]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
63489f8e 22#include <linux/mmdebug.h>
174cd4b1 23#include <linux/sched/signal.h>
0fe6e20b 24#include <linux/rmap.h>
c6247f72 25#include <linux/string_helpers.h>
fd6a03ed
NH
26#include <linux/swap.h>
27#include <linux/swapops.h>
8382d914 28#include <linux/jhash.h>
98fa15f3 29#include <linux/numa.h>
c77c0a8a 30#include <linux/llist.h>
d6606683 31
63551ae0
DG
32#include <asm/page.h>
33#include <asm/pgtable.h>
24669e58 34#include <asm/tlb.h>
63551ae0 35
24669e58 36#include <linux/io.h>
63551ae0 37#include <linux/hugetlb.h>
9dd540e2 38#include <linux/hugetlb_cgroup.h>
9a305230 39#include <linux/node.h>
1a1aad8a 40#include <linux/userfaultfd_k.h>
ab5ac90a 41#include <linux/page_owner.h>
7835e98b 42#include "internal.h"
1da177e4 43
c3f38a38 44int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
45unsigned int default_hstate_idx;
46struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
47/*
48 * Minimum page order among possible hugepage sizes, set to a proper value
49 * at boot time.
50 */
51static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 52
53ba51d2
JT
53__initdata LIST_HEAD(huge_boot_pages);
54
e5ff2159
AK
55/* for command line parsing */
56static struct hstate * __initdata parsed_hstate;
57static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 58static unsigned long __initdata default_hstate_size;
9fee021d 59static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 60
3935baa9 61/*
31caf665
NH
62 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
63 * free_huge_pages, and surplus_huge_pages.
3935baa9 64 */
c3f38a38 65DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 66
8382d914
DB
67/*
68 * Serializes faults on the same logical page. This is used to
69 * prevent spurious OOMs when the hugepage pool is fully utilized.
70 */
71static int num_fault_mutexes;
c672c7f2 72struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 73
7ca02d0a
MK
74/* Forward declaration */
75static int hugetlb_acct_memory(struct hstate *h, long delta);
76
90481622
DG
77static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
78{
79 bool free = (spool->count == 0) && (spool->used_hpages == 0);
80
81 spin_unlock(&spool->lock);
82
83 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
84 * remain, give up any reservations mased on minimum size and
85 * free the subpool */
86 if (free) {
87 if (spool->min_hpages != -1)
88 hugetlb_acct_memory(spool->hstate,
89 -spool->min_hpages);
90481622 90 kfree(spool);
7ca02d0a 91 }
90481622
DG
92}
93
7ca02d0a
MK
94struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
95 long min_hpages)
90481622
DG
96{
97 struct hugepage_subpool *spool;
98
c6a91820 99 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
100 if (!spool)
101 return NULL;
102
103 spin_lock_init(&spool->lock);
104 spool->count = 1;
7ca02d0a
MK
105 spool->max_hpages = max_hpages;
106 spool->hstate = h;
107 spool->min_hpages = min_hpages;
108
109 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
110 kfree(spool);
111 return NULL;
112 }
113 spool->rsv_hpages = min_hpages;
90481622
DG
114
115 return spool;
116}
117
118void hugepage_put_subpool(struct hugepage_subpool *spool)
119{
120 spin_lock(&spool->lock);
121 BUG_ON(!spool->count);
122 spool->count--;
123 unlock_or_release_subpool(spool);
124}
125
1c5ecae3
MK
126/*
127 * Subpool accounting for allocating and reserving pages.
128 * Return -ENOMEM if there are not enough resources to satisfy the
129 * the request. Otherwise, return the number of pages by which the
130 * global pools must be adjusted (upward). The returned value may
131 * only be different than the passed value (delta) in the case where
132 * a subpool minimum size must be manitained.
133 */
134static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
135 long delta)
136{
1c5ecae3 137 long ret = delta;
90481622
DG
138
139 if (!spool)
1c5ecae3 140 return ret;
90481622
DG
141
142 spin_lock(&spool->lock);
1c5ecae3
MK
143
144 if (spool->max_hpages != -1) { /* maximum size accounting */
145 if ((spool->used_hpages + delta) <= spool->max_hpages)
146 spool->used_hpages += delta;
147 else {
148 ret = -ENOMEM;
149 goto unlock_ret;
150 }
90481622 151 }
90481622 152
09a95e29
MK
153 /* minimum size accounting */
154 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
155 if (delta > spool->rsv_hpages) {
156 /*
157 * Asking for more reserves than those already taken on
158 * behalf of subpool. Return difference.
159 */
160 ret = delta - spool->rsv_hpages;
161 spool->rsv_hpages = 0;
162 } else {
163 ret = 0; /* reserves already accounted for */
164 spool->rsv_hpages -= delta;
165 }
166 }
167
168unlock_ret:
169 spin_unlock(&spool->lock);
90481622
DG
170 return ret;
171}
172
1c5ecae3
MK
173/*
174 * Subpool accounting for freeing and unreserving pages.
175 * Return the number of global page reservations that must be dropped.
176 * The return value may only be different than the passed value (delta)
177 * in the case where a subpool minimum size must be maintained.
178 */
179static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
180 long delta)
181{
1c5ecae3
MK
182 long ret = delta;
183
90481622 184 if (!spool)
1c5ecae3 185 return delta;
90481622
DG
186
187 spin_lock(&spool->lock);
1c5ecae3
MK
188
189 if (spool->max_hpages != -1) /* maximum size accounting */
190 spool->used_hpages -= delta;
191
09a95e29
MK
192 /* minimum size accounting */
193 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
194 if (spool->rsv_hpages + delta <= spool->min_hpages)
195 ret = 0;
196 else
197 ret = spool->rsv_hpages + delta - spool->min_hpages;
198
199 spool->rsv_hpages += delta;
200 if (spool->rsv_hpages > spool->min_hpages)
201 spool->rsv_hpages = spool->min_hpages;
202 }
203
204 /*
205 * If hugetlbfs_put_super couldn't free spool due to an outstanding
206 * quota reference, free it now.
207 */
90481622 208 unlock_or_release_subpool(spool);
1c5ecae3
MK
209
210 return ret;
90481622
DG
211}
212
213static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
214{
215 return HUGETLBFS_SB(inode->i_sb)->spool;
216}
217
218static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
219{
496ad9aa 220 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
221}
222
96822904
AW
223/*
224 * Region tracking -- allows tracking of reservations and instantiated pages
225 * across the pages in a mapping.
84afd99b 226 *
1dd308a7
MK
227 * The region data structures are embedded into a resv_map and protected
228 * by a resv_map's lock. The set of regions within the resv_map represent
229 * reservations for huge pages, or huge pages that have already been
230 * instantiated within the map. The from and to elements are huge page
231 * indicies into the associated mapping. from indicates the starting index
232 * of the region. to represents the first index past the end of the region.
233 *
234 * For example, a file region structure with from == 0 and to == 4 represents
235 * four huge pages in a mapping. It is important to note that the to element
236 * represents the first element past the end of the region. This is used in
237 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
238 *
239 * Interval notation of the form [from, to) will be used to indicate that
240 * the endpoint from is inclusive and to is exclusive.
96822904
AW
241 */
242struct file_region {
243 struct list_head link;
244 long from;
245 long to;
246};
247
d75c6af9
MA
248/* Must be called with resv->lock held. Calling this with count_only == true
249 * will count the number of pages to be added but will not modify the linked
250 * list.
251 */
252static long add_reservation_in_range(struct resv_map *resv, long f, long t,
253 bool count_only)
254{
255 long chg = 0;
256 struct list_head *head = &resv->regions;
257 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
258
259 /* Locate the region we are before or in. */
260 list_for_each_entry(rg, head, link)
261 if (f <= rg->to)
262 break;
263
264 /* Round our left edge to the current segment if it encloses us. */
265 if (f > rg->from)
266 f = rg->from;
267
268 chg = t - f;
269
270 /* Check for and consume any regions we now overlap with. */
271 nrg = rg;
272 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
273 if (&rg->link == head)
274 break;
275 if (rg->from > t)
276 break;
277
278 /* We overlap with this area, if it extends further than
279 * us then we must extend ourselves. Account for its
280 * existing reservation.
281 */
282 if (rg->to > t) {
283 chg += rg->to - t;
284 t = rg->to;
285 }
286 chg -= rg->to - rg->from;
287
288 if (!count_only && rg != nrg) {
289 list_del(&rg->link);
290 kfree(rg);
291 }
292 }
293
294 if (!count_only) {
295 nrg->from = f;
296 nrg->to = t;
297 }
298
299 return chg;
300}
301
1dd308a7
MK
302/*
303 * Add the huge page range represented by [f, t) to the reserve
5c911954
MA
304 * map. Existing regions will be expanded to accommodate the specified
305 * range, or a region will be taken from the cache. Sufficient regions
306 * must exist in the cache due to the previous call to region_chg with
307 * the same range.
cf3ad20b
MK
308 *
309 * Return the number of new huge pages added to the map. This
310 * number is greater than or equal to zero.
1dd308a7 311 */
1406ec9b 312static long region_add(struct resv_map *resv, long f, long t)
96822904 313{
1406ec9b 314 struct list_head *head = &resv->regions;
d75c6af9 315 struct file_region *rg, *nrg;
cf3ad20b 316 long add = 0;
96822904 317
7b24d861 318 spin_lock(&resv->lock);
96822904
AW
319 /* Locate the region we are either in or before. */
320 list_for_each_entry(rg, head, link)
321 if (f <= rg->to)
322 break;
323
5e911373
MK
324 /*
325 * If no region exists which can be expanded to include the
5c911954
MA
326 * specified range, pull a region descriptor from the cache
327 * and use it for this range.
5e911373
MK
328 */
329 if (&rg->link == head || t < rg->from) {
330 VM_BUG_ON(resv->region_cache_count <= 0);
331
332 resv->region_cache_count--;
333 nrg = list_first_entry(&resv->region_cache, struct file_region,
334 link);
335 list_del(&nrg->link);
336
337 nrg->from = f;
338 nrg->to = t;
339 list_add(&nrg->link, rg->link.prev);
340
341 add += t - f;
342 goto out_locked;
343 }
344
d75c6af9 345 add = add_reservation_in_range(resv, f, t, false);
cf3ad20b 346
5e911373
MK
347out_locked:
348 resv->adds_in_progress--;
7b24d861 349 spin_unlock(&resv->lock);
cf3ad20b
MK
350 VM_BUG_ON(add < 0);
351 return add;
96822904
AW
352}
353
1dd308a7
MK
354/*
355 * Examine the existing reserve map and determine how many
356 * huge pages in the specified range [f, t) are NOT currently
357 * represented. This routine is called before a subsequent
358 * call to region_add that will actually modify the reserve
359 * map to add the specified range [f, t). region_chg does
360 * not change the number of huge pages represented by the
5c911954
MA
361 * map. A new file_region structure is added to the cache
362 * as a placeholder, so that the subsequent region_add
363 * call will have all the regions it needs and will not fail.
5e911373
MK
364 *
365 * Returns the number of huge pages that need to be added to the existing
366 * reservation map for the range [f, t). This number is greater or equal to
367 * zero. -ENOMEM is returned if a new file_region structure or cache entry
368 * is needed and can not be allocated.
1dd308a7 369 */
1406ec9b 370static long region_chg(struct resv_map *resv, long f, long t)
96822904 371{
96822904
AW
372 long chg = 0;
373
7b24d861 374 spin_lock(&resv->lock);
5e911373
MK
375retry_locked:
376 resv->adds_in_progress++;
377
378 /*
379 * Check for sufficient descriptors in the cache to accommodate
380 * the number of in progress add operations.
381 */
382 if (resv->adds_in_progress > resv->region_cache_count) {
383 struct file_region *trg;
384
385 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
386 /* Must drop lock to allocate a new descriptor. */
387 resv->adds_in_progress--;
388 spin_unlock(&resv->lock);
389
390 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
5c911954 391 if (!trg)
5e911373
MK
392 return -ENOMEM;
393
394 spin_lock(&resv->lock);
395 list_add(&trg->link, &resv->region_cache);
396 resv->region_cache_count++;
397 goto retry_locked;
398 }
399
d75c6af9 400 chg = add_reservation_in_range(resv, f, t, true);
7b24d861 401
7b24d861 402 spin_unlock(&resv->lock);
96822904
AW
403 return chg;
404}
405
5e911373
MK
406/*
407 * Abort the in progress add operation. The adds_in_progress field
408 * of the resv_map keeps track of the operations in progress between
409 * calls to region_chg and region_add. Operations are sometimes
410 * aborted after the call to region_chg. In such cases, region_abort
411 * is called to decrement the adds_in_progress counter.
412 *
413 * NOTE: The range arguments [f, t) are not needed or used in this
414 * routine. They are kept to make reading the calling code easier as
415 * arguments will match the associated region_chg call.
416 */
417static void region_abort(struct resv_map *resv, long f, long t)
418{
419 spin_lock(&resv->lock);
420 VM_BUG_ON(!resv->region_cache_count);
421 resv->adds_in_progress--;
422 spin_unlock(&resv->lock);
423}
424
1dd308a7 425/*
feba16e2
MK
426 * Delete the specified range [f, t) from the reserve map. If the
427 * t parameter is LONG_MAX, this indicates that ALL regions after f
428 * should be deleted. Locate the regions which intersect [f, t)
429 * and either trim, delete or split the existing regions.
430 *
431 * Returns the number of huge pages deleted from the reserve map.
432 * In the normal case, the return value is zero or more. In the
433 * case where a region must be split, a new region descriptor must
434 * be allocated. If the allocation fails, -ENOMEM will be returned.
435 * NOTE: If the parameter t == LONG_MAX, then we will never split
436 * a region and possibly return -ENOMEM. Callers specifying
437 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 438 */
feba16e2 439static long region_del(struct resv_map *resv, long f, long t)
96822904 440{
1406ec9b 441 struct list_head *head = &resv->regions;
96822904 442 struct file_region *rg, *trg;
feba16e2
MK
443 struct file_region *nrg = NULL;
444 long del = 0;
96822904 445
feba16e2 446retry:
7b24d861 447 spin_lock(&resv->lock);
feba16e2 448 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
449 /*
450 * Skip regions before the range to be deleted. file_region
451 * ranges are normally of the form [from, to). However, there
452 * may be a "placeholder" entry in the map which is of the form
453 * (from, to) with from == to. Check for placeholder entries
454 * at the beginning of the range to be deleted.
455 */
456 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 457 continue;
dbe409e4 458
feba16e2 459 if (rg->from >= t)
96822904 460 break;
96822904 461
feba16e2
MK
462 if (f > rg->from && t < rg->to) { /* Must split region */
463 /*
464 * Check for an entry in the cache before dropping
465 * lock and attempting allocation.
466 */
467 if (!nrg &&
468 resv->region_cache_count > resv->adds_in_progress) {
469 nrg = list_first_entry(&resv->region_cache,
470 struct file_region,
471 link);
472 list_del(&nrg->link);
473 resv->region_cache_count--;
474 }
96822904 475
feba16e2
MK
476 if (!nrg) {
477 spin_unlock(&resv->lock);
478 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
479 if (!nrg)
480 return -ENOMEM;
481 goto retry;
482 }
483
484 del += t - f;
485
486 /* New entry for end of split region */
487 nrg->from = t;
488 nrg->to = rg->to;
489 INIT_LIST_HEAD(&nrg->link);
490
491 /* Original entry is trimmed */
492 rg->to = f;
493
494 list_add(&nrg->link, &rg->link);
495 nrg = NULL;
96822904 496 break;
feba16e2
MK
497 }
498
499 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
500 del += rg->to - rg->from;
501 list_del(&rg->link);
502 kfree(rg);
503 continue;
504 }
505
506 if (f <= rg->from) { /* Trim beginning of region */
507 del += t - rg->from;
508 rg->from = t;
509 } else { /* Trim end of region */
510 del += rg->to - f;
511 rg->to = f;
512 }
96822904 513 }
7b24d861 514
7b24d861 515 spin_unlock(&resv->lock);
feba16e2
MK
516 kfree(nrg);
517 return del;
96822904
AW
518}
519
b5cec28d
MK
520/*
521 * A rare out of memory error was encountered which prevented removal of
522 * the reserve map region for a page. The huge page itself was free'ed
523 * and removed from the page cache. This routine will adjust the subpool
524 * usage count, and the global reserve count if needed. By incrementing
525 * these counts, the reserve map entry which could not be deleted will
526 * appear as a "reserved" entry instead of simply dangling with incorrect
527 * counts.
528 */
72e2936c 529void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
530{
531 struct hugepage_subpool *spool = subpool_inode(inode);
532 long rsv_adjust;
533
534 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 535 if (rsv_adjust) {
b5cec28d
MK
536 struct hstate *h = hstate_inode(inode);
537
538 hugetlb_acct_memory(h, 1);
539 }
540}
541
1dd308a7
MK
542/*
543 * Count and return the number of huge pages in the reserve map
544 * that intersect with the range [f, t).
545 */
1406ec9b 546static long region_count(struct resv_map *resv, long f, long t)
84afd99b 547{
1406ec9b 548 struct list_head *head = &resv->regions;
84afd99b
AW
549 struct file_region *rg;
550 long chg = 0;
551
7b24d861 552 spin_lock(&resv->lock);
84afd99b
AW
553 /* Locate each segment we overlap with, and count that overlap. */
554 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
555 long seg_from;
556 long seg_to;
84afd99b
AW
557
558 if (rg->to <= f)
559 continue;
560 if (rg->from >= t)
561 break;
562
563 seg_from = max(rg->from, f);
564 seg_to = min(rg->to, t);
565
566 chg += seg_to - seg_from;
567 }
7b24d861 568 spin_unlock(&resv->lock);
84afd99b
AW
569
570 return chg;
571}
572
e7c4b0bf
AW
573/*
574 * Convert the address within this vma to the page offset within
575 * the mapping, in pagecache page units; huge pages here.
576 */
a5516438
AK
577static pgoff_t vma_hugecache_offset(struct hstate *h,
578 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 579{
a5516438
AK
580 return ((address - vma->vm_start) >> huge_page_shift(h)) +
581 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
582}
583
0fe6e20b
NH
584pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
585 unsigned long address)
586{
587 return vma_hugecache_offset(hstate_vma(vma), vma, address);
588}
dee41079 589EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 590
08fba699
MG
591/*
592 * Return the size of the pages allocated when backing a VMA. In the majority
593 * cases this will be same size as used by the page table entries.
594 */
595unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
596{
05ea8860
DW
597 if (vma->vm_ops && vma->vm_ops->pagesize)
598 return vma->vm_ops->pagesize(vma);
599 return PAGE_SIZE;
08fba699 600}
f340ca0f 601EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 602
3340289d
MG
603/*
604 * Return the page size being used by the MMU to back a VMA. In the majority
605 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
606 * architectures where it differs, an architecture-specific 'strong'
607 * version of this symbol is required.
3340289d 608 */
09135cc5 609__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
610{
611 return vma_kernel_pagesize(vma);
612}
3340289d 613
84afd99b
AW
614/*
615 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
616 * bits of the reservation map pointer, which are always clear due to
617 * alignment.
618 */
619#define HPAGE_RESV_OWNER (1UL << 0)
620#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 621#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 622
a1e78772
MG
623/*
624 * These helpers are used to track how many pages are reserved for
625 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
626 * is guaranteed to have their future faults succeed.
627 *
628 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
629 * the reserve counters are updated with the hugetlb_lock held. It is safe
630 * to reset the VMA at fork() time as it is not in use yet and there is no
631 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
632 *
633 * The private mapping reservation is represented in a subtly different
634 * manner to a shared mapping. A shared mapping has a region map associated
635 * with the underlying file, this region map represents the backing file
636 * pages which have ever had a reservation assigned which this persists even
637 * after the page is instantiated. A private mapping has a region map
638 * associated with the original mmap which is attached to all VMAs which
639 * reference it, this region map represents those offsets which have consumed
640 * reservation ie. where pages have been instantiated.
a1e78772 641 */
e7c4b0bf
AW
642static unsigned long get_vma_private_data(struct vm_area_struct *vma)
643{
644 return (unsigned long)vma->vm_private_data;
645}
646
647static void set_vma_private_data(struct vm_area_struct *vma,
648 unsigned long value)
649{
650 vma->vm_private_data = (void *)value;
651}
652
9119a41e 653struct resv_map *resv_map_alloc(void)
84afd99b
AW
654{
655 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
656 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
657
658 if (!resv_map || !rg) {
659 kfree(resv_map);
660 kfree(rg);
84afd99b 661 return NULL;
5e911373 662 }
84afd99b
AW
663
664 kref_init(&resv_map->refs);
7b24d861 665 spin_lock_init(&resv_map->lock);
84afd99b
AW
666 INIT_LIST_HEAD(&resv_map->regions);
667
5e911373
MK
668 resv_map->adds_in_progress = 0;
669
670 INIT_LIST_HEAD(&resv_map->region_cache);
671 list_add(&rg->link, &resv_map->region_cache);
672 resv_map->region_cache_count = 1;
673
84afd99b
AW
674 return resv_map;
675}
676
9119a41e 677void resv_map_release(struct kref *ref)
84afd99b
AW
678{
679 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
680 struct list_head *head = &resv_map->region_cache;
681 struct file_region *rg, *trg;
84afd99b
AW
682
683 /* Clear out any active regions before we release the map. */
feba16e2 684 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
685
686 /* ... and any entries left in the cache */
687 list_for_each_entry_safe(rg, trg, head, link) {
688 list_del(&rg->link);
689 kfree(rg);
690 }
691
692 VM_BUG_ON(resv_map->adds_in_progress);
693
84afd99b
AW
694 kfree(resv_map);
695}
696
4e35f483
JK
697static inline struct resv_map *inode_resv_map(struct inode *inode)
698{
f27a5136
MK
699 /*
700 * At inode evict time, i_mapping may not point to the original
701 * address space within the inode. This original address space
702 * contains the pointer to the resv_map. So, always use the
703 * address space embedded within the inode.
704 * The VERY common case is inode->mapping == &inode->i_data but,
705 * this may not be true for device special inodes.
706 */
707 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
708}
709
84afd99b 710static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 711{
81d1b09c 712 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
713 if (vma->vm_flags & VM_MAYSHARE) {
714 struct address_space *mapping = vma->vm_file->f_mapping;
715 struct inode *inode = mapping->host;
716
717 return inode_resv_map(inode);
718
719 } else {
84afd99b
AW
720 return (struct resv_map *)(get_vma_private_data(vma) &
721 ~HPAGE_RESV_MASK);
4e35f483 722 }
a1e78772
MG
723}
724
84afd99b 725static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 726{
81d1b09c
SL
727 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
728 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 729
84afd99b
AW
730 set_vma_private_data(vma, (get_vma_private_data(vma) &
731 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
732}
733
734static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
735{
81d1b09c
SL
736 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
737 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
738
739 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
740}
741
742static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
743{
81d1b09c 744 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
745
746 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
747}
748
04f2cbe3 749/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
750void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
751{
81d1b09c 752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 753 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
754 vma->vm_private_data = (void *)0;
755}
756
757/* Returns true if the VMA has associated reserve pages */
559ec2f8 758static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 759{
af0ed73e
JK
760 if (vma->vm_flags & VM_NORESERVE) {
761 /*
762 * This address is already reserved by other process(chg == 0),
763 * so, we should decrement reserved count. Without decrementing,
764 * reserve count remains after releasing inode, because this
765 * allocated page will go into page cache and is regarded as
766 * coming from reserved pool in releasing step. Currently, we
767 * don't have any other solution to deal with this situation
768 * properly, so add work-around here.
769 */
770 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 771 return true;
af0ed73e 772 else
559ec2f8 773 return false;
af0ed73e 774 }
a63884e9
JK
775
776 /* Shared mappings always use reserves */
1fb1b0e9
MK
777 if (vma->vm_flags & VM_MAYSHARE) {
778 /*
779 * We know VM_NORESERVE is not set. Therefore, there SHOULD
780 * be a region map for all pages. The only situation where
781 * there is no region map is if a hole was punched via
782 * fallocate. In this case, there really are no reverves to
783 * use. This situation is indicated if chg != 0.
784 */
785 if (chg)
786 return false;
787 else
788 return true;
789 }
a63884e9
JK
790
791 /*
792 * Only the process that called mmap() has reserves for
793 * private mappings.
794 */
67961f9d
MK
795 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
796 /*
797 * Like the shared case above, a hole punch or truncate
798 * could have been performed on the private mapping.
799 * Examine the value of chg to determine if reserves
800 * actually exist or were previously consumed.
801 * Very Subtle - The value of chg comes from a previous
802 * call to vma_needs_reserves(). The reserve map for
803 * private mappings has different (opposite) semantics
804 * than that of shared mappings. vma_needs_reserves()
805 * has already taken this difference in semantics into
806 * account. Therefore, the meaning of chg is the same
807 * as in the shared case above. Code could easily be
808 * combined, but keeping it separate draws attention to
809 * subtle differences.
810 */
811 if (chg)
812 return false;
813 else
814 return true;
815 }
a63884e9 816
559ec2f8 817 return false;
a1e78772
MG
818}
819
a5516438 820static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
821{
822 int nid = page_to_nid(page);
0edaecfa 823 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
824 h->free_huge_pages++;
825 h->free_huge_pages_node[nid]++;
1da177e4
LT
826}
827
94310cbc 828static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
829{
830 struct page *page;
831
c8721bbb 832 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 833 if (!PageHWPoison(page))
c8721bbb
NH
834 break;
835 /*
836 * if 'non-isolated free hugepage' not found on the list,
837 * the allocation fails.
838 */
839 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 840 return NULL;
0edaecfa 841 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 842 set_page_refcounted(page);
bf50bab2
NH
843 h->free_huge_pages--;
844 h->free_huge_pages_node[nid]--;
845 return page;
846}
847
3e59fcb0
MH
848static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
849 nodemask_t *nmask)
94310cbc 850{
3e59fcb0
MH
851 unsigned int cpuset_mems_cookie;
852 struct zonelist *zonelist;
853 struct zone *zone;
854 struct zoneref *z;
98fa15f3 855 int node = NUMA_NO_NODE;
94310cbc 856
3e59fcb0
MH
857 zonelist = node_zonelist(nid, gfp_mask);
858
859retry_cpuset:
860 cpuset_mems_cookie = read_mems_allowed_begin();
861 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
862 struct page *page;
863
864 if (!cpuset_zone_allowed(zone, gfp_mask))
865 continue;
866 /*
867 * no need to ask again on the same node. Pool is node rather than
868 * zone aware
869 */
870 if (zone_to_nid(zone) == node)
871 continue;
872 node = zone_to_nid(zone);
94310cbc 873
94310cbc
AK
874 page = dequeue_huge_page_node_exact(h, node);
875 if (page)
876 return page;
877 }
3e59fcb0
MH
878 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
879 goto retry_cpuset;
880
94310cbc
AK
881 return NULL;
882}
883
86cdb465
NH
884/* Movability of hugepages depends on migration support. */
885static inline gfp_t htlb_alloc_mask(struct hstate *h)
886{
7ed2c31d 887 if (hugepage_movable_supported(h))
86cdb465
NH
888 return GFP_HIGHUSER_MOVABLE;
889 else
890 return GFP_HIGHUSER;
891}
892
a5516438
AK
893static struct page *dequeue_huge_page_vma(struct hstate *h,
894 struct vm_area_struct *vma,
af0ed73e
JK
895 unsigned long address, int avoid_reserve,
896 long chg)
1da177e4 897{
3e59fcb0 898 struct page *page;
480eccf9 899 struct mempolicy *mpol;
04ec6264 900 gfp_t gfp_mask;
3e59fcb0 901 nodemask_t *nodemask;
04ec6264 902 int nid;
1da177e4 903
a1e78772
MG
904 /*
905 * A child process with MAP_PRIVATE mappings created by their parent
906 * have no page reserves. This check ensures that reservations are
907 * not "stolen". The child may still get SIGKILLed
908 */
af0ed73e 909 if (!vma_has_reserves(vma, chg) &&
a5516438 910 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 911 goto err;
a1e78772 912
04f2cbe3 913 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 914 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 915 goto err;
04f2cbe3 916
04ec6264
VB
917 gfp_mask = htlb_alloc_mask(h);
918 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
919 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
920 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
921 SetPagePrivate(page);
922 h->resv_huge_pages--;
1da177e4 923 }
cc9a6c87 924
52cd3b07 925 mpol_cond_put(mpol);
1da177e4 926 return page;
cc9a6c87
MG
927
928err:
cc9a6c87 929 return NULL;
1da177e4
LT
930}
931
1cac6f2c
LC
932/*
933 * common helper functions for hstate_next_node_to_{alloc|free}.
934 * We may have allocated or freed a huge page based on a different
935 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
936 * be outside of *nodes_allowed. Ensure that we use an allowed
937 * node for alloc or free.
938 */
939static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
940{
0edaf86c 941 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
942 VM_BUG_ON(nid >= MAX_NUMNODES);
943
944 return nid;
945}
946
947static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
948{
949 if (!node_isset(nid, *nodes_allowed))
950 nid = next_node_allowed(nid, nodes_allowed);
951 return nid;
952}
953
954/*
955 * returns the previously saved node ["this node"] from which to
956 * allocate a persistent huge page for the pool and advance the
957 * next node from which to allocate, handling wrap at end of node
958 * mask.
959 */
960static int hstate_next_node_to_alloc(struct hstate *h,
961 nodemask_t *nodes_allowed)
962{
963 int nid;
964
965 VM_BUG_ON(!nodes_allowed);
966
967 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
968 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
969
970 return nid;
971}
972
973/*
974 * helper for free_pool_huge_page() - return the previously saved
975 * node ["this node"] from which to free a huge page. Advance the
976 * next node id whether or not we find a free huge page to free so
977 * that the next attempt to free addresses the next node.
978 */
979static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
980{
981 int nid;
982
983 VM_BUG_ON(!nodes_allowed);
984
985 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
986 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
987
988 return nid;
989}
990
991#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
992 for (nr_nodes = nodes_weight(*mask); \
993 nr_nodes > 0 && \
994 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
995 nr_nodes--)
996
997#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
998 for (nr_nodes = nodes_weight(*mask); \
999 nr_nodes > 0 && \
1000 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1001 nr_nodes--)
1002
e1073d1e 1003#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1004static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1005 unsigned int order)
944d9fec
LC
1006{
1007 int i;
1008 int nr_pages = 1 << order;
1009 struct page *p = page + 1;
1010
c8cc708a 1011 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1012 if (hpage_pincount_available(page))
1013 atomic_set(compound_pincount_ptr(page), 0);
1014
944d9fec 1015 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1016 clear_compound_head(p);
944d9fec 1017 set_page_refcounted(p);
944d9fec
LC
1018 }
1019
1020 set_compound_order(page, 0);
1021 __ClearPageHead(page);
1022}
1023
d00181b9 1024static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1025{
1026 free_contig_range(page_to_pfn(page), 1 << order);
1027}
1028
4eb0716e 1029#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1030static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1031 int nid, nodemask_t *nodemask)
944d9fec 1032{
5e27a2df 1033 unsigned long nr_pages = 1UL << huge_page_order(h);
944d9fec 1034
5e27a2df 1035 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1036}
1037
1038static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1039static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1040#else /* !CONFIG_CONTIG_ALLOC */
1041static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1042 int nid, nodemask_t *nodemask)
1043{
1044 return NULL;
1045}
1046#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1047
e1073d1e 1048#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1049static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1050 int nid, nodemask_t *nodemask)
1051{
1052 return NULL;
1053}
d00181b9 1054static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1055static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1056 unsigned int order) { }
944d9fec
LC
1057#endif
1058
a5516438 1059static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1060{
1061 int i;
a5516438 1062
4eb0716e 1063 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1064 return;
18229df5 1065
a5516438
AK
1066 h->nr_huge_pages--;
1067 h->nr_huge_pages_node[page_to_nid(page)]--;
1068 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1069 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1070 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1071 1 << PG_active | 1 << PG_private |
1072 1 << PG_writeback);
6af2acb6 1073 }
309381fe 1074 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1075 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1076 set_page_refcounted(page);
944d9fec
LC
1077 if (hstate_is_gigantic(h)) {
1078 destroy_compound_gigantic_page(page, huge_page_order(h));
1079 free_gigantic_page(page, huge_page_order(h));
1080 } else {
944d9fec
LC
1081 __free_pages(page, huge_page_order(h));
1082 }
6af2acb6
AL
1083}
1084
e5ff2159
AK
1085struct hstate *size_to_hstate(unsigned long size)
1086{
1087 struct hstate *h;
1088
1089 for_each_hstate(h) {
1090 if (huge_page_size(h) == size)
1091 return h;
1092 }
1093 return NULL;
1094}
1095
bcc54222
NH
1096/*
1097 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1098 * to hstate->hugepage_activelist.)
1099 *
1100 * This function can be called for tail pages, but never returns true for them.
1101 */
1102bool page_huge_active(struct page *page)
1103{
1104 VM_BUG_ON_PAGE(!PageHuge(page), page);
1105 return PageHead(page) && PagePrivate(&page[1]);
1106}
1107
1108/* never called for tail page */
1109static void set_page_huge_active(struct page *page)
1110{
1111 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1112 SetPagePrivate(&page[1]);
1113}
1114
1115static void clear_page_huge_active(struct page *page)
1116{
1117 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1118 ClearPagePrivate(&page[1]);
1119}
1120
ab5ac90a
MH
1121/*
1122 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1123 * code
1124 */
1125static inline bool PageHugeTemporary(struct page *page)
1126{
1127 if (!PageHuge(page))
1128 return false;
1129
1130 return (unsigned long)page[2].mapping == -1U;
1131}
1132
1133static inline void SetPageHugeTemporary(struct page *page)
1134{
1135 page[2].mapping = (void *)-1U;
1136}
1137
1138static inline void ClearPageHugeTemporary(struct page *page)
1139{
1140 page[2].mapping = NULL;
1141}
1142
c77c0a8a 1143static void __free_huge_page(struct page *page)
27a85ef1 1144{
a5516438
AK
1145 /*
1146 * Can't pass hstate in here because it is called from the
1147 * compound page destructor.
1148 */
e5ff2159 1149 struct hstate *h = page_hstate(page);
7893d1d5 1150 int nid = page_to_nid(page);
90481622
DG
1151 struct hugepage_subpool *spool =
1152 (struct hugepage_subpool *)page_private(page);
07443a85 1153 bool restore_reserve;
27a85ef1 1154
b4330afb
MK
1155 VM_BUG_ON_PAGE(page_count(page), page);
1156 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc
YW
1157
1158 set_page_private(page, 0);
1159 page->mapping = NULL;
07443a85 1160 restore_reserve = PagePrivate(page);
16c794b4 1161 ClearPagePrivate(page);
27a85ef1 1162
1c5ecae3 1163 /*
0919e1b6
MK
1164 * If PagePrivate() was set on page, page allocation consumed a
1165 * reservation. If the page was associated with a subpool, there
1166 * would have been a page reserved in the subpool before allocation
1167 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1168 * reservtion, do not call hugepage_subpool_put_pages() as this will
1169 * remove the reserved page from the subpool.
1c5ecae3 1170 */
0919e1b6
MK
1171 if (!restore_reserve) {
1172 /*
1173 * A return code of zero implies that the subpool will be
1174 * under its minimum size if the reservation is not restored
1175 * after page is free. Therefore, force restore_reserve
1176 * operation.
1177 */
1178 if (hugepage_subpool_put_pages(spool, 1) == 0)
1179 restore_reserve = true;
1180 }
1c5ecae3 1181
27a85ef1 1182 spin_lock(&hugetlb_lock);
bcc54222 1183 clear_page_huge_active(page);
6d76dcf4
AK
1184 hugetlb_cgroup_uncharge_page(hstate_index(h),
1185 pages_per_huge_page(h), page);
07443a85
JK
1186 if (restore_reserve)
1187 h->resv_huge_pages++;
1188
ab5ac90a
MH
1189 if (PageHugeTemporary(page)) {
1190 list_del(&page->lru);
1191 ClearPageHugeTemporary(page);
1192 update_and_free_page(h, page);
1193 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1194 /* remove the page from active list */
1195 list_del(&page->lru);
a5516438
AK
1196 update_and_free_page(h, page);
1197 h->surplus_huge_pages--;
1198 h->surplus_huge_pages_node[nid]--;
7893d1d5 1199 } else {
5d3a551c 1200 arch_clear_hugepage_flags(page);
a5516438 1201 enqueue_huge_page(h, page);
7893d1d5 1202 }
27a85ef1
DG
1203 spin_unlock(&hugetlb_lock);
1204}
1205
c77c0a8a
WL
1206/*
1207 * As free_huge_page() can be called from a non-task context, we have
1208 * to defer the actual freeing in a workqueue to prevent potential
1209 * hugetlb_lock deadlock.
1210 *
1211 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1212 * be freed and frees them one-by-one. As the page->mapping pointer is
1213 * going to be cleared in __free_huge_page() anyway, it is reused as the
1214 * llist_node structure of a lockless linked list of huge pages to be freed.
1215 */
1216static LLIST_HEAD(hpage_freelist);
1217
1218static void free_hpage_workfn(struct work_struct *work)
1219{
1220 struct llist_node *node;
1221 struct page *page;
1222
1223 node = llist_del_all(&hpage_freelist);
1224
1225 while (node) {
1226 page = container_of((struct address_space **)node,
1227 struct page, mapping);
1228 node = node->next;
1229 __free_huge_page(page);
1230 }
1231}
1232static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1233
1234void free_huge_page(struct page *page)
1235{
1236 /*
1237 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1238 */
1239 if (!in_task()) {
1240 /*
1241 * Only call schedule_work() if hpage_freelist is previously
1242 * empty. Otherwise, schedule_work() had been called but the
1243 * workfn hasn't retrieved the list yet.
1244 */
1245 if (llist_add((struct llist_node *)&page->mapping,
1246 &hpage_freelist))
1247 schedule_work(&free_hpage_work);
1248 return;
1249 }
1250
1251 __free_huge_page(page);
1252}
1253
a5516438 1254static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1255{
0edaecfa 1256 INIT_LIST_HEAD(&page->lru);
f1e61557 1257 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1258 spin_lock(&hugetlb_lock);
9dd540e2 1259 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1260 h->nr_huge_pages++;
1261 h->nr_huge_pages_node[nid]++;
b7ba30c6 1262 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1263}
1264
d00181b9 1265static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1266{
1267 int i;
1268 int nr_pages = 1 << order;
1269 struct page *p = page + 1;
1270
1271 /* we rely on prep_new_huge_page to set the destructor */
1272 set_compound_order(page, order);
ef5a22be 1273 __ClearPageReserved(page);
de09d31d 1274 __SetPageHead(page);
20a0307c 1275 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1276 /*
1277 * For gigantic hugepages allocated through bootmem at
1278 * boot, it's safer to be consistent with the not-gigantic
1279 * hugepages and clear the PG_reserved bit from all tail pages
1280 * too. Otherwse drivers using get_user_pages() to access tail
1281 * pages may get the reference counting wrong if they see
1282 * PG_reserved set on a tail page (despite the head page not
1283 * having PG_reserved set). Enforcing this consistency between
1284 * head and tail pages allows drivers to optimize away a check
1285 * on the head page when they need know if put_page() is needed
1286 * after get_user_pages().
1287 */
1288 __ClearPageReserved(p);
58a84aa9 1289 set_page_count(p, 0);
1d798ca3 1290 set_compound_head(p, page);
20a0307c 1291 }
b4330afb 1292 atomic_set(compound_mapcount_ptr(page), -1);
47e29d32
JH
1293
1294 if (hpage_pincount_available(page))
1295 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1296}
1297
7795912c
AM
1298/*
1299 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1300 * transparent huge pages. See the PageTransHuge() documentation for more
1301 * details.
1302 */
20a0307c
WF
1303int PageHuge(struct page *page)
1304{
20a0307c
WF
1305 if (!PageCompound(page))
1306 return 0;
1307
1308 page = compound_head(page);
f1e61557 1309 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1310}
43131e14
NH
1311EXPORT_SYMBOL_GPL(PageHuge);
1312
27c73ae7
AA
1313/*
1314 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1315 * normal or transparent huge pages.
1316 */
1317int PageHeadHuge(struct page *page_head)
1318{
27c73ae7
AA
1319 if (!PageHead(page_head))
1320 return 0;
1321
758f66a2 1322 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1323}
27c73ae7 1324
c0d0381a
MK
1325/*
1326 * Find address_space associated with hugetlbfs page.
1327 * Upon entry page is locked and page 'was' mapped although mapped state
1328 * could change. If necessary, use anon_vma to find vma and associated
1329 * address space. The returned mapping may be stale, but it can not be
1330 * invalid as page lock (which is held) is required to destroy mapping.
1331 */
1332static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1333{
1334 struct anon_vma *anon_vma;
1335 pgoff_t pgoff_start, pgoff_end;
1336 struct anon_vma_chain *avc;
1337 struct address_space *mapping = page_mapping(hpage);
1338
1339 /* Simple file based mapping */
1340 if (mapping)
1341 return mapping;
1342
1343 /*
1344 * Even anonymous hugetlbfs mappings are associated with an
1345 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1346 * code). Find a vma associated with the anonymous vma, and
1347 * use the file pointer to get address_space.
1348 */
1349 anon_vma = page_lock_anon_vma_read(hpage);
1350 if (!anon_vma)
1351 return mapping; /* NULL */
1352
1353 /* Use first found vma */
1354 pgoff_start = page_to_pgoff(hpage);
1355 pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
1356 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1357 pgoff_start, pgoff_end) {
1358 struct vm_area_struct *vma = avc->vma;
1359
1360 mapping = vma->vm_file->f_mapping;
1361 break;
1362 }
1363
1364 anon_vma_unlock_read(anon_vma);
1365 return mapping;
1366}
1367
1368/*
1369 * Find and lock address space (mapping) in write mode.
1370 *
1371 * Upon entry, the page is locked which allows us to find the mapping
1372 * even in the case of an anon page. However, locking order dictates
1373 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
1374 * specific. So, we first try to lock the sema while still holding the
1375 * page lock. If this works, great! If not, then we need to drop the
1376 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
1377 * course, need to revalidate state along the way.
1378 */
1379struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1380{
1381 struct address_space *mapping, *mapping2;
1382
1383 mapping = _get_hugetlb_page_mapping(hpage);
1384retry:
1385 if (!mapping)
1386 return mapping;
1387
1388 /*
1389 * If no contention, take lock and return
1390 */
1391 if (i_mmap_trylock_write(mapping))
1392 return mapping;
1393
1394 /*
1395 * Must drop page lock and wait on mapping sema.
1396 * Note: Once page lock is dropped, mapping could become invalid.
1397 * As a hack, increase map count until we lock page again.
1398 */
1399 atomic_inc(&hpage->_mapcount);
1400 unlock_page(hpage);
1401 i_mmap_lock_write(mapping);
1402 lock_page(hpage);
1403 atomic_add_negative(-1, &hpage->_mapcount);
1404
1405 /* verify page is still mapped */
1406 if (!page_mapped(hpage)) {
1407 i_mmap_unlock_write(mapping);
1408 return NULL;
1409 }
1410
1411 /*
1412 * Get address space again and verify it is the same one
1413 * we locked. If not, drop lock and retry.
1414 */
1415 mapping2 = _get_hugetlb_page_mapping(hpage);
1416 if (mapping2 != mapping) {
1417 i_mmap_unlock_write(mapping);
1418 mapping = mapping2;
1419 goto retry;
1420 }
1421
1422 return mapping;
1423}
1424
13d60f4b
ZY
1425pgoff_t __basepage_index(struct page *page)
1426{
1427 struct page *page_head = compound_head(page);
1428 pgoff_t index = page_index(page_head);
1429 unsigned long compound_idx;
1430
1431 if (!PageHuge(page_head))
1432 return page_index(page);
1433
1434 if (compound_order(page_head) >= MAX_ORDER)
1435 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1436 else
1437 compound_idx = page - page_head;
1438
1439 return (index << compound_order(page_head)) + compound_idx;
1440}
1441
0c397dae 1442static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1443 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1444 nodemask_t *node_alloc_noretry)
1da177e4 1445{
af0fb9df 1446 int order = huge_page_order(h);
1da177e4 1447 struct page *page;
f60858f9 1448 bool alloc_try_hard = true;
f96efd58 1449
f60858f9
MK
1450 /*
1451 * By default we always try hard to allocate the page with
1452 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1453 * a loop (to adjust global huge page counts) and previous allocation
1454 * failed, do not continue to try hard on the same node. Use the
1455 * node_alloc_noretry bitmap to manage this state information.
1456 */
1457 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1458 alloc_try_hard = false;
1459 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1460 if (alloc_try_hard)
1461 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1462 if (nid == NUMA_NO_NODE)
1463 nid = numa_mem_id();
1464 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1465 if (page)
1466 __count_vm_event(HTLB_BUDDY_PGALLOC);
1467 else
1468 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1469
f60858f9
MK
1470 /*
1471 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1472 * indicates an overall state change. Clear bit so that we resume
1473 * normal 'try hard' allocations.
1474 */
1475 if (node_alloc_noretry && page && !alloc_try_hard)
1476 node_clear(nid, *node_alloc_noretry);
1477
1478 /*
1479 * If we tried hard to get a page but failed, set bit so that
1480 * subsequent attempts will not try as hard until there is an
1481 * overall state change.
1482 */
1483 if (node_alloc_noretry && !page && alloc_try_hard)
1484 node_set(nid, *node_alloc_noretry);
1485
63b4613c
NA
1486 return page;
1487}
1488
0c397dae
MH
1489/*
1490 * Common helper to allocate a fresh hugetlb page. All specific allocators
1491 * should use this function to get new hugetlb pages
1492 */
1493static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1494 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1495 nodemask_t *node_alloc_noretry)
0c397dae
MH
1496{
1497 struct page *page;
1498
1499 if (hstate_is_gigantic(h))
1500 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1501 else
1502 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1503 nid, nmask, node_alloc_noretry);
0c397dae
MH
1504 if (!page)
1505 return NULL;
1506
1507 if (hstate_is_gigantic(h))
1508 prep_compound_gigantic_page(page, huge_page_order(h));
1509 prep_new_huge_page(h, page, page_to_nid(page));
1510
1511 return page;
1512}
1513
af0fb9df
MH
1514/*
1515 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1516 * manner.
1517 */
f60858f9
MK
1518static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1519 nodemask_t *node_alloc_noretry)
b2261026
JK
1520{
1521 struct page *page;
1522 int nr_nodes, node;
af0fb9df 1523 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1524
1525 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1526 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1527 node_alloc_noretry);
af0fb9df 1528 if (page)
b2261026 1529 break;
b2261026
JK
1530 }
1531
af0fb9df
MH
1532 if (!page)
1533 return 0;
b2261026 1534
af0fb9df
MH
1535 put_page(page); /* free it into the hugepage allocator */
1536
1537 return 1;
b2261026
JK
1538}
1539
e8c5c824
LS
1540/*
1541 * Free huge page from pool from next node to free.
1542 * Attempt to keep persistent huge pages more or less
1543 * balanced over allowed nodes.
1544 * Called with hugetlb_lock locked.
1545 */
6ae11b27
LS
1546static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1547 bool acct_surplus)
e8c5c824 1548{
b2261026 1549 int nr_nodes, node;
e8c5c824
LS
1550 int ret = 0;
1551
b2261026 1552 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1553 /*
1554 * If we're returning unused surplus pages, only examine
1555 * nodes with surplus pages.
1556 */
b2261026
JK
1557 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1558 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1559 struct page *page =
b2261026 1560 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1561 struct page, lru);
1562 list_del(&page->lru);
1563 h->free_huge_pages--;
b2261026 1564 h->free_huge_pages_node[node]--;
685f3457
LS
1565 if (acct_surplus) {
1566 h->surplus_huge_pages--;
b2261026 1567 h->surplus_huge_pages_node[node]--;
685f3457 1568 }
e8c5c824
LS
1569 update_and_free_page(h, page);
1570 ret = 1;
9a76db09 1571 break;
e8c5c824 1572 }
b2261026 1573 }
e8c5c824
LS
1574
1575 return ret;
1576}
1577
c8721bbb
NH
1578/*
1579 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1580 * nothing for in-use hugepages and non-hugepages.
1581 * This function returns values like below:
1582 *
1583 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1584 * (allocated or reserved.)
1585 * 0: successfully dissolved free hugepages or the page is not a
1586 * hugepage (considered as already dissolved)
c8721bbb 1587 */
c3114a84 1588int dissolve_free_huge_page(struct page *page)
c8721bbb 1589{
6bc9b564 1590 int rc = -EBUSY;
082d5b6b 1591
faf53def
NH
1592 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1593 if (!PageHuge(page))
1594 return 0;
1595
c8721bbb 1596 spin_lock(&hugetlb_lock);
faf53def
NH
1597 if (!PageHuge(page)) {
1598 rc = 0;
1599 goto out;
1600 }
1601
1602 if (!page_count(page)) {
2247bb33
GS
1603 struct page *head = compound_head(page);
1604 struct hstate *h = page_hstate(head);
1605 int nid = page_to_nid(head);
6bc9b564 1606 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1607 goto out;
c3114a84
AK
1608 /*
1609 * Move PageHWPoison flag from head page to the raw error page,
1610 * which makes any subpages rather than the error page reusable.
1611 */
1612 if (PageHWPoison(head) && page != head) {
1613 SetPageHWPoison(page);
1614 ClearPageHWPoison(head);
1615 }
2247bb33 1616 list_del(&head->lru);
c8721bbb
NH
1617 h->free_huge_pages--;
1618 h->free_huge_pages_node[nid]--;
c1470b33 1619 h->max_huge_pages--;
2247bb33 1620 update_and_free_page(h, head);
6bc9b564 1621 rc = 0;
c8721bbb 1622 }
082d5b6b 1623out:
c8721bbb 1624 spin_unlock(&hugetlb_lock);
082d5b6b 1625 return rc;
c8721bbb
NH
1626}
1627
1628/*
1629 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1630 * make specified memory blocks removable from the system.
2247bb33
GS
1631 * Note that this will dissolve a free gigantic hugepage completely, if any
1632 * part of it lies within the given range.
082d5b6b
GS
1633 * Also note that if dissolve_free_huge_page() returns with an error, all
1634 * free hugepages that were dissolved before that error are lost.
c8721bbb 1635 */
082d5b6b 1636int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1637{
c8721bbb 1638 unsigned long pfn;
eb03aa00 1639 struct page *page;
082d5b6b 1640 int rc = 0;
c8721bbb 1641
d0177639 1642 if (!hugepages_supported())
082d5b6b 1643 return rc;
d0177639 1644
eb03aa00
GS
1645 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1646 page = pfn_to_page(pfn);
faf53def
NH
1647 rc = dissolve_free_huge_page(page);
1648 if (rc)
1649 break;
eb03aa00 1650 }
082d5b6b
GS
1651
1652 return rc;
c8721bbb
NH
1653}
1654
ab5ac90a
MH
1655/*
1656 * Allocates a fresh surplus page from the page allocator.
1657 */
0c397dae 1658static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1659 int nid, nodemask_t *nmask)
7893d1d5 1660{
9980d744 1661 struct page *page = NULL;
7893d1d5 1662
bae7f4ae 1663 if (hstate_is_gigantic(h))
aa888a74
AK
1664 return NULL;
1665
d1c3fb1f 1666 spin_lock(&hugetlb_lock);
9980d744
MH
1667 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1668 goto out_unlock;
d1c3fb1f
NA
1669 spin_unlock(&hugetlb_lock);
1670
f60858f9 1671 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1672 if (!page)
0c397dae 1673 return NULL;
d1c3fb1f
NA
1674
1675 spin_lock(&hugetlb_lock);
9980d744
MH
1676 /*
1677 * We could have raced with the pool size change.
1678 * Double check that and simply deallocate the new page
1679 * if we would end up overcommiting the surpluses. Abuse
1680 * temporary page to workaround the nasty free_huge_page
1681 * codeflow
1682 */
1683 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1684 SetPageHugeTemporary(page);
2bf753e6 1685 spin_unlock(&hugetlb_lock);
9980d744 1686 put_page(page);
2bf753e6 1687 return NULL;
9980d744 1688 } else {
9980d744 1689 h->surplus_huge_pages++;
4704dea3 1690 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1691 }
9980d744
MH
1692
1693out_unlock:
d1c3fb1f 1694 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1695
1696 return page;
1697}
1698
9a4e9f3b
AK
1699struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1700 int nid, nodemask_t *nmask)
ab5ac90a
MH
1701{
1702 struct page *page;
1703
1704 if (hstate_is_gigantic(h))
1705 return NULL;
1706
f60858f9 1707 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1708 if (!page)
1709 return NULL;
1710
1711 /*
1712 * We do not account these pages as surplus because they are only
1713 * temporary and will be released properly on the last reference
1714 */
ab5ac90a
MH
1715 SetPageHugeTemporary(page);
1716
1717 return page;
1718}
1719
099730d6
DH
1720/*
1721 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1722 */
e0ec90ee 1723static
0c397dae 1724struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1725 struct vm_area_struct *vma, unsigned long addr)
1726{
aaf14e40
MH
1727 struct page *page;
1728 struct mempolicy *mpol;
1729 gfp_t gfp_mask = htlb_alloc_mask(h);
1730 int nid;
1731 nodemask_t *nodemask;
1732
1733 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1734 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1735 mpol_cond_put(mpol);
1736
1737 return page;
099730d6
DH
1738}
1739
ab5ac90a 1740/* page migration callback function */
bf50bab2
NH
1741struct page *alloc_huge_page_node(struct hstate *h, int nid)
1742{
aaf14e40 1743 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1744 struct page *page = NULL;
bf50bab2 1745
aaf14e40
MH
1746 if (nid != NUMA_NO_NODE)
1747 gfp_mask |= __GFP_THISNODE;
1748
bf50bab2 1749 spin_lock(&hugetlb_lock);
4ef91848 1750 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1751 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1752 spin_unlock(&hugetlb_lock);
1753
94ae8ba7 1754 if (!page)
0c397dae 1755 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1756
1757 return page;
1758}
1759
ab5ac90a 1760/* page migration callback function */
3e59fcb0
MH
1761struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1762 nodemask_t *nmask)
4db9b2ef 1763{
aaf14e40 1764 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1765
1766 spin_lock(&hugetlb_lock);
1767 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1768 struct page *page;
1769
1770 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1771 if (page) {
1772 spin_unlock(&hugetlb_lock);
1773 return page;
4db9b2ef
MH
1774 }
1775 }
1776 spin_unlock(&hugetlb_lock);
4db9b2ef 1777
0c397dae 1778 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1779}
1780
ebd63723 1781/* mempolicy aware migration callback */
389c8178
MH
1782struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1783 unsigned long address)
ebd63723
MH
1784{
1785 struct mempolicy *mpol;
1786 nodemask_t *nodemask;
1787 struct page *page;
ebd63723
MH
1788 gfp_t gfp_mask;
1789 int node;
1790
ebd63723
MH
1791 gfp_mask = htlb_alloc_mask(h);
1792 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1793 page = alloc_huge_page_nodemask(h, node, nodemask);
1794 mpol_cond_put(mpol);
1795
1796 return page;
1797}
1798
e4e574b7 1799/*
25985edc 1800 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1801 * of size 'delta'.
1802 */
a5516438 1803static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1804{
1805 struct list_head surplus_list;
1806 struct page *page, *tmp;
1807 int ret, i;
1808 int needed, allocated;
28073b02 1809 bool alloc_ok = true;
e4e574b7 1810
a5516438 1811 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1812 if (needed <= 0) {
a5516438 1813 h->resv_huge_pages += delta;
e4e574b7 1814 return 0;
ac09b3a1 1815 }
e4e574b7
AL
1816
1817 allocated = 0;
1818 INIT_LIST_HEAD(&surplus_list);
1819
1820 ret = -ENOMEM;
1821retry:
1822 spin_unlock(&hugetlb_lock);
1823 for (i = 0; i < needed; i++) {
0c397dae 1824 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1825 NUMA_NO_NODE, NULL);
28073b02
HD
1826 if (!page) {
1827 alloc_ok = false;
1828 break;
1829 }
e4e574b7 1830 list_add(&page->lru, &surplus_list);
69ed779a 1831 cond_resched();
e4e574b7 1832 }
28073b02 1833 allocated += i;
e4e574b7
AL
1834
1835 /*
1836 * After retaking hugetlb_lock, we need to recalculate 'needed'
1837 * because either resv_huge_pages or free_huge_pages may have changed.
1838 */
1839 spin_lock(&hugetlb_lock);
a5516438
AK
1840 needed = (h->resv_huge_pages + delta) -
1841 (h->free_huge_pages + allocated);
28073b02
HD
1842 if (needed > 0) {
1843 if (alloc_ok)
1844 goto retry;
1845 /*
1846 * We were not able to allocate enough pages to
1847 * satisfy the entire reservation so we free what
1848 * we've allocated so far.
1849 */
1850 goto free;
1851 }
e4e574b7
AL
1852 /*
1853 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1854 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1855 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1856 * allocator. Commit the entire reservation here to prevent another
1857 * process from stealing the pages as they are added to the pool but
1858 * before they are reserved.
e4e574b7
AL
1859 */
1860 needed += allocated;
a5516438 1861 h->resv_huge_pages += delta;
e4e574b7 1862 ret = 0;
a9869b83 1863
19fc3f0a 1864 /* Free the needed pages to the hugetlb pool */
e4e574b7 1865 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1866 if ((--needed) < 0)
1867 break;
a9869b83
NH
1868 /*
1869 * This page is now managed by the hugetlb allocator and has
1870 * no users -- drop the buddy allocator's reference.
1871 */
1872 put_page_testzero(page);
309381fe 1873 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1874 enqueue_huge_page(h, page);
19fc3f0a 1875 }
28073b02 1876free:
b0365c8d 1877 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1878
1879 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1880 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1881 put_page(page);
a9869b83 1882 spin_lock(&hugetlb_lock);
e4e574b7
AL
1883
1884 return ret;
1885}
1886
1887/*
e5bbc8a6
MK
1888 * This routine has two main purposes:
1889 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1890 * in unused_resv_pages. This corresponds to the prior adjustments made
1891 * to the associated reservation map.
1892 * 2) Free any unused surplus pages that may have been allocated to satisfy
1893 * the reservation. As many as unused_resv_pages may be freed.
1894 *
1895 * Called with hugetlb_lock held. However, the lock could be dropped (and
1896 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1897 * we must make sure nobody else can claim pages we are in the process of
1898 * freeing. Do this by ensuring resv_huge_page always is greater than the
1899 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1900 */
a5516438
AK
1901static void return_unused_surplus_pages(struct hstate *h,
1902 unsigned long unused_resv_pages)
e4e574b7 1903{
e4e574b7
AL
1904 unsigned long nr_pages;
1905
aa888a74 1906 /* Cannot return gigantic pages currently */
bae7f4ae 1907 if (hstate_is_gigantic(h))
e5bbc8a6 1908 goto out;
aa888a74 1909
e5bbc8a6
MK
1910 /*
1911 * Part (or even all) of the reservation could have been backed
1912 * by pre-allocated pages. Only free surplus pages.
1913 */
a5516438 1914 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1915
685f3457
LS
1916 /*
1917 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1918 * evenly across all nodes with memory. Iterate across these nodes
1919 * until we can no longer free unreserved surplus pages. This occurs
1920 * when the nodes with surplus pages have no free pages.
1921 * free_pool_huge_page() will balance the the freed pages across the
1922 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1923 *
1924 * Note that we decrement resv_huge_pages as we free the pages. If
1925 * we drop the lock, resv_huge_pages will still be sufficiently large
1926 * to cover subsequent pages we may free.
685f3457
LS
1927 */
1928 while (nr_pages--) {
e5bbc8a6
MK
1929 h->resv_huge_pages--;
1930 unused_resv_pages--;
8cebfcd0 1931 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1932 goto out;
7848a4bf 1933 cond_resched_lock(&hugetlb_lock);
e4e574b7 1934 }
e5bbc8a6
MK
1935
1936out:
1937 /* Fully uncommit the reservation */
1938 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1939}
1940
5e911373 1941
c37f9fb1 1942/*
feba16e2 1943 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1944 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1945 *
1946 * vma_needs_reservation is called to determine if the huge page at addr
1947 * within the vma has an associated reservation. If a reservation is
1948 * needed, the value 1 is returned. The caller is then responsible for
1949 * managing the global reservation and subpool usage counts. After
1950 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1951 * to add the page to the reservation map. If the page allocation fails,
1952 * the reservation must be ended instead of committed. vma_end_reservation
1953 * is called in such cases.
cf3ad20b
MK
1954 *
1955 * In the normal case, vma_commit_reservation returns the same value
1956 * as the preceding vma_needs_reservation call. The only time this
1957 * is not the case is if a reserve map was changed between calls. It
1958 * is the responsibility of the caller to notice the difference and
1959 * take appropriate action.
96b96a96
MK
1960 *
1961 * vma_add_reservation is used in error paths where a reservation must
1962 * be restored when a newly allocated huge page must be freed. It is
1963 * to be called after calling vma_needs_reservation to determine if a
1964 * reservation exists.
c37f9fb1 1965 */
5e911373
MK
1966enum vma_resv_mode {
1967 VMA_NEEDS_RESV,
1968 VMA_COMMIT_RESV,
feba16e2 1969 VMA_END_RESV,
96b96a96 1970 VMA_ADD_RESV,
5e911373 1971};
cf3ad20b
MK
1972static long __vma_reservation_common(struct hstate *h,
1973 struct vm_area_struct *vma, unsigned long addr,
5e911373 1974 enum vma_resv_mode mode)
c37f9fb1 1975{
4e35f483
JK
1976 struct resv_map *resv;
1977 pgoff_t idx;
cf3ad20b 1978 long ret;
c37f9fb1 1979
4e35f483
JK
1980 resv = vma_resv_map(vma);
1981 if (!resv)
84afd99b 1982 return 1;
c37f9fb1 1983
4e35f483 1984 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1985 switch (mode) {
1986 case VMA_NEEDS_RESV:
cf3ad20b 1987 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1988 break;
1989 case VMA_COMMIT_RESV:
1990 ret = region_add(resv, idx, idx + 1);
1991 break;
feba16e2 1992 case VMA_END_RESV:
5e911373
MK
1993 region_abort(resv, idx, idx + 1);
1994 ret = 0;
1995 break;
96b96a96
MK
1996 case VMA_ADD_RESV:
1997 if (vma->vm_flags & VM_MAYSHARE)
1998 ret = region_add(resv, idx, idx + 1);
1999 else {
2000 region_abort(resv, idx, idx + 1);
2001 ret = region_del(resv, idx, idx + 1);
2002 }
2003 break;
5e911373
MK
2004 default:
2005 BUG();
2006 }
84afd99b 2007
4e35f483 2008 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2009 return ret;
67961f9d
MK
2010 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2011 /*
2012 * In most cases, reserves always exist for private mappings.
2013 * However, a file associated with mapping could have been
2014 * hole punched or truncated after reserves were consumed.
2015 * As subsequent fault on such a range will not use reserves.
2016 * Subtle - The reserve map for private mappings has the
2017 * opposite meaning than that of shared mappings. If NO
2018 * entry is in the reserve map, it means a reservation exists.
2019 * If an entry exists in the reserve map, it means the
2020 * reservation has already been consumed. As a result, the
2021 * return value of this routine is the opposite of the
2022 * value returned from reserve map manipulation routines above.
2023 */
2024 if (ret)
2025 return 0;
2026 else
2027 return 1;
2028 }
4e35f483 2029 else
cf3ad20b 2030 return ret < 0 ? ret : 0;
c37f9fb1 2031}
cf3ad20b
MK
2032
2033static long vma_needs_reservation(struct hstate *h,
a5516438 2034 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2035{
5e911373 2036 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2037}
84afd99b 2038
cf3ad20b
MK
2039static long vma_commit_reservation(struct hstate *h,
2040 struct vm_area_struct *vma, unsigned long addr)
2041{
5e911373
MK
2042 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2043}
2044
feba16e2 2045static void vma_end_reservation(struct hstate *h,
5e911373
MK
2046 struct vm_area_struct *vma, unsigned long addr)
2047{
feba16e2 2048 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2049}
2050
96b96a96
MK
2051static long vma_add_reservation(struct hstate *h,
2052 struct vm_area_struct *vma, unsigned long addr)
2053{
2054 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2055}
2056
2057/*
2058 * This routine is called to restore a reservation on error paths. In the
2059 * specific error paths, a huge page was allocated (via alloc_huge_page)
2060 * and is about to be freed. If a reservation for the page existed,
2061 * alloc_huge_page would have consumed the reservation and set PagePrivate
2062 * in the newly allocated page. When the page is freed via free_huge_page,
2063 * the global reservation count will be incremented if PagePrivate is set.
2064 * However, free_huge_page can not adjust the reserve map. Adjust the
2065 * reserve map here to be consistent with global reserve count adjustments
2066 * to be made by free_huge_page.
2067 */
2068static void restore_reserve_on_error(struct hstate *h,
2069 struct vm_area_struct *vma, unsigned long address,
2070 struct page *page)
2071{
2072 if (unlikely(PagePrivate(page))) {
2073 long rc = vma_needs_reservation(h, vma, address);
2074
2075 if (unlikely(rc < 0)) {
2076 /*
2077 * Rare out of memory condition in reserve map
2078 * manipulation. Clear PagePrivate so that
2079 * global reserve count will not be incremented
2080 * by free_huge_page. This will make it appear
2081 * as though the reservation for this page was
2082 * consumed. This may prevent the task from
2083 * faulting in the page at a later time. This
2084 * is better than inconsistent global huge page
2085 * accounting of reserve counts.
2086 */
2087 ClearPagePrivate(page);
2088 } else if (rc) {
2089 rc = vma_add_reservation(h, vma, address);
2090 if (unlikely(rc < 0))
2091 /*
2092 * See above comment about rare out of
2093 * memory condition.
2094 */
2095 ClearPagePrivate(page);
2096 } else
2097 vma_end_reservation(h, vma, address);
2098 }
2099}
2100
70c3547e 2101struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2102 unsigned long addr, int avoid_reserve)
1da177e4 2103{
90481622 2104 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2105 struct hstate *h = hstate_vma(vma);
348ea204 2106 struct page *page;
d85f69b0
MK
2107 long map_chg, map_commit;
2108 long gbl_chg;
6d76dcf4
AK
2109 int ret, idx;
2110 struct hugetlb_cgroup *h_cg;
a1e78772 2111
6d76dcf4 2112 idx = hstate_index(h);
a1e78772 2113 /*
d85f69b0
MK
2114 * Examine the region/reserve map to determine if the process
2115 * has a reservation for the page to be allocated. A return
2116 * code of zero indicates a reservation exists (no change).
a1e78772 2117 */
d85f69b0
MK
2118 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2119 if (map_chg < 0)
76dcee75 2120 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2121
2122 /*
2123 * Processes that did not create the mapping will have no
2124 * reserves as indicated by the region/reserve map. Check
2125 * that the allocation will not exceed the subpool limit.
2126 * Allocations for MAP_NORESERVE mappings also need to be
2127 * checked against any subpool limit.
2128 */
2129 if (map_chg || avoid_reserve) {
2130 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2131 if (gbl_chg < 0) {
feba16e2 2132 vma_end_reservation(h, vma, addr);
76dcee75 2133 return ERR_PTR(-ENOSPC);
5e911373 2134 }
1da177e4 2135
d85f69b0
MK
2136 /*
2137 * Even though there was no reservation in the region/reserve
2138 * map, there could be reservations associated with the
2139 * subpool that can be used. This would be indicated if the
2140 * return value of hugepage_subpool_get_pages() is zero.
2141 * However, if avoid_reserve is specified we still avoid even
2142 * the subpool reservations.
2143 */
2144 if (avoid_reserve)
2145 gbl_chg = 1;
2146 }
2147
6d76dcf4 2148 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2149 if (ret)
2150 goto out_subpool_put;
2151
1da177e4 2152 spin_lock(&hugetlb_lock);
d85f69b0
MK
2153 /*
2154 * glb_chg is passed to indicate whether or not a page must be taken
2155 * from the global free pool (global change). gbl_chg == 0 indicates
2156 * a reservation exists for the allocation.
2157 */
2158 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2159 if (!page) {
94ae8ba7 2160 spin_unlock(&hugetlb_lock);
0c397dae 2161 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2162 if (!page)
2163 goto out_uncharge_cgroup;
a88c7695
NH
2164 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2165 SetPagePrivate(page);
2166 h->resv_huge_pages--;
2167 }
79dbb236
AK
2168 spin_lock(&hugetlb_lock);
2169 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2170 /* Fall through */
68842c9b 2171 }
81a6fcae
JK
2172 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2173 spin_unlock(&hugetlb_lock);
348ea204 2174
90481622 2175 set_page_private(page, (unsigned long)spool);
90d8b7e6 2176
d85f69b0
MK
2177 map_commit = vma_commit_reservation(h, vma, addr);
2178 if (unlikely(map_chg > map_commit)) {
33039678
MK
2179 /*
2180 * The page was added to the reservation map between
2181 * vma_needs_reservation and vma_commit_reservation.
2182 * This indicates a race with hugetlb_reserve_pages.
2183 * Adjust for the subpool count incremented above AND
2184 * in hugetlb_reserve_pages for the same page. Also,
2185 * the reservation count added in hugetlb_reserve_pages
2186 * no longer applies.
2187 */
2188 long rsv_adjust;
2189
2190 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2191 hugetlb_acct_memory(h, -rsv_adjust);
2192 }
90d8b7e6 2193 return page;
8f34af6f
JZ
2194
2195out_uncharge_cgroup:
2196 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2197out_subpool_put:
d85f69b0 2198 if (map_chg || avoid_reserve)
8f34af6f 2199 hugepage_subpool_put_pages(spool, 1);
feba16e2 2200 vma_end_reservation(h, vma, addr);
8f34af6f 2201 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2202}
2203
e24a1307
AK
2204int alloc_bootmem_huge_page(struct hstate *h)
2205 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2206int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2207{
2208 struct huge_bootmem_page *m;
b2261026 2209 int nr_nodes, node;
aa888a74 2210
b2261026 2211 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2212 void *addr;
2213
eb31d559 2214 addr = memblock_alloc_try_nid_raw(
8b89a116 2215 huge_page_size(h), huge_page_size(h),
97ad1087 2216 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2217 if (addr) {
2218 /*
2219 * Use the beginning of the huge page to store the
2220 * huge_bootmem_page struct (until gather_bootmem
2221 * puts them into the mem_map).
2222 */
2223 m = addr;
91f47662 2224 goto found;
aa888a74 2225 }
aa888a74
AK
2226 }
2227 return 0;
2228
2229found:
df994ead 2230 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2231 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2232 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2233 list_add(&m->list, &huge_boot_pages);
2234 m->hstate = h;
2235 return 1;
2236}
2237
d00181b9
KS
2238static void __init prep_compound_huge_page(struct page *page,
2239 unsigned int order)
18229df5
AW
2240{
2241 if (unlikely(order > (MAX_ORDER - 1)))
2242 prep_compound_gigantic_page(page, order);
2243 else
2244 prep_compound_page(page, order);
2245}
2246
aa888a74
AK
2247/* Put bootmem huge pages into the standard lists after mem_map is up */
2248static void __init gather_bootmem_prealloc(void)
2249{
2250 struct huge_bootmem_page *m;
2251
2252 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2253 struct page *page = virt_to_page(m);
aa888a74 2254 struct hstate *h = m->hstate;
ee8f248d 2255
aa888a74 2256 WARN_ON(page_count(page) != 1);
18229df5 2257 prep_compound_huge_page(page, h->order);
ef5a22be 2258 WARN_ON(PageReserved(page));
aa888a74 2259 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2260 put_page(page); /* free it into the hugepage allocator */
2261
b0320c7b
RA
2262 /*
2263 * If we had gigantic hugepages allocated at boot time, we need
2264 * to restore the 'stolen' pages to totalram_pages in order to
2265 * fix confusing memory reports from free(1) and another
2266 * side-effects, like CommitLimit going negative.
2267 */
bae7f4ae 2268 if (hstate_is_gigantic(h))
3dcc0571 2269 adjust_managed_page_count(page, 1 << h->order);
520495fe 2270 cond_resched();
aa888a74
AK
2271 }
2272}
2273
8faa8b07 2274static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2275{
2276 unsigned long i;
f60858f9
MK
2277 nodemask_t *node_alloc_noretry;
2278
2279 if (!hstate_is_gigantic(h)) {
2280 /*
2281 * Bit mask controlling how hard we retry per-node allocations.
2282 * Ignore errors as lower level routines can deal with
2283 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2284 * time, we are likely in bigger trouble.
2285 */
2286 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2287 GFP_KERNEL);
2288 } else {
2289 /* allocations done at boot time */
2290 node_alloc_noretry = NULL;
2291 }
2292
2293 /* bit mask controlling how hard we retry per-node allocations */
2294 if (node_alloc_noretry)
2295 nodes_clear(*node_alloc_noretry);
a5516438 2296
e5ff2159 2297 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2298 if (hstate_is_gigantic(h)) {
aa888a74
AK
2299 if (!alloc_bootmem_huge_page(h))
2300 break;
0c397dae 2301 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2302 &node_states[N_MEMORY],
2303 node_alloc_noretry))
1da177e4 2304 break;
69ed779a 2305 cond_resched();
1da177e4 2306 }
d715cf80
LH
2307 if (i < h->max_huge_pages) {
2308 char buf[32];
2309
c6247f72 2310 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2311 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2312 h->max_huge_pages, buf, i);
2313 h->max_huge_pages = i;
2314 }
f60858f9
MK
2315
2316 kfree(node_alloc_noretry);
e5ff2159
AK
2317}
2318
2319static void __init hugetlb_init_hstates(void)
2320{
2321 struct hstate *h;
2322
2323 for_each_hstate(h) {
641844f5
NH
2324 if (minimum_order > huge_page_order(h))
2325 minimum_order = huge_page_order(h);
2326
8faa8b07 2327 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2328 if (!hstate_is_gigantic(h))
8faa8b07 2329 hugetlb_hstate_alloc_pages(h);
e5ff2159 2330 }
641844f5 2331 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2332}
2333
2334static void __init report_hugepages(void)
2335{
2336 struct hstate *h;
2337
2338 for_each_hstate(h) {
4abd32db 2339 char buf[32];
c6247f72
MW
2340
2341 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2342 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2343 buf, h->free_huge_pages);
e5ff2159
AK
2344 }
2345}
2346
1da177e4 2347#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2348static void try_to_free_low(struct hstate *h, unsigned long count,
2349 nodemask_t *nodes_allowed)
1da177e4 2350{
4415cc8d
CL
2351 int i;
2352
bae7f4ae 2353 if (hstate_is_gigantic(h))
aa888a74
AK
2354 return;
2355
6ae11b27 2356 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2357 struct page *page, *next;
a5516438
AK
2358 struct list_head *freel = &h->hugepage_freelists[i];
2359 list_for_each_entry_safe(page, next, freel, lru) {
2360 if (count >= h->nr_huge_pages)
6b0c880d 2361 return;
1da177e4
LT
2362 if (PageHighMem(page))
2363 continue;
2364 list_del(&page->lru);
e5ff2159 2365 update_and_free_page(h, page);
a5516438
AK
2366 h->free_huge_pages--;
2367 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2368 }
2369 }
2370}
2371#else
6ae11b27
LS
2372static inline void try_to_free_low(struct hstate *h, unsigned long count,
2373 nodemask_t *nodes_allowed)
1da177e4
LT
2374{
2375}
2376#endif
2377
20a0307c
WF
2378/*
2379 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2380 * balanced by operating on them in a round-robin fashion.
2381 * Returns 1 if an adjustment was made.
2382 */
6ae11b27
LS
2383static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2384 int delta)
20a0307c 2385{
b2261026 2386 int nr_nodes, node;
20a0307c
WF
2387
2388 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2389
b2261026
JK
2390 if (delta < 0) {
2391 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2392 if (h->surplus_huge_pages_node[node])
2393 goto found;
e8c5c824 2394 }
b2261026
JK
2395 } else {
2396 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2397 if (h->surplus_huge_pages_node[node] <
2398 h->nr_huge_pages_node[node])
2399 goto found;
e8c5c824 2400 }
b2261026
JK
2401 }
2402 return 0;
20a0307c 2403
b2261026
JK
2404found:
2405 h->surplus_huge_pages += delta;
2406 h->surplus_huge_pages_node[node] += delta;
2407 return 1;
20a0307c
WF
2408}
2409
a5516438 2410#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2411static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2412 nodemask_t *nodes_allowed)
1da177e4 2413{
7893d1d5 2414 unsigned long min_count, ret;
f60858f9
MK
2415 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2416
2417 /*
2418 * Bit mask controlling how hard we retry per-node allocations.
2419 * If we can not allocate the bit mask, do not attempt to allocate
2420 * the requested huge pages.
2421 */
2422 if (node_alloc_noretry)
2423 nodes_clear(*node_alloc_noretry);
2424 else
2425 return -ENOMEM;
1da177e4 2426
4eb0716e
AG
2427 spin_lock(&hugetlb_lock);
2428
fd875dca
MK
2429 /*
2430 * Check for a node specific request.
2431 * Changing node specific huge page count may require a corresponding
2432 * change to the global count. In any case, the passed node mask
2433 * (nodes_allowed) will restrict alloc/free to the specified node.
2434 */
2435 if (nid != NUMA_NO_NODE) {
2436 unsigned long old_count = count;
2437
2438 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2439 /*
2440 * User may have specified a large count value which caused the
2441 * above calculation to overflow. In this case, they wanted
2442 * to allocate as many huge pages as possible. Set count to
2443 * largest possible value to align with their intention.
2444 */
2445 if (count < old_count)
2446 count = ULONG_MAX;
2447 }
2448
4eb0716e
AG
2449 /*
2450 * Gigantic pages runtime allocation depend on the capability for large
2451 * page range allocation.
2452 * If the system does not provide this feature, return an error when
2453 * the user tries to allocate gigantic pages but let the user free the
2454 * boottime allocated gigantic pages.
2455 */
2456 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2457 if (count > persistent_huge_pages(h)) {
2458 spin_unlock(&hugetlb_lock);
f60858f9 2459 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2460 return -EINVAL;
2461 }
2462 /* Fall through to decrease pool */
2463 }
aa888a74 2464
7893d1d5
AL
2465 /*
2466 * Increase the pool size
2467 * First take pages out of surplus state. Then make up the
2468 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2469 *
0c397dae 2470 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2471 * to convert a surplus huge page to a normal huge page. That is
2472 * not critical, though, it just means the overall size of the
2473 * pool might be one hugepage larger than it needs to be, but
2474 * within all the constraints specified by the sysctls.
7893d1d5 2475 */
a5516438 2476 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2477 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2478 break;
2479 }
2480
a5516438 2481 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2482 /*
2483 * If this allocation races such that we no longer need the
2484 * page, free_huge_page will handle it by freeing the page
2485 * and reducing the surplus.
2486 */
2487 spin_unlock(&hugetlb_lock);
649920c6
JH
2488
2489 /* yield cpu to avoid soft lockup */
2490 cond_resched();
2491
f60858f9
MK
2492 ret = alloc_pool_huge_page(h, nodes_allowed,
2493 node_alloc_noretry);
7893d1d5
AL
2494 spin_lock(&hugetlb_lock);
2495 if (!ret)
2496 goto out;
2497
536240f2
MG
2498 /* Bail for signals. Probably ctrl-c from user */
2499 if (signal_pending(current))
2500 goto out;
7893d1d5 2501 }
7893d1d5
AL
2502
2503 /*
2504 * Decrease the pool size
2505 * First return free pages to the buddy allocator (being careful
2506 * to keep enough around to satisfy reservations). Then place
2507 * pages into surplus state as needed so the pool will shrink
2508 * to the desired size as pages become free.
d1c3fb1f
NA
2509 *
2510 * By placing pages into the surplus state independent of the
2511 * overcommit value, we are allowing the surplus pool size to
2512 * exceed overcommit. There are few sane options here. Since
0c397dae 2513 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2514 * though, we'll note that we're not allowed to exceed surplus
2515 * and won't grow the pool anywhere else. Not until one of the
2516 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2517 */
a5516438 2518 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2519 min_count = max(count, min_count);
6ae11b27 2520 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2521 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2522 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2523 break;
55f67141 2524 cond_resched_lock(&hugetlb_lock);
1da177e4 2525 }
a5516438 2526 while (count < persistent_huge_pages(h)) {
6ae11b27 2527 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2528 break;
2529 }
2530out:
4eb0716e 2531 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2532 spin_unlock(&hugetlb_lock);
4eb0716e 2533
f60858f9
MK
2534 NODEMASK_FREE(node_alloc_noretry);
2535
4eb0716e 2536 return 0;
1da177e4
LT
2537}
2538
a3437870
NA
2539#define HSTATE_ATTR_RO(_name) \
2540 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2541
2542#define HSTATE_ATTR(_name) \
2543 static struct kobj_attribute _name##_attr = \
2544 __ATTR(_name, 0644, _name##_show, _name##_store)
2545
2546static struct kobject *hugepages_kobj;
2547static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2548
9a305230
LS
2549static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2550
2551static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2552{
2553 int i;
9a305230 2554
a3437870 2555 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2556 if (hstate_kobjs[i] == kobj) {
2557 if (nidp)
2558 *nidp = NUMA_NO_NODE;
a3437870 2559 return &hstates[i];
9a305230
LS
2560 }
2561
2562 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2563}
2564
06808b08 2565static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2566 struct kobj_attribute *attr, char *buf)
2567{
9a305230
LS
2568 struct hstate *h;
2569 unsigned long nr_huge_pages;
2570 int nid;
2571
2572 h = kobj_to_hstate(kobj, &nid);
2573 if (nid == NUMA_NO_NODE)
2574 nr_huge_pages = h->nr_huge_pages;
2575 else
2576 nr_huge_pages = h->nr_huge_pages_node[nid];
2577
2578 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2579}
adbe8726 2580
238d3c13
DR
2581static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2582 struct hstate *h, int nid,
2583 unsigned long count, size_t len)
a3437870
NA
2584{
2585 int err;
2d0adf7e 2586 nodemask_t nodes_allowed, *n_mask;
a3437870 2587
2d0adf7e
OS
2588 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2589 return -EINVAL;
adbe8726 2590
9a305230
LS
2591 if (nid == NUMA_NO_NODE) {
2592 /*
2593 * global hstate attribute
2594 */
2595 if (!(obey_mempolicy &&
2d0adf7e
OS
2596 init_nodemask_of_mempolicy(&nodes_allowed)))
2597 n_mask = &node_states[N_MEMORY];
2598 else
2599 n_mask = &nodes_allowed;
2600 } else {
9a305230 2601 /*
fd875dca
MK
2602 * Node specific request. count adjustment happens in
2603 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2604 */
2d0adf7e
OS
2605 init_nodemask_of_node(&nodes_allowed, nid);
2606 n_mask = &nodes_allowed;
fd875dca 2607 }
9a305230 2608
2d0adf7e 2609 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2610
4eb0716e 2611 return err ? err : len;
06808b08
LS
2612}
2613
238d3c13
DR
2614static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2615 struct kobject *kobj, const char *buf,
2616 size_t len)
2617{
2618 struct hstate *h;
2619 unsigned long count;
2620 int nid;
2621 int err;
2622
2623 err = kstrtoul(buf, 10, &count);
2624 if (err)
2625 return err;
2626
2627 h = kobj_to_hstate(kobj, &nid);
2628 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2629}
2630
06808b08
LS
2631static ssize_t nr_hugepages_show(struct kobject *kobj,
2632 struct kobj_attribute *attr, char *buf)
2633{
2634 return nr_hugepages_show_common(kobj, attr, buf);
2635}
2636
2637static ssize_t nr_hugepages_store(struct kobject *kobj,
2638 struct kobj_attribute *attr, const char *buf, size_t len)
2639{
238d3c13 2640 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2641}
2642HSTATE_ATTR(nr_hugepages);
2643
06808b08
LS
2644#ifdef CONFIG_NUMA
2645
2646/*
2647 * hstate attribute for optionally mempolicy-based constraint on persistent
2648 * huge page alloc/free.
2649 */
2650static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2651 struct kobj_attribute *attr, char *buf)
2652{
2653 return nr_hugepages_show_common(kobj, attr, buf);
2654}
2655
2656static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2657 struct kobj_attribute *attr, const char *buf, size_t len)
2658{
238d3c13 2659 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2660}
2661HSTATE_ATTR(nr_hugepages_mempolicy);
2662#endif
2663
2664
a3437870
NA
2665static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2666 struct kobj_attribute *attr, char *buf)
2667{
9a305230 2668 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2669 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2670}
adbe8726 2671
a3437870
NA
2672static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2673 struct kobj_attribute *attr, const char *buf, size_t count)
2674{
2675 int err;
2676 unsigned long input;
9a305230 2677 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2678
bae7f4ae 2679 if (hstate_is_gigantic(h))
adbe8726
EM
2680 return -EINVAL;
2681
3dbb95f7 2682 err = kstrtoul(buf, 10, &input);
a3437870 2683 if (err)
73ae31e5 2684 return err;
a3437870
NA
2685
2686 spin_lock(&hugetlb_lock);
2687 h->nr_overcommit_huge_pages = input;
2688 spin_unlock(&hugetlb_lock);
2689
2690 return count;
2691}
2692HSTATE_ATTR(nr_overcommit_hugepages);
2693
2694static ssize_t free_hugepages_show(struct kobject *kobj,
2695 struct kobj_attribute *attr, char *buf)
2696{
9a305230
LS
2697 struct hstate *h;
2698 unsigned long free_huge_pages;
2699 int nid;
2700
2701 h = kobj_to_hstate(kobj, &nid);
2702 if (nid == NUMA_NO_NODE)
2703 free_huge_pages = h->free_huge_pages;
2704 else
2705 free_huge_pages = h->free_huge_pages_node[nid];
2706
2707 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2708}
2709HSTATE_ATTR_RO(free_hugepages);
2710
2711static ssize_t resv_hugepages_show(struct kobject *kobj,
2712 struct kobj_attribute *attr, char *buf)
2713{
9a305230 2714 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2715 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2716}
2717HSTATE_ATTR_RO(resv_hugepages);
2718
2719static ssize_t surplus_hugepages_show(struct kobject *kobj,
2720 struct kobj_attribute *attr, char *buf)
2721{
9a305230
LS
2722 struct hstate *h;
2723 unsigned long surplus_huge_pages;
2724 int nid;
2725
2726 h = kobj_to_hstate(kobj, &nid);
2727 if (nid == NUMA_NO_NODE)
2728 surplus_huge_pages = h->surplus_huge_pages;
2729 else
2730 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2731
2732 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2733}
2734HSTATE_ATTR_RO(surplus_hugepages);
2735
2736static struct attribute *hstate_attrs[] = {
2737 &nr_hugepages_attr.attr,
2738 &nr_overcommit_hugepages_attr.attr,
2739 &free_hugepages_attr.attr,
2740 &resv_hugepages_attr.attr,
2741 &surplus_hugepages_attr.attr,
06808b08
LS
2742#ifdef CONFIG_NUMA
2743 &nr_hugepages_mempolicy_attr.attr,
2744#endif
a3437870
NA
2745 NULL,
2746};
2747
67e5ed96 2748static const struct attribute_group hstate_attr_group = {
a3437870
NA
2749 .attrs = hstate_attrs,
2750};
2751
094e9539
JM
2752static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2753 struct kobject **hstate_kobjs,
67e5ed96 2754 const struct attribute_group *hstate_attr_group)
a3437870
NA
2755{
2756 int retval;
972dc4de 2757 int hi = hstate_index(h);
a3437870 2758
9a305230
LS
2759 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2760 if (!hstate_kobjs[hi])
a3437870
NA
2761 return -ENOMEM;
2762
9a305230 2763 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2764 if (retval)
9a305230 2765 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2766
2767 return retval;
2768}
2769
2770static void __init hugetlb_sysfs_init(void)
2771{
2772 struct hstate *h;
2773 int err;
2774
2775 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2776 if (!hugepages_kobj)
2777 return;
2778
2779 for_each_hstate(h) {
9a305230
LS
2780 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2781 hstate_kobjs, &hstate_attr_group);
a3437870 2782 if (err)
ffb22af5 2783 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2784 }
2785}
2786
9a305230
LS
2787#ifdef CONFIG_NUMA
2788
2789/*
2790 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2791 * with node devices in node_devices[] using a parallel array. The array
2792 * index of a node device or _hstate == node id.
2793 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2794 * the base kernel, on the hugetlb module.
2795 */
2796struct node_hstate {
2797 struct kobject *hugepages_kobj;
2798 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2799};
b4e289a6 2800static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2801
2802/*
10fbcf4c 2803 * A subset of global hstate attributes for node devices
9a305230
LS
2804 */
2805static struct attribute *per_node_hstate_attrs[] = {
2806 &nr_hugepages_attr.attr,
2807 &free_hugepages_attr.attr,
2808 &surplus_hugepages_attr.attr,
2809 NULL,
2810};
2811
67e5ed96 2812static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2813 .attrs = per_node_hstate_attrs,
2814};
2815
2816/*
10fbcf4c 2817 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2818 * Returns node id via non-NULL nidp.
2819 */
2820static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2821{
2822 int nid;
2823
2824 for (nid = 0; nid < nr_node_ids; nid++) {
2825 struct node_hstate *nhs = &node_hstates[nid];
2826 int i;
2827 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2828 if (nhs->hstate_kobjs[i] == kobj) {
2829 if (nidp)
2830 *nidp = nid;
2831 return &hstates[i];
2832 }
2833 }
2834
2835 BUG();
2836 return NULL;
2837}
2838
2839/*
10fbcf4c 2840 * Unregister hstate attributes from a single node device.
9a305230
LS
2841 * No-op if no hstate attributes attached.
2842 */
3cd8b44f 2843static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2844{
2845 struct hstate *h;
10fbcf4c 2846 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2847
2848 if (!nhs->hugepages_kobj)
9b5e5d0f 2849 return; /* no hstate attributes */
9a305230 2850
972dc4de
AK
2851 for_each_hstate(h) {
2852 int idx = hstate_index(h);
2853 if (nhs->hstate_kobjs[idx]) {
2854 kobject_put(nhs->hstate_kobjs[idx]);
2855 nhs->hstate_kobjs[idx] = NULL;
9a305230 2856 }
972dc4de 2857 }
9a305230
LS
2858
2859 kobject_put(nhs->hugepages_kobj);
2860 nhs->hugepages_kobj = NULL;
2861}
2862
9a305230
LS
2863
2864/*
10fbcf4c 2865 * Register hstate attributes for a single node device.
9a305230
LS
2866 * No-op if attributes already registered.
2867 */
3cd8b44f 2868static void hugetlb_register_node(struct node *node)
9a305230
LS
2869{
2870 struct hstate *h;
10fbcf4c 2871 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2872 int err;
2873
2874 if (nhs->hugepages_kobj)
2875 return; /* already allocated */
2876
2877 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2878 &node->dev.kobj);
9a305230
LS
2879 if (!nhs->hugepages_kobj)
2880 return;
2881
2882 for_each_hstate(h) {
2883 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2884 nhs->hstate_kobjs,
2885 &per_node_hstate_attr_group);
2886 if (err) {
ffb22af5
AM
2887 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2888 h->name, node->dev.id);
9a305230
LS
2889 hugetlb_unregister_node(node);
2890 break;
2891 }
2892 }
2893}
2894
2895/*
9b5e5d0f 2896 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2897 * devices of nodes that have memory. All on-line nodes should have
2898 * registered their associated device by this time.
9a305230 2899 */
7d9ca000 2900static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2901{
2902 int nid;
2903
8cebfcd0 2904 for_each_node_state(nid, N_MEMORY) {
8732794b 2905 struct node *node = node_devices[nid];
10fbcf4c 2906 if (node->dev.id == nid)
9a305230
LS
2907 hugetlb_register_node(node);
2908 }
2909
2910 /*
10fbcf4c 2911 * Let the node device driver know we're here so it can
9a305230
LS
2912 * [un]register hstate attributes on node hotplug.
2913 */
2914 register_hugetlbfs_with_node(hugetlb_register_node,
2915 hugetlb_unregister_node);
2916}
2917#else /* !CONFIG_NUMA */
2918
2919static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2920{
2921 BUG();
2922 if (nidp)
2923 *nidp = -1;
2924 return NULL;
2925}
2926
9a305230
LS
2927static void hugetlb_register_all_nodes(void) { }
2928
2929#endif
2930
a3437870
NA
2931static int __init hugetlb_init(void)
2932{
8382d914
DB
2933 int i;
2934
457c1b27 2935 if (!hugepages_supported())
0ef89d25 2936 return 0;
a3437870 2937
e11bfbfc 2938 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2939 if (default_hstate_size != 0) {
2940 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2941 default_hstate_size, HPAGE_SIZE);
2942 }
2943
e11bfbfc
NP
2944 default_hstate_size = HPAGE_SIZE;
2945 if (!size_to_hstate(default_hstate_size))
2946 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2947 }
972dc4de 2948 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2949 if (default_hstate_max_huge_pages) {
2950 if (!default_hstate.max_huge_pages)
2951 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2952 }
a3437870
NA
2953
2954 hugetlb_init_hstates();
aa888a74 2955 gather_bootmem_prealloc();
a3437870
NA
2956 report_hugepages();
2957
2958 hugetlb_sysfs_init();
9a305230 2959 hugetlb_register_all_nodes();
7179e7bf 2960 hugetlb_cgroup_file_init();
9a305230 2961
8382d914
DB
2962#ifdef CONFIG_SMP
2963 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2964#else
2965 num_fault_mutexes = 1;
2966#endif
c672c7f2 2967 hugetlb_fault_mutex_table =
6da2ec56
KC
2968 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2969 GFP_KERNEL);
c672c7f2 2970 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2971
2972 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2973 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2974 return 0;
2975}
3e89e1c5 2976subsys_initcall(hugetlb_init);
a3437870
NA
2977
2978/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2979void __init hugetlb_bad_size(void)
2980{
2981 parsed_valid_hugepagesz = false;
2982}
2983
d00181b9 2984void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2985{
2986 struct hstate *h;
8faa8b07
AK
2987 unsigned long i;
2988
a3437870 2989 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2990 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2991 return;
2992 }
47d38344 2993 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2994 BUG_ON(order == 0);
47d38344 2995 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2996 h->order = order;
2997 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2998 h->nr_huge_pages = 0;
2999 h->free_huge_pages = 0;
3000 for (i = 0; i < MAX_NUMNODES; ++i)
3001 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3002 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3003 h->next_nid_to_alloc = first_memory_node;
3004 h->next_nid_to_free = first_memory_node;
a3437870
NA
3005 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3006 huge_page_size(h)/1024);
8faa8b07 3007
a3437870
NA
3008 parsed_hstate = h;
3009}
3010
e11bfbfc 3011static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
3012{
3013 unsigned long *mhp;
8faa8b07 3014 static unsigned long *last_mhp;
a3437870 3015
9fee021d
VT
3016 if (!parsed_valid_hugepagesz) {
3017 pr_warn("hugepages = %s preceded by "
3018 "an unsupported hugepagesz, ignoring\n", s);
3019 parsed_valid_hugepagesz = true;
3020 return 1;
3021 }
a3437870 3022 /*
47d38344 3023 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
3024 * so this hugepages= parameter goes to the "default hstate".
3025 */
9fee021d 3026 else if (!hugetlb_max_hstate)
a3437870
NA
3027 mhp = &default_hstate_max_huge_pages;
3028 else
3029 mhp = &parsed_hstate->max_huge_pages;
3030
8faa8b07 3031 if (mhp == last_mhp) {
598d8091 3032 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
3033 return 1;
3034 }
3035
a3437870
NA
3036 if (sscanf(s, "%lu", mhp) <= 0)
3037 *mhp = 0;
3038
8faa8b07
AK
3039 /*
3040 * Global state is always initialized later in hugetlb_init.
3041 * But we need to allocate >= MAX_ORDER hstates here early to still
3042 * use the bootmem allocator.
3043 */
47d38344 3044 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
3045 hugetlb_hstate_alloc_pages(parsed_hstate);
3046
3047 last_mhp = mhp;
3048
a3437870
NA
3049 return 1;
3050}
e11bfbfc
NP
3051__setup("hugepages=", hugetlb_nrpages_setup);
3052
3053static int __init hugetlb_default_setup(char *s)
3054{
3055 default_hstate_size = memparse(s, &s);
3056 return 1;
3057}
3058__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 3059
8a213460
NA
3060static unsigned int cpuset_mems_nr(unsigned int *array)
3061{
3062 int node;
3063 unsigned int nr = 0;
3064
3065 for_each_node_mask(node, cpuset_current_mems_allowed)
3066 nr += array[node];
3067
3068 return nr;
3069}
3070
3071#ifdef CONFIG_SYSCTL
06808b08
LS
3072static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3073 struct ctl_table *table, int write,
3074 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 3075{
e5ff2159 3076 struct hstate *h = &default_hstate;
238d3c13 3077 unsigned long tmp = h->max_huge_pages;
08d4a246 3078 int ret;
e5ff2159 3079
457c1b27 3080 if (!hugepages_supported())
86613628 3081 return -EOPNOTSUPP;
457c1b27 3082
e5ff2159
AK
3083 table->data = &tmp;
3084 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3085 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3086 if (ret)
3087 goto out;
e5ff2159 3088
238d3c13
DR
3089 if (write)
3090 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3091 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3092out:
3093 return ret;
1da177e4 3094}
396faf03 3095
06808b08
LS
3096int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3097 void __user *buffer, size_t *length, loff_t *ppos)
3098{
3099
3100 return hugetlb_sysctl_handler_common(false, table, write,
3101 buffer, length, ppos);
3102}
3103
3104#ifdef CONFIG_NUMA
3105int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3106 void __user *buffer, size_t *length, loff_t *ppos)
3107{
3108 return hugetlb_sysctl_handler_common(true, table, write,
3109 buffer, length, ppos);
3110}
3111#endif /* CONFIG_NUMA */
3112
a3d0c6aa 3113int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 3114 void __user *buffer,
a3d0c6aa
NA
3115 size_t *length, loff_t *ppos)
3116{
a5516438 3117 struct hstate *h = &default_hstate;
e5ff2159 3118 unsigned long tmp;
08d4a246 3119 int ret;
e5ff2159 3120
457c1b27 3121 if (!hugepages_supported())
86613628 3122 return -EOPNOTSUPP;
457c1b27 3123
c033a93c 3124 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3125
bae7f4ae 3126 if (write && hstate_is_gigantic(h))
adbe8726
EM
3127 return -EINVAL;
3128
e5ff2159
AK
3129 table->data = &tmp;
3130 table->maxlen = sizeof(unsigned long);
08d4a246
MH
3131 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3132 if (ret)
3133 goto out;
e5ff2159
AK
3134
3135 if (write) {
3136 spin_lock(&hugetlb_lock);
3137 h->nr_overcommit_huge_pages = tmp;
3138 spin_unlock(&hugetlb_lock);
3139 }
08d4a246
MH
3140out:
3141 return ret;
a3d0c6aa
NA
3142}
3143
1da177e4
LT
3144#endif /* CONFIG_SYSCTL */
3145
e1759c21 3146void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3147{
fcb2b0c5
RG
3148 struct hstate *h;
3149 unsigned long total = 0;
3150
457c1b27
NA
3151 if (!hugepages_supported())
3152 return;
fcb2b0c5
RG
3153
3154 for_each_hstate(h) {
3155 unsigned long count = h->nr_huge_pages;
3156
3157 total += (PAGE_SIZE << huge_page_order(h)) * count;
3158
3159 if (h == &default_hstate)
3160 seq_printf(m,
3161 "HugePages_Total: %5lu\n"
3162 "HugePages_Free: %5lu\n"
3163 "HugePages_Rsvd: %5lu\n"
3164 "HugePages_Surp: %5lu\n"
3165 "Hugepagesize: %8lu kB\n",
3166 count,
3167 h->free_huge_pages,
3168 h->resv_huge_pages,
3169 h->surplus_huge_pages,
3170 (PAGE_SIZE << huge_page_order(h)) / 1024);
3171 }
3172
3173 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3174}
3175
3176int hugetlb_report_node_meminfo(int nid, char *buf)
3177{
a5516438 3178 struct hstate *h = &default_hstate;
457c1b27
NA
3179 if (!hugepages_supported())
3180 return 0;
1da177e4
LT
3181 return sprintf(buf,
3182 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3183 "Node %d HugePages_Free: %5u\n"
3184 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3185 nid, h->nr_huge_pages_node[nid],
3186 nid, h->free_huge_pages_node[nid],
3187 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3188}
3189
949f7ec5
DR
3190void hugetlb_show_meminfo(void)
3191{
3192 struct hstate *h;
3193 int nid;
3194
457c1b27
NA
3195 if (!hugepages_supported())
3196 return;
3197
949f7ec5
DR
3198 for_each_node_state(nid, N_MEMORY)
3199 for_each_hstate(h)
3200 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3201 nid,
3202 h->nr_huge_pages_node[nid],
3203 h->free_huge_pages_node[nid],
3204 h->surplus_huge_pages_node[nid],
3205 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3206}
3207
5d317b2b
NH
3208void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3209{
3210 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3211 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3212}
3213
1da177e4
LT
3214/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3215unsigned long hugetlb_total_pages(void)
3216{
d0028588
WL
3217 struct hstate *h;
3218 unsigned long nr_total_pages = 0;
3219
3220 for_each_hstate(h)
3221 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3222 return nr_total_pages;
1da177e4 3223}
1da177e4 3224
a5516438 3225static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3226{
3227 int ret = -ENOMEM;
3228
3229 spin_lock(&hugetlb_lock);
3230 /*
3231 * When cpuset is configured, it breaks the strict hugetlb page
3232 * reservation as the accounting is done on a global variable. Such
3233 * reservation is completely rubbish in the presence of cpuset because
3234 * the reservation is not checked against page availability for the
3235 * current cpuset. Application can still potentially OOM'ed by kernel
3236 * with lack of free htlb page in cpuset that the task is in.
3237 * Attempt to enforce strict accounting with cpuset is almost
3238 * impossible (or too ugly) because cpuset is too fluid that
3239 * task or memory node can be dynamically moved between cpusets.
3240 *
3241 * The change of semantics for shared hugetlb mapping with cpuset is
3242 * undesirable. However, in order to preserve some of the semantics,
3243 * we fall back to check against current free page availability as
3244 * a best attempt and hopefully to minimize the impact of changing
3245 * semantics that cpuset has.
3246 */
3247 if (delta > 0) {
a5516438 3248 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3249 goto out;
3250
a5516438
AK
3251 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3252 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3253 goto out;
3254 }
3255 }
3256
3257 ret = 0;
3258 if (delta < 0)
a5516438 3259 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3260
3261out:
3262 spin_unlock(&hugetlb_lock);
3263 return ret;
3264}
3265
84afd99b
AW
3266static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3267{
f522c3ac 3268 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3269
3270 /*
3271 * This new VMA should share its siblings reservation map if present.
3272 * The VMA will only ever have a valid reservation map pointer where
3273 * it is being copied for another still existing VMA. As that VMA
25985edc 3274 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3275 * after this open call completes. It is therefore safe to take a
3276 * new reference here without additional locking.
3277 */
4e35f483 3278 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3279 kref_get(&resv->refs);
84afd99b
AW
3280}
3281
a1e78772
MG
3282static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3283{
a5516438 3284 struct hstate *h = hstate_vma(vma);
f522c3ac 3285 struct resv_map *resv = vma_resv_map(vma);
90481622 3286 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3287 unsigned long reserve, start, end;
1c5ecae3 3288 long gbl_reserve;
84afd99b 3289
4e35f483
JK
3290 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3291 return;
84afd99b 3292
4e35f483
JK
3293 start = vma_hugecache_offset(h, vma, vma->vm_start);
3294 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3295
4e35f483 3296 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3297
4e35f483
JK
3298 kref_put(&resv->refs, resv_map_release);
3299
3300 if (reserve) {
1c5ecae3
MK
3301 /*
3302 * Decrement reserve counts. The global reserve count may be
3303 * adjusted if the subpool has a minimum size.
3304 */
3305 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3306 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3307 }
a1e78772
MG
3308}
3309
31383c68
DW
3310static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3311{
3312 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3313 return -EINVAL;
3314 return 0;
3315}
3316
05ea8860
DW
3317static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3318{
3319 struct hstate *hstate = hstate_vma(vma);
3320
3321 return 1UL << huge_page_shift(hstate);
3322}
3323
1da177e4
LT
3324/*
3325 * We cannot handle pagefaults against hugetlb pages at all. They cause
3326 * handle_mm_fault() to try to instantiate regular-sized pages in the
3327 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3328 * this far.
3329 */
b3ec9f33 3330static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3331{
3332 BUG();
d0217ac0 3333 return 0;
1da177e4
LT
3334}
3335
eec3636a
JC
3336/*
3337 * When a new function is introduced to vm_operations_struct and added
3338 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3339 * This is because under System V memory model, mappings created via
3340 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3341 * their original vm_ops are overwritten with shm_vm_ops.
3342 */
f0f37e2f 3343const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3344 .fault = hugetlb_vm_op_fault,
84afd99b 3345 .open = hugetlb_vm_op_open,
a1e78772 3346 .close = hugetlb_vm_op_close,
31383c68 3347 .split = hugetlb_vm_op_split,
05ea8860 3348 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3349};
3350
1e8f889b
DG
3351static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3352 int writable)
63551ae0
DG
3353{
3354 pte_t entry;
3355
1e8f889b 3356 if (writable) {
106c992a
GS
3357 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3358 vma->vm_page_prot)));
63551ae0 3359 } else {
106c992a
GS
3360 entry = huge_pte_wrprotect(mk_huge_pte(page,
3361 vma->vm_page_prot));
63551ae0
DG
3362 }
3363 entry = pte_mkyoung(entry);
3364 entry = pte_mkhuge(entry);
d9ed9faa 3365 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3366
3367 return entry;
3368}
3369
1e8f889b
DG
3370static void set_huge_ptep_writable(struct vm_area_struct *vma,
3371 unsigned long address, pte_t *ptep)
3372{
3373 pte_t entry;
3374
106c992a 3375 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3376 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3377 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3378}
3379
d5ed7444 3380bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3381{
3382 swp_entry_t swp;
3383
3384 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3385 return false;
4a705fef
NH
3386 swp = pte_to_swp_entry(pte);
3387 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3388 return true;
4a705fef 3389 else
d5ed7444 3390 return false;
4a705fef
NH
3391}
3392
3393static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3394{
3395 swp_entry_t swp;
3396
3397 if (huge_pte_none(pte) || pte_present(pte))
3398 return 0;
3399 swp = pte_to_swp_entry(pte);
3400 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3401 return 1;
3402 else
3403 return 0;
3404}
1e8f889b 3405
63551ae0
DG
3406int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3407 struct vm_area_struct *vma)
3408{
5e41540c 3409 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3410 struct page *ptepage;
1c59827d 3411 unsigned long addr;
1e8f889b 3412 int cow;
a5516438
AK
3413 struct hstate *h = hstate_vma(vma);
3414 unsigned long sz = huge_page_size(h);
c0d0381a 3415 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3416 struct mmu_notifier_range range;
e8569dd2 3417 int ret = 0;
1e8f889b
DG
3418
3419 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3420
ac46d4f3 3421 if (cow) {
7269f999 3422 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3423 vma->vm_start,
ac46d4f3
JG
3424 vma->vm_end);
3425 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3426 } else {
3427 /*
3428 * For shared mappings i_mmap_rwsem must be held to call
3429 * huge_pte_alloc, otherwise the returned ptep could go
3430 * away if part of a shared pmd and another thread calls
3431 * huge_pmd_unshare.
3432 */
3433 i_mmap_lock_read(mapping);
ac46d4f3 3434 }
e8569dd2 3435
a5516438 3436 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3437 spinlock_t *src_ptl, *dst_ptl;
7868a208 3438 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3439 if (!src_pte)
3440 continue;
a5516438 3441 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3442 if (!dst_pte) {
3443 ret = -ENOMEM;
3444 break;
3445 }
c5c99429 3446
5e41540c
MK
3447 /*
3448 * If the pagetables are shared don't copy or take references.
3449 * dst_pte == src_pte is the common case of src/dest sharing.
3450 *
3451 * However, src could have 'unshared' and dst shares with
3452 * another vma. If dst_pte !none, this implies sharing.
3453 * Check here before taking page table lock, and once again
3454 * after taking the lock below.
3455 */
3456 dst_entry = huge_ptep_get(dst_pte);
3457 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3458 continue;
3459
cb900f41
KS
3460 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3461 src_ptl = huge_pte_lockptr(h, src, src_pte);
3462 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3463 entry = huge_ptep_get(src_pte);
5e41540c
MK
3464 dst_entry = huge_ptep_get(dst_pte);
3465 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3466 /*
3467 * Skip if src entry none. Also, skip in the
3468 * unlikely case dst entry !none as this implies
3469 * sharing with another vma.
3470 */
4a705fef
NH
3471 ;
3472 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3473 is_hugetlb_entry_hwpoisoned(entry))) {
3474 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3475
3476 if (is_write_migration_entry(swp_entry) && cow) {
3477 /*
3478 * COW mappings require pages in both
3479 * parent and child to be set to read.
3480 */
3481 make_migration_entry_read(&swp_entry);
3482 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3483 set_huge_swap_pte_at(src, addr, src_pte,
3484 entry, sz);
4a705fef 3485 }
e5251fd4 3486 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3487 } else {
34ee645e 3488 if (cow) {
0f10851e
JG
3489 /*
3490 * No need to notify as we are downgrading page
3491 * table protection not changing it to point
3492 * to a new page.
3493 *
ad56b738 3494 * See Documentation/vm/mmu_notifier.rst
0f10851e 3495 */
7f2e9525 3496 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3497 }
0253d634 3498 entry = huge_ptep_get(src_pte);
1c59827d
HD
3499 ptepage = pte_page(entry);
3500 get_page(ptepage);
53f9263b 3501 page_dup_rmap(ptepage, true);
1c59827d 3502 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3503 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3504 }
cb900f41
KS
3505 spin_unlock(src_ptl);
3506 spin_unlock(dst_ptl);
63551ae0 3507 }
63551ae0 3508
e8569dd2 3509 if (cow)
ac46d4f3 3510 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3511 else
3512 i_mmap_unlock_read(mapping);
e8569dd2
AS
3513
3514 return ret;
63551ae0
DG
3515}
3516
24669e58
AK
3517void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3518 unsigned long start, unsigned long end,
3519 struct page *ref_page)
63551ae0
DG
3520{
3521 struct mm_struct *mm = vma->vm_mm;
3522 unsigned long address;
c7546f8f 3523 pte_t *ptep;
63551ae0 3524 pte_t pte;
cb900f41 3525 spinlock_t *ptl;
63551ae0 3526 struct page *page;
a5516438
AK
3527 struct hstate *h = hstate_vma(vma);
3528 unsigned long sz = huge_page_size(h);
ac46d4f3 3529 struct mmu_notifier_range range;
a5516438 3530
63551ae0 3531 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3532 BUG_ON(start & ~huge_page_mask(h));
3533 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3534
07e32661
AK
3535 /*
3536 * This is a hugetlb vma, all the pte entries should point
3537 * to huge page.
3538 */
ed6a7935 3539 tlb_change_page_size(tlb, sz);
24669e58 3540 tlb_start_vma(tlb, vma);
dff11abe
MK
3541
3542 /*
3543 * If sharing possible, alert mmu notifiers of worst case.
3544 */
6f4f13e8
JG
3545 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3546 end);
ac46d4f3
JG
3547 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3548 mmu_notifier_invalidate_range_start(&range);
569f48b8 3549 address = start;
569f48b8 3550 for (; address < end; address += sz) {
7868a208 3551 ptep = huge_pte_offset(mm, address, sz);
4c887265 3552 if (!ptep)
c7546f8f
DG
3553 continue;
3554
cb900f41 3555 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3556 if (huge_pmd_unshare(mm, &address, ptep)) {
3557 spin_unlock(ptl);
dff11abe
MK
3558 /*
3559 * We just unmapped a page of PMDs by clearing a PUD.
3560 * The caller's TLB flush range should cover this area.
3561 */
31d49da5
AK
3562 continue;
3563 }
39dde65c 3564
6629326b 3565 pte = huge_ptep_get(ptep);
31d49da5
AK
3566 if (huge_pte_none(pte)) {
3567 spin_unlock(ptl);
3568 continue;
3569 }
6629326b
HD
3570
3571 /*
9fbc1f63
NH
3572 * Migrating hugepage or HWPoisoned hugepage is already
3573 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3574 */
9fbc1f63 3575 if (unlikely(!pte_present(pte))) {
9386fac3 3576 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3577 spin_unlock(ptl);
3578 continue;
8c4894c6 3579 }
6629326b
HD
3580
3581 page = pte_page(pte);
04f2cbe3
MG
3582 /*
3583 * If a reference page is supplied, it is because a specific
3584 * page is being unmapped, not a range. Ensure the page we
3585 * are about to unmap is the actual page of interest.
3586 */
3587 if (ref_page) {
31d49da5
AK
3588 if (page != ref_page) {
3589 spin_unlock(ptl);
3590 continue;
3591 }
04f2cbe3
MG
3592 /*
3593 * Mark the VMA as having unmapped its page so that
3594 * future faults in this VMA will fail rather than
3595 * looking like data was lost
3596 */
3597 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3598 }
3599
c7546f8f 3600 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3601 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3602 if (huge_pte_dirty(pte))
6649a386 3603 set_page_dirty(page);
9e81130b 3604
5d317b2b 3605 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3606 page_remove_rmap(page, true);
31d49da5 3607
cb900f41 3608 spin_unlock(ptl);
e77b0852 3609 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3610 /*
3611 * Bail out after unmapping reference page if supplied
3612 */
3613 if (ref_page)
3614 break;
fe1668ae 3615 }
ac46d4f3 3616 mmu_notifier_invalidate_range_end(&range);
24669e58 3617 tlb_end_vma(tlb, vma);
1da177e4 3618}
63551ae0 3619
d833352a
MG
3620void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3621 struct vm_area_struct *vma, unsigned long start,
3622 unsigned long end, struct page *ref_page)
3623{
3624 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3625
3626 /*
3627 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3628 * test will fail on a vma being torn down, and not grab a page table
3629 * on its way out. We're lucky that the flag has such an appropriate
3630 * name, and can in fact be safely cleared here. We could clear it
3631 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3632 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3633 * because in the context this is called, the VMA is about to be
c8c06efa 3634 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3635 */
3636 vma->vm_flags &= ~VM_MAYSHARE;
3637}
3638
502717f4 3639void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3640 unsigned long end, struct page *ref_page)
502717f4 3641{
24669e58
AK
3642 struct mm_struct *mm;
3643 struct mmu_gather tlb;
dff11abe
MK
3644 unsigned long tlb_start = start;
3645 unsigned long tlb_end = end;
3646
3647 /*
3648 * If shared PMDs were possibly used within this vma range, adjust
3649 * start/end for worst case tlb flushing.
3650 * Note that we can not be sure if PMDs are shared until we try to
3651 * unmap pages. However, we want to make sure TLB flushing covers
3652 * the largest possible range.
3653 */
3654 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
24669e58
AK
3655
3656 mm = vma->vm_mm;
3657
dff11abe 3658 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
24669e58 3659 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
dff11abe 3660 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
502717f4
KC
3661}
3662
04f2cbe3
MG
3663/*
3664 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3665 * mappping it owns the reserve page for. The intention is to unmap the page
3666 * from other VMAs and let the children be SIGKILLed if they are faulting the
3667 * same region.
3668 */
2f4612af
DB
3669static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3670 struct page *page, unsigned long address)
04f2cbe3 3671{
7526674d 3672 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3673 struct vm_area_struct *iter_vma;
3674 struct address_space *mapping;
04f2cbe3
MG
3675 pgoff_t pgoff;
3676
3677 /*
3678 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3679 * from page cache lookup which is in HPAGE_SIZE units.
3680 */
7526674d 3681 address = address & huge_page_mask(h);
36e4f20a
MH
3682 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3683 vma->vm_pgoff;
93c76a3d 3684 mapping = vma->vm_file->f_mapping;
04f2cbe3 3685
4eb2b1dc
MG
3686 /*
3687 * Take the mapping lock for the duration of the table walk. As
3688 * this mapping should be shared between all the VMAs,
3689 * __unmap_hugepage_range() is called as the lock is already held
3690 */
83cde9e8 3691 i_mmap_lock_write(mapping);
6b2dbba8 3692 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3693 /* Do not unmap the current VMA */
3694 if (iter_vma == vma)
3695 continue;
3696
2f84a899
MG
3697 /*
3698 * Shared VMAs have their own reserves and do not affect
3699 * MAP_PRIVATE accounting but it is possible that a shared
3700 * VMA is using the same page so check and skip such VMAs.
3701 */
3702 if (iter_vma->vm_flags & VM_MAYSHARE)
3703 continue;
3704
04f2cbe3
MG
3705 /*
3706 * Unmap the page from other VMAs without their own reserves.
3707 * They get marked to be SIGKILLed if they fault in these
3708 * areas. This is because a future no-page fault on this VMA
3709 * could insert a zeroed page instead of the data existing
3710 * from the time of fork. This would look like data corruption
3711 */
3712 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3713 unmap_hugepage_range(iter_vma, address,
3714 address + huge_page_size(h), page);
04f2cbe3 3715 }
83cde9e8 3716 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3717}
3718
0fe6e20b
NH
3719/*
3720 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3721 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3722 * cannot race with other handlers or page migration.
3723 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3724 */
2b740303 3725static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 3726 unsigned long address, pte_t *ptep,
3999f52e 3727 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3728{
3999f52e 3729 pte_t pte;
a5516438 3730 struct hstate *h = hstate_vma(vma);
1e8f889b 3731 struct page *old_page, *new_page;
2b740303
SJ
3732 int outside_reserve = 0;
3733 vm_fault_t ret = 0;
974e6d66 3734 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 3735 struct mmu_notifier_range range;
1e8f889b 3736
3999f52e 3737 pte = huge_ptep_get(ptep);
1e8f889b
DG
3738 old_page = pte_page(pte);
3739
04f2cbe3 3740retry_avoidcopy:
1e8f889b
DG
3741 /* If no-one else is actually using this page, avoid the copy
3742 * and just make the page writable */
37a2140d 3743 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3744 page_move_anon_rmap(old_page, vma);
5b7a1d40 3745 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 3746 return 0;
1e8f889b
DG
3747 }
3748
04f2cbe3
MG
3749 /*
3750 * If the process that created a MAP_PRIVATE mapping is about to
3751 * perform a COW due to a shared page count, attempt to satisfy
3752 * the allocation without using the existing reserves. The pagecache
3753 * page is used to determine if the reserve at this address was
3754 * consumed or not. If reserves were used, a partial faulted mapping
3755 * at the time of fork() could consume its reserves on COW instead
3756 * of the full address range.
3757 */
5944d011 3758 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3759 old_page != pagecache_page)
3760 outside_reserve = 1;
3761
09cbfeaf 3762 get_page(old_page);
b76c8cfb 3763
ad4404a2
DB
3764 /*
3765 * Drop page table lock as buddy allocator may be called. It will
3766 * be acquired again before returning to the caller, as expected.
3767 */
cb900f41 3768 spin_unlock(ptl);
5b7a1d40 3769 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 3770
2fc39cec 3771 if (IS_ERR(new_page)) {
04f2cbe3
MG
3772 /*
3773 * If a process owning a MAP_PRIVATE mapping fails to COW,
3774 * it is due to references held by a child and an insufficient
3775 * huge page pool. To guarantee the original mappers
3776 * reliability, unmap the page from child processes. The child
3777 * may get SIGKILLed if it later faults.
3778 */
3779 if (outside_reserve) {
09cbfeaf 3780 put_page(old_page);
04f2cbe3 3781 BUG_ON(huge_pte_none(pte));
5b7a1d40 3782 unmap_ref_private(mm, vma, old_page, haddr);
2f4612af
DB
3783 BUG_ON(huge_pte_none(pte));
3784 spin_lock(ptl);
5b7a1d40 3785 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
3786 if (likely(ptep &&
3787 pte_same(huge_ptep_get(ptep), pte)))
3788 goto retry_avoidcopy;
3789 /*
3790 * race occurs while re-acquiring page table
3791 * lock, and our job is done.
3792 */
3793 return 0;
04f2cbe3
MG
3794 }
3795
2b740303 3796 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 3797 goto out_release_old;
1e8f889b
DG
3798 }
3799
0fe6e20b
NH
3800 /*
3801 * When the original hugepage is shared one, it does not have
3802 * anon_vma prepared.
3803 */
44e2aa93 3804 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3805 ret = VM_FAULT_OOM;
3806 goto out_release_all;
44e2aa93 3807 }
0fe6e20b 3808
974e6d66 3809 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 3810 pages_per_huge_page(h));
0ed361de 3811 __SetPageUptodate(new_page);
1e8f889b 3812
7269f999 3813 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 3814 haddr + huge_page_size(h));
ac46d4f3 3815 mmu_notifier_invalidate_range_start(&range);
ad4404a2 3816
b76c8cfb 3817 /*
cb900f41 3818 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3819 * before the page tables are altered
3820 */
cb900f41 3821 spin_lock(ptl);
5b7a1d40 3822 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 3823 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3824 ClearPagePrivate(new_page);
3825
1e8f889b 3826 /* Break COW */
5b7a1d40 3827 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 3828 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 3829 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 3830 make_huge_pte(vma, new_page, 1));
d281ee61 3831 page_remove_rmap(old_page, true);
5b7a1d40 3832 hugepage_add_new_anon_rmap(new_page, vma, haddr);
cb6acd01 3833 set_page_huge_active(new_page);
1e8f889b
DG
3834 /* Make the old page be freed below */
3835 new_page = old_page;
3836 }
cb900f41 3837 spin_unlock(ptl);
ac46d4f3 3838 mmu_notifier_invalidate_range_end(&range);
ad4404a2 3839out_release_all:
5b7a1d40 3840 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 3841 put_page(new_page);
ad4404a2 3842out_release_old:
09cbfeaf 3843 put_page(old_page);
8312034f 3844
ad4404a2
DB
3845 spin_lock(ptl); /* Caller expects lock to be held */
3846 return ret;
1e8f889b
DG
3847}
3848
04f2cbe3 3849/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3850static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3851 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3852{
3853 struct address_space *mapping;
e7c4b0bf 3854 pgoff_t idx;
04f2cbe3
MG
3855
3856 mapping = vma->vm_file->f_mapping;
a5516438 3857 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3858
3859 return find_lock_page(mapping, idx);
3860}
3861
3ae77f43
HD
3862/*
3863 * Return whether there is a pagecache page to back given address within VMA.
3864 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3865 */
3866static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3867 struct vm_area_struct *vma, unsigned long address)
3868{
3869 struct address_space *mapping;
3870 pgoff_t idx;
3871 struct page *page;
3872
3873 mapping = vma->vm_file->f_mapping;
3874 idx = vma_hugecache_offset(h, vma, address);
3875
3876 page = find_get_page(mapping, idx);
3877 if (page)
3878 put_page(page);
3879 return page != NULL;
3880}
3881
ab76ad54
MK
3882int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3883 pgoff_t idx)
3884{
3885 struct inode *inode = mapping->host;
3886 struct hstate *h = hstate_inode(inode);
3887 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3888
3889 if (err)
3890 return err;
3891 ClearPagePrivate(page);
3892
22146c3c
MK
3893 /*
3894 * set page dirty so that it will not be removed from cache/file
3895 * by non-hugetlbfs specific code paths.
3896 */
3897 set_page_dirty(page);
3898
ab76ad54
MK
3899 spin_lock(&inode->i_lock);
3900 inode->i_blocks += blocks_per_huge_page(h);
3901 spin_unlock(&inode->i_lock);
3902 return 0;
3903}
3904
2b740303
SJ
3905static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3906 struct vm_area_struct *vma,
3907 struct address_space *mapping, pgoff_t idx,
3908 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3909{
a5516438 3910 struct hstate *h = hstate_vma(vma);
2b740303 3911 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 3912 int anon_rmap = 0;
4c887265 3913 unsigned long size;
4c887265 3914 struct page *page;
1e8f889b 3915 pte_t new_pte;
cb900f41 3916 spinlock_t *ptl;
285b8dca 3917 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 3918 bool new_page = false;
4c887265 3919
04f2cbe3
MG
3920 /*
3921 * Currently, we are forced to kill the process in the event the
3922 * original mapper has unmapped pages from the child due to a failed
25985edc 3923 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3924 */
3925 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3926 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3927 current->pid);
04f2cbe3
MG
3928 return ret;
3929 }
3930
4c887265 3931 /*
e7c58097
MK
3932 * Use page lock to guard against racing truncation
3933 * before we get page_table_lock.
4c887265 3934 */
6bda666a
CL
3935retry:
3936 page = find_lock_page(mapping, idx);
3937 if (!page) {
e7c58097
MK
3938 size = i_size_read(mapping->host) >> huge_page_shift(h);
3939 if (idx >= size)
3940 goto out;
3941
1a1aad8a
MK
3942 /*
3943 * Check for page in userfault range
3944 */
3945 if (userfaultfd_missing(vma)) {
3946 u32 hash;
3947 struct vm_fault vmf = {
3948 .vma = vma,
285b8dca 3949 .address = haddr,
1a1aad8a
MK
3950 .flags = flags,
3951 /*
3952 * Hard to debug if it ends up being
3953 * used by a callee that assumes
3954 * something about the other
3955 * uninitialized fields... same as in
3956 * memory.c
3957 */
3958 };
3959
3960 /*
c0d0381a
MK
3961 * hugetlb_fault_mutex and i_mmap_rwsem must be
3962 * dropped before handling userfault. Reacquire
3963 * after handling fault to make calling code simpler.
1a1aad8a 3964 */
188b04a7 3965 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 3966 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 3967 i_mmap_unlock_read(mapping);
1a1aad8a 3968 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 3969 i_mmap_lock_read(mapping);
1a1aad8a
MK
3970 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3971 goto out;
3972 }
3973
285b8dca 3974 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 3975 if (IS_ERR(page)) {
4643d67e
MK
3976 /*
3977 * Returning error will result in faulting task being
3978 * sent SIGBUS. The hugetlb fault mutex prevents two
3979 * tasks from racing to fault in the same page which
3980 * could result in false unable to allocate errors.
3981 * Page migration does not take the fault mutex, but
3982 * does a clear then write of pte's under page table
3983 * lock. Page fault code could race with migration,
3984 * notice the clear pte and try to allocate a page
3985 * here. Before returning error, get ptl and make
3986 * sure there really is no pte entry.
3987 */
3988 ptl = huge_pte_lock(h, mm, ptep);
3989 if (!huge_pte_none(huge_ptep_get(ptep))) {
3990 ret = 0;
3991 spin_unlock(ptl);
3992 goto out;
3993 }
3994 spin_unlock(ptl);
2b740303 3995 ret = vmf_error(PTR_ERR(page));
6bda666a
CL
3996 goto out;
3997 }
47ad8475 3998 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3999 __SetPageUptodate(page);
cb6acd01 4000 new_page = true;
ac9b9c66 4001
f83a275d 4002 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4003 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4004 if (err) {
4005 put_page(page);
6bda666a
CL
4006 if (err == -EEXIST)
4007 goto retry;
4008 goto out;
4009 }
23be7468 4010 } else {
6bda666a 4011 lock_page(page);
0fe6e20b
NH
4012 if (unlikely(anon_vma_prepare(vma))) {
4013 ret = VM_FAULT_OOM;
4014 goto backout_unlocked;
4015 }
409eb8c2 4016 anon_rmap = 1;
23be7468 4017 }
0fe6e20b 4018 } else {
998b4382
NH
4019 /*
4020 * If memory error occurs between mmap() and fault, some process
4021 * don't have hwpoisoned swap entry for errored virtual address.
4022 * So we need to block hugepage fault by PG_hwpoison bit check.
4023 */
4024 if (unlikely(PageHWPoison(page))) {
32f84528 4025 ret = VM_FAULT_HWPOISON |
972dc4de 4026 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4027 goto backout_unlocked;
4028 }
6bda666a 4029 }
1e8f889b 4030
57303d80
AW
4031 /*
4032 * If we are going to COW a private mapping later, we examine the
4033 * pending reservations for this page now. This will ensure that
4034 * any allocations necessary to record that reservation occur outside
4035 * the spinlock.
4036 */
5e911373 4037 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4038 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4039 ret = VM_FAULT_OOM;
4040 goto backout_unlocked;
4041 }
5e911373 4042 /* Just decrements count, does not deallocate */
285b8dca 4043 vma_end_reservation(h, vma, haddr);
5e911373 4044 }
57303d80 4045
8bea8052 4046 ptl = huge_pte_lock(h, mm, ptep);
e7c58097
MK
4047 size = i_size_read(mapping->host) >> huge_page_shift(h);
4048 if (idx >= size)
4049 goto backout;
4c887265 4050
83c54070 4051 ret = 0;
7f2e9525 4052 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4053 goto backout;
4054
07443a85
JK
4055 if (anon_rmap) {
4056 ClearPagePrivate(page);
285b8dca 4057 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4058 } else
53f9263b 4059 page_dup_rmap(page, true);
1e8f889b
DG
4060 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4061 && (vma->vm_flags & VM_SHARED)));
285b8dca 4062 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4063
5d317b2b 4064 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4065 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4066 /* Optimization, do the COW without a second fault */
974e6d66 4067 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4068 }
4069
cb900f41 4070 spin_unlock(ptl);
cb6acd01
MK
4071
4072 /*
4073 * Only make newly allocated pages active. Existing pages found
4074 * in the pagecache could be !page_huge_active() if they have been
4075 * isolated for migration.
4076 */
4077 if (new_page)
4078 set_page_huge_active(page);
4079
4c887265
AL
4080 unlock_page(page);
4081out:
ac9b9c66 4082 return ret;
4c887265
AL
4083
4084backout:
cb900f41 4085 spin_unlock(ptl);
2b26736c 4086backout_unlocked:
4c887265 4087 unlock_page(page);
285b8dca 4088 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4089 put_page(page);
4090 goto out;
ac9b9c66
HD
4091}
4092
8382d914 4093#ifdef CONFIG_SMP
188b04a7 4094u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4095{
4096 unsigned long key[2];
4097 u32 hash;
4098
1b426bac
MK
4099 key[0] = (unsigned long) mapping;
4100 key[1] = idx;
8382d914 4101
55254636 4102 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4103
4104 return hash & (num_fault_mutexes - 1);
4105}
4106#else
4107/*
4108 * For uniprocesor systems we always use a single mutex, so just
4109 * return 0 and avoid the hashing overhead.
4110 */
188b04a7 4111u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4112{
4113 return 0;
4114}
4115#endif
4116
2b740303 4117vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4118 unsigned long address, unsigned int flags)
86e5216f 4119{
8382d914 4120 pte_t *ptep, entry;
cb900f41 4121 spinlock_t *ptl;
2b740303 4122 vm_fault_t ret;
8382d914
DB
4123 u32 hash;
4124 pgoff_t idx;
0fe6e20b 4125 struct page *page = NULL;
57303d80 4126 struct page *pagecache_page = NULL;
a5516438 4127 struct hstate *h = hstate_vma(vma);
8382d914 4128 struct address_space *mapping;
0f792cf9 4129 int need_wait_lock = 0;
285b8dca 4130 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4131
285b8dca 4132 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4133 if (ptep) {
c0d0381a
MK
4134 /*
4135 * Since we hold no locks, ptep could be stale. That is
4136 * OK as we are only making decisions based on content and
4137 * not actually modifying content here.
4138 */
fd6a03ed 4139 entry = huge_ptep_get(ptep);
290408d4 4140 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4141 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4142 return 0;
4143 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4144 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4145 VM_FAULT_SET_HINDEX(hstate_index(h));
ddeaab32
MK
4146 } else {
4147 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4148 if (!ptep)
4149 return VM_FAULT_OOM;
fd6a03ed
NH
4150 }
4151
c0d0381a
MK
4152 /*
4153 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4154 * until finished with ptep. This prevents huge_pmd_unshare from
4155 * being called elsewhere and making the ptep no longer valid.
4156 *
4157 * ptep could have already be assigned via huge_pte_offset. That
4158 * is OK, as huge_pte_alloc will return the same value unless
4159 * something has changed.
4160 */
8382d914 4161 mapping = vma->vm_file->f_mapping;
c0d0381a
MK
4162 i_mmap_lock_read(mapping);
4163 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4164 if (!ptep) {
4165 i_mmap_unlock_read(mapping);
4166 return VM_FAULT_OOM;
4167 }
8382d914 4168
3935baa9
DG
4169 /*
4170 * Serialize hugepage allocation and instantiation, so that we don't
4171 * get spurious allocation failures if two CPUs race to instantiate
4172 * the same page in the page cache.
4173 */
c0d0381a 4174 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4175 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4176 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4177
7f2e9525
GS
4178 entry = huge_ptep_get(ptep);
4179 if (huge_pte_none(entry)) {
8382d914 4180 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4181 goto out_mutex;
3935baa9 4182 }
86e5216f 4183
83c54070 4184 ret = 0;
1e8f889b 4185
0f792cf9
NH
4186 /*
4187 * entry could be a migration/hwpoison entry at this point, so this
4188 * check prevents the kernel from going below assuming that we have
4189 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4190 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4191 * handle it.
4192 */
4193 if (!pte_present(entry))
4194 goto out_mutex;
4195
57303d80
AW
4196 /*
4197 * If we are going to COW the mapping later, we examine the pending
4198 * reservations for this page now. This will ensure that any
4199 * allocations necessary to record that reservation occur outside the
4200 * spinlock. For private mappings, we also lookup the pagecache
4201 * page now as it is used to determine if a reservation has been
4202 * consumed.
4203 */
106c992a 4204 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4205 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4206 ret = VM_FAULT_OOM;
b4d1d99f 4207 goto out_mutex;
2b26736c 4208 }
5e911373 4209 /* Just decrements count, does not deallocate */
285b8dca 4210 vma_end_reservation(h, vma, haddr);
57303d80 4211
f83a275d 4212 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4213 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4214 vma, haddr);
57303d80
AW
4215 }
4216
0f792cf9
NH
4217 ptl = huge_pte_lock(h, mm, ptep);
4218
4219 /* Check for a racing update before calling hugetlb_cow */
4220 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4221 goto out_ptl;
4222
56c9cfb1
NH
4223 /*
4224 * hugetlb_cow() requires page locks of pte_page(entry) and
4225 * pagecache_page, so here we need take the former one
4226 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4227 */
4228 page = pte_page(entry);
4229 if (page != pagecache_page)
0f792cf9
NH
4230 if (!trylock_page(page)) {
4231 need_wait_lock = 1;
4232 goto out_ptl;
4233 }
b4d1d99f 4234
0f792cf9 4235 get_page(page);
b4d1d99f 4236
788c7df4 4237 if (flags & FAULT_FLAG_WRITE) {
106c992a 4238 if (!huge_pte_write(entry)) {
974e6d66 4239 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4240 pagecache_page, ptl);
0f792cf9 4241 goto out_put_page;
b4d1d99f 4242 }
106c992a 4243 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4244 }
4245 entry = pte_mkyoung(entry);
285b8dca 4246 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4247 flags & FAULT_FLAG_WRITE))
285b8dca 4248 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4249out_put_page:
4250 if (page != pagecache_page)
4251 unlock_page(page);
4252 put_page(page);
cb900f41
KS
4253out_ptl:
4254 spin_unlock(ptl);
57303d80
AW
4255
4256 if (pagecache_page) {
4257 unlock_page(pagecache_page);
4258 put_page(pagecache_page);
4259 }
b4d1d99f 4260out_mutex:
c672c7f2 4261 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4262 i_mmap_unlock_read(mapping);
0f792cf9
NH
4263 /*
4264 * Generally it's safe to hold refcount during waiting page lock. But
4265 * here we just wait to defer the next page fault to avoid busy loop and
4266 * the page is not used after unlocked before returning from the current
4267 * page fault. So we are safe from accessing freed page, even if we wait
4268 * here without taking refcount.
4269 */
4270 if (need_wait_lock)
4271 wait_on_page_locked(page);
1e8f889b 4272 return ret;
86e5216f
AL
4273}
4274
8fb5debc
MK
4275/*
4276 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4277 * modifications for huge pages.
4278 */
4279int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4280 pte_t *dst_pte,
4281 struct vm_area_struct *dst_vma,
4282 unsigned long dst_addr,
4283 unsigned long src_addr,
4284 struct page **pagep)
4285{
1e392147
AA
4286 struct address_space *mapping;
4287 pgoff_t idx;
4288 unsigned long size;
1c9e8def 4289 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4290 struct hstate *h = hstate_vma(dst_vma);
4291 pte_t _dst_pte;
4292 spinlock_t *ptl;
4293 int ret;
4294 struct page *page;
4295
4296 if (!*pagep) {
4297 ret = -ENOMEM;
4298 page = alloc_huge_page(dst_vma, dst_addr, 0);
4299 if (IS_ERR(page))
4300 goto out;
4301
4302 ret = copy_huge_page_from_user(page,
4303 (const void __user *) src_addr,
810a56b9 4304 pages_per_huge_page(h), false);
8fb5debc
MK
4305
4306 /* fallback to copy_from_user outside mmap_sem */
4307 if (unlikely(ret)) {
9e368259 4308 ret = -ENOENT;
8fb5debc
MK
4309 *pagep = page;
4310 /* don't free the page */
4311 goto out;
4312 }
4313 } else {
4314 page = *pagep;
4315 *pagep = NULL;
4316 }
4317
4318 /*
4319 * The memory barrier inside __SetPageUptodate makes sure that
4320 * preceding stores to the page contents become visible before
4321 * the set_pte_at() write.
4322 */
4323 __SetPageUptodate(page);
8fb5debc 4324
1e392147
AA
4325 mapping = dst_vma->vm_file->f_mapping;
4326 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4327
1c9e8def
MK
4328 /*
4329 * If shared, add to page cache
4330 */
4331 if (vm_shared) {
1e392147
AA
4332 size = i_size_read(mapping->host) >> huge_page_shift(h);
4333 ret = -EFAULT;
4334 if (idx >= size)
4335 goto out_release_nounlock;
1c9e8def 4336
1e392147
AA
4337 /*
4338 * Serialization between remove_inode_hugepages() and
4339 * huge_add_to_page_cache() below happens through the
4340 * hugetlb_fault_mutex_table that here must be hold by
4341 * the caller.
4342 */
1c9e8def
MK
4343 ret = huge_add_to_page_cache(page, mapping, idx);
4344 if (ret)
4345 goto out_release_nounlock;
4346 }
4347
8fb5debc
MK
4348 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4349 spin_lock(ptl);
4350
1e392147
AA
4351 /*
4352 * Recheck the i_size after holding PT lock to make sure not
4353 * to leave any page mapped (as page_mapped()) beyond the end
4354 * of the i_size (remove_inode_hugepages() is strict about
4355 * enforcing that). If we bail out here, we'll also leave a
4356 * page in the radix tree in the vm_shared case beyond the end
4357 * of the i_size, but remove_inode_hugepages() will take care
4358 * of it as soon as we drop the hugetlb_fault_mutex_table.
4359 */
4360 size = i_size_read(mapping->host) >> huge_page_shift(h);
4361 ret = -EFAULT;
4362 if (idx >= size)
4363 goto out_release_unlock;
4364
8fb5debc
MK
4365 ret = -EEXIST;
4366 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4367 goto out_release_unlock;
4368
1c9e8def
MK
4369 if (vm_shared) {
4370 page_dup_rmap(page, true);
4371 } else {
4372 ClearPagePrivate(page);
4373 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4374 }
8fb5debc
MK
4375
4376 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4377 if (dst_vma->vm_flags & VM_WRITE)
4378 _dst_pte = huge_pte_mkdirty(_dst_pte);
4379 _dst_pte = pte_mkyoung(_dst_pte);
4380
4381 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4382
4383 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4384 dst_vma->vm_flags & VM_WRITE);
4385 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4386
4387 /* No need to invalidate - it was non-present before */
4388 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4389
4390 spin_unlock(ptl);
cb6acd01 4391 set_page_huge_active(page);
1c9e8def
MK
4392 if (vm_shared)
4393 unlock_page(page);
8fb5debc
MK
4394 ret = 0;
4395out:
4396 return ret;
4397out_release_unlock:
4398 spin_unlock(ptl);
1c9e8def
MK
4399 if (vm_shared)
4400 unlock_page(page);
5af10dfd 4401out_release_nounlock:
8fb5debc
MK
4402 put_page(page);
4403 goto out;
4404}
4405
28a35716
ML
4406long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4407 struct page **pages, struct vm_area_struct **vmas,
4408 unsigned long *position, unsigned long *nr_pages,
4f6da934 4409 long i, unsigned int flags, int *locked)
63551ae0 4410{
d5d4b0aa
KC
4411 unsigned long pfn_offset;
4412 unsigned long vaddr = *position;
28a35716 4413 unsigned long remainder = *nr_pages;
a5516438 4414 struct hstate *h = hstate_vma(vma);
2be7cfed 4415 int err = -EFAULT;
63551ae0 4416
63551ae0 4417 while (vaddr < vma->vm_end && remainder) {
4c887265 4418 pte_t *pte;
cb900f41 4419 spinlock_t *ptl = NULL;
2a15efc9 4420 int absent;
4c887265 4421 struct page *page;
63551ae0 4422
02057967
DR
4423 /*
4424 * If we have a pending SIGKILL, don't keep faulting pages and
4425 * potentially allocating memory.
4426 */
fa45f116 4427 if (fatal_signal_pending(current)) {
02057967
DR
4428 remainder = 0;
4429 break;
4430 }
4431
4c887265
AL
4432 /*
4433 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4434 * each hugepage. We have to make sure we get the
4c887265 4435 * first, for the page indexing below to work.
cb900f41
KS
4436 *
4437 * Note that page table lock is not held when pte is null.
4c887265 4438 */
7868a208
PA
4439 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4440 huge_page_size(h));
cb900f41
KS
4441 if (pte)
4442 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4443 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4444
4445 /*
4446 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4447 * an error where there's an empty slot with no huge pagecache
4448 * to back it. This way, we avoid allocating a hugepage, and
4449 * the sparse dumpfile avoids allocating disk blocks, but its
4450 * huge holes still show up with zeroes where they need to be.
2a15efc9 4451 */
3ae77f43
HD
4452 if (absent && (flags & FOLL_DUMP) &&
4453 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4454 if (pte)
4455 spin_unlock(ptl);
2a15efc9
HD
4456 remainder = 0;
4457 break;
4458 }
63551ae0 4459
9cc3a5bd
NH
4460 /*
4461 * We need call hugetlb_fault for both hugepages under migration
4462 * (in which case hugetlb_fault waits for the migration,) and
4463 * hwpoisoned hugepages (in which case we need to prevent the
4464 * caller from accessing to them.) In order to do this, we use
4465 * here is_swap_pte instead of is_hugetlb_entry_migration and
4466 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4467 * both cases, and because we can't follow correct pages
4468 * directly from any kind of swap entries.
4469 */
4470 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4471 ((flags & FOLL_WRITE) &&
4472 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4473 vm_fault_t ret;
87ffc118 4474 unsigned int fault_flags = 0;
63551ae0 4475
cb900f41
KS
4476 if (pte)
4477 spin_unlock(ptl);
87ffc118
AA
4478 if (flags & FOLL_WRITE)
4479 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4480 if (locked)
71335f37
PX
4481 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4482 FAULT_FLAG_KILLABLE;
87ffc118
AA
4483 if (flags & FOLL_NOWAIT)
4484 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4485 FAULT_FLAG_RETRY_NOWAIT;
4486 if (flags & FOLL_TRIED) {
4426e945
PX
4487 /*
4488 * Note: FAULT_FLAG_ALLOW_RETRY and
4489 * FAULT_FLAG_TRIED can co-exist
4490 */
87ffc118
AA
4491 fault_flags |= FAULT_FLAG_TRIED;
4492 }
4493 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4494 if (ret & VM_FAULT_ERROR) {
2be7cfed 4495 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4496 remainder = 0;
4497 break;
4498 }
4499 if (ret & VM_FAULT_RETRY) {
4f6da934 4500 if (locked &&
1ac25013 4501 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4502 *locked = 0;
87ffc118
AA
4503 *nr_pages = 0;
4504 /*
4505 * VM_FAULT_RETRY must not return an
4506 * error, it will return zero
4507 * instead.
4508 *
4509 * No need to update "position" as the
4510 * caller will not check it after
4511 * *nr_pages is set to 0.
4512 */
4513 return i;
4514 }
4515 continue;
4c887265
AL
4516 }
4517
a5516438 4518 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4519 page = pte_page(huge_ptep_get(pte));
8fde12ca 4520
acbfb087
ZL
4521 /*
4522 * If subpage information not requested, update counters
4523 * and skip the same_page loop below.
4524 */
4525 if (!pages && !vmas && !pfn_offset &&
4526 (vaddr + huge_page_size(h) < vma->vm_end) &&
4527 (remainder >= pages_per_huge_page(h))) {
4528 vaddr += huge_page_size(h);
4529 remainder -= pages_per_huge_page(h);
4530 i += pages_per_huge_page(h);
4531 spin_unlock(ptl);
4532 continue;
4533 }
4534
d5d4b0aa 4535same_page:
d6692183 4536 if (pages) {
2a15efc9 4537 pages[i] = mem_map_offset(page, pfn_offset);
3faa52c0
JH
4538 /*
4539 * try_grab_page() should always succeed here, because:
4540 * a) we hold the ptl lock, and b) we've just checked
4541 * that the huge page is present in the page tables. If
4542 * the huge page is present, then the tail pages must
4543 * also be present. The ptl prevents the head page and
4544 * tail pages from being rearranged in any way. So this
4545 * page must be available at this point, unless the page
4546 * refcount overflowed:
4547 */
4548 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4549 spin_unlock(ptl);
4550 remainder = 0;
4551 err = -ENOMEM;
4552 break;
4553 }
d6692183 4554 }
63551ae0
DG
4555
4556 if (vmas)
4557 vmas[i] = vma;
4558
4559 vaddr += PAGE_SIZE;
d5d4b0aa 4560 ++pfn_offset;
63551ae0
DG
4561 --remainder;
4562 ++i;
d5d4b0aa 4563 if (vaddr < vma->vm_end && remainder &&
a5516438 4564 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4565 /*
4566 * We use pfn_offset to avoid touching the pageframes
4567 * of this compound page.
4568 */
4569 goto same_page;
4570 }
cb900f41 4571 spin_unlock(ptl);
63551ae0 4572 }
28a35716 4573 *nr_pages = remainder;
87ffc118
AA
4574 /*
4575 * setting position is actually required only if remainder is
4576 * not zero but it's faster not to add a "if (remainder)"
4577 * branch.
4578 */
63551ae0
DG
4579 *position = vaddr;
4580
2be7cfed 4581 return i ? i : err;
63551ae0 4582}
8f860591 4583
5491ae7b
AK
4584#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4585/*
4586 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4587 * implement this.
4588 */
4589#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4590#endif
4591
7da4d641 4592unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4593 unsigned long address, unsigned long end, pgprot_t newprot)
4594{
4595 struct mm_struct *mm = vma->vm_mm;
4596 unsigned long start = address;
4597 pte_t *ptep;
4598 pte_t pte;
a5516438 4599 struct hstate *h = hstate_vma(vma);
7da4d641 4600 unsigned long pages = 0;
dff11abe 4601 bool shared_pmd = false;
ac46d4f3 4602 struct mmu_notifier_range range;
dff11abe
MK
4603
4604 /*
4605 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 4606 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
4607 * range if PMD sharing is possible.
4608 */
7269f999
JG
4609 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4610 0, vma, mm, start, end);
ac46d4f3 4611 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
4612
4613 BUG_ON(address >= end);
ac46d4f3 4614 flush_cache_range(vma, range.start, range.end);
8f860591 4615
ac46d4f3 4616 mmu_notifier_invalidate_range_start(&range);
83cde9e8 4617 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4618 for (; address < end; address += huge_page_size(h)) {
cb900f41 4619 spinlock_t *ptl;
7868a208 4620 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4621 if (!ptep)
4622 continue;
cb900f41 4623 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4624 if (huge_pmd_unshare(mm, &address, ptep)) {
4625 pages++;
cb900f41 4626 spin_unlock(ptl);
dff11abe 4627 shared_pmd = true;
39dde65c 4628 continue;
7da4d641 4629 }
a8bda28d
NH
4630 pte = huge_ptep_get(ptep);
4631 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4632 spin_unlock(ptl);
4633 continue;
4634 }
4635 if (unlikely(is_hugetlb_entry_migration(pte))) {
4636 swp_entry_t entry = pte_to_swp_entry(pte);
4637
4638 if (is_write_migration_entry(entry)) {
4639 pte_t newpte;
4640
4641 make_migration_entry_read(&entry);
4642 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4643 set_huge_swap_pte_at(mm, address, ptep,
4644 newpte, huge_page_size(h));
a8bda28d
NH
4645 pages++;
4646 }
4647 spin_unlock(ptl);
4648 continue;
4649 }
4650 if (!huge_pte_none(pte)) {
023bdd00
AK
4651 pte_t old_pte;
4652
4653 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4654 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 4655 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 4656 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 4657 pages++;
8f860591 4658 }
cb900f41 4659 spin_unlock(ptl);
8f860591 4660 }
d833352a 4661 /*
c8c06efa 4662 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4663 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4664 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
4665 * and that page table be reused and filled with junk. If we actually
4666 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 4667 */
dff11abe 4668 if (shared_pmd)
ac46d4f3 4669 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
4670 else
4671 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4672 /*
4673 * No need to call mmu_notifier_invalidate_range() we are downgrading
4674 * page table protection not changing it to point to a new page.
4675 *
ad56b738 4676 * See Documentation/vm/mmu_notifier.rst
0f10851e 4677 */
83cde9e8 4678 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 4679 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
4680
4681 return pages << h->order;
8f860591
ZY
4682}
4683
a1e78772
MG
4684int hugetlb_reserve_pages(struct inode *inode,
4685 long from, long to,
5a6fe125 4686 struct vm_area_struct *vma,
ca16d140 4687 vm_flags_t vm_flags)
e4e574b7 4688{
17c9d12e 4689 long ret, chg;
a5516438 4690 struct hstate *h = hstate_inode(inode);
90481622 4691 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4692 struct resv_map *resv_map;
1c5ecae3 4693 long gbl_reserve;
e4e574b7 4694
63489f8e
MK
4695 /* This should never happen */
4696 if (from > to) {
4697 VM_WARN(1, "%s called with a negative range\n", __func__);
4698 return -EINVAL;
4699 }
4700
17c9d12e
MG
4701 /*
4702 * Only apply hugepage reservation if asked. At fault time, an
4703 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4704 * without using reserves
17c9d12e 4705 */
ca16d140 4706 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4707 return 0;
4708
a1e78772
MG
4709 /*
4710 * Shared mappings base their reservation on the number of pages that
4711 * are already allocated on behalf of the file. Private mappings need
4712 * to reserve the full area even if read-only as mprotect() may be
4713 * called to make the mapping read-write. Assume !vma is a shm mapping
4714 */
9119a41e 4715 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
4716 /*
4717 * resv_map can not be NULL as hugetlb_reserve_pages is only
4718 * called for inodes for which resv_maps were created (see
4719 * hugetlbfs_get_inode).
4720 */
4e35f483 4721 resv_map = inode_resv_map(inode);
9119a41e 4722
1406ec9b 4723 chg = region_chg(resv_map, from, to);
9119a41e
JK
4724
4725 } else {
4726 resv_map = resv_map_alloc();
17c9d12e
MG
4727 if (!resv_map)
4728 return -ENOMEM;
4729
a1e78772 4730 chg = to - from;
84afd99b 4731
17c9d12e
MG
4732 set_vma_resv_map(vma, resv_map);
4733 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4734 }
4735
c50ac050
DH
4736 if (chg < 0) {
4737 ret = chg;
4738 goto out_err;
4739 }
8a630112 4740
1c5ecae3
MK
4741 /*
4742 * There must be enough pages in the subpool for the mapping. If
4743 * the subpool has a minimum size, there may be some global
4744 * reservations already in place (gbl_reserve).
4745 */
4746 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4747 if (gbl_reserve < 0) {
c50ac050
DH
4748 ret = -ENOSPC;
4749 goto out_err;
4750 }
5a6fe125
MG
4751
4752 /*
17c9d12e 4753 * Check enough hugepages are available for the reservation.
90481622 4754 * Hand the pages back to the subpool if there are not
5a6fe125 4755 */
1c5ecae3 4756 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4757 if (ret < 0) {
1c5ecae3
MK
4758 /* put back original number of pages, chg */
4759 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4760 goto out_err;
68842c9b 4761 }
17c9d12e
MG
4762
4763 /*
4764 * Account for the reservations made. Shared mappings record regions
4765 * that have reservations as they are shared by multiple VMAs.
4766 * When the last VMA disappears, the region map says how much
4767 * the reservation was and the page cache tells how much of
4768 * the reservation was consumed. Private mappings are per-VMA and
4769 * only the consumed reservations are tracked. When the VMA
4770 * disappears, the original reservation is the VMA size and the
4771 * consumed reservations are stored in the map. Hence, nothing
4772 * else has to be done for private mappings here
4773 */
33039678
MK
4774 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4775 long add = region_add(resv_map, from, to);
4776
4777 if (unlikely(chg > add)) {
4778 /*
4779 * pages in this range were added to the reserve
4780 * map between region_chg and region_add. This
4781 * indicates a race with alloc_huge_page. Adjust
4782 * the subpool and reserve counts modified above
4783 * based on the difference.
4784 */
4785 long rsv_adjust;
4786
4787 rsv_adjust = hugepage_subpool_put_pages(spool,
4788 chg - add);
4789 hugetlb_acct_memory(h, -rsv_adjust);
4790 }
4791 }
a43a8c39 4792 return 0;
c50ac050 4793out_err:
5e911373 4794 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4795 /* Don't call region_abort if region_chg failed */
4796 if (chg >= 0)
4797 region_abort(resv_map, from, to);
f031dd27
JK
4798 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4799 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4800 return ret;
a43a8c39
KC
4801}
4802
b5cec28d
MK
4803long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4804 long freed)
a43a8c39 4805{
a5516438 4806 struct hstate *h = hstate_inode(inode);
4e35f483 4807 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4808 long chg = 0;
90481622 4809 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4810 long gbl_reserve;
45c682a6 4811
f27a5136
MK
4812 /*
4813 * Since this routine can be called in the evict inode path for all
4814 * hugetlbfs inodes, resv_map could be NULL.
4815 */
b5cec28d
MK
4816 if (resv_map) {
4817 chg = region_del(resv_map, start, end);
4818 /*
4819 * region_del() can fail in the rare case where a region
4820 * must be split and another region descriptor can not be
4821 * allocated. If end == LONG_MAX, it will not fail.
4822 */
4823 if (chg < 0)
4824 return chg;
4825 }
4826
45c682a6 4827 spin_lock(&inode->i_lock);
e4c6f8be 4828 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4829 spin_unlock(&inode->i_lock);
4830
1c5ecae3
MK
4831 /*
4832 * If the subpool has a minimum size, the number of global
4833 * reservations to be released may be adjusted.
4834 */
4835 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4836 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4837
4838 return 0;
a43a8c39 4839}
93f70f90 4840
3212b535
SC
4841#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4842static unsigned long page_table_shareable(struct vm_area_struct *svma,
4843 struct vm_area_struct *vma,
4844 unsigned long addr, pgoff_t idx)
4845{
4846 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4847 svma->vm_start;
4848 unsigned long sbase = saddr & PUD_MASK;
4849 unsigned long s_end = sbase + PUD_SIZE;
4850
4851 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4852 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4853 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4854
4855 /*
4856 * match the virtual addresses, permission and the alignment of the
4857 * page table page.
4858 */
4859 if (pmd_index(addr) != pmd_index(saddr) ||
4860 vm_flags != svm_flags ||
4861 sbase < svma->vm_start || svma->vm_end < s_end)
4862 return 0;
4863
4864 return saddr;
4865}
4866
31aafb45 4867static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4868{
4869 unsigned long base = addr & PUD_MASK;
4870 unsigned long end = base + PUD_SIZE;
4871
4872 /*
4873 * check on proper vm_flags and page table alignment
4874 */
017b1660 4875 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
4876 return true;
4877 return false;
3212b535
SC
4878}
4879
017b1660
MK
4880/*
4881 * Determine if start,end range within vma could be mapped by shared pmd.
4882 * If yes, adjust start and end to cover range associated with possible
4883 * shared pmd mappings.
4884 */
4885void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4886 unsigned long *start, unsigned long *end)
4887{
4888 unsigned long check_addr = *start;
4889
4890 if (!(vma->vm_flags & VM_MAYSHARE))
4891 return;
4892
4893 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4894 unsigned long a_start = check_addr & PUD_MASK;
4895 unsigned long a_end = a_start + PUD_SIZE;
4896
4897 /*
4898 * If sharing is possible, adjust start/end if necessary.
4899 */
4900 if (range_in_vma(vma, a_start, a_end)) {
4901 if (a_start < *start)
4902 *start = a_start;
4903 if (a_end > *end)
4904 *end = a_end;
4905 }
4906 }
4907}
4908
3212b535
SC
4909/*
4910 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4911 * and returns the corresponding pte. While this is not necessary for the
4912 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
4913 * code much cleaner.
4914 *
4915 * This routine must be called with i_mmap_rwsem held in at least read mode.
4916 * For hugetlbfs, this prevents removal of any page table entries associated
4917 * with the address space. This is important as we are setting up sharing
4918 * based on existing page table entries (mappings).
3212b535
SC
4919 */
4920pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4921{
4922 struct vm_area_struct *vma = find_vma(mm, addr);
4923 struct address_space *mapping = vma->vm_file->f_mapping;
4924 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4925 vma->vm_pgoff;
4926 struct vm_area_struct *svma;
4927 unsigned long saddr;
4928 pte_t *spte = NULL;
4929 pte_t *pte;
cb900f41 4930 spinlock_t *ptl;
3212b535
SC
4931
4932 if (!vma_shareable(vma, addr))
4933 return (pte_t *)pmd_alloc(mm, pud, addr);
4934
3212b535
SC
4935 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4936 if (svma == vma)
4937 continue;
4938
4939 saddr = page_table_shareable(svma, vma, addr, idx);
4940 if (saddr) {
7868a208
PA
4941 spte = huge_pte_offset(svma->vm_mm, saddr,
4942 vma_mmu_pagesize(svma));
3212b535
SC
4943 if (spte) {
4944 get_page(virt_to_page(spte));
4945 break;
4946 }
4947 }
4948 }
4949
4950 if (!spte)
4951 goto out;
4952
8bea8052 4953 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4954 if (pud_none(*pud)) {
3212b535
SC
4955 pud_populate(mm, pud,
4956 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4957 mm_inc_nr_pmds(mm);
dc6c9a35 4958 } else {
3212b535 4959 put_page(virt_to_page(spte));
dc6c9a35 4960 }
cb900f41 4961 spin_unlock(ptl);
3212b535
SC
4962out:
4963 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
4964 return pte;
4965}
4966
4967/*
4968 * unmap huge page backed by shared pte.
4969 *
4970 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4971 * indicated by page_count > 1, unmap is achieved by clearing pud and
4972 * decrementing the ref count. If count == 1, the pte page is not shared.
4973 *
c0d0381a 4974 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
4975 *
4976 * returns: 1 successfully unmapped a shared pte page
4977 * 0 the underlying pte page is not shared, or it is the last user
4978 */
4979int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4980{
4981 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4982 p4d_t *p4d = p4d_offset(pgd, *addr);
4983 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4984
4985 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4986 if (page_count(virt_to_page(ptep)) == 1)
4987 return 0;
4988
4989 pud_clear(pud);
4990 put_page(virt_to_page(ptep));
dc6c9a35 4991 mm_dec_nr_pmds(mm);
3212b535
SC
4992 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4993 return 1;
4994}
9e5fc74c
SC
4995#define want_pmd_share() (1)
4996#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4997pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4998{
4999 return NULL;
5000}
e81f2d22
ZZ
5001
5002int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5003{
5004 return 0;
5005}
017b1660
MK
5006
5007void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5008 unsigned long *start, unsigned long *end)
5009{
5010}
9e5fc74c 5011#define want_pmd_share() (0)
3212b535
SC
5012#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5013
9e5fc74c
SC
5014#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5015pte_t *huge_pte_alloc(struct mm_struct *mm,
5016 unsigned long addr, unsigned long sz)
5017{
5018 pgd_t *pgd;
c2febafc 5019 p4d_t *p4d;
9e5fc74c
SC
5020 pud_t *pud;
5021 pte_t *pte = NULL;
5022
5023 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5024 p4d = p4d_alloc(mm, pgd, addr);
5025 if (!p4d)
5026 return NULL;
c2febafc 5027 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5028 if (pud) {
5029 if (sz == PUD_SIZE) {
5030 pte = (pte_t *)pud;
5031 } else {
5032 BUG_ON(sz != PMD_SIZE);
5033 if (want_pmd_share() && pud_none(*pud))
5034 pte = huge_pmd_share(mm, addr, pud);
5035 else
5036 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5037 }
5038 }
4e666314 5039 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5040
5041 return pte;
5042}
5043
9b19df29
PA
5044/*
5045 * huge_pte_offset() - Walk the page table to resolve the hugepage
5046 * entry at address @addr
5047 *
5048 * Return: Pointer to page table or swap entry (PUD or PMD) for
5049 * address @addr, or NULL if a p*d_none() entry is encountered and the
5050 * size @sz doesn't match the hugepage size at this level of the page
5051 * table.
5052 */
7868a208
PA
5053pte_t *huge_pte_offset(struct mm_struct *mm,
5054 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5055{
5056 pgd_t *pgd;
c2febafc 5057 p4d_t *p4d;
9e5fc74c 5058 pud_t *pud;
c2febafc 5059 pmd_t *pmd;
9e5fc74c
SC
5060
5061 pgd = pgd_offset(mm, addr);
c2febafc
KS
5062 if (!pgd_present(*pgd))
5063 return NULL;
5064 p4d = p4d_offset(pgd, addr);
5065 if (!p4d_present(*p4d))
5066 return NULL;
9b19df29 5067
c2febafc 5068 pud = pud_offset(p4d, addr);
9b19df29 5069 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 5070 return NULL;
9b19df29
PA
5071 /* hugepage or swap? */
5072 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 5073 return (pte_t *)pud;
9b19df29 5074
c2febafc 5075 pmd = pmd_offset(pud, addr);
9b19df29
PA
5076 if (sz != PMD_SIZE && pmd_none(*pmd))
5077 return NULL;
5078 /* hugepage or swap? */
5079 if (pmd_huge(*pmd) || !pmd_present(*pmd))
5080 return (pte_t *)pmd;
5081
5082 return NULL;
9e5fc74c
SC
5083}
5084
61f77eda
NH
5085#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5086
5087/*
5088 * These functions are overwritable if your architecture needs its own
5089 * behavior.
5090 */
5091struct page * __weak
5092follow_huge_addr(struct mm_struct *mm, unsigned long address,
5093 int write)
5094{
5095 return ERR_PTR(-EINVAL);
5096}
5097
4dc71451
AK
5098struct page * __weak
5099follow_huge_pd(struct vm_area_struct *vma,
5100 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5101{
5102 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5103 return NULL;
5104}
5105
61f77eda 5106struct page * __weak
9e5fc74c 5107follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5108 pmd_t *pmd, int flags)
9e5fc74c 5109{
e66f17ff
NH
5110 struct page *page = NULL;
5111 spinlock_t *ptl;
c9d398fa 5112 pte_t pte;
3faa52c0
JH
5113
5114 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5115 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5116 (FOLL_PIN | FOLL_GET)))
5117 return NULL;
5118
e66f17ff
NH
5119retry:
5120 ptl = pmd_lockptr(mm, pmd);
5121 spin_lock(ptl);
5122 /*
5123 * make sure that the address range covered by this pmd is not
5124 * unmapped from other threads.
5125 */
5126 if (!pmd_huge(*pmd))
5127 goto out;
c9d398fa
NH
5128 pte = huge_ptep_get((pte_t *)pmd);
5129 if (pte_present(pte)) {
97534127 5130 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5131 /*
5132 * try_grab_page() should always succeed here, because: a) we
5133 * hold the pmd (ptl) lock, and b) we've just checked that the
5134 * huge pmd (head) page is present in the page tables. The ptl
5135 * prevents the head page and tail pages from being rearranged
5136 * in any way. So this page must be available at this point,
5137 * unless the page refcount overflowed:
5138 */
5139 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5140 page = NULL;
5141 goto out;
5142 }
e66f17ff 5143 } else {
c9d398fa 5144 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5145 spin_unlock(ptl);
5146 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5147 goto retry;
5148 }
5149 /*
5150 * hwpoisoned entry is treated as no_page_table in
5151 * follow_page_mask().
5152 */
5153 }
5154out:
5155 spin_unlock(ptl);
9e5fc74c
SC
5156 return page;
5157}
5158
61f77eda 5159struct page * __weak
9e5fc74c 5160follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5161 pud_t *pud, int flags)
9e5fc74c 5162{
3faa52c0 5163 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5164 return NULL;
9e5fc74c 5165
e66f17ff 5166 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5167}
5168
faaa5b62
AK
5169struct page * __weak
5170follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5171{
3faa52c0 5172 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5173 return NULL;
5174
5175 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5176}
5177
31caf665
NH
5178bool isolate_huge_page(struct page *page, struct list_head *list)
5179{
bcc54222
NH
5180 bool ret = true;
5181
309381fe 5182 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5183 spin_lock(&hugetlb_lock);
bcc54222
NH
5184 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5185 ret = false;
5186 goto unlock;
5187 }
5188 clear_page_huge_active(page);
31caf665 5189 list_move_tail(&page->lru, list);
bcc54222 5190unlock:
31caf665 5191 spin_unlock(&hugetlb_lock);
bcc54222 5192 return ret;
31caf665
NH
5193}
5194
5195void putback_active_hugepage(struct page *page)
5196{
309381fe 5197 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 5198 spin_lock(&hugetlb_lock);
bcc54222 5199 set_page_huge_active(page);
31caf665
NH
5200 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5201 spin_unlock(&hugetlb_lock);
5202 put_page(page);
5203}
ab5ac90a
MH
5204
5205void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5206{
5207 struct hstate *h = page_hstate(oldpage);
5208
5209 hugetlb_cgroup_migrate(oldpage, newpage);
5210 set_page_owner_migrate_reason(newpage, reason);
5211
5212 /*
5213 * transfer temporary state of the new huge page. This is
5214 * reverse to other transitions because the newpage is going to
5215 * be final while the old one will be freed so it takes over
5216 * the temporary status.
5217 *
5218 * Also note that we have to transfer the per-node surplus state
5219 * here as well otherwise the global surplus count will not match
5220 * the per-node's.
5221 */
5222 if (PageHugeTemporary(newpage)) {
5223 int old_nid = page_to_nid(oldpage);
5224 int new_nid = page_to_nid(newpage);
5225
5226 SetPageHugeTemporary(oldpage);
5227 ClearPageHugeTemporary(newpage);
5228
5229 spin_lock(&hugetlb_lock);
5230 if (h->surplus_huge_pages_node[old_nid]) {
5231 h->surplus_huge_pages_node[old_nid]--;
5232 h->surplus_huge_pages_node[new_nid]++;
5233 }
5234 spin_unlock(&hugetlb_lock);
5235 }
5236}