]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
mm: hugetlb: defer freeing of HugeTLB pages
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
ab5ac90a 42#include <linux/page_owner.h>
7835e98b 43#include "internal.h"
f41f2ed4 44#include "hugetlb_vmemmap.h"
1da177e4 45
c3f38a38 46int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 49
dbda8fea 50#ifdef CONFIG_CMA
cf11e85f 51static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
52#endif
53static unsigned long hugetlb_cma_size __initdata;
cf11e85f 54
641844f5
NH
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 60
53ba51d2
JT
61__initdata LIST_HEAD(huge_boot_pages);
62
e5ff2159
AK
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 66static bool __initdata parsed_valid_hugepagesz = true;
282f4214 67static bool __initdata parsed_default_hugepagesz;
e5ff2159 68
3935baa9 69/*
31caf665
NH
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
3935baa9 72 */
c3f38a38 73DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 74
8382d914
DB
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
c672c7f2 80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 81
7ca02d0a
MK
82/* Forward declaration */
83static int hugetlb_acct_memory(struct hstate *h, long delta);
84
1d88433b 85static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 86{
1d88433b
ML
87 if (spool->count)
88 return false;
89 if (spool->max_hpages != -1)
90 return spool->used_hpages == 0;
91 if (spool->min_hpages != -1)
92 return spool->rsv_hpages == spool->min_hpages;
93
94 return true;
95}
90481622 96
db71ef79
MK
97static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
98 unsigned long irq_flags)
1d88433b 99{
db71ef79 100 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
101
102 /* If no pages are used, and no other handles to the subpool
7c8de358 103 * remain, give up any reservations based on minimum size and
7ca02d0a 104 * free the subpool */
1d88433b 105 if (subpool_is_free(spool)) {
7ca02d0a
MK
106 if (spool->min_hpages != -1)
107 hugetlb_acct_memory(spool->hstate,
108 -spool->min_hpages);
90481622 109 kfree(spool);
7ca02d0a 110 }
90481622
DG
111}
112
7ca02d0a
MK
113struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
114 long min_hpages)
90481622
DG
115{
116 struct hugepage_subpool *spool;
117
c6a91820 118 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
119 if (!spool)
120 return NULL;
121
122 spin_lock_init(&spool->lock);
123 spool->count = 1;
7ca02d0a
MK
124 spool->max_hpages = max_hpages;
125 spool->hstate = h;
126 spool->min_hpages = min_hpages;
127
128 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
129 kfree(spool);
130 return NULL;
131 }
132 spool->rsv_hpages = min_hpages;
90481622
DG
133
134 return spool;
135}
136
137void hugepage_put_subpool(struct hugepage_subpool *spool)
138{
db71ef79
MK
139 unsigned long flags;
140
141 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
142 BUG_ON(!spool->count);
143 spool->count--;
db71ef79 144 unlock_or_release_subpool(spool, flags);
90481622
DG
145}
146
1c5ecae3
MK
147/*
148 * Subpool accounting for allocating and reserving pages.
149 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 150 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
151 * global pools must be adjusted (upward). The returned value may
152 * only be different than the passed value (delta) in the case where
7c8de358 153 * a subpool minimum size must be maintained.
1c5ecae3
MK
154 */
155static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
156 long delta)
157{
1c5ecae3 158 long ret = delta;
90481622
DG
159
160 if (!spool)
1c5ecae3 161 return ret;
90481622 162
db71ef79 163 spin_lock_irq(&spool->lock);
1c5ecae3
MK
164
165 if (spool->max_hpages != -1) { /* maximum size accounting */
166 if ((spool->used_hpages + delta) <= spool->max_hpages)
167 spool->used_hpages += delta;
168 else {
169 ret = -ENOMEM;
170 goto unlock_ret;
171 }
90481622 172 }
90481622 173
09a95e29
MK
174 /* minimum size accounting */
175 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
176 if (delta > spool->rsv_hpages) {
177 /*
178 * Asking for more reserves than those already taken on
179 * behalf of subpool. Return difference.
180 */
181 ret = delta - spool->rsv_hpages;
182 spool->rsv_hpages = 0;
183 } else {
184 ret = 0; /* reserves already accounted for */
185 spool->rsv_hpages -= delta;
186 }
187 }
188
189unlock_ret:
db71ef79 190 spin_unlock_irq(&spool->lock);
90481622
DG
191 return ret;
192}
193
1c5ecae3
MK
194/*
195 * Subpool accounting for freeing and unreserving pages.
196 * Return the number of global page reservations that must be dropped.
197 * The return value may only be different than the passed value (delta)
198 * in the case where a subpool minimum size must be maintained.
199 */
200static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
201 long delta)
202{
1c5ecae3 203 long ret = delta;
db71ef79 204 unsigned long flags;
1c5ecae3 205
90481622 206 if (!spool)
1c5ecae3 207 return delta;
90481622 208
db71ef79 209 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
210
211 if (spool->max_hpages != -1) /* maximum size accounting */
212 spool->used_hpages -= delta;
213
09a95e29
MK
214 /* minimum size accounting */
215 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
216 if (spool->rsv_hpages + delta <= spool->min_hpages)
217 ret = 0;
218 else
219 ret = spool->rsv_hpages + delta - spool->min_hpages;
220
221 spool->rsv_hpages += delta;
222 if (spool->rsv_hpages > spool->min_hpages)
223 spool->rsv_hpages = spool->min_hpages;
224 }
225
226 /*
227 * If hugetlbfs_put_super couldn't free spool due to an outstanding
228 * quota reference, free it now.
229 */
db71ef79 230 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
231
232 return ret;
90481622
DG
233}
234
235static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
236{
237 return HUGETLBFS_SB(inode->i_sb)->spool;
238}
239
240static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
241{
496ad9aa 242 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
243}
244
0db9d74e
MA
245/* Helper that removes a struct file_region from the resv_map cache and returns
246 * it for use.
247 */
248static struct file_region *
249get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
250{
251 struct file_region *nrg = NULL;
252
253 VM_BUG_ON(resv->region_cache_count <= 0);
254
255 resv->region_cache_count--;
256 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
257 list_del(&nrg->link);
258
259 nrg->from = from;
260 nrg->to = to;
261
262 return nrg;
263}
264
075a61d0
MA
265static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
266 struct file_region *rg)
267{
268#ifdef CONFIG_CGROUP_HUGETLB
269 nrg->reservation_counter = rg->reservation_counter;
270 nrg->css = rg->css;
271 if (rg->css)
272 css_get(rg->css);
273#endif
274}
275
276/* Helper that records hugetlb_cgroup uncharge info. */
277static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
278 struct hstate *h,
279 struct resv_map *resv,
280 struct file_region *nrg)
281{
282#ifdef CONFIG_CGROUP_HUGETLB
283 if (h_cg) {
284 nrg->reservation_counter =
285 &h_cg->rsvd_hugepage[hstate_index(h)];
286 nrg->css = &h_cg->css;
d85aecf2
ML
287 /*
288 * The caller will hold exactly one h_cg->css reference for the
289 * whole contiguous reservation region. But this area might be
290 * scattered when there are already some file_regions reside in
291 * it. As a result, many file_regions may share only one css
292 * reference. In order to ensure that one file_region must hold
293 * exactly one h_cg->css reference, we should do css_get for
294 * each file_region and leave the reference held by caller
295 * untouched.
296 */
297 css_get(&h_cg->css);
075a61d0
MA
298 if (!resv->pages_per_hpage)
299 resv->pages_per_hpage = pages_per_huge_page(h);
300 /* pages_per_hpage should be the same for all entries in
301 * a resv_map.
302 */
303 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304 } else {
305 nrg->reservation_counter = NULL;
306 nrg->css = NULL;
307 }
308#endif
309}
310
d85aecf2
ML
311static void put_uncharge_info(struct file_region *rg)
312{
313#ifdef CONFIG_CGROUP_HUGETLB
314 if (rg->css)
315 css_put(rg->css);
316#endif
317}
318
a9b3f867
MA
319static bool has_same_uncharge_info(struct file_region *rg,
320 struct file_region *org)
321{
322#ifdef CONFIG_CGROUP_HUGETLB
323 return rg && org &&
324 rg->reservation_counter == org->reservation_counter &&
325 rg->css == org->css;
326
327#else
328 return true;
329#endif
330}
331
332static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
333{
334 struct file_region *nrg = NULL, *prg = NULL;
335
336 prg = list_prev_entry(rg, link);
337 if (&prg->link != &resv->regions && prg->to == rg->from &&
338 has_same_uncharge_info(prg, rg)) {
339 prg->to = rg->to;
340
341 list_del(&rg->link);
d85aecf2 342 put_uncharge_info(rg);
a9b3f867
MA
343 kfree(rg);
344
7db5e7b6 345 rg = prg;
a9b3f867
MA
346 }
347
348 nrg = list_next_entry(rg, link);
349 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
350 has_same_uncharge_info(nrg, rg)) {
351 nrg->from = rg->from;
352
353 list_del(&rg->link);
d85aecf2 354 put_uncharge_info(rg);
a9b3f867 355 kfree(rg);
a9b3f867
MA
356 }
357}
358
2103cf9c
PX
359static inline long
360hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
361 long to, struct hstate *h, struct hugetlb_cgroup *cg,
362 long *regions_needed)
363{
364 struct file_region *nrg;
365
366 if (!regions_needed) {
367 nrg = get_file_region_entry_from_cache(map, from, to);
368 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
369 list_add(&nrg->link, rg->link.prev);
370 coalesce_file_region(map, nrg);
371 } else
372 *regions_needed += 1;
373
374 return to - from;
375}
376
972a3da3
WY
377/*
378 * Must be called with resv->lock held.
379 *
380 * Calling this with regions_needed != NULL will count the number of pages
381 * to be added but will not modify the linked list. And regions_needed will
382 * indicate the number of file_regions needed in the cache to carry out to add
383 * the regions for this range.
d75c6af9
MA
384 */
385static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 386 struct hugetlb_cgroup *h_cg,
972a3da3 387 struct hstate *h, long *regions_needed)
d75c6af9 388{
0db9d74e 389 long add = 0;
d75c6af9 390 struct list_head *head = &resv->regions;
0db9d74e 391 long last_accounted_offset = f;
2103cf9c 392 struct file_region *rg = NULL, *trg = NULL;
d75c6af9 393
0db9d74e
MA
394 if (regions_needed)
395 *regions_needed = 0;
d75c6af9 396
0db9d74e
MA
397 /* In this loop, we essentially handle an entry for the range
398 * [last_accounted_offset, rg->from), at every iteration, with some
399 * bounds checking.
400 */
401 list_for_each_entry_safe(rg, trg, head, link) {
402 /* Skip irrelevant regions that start before our range. */
403 if (rg->from < f) {
404 /* If this region ends after the last accounted offset,
405 * then we need to update last_accounted_offset.
406 */
407 if (rg->to > last_accounted_offset)
408 last_accounted_offset = rg->to;
409 continue;
410 }
d75c6af9 411
0db9d74e
MA
412 /* When we find a region that starts beyond our range, we've
413 * finished.
414 */
ca7e0457 415 if (rg->from >= t)
d75c6af9
MA
416 break;
417
0db9d74e
MA
418 /* Add an entry for last_accounted_offset -> rg->from, and
419 * update last_accounted_offset.
420 */
2103cf9c
PX
421 if (rg->from > last_accounted_offset)
422 add += hugetlb_resv_map_add(resv, rg,
423 last_accounted_offset,
424 rg->from, h, h_cg,
425 regions_needed);
0db9d74e
MA
426
427 last_accounted_offset = rg->to;
428 }
429
430 /* Handle the case where our range extends beyond
431 * last_accounted_offset.
432 */
2103cf9c
PX
433 if (last_accounted_offset < t)
434 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
435 t, h, h_cg, regions_needed);
0db9d74e
MA
436
437 VM_BUG_ON(add < 0);
438 return add;
439}
440
441/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
442 */
443static int allocate_file_region_entries(struct resv_map *resv,
444 int regions_needed)
445 __must_hold(&resv->lock)
446{
447 struct list_head allocated_regions;
448 int to_allocate = 0, i = 0;
449 struct file_region *trg = NULL, *rg = NULL;
450
451 VM_BUG_ON(regions_needed < 0);
452
453 INIT_LIST_HEAD(&allocated_regions);
454
455 /*
456 * Check for sufficient descriptors in the cache to accommodate
457 * the number of in progress add operations plus regions_needed.
458 *
459 * This is a while loop because when we drop the lock, some other call
460 * to region_add or region_del may have consumed some region_entries,
461 * so we keep looping here until we finally have enough entries for
462 * (adds_in_progress + regions_needed).
463 */
464 while (resv->region_cache_count <
465 (resv->adds_in_progress + regions_needed)) {
466 to_allocate = resv->adds_in_progress + regions_needed -
467 resv->region_cache_count;
468
469 /* At this point, we should have enough entries in the cache
f0953a1b 470 * for all the existing adds_in_progress. We should only be
0db9d74e 471 * needing to allocate for regions_needed.
d75c6af9 472 */
0db9d74e
MA
473 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
474
475 spin_unlock(&resv->lock);
476 for (i = 0; i < to_allocate; i++) {
477 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
478 if (!trg)
479 goto out_of_memory;
480 list_add(&trg->link, &allocated_regions);
d75c6af9 481 }
d75c6af9 482
0db9d74e
MA
483 spin_lock(&resv->lock);
484
d3ec7b6e
WY
485 list_splice(&allocated_regions, &resv->region_cache);
486 resv->region_cache_count += to_allocate;
d75c6af9
MA
487 }
488
0db9d74e 489 return 0;
d75c6af9 490
0db9d74e
MA
491out_of_memory:
492 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
493 list_del(&rg->link);
494 kfree(rg);
495 }
496 return -ENOMEM;
d75c6af9
MA
497}
498
1dd308a7
MK
499/*
500 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
501 * map. Regions will be taken from the cache to fill in this range.
502 * Sufficient regions should exist in the cache due to the previous
503 * call to region_chg with the same range, but in some cases the cache will not
504 * have sufficient entries due to races with other code doing region_add or
505 * region_del. The extra needed entries will be allocated.
cf3ad20b 506 *
0db9d74e
MA
507 * regions_needed is the out value provided by a previous call to region_chg.
508 *
509 * Return the number of new huge pages added to the map. This number is greater
510 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 511 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
512 * region_add of regions of length 1 never allocate file_regions and cannot
513 * fail; region_chg will always allocate at least 1 entry and a region_add for
514 * 1 page will only require at most 1 entry.
1dd308a7 515 */
0db9d74e 516static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
517 long in_regions_needed, struct hstate *h,
518 struct hugetlb_cgroup *h_cg)
96822904 519{
0db9d74e 520 long add = 0, actual_regions_needed = 0;
96822904 521
7b24d861 522 spin_lock(&resv->lock);
0db9d74e
MA
523retry:
524
525 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
526 add_reservation_in_range(resv, f, t, NULL, NULL,
527 &actual_regions_needed);
96822904 528
5e911373 529 /*
0db9d74e
MA
530 * Check for sufficient descriptors in the cache to accommodate
531 * this add operation. Note that actual_regions_needed may be greater
532 * than in_regions_needed, as the resv_map may have been modified since
533 * the region_chg call. In this case, we need to make sure that we
534 * allocate extra entries, such that we have enough for all the
535 * existing adds_in_progress, plus the excess needed for this
536 * operation.
5e911373 537 */
0db9d74e
MA
538 if (actual_regions_needed > in_regions_needed &&
539 resv->region_cache_count <
540 resv->adds_in_progress +
541 (actual_regions_needed - in_regions_needed)) {
542 /* region_add operation of range 1 should never need to
543 * allocate file_region entries.
544 */
545 VM_BUG_ON(t - f <= 1);
5e911373 546
0db9d74e
MA
547 if (allocate_file_region_entries(
548 resv, actual_regions_needed - in_regions_needed)) {
549 return -ENOMEM;
550 }
5e911373 551
0db9d74e 552 goto retry;
5e911373
MK
553 }
554
972a3da3 555 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
556
557 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 558
7b24d861 559 spin_unlock(&resv->lock);
cf3ad20b 560 return add;
96822904
AW
561}
562
1dd308a7
MK
563/*
564 * Examine the existing reserve map and determine how many
565 * huge pages in the specified range [f, t) are NOT currently
566 * represented. This routine is called before a subsequent
567 * call to region_add that will actually modify the reserve
568 * map to add the specified range [f, t). region_chg does
569 * not change the number of huge pages represented by the
0db9d74e
MA
570 * map. A number of new file_region structures is added to the cache as a
571 * placeholder, for the subsequent region_add call to use. At least 1
572 * file_region structure is added.
573 *
574 * out_regions_needed is the number of regions added to the
575 * resv->adds_in_progress. This value needs to be provided to a follow up call
576 * to region_add or region_abort for proper accounting.
5e911373
MK
577 *
578 * Returns the number of huge pages that need to be added to the existing
579 * reservation map for the range [f, t). This number is greater or equal to
580 * zero. -ENOMEM is returned if a new file_region structure or cache entry
581 * is needed and can not be allocated.
1dd308a7 582 */
0db9d74e
MA
583static long region_chg(struct resv_map *resv, long f, long t,
584 long *out_regions_needed)
96822904 585{
96822904
AW
586 long chg = 0;
587
7b24d861 588 spin_lock(&resv->lock);
5e911373 589
972a3da3 590 /* Count how many hugepages in this range are NOT represented. */
075a61d0 591 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 592 out_regions_needed);
5e911373 593
0db9d74e
MA
594 if (*out_regions_needed == 0)
595 *out_regions_needed = 1;
5e911373 596
0db9d74e
MA
597 if (allocate_file_region_entries(resv, *out_regions_needed))
598 return -ENOMEM;
5e911373 599
0db9d74e 600 resv->adds_in_progress += *out_regions_needed;
7b24d861 601
7b24d861 602 spin_unlock(&resv->lock);
96822904
AW
603 return chg;
604}
605
5e911373
MK
606/*
607 * Abort the in progress add operation. The adds_in_progress field
608 * of the resv_map keeps track of the operations in progress between
609 * calls to region_chg and region_add. Operations are sometimes
610 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
611 * is called to decrement the adds_in_progress counter. regions_needed
612 * is the value returned by the region_chg call, it is used to decrement
613 * the adds_in_progress counter.
5e911373
MK
614 *
615 * NOTE: The range arguments [f, t) are not needed or used in this
616 * routine. They are kept to make reading the calling code easier as
617 * arguments will match the associated region_chg call.
618 */
0db9d74e
MA
619static void region_abort(struct resv_map *resv, long f, long t,
620 long regions_needed)
5e911373
MK
621{
622 spin_lock(&resv->lock);
623 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 624 resv->adds_in_progress -= regions_needed;
5e911373
MK
625 spin_unlock(&resv->lock);
626}
627
1dd308a7 628/*
feba16e2
MK
629 * Delete the specified range [f, t) from the reserve map. If the
630 * t parameter is LONG_MAX, this indicates that ALL regions after f
631 * should be deleted. Locate the regions which intersect [f, t)
632 * and either trim, delete or split the existing regions.
633 *
634 * Returns the number of huge pages deleted from the reserve map.
635 * In the normal case, the return value is zero or more. In the
636 * case where a region must be split, a new region descriptor must
637 * be allocated. If the allocation fails, -ENOMEM will be returned.
638 * NOTE: If the parameter t == LONG_MAX, then we will never split
639 * a region and possibly return -ENOMEM. Callers specifying
640 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 641 */
feba16e2 642static long region_del(struct resv_map *resv, long f, long t)
96822904 643{
1406ec9b 644 struct list_head *head = &resv->regions;
96822904 645 struct file_region *rg, *trg;
feba16e2
MK
646 struct file_region *nrg = NULL;
647 long del = 0;
96822904 648
feba16e2 649retry:
7b24d861 650 spin_lock(&resv->lock);
feba16e2 651 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
652 /*
653 * Skip regions before the range to be deleted. file_region
654 * ranges are normally of the form [from, to). However, there
655 * may be a "placeholder" entry in the map which is of the form
656 * (from, to) with from == to. Check for placeholder entries
657 * at the beginning of the range to be deleted.
658 */
659 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 660 continue;
dbe409e4 661
feba16e2 662 if (rg->from >= t)
96822904 663 break;
96822904 664
feba16e2
MK
665 if (f > rg->from && t < rg->to) { /* Must split region */
666 /*
667 * Check for an entry in the cache before dropping
668 * lock and attempting allocation.
669 */
670 if (!nrg &&
671 resv->region_cache_count > resv->adds_in_progress) {
672 nrg = list_first_entry(&resv->region_cache,
673 struct file_region,
674 link);
675 list_del(&nrg->link);
676 resv->region_cache_count--;
677 }
96822904 678
feba16e2
MK
679 if (!nrg) {
680 spin_unlock(&resv->lock);
681 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
682 if (!nrg)
683 return -ENOMEM;
684 goto retry;
685 }
686
687 del += t - f;
79aa925b 688 hugetlb_cgroup_uncharge_file_region(
d85aecf2 689 resv, rg, t - f, false);
feba16e2
MK
690
691 /* New entry for end of split region */
692 nrg->from = t;
693 nrg->to = rg->to;
075a61d0
MA
694
695 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
696
feba16e2
MK
697 INIT_LIST_HEAD(&nrg->link);
698
699 /* Original entry is trimmed */
700 rg->to = f;
701
702 list_add(&nrg->link, &rg->link);
703 nrg = NULL;
96822904 704 break;
feba16e2
MK
705 }
706
707 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
708 del += rg->to - rg->from;
075a61d0 709 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 710 rg->to - rg->from, true);
feba16e2
MK
711 list_del(&rg->link);
712 kfree(rg);
713 continue;
714 }
715
716 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 717 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 718 t - rg->from, false);
075a61d0 719
79aa925b
MK
720 del += t - rg->from;
721 rg->from = t;
722 } else { /* Trim end of region */
075a61d0 723 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 724 rg->to - f, false);
79aa925b
MK
725
726 del += rg->to - f;
727 rg->to = f;
feba16e2 728 }
96822904 729 }
7b24d861 730
7b24d861 731 spin_unlock(&resv->lock);
feba16e2
MK
732 kfree(nrg);
733 return del;
96822904
AW
734}
735
b5cec28d
MK
736/*
737 * A rare out of memory error was encountered which prevented removal of
738 * the reserve map region for a page. The huge page itself was free'ed
739 * and removed from the page cache. This routine will adjust the subpool
740 * usage count, and the global reserve count if needed. By incrementing
741 * these counts, the reserve map entry which could not be deleted will
742 * appear as a "reserved" entry instead of simply dangling with incorrect
743 * counts.
744 */
72e2936c 745void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
746{
747 struct hugepage_subpool *spool = subpool_inode(inode);
748 long rsv_adjust;
da56388c 749 bool reserved = false;
b5cec28d
MK
750
751 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 752 if (rsv_adjust > 0) {
b5cec28d
MK
753 struct hstate *h = hstate_inode(inode);
754
da56388c
ML
755 if (!hugetlb_acct_memory(h, 1))
756 reserved = true;
757 } else if (!rsv_adjust) {
758 reserved = true;
b5cec28d 759 }
da56388c
ML
760
761 if (!reserved)
762 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
763}
764
1dd308a7
MK
765/*
766 * Count and return the number of huge pages in the reserve map
767 * that intersect with the range [f, t).
768 */
1406ec9b 769static long region_count(struct resv_map *resv, long f, long t)
84afd99b 770{
1406ec9b 771 struct list_head *head = &resv->regions;
84afd99b
AW
772 struct file_region *rg;
773 long chg = 0;
774
7b24d861 775 spin_lock(&resv->lock);
84afd99b
AW
776 /* Locate each segment we overlap with, and count that overlap. */
777 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
778 long seg_from;
779 long seg_to;
84afd99b
AW
780
781 if (rg->to <= f)
782 continue;
783 if (rg->from >= t)
784 break;
785
786 seg_from = max(rg->from, f);
787 seg_to = min(rg->to, t);
788
789 chg += seg_to - seg_from;
790 }
7b24d861 791 spin_unlock(&resv->lock);
84afd99b
AW
792
793 return chg;
794}
795
e7c4b0bf
AW
796/*
797 * Convert the address within this vma to the page offset within
798 * the mapping, in pagecache page units; huge pages here.
799 */
a5516438
AK
800static pgoff_t vma_hugecache_offset(struct hstate *h,
801 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 802{
a5516438
AK
803 return ((address - vma->vm_start) >> huge_page_shift(h)) +
804 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
805}
806
0fe6e20b
NH
807pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
808 unsigned long address)
809{
810 return vma_hugecache_offset(hstate_vma(vma), vma, address);
811}
dee41079 812EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 813
08fba699
MG
814/*
815 * Return the size of the pages allocated when backing a VMA. In the majority
816 * cases this will be same size as used by the page table entries.
817 */
818unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
819{
05ea8860
DW
820 if (vma->vm_ops && vma->vm_ops->pagesize)
821 return vma->vm_ops->pagesize(vma);
822 return PAGE_SIZE;
08fba699 823}
f340ca0f 824EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 825
3340289d
MG
826/*
827 * Return the page size being used by the MMU to back a VMA. In the majority
828 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
829 * architectures where it differs, an architecture-specific 'strong'
830 * version of this symbol is required.
3340289d 831 */
09135cc5 832__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
833{
834 return vma_kernel_pagesize(vma);
835}
3340289d 836
84afd99b
AW
837/*
838 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
839 * bits of the reservation map pointer, which are always clear due to
840 * alignment.
841 */
842#define HPAGE_RESV_OWNER (1UL << 0)
843#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 844#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 845
a1e78772
MG
846/*
847 * These helpers are used to track how many pages are reserved for
848 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
849 * is guaranteed to have their future faults succeed.
850 *
851 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
852 * the reserve counters are updated with the hugetlb_lock held. It is safe
853 * to reset the VMA at fork() time as it is not in use yet and there is no
854 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
855 *
856 * The private mapping reservation is represented in a subtly different
857 * manner to a shared mapping. A shared mapping has a region map associated
858 * with the underlying file, this region map represents the backing file
859 * pages which have ever had a reservation assigned which this persists even
860 * after the page is instantiated. A private mapping has a region map
861 * associated with the original mmap which is attached to all VMAs which
862 * reference it, this region map represents those offsets which have consumed
863 * reservation ie. where pages have been instantiated.
a1e78772 864 */
e7c4b0bf
AW
865static unsigned long get_vma_private_data(struct vm_area_struct *vma)
866{
867 return (unsigned long)vma->vm_private_data;
868}
869
870static void set_vma_private_data(struct vm_area_struct *vma,
871 unsigned long value)
872{
873 vma->vm_private_data = (void *)value;
874}
875
e9fe92ae
MA
876static void
877resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
878 struct hugetlb_cgroup *h_cg,
879 struct hstate *h)
880{
881#ifdef CONFIG_CGROUP_HUGETLB
882 if (!h_cg || !h) {
883 resv_map->reservation_counter = NULL;
884 resv_map->pages_per_hpage = 0;
885 resv_map->css = NULL;
886 } else {
887 resv_map->reservation_counter =
888 &h_cg->rsvd_hugepage[hstate_index(h)];
889 resv_map->pages_per_hpage = pages_per_huge_page(h);
890 resv_map->css = &h_cg->css;
891 }
892#endif
893}
894
9119a41e 895struct resv_map *resv_map_alloc(void)
84afd99b
AW
896{
897 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
898 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
899
900 if (!resv_map || !rg) {
901 kfree(resv_map);
902 kfree(rg);
84afd99b 903 return NULL;
5e911373 904 }
84afd99b
AW
905
906 kref_init(&resv_map->refs);
7b24d861 907 spin_lock_init(&resv_map->lock);
84afd99b
AW
908 INIT_LIST_HEAD(&resv_map->regions);
909
5e911373 910 resv_map->adds_in_progress = 0;
e9fe92ae
MA
911 /*
912 * Initialize these to 0. On shared mappings, 0's here indicate these
913 * fields don't do cgroup accounting. On private mappings, these will be
914 * re-initialized to the proper values, to indicate that hugetlb cgroup
915 * reservations are to be un-charged from here.
916 */
917 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
918
919 INIT_LIST_HEAD(&resv_map->region_cache);
920 list_add(&rg->link, &resv_map->region_cache);
921 resv_map->region_cache_count = 1;
922
84afd99b
AW
923 return resv_map;
924}
925
9119a41e 926void resv_map_release(struct kref *ref)
84afd99b
AW
927{
928 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
929 struct list_head *head = &resv_map->region_cache;
930 struct file_region *rg, *trg;
84afd99b
AW
931
932 /* Clear out any active regions before we release the map. */
feba16e2 933 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
934
935 /* ... and any entries left in the cache */
936 list_for_each_entry_safe(rg, trg, head, link) {
937 list_del(&rg->link);
938 kfree(rg);
939 }
940
941 VM_BUG_ON(resv_map->adds_in_progress);
942
84afd99b
AW
943 kfree(resv_map);
944}
945
4e35f483
JK
946static inline struct resv_map *inode_resv_map(struct inode *inode)
947{
f27a5136
MK
948 /*
949 * At inode evict time, i_mapping may not point to the original
950 * address space within the inode. This original address space
951 * contains the pointer to the resv_map. So, always use the
952 * address space embedded within the inode.
953 * The VERY common case is inode->mapping == &inode->i_data but,
954 * this may not be true for device special inodes.
955 */
956 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
957}
958
84afd99b 959static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 960{
81d1b09c 961 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
962 if (vma->vm_flags & VM_MAYSHARE) {
963 struct address_space *mapping = vma->vm_file->f_mapping;
964 struct inode *inode = mapping->host;
965
966 return inode_resv_map(inode);
967
968 } else {
84afd99b
AW
969 return (struct resv_map *)(get_vma_private_data(vma) &
970 ~HPAGE_RESV_MASK);
4e35f483 971 }
a1e78772
MG
972}
973
84afd99b 974static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 975{
81d1b09c
SL
976 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
977 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 978
84afd99b
AW
979 set_vma_private_data(vma, (get_vma_private_data(vma) &
980 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
981}
982
983static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
984{
81d1b09c
SL
985 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
986 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
987
988 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
989}
990
991static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
992{
81d1b09c 993 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
994
995 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
996}
997
04f2cbe3 998/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
999void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1000{
81d1b09c 1001 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 1002 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
1003 vma->vm_private_data = (void *)0;
1004}
1005
1006/* Returns true if the VMA has associated reserve pages */
559ec2f8 1007static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1008{
af0ed73e
JK
1009 if (vma->vm_flags & VM_NORESERVE) {
1010 /*
1011 * This address is already reserved by other process(chg == 0),
1012 * so, we should decrement reserved count. Without decrementing,
1013 * reserve count remains after releasing inode, because this
1014 * allocated page will go into page cache and is regarded as
1015 * coming from reserved pool in releasing step. Currently, we
1016 * don't have any other solution to deal with this situation
1017 * properly, so add work-around here.
1018 */
1019 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1020 return true;
af0ed73e 1021 else
559ec2f8 1022 return false;
af0ed73e 1023 }
a63884e9
JK
1024
1025 /* Shared mappings always use reserves */
1fb1b0e9
MK
1026 if (vma->vm_flags & VM_MAYSHARE) {
1027 /*
1028 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1029 * be a region map for all pages. The only situation where
1030 * there is no region map is if a hole was punched via
7c8de358 1031 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1032 * use. This situation is indicated if chg != 0.
1033 */
1034 if (chg)
1035 return false;
1036 else
1037 return true;
1038 }
a63884e9
JK
1039
1040 /*
1041 * Only the process that called mmap() has reserves for
1042 * private mappings.
1043 */
67961f9d
MK
1044 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1045 /*
1046 * Like the shared case above, a hole punch or truncate
1047 * could have been performed on the private mapping.
1048 * Examine the value of chg to determine if reserves
1049 * actually exist or were previously consumed.
1050 * Very Subtle - The value of chg comes from a previous
1051 * call to vma_needs_reserves(). The reserve map for
1052 * private mappings has different (opposite) semantics
1053 * than that of shared mappings. vma_needs_reserves()
1054 * has already taken this difference in semantics into
1055 * account. Therefore, the meaning of chg is the same
1056 * as in the shared case above. Code could easily be
1057 * combined, but keeping it separate draws attention to
1058 * subtle differences.
1059 */
1060 if (chg)
1061 return false;
1062 else
1063 return true;
1064 }
a63884e9 1065
559ec2f8 1066 return false;
a1e78772
MG
1067}
1068
a5516438 1069static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1070{
1071 int nid = page_to_nid(page);
9487ca60
MK
1072
1073 lockdep_assert_held(&hugetlb_lock);
0edaecfa 1074 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1075 h->free_huge_pages++;
1076 h->free_huge_pages_node[nid]++;
6c037149 1077 SetHPageFreed(page);
1da177e4
LT
1078}
1079
94310cbc 1080static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1081{
1082 struct page *page;
1a08ae36 1083 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1084
9487ca60 1085 lockdep_assert_held(&hugetlb_lock);
bbe88753 1086 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
8e3560d9 1087 if (pin && !is_pinnable_page(page))
bbe88753 1088 continue;
bf50bab2 1089
6664bfc8
WY
1090 if (PageHWPoison(page))
1091 continue;
1092
1093 list_move(&page->lru, &h->hugepage_activelist);
1094 set_page_refcounted(page);
6c037149 1095 ClearHPageFreed(page);
6664bfc8
WY
1096 h->free_huge_pages--;
1097 h->free_huge_pages_node[nid]--;
1098 return page;
bbe88753
JK
1099 }
1100
6664bfc8 1101 return NULL;
bf50bab2
NH
1102}
1103
3e59fcb0
MH
1104static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1105 nodemask_t *nmask)
94310cbc 1106{
3e59fcb0
MH
1107 unsigned int cpuset_mems_cookie;
1108 struct zonelist *zonelist;
1109 struct zone *zone;
1110 struct zoneref *z;
98fa15f3 1111 int node = NUMA_NO_NODE;
94310cbc 1112
3e59fcb0
MH
1113 zonelist = node_zonelist(nid, gfp_mask);
1114
1115retry_cpuset:
1116 cpuset_mems_cookie = read_mems_allowed_begin();
1117 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1118 struct page *page;
1119
1120 if (!cpuset_zone_allowed(zone, gfp_mask))
1121 continue;
1122 /*
1123 * no need to ask again on the same node. Pool is node rather than
1124 * zone aware
1125 */
1126 if (zone_to_nid(zone) == node)
1127 continue;
1128 node = zone_to_nid(zone);
94310cbc 1129
94310cbc
AK
1130 page = dequeue_huge_page_node_exact(h, node);
1131 if (page)
1132 return page;
1133 }
3e59fcb0
MH
1134 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1135 goto retry_cpuset;
1136
94310cbc
AK
1137 return NULL;
1138}
1139
a5516438
AK
1140static struct page *dequeue_huge_page_vma(struct hstate *h,
1141 struct vm_area_struct *vma,
af0ed73e
JK
1142 unsigned long address, int avoid_reserve,
1143 long chg)
1da177e4 1144{
3e59fcb0 1145 struct page *page;
480eccf9 1146 struct mempolicy *mpol;
04ec6264 1147 gfp_t gfp_mask;
3e59fcb0 1148 nodemask_t *nodemask;
04ec6264 1149 int nid;
1da177e4 1150
a1e78772
MG
1151 /*
1152 * A child process with MAP_PRIVATE mappings created by their parent
1153 * have no page reserves. This check ensures that reservations are
1154 * not "stolen". The child may still get SIGKILLed
1155 */
af0ed73e 1156 if (!vma_has_reserves(vma, chg) &&
a5516438 1157 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1158 goto err;
a1e78772 1159
04f2cbe3 1160 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1161 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1162 goto err;
04f2cbe3 1163
04ec6264
VB
1164 gfp_mask = htlb_alloc_mask(h);
1165 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1166 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1167 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1168 SetHPageRestoreReserve(page);
3e59fcb0 1169 h->resv_huge_pages--;
1da177e4 1170 }
cc9a6c87 1171
52cd3b07 1172 mpol_cond_put(mpol);
1da177e4 1173 return page;
cc9a6c87
MG
1174
1175err:
cc9a6c87 1176 return NULL;
1da177e4
LT
1177}
1178
1cac6f2c
LC
1179/*
1180 * common helper functions for hstate_next_node_to_{alloc|free}.
1181 * We may have allocated or freed a huge page based on a different
1182 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1183 * be outside of *nodes_allowed. Ensure that we use an allowed
1184 * node for alloc or free.
1185 */
1186static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1187{
0edaf86c 1188 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1189 VM_BUG_ON(nid >= MAX_NUMNODES);
1190
1191 return nid;
1192}
1193
1194static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1195{
1196 if (!node_isset(nid, *nodes_allowed))
1197 nid = next_node_allowed(nid, nodes_allowed);
1198 return nid;
1199}
1200
1201/*
1202 * returns the previously saved node ["this node"] from which to
1203 * allocate a persistent huge page for the pool and advance the
1204 * next node from which to allocate, handling wrap at end of node
1205 * mask.
1206 */
1207static int hstate_next_node_to_alloc(struct hstate *h,
1208 nodemask_t *nodes_allowed)
1209{
1210 int nid;
1211
1212 VM_BUG_ON(!nodes_allowed);
1213
1214 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1215 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1216
1217 return nid;
1218}
1219
1220/*
10c6ec49 1221 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1222 * node ["this node"] from which to free a huge page. Advance the
1223 * next node id whether or not we find a free huge page to free so
1224 * that the next attempt to free addresses the next node.
1225 */
1226static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1227{
1228 int nid;
1229
1230 VM_BUG_ON(!nodes_allowed);
1231
1232 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1233 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1234
1235 return nid;
1236}
1237
1238#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1239 for (nr_nodes = nodes_weight(*mask); \
1240 nr_nodes > 0 && \
1241 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1242 nr_nodes--)
1243
1244#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1245 for (nr_nodes = nodes_weight(*mask); \
1246 nr_nodes > 0 && \
1247 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1248 nr_nodes--)
1249
e1073d1e 1250#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1251static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1252 unsigned int order)
944d9fec
LC
1253{
1254 int i;
1255 int nr_pages = 1 << order;
1256 struct page *p = page + 1;
1257
c8cc708a 1258 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1259 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1260
944d9fec 1261 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1262 clear_compound_head(p);
944d9fec 1263 set_page_refcounted(p);
944d9fec
LC
1264 }
1265
1266 set_compound_order(page, 0);
ba9c1201 1267 page[1].compound_nr = 0;
944d9fec
LC
1268 __ClearPageHead(page);
1269}
1270
d00181b9 1271static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1272{
cf11e85f
RG
1273 /*
1274 * If the page isn't allocated using the cma allocator,
1275 * cma_release() returns false.
1276 */
dbda8fea
BS
1277#ifdef CONFIG_CMA
1278 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1279 return;
dbda8fea 1280#endif
cf11e85f 1281
944d9fec
LC
1282 free_contig_range(page_to_pfn(page), 1 << order);
1283}
1284
4eb0716e 1285#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1286static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1287 int nid, nodemask_t *nodemask)
944d9fec 1288{
04adbc3f 1289 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1290 if (nid == NUMA_NO_NODE)
1291 nid = numa_mem_id();
944d9fec 1292
dbda8fea
BS
1293#ifdef CONFIG_CMA
1294 {
cf11e85f
RG
1295 struct page *page;
1296 int node;
1297
953f064a
LX
1298 if (hugetlb_cma[nid]) {
1299 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1300 huge_page_order(h), true);
cf11e85f
RG
1301 if (page)
1302 return page;
1303 }
953f064a
LX
1304
1305 if (!(gfp_mask & __GFP_THISNODE)) {
1306 for_each_node_mask(node, *nodemask) {
1307 if (node == nid || !hugetlb_cma[node])
1308 continue;
1309
1310 page = cma_alloc(hugetlb_cma[node], nr_pages,
1311 huge_page_order(h), true);
1312 if (page)
1313 return page;
1314 }
1315 }
cf11e85f 1316 }
dbda8fea 1317#endif
cf11e85f 1318
5e27a2df 1319 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1320}
1321
1322static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1323static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1324#else /* !CONFIG_CONTIG_ALLOC */
1325static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1326 int nid, nodemask_t *nodemask)
1327{
1328 return NULL;
1329}
1330#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1331
e1073d1e 1332#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1333static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1334 int nid, nodemask_t *nodemask)
1335{
1336 return NULL;
1337}
d00181b9 1338static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1339static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1340 unsigned int order) { }
944d9fec
LC
1341#endif
1342
6eb4e88a
MK
1343/*
1344 * Remove hugetlb page from lists, and update dtor so that page appears
1345 * as just a compound page. A reference is held on the page.
1346 *
1347 * Must be called with hugetlb lock held.
1348 */
1349static void remove_hugetlb_page(struct hstate *h, struct page *page,
1350 bool adjust_surplus)
1351{
1352 int nid = page_to_nid(page);
1353
1354 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1355 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1356
9487ca60 1357 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1358 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1359 return;
1360
1361 list_del(&page->lru);
1362
1363 if (HPageFreed(page)) {
1364 h->free_huge_pages--;
1365 h->free_huge_pages_node[nid]--;
1366 }
1367 if (adjust_surplus) {
1368 h->surplus_huge_pages--;
1369 h->surplus_huge_pages_node[nid]--;
1370 }
1371
1372 set_page_refcounted(page);
1373 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1374
1375 h->nr_huge_pages--;
1376 h->nr_huge_pages_node[nid]--;
1377}
1378
b65d4adb 1379static void __update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1380{
1381 int i;
dbfee5ae 1382 struct page *subpage = page;
a5516438 1383
4eb0716e 1384 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1385 return;
18229df5 1386
dbfee5ae
MK
1387 for (i = 0; i < pages_per_huge_page(h);
1388 i++, subpage = mem_map_next(subpage, page, i)) {
1389 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1390 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1391 1 << PG_active | 1 << PG_private |
1392 1 << PG_writeback);
6af2acb6 1393 }
944d9fec
LC
1394 if (hstate_is_gigantic(h)) {
1395 destroy_compound_gigantic_page(page, huge_page_order(h));
1396 free_gigantic_page(page, huge_page_order(h));
1397 } else {
944d9fec
LC
1398 __free_pages(page, huge_page_order(h));
1399 }
6af2acb6
AL
1400}
1401
b65d4adb
MS
1402/*
1403 * As update_and_free_page() can be called under any context, so we cannot
1404 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1405 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1406 * the vmemmap pages.
1407 *
1408 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1409 * freed and frees them one-by-one. As the page->mapping pointer is going
1410 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1411 * structure of a lockless linked list of huge pages to be freed.
1412 */
1413static LLIST_HEAD(hpage_freelist);
1414
1415static void free_hpage_workfn(struct work_struct *work)
1416{
1417 struct llist_node *node;
1418
1419 node = llist_del_all(&hpage_freelist);
1420
1421 while (node) {
1422 struct page *page;
1423 struct hstate *h;
1424
1425 page = container_of((struct address_space **)node,
1426 struct page, mapping);
1427 node = node->next;
1428 page->mapping = NULL;
1429 /*
1430 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1431 * is going to trigger because a previous call to
1432 * remove_hugetlb_page() will set_compound_page_dtor(page,
1433 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1434 */
1435 h = size_to_hstate(page_size(page));
1436
1437 __update_and_free_page(h, page);
1438
1439 cond_resched();
1440 }
1441}
1442static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1443
1444static inline void flush_free_hpage_work(struct hstate *h)
1445{
1446 if (free_vmemmap_pages_per_hpage(h))
1447 flush_work(&free_hpage_work);
1448}
1449
1450static void update_and_free_page(struct hstate *h, struct page *page,
1451 bool atomic)
1452{
1453 if (!free_vmemmap_pages_per_hpage(h) || !atomic) {
1454 __update_and_free_page(h, page);
1455 return;
1456 }
1457
1458 /*
1459 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1460 *
1461 * Only call schedule_work() if hpage_freelist is previously
1462 * empty. Otherwise, schedule_work() had been called but the workfn
1463 * hasn't retrieved the list yet.
1464 */
1465 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1466 schedule_work(&free_hpage_work);
1467}
1468
10c6ec49
MK
1469static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1470{
1471 struct page *page, *t_page;
1472
1473 list_for_each_entry_safe(page, t_page, list, lru) {
b65d4adb 1474 update_and_free_page(h, page, false);
10c6ec49
MK
1475 cond_resched();
1476 }
1477}
1478
e5ff2159
AK
1479struct hstate *size_to_hstate(unsigned long size)
1480{
1481 struct hstate *h;
1482
1483 for_each_hstate(h) {
1484 if (huge_page_size(h) == size)
1485 return h;
1486 }
1487 return NULL;
1488}
1489
db71ef79 1490void free_huge_page(struct page *page)
27a85ef1 1491{
a5516438
AK
1492 /*
1493 * Can't pass hstate in here because it is called from the
1494 * compound page destructor.
1495 */
e5ff2159 1496 struct hstate *h = page_hstate(page);
7893d1d5 1497 int nid = page_to_nid(page);
d6995da3 1498 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1499 bool restore_reserve;
db71ef79 1500 unsigned long flags;
27a85ef1 1501
b4330afb
MK
1502 VM_BUG_ON_PAGE(page_count(page), page);
1503 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1504
d6995da3 1505 hugetlb_set_page_subpool(page, NULL);
8ace22bc 1506 page->mapping = NULL;
d6995da3
MK
1507 restore_reserve = HPageRestoreReserve(page);
1508 ClearHPageRestoreReserve(page);
27a85ef1 1509
1c5ecae3 1510 /*
d6995da3 1511 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1512 * reservation. If the page was associated with a subpool, there
1513 * would have been a page reserved in the subpool before allocation
1514 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1515 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1516 * remove the reserved page from the subpool.
1c5ecae3 1517 */
0919e1b6
MK
1518 if (!restore_reserve) {
1519 /*
1520 * A return code of zero implies that the subpool will be
1521 * under its minimum size if the reservation is not restored
1522 * after page is free. Therefore, force restore_reserve
1523 * operation.
1524 */
1525 if (hugepage_subpool_put_pages(spool, 1) == 0)
1526 restore_reserve = true;
1527 }
1c5ecae3 1528
db71ef79 1529 spin_lock_irqsave(&hugetlb_lock, flags);
8f251a3d 1530 ClearHPageMigratable(page);
6d76dcf4
AK
1531 hugetlb_cgroup_uncharge_page(hstate_index(h),
1532 pages_per_huge_page(h), page);
08cf9faf
MA
1533 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1534 pages_per_huge_page(h), page);
07443a85
JK
1535 if (restore_reserve)
1536 h->resv_huge_pages++;
1537
9157c311 1538 if (HPageTemporary(page)) {
6eb4e88a 1539 remove_hugetlb_page(h, page, false);
db71ef79 1540 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1541 update_and_free_page(h, page, true);
ab5ac90a 1542 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1543 /* remove the page from active list */
6eb4e88a 1544 remove_hugetlb_page(h, page, true);
db71ef79 1545 spin_unlock_irqrestore(&hugetlb_lock, flags);
b65d4adb 1546 update_and_free_page(h, page, true);
7893d1d5 1547 } else {
5d3a551c 1548 arch_clear_hugepage_flags(page);
a5516438 1549 enqueue_huge_page(h, page);
db71ef79 1550 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1551 }
c77c0a8a
WL
1552}
1553
d3d99fcc
OS
1554/*
1555 * Must be called with the hugetlb lock held
1556 */
1557static void __prep_account_new_huge_page(struct hstate *h, int nid)
1558{
1559 lockdep_assert_held(&hugetlb_lock);
1560 h->nr_huge_pages++;
1561 h->nr_huge_pages_node[nid]++;
1562}
1563
f41f2ed4 1564static void __prep_new_huge_page(struct hstate *h, struct page *page)
b7ba30c6 1565{
f41f2ed4 1566 free_huge_page_vmemmap(h, page);
0edaecfa 1567 INIT_LIST_HEAD(&page->lru);
f1e61557 1568 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1569 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1570 set_hugetlb_cgroup(page, NULL);
1adc4d41 1571 set_hugetlb_cgroup_rsvd(page, NULL);
d3d99fcc
OS
1572}
1573
1574static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1575{
f41f2ed4 1576 __prep_new_huge_page(h, page);
db71ef79 1577 spin_lock_irq(&hugetlb_lock);
d3d99fcc 1578 __prep_account_new_huge_page(h, nid);
db71ef79 1579 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1580}
1581
d00181b9 1582static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1583{
1584 int i;
1585 int nr_pages = 1 << order;
1586 struct page *p = page + 1;
1587
1588 /* we rely on prep_new_huge_page to set the destructor */
1589 set_compound_order(page, order);
ef5a22be 1590 __ClearPageReserved(page);
de09d31d 1591 __SetPageHead(page);
20a0307c 1592 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1593 /*
1594 * For gigantic hugepages allocated through bootmem at
1595 * boot, it's safer to be consistent with the not-gigantic
1596 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1597 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1598 * pages may get the reference counting wrong if they see
1599 * PG_reserved set on a tail page (despite the head page not
1600 * having PG_reserved set). Enforcing this consistency between
1601 * head and tail pages allows drivers to optimize away a check
1602 * on the head page when they need know if put_page() is needed
1603 * after get_user_pages().
1604 */
1605 __ClearPageReserved(p);
58a84aa9 1606 set_page_count(p, 0);
1d798ca3 1607 set_compound_head(p, page);
20a0307c 1608 }
b4330afb 1609 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1610 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1611}
1612
7795912c
AM
1613/*
1614 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1615 * transparent huge pages. See the PageTransHuge() documentation for more
1616 * details.
1617 */
20a0307c
WF
1618int PageHuge(struct page *page)
1619{
20a0307c
WF
1620 if (!PageCompound(page))
1621 return 0;
1622
1623 page = compound_head(page);
f1e61557 1624 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1625}
43131e14
NH
1626EXPORT_SYMBOL_GPL(PageHuge);
1627
27c73ae7
AA
1628/*
1629 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1630 * normal or transparent huge pages.
1631 */
1632int PageHeadHuge(struct page *page_head)
1633{
27c73ae7
AA
1634 if (!PageHead(page_head))
1635 return 0;
1636
d4af73e3 1637 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1638}
27c73ae7 1639
c0d0381a
MK
1640/*
1641 * Find and lock address space (mapping) in write mode.
1642 *
336bf30e
MK
1643 * Upon entry, the page is locked which means that page_mapping() is
1644 * stable. Due to locking order, we can only trylock_write. If we can
1645 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1646 */
1647struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1648{
336bf30e 1649 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1650
c0d0381a
MK
1651 if (!mapping)
1652 return mapping;
1653
c0d0381a
MK
1654 if (i_mmap_trylock_write(mapping))
1655 return mapping;
1656
336bf30e 1657 return NULL;
c0d0381a
MK
1658}
1659
fe19bd3d 1660pgoff_t hugetlb_basepage_index(struct page *page)
13d60f4b
ZY
1661{
1662 struct page *page_head = compound_head(page);
1663 pgoff_t index = page_index(page_head);
1664 unsigned long compound_idx;
1665
13d60f4b
ZY
1666 if (compound_order(page_head) >= MAX_ORDER)
1667 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1668 else
1669 compound_idx = page - page_head;
1670
1671 return (index << compound_order(page_head)) + compound_idx;
1672}
1673
0c397dae 1674static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1675 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1676 nodemask_t *node_alloc_noretry)
1da177e4 1677{
af0fb9df 1678 int order = huge_page_order(h);
1da177e4 1679 struct page *page;
f60858f9 1680 bool alloc_try_hard = true;
f96efd58 1681
f60858f9
MK
1682 /*
1683 * By default we always try hard to allocate the page with
1684 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1685 * a loop (to adjust global huge page counts) and previous allocation
1686 * failed, do not continue to try hard on the same node. Use the
1687 * node_alloc_noretry bitmap to manage this state information.
1688 */
1689 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1690 alloc_try_hard = false;
1691 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1692 if (alloc_try_hard)
1693 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1694 if (nid == NUMA_NO_NODE)
1695 nid = numa_mem_id();
84172f4b 1696 page = __alloc_pages(gfp_mask, order, nid, nmask);
af0fb9df
MH
1697 if (page)
1698 __count_vm_event(HTLB_BUDDY_PGALLOC);
1699 else
1700 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1701
f60858f9
MK
1702 /*
1703 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1704 * indicates an overall state change. Clear bit so that we resume
1705 * normal 'try hard' allocations.
1706 */
1707 if (node_alloc_noretry && page && !alloc_try_hard)
1708 node_clear(nid, *node_alloc_noretry);
1709
1710 /*
1711 * If we tried hard to get a page but failed, set bit so that
1712 * subsequent attempts will not try as hard until there is an
1713 * overall state change.
1714 */
1715 if (node_alloc_noretry && !page && alloc_try_hard)
1716 node_set(nid, *node_alloc_noretry);
1717
63b4613c
NA
1718 return page;
1719}
1720
0c397dae
MH
1721/*
1722 * Common helper to allocate a fresh hugetlb page. All specific allocators
1723 * should use this function to get new hugetlb pages
1724 */
1725static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1726 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1727 nodemask_t *node_alloc_noretry)
0c397dae
MH
1728{
1729 struct page *page;
1730
1731 if (hstate_is_gigantic(h))
1732 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1733 else
1734 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1735 nid, nmask, node_alloc_noretry);
0c397dae
MH
1736 if (!page)
1737 return NULL;
1738
1739 if (hstate_is_gigantic(h))
1740 prep_compound_gigantic_page(page, huge_page_order(h));
1741 prep_new_huge_page(h, page, page_to_nid(page));
1742
1743 return page;
1744}
1745
af0fb9df
MH
1746/*
1747 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1748 * manner.
1749 */
f60858f9
MK
1750static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1751 nodemask_t *node_alloc_noretry)
b2261026
JK
1752{
1753 struct page *page;
1754 int nr_nodes, node;
af0fb9df 1755 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1756
1757 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1758 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1759 node_alloc_noretry);
af0fb9df 1760 if (page)
b2261026 1761 break;
b2261026
JK
1762 }
1763
af0fb9df
MH
1764 if (!page)
1765 return 0;
b2261026 1766
af0fb9df
MH
1767 put_page(page); /* free it into the hugepage allocator */
1768
1769 return 1;
b2261026
JK
1770}
1771
e8c5c824 1772/*
10c6ec49
MK
1773 * Remove huge page from pool from next node to free. Attempt to keep
1774 * persistent huge pages more or less balanced over allowed nodes.
1775 * This routine only 'removes' the hugetlb page. The caller must make
1776 * an additional call to free the page to low level allocators.
e8c5c824
LS
1777 * Called with hugetlb_lock locked.
1778 */
10c6ec49
MK
1779static struct page *remove_pool_huge_page(struct hstate *h,
1780 nodemask_t *nodes_allowed,
1781 bool acct_surplus)
e8c5c824 1782{
b2261026 1783 int nr_nodes, node;
10c6ec49 1784 struct page *page = NULL;
e8c5c824 1785
9487ca60 1786 lockdep_assert_held(&hugetlb_lock);
b2261026 1787 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1788 /*
1789 * If we're returning unused surplus pages, only examine
1790 * nodes with surplus pages.
1791 */
b2261026
JK
1792 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1793 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 1794 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 1795 struct page, lru);
6eb4e88a 1796 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 1797 break;
e8c5c824 1798 }
b2261026 1799 }
e8c5c824 1800
10c6ec49 1801 return page;
e8c5c824
LS
1802}
1803
c8721bbb
NH
1804/*
1805 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1806 * nothing for in-use hugepages and non-hugepages.
1807 * This function returns values like below:
1808 *
1809 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1810 * (allocated or reserved.)
1811 * 0: successfully dissolved free hugepages or the page is not a
1812 * hugepage (considered as already dissolved)
c8721bbb 1813 */
c3114a84 1814int dissolve_free_huge_page(struct page *page)
c8721bbb 1815{
6bc9b564 1816 int rc = -EBUSY;
082d5b6b 1817
7ffddd49 1818retry:
faf53def
NH
1819 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1820 if (!PageHuge(page))
1821 return 0;
1822
db71ef79 1823 spin_lock_irq(&hugetlb_lock);
faf53def
NH
1824 if (!PageHuge(page)) {
1825 rc = 0;
1826 goto out;
1827 }
1828
1829 if (!page_count(page)) {
2247bb33
GS
1830 struct page *head = compound_head(page);
1831 struct hstate *h = page_hstate(head);
6bc9b564 1832 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1833 goto out;
7ffddd49
MS
1834
1835 /*
1836 * We should make sure that the page is already on the free list
1837 * when it is dissolved.
1838 */
6c037149 1839 if (unlikely(!HPageFreed(head))) {
db71ef79 1840 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
1841 cond_resched();
1842
1843 /*
1844 * Theoretically, we should return -EBUSY when we
1845 * encounter this race. In fact, we have a chance
1846 * to successfully dissolve the page if we do a
1847 * retry. Because the race window is quite small.
1848 * If we seize this opportunity, it is an optimization
1849 * for increasing the success rate of dissolving page.
1850 */
1851 goto retry;
1852 }
1853
c3114a84
AK
1854 /*
1855 * Move PageHWPoison flag from head page to the raw error page,
1856 * which makes any subpages rather than the error page reusable.
1857 */
1858 if (PageHWPoison(head) && page != head) {
1859 SetPageHWPoison(page);
1860 ClearPageHWPoison(head);
1861 }
0c5da357 1862 remove_hugetlb_page(h, head, false);
c1470b33 1863 h->max_huge_pages--;
db71ef79 1864 spin_unlock_irq(&hugetlb_lock);
b65d4adb 1865 update_and_free_page(h, head, false);
1121828a 1866 return 0;
c8721bbb 1867 }
082d5b6b 1868out:
db71ef79 1869 spin_unlock_irq(&hugetlb_lock);
082d5b6b 1870 return rc;
c8721bbb
NH
1871}
1872
1873/*
1874 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1875 * make specified memory blocks removable from the system.
2247bb33
GS
1876 * Note that this will dissolve a free gigantic hugepage completely, if any
1877 * part of it lies within the given range.
082d5b6b
GS
1878 * Also note that if dissolve_free_huge_page() returns with an error, all
1879 * free hugepages that were dissolved before that error are lost.
c8721bbb 1880 */
082d5b6b 1881int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1882{
c8721bbb 1883 unsigned long pfn;
eb03aa00 1884 struct page *page;
082d5b6b 1885 int rc = 0;
c8721bbb 1886
d0177639 1887 if (!hugepages_supported())
082d5b6b 1888 return rc;
d0177639 1889
eb03aa00
GS
1890 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1891 page = pfn_to_page(pfn);
faf53def
NH
1892 rc = dissolve_free_huge_page(page);
1893 if (rc)
1894 break;
eb03aa00 1895 }
082d5b6b
GS
1896
1897 return rc;
c8721bbb
NH
1898}
1899
ab5ac90a
MH
1900/*
1901 * Allocates a fresh surplus page from the page allocator.
1902 */
0c397dae 1903static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1904 int nid, nodemask_t *nmask)
7893d1d5 1905{
9980d744 1906 struct page *page = NULL;
7893d1d5 1907
bae7f4ae 1908 if (hstate_is_gigantic(h))
aa888a74
AK
1909 return NULL;
1910
db71ef79 1911 spin_lock_irq(&hugetlb_lock);
9980d744
MH
1912 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1913 goto out_unlock;
db71ef79 1914 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 1915
f60858f9 1916 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1917 if (!page)
0c397dae 1918 return NULL;
d1c3fb1f 1919
db71ef79 1920 spin_lock_irq(&hugetlb_lock);
9980d744
MH
1921 /*
1922 * We could have raced with the pool size change.
1923 * Double check that and simply deallocate the new page
1924 * if we would end up overcommiting the surpluses. Abuse
1925 * temporary page to workaround the nasty free_huge_page
1926 * codeflow
1927 */
1928 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 1929 SetHPageTemporary(page);
db71ef79 1930 spin_unlock_irq(&hugetlb_lock);
9980d744 1931 put_page(page);
2bf753e6 1932 return NULL;
9980d744 1933 } else {
9980d744 1934 h->surplus_huge_pages++;
4704dea3 1935 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1936 }
9980d744
MH
1937
1938out_unlock:
db71ef79 1939 spin_unlock_irq(&hugetlb_lock);
7893d1d5
AL
1940
1941 return page;
1942}
1943
bbe88753 1944static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1945 int nid, nodemask_t *nmask)
ab5ac90a
MH
1946{
1947 struct page *page;
1948
1949 if (hstate_is_gigantic(h))
1950 return NULL;
1951
f60858f9 1952 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1953 if (!page)
1954 return NULL;
1955
1956 /*
1957 * We do not account these pages as surplus because they are only
1958 * temporary and will be released properly on the last reference
1959 */
9157c311 1960 SetHPageTemporary(page);
ab5ac90a
MH
1961
1962 return page;
1963}
1964
099730d6
DH
1965/*
1966 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1967 */
e0ec90ee 1968static
0c397dae 1969struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1970 struct vm_area_struct *vma, unsigned long addr)
1971{
aaf14e40
MH
1972 struct page *page;
1973 struct mempolicy *mpol;
1974 gfp_t gfp_mask = htlb_alloc_mask(h);
1975 int nid;
1976 nodemask_t *nodemask;
1977
1978 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1979 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1980 mpol_cond_put(mpol);
1981
1982 return page;
099730d6
DH
1983}
1984
ab5ac90a 1985/* page migration callback function */
3e59fcb0 1986struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1987 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1988{
db71ef79 1989 spin_lock_irq(&hugetlb_lock);
4db9b2ef 1990 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1991 struct page *page;
1992
1993 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1994 if (page) {
db71ef79 1995 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 1996 return page;
4db9b2ef
MH
1997 }
1998 }
db71ef79 1999 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 2000
0c397dae 2001 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2002}
2003
ebd63723 2004/* mempolicy aware migration callback */
389c8178
MH
2005struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2006 unsigned long address)
ebd63723
MH
2007{
2008 struct mempolicy *mpol;
2009 nodemask_t *nodemask;
2010 struct page *page;
ebd63723
MH
2011 gfp_t gfp_mask;
2012 int node;
2013
ebd63723
MH
2014 gfp_mask = htlb_alloc_mask(h);
2015 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 2016 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
2017 mpol_cond_put(mpol);
2018
2019 return page;
2020}
2021
e4e574b7 2022/*
25985edc 2023 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2024 * of size 'delta'.
2025 */
0a4f3d1b 2026static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 2027 __must_hold(&hugetlb_lock)
e4e574b7
AL
2028{
2029 struct list_head surplus_list;
2030 struct page *page, *tmp;
0a4f3d1b
LX
2031 int ret;
2032 long i;
2033 long needed, allocated;
28073b02 2034 bool alloc_ok = true;
e4e574b7 2035
9487ca60 2036 lockdep_assert_held(&hugetlb_lock);
a5516438 2037 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2038 if (needed <= 0) {
a5516438 2039 h->resv_huge_pages += delta;
e4e574b7 2040 return 0;
ac09b3a1 2041 }
e4e574b7
AL
2042
2043 allocated = 0;
2044 INIT_LIST_HEAD(&surplus_list);
2045
2046 ret = -ENOMEM;
2047retry:
db71ef79 2048 spin_unlock_irq(&hugetlb_lock);
e4e574b7 2049 for (i = 0; i < needed; i++) {
0c397dae 2050 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 2051 NUMA_NO_NODE, NULL);
28073b02
HD
2052 if (!page) {
2053 alloc_ok = false;
2054 break;
2055 }
e4e574b7 2056 list_add(&page->lru, &surplus_list);
69ed779a 2057 cond_resched();
e4e574b7 2058 }
28073b02 2059 allocated += i;
e4e574b7
AL
2060
2061 /*
2062 * After retaking hugetlb_lock, we need to recalculate 'needed'
2063 * because either resv_huge_pages or free_huge_pages may have changed.
2064 */
db71ef79 2065 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2066 needed = (h->resv_huge_pages + delta) -
2067 (h->free_huge_pages + allocated);
28073b02
HD
2068 if (needed > 0) {
2069 if (alloc_ok)
2070 goto retry;
2071 /*
2072 * We were not able to allocate enough pages to
2073 * satisfy the entire reservation so we free what
2074 * we've allocated so far.
2075 */
2076 goto free;
2077 }
e4e574b7
AL
2078 /*
2079 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2080 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2081 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2082 * allocator. Commit the entire reservation here to prevent another
2083 * process from stealing the pages as they are added to the pool but
2084 * before they are reserved.
e4e574b7
AL
2085 */
2086 needed += allocated;
a5516438 2087 h->resv_huge_pages += delta;
e4e574b7 2088 ret = 0;
a9869b83 2089
19fc3f0a 2090 /* Free the needed pages to the hugetlb pool */
e4e574b7 2091 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
e558464b
MS
2092 int zeroed;
2093
19fc3f0a
AL
2094 if ((--needed) < 0)
2095 break;
a9869b83
NH
2096 /*
2097 * This page is now managed by the hugetlb allocator and has
2098 * no users -- drop the buddy allocator's reference.
2099 */
e558464b
MS
2100 zeroed = put_page_testzero(page);
2101 VM_BUG_ON_PAGE(!zeroed, page);
a5516438 2102 enqueue_huge_page(h, page);
19fc3f0a 2103 }
28073b02 2104free:
db71ef79 2105 spin_unlock_irq(&hugetlb_lock);
19fc3f0a
AL
2106
2107 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2108 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2109 put_page(page);
db71ef79 2110 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2111
2112 return ret;
2113}
2114
2115/*
e5bbc8a6
MK
2116 * This routine has two main purposes:
2117 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2118 * in unused_resv_pages. This corresponds to the prior adjustments made
2119 * to the associated reservation map.
2120 * 2) Free any unused surplus pages that may have been allocated to satisfy
2121 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2122 */
a5516438
AK
2123static void return_unused_surplus_pages(struct hstate *h,
2124 unsigned long unused_resv_pages)
e4e574b7 2125{
e4e574b7 2126 unsigned long nr_pages;
10c6ec49
MK
2127 struct page *page;
2128 LIST_HEAD(page_list);
2129
9487ca60 2130 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2131 /* Uncommit the reservation */
2132 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2133
aa888a74 2134 /* Cannot return gigantic pages currently */
bae7f4ae 2135 if (hstate_is_gigantic(h))
e5bbc8a6 2136 goto out;
aa888a74 2137
e5bbc8a6
MK
2138 /*
2139 * Part (or even all) of the reservation could have been backed
2140 * by pre-allocated pages. Only free surplus pages.
2141 */
a5516438 2142 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2143
685f3457
LS
2144 /*
2145 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2146 * evenly across all nodes with memory. Iterate across these nodes
2147 * until we can no longer free unreserved surplus pages. This occurs
2148 * when the nodes with surplus pages have no free pages.
10c6ec49 2149 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2150 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2151 */
2152 while (nr_pages--) {
10c6ec49
MK
2153 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2154 if (!page)
e5bbc8a6 2155 goto out;
10c6ec49
MK
2156
2157 list_add(&page->lru, &page_list);
e4e574b7 2158 }
e5bbc8a6
MK
2159
2160out:
db71ef79 2161 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2162 update_and_free_pages_bulk(h, &page_list);
db71ef79 2163 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2164}
2165
5e911373 2166
c37f9fb1 2167/*
feba16e2 2168 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2169 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2170 *
2171 * vma_needs_reservation is called to determine if the huge page at addr
2172 * within the vma has an associated reservation. If a reservation is
2173 * needed, the value 1 is returned. The caller is then responsible for
2174 * managing the global reservation and subpool usage counts. After
2175 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2176 * to add the page to the reservation map. If the page allocation fails,
2177 * the reservation must be ended instead of committed. vma_end_reservation
2178 * is called in such cases.
cf3ad20b
MK
2179 *
2180 * In the normal case, vma_commit_reservation returns the same value
2181 * as the preceding vma_needs_reservation call. The only time this
2182 * is not the case is if a reserve map was changed between calls. It
2183 * is the responsibility of the caller to notice the difference and
2184 * take appropriate action.
96b96a96
MK
2185 *
2186 * vma_add_reservation is used in error paths where a reservation must
2187 * be restored when a newly allocated huge page must be freed. It is
2188 * to be called after calling vma_needs_reservation to determine if a
2189 * reservation exists.
846be085
MK
2190 *
2191 * vma_del_reservation is used in error paths where an entry in the reserve
2192 * map was created during huge page allocation and must be removed. It is to
2193 * be called after calling vma_needs_reservation to determine if a reservation
2194 * exists.
c37f9fb1 2195 */
5e911373
MK
2196enum vma_resv_mode {
2197 VMA_NEEDS_RESV,
2198 VMA_COMMIT_RESV,
feba16e2 2199 VMA_END_RESV,
96b96a96 2200 VMA_ADD_RESV,
846be085 2201 VMA_DEL_RESV,
5e911373 2202};
cf3ad20b
MK
2203static long __vma_reservation_common(struct hstate *h,
2204 struct vm_area_struct *vma, unsigned long addr,
5e911373 2205 enum vma_resv_mode mode)
c37f9fb1 2206{
4e35f483
JK
2207 struct resv_map *resv;
2208 pgoff_t idx;
cf3ad20b 2209 long ret;
0db9d74e 2210 long dummy_out_regions_needed;
c37f9fb1 2211
4e35f483
JK
2212 resv = vma_resv_map(vma);
2213 if (!resv)
84afd99b 2214 return 1;
c37f9fb1 2215
4e35f483 2216 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2217 switch (mode) {
2218 case VMA_NEEDS_RESV:
0db9d74e
MA
2219 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2220 /* We assume that vma_reservation_* routines always operate on
2221 * 1 page, and that adding to resv map a 1 page entry can only
2222 * ever require 1 region.
2223 */
2224 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2225 break;
2226 case VMA_COMMIT_RESV:
075a61d0 2227 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2228 /* region_add calls of range 1 should never fail. */
2229 VM_BUG_ON(ret < 0);
5e911373 2230 break;
feba16e2 2231 case VMA_END_RESV:
0db9d74e 2232 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2233 ret = 0;
2234 break;
96b96a96 2235 case VMA_ADD_RESV:
0db9d74e 2236 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2237 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2238 /* region_add calls of range 1 should never fail. */
2239 VM_BUG_ON(ret < 0);
2240 } else {
2241 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2242 ret = region_del(resv, idx, idx + 1);
2243 }
2244 break;
846be085
MK
2245 case VMA_DEL_RESV:
2246 if (vma->vm_flags & VM_MAYSHARE) {
2247 region_abort(resv, idx, idx + 1, 1);
2248 ret = region_del(resv, idx, idx + 1);
2249 } else {
2250 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2251 /* region_add calls of range 1 should never fail. */
2252 VM_BUG_ON(ret < 0);
2253 }
2254 break;
5e911373
MK
2255 default:
2256 BUG();
2257 }
84afd99b 2258
846be085 2259 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
cf3ad20b 2260 return ret;
bf3d12b9
ML
2261 /*
2262 * We know private mapping must have HPAGE_RESV_OWNER set.
2263 *
2264 * In most cases, reserves always exist for private mappings.
2265 * However, a file associated with mapping could have been
2266 * hole punched or truncated after reserves were consumed.
2267 * As subsequent fault on such a range will not use reserves.
2268 * Subtle - The reserve map for private mappings has the
2269 * opposite meaning than that of shared mappings. If NO
2270 * entry is in the reserve map, it means a reservation exists.
2271 * If an entry exists in the reserve map, it means the
2272 * reservation has already been consumed. As a result, the
2273 * return value of this routine is the opposite of the
2274 * value returned from reserve map manipulation routines above.
2275 */
2276 if (ret > 0)
2277 return 0;
2278 if (ret == 0)
2279 return 1;
2280 return ret;
c37f9fb1 2281}
cf3ad20b
MK
2282
2283static long vma_needs_reservation(struct hstate *h,
a5516438 2284 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2285{
5e911373 2286 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2287}
84afd99b 2288
cf3ad20b
MK
2289static long vma_commit_reservation(struct hstate *h,
2290 struct vm_area_struct *vma, unsigned long addr)
2291{
5e911373
MK
2292 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2293}
2294
feba16e2 2295static void vma_end_reservation(struct hstate *h,
5e911373
MK
2296 struct vm_area_struct *vma, unsigned long addr)
2297{
feba16e2 2298 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2299}
2300
96b96a96
MK
2301static long vma_add_reservation(struct hstate *h,
2302 struct vm_area_struct *vma, unsigned long addr)
2303{
2304 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2305}
2306
846be085
MK
2307static long vma_del_reservation(struct hstate *h,
2308 struct vm_area_struct *vma, unsigned long addr)
2309{
2310 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2311}
2312
96b96a96 2313/*
846be085
MK
2314 * This routine is called to restore reservation information on error paths.
2315 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2316 * the hugetlb mutex should remain held when calling this routine.
2317 *
2318 * It handles two specific cases:
2319 * 1) A reservation was in place and the page consumed the reservation.
2320 * HPageRestoreReserve is set in the page.
2321 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2322 * not set. However, alloc_huge_page always updates the reserve map.
2323 *
2324 * In case 1, free_huge_page later in the error path will increment the
2325 * global reserve count. But, free_huge_page does not have enough context
2326 * to adjust the reservation map. This case deals primarily with private
2327 * mappings. Adjust the reserve map here to be consistent with global
2328 * reserve count adjustments to be made by free_huge_page. Make sure the
2329 * reserve map indicates there is a reservation present.
2330 *
2331 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
96b96a96 2332 */
846be085
MK
2333void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2334 unsigned long address, struct page *page)
96b96a96 2335{
846be085 2336 long rc = vma_needs_reservation(h, vma, address);
96b96a96 2337
846be085
MK
2338 if (HPageRestoreReserve(page)) {
2339 if (unlikely(rc < 0))
96b96a96
MK
2340 /*
2341 * Rare out of memory condition in reserve map
d6995da3 2342 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2343 * global reserve count will not be incremented
2344 * by free_huge_page. This will make it appear
2345 * as though the reservation for this page was
2346 * consumed. This may prevent the task from
2347 * faulting in the page at a later time. This
2348 * is better than inconsistent global huge page
2349 * accounting of reserve counts.
2350 */
d6995da3 2351 ClearHPageRestoreReserve(page);
846be085
MK
2352 else if (rc)
2353 (void)vma_add_reservation(h, vma, address);
2354 else
2355 vma_end_reservation(h, vma, address);
2356 } else {
2357 if (!rc) {
2358 /*
2359 * This indicates there is an entry in the reserve map
2360 * added by alloc_huge_page. We know it was added
2361 * before the alloc_huge_page call, otherwise
2362 * HPageRestoreReserve would be set on the page.
2363 * Remove the entry so that a subsequent allocation
2364 * does not consume a reservation.
2365 */
2366 rc = vma_del_reservation(h, vma, address);
2367 if (rc < 0)
96b96a96 2368 /*
846be085
MK
2369 * VERY rare out of memory condition. Since
2370 * we can not delete the entry, set
2371 * HPageRestoreReserve so that the reserve
2372 * count will be incremented when the page
2373 * is freed. This reserve will be consumed
2374 * on a subsequent allocation.
96b96a96 2375 */
846be085
MK
2376 SetHPageRestoreReserve(page);
2377 } else if (rc < 0) {
2378 /*
2379 * Rare out of memory condition from
2380 * vma_needs_reservation call. Memory allocation is
2381 * only attempted if a new entry is needed. Therefore,
2382 * this implies there is not an entry in the
2383 * reserve map.
2384 *
2385 * For shared mappings, no entry in the map indicates
2386 * no reservation. We are done.
2387 */
2388 if (!(vma->vm_flags & VM_MAYSHARE))
2389 /*
2390 * For private mappings, no entry indicates
2391 * a reservation is present. Since we can
2392 * not add an entry, set SetHPageRestoreReserve
2393 * on the page so reserve count will be
2394 * incremented when freed. This reserve will
2395 * be consumed on a subsequent allocation.
2396 */
2397 SetHPageRestoreReserve(page);
96b96a96 2398 } else
846be085
MK
2399 /*
2400 * No reservation present, do nothing
2401 */
2402 vma_end_reservation(h, vma, address);
96b96a96
MK
2403 }
2404}
2405
369fa227
OS
2406/*
2407 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2408 * @h: struct hstate old page belongs to
2409 * @old_page: Old page to dissolve
ae37c7ff 2410 * @list: List to isolate the page in case we need to
369fa227
OS
2411 * Returns 0 on success, otherwise negated error.
2412 */
ae37c7ff
OS
2413static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2414 struct list_head *list)
369fa227
OS
2415{
2416 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2417 int nid = page_to_nid(old_page);
2418 struct page *new_page;
2419 int ret = 0;
2420
2421 /*
2422 * Before dissolving the page, we need to allocate a new one for the
f41f2ed4
MS
2423 * pool to remain stable. Here, we allocate the page and 'prep' it
2424 * by doing everything but actually updating counters and adding to
2425 * the pool. This simplifies and let us do most of the processing
2426 * under the lock.
369fa227
OS
2427 */
2428 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2429 if (!new_page)
2430 return -ENOMEM;
f41f2ed4 2431 __prep_new_huge_page(h, new_page);
369fa227
OS
2432
2433retry:
2434 spin_lock_irq(&hugetlb_lock);
2435 if (!PageHuge(old_page)) {
2436 /*
2437 * Freed from under us. Drop new_page too.
2438 */
2439 goto free_new;
2440 } else if (page_count(old_page)) {
2441 /*
ae37c7ff
OS
2442 * Someone has grabbed the page, try to isolate it here.
2443 * Fail with -EBUSY if not possible.
369fa227 2444 */
ae37c7ff
OS
2445 spin_unlock_irq(&hugetlb_lock);
2446 if (!isolate_huge_page(old_page, list))
2447 ret = -EBUSY;
2448 spin_lock_irq(&hugetlb_lock);
369fa227
OS
2449 goto free_new;
2450 } else if (!HPageFreed(old_page)) {
2451 /*
2452 * Page's refcount is 0 but it has not been enqueued in the
2453 * freelist yet. Race window is small, so we can succeed here if
2454 * we retry.
2455 */
2456 spin_unlock_irq(&hugetlb_lock);
2457 cond_resched();
2458 goto retry;
2459 } else {
2460 /*
2461 * Ok, old_page is still a genuine free hugepage. Remove it from
2462 * the freelist and decrease the counters. These will be
2463 * incremented again when calling __prep_account_new_huge_page()
2464 * and enqueue_huge_page() for new_page. The counters will remain
2465 * stable since this happens under the lock.
2466 */
2467 remove_hugetlb_page(h, old_page, false);
2468
2469 /*
369fa227
OS
2470 * Reference count trick is needed because allocator gives us
2471 * referenced page but the pool requires pages with 0 refcount.
2472 */
369fa227
OS
2473 __prep_account_new_huge_page(h, nid);
2474 page_ref_dec(new_page);
2475 enqueue_huge_page(h, new_page);
2476
2477 /*
2478 * Pages have been replaced, we can safely free the old one.
2479 */
2480 spin_unlock_irq(&hugetlb_lock);
b65d4adb 2481 update_and_free_page(h, old_page, false);
369fa227
OS
2482 }
2483
2484 return ret;
2485
2486free_new:
2487 spin_unlock_irq(&hugetlb_lock);
b65d4adb 2488 update_and_free_page(h, new_page, false);
369fa227
OS
2489
2490 return ret;
2491}
2492
ae37c7ff 2493int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
2494{
2495 struct hstate *h;
2496 struct page *head;
ae37c7ff 2497 int ret = -EBUSY;
369fa227
OS
2498
2499 /*
2500 * The page might have been dissolved from under our feet, so make sure
2501 * to carefully check the state under the lock.
2502 * Return success when racing as if we dissolved the page ourselves.
2503 */
2504 spin_lock_irq(&hugetlb_lock);
2505 if (PageHuge(page)) {
2506 head = compound_head(page);
2507 h = page_hstate(head);
2508 } else {
2509 spin_unlock_irq(&hugetlb_lock);
2510 return 0;
2511 }
2512 spin_unlock_irq(&hugetlb_lock);
2513
2514 /*
2515 * Fence off gigantic pages as there is a cyclic dependency between
2516 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2517 * of bailing out right away without further retrying.
2518 */
2519 if (hstate_is_gigantic(h))
2520 return -ENOMEM;
2521
ae37c7ff
OS
2522 if (page_count(head) && isolate_huge_page(head, list))
2523 ret = 0;
2524 else if (!page_count(head))
2525 ret = alloc_and_dissolve_huge_page(h, head, list);
2526
2527 return ret;
369fa227
OS
2528}
2529
70c3547e 2530struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2531 unsigned long addr, int avoid_reserve)
1da177e4 2532{
90481622 2533 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2534 struct hstate *h = hstate_vma(vma);
348ea204 2535 struct page *page;
d85f69b0
MK
2536 long map_chg, map_commit;
2537 long gbl_chg;
6d76dcf4
AK
2538 int ret, idx;
2539 struct hugetlb_cgroup *h_cg;
08cf9faf 2540 bool deferred_reserve;
a1e78772 2541
6d76dcf4 2542 idx = hstate_index(h);
a1e78772 2543 /*
d85f69b0
MK
2544 * Examine the region/reserve map to determine if the process
2545 * has a reservation for the page to be allocated. A return
2546 * code of zero indicates a reservation exists (no change).
a1e78772 2547 */
d85f69b0
MK
2548 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2549 if (map_chg < 0)
76dcee75 2550 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2551
2552 /*
2553 * Processes that did not create the mapping will have no
2554 * reserves as indicated by the region/reserve map. Check
2555 * that the allocation will not exceed the subpool limit.
2556 * Allocations for MAP_NORESERVE mappings also need to be
2557 * checked against any subpool limit.
2558 */
2559 if (map_chg || avoid_reserve) {
2560 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2561 if (gbl_chg < 0) {
feba16e2 2562 vma_end_reservation(h, vma, addr);
76dcee75 2563 return ERR_PTR(-ENOSPC);
5e911373 2564 }
1da177e4 2565
d85f69b0
MK
2566 /*
2567 * Even though there was no reservation in the region/reserve
2568 * map, there could be reservations associated with the
2569 * subpool that can be used. This would be indicated if the
2570 * return value of hugepage_subpool_get_pages() is zero.
2571 * However, if avoid_reserve is specified we still avoid even
2572 * the subpool reservations.
2573 */
2574 if (avoid_reserve)
2575 gbl_chg = 1;
2576 }
2577
08cf9faf
MA
2578 /* If this allocation is not consuming a reservation, charge it now.
2579 */
6501fe5f 2580 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2581 if (deferred_reserve) {
2582 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2583 idx, pages_per_huge_page(h), &h_cg);
2584 if (ret)
2585 goto out_subpool_put;
2586 }
2587
6d76dcf4 2588 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2589 if (ret)
08cf9faf 2590 goto out_uncharge_cgroup_reservation;
8f34af6f 2591
db71ef79 2592 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
2593 /*
2594 * glb_chg is passed to indicate whether or not a page must be taken
2595 * from the global free pool (global change). gbl_chg == 0 indicates
2596 * a reservation exists for the allocation.
2597 */
2598 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2599 if (!page) {
db71ef79 2600 spin_unlock_irq(&hugetlb_lock);
0c397dae 2601 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2602 if (!page)
2603 goto out_uncharge_cgroup;
a88c7695 2604 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2605 SetHPageRestoreReserve(page);
a88c7695
NH
2606 h->resv_huge_pages--;
2607 }
db71ef79 2608 spin_lock_irq(&hugetlb_lock);
15a8d68e 2609 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2610 /* Fall through */
68842c9b 2611 }
81a6fcae 2612 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2613 /* If allocation is not consuming a reservation, also store the
2614 * hugetlb_cgroup pointer on the page.
2615 */
2616 if (deferred_reserve) {
2617 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2618 h_cg, page);
2619 }
2620
db71ef79 2621 spin_unlock_irq(&hugetlb_lock);
348ea204 2622
d6995da3 2623 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2624
d85f69b0
MK
2625 map_commit = vma_commit_reservation(h, vma, addr);
2626 if (unlikely(map_chg > map_commit)) {
33039678
MK
2627 /*
2628 * The page was added to the reservation map between
2629 * vma_needs_reservation and vma_commit_reservation.
2630 * This indicates a race with hugetlb_reserve_pages.
2631 * Adjust for the subpool count incremented above AND
2632 * in hugetlb_reserve_pages for the same page. Also,
2633 * the reservation count added in hugetlb_reserve_pages
2634 * no longer applies.
2635 */
2636 long rsv_adjust;
2637
2638 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2639 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2640 if (deferred_reserve)
2641 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2642 pages_per_huge_page(h), page);
33039678 2643 }
90d8b7e6 2644 return page;
8f34af6f
JZ
2645
2646out_uncharge_cgroup:
2647 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2648out_uncharge_cgroup_reservation:
2649 if (deferred_reserve)
2650 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2651 h_cg);
8f34af6f 2652out_subpool_put:
d85f69b0 2653 if (map_chg || avoid_reserve)
8f34af6f 2654 hugepage_subpool_put_pages(spool, 1);
feba16e2 2655 vma_end_reservation(h, vma, addr);
8f34af6f 2656 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2657}
2658
e24a1307
AK
2659int alloc_bootmem_huge_page(struct hstate *h)
2660 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2661int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2662{
2663 struct huge_bootmem_page *m;
b2261026 2664 int nr_nodes, node;
aa888a74 2665
b2261026 2666 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2667 void *addr;
2668
eb31d559 2669 addr = memblock_alloc_try_nid_raw(
8b89a116 2670 huge_page_size(h), huge_page_size(h),
97ad1087 2671 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2672 if (addr) {
2673 /*
2674 * Use the beginning of the huge page to store the
2675 * huge_bootmem_page struct (until gather_bootmem
2676 * puts them into the mem_map).
2677 */
2678 m = addr;
91f47662 2679 goto found;
aa888a74 2680 }
aa888a74
AK
2681 }
2682 return 0;
2683
2684found:
df994ead 2685 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2686 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2687 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2688 list_add(&m->list, &huge_boot_pages);
2689 m->hstate = h;
2690 return 1;
2691}
2692
d00181b9
KS
2693static void __init prep_compound_huge_page(struct page *page,
2694 unsigned int order)
18229df5
AW
2695{
2696 if (unlikely(order > (MAX_ORDER - 1)))
2697 prep_compound_gigantic_page(page, order);
2698 else
2699 prep_compound_page(page, order);
2700}
2701
aa888a74
AK
2702/* Put bootmem huge pages into the standard lists after mem_map is up */
2703static void __init gather_bootmem_prealloc(void)
2704{
2705 struct huge_bootmem_page *m;
2706
2707 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2708 struct page *page = virt_to_page(m);
aa888a74 2709 struct hstate *h = m->hstate;
ee8f248d 2710
aa888a74 2711 WARN_ON(page_count(page) != 1);
c78a7f36 2712 prep_compound_huge_page(page, huge_page_order(h));
ef5a22be 2713 WARN_ON(PageReserved(page));
aa888a74 2714 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2715 put_page(page); /* free it into the hugepage allocator */
2716
b0320c7b
RA
2717 /*
2718 * If we had gigantic hugepages allocated at boot time, we need
2719 * to restore the 'stolen' pages to totalram_pages in order to
2720 * fix confusing memory reports from free(1) and another
2721 * side-effects, like CommitLimit going negative.
2722 */
bae7f4ae 2723 if (hstate_is_gigantic(h))
c78a7f36 2724 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 2725 cond_resched();
aa888a74
AK
2726 }
2727}
2728
8faa8b07 2729static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2730{
2731 unsigned long i;
f60858f9
MK
2732 nodemask_t *node_alloc_noretry;
2733
2734 if (!hstate_is_gigantic(h)) {
2735 /*
2736 * Bit mask controlling how hard we retry per-node allocations.
2737 * Ignore errors as lower level routines can deal with
2738 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2739 * time, we are likely in bigger trouble.
2740 */
2741 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2742 GFP_KERNEL);
2743 } else {
2744 /* allocations done at boot time */
2745 node_alloc_noretry = NULL;
2746 }
2747
2748 /* bit mask controlling how hard we retry per-node allocations */
2749 if (node_alloc_noretry)
2750 nodes_clear(*node_alloc_noretry);
a5516438 2751
e5ff2159 2752 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2753 if (hstate_is_gigantic(h)) {
dbda8fea 2754 if (hugetlb_cma_size) {
cf11e85f 2755 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
7ecc9565 2756 goto free;
cf11e85f 2757 }
aa888a74
AK
2758 if (!alloc_bootmem_huge_page(h))
2759 break;
0c397dae 2760 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2761 &node_states[N_MEMORY],
2762 node_alloc_noretry))
1da177e4 2763 break;
69ed779a 2764 cond_resched();
1da177e4 2765 }
d715cf80
LH
2766 if (i < h->max_huge_pages) {
2767 char buf[32];
2768
c6247f72 2769 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2770 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2771 h->max_huge_pages, buf, i);
2772 h->max_huge_pages = i;
2773 }
7ecc9565 2774free:
f60858f9 2775 kfree(node_alloc_noretry);
e5ff2159
AK
2776}
2777
2778static void __init hugetlb_init_hstates(void)
2779{
2780 struct hstate *h;
2781
2782 for_each_hstate(h) {
641844f5
NH
2783 if (minimum_order > huge_page_order(h))
2784 minimum_order = huge_page_order(h);
2785
8faa8b07 2786 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2787 if (!hstate_is_gigantic(h))
8faa8b07 2788 hugetlb_hstate_alloc_pages(h);
e5ff2159 2789 }
641844f5 2790 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2791}
2792
2793static void __init report_hugepages(void)
2794{
2795 struct hstate *h;
2796
2797 for_each_hstate(h) {
4abd32db 2798 char buf[32];
c6247f72
MW
2799
2800 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2801 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2802 buf, h->free_huge_pages);
e5ff2159
AK
2803 }
2804}
2805
1da177e4 2806#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2807static void try_to_free_low(struct hstate *h, unsigned long count,
2808 nodemask_t *nodes_allowed)
1da177e4 2809{
4415cc8d 2810 int i;
1121828a 2811 LIST_HEAD(page_list);
4415cc8d 2812
9487ca60 2813 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 2814 if (hstate_is_gigantic(h))
aa888a74
AK
2815 return;
2816
1121828a
MK
2817 /*
2818 * Collect pages to be freed on a list, and free after dropping lock
2819 */
6ae11b27 2820 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 2821 struct page *page, *next;
a5516438
AK
2822 struct list_head *freel = &h->hugepage_freelists[i];
2823 list_for_each_entry_safe(page, next, freel, lru) {
2824 if (count >= h->nr_huge_pages)
1121828a 2825 goto out;
1da177e4
LT
2826 if (PageHighMem(page))
2827 continue;
6eb4e88a 2828 remove_hugetlb_page(h, page, false);
1121828a 2829 list_add(&page->lru, &page_list);
1da177e4
LT
2830 }
2831 }
1121828a
MK
2832
2833out:
db71ef79 2834 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2835 update_and_free_pages_bulk(h, &page_list);
db71ef79 2836 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
2837}
2838#else
6ae11b27
LS
2839static inline void try_to_free_low(struct hstate *h, unsigned long count,
2840 nodemask_t *nodes_allowed)
1da177e4
LT
2841{
2842}
2843#endif
2844
20a0307c
WF
2845/*
2846 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2847 * balanced by operating on them in a round-robin fashion.
2848 * Returns 1 if an adjustment was made.
2849 */
6ae11b27
LS
2850static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2851 int delta)
20a0307c 2852{
b2261026 2853 int nr_nodes, node;
20a0307c 2854
9487ca60 2855 lockdep_assert_held(&hugetlb_lock);
20a0307c 2856 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2857
b2261026
JK
2858 if (delta < 0) {
2859 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2860 if (h->surplus_huge_pages_node[node])
2861 goto found;
e8c5c824 2862 }
b2261026
JK
2863 } else {
2864 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2865 if (h->surplus_huge_pages_node[node] <
2866 h->nr_huge_pages_node[node])
2867 goto found;
e8c5c824 2868 }
b2261026
JK
2869 }
2870 return 0;
20a0307c 2871
b2261026
JK
2872found:
2873 h->surplus_huge_pages += delta;
2874 h->surplus_huge_pages_node[node] += delta;
2875 return 1;
20a0307c
WF
2876}
2877
a5516438 2878#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2879static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2880 nodemask_t *nodes_allowed)
1da177e4 2881{
7893d1d5 2882 unsigned long min_count, ret;
10c6ec49
MK
2883 struct page *page;
2884 LIST_HEAD(page_list);
f60858f9
MK
2885 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2886
2887 /*
2888 * Bit mask controlling how hard we retry per-node allocations.
2889 * If we can not allocate the bit mask, do not attempt to allocate
2890 * the requested huge pages.
2891 */
2892 if (node_alloc_noretry)
2893 nodes_clear(*node_alloc_noretry);
2894 else
2895 return -ENOMEM;
1da177e4 2896
29383967
MK
2897 /*
2898 * resize_lock mutex prevents concurrent adjustments to number of
2899 * pages in hstate via the proc/sysfs interfaces.
2900 */
2901 mutex_lock(&h->resize_lock);
b65d4adb 2902 flush_free_hpage_work(h);
db71ef79 2903 spin_lock_irq(&hugetlb_lock);
4eb0716e 2904
fd875dca
MK
2905 /*
2906 * Check for a node specific request.
2907 * Changing node specific huge page count may require a corresponding
2908 * change to the global count. In any case, the passed node mask
2909 * (nodes_allowed) will restrict alloc/free to the specified node.
2910 */
2911 if (nid != NUMA_NO_NODE) {
2912 unsigned long old_count = count;
2913
2914 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2915 /*
2916 * User may have specified a large count value which caused the
2917 * above calculation to overflow. In this case, they wanted
2918 * to allocate as many huge pages as possible. Set count to
2919 * largest possible value to align with their intention.
2920 */
2921 if (count < old_count)
2922 count = ULONG_MAX;
2923 }
2924
4eb0716e
AG
2925 /*
2926 * Gigantic pages runtime allocation depend on the capability for large
2927 * page range allocation.
2928 * If the system does not provide this feature, return an error when
2929 * the user tries to allocate gigantic pages but let the user free the
2930 * boottime allocated gigantic pages.
2931 */
2932 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2933 if (count > persistent_huge_pages(h)) {
db71ef79 2934 spin_unlock_irq(&hugetlb_lock);
29383967 2935 mutex_unlock(&h->resize_lock);
f60858f9 2936 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2937 return -EINVAL;
2938 }
2939 /* Fall through to decrease pool */
2940 }
aa888a74 2941
7893d1d5
AL
2942 /*
2943 * Increase the pool size
2944 * First take pages out of surplus state. Then make up the
2945 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2946 *
0c397dae 2947 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2948 * to convert a surplus huge page to a normal huge page. That is
2949 * not critical, though, it just means the overall size of the
2950 * pool might be one hugepage larger than it needs to be, but
2951 * within all the constraints specified by the sysctls.
7893d1d5 2952 */
a5516438 2953 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2954 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2955 break;
2956 }
2957
a5516438 2958 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2959 /*
2960 * If this allocation races such that we no longer need the
2961 * page, free_huge_page will handle it by freeing the page
2962 * and reducing the surplus.
2963 */
db71ef79 2964 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
2965
2966 /* yield cpu to avoid soft lockup */
2967 cond_resched();
2968
f60858f9
MK
2969 ret = alloc_pool_huge_page(h, nodes_allowed,
2970 node_alloc_noretry);
db71ef79 2971 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
2972 if (!ret)
2973 goto out;
2974
536240f2
MG
2975 /* Bail for signals. Probably ctrl-c from user */
2976 if (signal_pending(current))
2977 goto out;
7893d1d5 2978 }
7893d1d5
AL
2979
2980 /*
2981 * Decrease the pool size
2982 * First return free pages to the buddy allocator (being careful
2983 * to keep enough around to satisfy reservations). Then place
2984 * pages into surplus state as needed so the pool will shrink
2985 * to the desired size as pages become free.
d1c3fb1f
NA
2986 *
2987 * By placing pages into the surplus state independent of the
2988 * overcommit value, we are allowing the surplus pool size to
2989 * exceed overcommit. There are few sane options here. Since
0c397dae 2990 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2991 * though, we'll note that we're not allowed to exceed surplus
2992 * and won't grow the pool anywhere else. Not until one of the
2993 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2994 */
a5516438 2995 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2996 min_count = max(count, min_count);
6ae11b27 2997 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
2998
2999 /*
3000 * Collect pages to be removed on list without dropping lock
3001 */
a5516438 3002 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
3003 page = remove_pool_huge_page(h, nodes_allowed, 0);
3004 if (!page)
1da177e4 3005 break;
10c6ec49
MK
3006
3007 list_add(&page->lru, &page_list);
1da177e4 3008 }
10c6ec49 3009 /* free the pages after dropping lock */
db71ef79 3010 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3011 update_and_free_pages_bulk(h, &page_list);
b65d4adb 3012 flush_free_hpage_work(h);
db71ef79 3013 spin_lock_irq(&hugetlb_lock);
10c6ec49 3014
a5516438 3015 while (count < persistent_huge_pages(h)) {
6ae11b27 3016 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
3017 break;
3018 }
3019out:
4eb0716e 3020 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 3021 spin_unlock_irq(&hugetlb_lock);
29383967 3022 mutex_unlock(&h->resize_lock);
4eb0716e 3023
f60858f9
MK
3024 NODEMASK_FREE(node_alloc_noretry);
3025
4eb0716e 3026 return 0;
1da177e4
LT
3027}
3028
a3437870
NA
3029#define HSTATE_ATTR_RO(_name) \
3030 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3031
3032#define HSTATE_ATTR(_name) \
3033 static struct kobj_attribute _name##_attr = \
3034 __ATTR(_name, 0644, _name##_show, _name##_store)
3035
3036static struct kobject *hugepages_kobj;
3037static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3038
9a305230
LS
3039static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3040
3041static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
3042{
3043 int i;
9a305230 3044
a3437870 3045 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
3046 if (hstate_kobjs[i] == kobj) {
3047 if (nidp)
3048 *nidp = NUMA_NO_NODE;
a3437870 3049 return &hstates[i];
9a305230
LS
3050 }
3051
3052 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
3053}
3054
06808b08 3055static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
3056 struct kobj_attribute *attr, char *buf)
3057{
9a305230
LS
3058 struct hstate *h;
3059 unsigned long nr_huge_pages;
3060 int nid;
3061
3062 h = kobj_to_hstate(kobj, &nid);
3063 if (nid == NUMA_NO_NODE)
3064 nr_huge_pages = h->nr_huge_pages;
3065 else
3066 nr_huge_pages = h->nr_huge_pages_node[nid];
3067
ae7a927d 3068 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 3069}
adbe8726 3070
238d3c13
DR
3071static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3072 struct hstate *h, int nid,
3073 unsigned long count, size_t len)
a3437870
NA
3074{
3075 int err;
2d0adf7e 3076 nodemask_t nodes_allowed, *n_mask;
a3437870 3077
2d0adf7e
OS
3078 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3079 return -EINVAL;
adbe8726 3080
9a305230
LS
3081 if (nid == NUMA_NO_NODE) {
3082 /*
3083 * global hstate attribute
3084 */
3085 if (!(obey_mempolicy &&
2d0adf7e
OS
3086 init_nodemask_of_mempolicy(&nodes_allowed)))
3087 n_mask = &node_states[N_MEMORY];
3088 else
3089 n_mask = &nodes_allowed;
3090 } else {
9a305230 3091 /*
fd875dca
MK
3092 * Node specific request. count adjustment happens in
3093 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 3094 */
2d0adf7e
OS
3095 init_nodemask_of_node(&nodes_allowed, nid);
3096 n_mask = &nodes_allowed;
fd875dca 3097 }
9a305230 3098
2d0adf7e 3099 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 3100
4eb0716e 3101 return err ? err : len;
06808b08
LS
3102}
3103
238d3c13
DR
3104static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3105 struct kobject *kobj, const char *buf,
3106 size_t len)
3107{
3108 struct hstate *h;
3109 unsigned long count;
3110 int nid;
3111 int err;
3112
3113 err = kstrtoul(buf, 10, &count);
3114 if (err)
3115 return err;
3116
3117 h = kobj_to_hstate(kobj, &nid);
3118 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3119}
3120
06808b08
LS
3121static ssize_t nr_hugepages_show(struct kobject *kobj,
3122 struct kobj_attribute *attr, char *buf)
3123{
3124 return nr_hugepages_show_common(kobj, attr, buf);
3125}
3126
3127static ssize_t nr_hugepages_store(struct kobject *kobj,
3128 struct kobj_attribute *attr, const char *buf, size_t len)
3129{
238d3c13 3130 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
3131}
3132HSTATE_ATTR(nr_hugepages);
3133
06808b08
LS
3134#ifdef CONFIG_NUMA
3135
3136/*
3137 * hstate attribute for optionally mempolicy-based constraint on persistent
3138 * huge page alloc/free.
3139 */
3140static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
3141 struct kobj_attribute *attr,
3142 char *buf)
06808b08
LS
3143{
3144 return nr_hugepages_show_common(kobj, attr, buf);
3145}
3146
3147static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3148 struct kobj_attribute *attr, const char *buf, size_t len)
3149{
238d3c13 3150 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
3151}
3152HSTATE_ATTR(nr_hugepages_mempolicy);
3153#endif
3154
3155
a3437870
NA
3156static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3157 struct kobj_attribute *attr, char *buf)
3158{
9a305230 3159 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3160 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 3161}
adbe8726 3162
a3437870
NA
3163static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3164 struct kobj_attribute *attr, const char *buf, size_t count)
3165{
3166 int err;
3167 unsigned long input;
9a305230 3168 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 3169
bae7f4ae 3170 if (hstate_is_gigantic(h))
adbe8726
EM
3171 return -EINVAL;
3172
3dbb95f7 3173 err = kstrtoul(buf, 10, &input);
a3437870 3174 if (err)
73ae31e5 3175 return err;
a3437870 3176
db71ef79 3177 spin_lock_irq(&hugetlb_lock);
a3437870 3178 h->nr_overcommit_huge_pages = input;
db71ef79 3179 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
3180
3181 return count;
3182}
3183HSTATE_ATTR(nr_overcommit_hugepages);
3184
3185static ssize_t free_hugepages_show(struct kobject *kobj,
3186 struct kobj_attribute *attr, char *buf)
3187{
9a305230
LS
3188 struct hstate *h;
3189 unsigned long free_huge_pages;
3190 int nid;
3191
3192 h = kobj_to_hstate(kobj, &nid);
3193 if (nid == NUMA_NO_NODE)
3194 free_huge_pages = h->free_huge_pages;
3195 else
3196 free_huge_pages = h->free_huge_pages_node[nid];
3197
ae7a927d 3198 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
3199}
3200HSTATE_ATTR_RO(free_hugepages);
3201
3202static ssize_t resv_hugepages_show(struct kobject *kobj,
3203 struct kobj_attribute *attr, char *buf)
3204{
9a305230 3205 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 3206 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
3207}
3208HSTATE_ATTR_RO(resv_hugepages);
3209
3210static ssize_t surplus_hugepages_show(struct kobject *kobj,
3211 struct kobj_attribute *attr, char *buf)
3212{
9a305230
LS
3213 struct hstate *h;
3214 unsigned long surplus_huge_pages;
3215 int nid;
3216
3217 h = kobj_to_hstate(kobj, &nid);
3218 if (nid == NUMA_NO_NODE)
3219 surplus_huge_pages = h->surplus_huge_pages;
3220 else
3221 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3222
ae7a927d 3223 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
3224}
3225HSTATE_ATTR_RO(surplus_hugepages);
3226
3227static struct attribute *hstate_attrs[] = {
3228 &nr_hugepages_attr.attr,
3229 &nr_overcommit_hugepages_attr.attr,
3230 &free_hugepages_attr.attr,
3231 &resv_hugepages_attr.attr,
3232 &surplus_hugepages_attr.attr,
06808b08
LS
3233#ifdef CONFIG_NUMA
3234 &nr_hugepages_mempolicy_attr.attr,
3235#endif
a3437870
NA
3236 NULL,
3237};
3238
67e5ed96 3239static const struct attribute_group hstate_attr_group = {
a3437870
NA
3240 .attrs = hstate_attrs,
3241};
3242
094e9539
JM
3243static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3244 struct kobject **hstate_kobjs,
67e5ed96 3245 const struct attribute_group *hstate_attr_group)
a3437870
NA
3246{
3247 int retval;
972dc4de 3248 int hi = hstate_index(h);
a3437870 3249
9a305230
LS
3250 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3251 if (!hstate_kobjs[hi])
a3437870
NA
3252 return -ENOMEM;
3253
9a305230 3254 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 3255 if (retval) {
9a305230 3256 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
3257 hstate_kobjs[hi] = NULL;
3258 }
a3437870
NA
3259
3260 return retval;
3261}
3262
3263static void __init hugetlb_sysfs_init(void)
3264{
3265 struct hstate *h;
3266 int err;
3267
3268 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3269 if (!hugepages_kobj)
3270 return;
3271
3272 for_each_hstate(h) {
9a305230
LS
3273 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3274 hstate_kobjs, &hstate_attr_group);
a3437870 3275 if (err)
282f4214 3276 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
3277 }
3278}
3279
9a305230
LS
3280#ifdef CONFIG_NUMA
3281
3282/*
3283 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3284 * with node devices in node_devices[] using a parallel array. The array
3285 * index of a node device or _hstate == node id.
3286 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3287 * the base kernel, on the hugetlb module.
3288 */
3289struct node_hstate {
3290 struct kobject *hugepages_kobj;
3291 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3292};
b4e289a6 3293static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3294
3295/*
10fbcf4c 3296 * A subset of global hstate attributes for node devices
9a305230
LS
3297 */
3298static struct attribute *per_node_hstate_attrs[] = {
3299 &nr_hugepages_attr.attr,
3300 &free_hugepages_attr.attr,
3301 &surplus_hugepages_attr.attr,
3302 NULL,
3303};
3304
67e5ed96 3305static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3306 .attrs = per_node_hstate_attrs,
3307};
3308
3309/*
10fbcf4c 3310 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3311 * Returns node id via non-NULL nidp.
3312 */
3313static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3314{
3315 int nid;
3316
3317 for (nid = 0; nid < nr_node_ids; nid++) {
3318 struct node_hstate *nhs = &node_hstates[nid];
3319 int i;
3320 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3321 if (nhs->hstate_kobjs[i] == kobj) {
3322 if (nidp)
3323 *nidp = nid;
3324 return &hstates[i];
3325 }
3326 }
3327
3328 BUG();
3329 return NULL;
3330}
3331
3332/*
10fbcf4c 3333 * Unregister hstate attributes from a single node device.
9a305230
LS
3334 * No-op if no hstate attributes attached.
3335 */
3cd8b44f 3336static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3337{
3338 struct hstate *h;
10fbcf4c 3339 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3340
3341 if (!nhs->hugepages_kobj)
9b5e5d0f 3342 return; /* no hstate attributes */
9a305230 3343
972dc4de
AK
3344 for_each_hstate(h) {
3345 int idx = hstate_index(h);
3346 if (nhs->hstate_kobjs[idx]) {
3347 kobject_put(nhs->hstate_kobjs[idx]);
3348 nhs->hstate_kobjs[idx] = NULL;
9a305230 3349 }
972dc4de 3350 }
9a305230
LS
3351
3352 kobject_put(nhs->hugepages_kobj);
3353 nhs->hugepages_kobj = NULL;
3354}
3355
9a305230
LS
3356
3357/*
10fbcf4c 3358 * Register hstate attributes for a single node device.
9a305230
LS
3359 * No-op if attributes already registered.
3360 */
3cd8b44f 3361static void hugetlb_register_node(struct node *node)
9a305230
LS
3362{
3363 struct hstate *h;
10fbcf4c 3364 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3365 int err;
3366
3367 if (nhs->hugepages_kobj)
3368 return; /* already allocated */
3369
3370 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3371 &node->dev.kobj);
9a305230
LS
3372 if (!nhs->hugepages_kobj)
3373 return;
3374
3375 for_each_hstate(h) {
3376 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3377 nhs->hstate_kobjs,
3378 &per_node_hstate_attr_group);
3379 if (err) {
282f4214 3380 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3381 h->name, node->dev.id);
9a305230
LS
3382 hugetlb_unregister_node(node);
3383 break;
3384 }
3385 }
3386}
3387
3388/*
9b5e5d0f 3389 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3390 * devices of nodes that have memory. All on-line nodes should have
3391 * registered their associated device by this time.
9a305230 3392 */
7d9ca000 3393static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3394{
3395 int nid;
3396
8cebfcd0 3397 for_each_node_state(nid, N_MEMORY) {
8732794b 3398 struct node *node = node_devices[nid];
10fbcf4c 3399 if (node->dev.id == nid)
9a305230
LS
3400 hugetlb_register_node(node);
3401 }
3402
3403 /*
10fbcf4c 3404 * Let the node device driver know we're here so it can
9a305230
LS
3405 * [un]register hstate attributes on node hotplug.
3406 */
3407 register_hugetlbfs_with_node(hugetlb_register_node,
3408 hugetlb_unregister_node);
3409}
3410#else /* !CONFIG_NUMA */
3411
3412static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3413{
3414 BUG();
3415 if (nidp)
3416 *nidp = -1;
3417 return NULL;
3418}
3419
9a305230
LS
3420static void hugetlb_register_all_nodes(void) { }
3421
3422#endif
3423
a3437870
NA
3424static int __init hugetlb_init(void)
3425{
8382d914
DB
3426 int i;
3427
d6995da3
MK
3428 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3429 __NR_HPAGEFLAGS);
3430
c2833a5b
MK
3431 if (!hugepages_supported()) {
3432 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3433 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3434 return 0;
c2833a5b 3435 }
a3437870 3436
282f4214
MK
3437 /*
3438 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3439 * architectures depend on setup being done here.
3440 */
3441 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3442 if (!parsed_default_hugepagesz) {
3443 /*
3444 * If we did not parse a default huge page size, set
3445 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3446 * number of huge pages for this default size was implicitly
3447 * specified, set that here as well.
3448 * Note that the implicit setting will overwrite an explicit
3449 * setting. A warning will be printed in this case.
3450 */
3451 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3452 if (default_hstate_max_huge_pages) {
3453 if (default_hstate.max_huge_pages) {
3454 char buf[32];
3455
3456 string_get_size(huge_page_size(&default_hstate),
3457 1, STRING_UNITS_2, buf, 32);
3458 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3459 default_hstate.max_huge_pages, buf);
3460 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3461 default_hstate_max_huge_pages);
3462 }
3463 default_hstate.max_huge_pages =
3464 default_hstate_max_huge_pages;
d715cf80 3465 }
f8b74815 3466 }
a3437870 3467
cf11e85f 3468 hugetlb_cma_check();
a3437870 3469 hugetlb_init_hstates();
aa888a74 3470 gather_bootmem_prealloc();
a3437870
NA
3471 report_hugepages();
3472
3473 hugetlb_sysfs_init();
9a305230 3474 hugetlb_register_all_nodes();
7179e7bf 3475 hugetlb_cgroup_file_init();
9a305230 3476
8382d914
DB
3477#ifdef CONFIG_SMP
3478 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3479#else
3480 num_fault_mutexes = 1;
3481#endif
c672c7f2 3482 hugetlb_fault_mutex_table =
6da2ec56
KC
3483 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3484 GFP_KERNEL);
c672c7f2 3485 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3486
3487 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3488 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3489 return 0;
3490}
3e89e1c5 3491subsys_initcall(hugetlb_init);
a3437870 3492
ae94da89
MK
3493/* Overwritten by architectures with more huge page sizes */
3494bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3495{
ae94da89 3496 return size == HPAGE_SIZE;
9fee021d
VT
3497}
3498
d00181b9 3499void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3500{
3501 struct hstate *h;
8faa8b07
AK
3502 unsigned long i;
3503
a3437870 3504 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3505 return;
3506 }
47d38344 3507 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3508 BUG_ON(order == 0);
47d38344 3509 h = &hstates[hugetlb_max_hstate++];
29383967 3510 mutex_init(&h->resize_lock);
a3437870 3511 h->order = order;
aca78307 3512 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
3513 for (i = 0; i < MAX_NUMNODES; ++i)
3514 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3515 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3516 h->next_nid_to_alloc = first_memory_node;
3517 h->next_nid_to_free = first_memory_node;
a3437870
NA
3518 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3519 huge_page_size(h)/1024);
8faa8b07 3520
a3437870
NA
3521 parsed_hstate = h;
3522}
3523
282f4214
MK
3524/*
3525 * hugepages command line processing
3526 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3527 * specification. If not, ignore the hugepages value. hugepages can also
3528 * be the first huge page command line option in which case it implicitly
3529 * specifies the number of huge pages for the default size.
3530 */
3531static int __init hugepages_setup(char *s)
a3437870
NA
3532{
3533 unsigned long *mhp;
8faa8b07 3534 static unsigned long *last_mhp;
a3437870 3535
9fee021d 3536 if (!parsed_valid_hugepagesz) {
282f4214 3537 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3538 parsed_valid_hugepagesz = true;
282f4214 3539 return 0;
9fee021d 3540 }
282f4214 3541
a3437870 3542 /*
282f4214
MK
3543 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3544 * yet, so this hugepages= parameter goes to the "default hstate".
3545 * Otherwise, it goes with the previously parsed hugepagesz or
3546 * default_hugepagesz.
a3437870 3547 */
9fee021d 3548 else if (!hugetlb_max_hstate)
a3437870
NA
3549 mhp = &default_hstate_max_huge_pages;
3550 else
3551 mhp = &parsed_hstate->max_huge_pages;
3552
8faa8b07 3553 if (mhp == last_mhp) {
282f4214
MK
3554 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3555 return 0;
8faa8b07
AK
3556 }
3557
a3437870
NA
3558 if (sscanf(s, "%lu", mhp) <= 0)
3559 *mhp = 0;
3560
8faa8b07
AK
3561 /*
3562 * Global state is always initialized later in hugetlb_init.
04adbc3f 3563 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
3564 * use the bootmem allocator.
3565 */
04adbc3f 3566 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
3567 hugetlb_hstate_alloc_pages(parsed_hstate);
3568
3569 last_mhp = mhp;
3570
a3437870
NA
3571 return 1;
3572}
282f4214 3573__setup("hugepages=", hugepages_setup);
e11bfbfc 3574
282f4214
MK
3575/*
3576 * hugepagesz command line processing
3577 * A specific huge page size can only be specified once with hugepagesz.
3578 * hugepagesz is followed by hugepages on the command line. The global
3579 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3580 * hugepagesz argument was valid.
3581 */
359f2544 3582static int __init hugepagesz_setup(char *s)
e11bfbfc 3583{
359f2544 3584 unsigned long size;
282f4214
MK
3585 struct hstate *h;
3586
3587 parsed_valid_hugepagesz = false;
359f2544
MK
3588 size = (unsigned long)memparse(s, NULL);
3589
3590 if (!arch_hugetlb_valid_size(size)) {
282f4214 3591 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3592 return 0;
3593 }
3594
282f4214
MK
3595 h = size_to_hstate(size);
3596 if (h) {
3597 /*
3598 * hstate for this size already exists. This is normally
3599 * an error, but is allowed if the existing hstate is the
3600 * default hstate. More specifically, it is only allowed if
3601 * the number of huge pages for the default hstate was not
3602 * previously specified.
3603 */
3604 if (!parsed_default_hugepagesz || h != &default_hstate ||
3605 default_hstate.max_huge_pages) {
3606 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3607 return 0;
3608 }
3609
3610 /*
3611 * No need to call hugetlb_add_hstate() as hstate already
3612 * exists. But, do set parsed_hstate so that a following
3613 * hugepages= parameter will be applied to this hstate.
3614 */
3615 parsed_hstate = h;
3616 parsed_valid_hugepagesz = true;
3617 return 1;
38237830
MK
3618 }
3619
359f2544 3620 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3621 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3622 return 1;
3623}
359f2544
MK
3624__setup("hugepagesz=", hugepagesz_setup);
3625
282f4214
MK
3626/*
3627 * default_hugepagesz command line input
3628 * Only one instance of default_hugepagesz allowed on command line.
3629 */
ae94da89 3630static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3631{
ae94da89
MK
3632 unsigned long size;
3633
282f4214 3634 parsed_valid_hugepagesz = false;
282f4214
MK
3635 if (parsed_default_hugepagesz) {
3636 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3637 return 0;
3638 }
3639
ae94da89
MK
3640 size = (unsigned long)memparse(s, NULL);
3641
3642 if (!arch_hugetlb_valid_size(size)) {
282f4214 3643 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3644 return 0;
3645 }
3646
282f4214
MK
3647 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3648 parsed_valid_hugepagesz = true;
3649 parsed_default_hugepagesz = true;
3650 default_hstate_idx = hstate_index(size_to_hstate(size));
3651
3652 /*
3653 * The number of default huge pages (for this size) could have been
3654 * specified as the first hugetlb parameter: hugepages=X. If so,
3655 * then default_hstate_max_huge_pages is set. If the default huge
3656 * page size is gigantic (>= MAX_ORDER), then the pages must be
3657 * allocated here from bootmem allocator.
3658 */
3659 if (default_hstate_max_huge_pages) {
3660 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3661 if (hstate_is_gigantic(&default_hstate))
3662 hugetlb_hstate_alloc_pages(&default_hstate);
3663 default_hstate_max_huge_pages = 0;
3664 }
3665
e11bfbfc
NP
3666 return 1;
3667}
ae94da89 3668__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3669
8ca39e68 3670static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3671{
3672 int node;
3673 unsigned int nr = 0;
8ca39e68
MS
3674 nodemask_t *mpol_allowed;
3675 unsigned int *array = h->free_huge_pages_node;
3676 gfp_t gfp_mask = htlb_alloc_mask(h);
3677
3678 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3679
8ca39e68 3680 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 3681 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
3682 nr += array[node];
3683 }
8a213460
NA
3684
3685 return nr;
3686}
3687
3688#ifdef CONFIG_SYSCTL
17743798
MS
3689static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3690 void *buffer, size_t *length,
3691 loff_t *ppos, unsigned long *out)
3692{
3693 struct ctl_table dup_table;
3694
3695 /*
3696 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3697 * can duplicate the @table and alter the duplicate of it.
3698 */
3699 dup_table = *table;
3700 dup_table.data = out;
3701
3702 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3703}
3704
06808b08
LS
3705static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3706 struct ctl_table *table, int write,
32927393 3707 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3708{
e5ff2159 3709 struct hstate *h = &default_hstate;
238d3c13 3710 unsigned long tmp = h->max_huge_pages;
08d4a246 3711 int ret;
e5ff2159 3712
457c1b27 3713 if (!hugepages_supported())
86613628 3714 return -EOPNOTSUPP;
457c1b27 3715
17743798
MS
3716 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3717 &tmp);
08d4a246
MH
3718 if (ret)
3719 goto out;
e5ff2159 3720
238d3c13
DR
3721 if (write)
3722 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3723 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3724out:
3725 return ret;
1da177e4 3726}
396faf03 3727
06808b08 3728int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3729 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3730{
3731
3732 return hugetlb_sysctl_handler_common(false, table, write,
3733 buffer, length, ppos);
3734}
3735
3736#ifdef CONFIG_NUMA
3737int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3738 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3739{
3740 return hugetlb_sysctl_handler_common(true, table, write,
3741 buffer, length, ppos);
3742}
3743#endif /* CONFIG_NUMA */
3744
a3d0c6aa 3745int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3746 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3747{
a5516438 3748 struct hstate *h = &default_hstate;
e5ff2159 3749 unsigned long tmp;
08d4a246 3750 int ret;
e5ff2159 3751
457c1b27 3752 if (!hugepages_supported())
86613628 3753 return -EOPNOTSUPP;
457c1b27 3754
c033a93c 3755 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3756
bae7f4ae 3757 if (write && hstate_is_gigantic(h))
adbe8726
EM
3758 return -EINVAL;
3759
17743798
MS
3760 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3761 &tmp);
08d4a246
MH
3762 if (ret)
3763 goto out;
e5ff2159
AK
3764
3765 if (write) {
db71ef79 3766 spin_lock_irq(&hugetlb_lock);
e5ff2159 3767 h->nr_overcommit_huge_pages = tmp;
db71ef79 3768 spin_unlock_irq(&hugetlb_lock);
e5ff2159 3769 }
08d4a246
MH
3770out:
3771 return ret;
a3d0c6aa
NA
3772}
3773
1da177e4
LT
3774#endif /* CONFIG_SYSCTL */
3775
e1759c21 3776void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3777{
fcb2b0c5
RG
3778 struct hstate *h;
3779 unsigned long total = 0;
3780
457c1b27
NA
3781 if (!hugepages_supported())
3782 return;
fcb2b0c5
RG
3783
3784 for_each_hstate(h) {
3785 unsigned long count = h->nr_huge_pages;
3786
aca78307 3787 total += huge_page_size(h) * count;
fcb2b0c5
RG
3788
3789 if (h == &default_hstate)
3790 seq_printf(m,
3791 "HugePages_Total: %5lu\n"
3792 "HugePages_Free: %5lu\n"
3793 "HugePages_Rsvd: %5lu\n"
3794 "HugePages_Surp: %5lu\n"
3795 "Hugepagesize: %8lu kB\n",
3796 count,
3797 h->free_huge_pages,
3798 h->resv_huge_pages,
3799 h->surplus_huge_pages,
aca78307 3800 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
3801 }
3802
aca78307 3803 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
3804}
3805
7981593b 3806int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3807{
a5516438 3808 struct hstate *h = &default_hstate;
7981593b 3809
457c1b27
NA
3810 if (!hugepages_supported())
3811 return 0;
7981593b
JP
3812
3813 return sysfs_emit_at(buf, len,
3814 "Node %d HugePages_Total: %5u\n"
3815 "Node %d HugePages_Free: %5u\n"
3816 "Node %d HugePages_Surp: %5u\n",
3817 nid, h->nr_huge_pages_node[nid],
3818 nid, h->free_huge_pages_node[nid],
3819 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3820}
3821
949f7ec5
DR
3822void hugetlb_show_meminfo(void)
3823{
3824 struct hstate *h;
3825 int nid;
3826
457c1b27
NA
3827 if (!hugepages_supported())
3828 return;
3829
949f7ec5
DR
3830 for_each_node_state(nid, N_MEMORY)
3831 for_each_hstate(h)
3832 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3833 nid,
3834 h->nr_huge_pages_node[nid],
3835 h->free_huge_pages_node[nid],
3836 h->surplus_huge_pages_node[nid],
aca78307 3837 huge_page_size(h) / SZ_1K);
949f7ec5
DR
3838}
3839
5d317b2b
NH
3840void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3841{
3842 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3843 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3844}
3845
1da177e4
LT
3846/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3847unsigned long hugetlb_total_pages(void)
3848{
d0028588
WL
3849 struct hstate *h;
3850 unsigned long nr_total_pages = 0;
3851
3852 for_each_hstate(h)
3853 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3854 return nr_total_pages;
1da177e4 3855}
1da177e4 3856
a5516438 3857static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3858{
3859 int ret = -ENOMEM;
3860
0aa7f354
ML
3861 if (!delta)
3862 return 0;
3863
db71ef79 3864 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
3865 /*
3866 * When cpuset is configured, it breaks the strict hugetlb page
3867 * reservation as the accounting is done on a global variable. Such
3868 * reservation is completely rubbish in the presence of cpuset because
3869 * the reservation is not checked against page availability for the
3870 * current cpuset. Application can still potentially OOM'ed by kernel
3871 * with lack of free htlb page in cpuset that the task is in.
3872 * Attempt to enforce strict accounting with cpuset is almost
3873 * impossible (or too ugly) because cpuset is too fluid that
3874 * task or memory node can be dynamically moved between cpusets.
3875 *
3876 * The change of semantics for shared hugetlb mapping with cpuset is
3877 * undesirable. However, in order to preserve some of the semantics,
3878 * we fall back to check against current free page availability as
3879 * a best attempt and hopefully to minimize the impact of changing
3880 * semantics that cpuset has.
8ca39e68
MS
3881 *
3882 * Apart from cpuset, we also have memory policy mechanism that
3883 * also determines from which node the kernel will allocate memory
3884 * in a NUMA system. So similar to cpuset, we also should consider
3885 * the memory policy of the current task. Similar to the description
3886 * above.
fc1b8a73
MG
3887 */
3888 if (delta > 0) {
a5516438 3889 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3890 goto out;
3891
8ca39e68 3892 if (delta > allowed_mems_nr(h)) {
a5516438 3893 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3894 goto out;
3895 }
3896 }
3897
3898 ret = 0;
3899 if (delta < 0)
a5516438 3900 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3901
3902out:
db71ef79 3903 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
3904 return ret;
3905}
3906
84afd99b
AW
3907static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3908{
f522c3ac 3909 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3910
3911 /*
3912 * This new VMA should share its siblings reservation map if present.
3913 * The VMA will only ever have a valid reservation map pointer where
3914 * it is being copied for another still existing VMA. As that VMA
25985edc 3915 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3916 * after this open call completes. It is therefore safe to take a
3917 * new reference here without additional locking.
3918 */
4e35f483 3919 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3920 kref_get(&resv->refs);
84afd99b
AW
3921}
3922
a1e78772
MG
3923static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3924{
a5516438 3925 struct hstate *h = hstate_vma(vma);
f522c3ac 3926 struct resv_map *resv = vma_resv_map(vma);
90481622 3927 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3928 unsigned long reserve, start, end;
1c5ecae3 3929 long gbl_reserve;
84afd99b 3930
4e35f483
JK
3931 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3932 return;
84afd99b 3933
4e35f483
JK
3934 start = vma_hugecache_offset(h, vma, vma->vm_start);
3935 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3936
4e35f483 3937 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3938 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3939 if (reserve) {
1c5ecae3
MK
3940 /*
3941 * Decrement reserve counts. The global reserve count may be
3942 * adjusted if the subpool has a minimum size.
3943 */
3944 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3945 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3946 }
e9fe92ae
MA
3947
3948 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3949}
3950
31383c68
DW
3951static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3952{
3953 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3954 return -EINVAL;
3955 return 0;
3956}
3957
05ea8860
DW
3958static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3959{
aca78307 3960 return huge_page_size(hstate_vma(vma));
05ea8860
DW
3961}
3962
1da177e4
LT
3963/*
3964 * We cannot handle pagefaults against hugetlb pages at all. They cause
3965 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 3966 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
3967 * this far.
3968 */
b3ec9f33 3969static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3970{
3971 BUG();
d0217ac0 3972 return 0;
1da177e4
LT
3973}
3974
eec3636a
JC
3975/*
3976 * When a new function is introduced to vm_operations_struct and added
3977 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3978 * This is because under System V memory model, mappings created via
3979 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3980 * their original vm_ops are overwritten with shm_vm_ops.
3981 */
f0f37e2f 3982const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3983 .fault = hugetlb_vm_op_fault,
84afd99b 3984 .open = hugetlb_vm_op_open,
a1e78772 3985 .close = hugetlb_vm_op_close,
dd3b614f 3986 .may_split = hugetlb_vm_op_split,
05ea8860 3987 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3988};
3989
1e8f889b
DG
3990static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3991 int writable)
63551ae0
DG
3992{
3993 pte_t entry;
3994
1e8f889b 3995 if (writable) {
106c992a
GS
3996 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3997 vma->vm_page_prot)));
63551ae0 3998 } else {
106c992a
GS
3999 entry = huge_pte_wrprotect(mk_huge_pte(page,
4000 vma->vm_page_prot));
63551ae0
DG
4001 }
4002 entry = pte_mkyoung(entry);
4003 entry = pte_mkhuge(entry);
d9ed9faa 4004 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
4005
4006 return entry;
4007}
4008
1e8f889b
DG
4009static void set_huge_ptep_writable(struct vm_area_struct *vma,
4010 unsigned long address, pte_t *ptep)
4011{
4012 pte_t entry;
4013
106c992a 4014 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 4015 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 4016 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
4017}
4018
d5ed7444 4019bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
4020{
4021 swp_entry_t swp;
4022
4023 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 4024 return false;
4a705fef 4025 swp = pte_to_swp_entry(pte);
d79d176a 4026 if (is_migration_entry(swp))
d5ed7444 4027 return true;
4a705fef 4028 else
d5ed7444 4029 return false;
4a705fef
NH
4030}
4031
3e5c3600 4032static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
4033{
4034 swp_entry_t swp;
4035
4036 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 4037 return false;
4a705fef 4038 swp = pte_to_swp_entry(pte);
d79d176a 4039 if (is_hwpoison_entry(swp))
3e5c3600 4040 return true;
4a705fef 4041 else
3e5c3600 4042 return false;
4a705fef 4043}
1e8f889b 4044
4eae4efa
PX
4045static void
4046hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4047 struct page *new_page)
4048{
4049 __SetPageUptodate(new_page);
4050 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4051 hugepage_add_new_anon_rmap(new_page, vma, addr);
4052 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4053 ClearHPageRestoreReserve(new_page);
4054 SetHPageMigratable(new_page);
4055}
4056
63551ae0
DG
4057int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4058 struct vm_area_struct *vma)
4059{
5e41540c 4060 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 4061 struct page *ptepage;
1c59827d 4062 unsigned long addr;
ca6eb14d 4063 bool cow = is_cow_mapping(vma->vm_flags);
a5516438
AK
4064 struct hstate *h = hstate_vma(vma);
4065 unsigned long sz = huge_page_size(h);
4eae4efa 4066 unsigned long npages = pages_per_huge_page(h);
c0d0381a 4067 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 4068 struct mmu_notifier_range range;
e8569dd2 4069 int ret = 0;
1e8f889b 4070
ac46d4f3 4071 if (cow) {
7269f999 4072 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 4073 vma->vm_start,
ac46d4f3
JG
4074 vma->vm_end);
4075 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
4076 } else {
4077 /*
4078 * For shared mappings i_mmap_rwsem must be held to call
4079 * huge_pte_alloc, otherwise the returned ptep could go
4080 * away if part of a shared pmd and another thread calls
4081 * huge_pmd_unshare.
4082 */
4083 i_mmap_lock_read(mapping);
ac46d4f3 4084 }
e8569dd2 4085
a5516438 4086 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 4087 spinlock_t *src_ptl, *dst_ptl;
7868a208 4088 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
4089 if (!src_pte)
4090 continue;
aec44e0f 4091 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
e8569dd2
AS
4092 if (!dst_pte) {
4093 ret = -ENOMEM;
4094 break;
4095 }
c5c99429 4096
5e41540c
MK
4097 /*
4098 * If the pagetables are shared don't copy or take references.
4099 * dst_pte == src_pte is the common case of src/dest sharing.
4100 *
4101 * However, src could have 'unshared' and dst shares with
4102 * another vma. If dst_pte !none, this implies sharing.
4103 * Check here before taking page table lock, and once again
4104 * after taking the lock below.
4105 */
4106 dst_entry = huge_ptep_get(dst_pte);
4107 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
4108 continue;
4109
cb900f41
KS
4110 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4111 src_ptl = huge_pte_lockptr(h, src, src_pte);
4112 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 4113 entry = huge_ptep_get(src_pte);
5e41540c 4114 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 4115again:
5e41540c
MK
4116 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4117 /*
4118 * Skip if src entry none. Also, skip in the
4119 * unlikely case dst entry !none as this implies
4120 * sharing with another vma.
4121 */
4a705fef
NH
4122 ;
4123 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4124 is_hugetlb_entry_hwpoisoned(entry))) {
4125 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4126
4127 if (is_write_migration_entry(swp_entry) && cow) {
4128 /*
4129 * COW mappings require pages in both
4130 * parent and child to be set to read.
4131 */
4132 make_migration_entry_read(&swp_entry);
4133 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
4134 set_huge_swap_pte_at(src, addr, src_pte,
4135 entry, sz);
4a705fef 4136 }
e5251fd4 4137 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 4138 } else {
4eae4efa
PX
4139 entry = huge_ptep_get(src_pte);
4140 ptepage = pte_page(entry);
4141 get_page(ptepage);
4142
4143 /*
4144 * This is a rare case where we see pinned hugetlb
4145 * pages while they're prone to COW. We need to do the
4146 * COW earlier during fork.
4147 *
4148 * When pre-allocating the page or copying data, we
4149 * need to be without the pgtable locks since we could
4150 * sleep during the process.
4151 */
4152 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4153 pte_t src_pte_old = entry;
4154 struct page *new;
4155
4156 spin_unlock(src_ptl);
4157 spin_unlock(dst_ptl);
4158 /* Do not use reserve as it's private owned */
4159 new = alloc_huge_page(vma, addr, 1);
4160 if (IS_ERR(new)) {
4161 put_page(ptepage);
4162 ret = PTR_ERR(new);
4163 break;
4164 }
4165 copy_user_huge_page(new, ptepage, addr, vma,
4166 npages);
4167 put_page(ptepage);
4168
4169 /* Install the new huge page if src pte stable */
4170 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4171 src_ptl = huge_pte_lockptr(h, src, src_pte);
4172 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4173 entry = huge_ptep_get(src_pte);
4174 if (!pte_same(src_pte_old, entry)) {
846be085
MK
4175 restore_reserve_on_error(h, vma, addr,
4176 new);
4eae4efa
PX
4177 put_page(new);
4178 /* dst_entry won't change as in child */
4179 goto again;
4180 }
4181 hugetlb_install_page(vma, dst_pte, addr, new);
4182 spin_unlock(src_ptl);
4183 spin_unlock(dst_ptl);
4184 continue;
4185 }
4186
34ee645e 4187 if (cow) {
0f10851e
JG
4188 /*
4189 * No need to notify as we are downgrading page
4190 * table protection not changing it to point
4191 * to a new page.
4192 *
ad56b738 4193 * See Documentation/vm/mmu_notifier.rst
0f10851e 4194 */
7f2e9525 4195 huge_ptep_set_wrprotect(src, addr, src_pte);
84894e1c 4196 entry = huge_pte_wrprotect(entry);
34ee645e 4197 }
4eae4efa 4198
53f9263b 4199 page_dup_rmap(ptepage, true);
1c59827d 4200 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 4201 hugetlb_count_add(npages, dst);
1c59827d 4202 }
cb900f41
KS
4203 spin_unlock(src_ptl);
4204 spin_unlock(dst_ptl);
63551ae0 4205 }
63551ae0 4206
e8569dd2 4207 if (cow)
ac46d4f3 4208 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
4209 else
4210 i_mmap_unlock_read(mapping);
e8569dd2
AS
4211
4212 return ret;
63551ae0
DG
4213}
4214
24669e58
AK
4215void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4216 unsigned long start, unsigned long end,
4217 struct page *ref_page)
63551ae0
DG
4218{
4219 struct mm_struct *mm = vma->vm_mm;
4220 unsigned long address;
c7546f8f 4221 pte_t *ptep;
63551ae0 4222 pte_t pte;
cb900f41 4223 spinlock_t *ptl;
63551ae0 4224 struct page *page;
a5516438
AK
4225 struct hstate *h = hstate_vma(vma);
4226 unsigned long sz = huge_page_size(h);
ac46d4f3 4227 struct mmu_notifier_range range;
a5516438 4228
63551ae0 4229 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
4230 BUG_ON(start & ~huge_page_mask(h));
4231 BUG_ON(end & ~huge_page_mask(h));
63551ae0 4232
07e32661
AK
4233 /*
4234 * This is a hugetlb vma, all the pte entries should point
4235 * to huge page.
4236 */
ed6a7935 4237 tlb_change_page_size(tlb, sz);
24669e58 4238 tlb_start_vma(tlb, vma);
dff11abe
MK
4239
4240 /*
4241 * If sharing possible, alert mmu notifiers of worst case.
4242 */
6f4f13e8
JG
4243 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4244 end);
ac46d4f3
JG
4245 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4246 mmu_notifier_invalidate_range_start(&range);
569f48b8 4247 address = start;
569f48b8 4248 for (; address < end; address += sz) {
7868a208 4249 ptep = huge_pte_offset(mm, address, sz);
4c887265 4250 if (!ptep)
c7546f8f
DG
4251 continue;
4252
cb900f41 4253 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 4254 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 4255 spin_unlock(ptl);
dff11abe
MK
4256 /*
4257 * We just unmapped a page of PMDs by clearing a PUD.
4258 * The caller's TLB flush range should cover this area.
4259 */
31d49da5
AK
4260 continue;
4261 }
39dde65c 4262
6629326b 4263 pte = huge_ptep_get(ptep);
31d49da5
AK
4264 if (huge_pte_none(pte)) {
4265 spin_unlock(ptl);
4266 continue;
4267 }
6629326b
HD
4268
4269 /*
9fbc1f63
NH
4270 * Migrating hugepage or HWPoisoned hugepage is already
4271 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 4272 */
9fbc1f63 4273 if (unlikely(!pte_present(pte))) {
9386fac3 4274 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
4275 spin_unlock(ptl);
4276 continue;
8c4894c6 4277 }
6629326b
HD
4278
4279 page = pte_page(pte);
04f2cbe3
MG
4280 /*
4281 * If a reference page is supplied, it is because a specific
4282 * page is being unmapped, not a range. Ensure the page we
4283 * are about to unmap is the actual page of interest.
4284 */
4285 if (ref_page) {
31d49da5
AK
4286 if (page != ref_page) {
4287 spin_unlock(ptl);
4288 continue;
4289 }
04f2cbe3
MG
4290 /*
4291 * Mark the VMA as having unmapped its page so that
4292 * future faults in this VMA will fail rather than
4293 * looking like data was lost
4294 */
4295 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4296 }
4297
c7546f8f 4298 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 4299 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 4300 if (huge_pte_dirty(pte))
6649a386 4301 set_page_dirty(page);
9e81130b 4302
5d317b2b 4303 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4304 page_remove_rmap(page, true);
31d49da5 4305
cb900f41 4306 spin_unlock(ptl);
e77b0852 4307 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4308 /*
4309 * Bail out after unmapping reference page if supplied
4310 */
4311 if (ref_page)
4312 break;
fe1668ae 4313 }
ac46d4f3 4314 mmu_notifier_invalidate_range_end(&range);
24669e58 4315 tlb_end_vma(tlb, vma);
1da177e4 4316}
63551ae0 4317
d833352a
MG
4318void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4319 struct vm_area_struct *vma, unsigned long start,
4320 unsigned long end, struct page *ref_page)
4321{
4322 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4323
4324 /*
4325 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4326 * test will fail on a vma being torn down, and not grab a page table
4327 * on its way out. We're lucky that the flag has such an appropriate
4328 * name, and can in fact be safely cleared here. We could clear it
4329 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4330 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4331 * because in the context this is called, the VMA is about to be
c8c06efa 4332 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4333 */
4334 vma->vm_flags &= ~VM_MAYSHARE;
4335}
4336
502717f4 4337void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4338 unsigned long end, struct page *ref_page)
502717f4 4339{
24669e58 4340 struct mmu_gather tlb;
dff11abe 4341
a72afd87 4342 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 4343 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 4344 tlb_finish_mmu(&tlb);
502717f4
KC
4345}
4346
04f2cbe3
MG
4347/*
4348 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 4349 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
4350 * from other VMAs and let the children be SIGKILLed if they are faulting the
4351 * same region.
4352 */
2f4612af
DB
4353static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4354 struct page *page, unsigned long address)
04f2cbe3 4355{
7526674d 4356 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4357 struct vm_area_struct *iter_vma;
4358 struct address_space *mapping;
04f2cbe3
MG
4359 pgoff_t pgoff;
4360
4361 /*
4362 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4363 * from page cache lookup which is in HPAGE_SIZE units.
4364 */
7526674d 4365 address = address & huge_page_mask(h);
36e4f20a
MH
4366 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4367 vma->vm_pgoff;
93c76a3d 4368 mapping = vma->vm_file->f_mapping;
04f2cbe3 4369
4eb2b1dc
MG
4370 /*
4371 * Take the mapping lock for the duration of the table walk. As
4372 * this mapping should be shared between all the VMAs,
4373 * __unmap_hugepage_range() is called as the lock is already held
4374 */
83cde9e8 4375 i_mmap_lock_write(mapping);
6b2dbba8 4376 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4377 /* Do not unmap the current VMA */
4378 if (iter_vma == vma)
4379 continue;
4380
2f84a899
MG
4381 /*
4382 * Shared VMAs have their own reserves and do not affect
4383 * MAP_PRIVATE accounting but it is possible that a shared
4384 * VMA is using the same page so check and skip such VMAs.
4385 */
4386 if (iter_vma->vm_flags & VM_MAYSHARE)
4387 continue;
4388
04f2cbe3
MG
4389 /*
4390 * Unmap the page from other VMAs without their own reserves.
4391 * They get marked to be SIGKILLed if they fault in these
4392 * areas. This is because a future no-page fault on this VMA
4393 * could insert a zeroed page instead of the data existing
4394 * from the time of fork. This would look like data corruption
4395 */
4396 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4397 unmap_hugepage_range(iter_vma, address,
4398 address + huge_page_size(h), page);
04f2cbe3 4399 }
83cde9e8 4400 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4401}
4402
0fe6e20b
NH
4403/*
4404 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4405 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4406 * cannot race with other handlers or page migration.
4407 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4408 */
2b740303 4409static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4410 unsigned long address, pte_t *ptep,
3999f52e 4411 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4412{
3999f52e 4413 pte_t pte;
a5516438 4414 struct hstate *h = hstate_vma(vma);
1e8f889b 4415 struct page *old_page, *new_page;
2b740303
SJ
4416 int outside_reserve = 0;
4417 vm_fault_t ret = 0;
974e6d66 4418 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4419 struct mmu_notifier_range range;
1e8f889b 4420
3999f52e 4421 pte = huge_ptep_get(ptep);
1e8f889b
DG
4422 old_page = pte_page(pte);
4423
04f2cbe3 4424retry_avoidcopy:
1e8f889b
DG
4425 /* If no-one else is actually using this page, avoid the copy
4426 * and just make the page writable */
37a2140d 4427 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4428 page_move_anon_rmap(old_page, vma);
5b7a1d40 4429 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4430 return 0;
1e8f889b
DG
4431 }
4432
04f2cbe3
MG
4433 /*
4434 * If the process that created a MAP_PRIVATE mapping is about to
4435 * perform a COW due to a shared page count, attempt to satisfy
4436 * the allocation without using the existing reserves. The pagecache
4437 * page is used to determine if the reserve at this address was
4438 * consumed or not. If reserves were used, a partial faulted mapping
4439 * at the time of fork() could consume its reserves on COW instead
4440 * of the full address range.
4441 */
5944d011 4442 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4443 old_page != pagecache_page)
4444 outside_reserve = 1;
4445
09cbfeaf 4446 get_page(old_page);
b76c8cfb 4447
ad4404a2
DB
4448 /*
4449 * Drop page table lock as buddy allocator may be called. It will
4450 * be acquired again before returning to the caller, as expected.
4451 */
cb900f41 4452 spin_unlock(ptl);
5b7a1d40 4453 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4454
2fc39cec 4455 if (IS_ERR(new_page)) {
04f2cbe3
MG
4456 /*
4457 * If a process owning a MAP_PRIVATE mapping fails to COW,
4458 * it is due to references held by a child and an insufficient
4459 * huge page pool. To guarantee the original mappers
4460 * reliability, unmap the page from child processes. The child
4461 * may get SIGKILLed if it later faults.
4462 */
4463 if (outside_reserve) {
e7dd91c4
MK
4464 struct address_space *mapping = vma->vm_file->f_mapping;
4465 pgoff_t idx;
4466 u32 hash;
4467
09cbfeaf 4468 put_page(old_page);
04f2cbe3 4469 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4470 /*
4471 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4472 * unmapping. unmapping needs to hold i_mmap_rwsem
4473 * in write mode. Dropping i_mmap_rwsem in read mode
4474 * here is OK as COW mappings do not interact with
4475 * PMD sharing.
4476 *
4477 * Reacquire both after unmap operation.
4478 */
4479 idx = vma_hugecache_offset(h, vma, haddr);
4480 hash = hugetlb_fault_mutex_hash(mapping, idx);
4481 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4482 i_mmap_unlock_read(mapping);
4483
5b7a1d40 4484 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4485
4486 i_mmap_lock_read(mapping);
4487 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4488 spin_lock(ptl);
5b7a1d40 4489 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4490 if (likely(ptep &&
4491 pte_same(huge_ptep_get(ptep), pte)))
4492 goto retry_avoidcopy;
4493 /*
4494 * race occurs while re-acquiring page table
4495 * lock, and our job is done.
4496 */
4497 return 0;
04f2cbe3
MG
4498 }
4499
2b740303 4500 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4501 goto out_release_old;
1e8f889b
DG
4502 }
4503
0fe6e20b
NH
4504 /*
4505 * When the original hugepage is shared one, it does not have
4506 * anon_vma prepared.
4507 */
44e2aa93 4508 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4509 ret = VM_FAULT_OOM;
4510 goto out_release_all;
44e2aa93 4511 }
0fe6e20b 4512
974e6d66 4513 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4514 pages_per_huge_page(h));
0ed361de 4515 __SetPageUptodate(new_page);
1e8f889b 4516
7269f999 4517 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4518 haddr + huge_page_size(h));
ac46d4f3 4519 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4520
b76c8cfb 4521 /*
cb900f41 4522 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4523 * before the page tables are altered
4524 */
cb900f41 4525 spin_lock(ptl);
5b7a1d40 4526 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4527 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 4528 ClearHPageRestoreReserve(new_page);
07443a85 4529
1e8f889b 4530 /* Break COW */
5b7a1d40 4531 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4532 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4533 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4534 make_huge_pte(vma, new_page, 1));
d281ee61 4535 page_remove_rmap(old_page, true);
5b7a1d40 4536 hugepage_add_new_anon_rmap(new_page, vma, haddr);
8f251a3d 4537 SetHPageMigratable(new_page);
1e8f889b
DG
4538 /* Make the old page be freed below */
4539 new_page = old_page;
4540 }
cb900f41 4541 spin_unlock(ptl);
ac46d4f3 4542 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4543out_release_all:
5b7a1d40 4544 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4545 put_page(new_page);
ad4404a2 4546out_release_old:
09cbfeaf 4547 put_page(old_page);
8312034f 4548
ad4404a2
DB
4549 spin_lock(ptl); /* Caller expects lock to be held */
4550 return ret;
1e8f889b
DG
4551}
4552
04f2cbe3 4553/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4554static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4555 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4556{
4557 struct address_space *mapping;
e7c4b0bf 4558 pgoff_t idx;
04f2cbe3
MG
4559
4560 mapping = vma->vm_file->f_mapping;
a5516438 4561 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4562
4563 return find_lock_page(mapping, idx);
4564}
4565
3ae77f43
HD
4566/*
4567 * Return whether there is a pagecache page to back given address within VMA.
4568 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4569 */
4570static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4571 struct vm_area_struct *vma, unsigned long address)
4572{
4573 struct address_space *mapping;
4574 pgoff_t idx;
4575 struct page *page;
4576
4577 mapping = vma->vm_file->f_mapping;
4578 idx = vma_hugecache_offset(h, vma, address);
4579
4580 page = find_get_page(mapping, idx);
4581 if (page)
4582 put_page(page);
4583 return page != NULL;
4584}
4585
ab76ad54
MK
4586int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4587 pgoff_t idx)
4588{
4589 struct inode *inode = mapping->host;
4590 struct hstate *h = hstate_inode(inode);
4591 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4592
4593 if (err)
4594 return err;
d6995da3 4595 ClearHPageRestoreReserve(page);
ab76ad54 4596
22146c3c
MK
4597 /*
4598 * set page dirty so that it will not be removed from cache/file
4599 * by non-hugetlbfs specific code paths.
4600 */
4601 set_page_dirty(page);
4602
ab76ad54
MK
4603 spin_lock(&inode->i_lock);
4604 inode->i_blocks += blocks_per_huge_page(h);
4605 spin_unlock(&inode->i_lock);
4606 return 0;
4607}
4608
7677f7fd
AR
4609static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4610 struct address_space *mapping,
4611 pgoff_t idx,
4612 unsigned int flags,
4613 unsigned long haddr,
4614 unsigned long reason)
4615{
4616 vm_fault_t ret;
4617 u32 hash;
4618 struct vm_fault vmf = {
4619 .vma = vma,
4620 .address = haddr,
4621 .flags = flags,
4622
4623 /*
4624 * Hard to debug if it ends up being
4625 * used by a callee that assumes
4626 * something about the other
4627 * uninitialized fields... same as in
4628 * memory.c
4629 */
4630 };
4631
4632 /*
4633 * hugetlb_fault_mutex and i_mmap_rwsem must be
4634 * dropped before handling userfault. Reacquire
4635 * after handling fault to make calling code simpler.
4636 */
4637 hash = hugetlb_fault_mutex_hash(mapping, idx);
4638 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4639 i_mmap_unlock_read(mapping);
4640 ret = handle_userfault(&vmf, reason);
4641 i_mmap_lock_read(mapping);
4642 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4643
4644 return ret;
4645}
4646
2b740303
SJ
4647static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4648 struct vm_area_struct *vma,
4649 struct address_space *mapping, pgoff_t idx,
4650 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4651{
a5516438 4652 struct hstate *h = hstate_vma(vma);
2b740303 4653 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4654 int anon_rmap = 0;
4c887265 4655 unsigned long size;
4c887265 4656 struct page *page;
1e8f889b 4657 pte_t new_pte;
cb900f41 4658 spinlock_t *ptl;
285b8dca 4659 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4660 bool new_page = false;
4c887265 4661
04f2cbe3
MG
4662 /*
4663 * Currently, we are forced to kill the process in the event the
4664 * original mapper has unmapped pages from the child due to a failed
25985edc 4665 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4666 */
4667 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4668 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4669 current->pid);
04f2cbe3
MG
4670 return ret;
4671 }
4672
4c887265 4673 /*
87bf91d3
MK
4674 * We can not race with truncation due to holding i_mmap_rwsem.
4675 * i_size is modified when holding i_mmap_rwsem, so check here
4676 * once for faults beyond end of file.
4c887265 4677 */
87bf91d3
MK
4678 size = i_size_read(mapping->host) >> huge_page_shift(h);
4679 if (idx >= size)
4680 goto out;
4681
6bda666a
CL
4682retry:
4683 page = find_lock_page(mapping, idx);
4684 if (!page) {
7677f7fd 4685 /* Check for page in userfault range */
1a1aad8a 4686 if (userfaultfd_missing(vma)) {
7677f7fd
AR
4687 ret = hugetlb_handle_userfault(vma, mapping, idx,
4688 flags, haddr,
4689 VM_UFFD_MISSING);
1a1aad8a
MK
4690 goto out;
4691 }
4692
285b8dca 4693 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4694 if (IS_ERR(page)) {
4643d67e
MK
4695 /*
4696 * Returning error will result in faulting task being
4697 * sent SIGBUS. The hugetlb fault mutex prevents two
4698 * tasks from racing to fault in the same page which
4699 * could result in false unable to allocate errors.
4700 * Page migration does not take the fault mutex, but
4701 * does a clear then write of pte's under page table
4702 * lock. Page fault code could race with migration,
4703 * notice the clear pte and try to allocate a page
4704 * here. Before returning error, get ptl and make
4705 * sure there really is no pte entry.
4706 */
4707 ptl = huge_pte_lock(h, mm, ptep);
d83e6c8a
ML
4708 ret = 0;
4709 if (huge_pte_none(huge_ptep_get(ptep)))
4710 ret = vmf_error(PTR_ERR(page));
4643d67e 4711 spin_unlock(ptl);
6bda666a
CL
4712 goto out;
4713 }
47ad8475 4714 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4715 __SetPageUptodate(page);
cb6acd01 4716 new_page = true;
ac9b9c66 4717
f83a275d 4718 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4719 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4720 if (err) {
4721 put_page(page);
6bda666a
CL
4722 if (err == -EEXIST)
4723 goto retry;
4724 goto out;
4725 }
23be7468 4726 } else {
6bda666a 4727 lock_page(page);
0fe6e20b
NH
4728 if (unlikely(anon_vma_prepare(vma))) {
4729 ret = VM_FAULT_OOM;
4730 goto backout_unlocked;
4731 }
409eb8c2 4732 anon_rmap = 1;
23be7468 4733 }
0fe6e20b 4734 } else {
998b4382
NH
4735 /*
4736 * If memory error occurs between mmap() and fault, some process
4737 * don't have hwpoisoned swap entry for errored virtual address.
4738 * So we need to block hugepage fault by PG_hwpoison bit check.
4739 */
4740 if (unlikely(PageHWPoison(page))) {
0eb98f15 4741 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4742 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4743 goto backout_unlocked;
4744 }
7677f7fd
AR
4745
4746 /* Check for page in userfault range. */
4747 if (userfaultfd_minor(vma)) {
4748 unlock_page(page);
4749 put_page(page);
4750 ret = hugetlb_handle_userfault(vma, mapping, idx,
4751 flags, haddr,
4752 VM_UFFD_MINOR);
4753 goto out;
4754 }
6bda666a 4755 }
1e8f889b 4756
57303d80
AW
4757 /*
4758 * If we are going to COW a private mapping later, we examine the
4759 * pending reservations for this page now. This will ensure that
4760 * any allocations necessary to record that reservation occur outside
4761 * the spinlock.
4762 */
5e911373 4763 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4764 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4765 ret = VM_FAULT_OOM;
4766 goto backout_unlocked;
4767 }
5e911373 4768 /* Just decrements count, does not deallocate */
285b8dca 4769 vma_end_reservation(h, vma, haddr);
5e911373 4770 }
57303d80 4771
8bea8052 4772 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4773 ret = 0;
7f2e9525 4774 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4775 goto backout;
4776
07443a85 4777 if (anon_rmap) {
d6995da3 4778 ClearHPageRestoreReserve(page);
285b8dca 4779 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4780 } else
53f9263b 4781 page_dup_rmap(page, true);
1e8f889b
DG
4782 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4783 && (vma->vm_flags & VM_SHARED)));
285b8dca 4784 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4785
5d317b2b 4786 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4787 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4788 /* Optimization, do the COW without a second fault */
974e6d66 4789 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4790 }
4791
cb900f41 4792 spin_unlock(ptl);
cb6acd01
MK
4793
4794 /*
8f251a3d
MK
4795 * Only set HPageMigratable in newly allocated pages. Existing pages
4796 * found in the pagecache may not have HPageMigratableset if they have
4797 * been isolated for migration.
cb6acd01
MK
4798 */
4799 if (new_page)
8f251a3d 4800 SetHPageMigratable(page);
cb6acd01 4801
4c887265
AL
4802 unlock_page(page);
4803out:
ac9b9c66 4804 return ret;
4c887265
AL
4805
4806backout:
cb900f41 4807 spin_unlock(ptl);
2b26736c 4808backout_unlocked:
4c887265 4809 unlock_page(page);
285b8dca 4810 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4811 put_page(page);
4812 goto out;
ac9b9c66
HD
4813}
4814
8382d914 4815#ifdef CONFIG_SMP
188b04a7 4816u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4817{
4818 unsigned long key[2];
4819 u32 hash;
4820
1b426bac
MK
4821 key[0] = (unsigned long) mapping;
4822 key[1] = idx;
8382d914 4823
55254636 4824 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4825
4826 return hash & (num_fault_mutexes - 1);
4827}
4828#else
4829/*
6c26d310 4830 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
4831 * return 0 and avoid the hashing overhead.
4832 */
188b04a7 4833u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4834{
4835 return 0;
4836}
4837#endif
4838
2b740303 4839vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4840 unsigned long address, unsigned int flags)
86e5216f 4841{
8382d914 4842 pte_t *ptep, entry;
cb900f41 4843 spinlock_t *ptl;
2b740303 4844 vm_fault_t ret;
8382d914
DB
4845 u32 hash;
4846 pgoff_t idx;
0fe6e20b 4847 struct page *page = NULL;
57303d80 4848 struct page *pagecache_page = NULL;
a5516438 4849 struct hstate *h = hstate_vma(vma);
8382d914 4850 struct address_space *mapping;
0f792cf9 4851 int need_wait_lock = 0;
285b8dca 4852 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4853
285b8dca 4854 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4855 if (ptep) {
c0d0381a
MK
4856 /*
4857 * Since we hold no locks, ptep could be stale. That is
4858 * OK as we are only making decisions based on content and
4859 * not actually modifying content here.
4860 */
fd6a03ed 4861 entry = huge_ptep_get(ptep);
290408d4 4862 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4863 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4864 return 0;
4865 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4866 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4867 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4868 }
4869
c0d0381a
MK
4870 /*
4871 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4872 * until finished with ptep. This serves two purposes:
4873 * 1) It prevents huge_pmd_unshare from being called elsewhere
4874 * and making the ptep no longer valid.
4875 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4876 *
4877 * ptep could have already be assigned via huge_pte_offset. That
4878 * is OK, as huge_pte_alloc will return the same value unless
4879 * something has changed.
4880 */
8382d914 4881 mapping = vma->vm_file->f_mapping;
c0d0381a 4882 i_mmap_lock_read(mapping);
aec44e0f 4883 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
c0d0381a
MK
4884 if (!ptep) {
4885 i_mmap_unlock_read(mapping);
4886 return VM_FAULT_OOM;
4887 }
8382d914 4888
3935baa9
DG
4889 /*
4890 * Serialize hugepage allocation and instantiation, so that we don't
4891 * get spurious allocation failures if two CPUs race to instantiate
4892 * the same page in the page cache.
4893 */
c0d0381a 4894 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4895 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4896 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4897
7f2e9525
GS
4898 entry = huge_ptep_get(ptep);
4899 if (huge_pte_none(entry)) {
8382d914 4900 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4901 goto out_mutex;
3935baa9 4902 }
86e5216f 4903
83c54070 4904 ret = 0;
1e8f889b 4905
0f792cf9
NH
4906 /*
4907 * entry could be a migration/hwpoison entry at this point, so this
4908 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4909 * an active hugepage in pagecache. This goto expects the 2nd page
4910 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4911 * properly handle it.
0f792cf9
NH
4912 */
4913 if (!pte_present(entry))
4914 goto out_mutex;
4915
57303d80
AW
4916 /*
4917 * If we are going to COW the mapping later, we examine the pending
4918 * reservations for this page now. This will ensure that any
4919 * allocations necessary to record that reservation occur outside the
4920 * spinlock. For private mappings, we also lookup the pagecache
4921 * page now as it is used to determine if a reservation has been
4922 * consumed.
4923 */
106c992a 4924 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4925 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4926 ret = VM_FAULT_OOM;
b4d1d99f 4927 goto out_mutex;
2b26736c 4928 }
5e911373 4929 /* Just decrements count, does not deallocate */
285b8dca 4930 vma_end_reservation(h, vma, haddr);
57303d80 4931
f83a275d 4932 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4933 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4934 vma, haddr);
57303d80
AW
4935 }
4936
0f792cf9
NH
4937 ptl = huge_pte_lock(h, mm, ptep);
4938
4939 /* Check for a racing update before calling hugetlb_cow */
4940 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4941 goto out_ptl;
4942
56c9cfb1
NH
4943 /*
4944 * hugetlb_cow() requires page locks of pte_page(entry) and
4945 * pagecache_page, so here we need take the former one
4946 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4947 */
4948 page = pte_page(entry);
4949 if (page != pagecache_page)
0f792cf9
NH
4950 if (!trylock_page(page)) {
4951 need_wait_lock = 1;
4952 goto out_ptl;
4953 }
b4d1d99f 4954
0f792cf9 4955 get_page(page);
b4d1d99f 4956
788c7df4 4957 if (flags & FAULT_FLAG_WRITE) {
106c992a 4958 if (!huge_pte_write(entry)) {
974e6d66 4959 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4960 pagecache_page, ptl);
0f792cf9 4961 goto out_put_page;
b4d1d99f 4962 }
106c992a 4963 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4964 }
4965 entry = pte_mkyoung(entry);
285b8dca 4966 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4967 flags & FAULT_FLAG_WRITE))
285b8dca 4968 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4969out_put_page:
4970 if (page != pagecache_page)
4971 unlock_page(page);
4972 put_page(page);
cb900f41
KS
4973out_ptl:
4974 spin_unlock(ptl);
57303d80
AW
4975
4976 if (pagecache_page) {
4977 unlock_page(pagecache_page);
4978 put_page(pagecache_page);
4979 }
b4d1d99f 4980out_mutex:
c672c7f2 4981 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4982 i_mmap_unlock_read(mapping);
0f792cf9
NH
4983 /*
4984 * Generally it's safe to hold refcount during waiting page lock. But
4985 * here we just wait to defer the next page fault to avoid busy loop and
4986 * the page is not used after unlocked before returning from the current
4987 * page fault. So we are safe from accessing freed page, even if we wait
4988 * here without taking refcount.
4989 */
4990 if (need_wait_lock)
4991 wait_on_page_locked(page);
1e8f889b 4992 return ret;
86e5216f
AL
4993}
4994
714c1891 4995#ifdef CONFIG_USERFAULTFD
8fb5debc
MK
4996/*
4997 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4998 * modifications for huge pages.
4999 */
5000int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5001 pte_t *dst_pte,
5002 struct vm_area_struct *dst_vma,
5003 unsigned long dst_addr,
5004 unsigned long src_addr,
f6191471 5005 enum mcopy_atomic_mode mode,
8fb5debc
MK
5006 struct page **pagep)
5007{
f6191471 5008 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
1e392147
AA
5009 struct address_space *mapping;
5010 pgoff_t idx;
5011 unsigned long size;
1c9e8def 5012 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
5013 struct hstate *h = hstate_vma(dst_vma);
5014 pte_t _dst_pte;
5015 spinlock_t *ptl;
5016 int ret;
5017 struct page *page;
f6191471 5018 int writable;
8fb5debc 5019
f6191471
AR
5020 mapping = dst_vma->vm_file->f_mapping;
5021 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5022
5023 if (is_continue) {
5024 ret = -EFAULT;
5025 page = find_lock_page(mapping, idx);
5026 if (!page)
5027 goto out;
5028 } else if (!*pagep) {
d84cf06e
MA
5029 /* If a page already exists, then it's UFFDIO_COPY for
5030 * a non-missing case. Return -EEXIST.
5031 */
5032 if (vm_shared &&
5033 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5034 ret = -EEXIST;
5035 goto out;
5036 }
5037
8fb5debc 5038 page = alloc_huge_page(dst_vma, dst_addr, 0);
d84cf06e
MA
5039 if (IS_ERR(page)) {
5040 ret = -ENOMEM;
8fb5debc 5041 goto out;
d84cf06e 5042 }
8fb5debc
MK
5043
5044 ret = copy_huge_page_from_user(page,
5045 (const void __user *) src_addr,
810a56b9 5046 pages_per_huge_page(h), false);
8fb5debc 5047
c1e8d7c6 5048 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 5049 if (unlikely(ret)) {
9e368259 5050 ret = -ENOENT;
8fb5debc
MK
5051 *pagep = page;
5052 /* don't free the page */
5053 goto out;
5054 }
5055 } else {
5056 page = *pagep;
5057 *pagep = NULL;
5058 }
5059
5060 /*
5061 * The memory barrier inside __SetPageUptodate makes sure that
5062 * preceding stores to the page contents become visible before
5063 * the set_pte_at() write.
5064 */
5065 __SetPageUptodate(page);
8fb5debc 5066
f6191471
AR
5067 /* Add shared, newly allocated pages to the page cache. */
5068 if (vm_shared && !is_continue) {
1e392147
AA
5069 size = i_size_read(mapping->host) >> huge_page_shift(h);
5070 ret = -EFAULT;
5071 if (idx >= size)
5072 goto out_release_nounlock;
1c9e8def 5073
1e392147
AA
5074 /*
5075 * Serialization between remove_inode_hugepages() and
5076 * huge_add_to_page_cache() below happens through the
5077 * hugetlb_fault_mutex_table that here must be hold by
5078 * the caller.
5079 */
1c9e8def
MK
5080 ret = huge_add_to_page_cache(page, mapping, idx);
5081 if (ret)
5082 goto out_release_nounlock;
5083 }
5084
8fb5debc
MK
5085 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5086 spin_lock(ptl);
5087
1e392147
AA
5088 /*
5089 * Recheck the i_size after holding PT lock to make sure not
5090 * to leave any page mapped (as page_mapped()) beyond the end
5091 * of the i_size (remove_inode_hugepages() is strict about
5092 * enforcing that). If we bail out here, we'll also leave a
5093 * page in the radix tree in the vm_shared case beyond the end
5094 * of the i_size, but remove_inode_hugepages() will take care
5095 * of it as soon as we drop the hugetlb_fault_mutex_table.
5096 */
5097 size = i_size_read(mapping->host) >> huge_page_shift(h);
5098 ret = -EFAULT;
5099 if (idx >= size)
5100 goto out_release_unlock;
5101
8fb5debc
MK
5102 ret = -EEXIST;
5103 if (!huge_pte_none(huge_ptep_get(dst_pte)))
5104 goto out_release_unlock;
5105
1c9e8def
MK
5106 if (vm_shared) {
5107 page_dup_rmap(page, true);
5108 } else {
d6995da3 5109 ClearHPageRestoreReserve(page);
1c9e8def
MK
5110 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5111 }
8fb5debc 5112
f6191471
AR
5113 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5114 if (is_continue && !vm_shared)
5115 writable = 0;
5116 else
5117 writable = dst_vma->vm_flags & VM_WRITE;
5118
5119 _dst_pte = make_huge_pte(dst_vma, page, writable);
5120 if (writable)
8fb5debc
MK
5121 _dst_pte = huge_pte_mkdirty(_dst_pte);
5122 _dst_pte = pte_mkyoung(_dst_pte);
5123
5124 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5125
5126 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5127 dst_vma->vm_flags & VM_WRITE);
5128 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5129
5130 /* No need to invalidate - it was non-present before */
5131 update_mmu_cache(dst_vma, dst_addr, dst_pte);
5132
5133 spin_unlock(ptl);
f6191471
AR
5134 if (!is_continue)
5135 SetHPageMigratable(page);
5136 if (vm_shared || is_continue)
1c9e8def 5137 unlock_page(page);
8fb5debc
MK
5138 ret = 0;
5139out:
5140 return ret;
5141out_release_unlock:
5142 spin_unlock(ptl);
f6191471 5143 if (vm_shared || is_continue)
1c9e8def 5144 unlock_page(page);
5af10dfd 5145out_release_nounlock:
846be085 5146 restore_reserve_on_error(h, dst_vma, dst_addr, page);
8fb5debc
MK
5147 put_page(page);
5148 goto out;
5149}
714c1891 5150#endif /* CONFIG_USERFAULTFD */
8fb5debc 5151
82e5d378
JM
5152static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5153 int refs, struct page **pages,
5154 struct vm_area_struct **vmas)
5155{
5156 int nr;
5157
5158 for (nr = 0; nr < refs; nr++) {
5159 if (likely(pages))
5160 pages[nr] = mem_map_offset(page, nr);
5161 if (vmas)
5162 vmas[nr] = vma;
5163 }
5164}
5165
28a35716
ML
5166long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5167 struct page **pages, struct vm_area_struct **vmas,
5168 unsigned long *position, unsigned long *nr_pages,
4f6da934 5169 long i, unsigned int flags, int *locked)
63551ae0 5170{
d5d4b0aa
KC
5171 unsigned long pfn_offset;
5172 unsigned long vaddr = *position;
28a35716 5173 unsigned long remainder = *nr_pages;
a5516438 5174 struct hstate *h = hstate_vma(vma);
0fa5bc40 5175 int err = -EFAULT, refs;
63551ae0 5176
63551ae0 5177 while (vaddr < vma->vm_end && remainder) {
4c887265 5178 pte_t *pte;
cb900f41 5179 spinlock_t *ptl = NULL;
2a15efc9 5180 int absent;
4c887265 5181 struct page *page;
63551ae0 5182
02057967
DR
5183 /*
5184 * If we have a pending SIGKILL, don't keep faulting pages and
5185 * potentially allocating memory.
5186 */
fa45f116 5187 if (fatal_signal_pending(current)) {
02057967
DR
5188 remainder = 0;
5189 break;
5190 }
5191
4c887265
AL
5192 /*
5193 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 5194 * each hugepage. We have to make sure we get the
4c887265 5195 * first, for the page indexing below to work.
cb900f41
KS
5196 *
5197 * Note that page table lock is not held when pte is null.
4c887265 5198 */
7868a208
PA
5199 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5200 huge_page_size(h));
cb900f41
KS
5201 if (pte)
5202 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
5203 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5204
5205 /*
5206 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
5207 * an error where there's an empty slot with no huge pagecache
5208 * to back it. This way, we avoid allocating a hugepage, and
5209 * the sparse dumpfile avoids allocating disk blocks, but its
5210 * huge holes still show up with zeroes where they need to be.
2a15efc9 5211 */
3ae77f43
HD
5212 if (absent && (flags & FOLL_DUMP) &&
5213 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
5214 if (pte)
5215 spin_unlock(ptl);
2a15efc9
HD
5216 remainder = 0;
5217 break;
5218 }
63551ae0 5219
9cc3a5bd
NH
5220 /*
5221 * We need call hugetlb_fault for both hugepages under migration
5222 * (in which case hugetlb_fault waits for the migration,) and
5223 * hwpoisoned hugepages (in which case we need to prevent the
5224 * caller from accessing to them.) In order to do this, we use
5225 * here is_swap_pte instead of is_hugetlb_entry_migration and
5226 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5227 * both cases, and because we can't follow correct pages
5228 * directly from any kind of swap entries.
5229 */
5230 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
5231 ((flags & FOLL_WRITE) &&
5232 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 5233 vm_fault_t ret;
87ffc118 5234 unsigned int fault_flags = 0;
63551ae0 5235
cb900f41
KS
5236 if (pte)
5237 spin_unlock(ptl);
87ffc118
AA
5238 if (flags & FOLL_WRITE)
5239 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 5240 if (locked)
71335f37
PX
5241 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5242 FAULT_FLAG_KILLABLE;
87ffc118
AA
5243 if (flags & FOLL_NOWAIT)
5244 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5245 FAULT_FLAG_RETRY_NOWAIT;
5246 if (flags & FOLL_TRIED) {
4426e945
PX
5247 /*
5248 * Note: FAULT_FLAG_ALLOW_RETRY and
5249 * FAULT_FLAG_TRIED can co-exist
5250 */
87ffc118
AA
5251 fault_flags |= FAULT_FLAG_TRIED;
5252 }
5253 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5254 if (ret & VM_FAULT_ERROR) {
2be7cfed 5255 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
5256 remainder = 0;
5257 break;
5258 }
5259 if (ret & VM_FAULT_RETRY) {
4f6da934 5260 if (locked &&
1ac25013 5261 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 5262 *locked = 0;
87ffc118
AA
5263 *nr_pages = 0;
5264 /*
5265 * VM_FAULT_RETRY must not return an
5266 * error, it will return zero
5267 * instead.
5268 *
5269 * No need to update "position" as the
5270 * caller will not check it after
5271 * *nr_pages is set to 0.
5272 */
5273 return i;
5274 }
5275 continue;
4c887265
AL
5276 }
5277
a5516438 5278 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 5279 page = pte_page(huge_ptep_get(pte));
8fde12ca 5280
acbfb087
ZL
5281 /*
5282 * If subpage information not requested, update counters
5283 * and skip the same_page loop below.
5284 */
5285 if (!pages && !vmas && !pfn_offset &&
5286 (vaddr + huge_page_size(h) < vma->vm_end) &&
5287 (remainder >= pages_per_huge_page(h))) {
5288 vaddr += huge_page_size(h);
5289 remainder -= pages_per_huge_page(h);
5290 i += pages_per_huge_page(h);
5291 spin_unlock(ptl);
5292 continue;
5293 }
5294
82e5d378
JM
5295 refs = min3(pages_per_huge_page(h) - pfn_offset,
5296 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
0fa5bc40 5297
82e5d378
JM
5298 if (pages || vmas)
5299 record_subpages_vmas(mem_map_offset(page, pfn_offset),
5300 vma, refs,
5301 likely(pages) ? pages + i : NULL,
5302 vmas ? vmas + i : NULL);
63551ae0 5303
82e5d378 5304 if (pages) {
0fa5bc40
JM
5305 /*
5306 * try_grab_compound_head() should always succeed here,
5307 * because: a) we hold the ptl lock, and b) we've just
5308 * checked that the huge page is present in the page
5309 * tables. If the huge page is present, then the tail
5310 * pages must also be present. The ptl prevents the
5311 * head page and tail pages from being rearranged in
5312 * any way. So this page must be available at this
5313 * point, unless the page refcount overflowed:
5314 */
82e5d378 5315 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
5316 refs,
5317 flags))) {
5318 spin_unlock(ptl);
5319 remainder = 0;
5320 err = -ENOMEM;
5321 break;
5322 }
d5d4b0aa 5323 }
82e5d378
JM
5324
5325 vaddr += (refs << PAGE_SHIFT);
5326 remainder -= refs;
5327 i += refs;
5328
cb900f41 5329 spin_unlock(ptl);
63551ae0 5330 }
28a35716 5331 *nr_pages = remainder;
87ffc118
AA
5332 /*
5333 * setting position is actually required only if remainder is
5334 * not zero but it's faster not to add a "if (remainder)"
5335 * branch.
5336 */
63551ae0
DG
5337 *position = vaddr;
5338
2be7cfed 5339 return i ? i : err;
63551ae0 5340}
8f860591 5341
7da4d641 5342unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
5343 unsigned long address, unsigned long end, pgprot_t newprot)
5344{
5345 struct mm_struct *mm = vma->vm_mm;
5346 unsigned long start = address;
5347 pte_t *ptep;
5348 pte_t pte;
a5516438 5349 struct hstate *h = hstate_vma(vma);
7da4d641 5350 unsigned long pages = 0;
dff11abe 5351 bool shared_pmd = false;
ac46d4f3 5352 struct mmu_notifier_range range;
dff11abe
MK
5353
5354 /*
5355 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5356 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5357 * range if PMD sharing is possible.
5358 */
7269f999
JG
5359 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5360 0, vma, mm, start, end);
ac46d4f3 5361 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5362
5363 BUG_ON(address >= end);
ac46d4f3 5364 flush_cache_range(vma, range.start, range.end);
8f860591 5365
ac46d4f3 5366 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5367 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5368 for (; address < end; address += huge_page_size(h)) {
cb900f41 5369 spinlock_t *ptl;
7868a208 5370 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5371 if (!ptep)
5372 continue;
cb900f41 5373 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5374 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5375 pages++;
cb900f41 5376 spin_unlock(ptl);
dff11abe 5377 shared_pmd = true;
39dde65c 5378 continue;
7da4d641 5379 }
a8bda28d
NH
5380 pte = huge_ptep_get(ptep);
5381 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5382 spin_unlock(ptl);
5383 continue;
5384 }
5385 if (unlikely(is_hugetlb_entry_migration(pte))) {
5386 swp_entry_t entry = pte_to_swp_entry(pte);
5387
5388 if (is_write_migration_entry(entry)) {
5389 pte_t newpte;
5390
5391 make_migration_entry_read(&entry);
5392 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5393 set_huge_swap_pte_at(mm, address, ptep,
5394 newpte, huge_page_size(h));
a8bda28d
NH
5395 pages++;
5396 }
5397 spin_unlock(ptl);
5398 continue;
5399 }
5400 if (!huge_pte_none(pte)) {
023bdd00
AK
5401 pte_t old_pte;
5402
5403 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5404 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5405 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5406 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5407 pages++;
8f860591 5408 }
cb900f41 5409 spin_unlock(ptl);
8f860591 5410 }
d833352a 5411 /*
c8c06efa 5412 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5413 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5414 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5415 * and that page table be reused and filled with junk. If we actually
5416 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5417 */
dff11abe 5418 if (shared_pmd)
ac46d4f3 5419 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5420 else
5421 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5422 /*
5423 * No need to call mmu_notifier_invalidate_range() we are downgrading
5424 * page table protection not changing it to point to a new page.
5425 *
ad56b738 5426 * See Documentation/vm/mmu_notifier.rst
0f10851e 5427 */
83cde9e8 5428 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5429 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5430
5431 return pages << h->order;
8f860591
ZY
5432}
5433
33b8f84a
MK
5434/* Return true if reservation was successful, false otherwise. */
5435bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 5436 long from, long to,
5a6fe125 5437 struct vm_area_struct *vma,
ca16d140 5438 vm_flags_t vm_flags)
e4e574b7 5439{
33b8f84a 5440 long chg, add = -1;
a5516438 5441 struct hstate *h = hstate_inode(inode);
90481622 5442 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5443 struct resv_map *resv_map;
075a61d0 5444 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5445 long gbl_reserve, regions_needed = 0;
e4e574b7 5446
63489f8e
MK
5447 /* This should never happen */
5448 if (from > to) {
5449 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 5450 return false;
63489f8e
MK
5451 }
5452
17c9d12e
MG
5453 /*
5454 * Only apply hugepage reservation if asked. At fault time, an
5455 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5456 * without using reserves
17c9d12e 5457 */
ca16d140 5458 if (vm_flags & VM_NORESERVE)
33b8f84a 5459 return true;
17c9d12e 5460
a1e78772
MG
5461 /*
5462 * Shared mappings base their reservation on the number of pages that
5463 * are already allocated on behalf of the file. Private mappings need
5464 * to reserve the full area even if read-only as mprotect() may be
5465 * called to make the mapping read-write. Assume !vma is a shm mapping
5466 */
9119a41e 5467 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5468 /*
5469 * resv_map can not be NULL as hugetlb_reserve_pages is only
5470 * called for inodes for which resv_maps were created (see
5471 * hugetlbfs_get_inode).
5472 */
4e35f483 5473 resv_map = inode_resv_map(inode);
9119a41e 5474
0db9d74e 5475 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5476
5477 } else {
e9fe92ae 5478 /* Private mapping. */
9119a41e 5479 resv_map = resv_map_alloc();
17c9d12e 5480 if (!resv_map)
33b8f84a 5481 return false;
17c9d12e 5482
a1e78772 5483 chg = to - from;
84afd99b 5484
17c9d12e
MG
5485 set_vma_resv_map(vma, resv_map);
5486 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5487 }
5488
33b8f84a 5489 if (chg < 0)
c50ac050 5490 goto out_err;
8a630112 5491
33b8f84a
MK
5492 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5493 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 5494 goto out_err;
075a61d0
MA
5495
5496 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5497 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5498 * of the resv_map.
5499 */
5500 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5501 }
5502
1c5ecae3
MK
5503 /*
5504 * There must be enough pages in the subpool for the mapping. If
5505 * the subpool has a minimum size, there may be some global
5506 * reservations already in place (gbl_reserve).
5507 */
5508 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 5509 if (gbl_reserve < 0)
075a61d0 5510 goto out_uncharge_cgroup;
5a6fe125
MG
5511
5512 /*
17c9d12e 5513 * Check enough hugepages are available for the reservation.
90481622 5514 * Hand the pages back to the subpool if there are not
5a6fe125 5515 */
33b8f84a 5516 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 5517 goto out_put_pages;
17c9d12e
MG
5518
5519 /*
5520 * Account for the reservations made. Shared mappings record regions
5521 * that have reservations as they are shared by multiple VMAs.
5522 * When the last VMA disappears, the region map says how much
5523 * the reservation was and the page cache tells how much of
5524 * the reservation was consumed. Private mappings are per-VMA and
5525 * only the consumed reservations are tracked. When the VMA
5526 * disappears, the original reservation is the VMA size and the
5527 * consumed reservations are stored in the map. Hence, nothing
5528 * else has to be done for private mappings here
5529 */
33039678 5530 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5531 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5532
5533 if (unlikely(add < 0)) {
5534 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5535 goto out_put_pages;
0db9d74e 5536 } else if (unlikely(chg > add)) {
33039678
MK
5537 /*
5538 * pages in this range were added to the reserve
5539 * map between region_chg and region_add. This
5540 * indicates a race with alloc_huge_page. Adjust
5541 * the subpool and reserve counts modified above
5542 * based on the difference.
5543 */
5544 long rsv_adjust;
5545
d85aecf2
ML
5546 /*
5547 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5548 * reference to h_cg->css. See comment below for detail.
5549 */
075a61d0
MA
5550 hugetlb_cgroup_uncharge_cgroup_rsvd(
5551 hstate_index(h),
5552 (chg - add) * pages_per_huge_page(h), h_cg);
5553
33039678
MK
5554 rsv_adjust = hugepage_subpool_put_pages(spool,
5555 chg - add);
5556 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
5557 } else if (h_cg) {
5558 /*
5559 * The file_regions will hold their own reference to
5560 * h_cg->css. So we should release the reference held
5561 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5562 * done.
5563 */
5564 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
5565 }
5566 }
33b8f84a
MK
5567 return true;
5568
075a61d0
MA
5569out_put_pages:
5570 /* put back original number of pages, chg */
5571 (void)hugepage_subpool_put_pages(spool, chg);
5572out_uncharge_cgroup:
5573 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5574 chg * pages_per_huge_page(h), h_cg);
c50ac050 5575out_err:
5e911373 5576 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5577 /* Only call region_abort if the region_chg succeeded but the
5578 * region_add failed or didn't run.
5579 */
5580 if (chg >= 0 && add < 0)
5581 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5582 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5583 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 5584 return false;
a43a8c39
KC
5585}
5586
b5cec28d
MK
5587long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5588 long freed)
a43a8c39 5589{
a5516438 5590 struct hstate *h = hstate_inode(inode);
4e35f483 5591 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5592 long chg = 0;
90481622 5593 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5594 long gbl_reserve;
45c682a6 5595
f27a5136
MK
5596 /*
5597 * Since this routine can be called in the evict inode path for all
5598 * hugetlbfs inodes, resv_map could be NULL.
5599 */
b5cec28d
MK
5600 if (resv_map) {
5601 chg = region_del(resv_map, start, end);
5602 /*
5603 * region_del() can fail in the rare case where a region
5604 * must be split and another region descriptor can not be
5605 * allocated. If end == LONG_MAX, it will not fail.
5606 */
5607 if (chg < 0)
5608 return chg;
5609 }
5610
45c682a6 5611 spin_lock(&inode->i_lock);
e4c6f8be 5612 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5613 spin_unlock(&inode->i_lock);
5614
1c5ecae3
MK
5615 /*
5616 * If the subpool has a minimum size, the number of global
5617 * reservations to be released may be adjusted.
dddf31a4
ML
5618 *
5619 * Note that !resv_map implies freed == 0. So (chg - freed)
5620 * won't go negative.
1c5ecae3
MK
5621 */
5622 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5623 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5624
5625 return 0;
a43a8c39 5626}
93f70f90 5627
3212b535
SC
5628#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5629static unsigned long page_table_shareable(struct vm_area_struct *svma,
5630 struct vm_area_struct *vma,
5631 unsigned long addr, pgoff_t idx)
5632{
5633 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5634 svma->vm_start;
5635 unsigned long sbase = saddr & PUD_MASK;
5636 unsigned long s_end = sbase + PUD_SIZE;
5637
5638 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5639 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5640 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5641
5642 /*
5643 * match the virtual addresses, permission and the alignment of the
5644 * page table page.
5645 */
5646 if (pmd_index(addr) != pmd_index(saddr) ||
5647 vm_flags != svm_flags ||
07e51edf 5648 !range_in_vma(svma, sbase, s_end))
3212b535
SC
5649 return 0;
5650
5651 return saddr;
5652}
5653
31aafb45 5654static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5655{
5656 unsigned long base = addr & PUD_MASK;
5657 unsigned long end = base + PUD_SIZE;
5658
5659 /*
5660 * check on proper vm_flags and page table alignment
5661 */
017b1660 5662 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5663 return true;
5664 return false;
3212b535
SC
5665}
5666
c1991e07
PX
5667bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5668{
5669#ifdef CONFIG_USERFAULTFD
5670 if (uffd_disable_huge_pmd_share(vma))
5671 return false;
5672#endif
5673 return vma_shareable(vma, addr);
5674}
5675
017b1660
MK
5676/*
5677 * Determine if start,end range within vma could be mapped by shared pmd.
5678 * If yes, adjust start and end to cover range associated with possible
5679 * shared pmd mappings.
5680 */
5681void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5682 unsigned long *start, unsigned long *end)
5683{
a1ba9da8
LX
5684 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5685 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5686
a1ba9da8 5687 /*
f0953a1b
IM
5688 * vma needs to span at least one aligned PUD size, and the range
5689 * must be at least partially within in.
a1ba9da8
LX
5690 */
5691 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5692 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5693 return;
5694
75802ca6 5695 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
5696 if (*start > v_start)
5697 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5698
a1ba9da8
LX
5699 if (*end < v_end)
5700 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5701}
5702
3212b535
SC
5703/*
5704 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5705 * and returns the corresponding pte. While this is not necessary for the
5706 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5707 * code much cleaner.
5708 *
0bf7b64e
MK
5709 * This routine must be called with i_mmap_rwsem held in at least read mode if
5710 * sharing is possible. For hugetlbfs, this prevents removal of any page
5711 * table entries associated with the address space. This is important as we
5712 * are setting up sharing based on existing page table entries (mappings).
5713 *
5714 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5715 * huge_pte_alloc know that sharing is not possible and do not take
5716 * i_mmap_rwsem as a performance optimization. This is handled by the
5717 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5718 * only required for subsequent processing.
3212b535 5719 */
aec44e0f
PX
5720pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5721 unsigned long addr, pud_t *pud)
3212b535 5722{
3212b535
SC
5723 struct address_space *mapping = vma->vm_file->f_mapping;
5724 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5725 vma->vm_pgoff;
5726 struct vm_area_struct *svma;
5727 unsigned long saddr;
5728 pte_t *spte = NULL;
5729 pte_t *pte;
cb900f41 5730 spinlock_t *ptl;
3212b535 5731
0bf7b64e 5732 i_mmap_assert_locked(mapping);
3212b535
SC
5733 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5734 if (svma == vma)
5735 continue;
5736
5737 saddr = page_table_shareable(svma, vma, addr, idx);
5738 if (saddr) {
7868a208
PA
5739 spte = huge_pte_offset(svma->vm_mm, saddr,
5740 vma_mmu_pagesize(svma));
3212b535
SC
5741 if (spte) {
5742 get_page(virt_to_page(spte));
5743 break;
5744 }
5745 }
5746 }
5747
5748 if (!spte)
5749 goto out;
5750
8bea8052 5751 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5752 if (pud_none(*pud)) {
3212b535
SC
5753 pud_populate(mm, pud,
5754 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5755 mm_inc_nr_pmds(mm);
dc6c9a35 5756 } else {
3212b535 5757 put_page(virt_to_page(spte));
dc6c9a35 5758 }
cb900f41 5759 spin_unlock(ptl);
3212b535
SC
5760out:
5761 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5762 return pte;
5763}
5764
5765/*
5766 * unmap huge page backed by shared pte.
5767 *
5768 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5769 * indicated by page_count > 1, unmap is achieved by clearing pud and
5770 * decrementing the ref count. If count == 1, the pte page is not shared.
5771 *
c0d0381a 5772 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5773 *
5774 * returns: 1 successfully unmapped a shared pte page
5775 * 0 the underlying pte page is not shared, or it is the last user
5776 */
34ae204f
MK
5777int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5778 unsigned long *addr, pte_t *ptep)
3212b535
SC
5779{
5780 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5781 p4d_t *p4d = p4d_offset(pgd, *addr);
5782 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5783
34ae204f 5784 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5785 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5786 if (page_count(virt_to_page(ptep)) == 1)
5787 return 0;
5788
5789 pud_clear(pud);
5790 put_page(virt_to_page(ptep));
dc6c9a35 5791 mm_dec_nr_pmds(mm);
3212b535
SC
5792 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5793 return 1;
5794}
c1991e07 5795
9e5fc74c 5796#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
aec44e0f
PX
5797pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5798 unsigned long addr, pud_t *pud)
9e5fc74c
SC
5799{
5800 return NULL;
5801}
e81f2d22 5802
34ae204f
MK
5803int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5804 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5805{
5806 return 0;
5807}
017b1660
MK
5808
5809void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5810 unsigned long *start, unsigned long *end)
5811{
5812}
c1991e07
PX
5813
5814bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5815{
5816 return false;
5817}
3212b535
SC
5818#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5819
9e5fc74c 5820#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 5821pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
5822 unsigned long addr, unsigned long sz)
5823{
5824 pgd_t *pgd;
c2febafc 5825 p4d_t *p4d;
9e5fc74c
SC
5826 pud_t *pud;
5827 pte_t *pte = NULL;
5828
5829 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5830 p4d = p4d_alloc(mm, pgd, addr);
5831 if (!p4d)
5832 return NULL;
c2febafc 5833 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5834 if (pud) {
5835 if (sz == PUD_SIZE) {
5836 pte = (pte_t *)pud;
5837 } else {
5838 BUG_ON(sz != PMD_SIZE);
c1991e07 5839 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 5840 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
5841 else
5842 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5843 }
5844 }
4e666314 5845 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5846
5847 return pte;
5848}
5849
9b19df29
PA
5850/*
5851 * huge_pte_offset() - Walk the page table to resolve the hugepage
5852 * entry at address @addr
5853 *
8ac0b81a
LX
5854 * Return: Pointer to page table entry (PUD or PMD) for
5855 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5856 * size @sz doesn't match the hugepage size at this level of the page
5857 * table.
5858 */
7868a208
PA
5859pte_t *huge_pte_offset(struct mm_struct *mm,
5860 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5861{
5862 pgd_t *pgd;
c2febafc 5863 p4d_t *p4d;
8ac0b81a
LX
5864 pud_t *pud;
5865 pmd_t *pmd;
9e5fc74c
SC
5866
5867 pgd = pgd_offset(mm, addr);
c2febafc
KS
5868 if (!pgd_present(*pgd))
5869 return NULL;
5870 p4d = p4d_offset(pgd, addr);
5871 if (!p4d_present(*p4d))
5872 return NULL;
9b19df29 5873
c2febafc 5874 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5875 if (sz == PUD_SIZE)
5876 /* must be pud huge, non-present or none */
c2febafc 5877 return (pte_t *)pud;
8ac0b81a 5878 if (!pud_present(*pud))
9b19df29 5879 return NULL;
8ac0b81a 5880 /* must have a valid entry and size to go further */
9b19df29 5881
8ac0b81a
LX
5882 pmd = pmd_offset(pud, addr);
5883 /* must be pmd huge, non-present or none */
5884 return (pte_t *)pmd;
9e5fc74c
SC
5885}
5886
61f77eda
NH
5887#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5888
5889/*
5890 * These functions are overwritable if your architecture needs its own
5891 * behavior.
5892 */
5893struct page * __weak
5894follow_huge_addr(struct mm_struct *mm, unsigned long address,
5895 int write)
5896{
5897 return ERR_PTR(-EINVAL);
5898}
5899
4dc71451
AK
5900struct page * __weak
5901follow_huge_pd(struct vm_area_struct *vma,
5902 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5903{
5904 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5905 return NULL;
5906}
5907
61f77eda 5908struct page * __weak
9e5fc74c 5909follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5910 pmd_t *pmd, int flags)
9e5fc74c 5911{
e66f17ff
NH
5912 struct page *page = NULL;
5913 spinlock_t *ptl;
c9d398fa 5914 pte_t pte;
3faa52c0
JH
5915
5916 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5917 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5918 (FOLL_PIN | FOLL_GET)))
5919 return NULL;
5920
e66f17ff
NH
5921retry:
5922 ptl = pmd_lockptr(mm, pmd);
5923 spin_lock(ptl);
5924 /*
5925 * make sure that the address range covered by this pmd is not
5926 * unmapped from other threads.
5927 */
5928 if (!pmd_huge(*pmd))
5929 goto out;
c9d398fa
NH
5930 pte = huge_ptep_get((pte_t *)pmd);
5931 if (pte_present(pte)) {
97534127 5932 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5933 /*
5934 * try_grab_page() should always succeed here, because: a) we
5935 * hold the pmd (ptl) lock, and b) we've just checked that the
5936 * huge pmd (head) page is present in the page tables. The ptl
5937 * prevents the head page and tail pages from being rearranged
5938 * in any way. So this page must be available at this point,
5939 * unless the page refcount overflowed:
5940 */
5941 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5942 page = NULL;
5943 goto out;
5944 }
e66f17ff 5945 } else {
c9d398fa 5946 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5947 spin_unlock(ptl);
5948 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5949 goto retry;
5950 }
5951 /*
5952 * hwpoisoned entry is treated as no_page_table in
5953 * follow_page_mask().
5954 */
5955 }
5956out:
5957 spin_unlock(ptl);
9e5fc74c
SC
5958 return page;
5959}
5960
61f77eda 5961struct page * __weak
9e5fc74c 5962follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5963 pud_t *pud, int flags)
9e5fc74c 5964{
3faa52c0 5965 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5966 return NULL;
9e5fc74c 5967
e66f17ff 5968 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5969}
5970
faaa5b62
AK
5971struct page * __weak
5972follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5973{
3faa52c0 5974 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5975 return NULL;
5976
5977 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5978}
5979
31caf665
NH
5980bool isolate_huge_page(struct page *page, struct list_head *list)
5981{
bcc54222
NH
5982 bool ret = true;
5983
db71ef79 5984 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
5985 if (!PageHeadHuge(page) ||
5986 !HPageMigratable(page) ||
0eb2df2b 5987 !get_page_unless_zero(page)) {
bcc54222
NH
5988 ret = false;
5989 goto unlock;
5990 }
8f251a3d 5991 ClearHPageMigratable(page);
31caf665 5992 list_move_tail(&page->lru, list);
bcc54222 5993unlock:
db71ef79 5994 spin_unlock_irq(&hugetlb_lock);
bcc54222 5995 return ret;
31caf665
NH
5996}
5997
25182f05
NH
5998int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
5999{
6000 int ret = 0;
6001
6002 *hugetlb = false;
6003 spin_lock_irq(&hugetlb_lock);
6004 if (PageHeadHuge(page)) {
6005 *hugetlb = true;
6006 if (HPageFreed(page) || HPageMigratable(page))
6007 ret = get_page_unless_zero(page);
0ed950d1
NH
6008 else
6009 ret = -EBUSY;
25182f05
NH
6010 }
6011 spin_unlock_irq(&hugetlb_lock);
6012 return ret;
6013}
6014
31caf665
NH
6015void putback_active_hugepage(struct page *page)
6016{
db71ef79 6017 spin_lock_irq(&hugetlb_lock);
8f251a3d 6018 SetHPageMigratable(page);
31caf665 6019 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 6020 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
6021 put_page(page);
6022}
ab5ac90a
MH
6023
6024void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6025{
6026 struct hstate *h = page_hstate(oldpage);
6027
6028 hugetlb_cgroup_migrate(oldpage, newpage);
6029 set_page_owner_migrate_reason(newpage, reason);
6030
6031 /*
6032 * transfer temporary state of the new huge page. This is
6033 * reverse to other transitions because the newpage is going to
6034 * be final while the old one will be freed so it takes over
6035 * the temporary status.
6036 *
6037 * Also note that we have to transfer the per-node surplus state
6038 * here as well otherwise the global surplus count will not match
6039 * the per-node's.
6040 */
9157c311 6041 if (HPageTemporary(newpage)) {
ab5ac90a
MH
6042 int old_nid = page_to_nid(oldpage);
6043 int new_nid = page_to_nid(newpage);
6044
9157c311
MK
6045 SetHPageTemporary(oldpage);
6046 ClearHPageTemporary(newpage);
ab5ac90a 6047
5af1ab1d
ML
6048 /*
6049 * There is no need to transfer the per-node surplus state
6050 * when we do not cross the node.
6051 */
6052 if (new_nid == old_nid)
6053 return;
db71ef79 6054 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
6055 if (h->surplus_huge_pages_node[old_nid]) {
6056 h->surplus_huge_pages_node[old_nid]--;
6057 h->surplus_huge_pages_node[new_nid]++;
6058 }
db71ef79 6059 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
6060 }
6061}
cf11e85f 6062
6dfeaff9
PX
6063/*
6064 * This function will unconditionally remove all the shared pmd pgtable entries
6065 * within the specific vma for a hugetlbfs memory range.
6066 */
6067void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6068{
6069 struct hstate *h = hstate_vma(vma);
6070 unsigned long sz = huge_page_size(h);
6071 struct mm_struct *mm = vma->vm_mm;
6072 struct mmu_notifier_range range;
6073 unsigned long address, start, end;
6074 spinlock_t *ptl;
6075 pte_t *ptep;
6076
6077 if (!(vma->vm_flags & VM_MAYSHARE))
6078 return;
6079
6080 start = ALIGN(vma->vm_start, PUD_SIZE);
6081 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6082
6083 if (start >= end)
6084 return;
6085
6086 /*
6087 * No need to call adjust_range_if_pmd_sharing_possible(), because
6088 * we have already done the PUD_SIZE alignment.
6089 */
6090 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6091 start, end);
6092 mmu_notifier_invalidate_range_start(&range);
6093 i_mmap_lock_write(vma->vm_file->f_mapping);
6094 for (address = start; address < end; address += PUD_SIZE) {
6095 unsigned long tmp = address;
6096
6097 ptep = huge_pte_offset(mm, address, sz);
6098 if (!ptep)
6099 continue;
6100 ptl = huge_pte_lock(h, mm, ptep);
6101 /* We don't want 'address' to be changed */
6102 huge_pmd_unshare(mm, vma, &tmp, ptep);
6103 spin_unlock(ptl);
6104 }
6105 flush_hugetlb_tlb_range(vma, start, end);
6106 i_mmap_unlock_write(vma->vm_file->f_mapping);
6107 /*
6108 * No need to call mmu_notifier_invalidate_range(), see
6109 * Documentation/vm/mmu_notifier.rst.
6110 */
6111 mmu_notifier_invalidate_range_end(&range);
6112}
6113
cf11e85f 6114#ifdef CONFIG_CMA
cf11e85f
RG
6115static bool cma_reserve_called __initdata;
6116
6117static int __init cmdline_parse_hugetlb_cma(char *p)
6118{
6119 hugetlb_cma_size = memparse(p, &p);
6120 return 0;
6121}
6122
6123early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6124
6125void __init hugetlb_cma_reserve(int order)
6126{
6127 unsigned long size, reserved, per_node;
6128 int nid;
6129
6130 cma_reserve_called = true;
6131
6132 if (!hugetlb_cma_size)
6133 return;
6134
6135 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6136 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6137 (PAGE_SIZE << order) / SZ_1M);
6138 return;
6139 }
6140
6141 /*
6142 * If 3 GB area is requested on a machine with 4 numa nodes,
6143 * let's allocate 1 GB on first three nodes and ignore the last one.
6144 */
6145 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6146 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6147 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6148
6149 reserved = 0;
6150 for_each_node_state(nid, N_ONLINE) {
6151 int res;
2281f797 6152 char name[CMA_MAX_NAME];
cf11e85f
RG
6153
6154 size = min(per_node, hugetlb_cma_size - reserved);
6155 size = round_up(size, PAGE_SIZE << order);
6156
2281f797 6157 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 6158 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 6159 0, false, name,
cf11e85f
RG
6160 &hugetlb_cma[nid], nid);
6161 if (res) {
6162 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6163 res, nid);
6164 continue;
6165 }
6166
6167 reserved += size;
6168 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6169 size / SZ_1M, nid);
6170
6171 if (reserved >= hugetlb_cma_size)
6172 break;
6173 }
6174}
6175
6176void __init hugetlb_cma_check(void)
6177{
6178 if (!hugetlb_cma_size || cma_reserve_called)
6179 return;
6180
6181 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6182}
6183
6184#endif /* CONFIG_CMA */