed
NH
2829 ptep = huge_pte_offset(mm, address);
2830 if (ptep) {
2831 entry = huge_ptep_get(ptep);
290408d4 2832 if (unlikely(is_hugetlb_entry_migration(entry))) {
30dad309 2833 migration_entry_wait_huge(mm, ptep);
290408d4
NH
2834 return 0;
2835 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2836 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2837 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2838 }
2839
a5516438 2840 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2841 if (!ptep)
2842 return VM_FAULT_OOM;
2843
3935baa9
DG
2844 /*
2845 * Serialize hugepage allocation and instantiation, so that we don't
2846 * get spurious allocation failures if two CPUs race to instantiate
2847 * the same page in the page cache.
2848 */
2849 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
2850 entry = huge_ptep_get(ptep);
2851 if (huge_pte_none(entry)) {
788c7df4 2852 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
b4d1d99f 2853 goto out_mutex;
3935baa9 2854 }
86e5216f 2855
83c54070 2856 ret = 0;
1e8f889b 2857
57303d80
AW
2858 /*
2859 * If we are going to COW the mapping later, we examine the pending
2860 * reservations for this page now. This will ensure that any
2861 * allocations necessary to record that reservation occur outside the
2862 * spinlock. For private mappings, we also lookup the pagecache
2863 * page now as it is used to determine if a reservation has been
2864 * consumed.
2865 */
106c992a 2866 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
2867 if (vma_needs_reservation(h, vma, address) < 0) {
2868 ret = VM_FAULT_OOM;
b4d1d99f 2869 goto out_mutex;
2b26736c 2870 }
57303d80 2871
f83a275d 2872 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
2873 pagecache_page = hugetlbfs_pagecache_page(h,
2874 vma, address);
2875 }
2876
56c9cfb1
NH
2877 /*
2878 * hugetlb_cow() requires page locks of pte_page(entry) and
2879 * pagecache_page, so here we need take the former one
2880 * when page != pagecache_page or !pagecache_page.
2881 * Note that locking order is always pagecache_page -> page,
2882 * so no worry about deadlock.
2883 */
2884 page = pte_page(entry);
66aebce7 2885 get_page(page);
56c9cfb1 2886 if (page != pagecache_page)
0fe6e20b 2887 lock_page(page);
0fe6e20b 2888
1e8f889b
DG
2889 spin_lock(&mm->page_table_lock);
2890 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f
DG
2891 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2892 goto out_page_table_lock;
2893
2894
788c7df4 2895 if (flags & FAULT_FLAG_WRITE) {
106c992a 2896 if (!huge_pte_write(entry)) {
57303d80
AW
2897 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2898 pagecache_page);
b4d1d99f
DG
2899 goto out_page_table_lock;
2900 }
106c992a 2901 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
2902 }
2903 entry = pte_mkyoung(entry);
788c7df4
HD
2904 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2905 flags & FAULT_FLAG_WRITE))
4b3073e1 2906 update_mmu_cache(vma, address, ptep);
b4d1d99f
DG
2907
2908out_page_table_lock:
1e8f889b 2909 spin_unlock(&mm->page_table_lock);
57303d80
AW
2910
2911 if (pagecache_page) {
2912 unlock_page(pagecache_page);
2913 put_page(pagecache_page);
2914 }
1f64d69c
DN
2915 if (page != pagecache_page)
2916 unlock_page(page);
66aebce7 2917 put_page(page);
57303d80 2918
b4d1d99f 2919out_mutex:
3935baa9 2920 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
2921
2922 return ret;
86e5216f
AL
2923}
2924
28a35716
ML
2925long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2926 struct page **pages, struct vm_area_struct **vmas,
2927 unsigned long *position, unsigned long *nr_pages,
2928 long i, unsigned int flags)
63551ae0 2929{
d5d4b0aa
KC
2930 unsigned long pfn_offset;
2931 unsigned long vaddr = *position;
28a35716 2932 unsigned long remainder = *nr_pages;
a5516438 2933 struct hstate *h = hstate_vma(vma);
63551ae0 2934
1c59827d 2935 spin_lock(&mm->page_table_lock);
63551ae0 2936 while (vaddr < vma->vm_end && remainder) {
4c887265 2937 pte_t *pte;
2a15efc9 2938 int absent;
4c887265 2939 struct page *page;
63551ae0 2940
4c887265
AL
2941 /*
2942 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 2943 * each hugepage. We have to make sure we get the
4c887265
AL
2944 * first, for the page indexing below to work.
2945 */
a5516438 2946 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2a15efc9
HD
2947 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2948
2949 /*
2950 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
2951 * an error where there's an empty slot with no huge pagecache
2952 * to back it. This way, we avoid allocating a hugepage, and
2953 * the sparse dumpfile avoids allocating disk blocks, but its
2954 * huge holes still show up with zeroes where they need to be.
2a15efc9 2955 */
3ae77f43
HD
2956 if (absent && (flags & FOLL_DUMP) &&
2957 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2a15efc9
HD
2958 remainder = 0;
2959 break;
2960 }
63551ae0 2961
9cc3a5bd
NH
2962 /*
2963 * We need call hugetlb_fault for both hugepages under migration
2964 * (in which case hugetlb_fault waits for the migration,) and
2965 * hwpoisoned hugepages (in which case we need to prevent the
2966 * caller from accessing to them.) In order to do this, we use
2967 * here is_swap_pte instead of is_hugetlb_entry_migration and
2968 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
2969 * both cases, and because we can't follow correct pages
2970 * directly from any kind of swap entries.
2971 */
2972 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
2973 ((flags & FOLL_WRITE) &&
2974 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 2975 int ret;
63551ae0 2976
4c887265 2977 spin_unlock(&mm->page_table_lock);
2a15efc9
HD
2978 ret = hugetlb_fault(mm, vma, vaddr,
2979 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4c887265 2980 spin_lock(&mm->page_table_lock);
a89182c7 2981 if (!(ret & VM_FAULT_ERROR))
4c887265 2982 continue;
63551ae0 2983
4c887265 2984 remainder = 0;
4c887265
AL
2985 break;
2986 }
2987
a5516438 2988 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 2989 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 2990same_page:
d6692183 2991 if (pages) {
2a15efc9 2992 pages[i] = mem_map_offset(page, pfn_offset);
4b2e38ad 2993 get_page(pages[i]);
d6692183 2994 }
63551ae0
DG
2995
2996 if (vmas)
2997 vmas[i] = vma;
2998
2999 vaddr += PAGE_SIZE;
d5d4b0aa 3000 ++pfn_offset;
63551ae0
DG
3001 --remainder;
3002 ++i;
d5d4b0aa 3003 if (vaddr < vma->vm_end && remainder &&
a5516438 3004 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3005 /*
3006 * We use pfn_offset to avoid touching the pageframes
3007 * of this compound page.
3008 */
3009 goto same_page;
3010 }
63551ae0 3011 }
1c59827d 3012 spin_unlock(&mm->page_table_lock);
28a35716 3013 *nr_pages = remainder;
63551ae0
DG
3014 *position = vaddr;
3015
2a15efc9 3016 return i ? i : -EFAULT;
63551ae0 3017}
8f860591 3018
7da4d641 3019unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3020 unsigned long address, unsigned long end, pgprot_t newprot)
3021{
3022 struct mm_struct *mm = vma->vm_mm;
3023 unsigned long start = address;
3024 pte_t *ptep;
3025 pte_t pte;
a5516438 3026 struct hstate *h = hstate_vma(vma);
7da4d641 3027 unsigned long pages = 0;
8f860591
ZY
3028
3029 BUG_ON(address >= end);
3030 flush_cache_range(vma, address, end);
3031
3d48ae45 3032 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
8f860591 3033 spin_lock(&mm->page_table_lock);
a5516438 3034 for (; address < end; address += huge_page_size(h)) {
8f860591
ZY
3035 ptep = huge_pte_offset(mm, address);
3036 if (!ptep)
3037 continue;
7da4d641
PZ
3038 if (huge_pmd_unshare(mm, &address, ptep)) {
3039 pages++;
39dde65c 3040 continue;
7da4d641 3041 }
7f2e9525 3042 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3043 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3044 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3045 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3046 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3047 pages++;
8f860591
ZY
3048 }
3049 }
3050 spin_unlock(&mm->page_table_lock);
d833352a
MG
3051 /*
3052 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3053 * may have cleared our pud entry and done put_page on the page table:
3054 * once we release i_mmap_mutex, another task can do the final put_page
3055 * and that page table be reused and filled with junk.
3056 */
8f860591 3057 flush_tlb_range(vma, start, end);
d833352a 3058 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
7da4d641
PZ
3059
3060 return pages << h->order;
8f860591
ZY
3061}
3062
a1e78772
MG
3063int hugetlb_reserve_pages(struct inode *inode,
3064 long from, long to,
5a6fe125 3065 struct vm_area_struct *vma,
ca16d140 3066 vm_flags_t vm_flags)
e4e574b7 3067{
17c9d12e 3068 long ret, chg;
a5516438 3069 struct hstate *h = hstate_inode(inode);
90481622 3070 struct hugepage_subpool *spool = subpool_inode(inode);
e4e574b7 3071
17c9d12e
MG
3072 /*
3073 * Only apply hugepage reservation if asked. At fault time, an
3074 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3075 * without using reserves
17c9d12e 3076 */
ca16d140 3077 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3078 return 0;
3079
a1e78772
MG
3080 /*
3081 * Shared mappings base their reservation on the number of pages that
3082 * are already allocated on behalf of the file. Private mappings need
3083 * to reserve the full area even if read-only as mprotect() may be
3084 * called to make the mapping read-write. Assume !vma is a shm mapping
3085 */
f83a275d 3086 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3087 chg = region_chg(&inode->i_mapping->private_list, from, to);
17c9d12e
MG
3088 else {
3089 struct resv_map *resv_map = resv_map_alloc();
3090 if (!resv_map)
3091 return -ENOMEM;
3092
a1e78772 3093 chg = to - from;
84afd99b 3094
17c9d12e
MG
3095 set_vma_resv_map(vma, resv_map);
3096 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3097 }
3098
c50ac050
DH
3099 if (chg < 0) {
3100 ret = chg;
3101 goto out_err;
3102 }
8a630112 3103
90481622 3104 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3105 if (hugepage_subpool_get_pages(spool, chg)) {
3106 ret = -ENOSPC;
3107 goto out_err;
3108 }
5a6fe125
MG
3109
3110 /*
17c9d12e 3111 * Check enough hugepages are available for the reservation.
90481622 3112 * Hand the pages back to the subpool if there are not
5a6fe125 3113 */
a5516438 3114 ret = hugetlb_acct_memory(h, chg);
68842c9b 3115 if (ret < 0) {
90481622 3116 hugepage_subpool_put_pages(spool, chg);
c50ac050 3117 goto out_err;
68842c9b 3118 }
17c9d12e
MG
3119
3120 /*
3121 * Account for the reservations made. Shared mappings record regions
3122 * that have reservations as they are shared by multiple VMAs.
3123 * When the last VMA disappears, the region map says how much
3124 * the reservation was and the page cache tells how much of
3125 * the reservation was consumed. Private mappings are per-VMA and
3126 * only the consumed reservations are tracked. When the VMA
3127 * disappears, the original reservation is the VMA size and the
3128 * consumed reservations are stored in the map. Hence, nothing
3129 * else has to be done for private mappings here
3130 */
f83a275d 3131 if (!vma || vma->vm_flags & VM_MAYSHARE)
a1e78772 3132 region_add(&inode->i_mapping->private_list, from, to);
a43a8c39 3133 return 0;
c50ac050 3134out_err:
4523e145
DH
3135 if (vma)
3136 resv_map_put(vma);
c50ac050 3137 return ret;
a43a8c39
KC
3138}
3139
3140void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3141{
a5516438 3142 struct hstate *h = hstate_inode(inode);
a43a8c39 3143 long chg = region_truncate(&inode->i_mapping->private_list, offset);
90481622 3144 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6
KC
3145
3146 spin_lock(&inode->i_lock);
e4c6f8be 3147 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3148 spin_unlock(&inode->i_lock);
3149
90481622 3150 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3151 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3152}
93f70f90 3153
3212b535
SC
3154#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3155static unsigned long page_table_shareable(struct vm_area_struct *svma,
3156 struct vm_area_struct *vma,
3157 unsigned long addr, pgoff_t idx)
3158{
3159 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3160 svma->vm_start;
3161 unsigned long sbase = saddr & PUD_MASK;
3162 unsigned long s_end = sbase + PUD_SIZE;
3163
3164 /* Allow segments to share if only one is marked locked */
3165 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3166 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3167
3168 /*
3169 * match the virtual addresses, permission and the alignment of the
3170 * page table page.
3171 */
3172 if (pmd_index(addr) != pmd_index(saddr) ||
3173 vm_flags != svm_flags ||
3174 sbase < svma->vm_start || svma->vm_end < s_end)
3175 return 0;
3176
3177 return saddr;
3178}
3179
3180static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3181{
3182 unsigned long base = addr & PUD_MASK;
3183 unsigned long end = base + PUD_SIZE;
3184
3185 /*
3186 * check on proper vm_flags and page table alignment
3187 */
3188 if (vma->vm_flags & VM_MAYSHARE &&
3189 vma->vm_start <= base && end <= vma->vm_end)
3190 return 1;
3191 return 0;
3192}
3193
3194/*
3195 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3196 * and returns the corresponding pte. While this is not necessary for the
3197 * !shared pmd case because we can allocate the pmd later as well, it makes the
3198 * code much cleaner. pmd allocation is essential for the shared case because
3199 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3200 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3201 * bad pmd for sharing.
3202 */
3203pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3204{
3205 struct vm_area_struct *vma = find_vma(mm, addr);
3206 struct address_space *mapping = vma->vm_file->f_mapping;
3207 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3208 vma->vm_pgoff;
3209 struct vm_area_struct *svma;
3210 unsigned long saddr;
3211 pte_t *spte = NULL;
3212 pte_t *pte;
3213
3214 if (!vma_shareable(vma, addr))
3215 return (pte_t *)pmd_alloc(mm, pud, addr);
3216
3217 mutex_lock(&mapping->i_mmap_mutex);
3218 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3219 if (svma == vma)
3220 continue;
3221
3222 saddr = page_table_shareable(svma, vma, addr, idx);
3223 if (saddr) {
3224 spte = huge_pte_offset(svma->vm_mm, saddr);
3225 if (spte) {
3226 get_page(virt_to_page(spte));
3227 break;
3228 }
3229 }
3230 }
3231
3232 if (!spte)
3233 goto out;
3234
3235 spin_lock(&mm->page_table_lock);
3236 if (pud_none(*pud))
3237 pud_populate(mm, pud,
3238 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3239 else
3240 put_page(virt_to_page(spte));
3241 spin_unlock(&mm->page_table_lock);
3242out:
3243 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3244 mutex_unlock(&mapping->i_mmap_mutex);
3245 return pte;
3246}
3247
3248/*
3249 * unmap huge page backed by shared pte.
3250 *
3251 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3252 * indicated by page_count > 1, unmap is achieved by clearing pud and
3253 * decrementing the ref count. If count == 1, the pte page is not shared.
3254 *
3255 * called with vma->vm_mm->page_table_lock held.
3256 *
3257 * returns: 1 successfully unmapped a shared pte page
3258 * 0 the underlying pte page is not shared, or it is the last user
3259 */
3260int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3261{
3262 pgd_t *pgd = pgd_offset(mm, *addr);
3263 pud_t *pud = pud_offset(pgd, *addr);
3264
3265 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3266 if (page_count(virt_to_page(ptep)) == 1)
3267 return 0;
3268
3269 pud_clear(pud);
3270 put_page(virt_to_page(ptep));
3271 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3272 return 1;
3273}
9e5fc74c
SC
3274#define want_pmd_share() (1)
3275#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3276pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3277{
3278 return NULL;
3279}
3280#define want_pmd_share() (0)
3212b535
SC
3281#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3282
9e5fc74c
SC
3283#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3284pte_t *huge_pte_alloc(struct mm_struct *mm,
3285 unsigned long addr, unsigned long sz)
3286{
3287 pgd_t *pgd;
3288 pud_t *pud;
3289 pte_t *pte = NULL;
3290
3291 pgd = pgd_offset(mm, addr);
3292 pud = pud_alloc(mm, pgd, addr);
3293 if (pud) {
3294 if (sz == PUD_SIZE) {
3295 pte = (pte_t *)pud;
3296 } else {
3297 BUG_ON(sz != PMD_SIZE);
3298 if (want_pmd_share() && pud_none(*pud))
3299 pte = huge_pmd_share(mm, addr, pud);
3300 else
3301 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3302 }
3303 }
3304 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3305
3306 return pte;
3307}
3308
3309pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3310{
3311 pgd_t *pgd;
3312 pud_t *pud;
3313 pmd_t *pmd = NULL;
3314
3315 pgd = pgd_offset(mm, addr);
3316 if (pgd_present(*pgd)) {
3317 pud = pud_offset(pgd, addr);
3318 if (pud_present(*pud)) {
3319 if (pud_huge(*pud))
3320 return (pte_t *)pud;
3321 pmd = pmd_offset(pud, addr);
3322 }
3323 }
3324 return (pte_t *) pmd;
3325}
3326
3327struct page *
3328follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3329 pmd_t *pmd, int write)
3330{
3331 struct page *page;
3332
3333 page = pte_page(*(pte_t *)pmd);
3334 if (page)
3335 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3336 return page;
3337}
3338
3339struct page *
3340follow_huge_pud(struct mm_struct *mm, unsigned long address,
3341 pud_t *pud, int write)
3342{
3343 struct page *page;
3344
3345 page = pte_page(*(pte_t *)pud);
3346 if (page)
3347 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3348 return page;
3349}
3350
3351#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3352
3353/* Can be overriden by architectures */
3354__attribute__((weak)) struct page *
3355follow_huge_pud(struct mm_struct *mm, unsigned long address,
3356 pud_t *pud, int write)
3357{
3358 BUG();
3359 return NULL;
3360}
3361
3362#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3363
d5bd9106
AK
3364#ifdef CONFIG_MEMORY_FAILURE
3365
6de2b1aa
NH
3366/* Should be called in hugetlb_lock */
3367static int is_hugepage_on_freelist(struct page *hpage)
3368{
3369 struct page *page;
3370 struct page *tmp;
3371 struct hstate *h = page_hstate(hpage);
3372 int nid = page_to_nid(hpage);
3373
3374 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3375 if (page == hpage)
3376 return 1;
3377 return 0;
3378}
3379
93f70f90
NH
3380/*
3381 * This function is called from memory failure code.
3382 * Assume the caller holds page lock of the head page.
3383 */
6de2b1aa 3384int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3385{
3386 struct hstate *h = page_hstate(hpage);
3387 int nid = page_to_nid(hpage);
6de2b1aa 3388 int ret = -EBUSY;
93f70f90
NH
3389
3390 spin_lock(&hugetlb_lock);
6de2b1aa 3391 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3392 /*
3393 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3394 * but dangling hpage->lru can trigger list-debug warnings
3395 * (this happens when we call unpoison_memory() on it),
3396 * so let it point to itself with list_del_init().
3397 */
3398 list_del_init(&hpage->lru);
8c6c2ecb 3399 set_page_refcounted(hpage);
6de2b1aa
NH
3400 h->free_huge_pages--;
3401 h->free_huge_pages_node[nid]--;
3402 ret = 0;
3403 }
93f70f90 3404 spin_unlock(&hugetlb_lock);
6de2b1aa 3405 return ret;
93f70f90 3406}
6de2b1aa 3407#endif