]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
hugetlb: make free_huge_page irq safe
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
1a1aad8a 42#include <linux/userfaultfd_k.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
1da177e4 45
c3f38a38 46int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 49
dbda8fea 50#ifdef CONFIG_CMA
cf11e85f 51static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
52#endif
53static unsigned long hugetlb_cma_size __initdata;
cf11e85f 54
641844f5
NH
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 60
53ba51d2
JT
61__initdata LIST_HEAD(huge_boot_pages);
62
e5ff2159
AK
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 66static bool __initdata parsed_valid_hugepagesz = true;
282f4214 67static bool __initdata parsed_default_hugepagesz;
e5ff2159 68
3935baa9 69/*
31caf665
NH
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
3935baa9 72 */
c3f38a38 73DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 74
8382d914
DB
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
c672c7f2 80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 81
7ca02d0a
MK
82/* Forward declaration */
83static int hugetlb_acct_memory(struct hstate *h, long delta);
84
1d88433b 85static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 86{
1d88433b
ML
87 if (spool->count)
88 return false;
89 if (spool->max_hpages != -1)
90 return spool->used_hpages == 0;
91 if (spool->min_hpages != -1)
92 return spool->rsv_hpages == spool->min_hpages;
93
94 return true;
95}
90481622 96
db71ef79
MK
97static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
98 unsigned long irq_flags)
1d88433b 99{
db71ef79 100 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
101
102 /* If no pages are used, and no other handles to the subpool
7c8de358 103 * remain, give up any reservations based on minimum size and
7ca02d0a 104 * free the subpool */
1d88433b 105 if (subpool_is_free(spool)) {
7ca02d0a
MK
106 if (spool->min_hpages != -1)
107 hugetlb_acct_memory(spool->hstate,
108 -spool->min_hpages);
90481622 109 kfree(spool);
7ca02d0a 110 }
90481622
DG
111}
112
7ca02d0a
MK
113struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
114 long min_hpages)
90481622
DG
115{
116 struct hugepage_subpool *spool;
117
c6a91820 118 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
119 if (!spool)
120 return NULL;
121
122 spin_lock_init(&spool->lock);
123 spool->count = 1;
7ca02d0a
MK
124 spool->max_hpages = max_hpages;
125 spool->hstate = h;
126 spool->min_hpages = min_hpages;
127
128 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
129 kfree(spool);
130 return NULL;
131 }
132 spool->rsv_hpages = min_hpages;
90481622
DG
133
134 return spool;
135}
136
137void hugepage_put_subpool(struct hugepage_subpool *spool)
138{
db71ef79
MK
139 unsigned long flags;
140
141 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
142 BUG_ON(!spool->count);
143 spool->count--;
db71ef79 144 unlock_or_release_subpool(spool, flags);
90481622
DG
145}
146
1c5ecae3
MK
147/*
148 * Subpool accounting for allocating and reserving pages.
149 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 150 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
151 * global pools must be adjusted (upward). The returned value may
152 * only be different than the passed value (delta) in the case where
7c8de358 153 * a subpool minimum size must be maintained.
1c5ecae3
MK
154 */
155static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
156 long delta)
157{
1c5ecae3 158 long ret = delta;
90481622
DG
159
160 if (!spool)
1c5ecae3 161 return ret;
90481622 162
db71ef79 163 spin_lock_irq(&spool->lock);
1c5ecae3
MK
164
165 if (spool->max_hpages != -1) { /* maximum size accounting */
166 if ((spool->used_hpages + delta) <= spool->max_hpages)
167 spool->used_hpages += delta;
168 else {
169 ret = -ENOMEM;
170 goto unlock_ret;
171 }
90481622 172 }
90481622 173
09a95e29
MK
174 /* minimum size accounting */
175 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
176 if (delta > spool->rsv_hpages) {
177 /*
178 * Asking for more reserves than those already taken on
179 * behalf of subpool. Return difference.
180 */
181 ret = delta - spool->rsv_hpages;
182 spool->rsv_hpages = 0;
183 } else {
184 ret = 0; /* reserves already accounted for */
185 spool->rsv_hpages -= delta;
186 }
187 }
188
189unlock_ret:
db71ef79 190 spin_unlock_irq(&spool->lock);
90481622
DG
191 return ret;
192}
193
1c5ecae3
MK
194/*
195 * Subpool accounting for freeing and unreserving pages.
196 * Return the number of global page reservations that must be dropped.
197 * The return value may only be different than the passed value (delta)
198 * in the case where a subpool minimum size must be maintained.
199 */
200static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
201 long delta)
202{
1c5ecae3 203 long ret = delta;
db71ef79 204 unsigned long flags;
1c5ecae3 205
90481622 206 if (!spool)
1c5ecae3 207 return delta;
90481622 208
db71ef79 209 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
210
211 if (spool->max_hpages != -1) /* maximum size accounting */
212 spool->used_hpages -= delta;
213
09a95e29
MK
214 /* minimum size accounting */
215 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
216 if (spool->rsv_hpages + delta <= spool->min_hpages)
217 ret = 0;
218 else
219 ret = spool->rsv_hpages + delta - spool->min_hpages;
220
221 spool->rsv_hpages += delta;
222 if (spool->rsv_hpages > spool->min_hpages)
223 spool->rsv_hpages = spool->min_hpages;
224 }
225
226 /*
227 * If hugetlbfs_put_super couldn't free spool due to an outstanding
228 * quota reference, free it now.
229 */
db71ef79 230 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
231
232 return ret;
90481622
DG
233}
234
235static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
236{
237 return HUGETLBFS_SB(inode->i_sb)->spool;
238}
239
240static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
241{
496ad9aa 242 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
243}
244
0db9d74e
MA
245/* Helper that removes a struct file_region from the resv_map cache and returns
246 * it for use.
247 */
248static struct file_region *
249get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
250{
251 struct file_region *nrg = NULL;
252
253 VM_BUG_ON(resv->region_cache_count <= 0);
254
255 resv->region_cache_count--;
256 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
257 list_del(&nrg->link);
258
259 nrg->from = from;
260 nrg->to = to;
261
262 return nrg;
263}
264
075a61d0
MA
265static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
266 struct file_region *rg)
267{
268#ifdef CONFIG_CGROUP_HUGETLB
269 nrg->reservation_counter = rg->reservation_counter;
270 nrg->css = rg->css;
271 if (rg->css)
272 css_get(rg->css);
273#endif
274}
275
276/* Helper that records hugetlb_cgroup uncharge info. */
277static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
278 struct hstate *h,
279 struct resv_map *resv,
280 struct file_region *nrg)
281{
282#ifdef CONFIG_CGROUP_HUGETLB
283 if (h_cg) {
284 nrg->reservation_counter =
285 &h_cg->rsvd_hugepage[hstate_index(h)];
286 nrg->css = &h_cg->css;
d85aecf2
ML
287 /*
288 * The caller will hold exactly one h_cg->css reference for the
289 * whole contiguous reservation region. But this area might be
290 * scattered when there are already some file_regions reside in
291 * it. As a result, many file_regions may share only one css
292 * reference. In order to ensure that one file_region must hold
293 * exactly one h_cg->css reference, we should do css_get for
294 * each file_region and leave the reference held by caller
295 * untouched.
296 */
297 css_get(&h_cg->css);
075a61d0
MA
298 if (!resv->pages_per_hpage)
299 resv->pages_per_hpage = pages_per_huge_page(h);
300 /* pages_per_hpage should be the same for all entries in
301 * a resv_map.
302 */
303 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304 } else {
305 nrg->reservation_counter = NULL;
306 nrg->css = NULL;
307 }
308#endif
309}
310
d85aecf2
ML
311static void put_uncharge_info(struct file_region *rg)
312{
313#ifdef CONFIG_CGROUP_HUGETLB
314 if (rg->css)
315 css_put(rg->css);
316#endif
317}
318
a9b3f867
MA
319static bool has_same_uncharge_info(struct file_region *rg,
320 struct file_region *org)
321{
322#ifdef CONFIG_CGROUP_HUGETLB
323 return rg && org &&
324 rg->reservation_counter == org->reservation_counter &&
325 rg->css == org->css;
326
327#else
328 return true;
329#endif
330}
331
332static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
333{
334 struct file_region *nrg = NULL, *prg = NULL;
335
336 prg = list_prev_entry(rg, link);
337 if (&prg->link != &resv->regions && prg->to == rg->from &&
338 has_same_uncharge_info(prg, rg)) {
339 prg->to = rg->to;
340
341 list_del(&rg->link);
d85aecf2 342 put_uncharge_info(rg);
a9b3f867
MA
343 kfree(rg);
344
7db5e7b6 345 rg = prg;
a9b3f867
MA
346 }
347
348 nrg = list_next_entry(rg, link);
349 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
350 has_same_uncharge_info(nrg, rg)) {
351 nrg->from = rg->from;
352
353 list_del(&rg->link);
d85aecf2 354 put_uncharge_info(rg);
a9b3f867 355 kfree(rg);
a9b3f867
MA
356 }
357}
358
2103cf9c
PX
359static inline long
360hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
361 long to, struct hstate *h, struct hugetlb_cgroup *cg,
362 long *regions_needed)
363{
364 struct file_region *nrg;
365
366 if (!regions_needed) {
367 nrg = get_file_region_entry_from_cache(map, from, to);
368 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
369 list_add(&nrg->link, rg->link.prev);
370 coalesce_file_region(map, nrg);
371 } else
372 *regions_needed += 1;
373
374 return to - from;
375}
376
972a3da3
WY
377/*
378 * Must be called with resv->lock held.
379 *
380 * Calling this with regions_needed != NULL will count the number of pages
381 * to be added but will not modify the linked list. And regions_needed will
382 * indicate the number of file_regions needed in the cache to carry out to add
383 * the regions for this range.
d75c6af9
MA
384 */
385static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 386 struct hugetlb_cgroup *h_cg,
972a3da3 387 struct hstate *h, long *regions_needed)
d75c6af9 388{
0db9d74e 389 long add = 0;
d75c6af9 390 struct list_head *head = &resv->regions;
0db9d74e 391 long last_accounted_offset = f;
2103cf9c 392 struct file_region *rg = NULL, *trg = NULL;
d75c6af9 393
0db9d74e
MA
394 if (regions_needed)
395 *regions_needed = 0;
d75c6af9 396
0db9d74e
MA
397 /* In this loop, we essentially handle an entry for the range
398 * [last_accounted_offset, rg->from), at every iteration, with some
399 * bounds checking.
400 */
401 list_for_each_entry_safe(rg, trg, head, link) {
402 /* Skip irrelevant regions that start before our range. */
403 if (rg->from < f) {
404 /* If this region ends after the last accounted offset,
405 * then we need to update last_accounted_offset.
406 */
407 if (rg->to > last_accounted_offset)
408 last_accounted_offset = rg->to;
409 continue;
410 }
d75c6af9 411
0db9d74e
MA
412 /* When we find a region that starts beyond our range, we've
413 * finished.
414 */
ca7e0457 415 if (rg->from >= t)
d75c6af9
MA
416 break;
417
0db9d74e
MA
418 /* Add an entry for last_accounted_offset -> rg->from, and
419 * update last_accounted_offset.
420 */
2103cf9c
PX
421 if (rg->from > last_accounted_offset)
422 add += hugetlb_resv_map_add(resv, rg,
423 last_accounted_offset,
424 rg->from, h, h_cg,
425 regions_needed);
0db9d74e
MA
426
427 last_accounted_offset = rg->to;
428 }
429
430 /* Handle the case where our range extends beyond
431 * last_accounted_offset.
432 */
2103cf9c
PX
433 if (last_accounted_offset < t)
434 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
435 t, h, h_cg, regions_needed);
0db9d74e
MA
436
437 VM_BUG_ON(add < 0);
438 return add;
439}
440
441/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
442 */
443static int allocate_file_region_entries(struct resv_map *resv,
444 int regions_needed)
445 __must_hold(&resv->lock)
446{
447 struct list_head allocated_regions;
448 int to_allocate = 0, i = 0;
449 struct file_region *trg = NULL, *rg = NULL;
450
451 VM_BUG_ON(regions_needed < 0);
452
453 INIT_LIST_HEAD(&allocated_regions);
454
455 /*
456 * Check for sufficient descriptors in the cache to accommodate
457 * the number of in progress add operations plus regions_needed.
458 *
459 * This is a while loop because when we drop the lock, some other call
460 * to region_add or region_del may have consumed some region_entries,
461 * so we keep looping here until we finally have enough entries for
462 * (adds_in_progress + regions_needed).
463 */
464 while (resv->region_cache_count <
465 (resv->adds_in_progress + regions_needed)) {
466 to_allocate = resv->adds_in_progress + regions_needed -
467 resv->region_cache_count;
468
469 /* At this point, we should have enough entries in the cache
470 * for all the existings adds_in_progress. We should only be
471 * needing to allocate for regions_needed.
d75c6af9 472 */
0db9d74e
MA
473 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
474
475 spin_unlock(&resv->lock);
476 for (i = 0; i < to_allocate; i++) {
477 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
478 if (!trg)
479 goto out_of_memory;
480 list_add(&trg->link, &allocated_regions);
d75c6af9 481 }
d75c6af9 482
0db9d74e
MA
483 spin_lock(&resv->lock);
484
d3ec7b6e
WY
485 list_splice(&allocated_regions, &resv->region_cache);
486 resv->region_cache_count += to_allocate;
d75c6af9
MA
487 }
488
0db9d74e 489 return 0;
d75c6af9 490
0db9d74e
MA
491out_of_memory:
492 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
493 list_del(&rg->link);
494 kfree(rg);
495 }
496 return -ENOMEM;
d75c6af9
MA
497}
498
1dd308a7
MK
499/*
500 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
501 * map. Regions will be taken from the cache to fill in this range.
502 * Sufficient regions should exist in the cache due to the previous
503 * call to region_chg with the same range, but in some cases the cache will not
504 * have sufficient entries due to races with other code doing region_add or
505 * region_del. The extra needed entries will be allocated.
cf3ad20b 506 *
0db9d74e
MA
507 * regions_needed is the out value provided by a previous call to region_chg.
508 *
509 * Return the number of new huge pages added to the map. This number is greater
510 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 511 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
512 * region_add of regions of length 1 never allocate file_regions and cannot
513 * fail; region_chg will always allocate at least 1 entry and a region_add for
514 * 1 page will only require at most 1 entry.
1dd308a7 515 */
0db9d74e 516static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
517 long in_regions_needed, struct hstate *h,
518 struct hugetlb_cgroup *h_cg)
96822904 519{
0db9d74e 520 long add = 0, actual_regions_needed = 0;
96822904 521
7b24d861 522 spin_lock(&resv->lock);
0db9d74e
MA
523retry:
524
525 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
526 add_reservation_in_range(resv, f, t, NULL, NULL,
527 &actual_regions_needed);
96822904 528
5e911373 529 /*
0db9d74e
MA
530 * Check for sufficient descriptors in the cache to accommodate
531 * this add operation. Note that actual_regions_needed may be greater
532 * than in_regions_needed, as the resv_map may have been modified since
533 * the region_chg call. In this case, we need to make sure that we
534 * allocate extra entries, such that we have enough for all the
535 * existing adds_in_progress, plus the excess needed for this
536 * operation.
5e911373 537 */
0db9d74e
MA
538 if (actual_regions_needed > in_regions_needed &&
539 resv->region_cache_count <
540 resv->adds_in_progress +
541 (actual_regions_needed - in_regions_needed)) {
542 /* region_add operation of range 1 should never need to
543 * allocate file_region entries.
544 */
545 VM_BUG_ON(t - f <= 1);
5e911373 546
0db9d74e
MA
547 if (allocate_file_region_entries(
548 resv, actual_regions_needed - in_regions_needed)) {
549 return -ENOMEM;
550 }
5e911373 551
0db9d74e 552 goto retry;
5e911373
MK
553 }
554
972a3da3 555 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
556
557 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 558
7b24d861 559 spin_unlock(&resv->lock);
cf3ad20b 560 return add;
96822904
AW
561}
562
1dd308a7
MK
563/*
564 * Examine the existing reserve map and determine how many
565 * huge pages in the specified range [f, t) are NOT currently
566 * represented. This routine is called before a subsequent
567 * call to region_add that will actually modify the reserve
568 * map to add the specified range [f, t). region_chg does
569 * not change the number of huge pages represented by the
0db9d74e
MA
570 * map. A number of new file_region structures is added to the cache as a
571 * placeholder, for the subsequent region_add call to use. At least 1
572 * file_region structure is added.
573 *
574 * out_regions_needed is the number of regions added to the
575 * resv->adds_in_progress. This value needs to be provided to a follow up call
576 * to region_add or region_abort for proper accounting.
5e911373
MK
577 *
578 * Returns the number of huge pages that need to be added to the existing
579 * reservation map for the range [f, t). This number is greater or equal to
580 * zero. -ENOMEM is returned if a new file_region structure or cache entry
581 * is needed and can not be allocated.
1dd308a7 582 */
0db9d74e
MA
583static long region_chg(struct resv_map *resv, long f, long t,
584 long *out_regions_needed)
96822904 585{
96822904
AW
586 long chg = 0;
587
7b24d861 588 spin_lock(&resv->lock);
5e911373 589
972a3da3 590 /* Count how many hugepages in this range are NOT represented. */
075a61d0 591 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 592 out_regions_needed);
5e911373 593
0db9d74e
MA
594 if (*out_regions_needed == 0)
595 *out_regions_needed = 1;
5e911373 596
0db9d74e
MA
597 if (allocate_file_region_entries(resv, *out_regions_needed))
598 return -ENOMEM;
5e911373 599
0db9d74e 600 resv->adds_in_progress += *out_regions_needed;
7b24d861 601
7b24d861 602 spin_unlock(&resv->lock);
96822904
AW
603 return chg;
604}
605
5e911373
MK
606/*
607 * Abort the in progress add operation. The adds_in_progress field
608 * of the resv_map keeps track of the operations in progress between
609 * calls to region_chg and region_add. Operations are sometimes
610 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
611 * is called to decrement the adds_in_progress counter. regions_needed
612 * is the value returned by the region_chg call, it is used to decrement
613 * the adds_in_progress counter.
5e911373
MK
614 *
615 * NOTE: The range arguments [f, t) are not needed or used in this
616 * routine. They are kept to make reading the calling code easier as
617 * arguments will match the associated region_chg call.
618 */
0db9d74e
MA
619static void region_abort(struct resv_map *resv, long f, long t,
620 long regions_needed)
5e911373
MK
621{
622 spin_lock(&resv->lock);
623 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 624 resv->adds_in_progress -= regions_needed;
5e911373
MK
625 spin_unlock(&resv->lock);
626}
627
1dd308a7 628/*
feba16e2
MK
629 * Delete the specified range [f, t) from the reserve map. If the
630 * t parameter is LONG_MAX, this indicates that ALL regions after f
631 * should be deleted. Locate the regions which intersect [f, t)
632 * and either trim, delete or split the existing regions.
633 *
634 * Returns the number of huge pages deleted from the reserve map.
635 * In the normal case, the return value is zero or more. In the
636 * case where a region must be split, a new region descriptor must
637 * be allocated. If the allocation fails, -ENOMEM will be returned.
638 * NOTE: If the parameter t == LONG_MAX, then we will never split
639 * a region and possibly return -ENOMEM. Callers specifying
640 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 641 */
feba16e2 642static long region_del(struct resv_map *resv, long f, long t)
96822904 643{
1406ec9b 644 struct list_head *head = &resv->regions;
96822904 645 struct file_region *rg, *trg;
feba16e2
MK
646 struct file_region *nrg = NULL;
647 long del = 0;
96822904 648
feba16e2 649retry:
7b24d861 650 spin_lock(&resv->lock);
feba16e2 651 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
652 /*
653 * Skip regions before the range to be deleted. file_region
654 * ranges are normally of the form [from, to). However, there
655 * may be a "placeholder" entry in the map which is of the form
656 * (from, to) with from == to. Check for placeholder entries
657 * at the beginning of the range to be deleted.
658 */
659 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 660 continue;
dbe409e4 661
feba16e2 662 if (rg->from >= t)
96822904 663 break;
96822904 664
feba16e2
MK
665 if (f > rg->from && t < rg->to) { /* Must split region */
666 /*
667 * Check for an entry in the cache before dropping
668 * lock and attempting allocation.
669 */
670 if (!nrg &&
671 resv->region_cache_count > resv->adds_in_progress) {
672 nrg = list_first_entry(&resv->region_cache,
673 struct file_region,
674 link);
675 list_del(&nrg->link);
676 resv->region_cache_count--;
677 }
96822904 678
feba16e2
MK
679 if (!nrg) {
680 spin_unlock(&resv->lock);
681 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
682 if (!nrg)
683 return -ENOMEM;
684 goto retry;
685 }
686
687 del += t - f;
79aa925b 688 hugetlb_cgroup_uncharge_file_region(
d85aecf2 689 resv, rg, t - f, false);
feba16e2
MK
690
691 /* New entry for end of split region */
692 nrg->from = t;
693 nrg->to = rg->to;
075a61d0
MA
694
695 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
696
feba16e2
MK
697 INIT_LIST_HEAD(&nrg->link);
698
699 /* Original entry is trimmed */
700 rg->to = f;
701
702 list_add(&nrg->link, &rg->link);
703 nrg = NULL;
96822904 704 break;
feba16e2
MK
705 }
706
707 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
708 del += rg->to - rg->from;
075a61d0 709 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 710 rg->to - rg->from, true);
feba16e2
MK
711 list_del(&rg->link);
712 kfree(rg);
713 continue;
714 }
715
716 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 717 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 718 t - rg->from, false);
075a61d0 719
79aa925b
MK
720 del += t - rg->from;
721 rg->from = t;
722 } else { /* Trim end of region */
075a61d0 723 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 724 rg->to - f, false);
79aa925b
MK
725
726 del += rg->to - f;
727 rg->to = f;
feba16e2 728 }
96822904 729 }
7b24d861 730
7b24d861 731 spin_unlock(&resv->lock);
feba16e2
MK
732 kfree(nrg);
733 return del;
96822904
AW
734}
735
b5cec28d
MK
736/*
737 * A rare out of memory error was encountered which prevented removal of
738 * the reserve map region for a page. The huge page itself was free'ed
739 * and removed from the page cache. This routine will adjust the subpool
740 * usage count, and the global reserve count if needed. By incrementing
741 * these counts, the reserve map entry which could not be deleted will
742 * appear as a "reserved" entry instead of simply dangling with incorrect
743 * counts.
744 */
72e2936c 745void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
746{
747 struct hugepage_subpool *spool = subpool_inode(inode);
748 long rsv_adjust;
da56388c 749 bool reserved = false;
b5cec28d
MK
750
751 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 752 if (rsv_adjust > 0) {
b5cec28d
MK
753 struct hstate *h = hstate_inode(inode);
754
da56388c
ML
755 if (!hugetlb_acct_memory(h, 1))
756 reserved = true;
757 } else if (!rsv_adjust) {
758 reserved = true;
b5cec28d 759 }
da56388c
ML
760
761 if (!reserved)
762 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
763}
764
1dd308a7
MK
765/*
766 * Count and return the number of huge pages in the reserve map
767 * that intersect with the range [f, t).
768 */
1406ec9b 769static long region_count(struct resv_map *resv, long f, long t)
84afd99b 770{
1406ec9b 771 struct list_head *head = &resv->regions;
84afd99b
AW
772 struct file_region *rg;
773 long chg = 0;
774
7b24d861 775 spin_lock(&resv->lock);
84afd99b
AW
776 /* Locate each segment we overlap with, and count that overlap. */
777 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
778 long seg_from;
779 long seg_to;
84afd99b
AW
780
781 if (rg->to <= f)
782 continue;
783 if (rg->from >= t)
784 break;
785
786 seg_from = max(rg->from, f);
787 seg_to = min(rg->to, t);
788
789 chg += seg_to - seg_from;
790 }
7b24d861 791 spin_unlock(&resv->lock);
84afd99b
AW
792
793 return chg;
794}
795
e7c4b0bf
AW
796/*
797 * Convert the address within this vma to the page offset within
798 * the mapping, in pagecache page units; huge pages here.
799 */
a5516438
AK
800static pgoff_t vma_hugecache_offset(struct hstate *h,
801 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 802{
a5516438
AK
803 return ((address - vma->vm_start) >> huge_page_shift(h)) +
804 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
805}
806
0fe6e20b
NH
807pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
808 unsigned long address)
809{
810 return vma_hugecache_offset(hstate_vma(vma), vma, address);
811}
dee41079 812EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 813
08fba699
MG
814/*
815 * Return the size of the pages allocated when backing a VMA. In the majority
816 * cases this will be same size as used by the page table entries.
817 */
818unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
819{
05ea8860
DW
820 if (vma->vm_ops && vma->vm_ops->pagesize)
821 return vma->vm_ops->pagesize(vma);
822 return PAGE_SIZE;
08fba699 823}
f340ca0f 824EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 825
3340289d
MG
826/*
827 * Return the page size being used by the MMU to back a VMA. In the majority
828 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
829 * architectures where it differs, an architecture-specific 'strong'
830 * version of this symbol is required.
3340289d 831 */
09135cc5 832__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
833{
834 return vma_kernel_pagesize(vma);
835}
3340289d 836
84afd99b
AW
837/*
838 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
839 * bits of the reservation map pointer, which are always clear due to
840 * alignment.
841 */
842#define HPAGE_RESV_OWNER (1UL << 0)
843#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 844#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 845
a1e78772
MG
846/*
847 * These helpers are used to track how many pages are reserved for
848 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
849 * is guaranteed to have their future faults succeed.
850 *
851 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
852 * the reserve counters are updated with the hugetlb_lock held. It is safe
853 * to reset the VMA at fork() time as it is not in use yet and there is no
854 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
855 *
856 * The private mapping reservation is represented in a subtly different
857 * manner to a shared mapping. A shared mapping has a region map associated
858 * with the underlying file, this region map represents the backing file
859 * pages which have ever had a reservation assigned which this persists even
860 * after the page is instantiated. A private mapping has a region map
861 * associated with the original mmap which is attached to all VMAs which
862 * reference it, this region map represents those offsets which have consumed
863 * reservation ie. where pages have been instantiated.
a1e78772 864 */
e7c4b0bf
AW
865static unsigned long get_vma_private_data(struct vm_area_struct *vma)
866{
867 return (unsigned long)vma->vm_private_data;
868}
869
870static void set_vma_private_data(struct vm_area_struct *vma,
871 unsigned long value)
872{
873 vma->vm_private_data = (void *)value;
874}
875
e9fe92ae
MA
876static void
877resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
878 struct hugetlb_cgroup *h_cg,
879 struct hstate *h)
880{
881#ifdef CONFIG_CGROUP_HUGETLB
882 if (!h_cg || !h) {
883 resv_map->reservation_counter = NULL;
884 resv_map->pages_per_hpage = 0;
885 resv_map->css = NULL;
886 } else {
887 resv_map->reservation_counter =
888 &h_cg->rsvd_hugepage[hstate_index(h)];
889 resv_map->pages_per_hpage = pages_per_huge_page(h);
890 resv_map->css = &h_cg->css;
891 }
892#endif
893}
894
9119a41e 895struct resv_map *resv_map_alloc(void)
84afd99b
AW
896{
897 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
898 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
899
900 if (!resv_map || !rg) {
901 kfree(resv_map);
902 kfree(rg);
84afd99b 903 return NULL;
5e911373 904 }
84afd99b
AW
905
906 kref_init(&resv_map->refs);
7b24d861 907 spin_lock_init(&resv_map->lock);
84afd99b
AW
908 INIT_LIST_HEAD(&resv_map->regions);
909
5e911373 910 resv_map->adds_in_progress = 0;
e9fe92ae
MA
911 /*
912 * Initialize these to 0. On shared mappings, 0's here indicate these
913 * fields don't do cgroup accounting. On private mappings, these will be
914 * re-initialized to the proper values, to indicate that hugetlb cgroup
915 * reservations are to be un-charged from here.
916 */
917 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
918
919 INIT_LIST_HEAD(&resv_map->region_cache);
920 list_add(&rg->link, &resv_map->region_cache);
921 resv_map->region_cache_count = 1;
922
84afd99b
AW
923 return resv_map;
924}
925
9119a41e 926void resv_map_release(struct kref *ref)
84afd99b
AW
927{
928 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
929 struct list_head *head = &resv_map->region_cache;
930 struct file_region *rg, *trg;
84afd99b
AW
931
932 /* Clear out any active regions before we release the map. */
feba16e2 933 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
934
935 /* ... and any entries left in the cache */
936 list_for_each_entry_safe(rg, trg, head, link) {
937 list_del(&rg->link);
938 kfree(rg);
939 }
940
941 VM_BUG_ON(resv_map->adds_in_progress);
942
84afd99b
AW
943 kfree(resv_map);
944}
945
4e35f483
JK
946static inline struct resv_map *inode_resv_map(struct inode *inode)
947{
f27a5136
MK
948 /*
949 * At inode evict time, i_mapping may not point to the original
950 * address space within the inode. This original address space
951 * contains the pointer to the resv_map. So, always use the
952 * address space embedded within the inode.
953 * The VERY common case is inode->mapping == &inode->i_data but,
954 * this may not be true for device special inodes.
955 */
956 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
957}
958
84afd99b 959static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 960{
81d1b09c 961 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
962 if (vma->vm_flags & VM_MAYSHARE) {
963 struct address_space *mapping = vma->vm_file->f_mapping;
964 struct inode *inode = mapping->host;
965
966 return inode_resv_map(inode);
967
968 } else {
84afd99b
AW
969 return (struct resv_map *)(get_vma_private_data(vma) &
970 ~HPAGE_RESV_MASK);
4e35f483 971 }
a1e78772
MG
972}
973
84afd99b 974static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 975{
81d1b09c
SL
976 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
977 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 978
84afd99b
AW
979 set_vma_private_data(vma, (get_vma_private_data(vma) &
980 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
981}
982
983static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
984{
81d1b09c
SL
985 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
986 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
987
988 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
989}
990
991static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
992{
81d1b09c 993 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
994
995 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
996}
997
04f2cbe3 998/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
999void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1000{
81d1b09c 1001 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 1002 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
1003 vma->vm_private_data = (void *)0;
1004}
1005
1006/* Returns true if the VMA has associated reserve pages */
559ec2f8 1007static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1008{
af0ed73e
JK
1009 if (vma->vm_flags & VM_NORESERVE) {
1010 /*
1011 * This address is already reserved by other process(chg == 0),
1012 * so, we should decrement reserved count. Without decrementing,
1013 * reserve count remains after releasing inode, because this
1014 * allocated page will go into page cache and is regarded as
1015 * coming from reserved pool in releasing step. Currently, we
1016 * don't have any other solution to deal with this situation
1017 * properly, so add work-around here.
1018 */
1019 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1020 return true;
af0ed73e 1021 else
559ec2f8 1022 return false;
af0ed73e 1023 }
a63884e9
JK
1024
1025 /* Shared mappings always use reserves */
1fb1b0e9
MK
1026 if (vma->vm_flags & VM_MAYSHARE) {
1027 /*
1028 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1029 * be a region map for all pages. The only situation where
1030 * there is no region map is if a hole was punched via
7c8de358 1031 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1032 * use. This situation is indicated if chg != 0.
1033 */
1034 if (chg)
1035 return false;
1036 else
1037 return true;
1038 }
a63884e9
JK
1039
1040 /*
1041 * Only the process that called mmap() has reserves for
1042 * private mappings.
1043 */
67961f9d
MK
1044 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1045 /*
1046 * Like the shared case above, a hole punch or truncate
1047 * could have been performed on the private mapping.
1048 * Examine the value of chg to determine if reserves
1049 * actually exist or were previously consumed.
1050 * Very Subtle - The value of chg comes from a previous
1051 * call to vma_needs_reserves(). The reserve map for
1052 * private mappings has different (opposite) semantics
1053 * than that of shared mappings. vma_needs_reserves()
1054 * has already taken this difference in semantics into
1055 * account. Therefore, the meaning of chg is the same
1056 * as in the shared case above. Code could easily be
1057 * combined, but keeping it separate draws attention to
1058 * subtle differences.
1059 */
1060 if (chg)
1061 return false;
1062 else
1063 return true;
1064 }
a63884e9 1065
559ec2f8 1066 return false;
a1e78772
MG
1067}
1068
a5516438 1069static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1070{
1071 int nid = page_to_nid(page);
0edaecfa 1072 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1073 h->free_huge_pages++;
1074 h->free_huge_pages_node[nid]++;
6c037149 1075 SetHPageFreed(page);
1da177e4
LT
1076}
1077
94310cbc 1078static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1079{
1080 struct page *page;
bbe88753
JK
1081 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1082
1083 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1084 if (nocma && is_migrate_cma_page(page))
1085 continue;
bf50bab2 1086
6664bfc8
WY
1087 if (PageHWPoison(page))
1088 continue;
1089
1090 list_move(&page->lru, &h->hugepage_activelist);
1091 set_page_refcounted(page);
6c037149 1092 ClearHPageFreed(page);
6664bfc8
WY
1093 h->free_huge_pages--;
1094 h->free_huge_pages_node[nid]--;
1095 return page;
bbe88753
JK
1096 }
1097
6664bfc8 1098 return NULL;
bf50bab2
NH
1099}
1100
3e59fcb0
MH
1101static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1102 nodemask_t *nmask)
94310cbc 1103{
3e59fcb0
MH
1104 unsigned int cpuset_mems_cookie;
1105 struct zonelist *zonelist;
1106 struct zone *zone;
1107 struct zoneref *z;
98fa15f3 1108 int node = NUMA_NO_NODE;
94310cbc 1109
3e59fcb0
MH
1110 zonelist = node_zonelist(nid, gfp_mask);
1111
1112retry_cpuset:
1113 cpuset_mems_cookie = read_mems_allowed_begin();
1114 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1115 struct page *page;
1116
1117 if (!cpuset_zone_allowed(zone, gfp_mask))
1118 continue;
1119 /*
1120 * no need to ask again on the same node. Pool is node rather than
1121 * zone aware
1122 */
1123 if (zone_to_nid(zone) == node)
1124 continue;
1125 node = zone_to_nid(zone);
94310cbc 1126
94310cbc
AK
1127 page = dequeue_huge_page_node_exact(h, node);
1128 if (page)
1129 return page;
1130 }
3e59fcb0
MH
1131 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1132 goto retry_cpuset;
1133
94310cbc
AK
1134 return NULL;
1135}
1136
a5516438
AK
1137static struct page *dequeue_huge_page_vma(struct hstate *h,
1138 struct vm_area_struct *vma,
af0ed73e
JK
1139 unsigned long address, int avoid_reserve,
1140 long chg)
1da177e4 1141{
3e59fcb0 1142 struct page *page;
480eccf9 1143 struct mempolicy *mpol;
04ec6264 1144 gfp_t gfp_mask;
3e59fcb0 1145 nodemask_t *nodemask;
04ec6264 1146 int nid;
1da177e4 1147
a1e78772
MG
1148 /*
1149 * A child process with MAP_PRIVATE mappings created by their parent
1150 * have no page reserves. This check ensures that reservations are
1151 * not "stolen". The child may still get SIGKILLed
1152 */
af0ed73e 1153 if (!vma_has_reserves(vma, chg) &&
a5516438 1154 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1155 goto err;
a1e78772 1156
04f2cbe3 1157 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1158 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1159 goto err;
04f2cbe3 1160
04ec6264
VB
1161 gfp_mask = htlb_alloc_mask(h);
1162 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1163 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1164 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1165 SetHPageRestoreReserve(page);
3e59fcb0 1166 h->resv_huge_pages--;
1da177e4 1167 }
cc9a6c87 1168
52cd3b07 1169 mpol_cond_put(mpol);
1da177e4 1170 return page;
cc9a6c87
MG
1171
1172err:
cc9a6c87 1173 return NULL;
1da177e4
LT
1174}
1175
1cac6f2c
LC
1176/*
1177 * common helper functions for hstate_next_node_to_{alloc|free}.
1178 * We may have allocated or freed a huge page based on a different
1179 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1180 * be outside of *nodes_allowed. Ensure that we use an allowed
1181 * node for alloc or free.
1182 */
1183static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1184{
0edaf86c 1185 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1186 VM_BUG_ON(nid >= MAX_NUMNODES);
1187
1188 return nid;
1189}
1190
1191static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1192{
1193 if (!node_isset(nid, *nodes_allowed))
1194 nid = next_node_allowed(nid, nodes_allowed);
1195 return nid;
1196}
1197
1198/*
1199 * returns the previously saved node ["this node"] from which to
1200 * allocate a persistent huge page for the pool and advance the
1201 * next node from which to allocate, handling wrap at end of node
1202 * mask.
1203 */
1204static int hstate_next_node_to_alloc(struct hstate *h,
1205 nodemask_t *nodes_allowed)
1206{
1207 int nid;
1208
1209 VM_BUG_ON(!nodes_allowed);
1210
1211 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1212 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1213
1214 return nid;
1215}
1216
1217/*
10c6ec49 1218 * helper for remove_pool_huge_page() - return the previously saved
1cac6f2c
LC
1219 * node ["this node"] from which to free a huge page. Advance the
1220 * next node id whether or not we find a free huge page to free so
1221 * that the next attempt to free addresses the next node.
1222 */
1223static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1224{
1225 int nid;
1226
1227 VM_BUG_ON(!nodes_allowed);
1228
1229 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1230 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1231
1232 return nid;
1233}
1234
1235#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1236 for (nr_nodes = nodes_weight(*mask); \
1237 nr_nodes > 0 && \
1238 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1239 nr_nodes--)
1240
1241#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1242 for (nr_nodes = nodes_weight(*mask); \
1243 nr_nodes > 0 && \
1244 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1245 nr_nodes--)
1246
e1073d1e 1247#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1248static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1249 unsigned int order)
944d9fec
LC
1250{
1251 int i;
1252 int nr_pages = 1 << order;
1253 struct page *p = page + 1;
1254
c8cc708a 1255 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1256 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1257
944d9fec 1258 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1259 clear_compound_head(p);
944d9fec 1260 set_page_refcounted(p);
944d9fec
LC
1261 }
1262
1263 set_compound_order(page, 0);
ba9c1201 1264 page[1].compound_nr = 0;
944d9fec
LC
1265 __ClearPageHead(page);
1266}
1267
d00181b9 1268static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1269{
cf11e85f
RG
1270 /*
1271 * If the page isn't allocated using the cma allocator,
1272 * cma_release() returns false.
1273 */
dbda8fea
BS
1274#ifdef CONFIG_CMA
1275 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1276 return;
dbda8fea 1277#endif
cf11e85f 1278
944d9fec
LC
1279 free_contig_range(page_to_pfn(page), 1 << order);
1280}
1281
4eb0716e 1282#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1283static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1284 int nid, nodemask_t *nodemask)
944d9fec 1285{
04adbc3f 1286 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1287 if (nid == NUMA_NO_NODE)
1288 nid = numa_mem_id();
944d9fec 1289
dbda8fea
BS
1290#ifdef CONFIG_CMA
1291 {
cf11e85f
RG
1292 struct page *page;
1293 int node;
1294
953f064a
LX
1295 if (hugetlb_cma[nid]) {
1296 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1297 huge_page_order(h), true);
cf11e85f
RG
1298 if (page)
1299 return page;
1300 }
953f064a
LX
1301
1302 if (!(gfp_mask & __GFP_THISNODE)) {
1303 for_each_node_mask(node, *nodemask) {
1304 if (node == nid || !hugetlb_cma[node])
1305 continue;
1306
1307 page = cma_alloc(hugetlb_cma[node], nr_pages,
1308 huge_page_order(h), true);
1309 if (page)
1310 return page;
1311 }
1312 }
cf11e85f 1313 }
dbda8fea 1314#endif
cf11e85f 1315
5e27a2df 1316 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1317}
1318
1319static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1320static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1321#else /* !CONFIG_CONTIG_ALLOC */
1322static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1323 int nid, nodemask_t *nodemask)
1324{
1325 return NULL;
1326}
1327#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1328
e1073d1e 1329#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1330static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1331 int nid, nodemask_t *nodemask)
1332{
1333 return NULL;
1334}
d00181b9 1335static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1336static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1337 unsigned int order) { }
944d9fec
LC
1338#endif
1339
6eb4e88a
MK
1340/*
1341 * Remove hugetlb page from lists, and update dtor so that page appears
1342 * as just a compound page. A reference is held on the page.
1343 *
1344 * Must be called with hugetlb lock held.
1345 */
1346static void remove_hugetlb_page(struct hstate *h, struct page *page,
1347 bool adjust_surplus)
1348{
1349 int nid = page_to_nid(page);
1350
1351 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1352 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1353
1354 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1355 return;
1356
1357 list_del(&page->lru);
1358
1359 if (HPageFreed(page)) {
1360 h->free_huge_pages--;
1361 h->free_huge_pages_node[nid]--;
1362 }
1363 if (adjust_surplus) {
1364 h->surplus_huge_pages--;
1365 h->surplus_huge_pages_node[nid]--;
1366 }
1367
1368 set_page_refcounted(page);
1369 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1370
1371 h->nr_huge_pages--;
1372 h->nr_huge_pages_node[nid]--;
1373}
1374
a5516438 1375static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1376{
1377 int i;
dbfee5ae 1378 struct page *subpage = page;
a5516438 1379
4eb0716e 1380 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1381 return;
18229df5 1382
dbfee5ae
MK
1383 for (i = 0; i < pages_per_huge_page(h);
1384 i++, subpage = mem_map_next(subpage, page, i)) {
1385 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1386 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1387 1 << PG_active | 1 << PG_private |
1388 1 << PG_writeback);
6af2acb6 1389 }
944d9fec
LC
1390 if (hstate_is_gigantic(h)) {
1391 destroy_compound_gigantic_page(page, huge_page_order(h));
1392 free_gigantic_page(page, huge_page_order(h));
1393 } else {
944d9fec
LC
1394 __free_pages(page, huge_page_order(h));
1395 }
6af2acb6
AL
1396}
1397
10c6ec49
MK
1398static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1399{
1400 struct page *page, *t_page;
1401
1402 list_for_each_entry_safe(page, t_page, list, lru) {
1403 update_and_free_page(h, page);
1404 cond_resched();
1405 }
1406}
1407
e5ff2159
AK
1408struct hstate *size_to_hstate(unsigned long size)
1409{
1410 struct hstate *h;
1411
1412 for_each_hstate(h) {
1413 if (huge_page_size(h) == size)
1414 return h;
1415 }
1416 return NULL;
1417}
1418
db71ef79 1419void free_huge_page(struct page *page)
27a85ef1 1420{
a5516438
AK
1421 /*
1422 * Can't pass hstate in here because it is called from the
1423 * compound page destructor.
1424 */
e5ff2159 1425 struct hstate *h = page_hstate(page);
7893d1d5 1426 int nid = page_to_nid(page);
d6995da3 1427 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1428 bool restore_reserve;
db71ef79 1429 unsigned long flags;
27a85ef1 1430
b4330afb
MK
1431 VM_BUG_ON_PAGE(page_count(page), page);
1432 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1433
d6995da3 1434 hugetlb_set_page_subpool(page, NULL);
8ace22bc 1435 page->mapping = NULL;
d6995da3
MK
1436 restore_reserve = HPageRestoreReserve(page);
1437 ClearHPageRestoreReserve(page);
27a85ef1 1438
1c5ecae3 1439 /*
d6995da3 1440 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1441 * reservation. If the page was associated with a subpool, there
1442 * would have been a page reserved in the subpool before allocation
1443 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1444 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1445 * remove the reserved page from the subpool.
1c5ecae3 1446 */
0919e1b6
MK
1447 if (!restore_reserve) {
1448 /*
1449 * A return code of zero implies that the subpool will be
1450 * under its minimum size if the reservation is not restored
1451 * after page is free. Therefore, force restore_reserve
1452 * operation.
1453 */
1454 if (hugepage_subpool_put_pages(spool, 1) == 0)
1455 restore_reserve = true;
1456 }
1c5ecae3 1457
db71ef79 1458 spin_lock_irqsave(&hugetlb_lock, flags);
8f251a3d 1459 ClearHPageMigratable(page);
6d76dcf4
AK
1460 hugetlb_cgroup_uncharge_page(hstate_index(h),
1461 pages_per_huge_page(h), page);
08cf9faf
MA
1462 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1463 pages_per_huge_page(h), page);
07443a85
JK
1464 if (restore_reserve)
1465 h->resv_huge_pages++;
1466
9157c311 1467 if (HPageTemporary(page)) {
6eb4e88a 1468 remove_hugetlb_page(h, page, false);
db71ef79 1469 spin_unlock_irqrestore(&hugetlb_lock, flags);
ab5ac90a
MH
1470 update_and_free_page(h, page);
1471 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1472 /* remove the page from active list */
6eb4e88a 1473 remove_hugetlb_page(h, page, true);
db71ef79 1474 spin_unlock_irqrestore(&hugetlb_lock, flags);
a5516438 1475 update_and_free_page(h, page);
7893d1d5 1476 } else {
5d3a551c 1477 arch_clear_hugepage_flags(page);
a5516438 1478 enqueue_huge_page(h, page);
db71ef79 1479 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1480 }
c77c0a8a
WL
1481}
1482
a5516438 1483static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1484{
0edaecfa 1485 INIT_LIST_HEAD(&page->lru);
f1e61557 1486 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1487 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1488 set_hugetlb_cgroup(page, NULL);
1adc4d41 1489 set_hugetlb_cgroup_rsvd(page, NULL);
db71ef79 1490 spin_lock_irq(&hugetlb_lock);
a5516438
AK
1491 h->nr_huge_pages++;
1492 h->nr_huge_pages_node[nid]++;
6c037149 1493 ClearHPageFreed(page);
db71ef79 1494 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
1495}
1496
d00181b9 1497static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1498{
1499 int i;
1500 int nr_pages = 1 << order;
1501 struct page *p = page + 1;
1502
1503 /* we rely on prep_new_huge_page to set the destructor */
1504 set_compound_order(page, order);
ef5a22be 1505 __ClearPageReserved(page);
de09d31d 1506 __SetPageHead(page);
20a0307c 1507 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1508 /*
1509 * For gigantic hugepages allocated through bootmem at
1510 * boot, it's safer to be consistent with the not-gigantic
1511 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1512 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1513 * pages may get the reference counting wrong if they see
1514 * PG_reserved set on a tail page (despite the head page not
1515 * having PG_reserved set). Enforcing this consistency between
1516 * head and tail pages allows drivers to optimize away a check
1517 * on the head page when they need know if put_page() is needed
1518 * after get_user_pages().
1519 */
1520 __ClearPageReserved(p);
58a84aa9 1521 set_page_count(p, 0);
1d798ca3 1522 set_compound_head(p, page);
20a0307c 1523 }
b4330afb 1524 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1525 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1526}
1527
7795912c
AM
1528/*
1529 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1530 * transparent huge pages. See the PageTransHuge() documentation for more
1531 * details.
1532 */
20a0307c
WF
1533int PageHuge(struct page *page)
1534{
20a0307c
WF
1535 if (!PageCompound(page))
1536 return 0;
1537
1538 page = compound_head(page);
f1e61557 1539 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1540}
43131e14
NH
1541EXPORT_SYMBOL_GPL(PageHuge);
1542
27c73ae7
AA
1543/*
1544 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1545 * normal or transparent huge pages.
1546 */
1547int PageHeadHuge(struct page *page_head)
1548{
27c73ae7
AA
1549 if (!PageHead(page_head))
1550 return 0;
1551
d4af73e3 1552 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1553}
27c73ae7 1554
c0d0381a
MK
1555/*
1556 * Find and lock address space (mapping) in write mode.
1557 *
336bf30e
MK
1558 * Upon entry, the page is locked which means that page_mapping() is
1559 * stable. Due to locking order, we can only trylock_write. If we can
1560 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1561 */
1562struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1563{
336bf30e 1564 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1565
c0d0381a
MK
1566 if (!mapping)
1567 return mapping;
1568
c0d0381a
MK
1569 if (i_mmap_trylock_write(mapping))
1570 return mapping;
1571
336bf30e 1572 return NULL;
c0d0381a
MK
1573}
1574
13d60f4b
ZY
1575pgoff_t __basepage_index(struct page *page)
1576{
1577 struct page *page_head = compound_head(page);
1578 pgoff_t index = page_index(page_head);
1579 unsigned long compound_idx;
1580
1581 if (!PageHuge(page_head))
1582 return page_index(page);
1583
1584 if (compound_order(page_head) >= MAX_ORDER)
1585 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1586 else
1587 compound_idx = page - page_head;
1588
1589 return (index << compound_order(page_head)) + compound_idx;
1590}
1591
0c397dae 1592static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1593 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1594 nodemask_t *node_alloc_noretry)
1da177e4 1595{
af0fb9df 1596 int order = huge_page_order(h);
1da177e4 1597 struct page *page;
f60858f9 1598 bool alloc_try_hard = true;
f96efd58 1599
f60858f9
MK
1600 /*
1601 * By default we always try hard to allocate the page with
1602 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1603 * a loop (to adjust global huge page counts) and previous allocation
1604 * failed, do not continue to try hard on the same node. Use the
1605 * node_alloc_noretry bitmap to manage this state information.
1606 */
1607 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1608 alloc_try_hard = false;
1609 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1610 if (alloc_try_hard)
1611 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1612 if (nid == NUMA_NO_NODE)
1613 nid = numa_mem_id();
84172f4b 1614 page = __alloc_pages(gfp_mask, order, nid, nmask);
af0fb9df
MH
1615 if (page)
1616 __count_vm_event(HTLB_BUDDY_PGALLOC);
1617 else
1618 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1619
f60858f9
MK
1620 /*
1621 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1622 * indicates an overall state change. Clear bit so that we resume
1623 * normal 'try hard' allocations.
1624 */
1625 if (node_alloc_noretry && page && !alloc_try_hard)
1626 node_clear(nid, *node_alloc_noretry);
1627
1628 /*
1629 * If we tried hard to get a page but failed, set bit so that
1630 * subsequent attempts will not try as hard until there is an
1631 * overall state change.
1632 */
1633 if (node_alloc_noretry && !page && alloc_try_hard)
1634 node_set(nid, *node_alloc_noretry);
1635
63b4613c
NA
1636 return page;
1637}
1638
0c397dae
MH
1639/*
1640 * Common helper to allocate a fresh hugetlb page. All specific allocators
1641 * should use this function to get new hugetlb pages
1642 */
1643static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1644 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1645 nodemask_t *node_alloc_noretry)
0c397dae
MH
1646{
1647 struct page *page;
1648
1649 if (hstate_is_gigantic(h))
1650 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1651 else
1652 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1653 nid, nmask, node_alloc_noretry);
0c397dae
MH
1654 if (!page)
1655 return NULL;
1656
1657 if (hstate_is_gigantic(h))
1658 prep_compound_gigantic_page(page, huge_page_order(h));
1659 prep_new_huge_page(h, page, page_to_nid(page));
1660
1661 return page;
1662}
1663
af0fb9df
MH
1664/*
1665 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1666 * manner.
1667 */
f60858f9
MK
1668static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1669 nodemask_t *node_alloc_noretry)
b2261026
JK
1670{
1671 struct page *page;
1672 int nr_nodes, node;
af0fb9df 1673 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1674
1675 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1676 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1677 node_alloc_noretry);
af0fb9df 1678 if (page)
b2261026 1679 break;
b2261026
JK
1680 }
1681
af0fb9df
MH
1682 if (!page)
1683 return 0;
b2261026 1684
af0fb9df
MH
1685 put_page(page); /* free it into the hugepage allocator */
1686
1687 return 1;
b2261026
JK
1688}
1689
e8c5c824 1690/*
10c6ec49
MK
1691 * Remove huge page from pool from next node to free. Attempt to keep
1692 * persistent huge pages more or less balanced over allowed nodes.
1693 * This routine only 'removes' the hugetlb page. The caller must make
1694 * an additional call to free the page to low level allocators.
e8c5c824
LS
1695 * Called with hugetlb_lock locked.
1696 */
10c6ec49
MK
1697static struct page *remove_pool_huge_page(struct hstate *h,
1698 nodemask_t *nodes_allowed,
1699 bool acct_surplus)
e8c5c824 1700{
b2261026 1701 int nr_nodes, node;
10c6ec49 1702 struct page *page = NULL;
e8c5c824 1703
b2261026 1704 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1705 /*
1706 * If we're returning unused surplus pages, only examine
1707 * nodes with surplus pages.
1708 */
b2261026
JK
1709 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1710 !list_empty(&h->hugepage_freelists[node])) {
10c6ec49 1711 page = list_entry(h->hugepage_freelists[node].next,
e8c5c824 1712 struct page, lru);
6eb4e88a 1713 remove_hugetlb_page(h, page, acct_surplus);
9a76db09 1714 break;
e8c5c824 1715 }
b2261026 1716 }
e8c5c824 1717
10c6ec49 1718 return page;
e8c5c824
LS
1719}
1720
c8721bbb
NH
1721/*
1722 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1723 * nothing for in-use hugepages and non-hugepages.
1724 * This function returns values like below:
1725 *
1726 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1727 * (allocated or reserved.)
1728 * 0: successfully dissolved free hugepages or the page is not a
1729 * hugepage (considered as already dissolved)
c8721bbb 1730 */
c3114a84 1731int dissolve_free_huge_page(struct page *page)
c8721bbb 1732{
6bc9b564 1733 int rc = -EBUSY;
082d5b6b 1734
7ffddd49 1735retry:
faf53def
NH
1736 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1737 if (!PageHuge(page))
1738 return 0;
1739
db71ef79 1740 spin_lock_irq(&hugetlb_lock);
faf53def
NH
1741 if (!PageHuge(page)) {
1742 rc = 0;
1743 goto out;
1744 }
1745
1746 if (!page_count(page)) {
2247bb33
GS
1747 struct page *head = compound_head(page);
1748 struct hstate *h = page_hstate(head);
6bc9b564 1749 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1750 goto out;
7ffddd49
MS
1751
1752 /*
1753 * We should make sure that the page is already on the free list
1754 * when it is dissolved.
1755 */
6c037149 1756 if (unlikely(!HPageFreed(head))) {
db71ef79 1757 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
1758 cond_resched();
1759
1760 /*
1761 * Theoretically, we should return -EBUSY when we
1762 * encounter this race. In fact, we have a chance
1763 * to successfully dissolve the page if we do a
1764 * retry. Because the race window is quite small.
1765 * If we seize this opportunity, it is an optimization
1766 * for increasing the success rate of dissolving page.
1767 */
1768 goto retry;
1769 }
1770
c3114a84
AK
1771 /*
1772 * Move PageHWPoison flag from head page to the raw error page,
1773 * which makes any subpages rather than the error page reusable.
1774 */
1775 if (PageHWPoison(head) && page != head) {
1776 SetPageHWPoison(page);
1777 ClearPageHWPoison(head);
1778 }
6eb4e88a 1779 remove_hugetlb_page(h, page, false);
c1470b33 1780 h->max_huge_pages--;
db71ef79 1781 spin_unlock_irq(&hugetlb_lock);
2247bb33 1782 update_and_free_page(h, head);
1121828a 1783 return 0;
c8721bbb 1784 }
082d5b6b 1785out:
db71ef79 1786 spin_unlock_irq(&hugetlb_lock);
082d5b6b 1787 return rc;
c8721bbb
NH
1788}
1789
1790/*
1791 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1792 * make specified memory blocks removable from the system.
2247bb33
GS
1793 * Note that this will dissolve a free gigantic hugepage completely, if any
1794 * part of it lies within the given range.
082d5b6b
GS
1795 * Also note that if dissolve_free_huge_page() returns with an error, all
1796 * free hugepages that were dissolved before that error are lost.
c8721bbb 1797 */
082d5b6b 1798int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1799{
c8721bbb 1800 unsigned long pfn;
eb03aa00 1801 struct page *page;
082d5b6b 1802 int rc = 0;
c8721bbb 1803
d0177639 1804 if (!hugepages_supported())
082d5b6b 1805 return rc;
d0177639 1806
eb03aa00
GS
1807 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1808 page = pfn_to_page(pfn);
faf53def
NH
1809 rc = dissolve_free_huge_page(page);
1810 if (rc)
1811 break;
eb03aa00 1812 }
082d5b6b
GS
1813
1814 return rc;
c8721bbb
NH
1815}
1816
ab5ac90a
MH
1817/*
1818 * Allocates a fresh surplus page from the page allocator.
1819 */
0c397dae 1820static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1821 int nid, nodemask_t *nmask)
7893d1d5 1822{
9980d744 1823 struct page *page = NULL;
7893d1d5 1824
bae7f4ae 1825 if (hstate_is_gigantic(h))
aa888a74
AK
1826 return NULL;
1827
db71ef79 1828 spin_lock_irq(&hugetlb_lock);
9980d744
MH
1829 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1830 goto out_unlock;
db71ef79 1831 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 1832
f60858f9 1833 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1834 if (!page)
0c397dae 1835 return NULL;
d1c3fb1f 1836
db71ef79 1837 spin_lock_irq(&hugetlb_lock);
9980d744
MH
1838 /*
1839 * We could have raced with the pool size change.
1840 * Double check that and simply deallocate the new page
1841 * if we would end up overcommiting the surpluses. Abuse
1842 * temporary page to workaround the nasty free_huge_page
1843 * codeflow
1844 */
1845 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 1846 SetHPageTemporary(page);
db71ef79 1847 spin_unlock_irq(&hugetlb_lock);
9980d744 1848 put_page(page);
2bf753e6 1849 return NULL;
9980d744 1850 } else {
9980d744 1851 h->surplus_huge_pages++;
4704dea3 1852 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1853 }
9980d744
MH
1854
1855out_unlock:
db71ef79 1856 spin_unlock_irq(&hugetlb_lock);
7893d1d5
AL
1857
1858 return page;
1859}
1860
bbe88753 1861static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1862 int nid, nodemask_t *nmask)
ab5ac90a
MH
1863{
1864 struct page *page;
1865
1866 if (hstate_is_gigantic(h))
1867 return NULL;
1868
f60858f9 1869 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1870 if (!page)
1871 return NULL;
1872
1873 /*
1874 * We do not account these pages as surplus because they are only
1875 * temporary and will be released properly on the last reference
1876 */
9157c311 1877 SetHPageTemporary(page);
ab5ac90a
MH
1878
1879 return page;
1880}
1881
099730d6
DH
1882/*
1883 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1884 */
e0ec90ee 1885static
0c397dae 1886struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1887 struct vm_area_struct *vma, unsigned long addr)
1888{
aaf14e40
MH
1889 struct page *page;
1890 struct mempolicy *mpol;
1891 gfp_t gfp_mask = htlb_alloc_mask(h);
1892 int nid;
1893 nodemask_t *nodemask;
1894
1895 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1896 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1897 mpol_cond_put(mpol);
1898
1899 return page;
099730d6
DH
1900}
1901
ab5ac90a 1902/* page migration callback function */
3e59fcb0 1903struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1904 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1905{
db71ef79 1906 spin_lock_irq(&hugetlb_lock);
4db9b2ef 1907 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1908 struct page *page;
1909
1910 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1911 if (page) {
db71ef79 1912 spin_unlock_irq(&hugetlb_lock);
3e59fcb0 1913 return page;
4db9b2ef
MH
1914 }
1915 }
db71ef79 1916 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 1917
0c397dae 1918 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1919}
1920
ebd63723 1921/* mempolicy aware migration callback */
389c8178
MH
1922struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1923 unsigned long address)
ebd63723
MH
1924{
1925 struct mempolicy *mpol;
1926 nodemask_t *nodemask;
1927 struct page *page;
ebd63723
MH
1928 gfp_t gfp_mask;
1929 int node;
1930
ebd63723
MH
1931 gfp_mask = htlb_alloc_mask(h);
1932 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 1933 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
1934 mpol_cond_put(mpol);
1935
1936 return page;
1937}
1938
e4e574b7 1939/*
25985edc 1940 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1941 * of size 'delta'.
1942 */
0a4f3d1b 1943static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 1944 __must_hold(&hugetlb_lock)
e4e574b7
AL
1945{
1946 struct list_head surplus_list;
1947 struct page *page, *tmp;
0a4f3d1b
LX
1948 int ret;
1949 long i;
1950 long needed, allocated;
28073b02 1951 bool alloc_ok = true;
e4e574b7 1952
a5516438 1953 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1954 if (needed <= 0) {
a5516438 1955 h->resv_huge_pages += delta;
e4e574b7 1956 return 0;
ac09b3a1 1957 }
e4e574b7
AL
1958
1959 allocated = 0;
1960 INIT_LIST_HEAD(&surplus_list);
1961
1962 ret = -ENOMEM;
1963retry:
db71ef79 1964 spin_unlock_irq(&hugetlb_lock);
e4e574b7 1965 for (i = 0; i < needed; i++) {
0c397dae 1966 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1967 NUMA_NO_NODE, NULL);
28073b02
HD
1968 if (!page) {
1969 alloc_ok = false;
1970 break;
1971 }
e4e574b7 1972 list_add(&page->lru, &surplus_list);
69ed779a 1973 cond_resched();
e4e574b7 1974 }
28073b02 1975 allocated += i;
e4e574b7
AL
1976
1977 /*
1978 * After retaking hugetlb_lock, we need to recalculate 'needed'
1979 * because either resv_huge_pages or free_huge_pages may have changed.
1980 */
db71ef79 1981 spin_lock_irq(&hugetlb_lock);
a5516438
AK
1982 needed = (h->resv_huge_pages + delta) -
1983 (h->free_huge_pages + allocated);
28073b02
HD
1984 if (needed > 0) {
1985 if (alloc_ok)
1986 goto retry;
1987 /*
1988 * We were not able to allocate enough pages to
1989 * satisfy the entire reservation so we free what
1990 * we've allocated so far.
1991 */
1992 goto free;
1993 }
e4e574b7
AL
1994 /*
1995 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1996 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1997 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1998 * allocator. Commit the entire reservation here to prevent another
1999 * process from stealing the pages as they are added to the pool but
2000 * before they are reserved.
e4e574b7
AL
2001 */
2002 needed += allocated;
a5516438 2003 h->resv_huge_pages += delta;
e4e574b7 2004 ret = 0;
a9869b83 2005
19fc3f0a 2006 /* Free the needed pages to the hugetlb pool */
e4e574b7 2007 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
e558464b
MS
2008 int zeroed;
2009
19fc3f0a
AL
2010 if ((--needed) < 0)
2011 break;
a9869b83
NH
2012 /*
2013 * This page is now managed by the hugetlb allocator and has
2014 * no users -- drop the buddy allocator's reference.
2015 */
e558464b
MS
2016 zeroed = put_page_testzero(page);
2017 VM_BUG_ON_PAGE(!zeroed, page);
a5516438 2018 enqueue_huge_page(h, page);
19fc3f0a 2019 }
28073b02 2020free:
db71ef79 2021 spin_unlock_irq(&hugetlb_lock);
19fc3f0a
AL
2022
2023 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2024 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2025 put_page(page);
db71ef79 2026 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2027
2028 return ret;
2029}
2030
2031/*
e5bbc8a6
MK
2032 * This routine has two main purposes:
2033 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2034 * in unused_resv_pages. This corresponds to the prior adjustments made
2035 * to the associated reservation map.
2036 * 2) Free any unused surplus pages that may have been allocated to satisfy
2037 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2038 */
a5516438
AK
2039static void return_unused_surplus_pages(struct hstate *h,
2040 unsigned long unused_resv_pages)
e4e574b7 2041{
e4e574b7 2042 unsigned long nr_pages;
10c6ec49
MK
2043 struct page *page;
2044 LIST_HEAD(page_list);
2045
2046 /* Uncommit the reservation */
2047 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2048
aa888a74 2049 /* Cannot return gigantic pages currently */
bae7f4ae 2050 if (hstate_is_gigantic(h))
e5bbc8a6 2051 goto out;
aa888a74 2052
e5bbc8a6
MK
2053 /*
2054 * Part (or even all) of the reservation could have been backed
2055 * by pre-allocated pages. Only free surplus pages.
2056 */
a5516438 2057 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2058
685f3457
LS
2059 /*
2060 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2061 * evenly across all nodes with memory. Iterate across these nodes
2062 * until we can no longer free unreserved surplus pages. This occurs
2063 * when the nodes with surplus pages have no free pages.
10c6ec49 2064 * remove_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2065 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2066 */
2067 while (nr_pages--) {
10c6ec49
MK
2068 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2069 if (!page)
e5bbc8a6 2070 goto out;
10c6ec49
MK
2071
2072 list_add(&page->lru, &page_list);
e4e574b7 2073 }
e5bbc8a6
MK
2074
2075out:
db71ef79 2076 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2077 update_and_free_pages_bulk(h, &page_list);
db71ef79 2078 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2079}
2080
5e911373 2081
c37f9fb1 2082/*
feba16e2 2083 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2084 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2085 *
2086 * vma_needs_reservation is called to determine if the huge page at addr
2087 * within the vma has an associated reservation. If a reservation is
2088 * needed, the value 1 is returned. The caller is then responsible for
2089 * managing the global reservation and subpool usage counts. After
2090 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2091 * to add the page to the reservation map. If the page allocation fails,
2092 * the reservation must be ended instead of committed. vma_end_reservation
2093 * is called in such cases.
cf3ad20b
MK
2094 *
2095 * In the normal case, vma_commit_reservation returns the same value
2096 * as the preceding vma_needs_reservation call. The only time this
2097 * is not the case is if a reserve map was changed between calls. It
2098 * is the responsibility of the caller to notice the difference and
2099 * take appropriate action.
96b96a96
MK
2100 *
2101 * vma_add_reservation is used in error paths where a reservation must
2102 * be restored when a newly allocated huge page must be freed. It is
2103 * to be called after calling vma_needs_reservation to determine if a
2104 * reservation exists.
c37f9fb1 2105 */
5e911373
MK
2106enum vma_resv_mode {
2107 VMA_NEEDS_RESV,
2108 VMA_COMMIT_RESV,
feba16e2 2109 VMA_END_RESV,
96b96a96 2110 VMA_ADD_RESV,
5e911373 2111};
cf3ad20b
MK
2112static long __vma_reservation_common(struct hstate *h,
2113 struct vm_area_struct *vma, unsigned long addr,
5e911373 2114 enum vma_resv_mode mode)
c37f9fb1 2115{
4e35f483
JK
2116 struct resv_map *resv;
2117 pgoff_t idx;
cf3ad20b 2118 long ret;
0db9d74e 2119 long dummy_out_regions_needed;
c37f9fb1 2120
4e35f483
JK
2121 resv = vma_resv_map(vma);
2122 if (!resv)
84afd99b 2123 return 1;
c37f9fb1 2124
4e35f483 2125 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2126 switch (mode) {
2127 case VMA_NEEDS_RESV:
0db9d74e
MA
2128 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2129 /* We assume that vma_reservation_* routines always operate on
2130 * 1 page, and that adding to resv map a 1 page entry can only
2131 * ever require 1 region.
2132 */
2133 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2134 break;
2135 case VMA_COMMIT_RESV:
075a61d0 2136 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2137 /* region_add calls of range 1 should never fail. */
2138 VM_BUG_ON(ret < 0);
5e911373 2139 break;
feba16e2 2140 case VMA_END_RESV:
0db9d74e 2141 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2142 ret = 0;
2143 break;
96b96a96 2144 case VMA_ADD_RESV:
0db9d74e 2145 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2146 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2147 /* region_add calls of range 1 should never fail. */
2148 VM_BUG_ON(ret < 0);
2149 } else {
2150 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2151 ret = region_del(resv, idx, idx + 1);
2152 }
2153 break;
5e911373
MK
2154 default:
2155 BUG();
2156 }
84afd99b 2157
4e35f483 2158 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2159 return ret;
bf3d12b9
ML
2160 /*
2161 * We know private mapping must have HPAGE_RESV_OWNER set.
2162 *
2163 * In most cases, reserves always exist for private mappings.
2164 * However, a file associated with mapping could have been
2165 * hole punched or truncated after reserves were consumed.
2166 * As subsequent fault on such a range will not use reserves.
2167 * Subtle - The reserve map for private mappings has the
2168 * opposite meaning than that of shared mappings. If NO
2169 * entry is in the reserve map, it means a reservation exists.
2170 * If an entry exists in the reserve map, it means the
2171 * reservation has already been consumed. As a result, the
2172 * return value of this routine is the opposite of the
2173 * value returned from reserve map manipulation routines above.
2174 */
2175 if (ret > 0)
2176 return 0;
2177 if (ret == 0)
2178 return 1;
2179 return ret;
c37f9fb1 2180}
cf3ad20b
MK
2181
2182static long vma_needs_reservation(struct hstate *h,
a5516438 2183 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2184{
5e911373 2185 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2186}
84afd99b 2187
cf3ad20b
MK
2188static long vma_commit_reservation(struct hstate *h,
2189 struct vm_area_struct *vma, unsigned long addr)
2190{
5e911373
MK
2191 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2192}
2193
feba16e2 2194static void vma_end_reservation(struct hstate *h,
5e911373
MK
2195 struct vm_area_struct *vma, unsigned long addr)
2196{
feba16e2 2197 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2198}
2199
96b96a96
MK
2200static long vma_add_reservation(struct hstate *h,
2201 struct vm_area_struct *vma, unsigned long addr)
2202{
2203 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2204}
2205
2206/*
2207 * This routine is called to restore a reservation on error paths. In the
2208 * specific error paths, a huge page was allocated (via alloc_huge_page)
2209 * and is about to be freed. If a reservation for the page existed,
d6995da3
MK
2210 * alloc_huge_page would have consumed the reservation and set
2211 * HPageRestoreReserve in the newly allocated page. When the page is freed
2212 * via free_huge_page, the global reservation count will be incremented if
2213 * HPageRestoreReserve is set. However, free_huge_page can not adjust the
2214 * reserve map. Adjust the reserve map here to be consistent with global
2215 * reserve count adjustments to be made by free_huge_page.
96b96a96
MK
2216 */
2217static void restore_reserve_on_error(struct hstate *h,
2218 struct vm_area_struct *vma, unsigned long address,
2219 struct page *page)
2220{
d6995da3 2221 if (unlikely(HPageRestoreReserve(page))) {
96b96a96
MK
2222 long rc = vma_needs_reservation(h, vma, address);
2223
2224 if (unlikely(rc < 0)) {
2225 /*
2226 * Rare out of memory condition in reserve map
d6995da3 2227 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2228 * global reserve count will not be incremented
2229 * by free_huge_page. This will make it appear
2230 * as though the reservation for this page was
2231 * consumed. This may prevent the task from
2232 * faulting in the page at a later time. This
2233 * is better than inconsistent global huge page
2234 * accounting of reserve counts.
2235 */
d6995da3 2236 ClearHPageRestoreReserve(page);
96b96a96
MK
2237 } else if (rc) {
2238 rc = vma_add_reservation(h, vma, address);
2239 if (unlikely(rc < 0))
2240 /*
2241 * See above comment about rare out of
2242 * memory condition.
2243 */
d6995da3 2244 ClearHPageRestoreReserve(page);
96b96a96
MK
2245 } else
2246 vma_end_reservation(h, vma, address);
2247 }
2248}
2249
70c3547e 2250struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2251 unsigned long addr, int avoid_reserve)
1da177e4 2252{
90481622 2253 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2254 struct hstate *h = hstate_vma(vma);
348ea204 2255 struct page *page;
d85f69b0
MK
2256 long map_chg, map_commit;
2257 long gbl_chg;
6d76dcf4
AK
2258 int ret, idx;
2259 struct hugetlb_cgroup *h_cg;
08cf9faf 2260 bool deferred_reserve;
a1e78772 2261
6d76dcf4 2262 idx = hstate_index(h);
a1e78772 2263 /*
d85f69b0
MK
2264 * Examine the region/reserve map to determine if the process
2265 * has a reservation for the page to be allocated. A return
2266 * code of zero indicates a reservation exists (no change).
a1e78772 2267 */
d85f69b0
MK
2268 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2269 if (map_chg < 0)
76dcee75 2270 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2271
2272 /*
2273 * Processes that did not create the mapping will have no
2274 * reserves as indicated by the region/reserve map. Check
2275 * that the allocation will not exceed the subpool limit.
2276 * Allocations for MAP_NORESERVE mappings also need to be
2277 * checked against any subpool limit.
2278 */
2279 if (map_chg || avoid_reserve) {
2280 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2281 if (gbl_chg < 0) {
feba16e2 2282 vma_end_reservation(h, vma, addr);
76dcee75 2283 return ERR_PTR(-ENOSPC);
5e911373 2284 }
1da177e4 2285
d85f69b0
MK
2286 /*
2287 * Even though there was no reservation in the region/reserve
2288 * map, there could be reservations associated with the
2289 * subpool that can be used. This would be indicated if the
2290 * return value of hugepage_subpool_get_pages() is zero.
2291 * However, if avoid_reserve is specified we still avoid even
2292 * the subpool reservations.
2293 */
2294 if (avoid_reserve)
2295 gbl_chg = 1;
2296 }
2297
08cf9faf
MA
2298 /* If this allocation is not consuming a reservation, charge it now.
2299 */
6501fe5f 2300 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2301 if (deferred_reserve) {
2302 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2303 idx, pages_per_huge_page(h), &h_cg);
2304 if (ret)
2305 goto out_subpool_put;
2306 }
2307
6d76dcf4 2308 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2309 if (ret)
08cf9faf 2310 goto out_uncharge_cgroup_reservation;
8f34af6f 2311
db71ef79 2312 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
2313 /*
2314 * glb_chg is passed to indicate whether or not a page must be taken
2315 * from the global free pool (global change). gbl_chg == 0 indicates
2316 * a reservation exists for the allocation.
2317 */
2318 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2319 if (!page) {
db71ef79 2320 spin_unlock_irq(&hugetlb_lock);
0c397dae 2321 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2322 if (!page)
2323 goto out_uncharge_cgroup;
a88c7695 2324 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2325 SetHPageRestoreReserve(page);
a88c7695
NH
2326 h->resv_huge_pages--;
2327 }
db71ef79 2328 spin_lock_irq(&hugetlb_lock);
15a8d68e 2329 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2330 /* Fall through */
68842c9b 2331 }
81a6fcae 2332 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2333 /* If allocation is not consuming a reservation, also store the
2334 * hugetlb_cgroup pointer on the page.
2335 */
2336 if (deferred_reserve) {
2337 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2338 h_cg, page);
2339 }
2340
db71ef79 2341 spin_unlock_irq(&hugetlb_lock);
348ea204 2342
d6995da3 2343 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2344
d85f69b0
MK
2345 map_commit = vma_commit_reservation(h, vma, addr);
2346 if (unlikely(map_chg > map_commit)) {
33039678
MK
2347 /*
2348 * The page was added to the reservation map between
2349 * vma_needs_reservation and vma_commit_reservation.
2350 * This indicates a race with hugetlb_reserve_pages.
2351 * Adjust for the subpool count incremented above AND
2352 * in hugetlb_reserve_pages for the same page. Also,
2353 * the reservation count added in hugetlb_reserve_pages
2354 * no longer applies.
2355 */
2356 long rsv_adjust;
2357
2358 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2359 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2360 if (deferred_reserve)
2361 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2362 pages_per_huge_page(h), page);
33039678 2363 }
90d8b7e6 2364 return page;
8f34af6f
JZ
2365
2366out_uncharge_cgroup:
2367 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2368out_uncharge_cgroup_reservation:
2369 if (deferred_reserve)
2370 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2371 h_cg);
8f34af6f 2372out_subpool_put:
d85f69b0 2373 if (map_chg || avoid_reserve)
8f34af6f 2374 hugepage_subpool_put_pages(spool, 1);
feba16e2 2375 vma_end_reservation(h, vma, addr);
8f34af6f 2376 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2377}
2378
e24a1307
AK
2379int alloc_bootmem_huge_page(struct hstate *h)
2380 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2381int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2382{
2383 struct huge_bootmem_page *m;
b2261026 2384 int nr_nodes, node;
aa888a74 2385
b2261026 2386 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2387 void *addr;
2388
eb31d559 2389 addr = memblock_alloc_try_nid_raw(
8b89a116 2390 huge_page_size(h), huge_page_size(h),
97ad1087 2391 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2392 if (addr) {
2393 /*
2394 * Use the beginning of the huge page to store the
2395 * huge_bootmem_page struct (until gather_bootmem
2396 * puts them into the mem_map).
2397 */
2398 m = addr;
91f47662 2399 goto found;
aa888a74 2400 }
aa888a74
AK
2401 }
2402 return 0;
2403
2404found:
df994ead 2405 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2406 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2407 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2408 list_add(&m->list, &huge_boot_pages);
2409 m->hstate = h;
2410 return 1;
2411}
2412
d00181b9
KS
2413static void __init prep_compound_huge_page(struct page *page,
2414 unsigned int order)
18229df5
AW
2415{
2416 if (unlikely(order > (MAX_ORDER - 1)))
2417 prep_compound_gigantic_page(page, order);
2418 else
2419 prep_compound_page(page, order);
2420}
2421
aa888a74
AK
2422/* Put bootmem huge pages into the standard lists after mem_map is up */
2423static void __init gather_bootmem_prealloc(void)
2424{
2425 struct huge_bootmem_page *m;
2426
2427 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2428 struct page *page = virt_to_page(m);
aa888a74 2429 struct hstate *h = m->hstate;
ee8f248d 2430
aa888a74 2431 WARN_ON(page_count(page) != 1);
c78a7f36 2432 prep_compound_huge_page(page, huge_page_order(h));
ef5a22be 2433 WARN_ON(PageReserved(page));
aa888a74 2434 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2435 put_page(page); /* free it into the hugepage allocator */
2436
b0320c7b
RA
2437 /*
2438 * If we had gigantic hugepages allocated at boot time, we need
2439 * to restore the 'stolen' pages to totalram_pages in order to
2440 * fix confusing memory reports from free(1) and another
2441 * side-effects, like CommitLimit going negative.
2442 */
bae7f4ae 2443 if (hstate_is_gigantic(h))
c78a7f36 2444 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 2445 cond_resched();
aa888a74
AK
2446 }
2447}
2448
8faa8b07 2449static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2450{
2451 unsigned long i;
f60858f9
MK
2452 nodemask_t *node_alloc_noretry;
2453
2454 if (!hstate_is_gigantic(h)) {
2455 /*
2456 * Bit mask controlling how hard we retry per-node allocations.
2457 * Ignore errors as lower level routines can deal with
2458 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2459 * time, we are likely in bigger trouble.
2460 */
2461 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2462 GFP_KERNEL);
2463 } else {
2464 /* allocations done at boot time */
2465 node_alloc_noretry = NULL;
2466 }
2467
2468 /* bit mask controlling how hard we retry per-node allocations */
2469 if (node_alloc_noretry)
2470 nodes_clear(*node_alloc_noretry);
a5516438 2471
e5ff2159 2472 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2473 if (hstate_is_gigantic(h)) {
dbda8fea 2474 if (hugetlb_cma_size) {
cf11e85f 2475 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
7ecc9565 2476 goto free;
cf11e85f 2477 }
aa888a74
AK
2478 if (!alloc_bootmem_huge_page(h))
2479 break;
0c397dae 2480 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2481 &node_states[N_MEMORY],
2482 node_alloc_noretry))
1da177e4 2483 break;
69ed779a 2484 cond_resched();
1da177e4 2485 }
d715cf80
LH
2486 if (i < h->max_huge_pages) {
2487 char buf[32];
2488
c6247f72 2489 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2490 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2491 h->max_huge_pages, buf, i);
2492 h->max_huge_pages = i;
2493 }
7ecc9565 2494free:
f60858f9 2495 kfree(node_alloc_noretry);
e5ff2159
AK
2496}
2497
2498static void __init hugetlb_init_hstates(void)
2499{
2500 struct hstate *h;
2501
2502 for_each_hstate(h) {
641844f5
NH
2503 if (minimum_order > huge_page_order(h))
2504 minimum_order = huge_page_order(h);
2505
8faa8b07 2506 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2507 if (!hstate_is_gigantic(h))
8faa8b07 2508 hugetlb_hstate_alloc_pages(h);
e5ff2159 2509 }
641844f5 2510 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2511}
2512
2513static void __init report_hugepages(void)
2514{
2515 struct hstate *h;
2516
2517 for_each_hstate(h) {
4abd32db 2518 char buf[32];
c6247f72
MW
2519
2520 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2521 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2522 buf, h->free_huge_pages);
e5ff2159
AK
2523 }
2524}
2525
1da177e4 2526#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2527static void try_to_free_low(struct hstate *h, unsigned long count,
2528 nodemask_t *nodes_allowed)
1da177e4 2529{
4415cc8d 2530 int i;
1121828a 2531 LIST_HEAD(page_list);
4415cc8d 2532
bae7f4ae 2533 if (hstate_is_gigantic(h))
aa888a74
AK
2534 return;
2535
1121828a
MK
2536 /*
2537 * Collect pages to be freed on a list, and free after dropping lock
2538 */
6ae11b27 2539 for_each_node_mask(i, *nodes_allowed) {
10c6ec49 2540 struct page *page, *next;
a5516438
AK
2541 struct list_head *freel = &h->hugepage_freelists[i];
2542 list_for_each_entry_safe(page, next, freel, lru) {
2543 if (count >= h->nr_huge_pages)
1121828a 2544 goto out;
1da177e4
LT
2545 if (PageHighMem(page))
2546 continue;
6eb4e88a 2547 remove_hugetlb_page(h, page, false);
1121828a 2548 list_add(&page->lru, &page_list);
1da177e4
LT
2549 }
2550 }
1121828a
MK
2551
2552out:
db71ef79 2553 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2554 update_and_free_pages_bulk(h, &page_list);
db71ef79 2555 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
2556}
2557#else
6ae11b27
LS
2558static inline void try_to_free_low(struct hstate *h, unsigned long count,
2559 nodemask_t *nodes_allowed)
1da177e4
LT
2560{
2561}
2562#endif
2563
20a0307c
WF
2564/*
2565 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2566 * balanced by operating on them in a round-robin fashion.
2567 * Returns 1 if an adjustment was made.
2568 */
6ae11b27
LS
2569static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2570 int delta)
20a0307c 2571{
b2261026 2572 int nr_nodes, node;
20a0307c
WF
2573
2574 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2575
b2261026
JK
2576 if (delta < 0) {
2577 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2578 if (h->surplus_huge_pages_node[node])
2579 goto found;
e8c5c824 2580 }
b2261026
JK
2581 } else {
2582 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2583 if (h->surplus_huge_pages_node[node] <
2584 h->nr_huge_pages_node[node])
2585 goto found;
e8c5c824 2586 }
b2261026
JK
2587 }
2588 return 0;
20a0307c 2589
b2261026
JK
2590found:
2591 h->surplus_huge_pages += delta;
2592 h->surplus_huge_pages_node[node] += delta;
2593 return 1;
20a0307c
WF
2594}
2595
a5516438 2596#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2597static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2598 nodemask_t *nodes_allowed)
1da177e4 2599{
7893d1d5 2600 unsigned long min_count, ret;
10c6ec49
MK
2601 struct page *page;
2602 LIST_HEAD(page_list);
f60858f9
MK
2603 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2604
2605 /*
2606 * Bit mask controlling how hard we retry per-node allocations.
2607 * If we can not allocate the bit mask, do not attempt to allocate
2608 * the requested huge pages.
2609 */
2610 if (node_alloc_noretry)
2611 nodes_clear(*node_alloc_noretry);
2612 else
2613 return -ENOMEM;
1da177e4 2614
29383967
MK
2615 /*
2616 * resize_lock mutex prevents concurrent adjustments to number of
2617 * pages in hstate via the proc/sysfs interfaces.
2618 */
2619 mutex_lock(&h->resize_lock);
db71ef79 2620 spin_lock_irq(&hugetlb_lock);
4eb0716e 2621
fd875dca
MK
2622 /*
2623 * Check for a node specific request.
2624 * Changing node specific huge page count may require a corresponding
2625 * change to the global count. In any case, the passed node mask
2626 * (nodes_allowed) will restrict alloc/free to the specified node.
2627 */
2628 if (nid != NUMA_NO_NODE) {
2629 unsigned long old_count = count;
2630
2631 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2632 /*
2633 * User may have specified a large count value which caused the
2634 * above calculation to overflow. In this case, they wanted
2635 * to allocate as many huge pages as possible. Set count to
2636 * largest possible value to align with their intention.
2637 */
2638 if (count < old_count)
2639 count = ULONG_MAX;
2640 }
2641
4eb0716e
AG
2642 /*
2643 * Gigantic pages runtime allocation depend on the capability for large
2644 * page range allocation.
2645 * If the system does not provide this feature, return an error when
2646 * the user tries to allocate gigantic pages but let the user free the
2647 * boottime allocated gigantic pages.
2648 */
2649 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2650 if (count > persistent_huge_pages(h)) {
db71ef79 2651 spin_unlock_irq(&hugetlb_lock);
29383967 2652 mutex_unlock(&h->resize_lock);
f60858f9 2653 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2654 return -EINVAL;
2655 }
2656 /* Fall through to decrease pool */
2657 }
aa888a74 2658
7893d1d5
AL
2659 /*
2660 * Increase the pool size
2661 * First take pages out of surplus state. Then make up the
2662 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2663 *
0c397dae 2664 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2665 * to convert a surplus huge page to a normal huge page. That is
2666 * not critical, though, it just means the overall size of the
2667 * pool might be one hugepage larger than it needs to be, but
2668 * within all the constraints specified by the sysctls.
7893d1d5 2669 */
a5516438 2670 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2671 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2672 break;
2673 }
2674
a5516438 2675 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2676 /*
2677 * If this allocation races such that we no longer need the
2678 * page, free_huge_page will handle it by freeing the page
2679 * and reducing the surplus.
2680 */
db71ef79 2681 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
2682
2683 /* yield cpu to avoid soft lockup */
2684 cond_resched();
2685
f60858f9
MK
2686 ret = alloc_pool_huge_page(h, nodes_allowed,
2687 node_alloc_noretry);
db71ef79 2688 spin_lock_irq(&hugetlb_lock);
7893d1d5
AL
2689 if (!ret)
2690 goto out;
2691
536240f2
MG
2692 /* Bail for signals. Probably ctrl-c from user */
2693 if (signal_pending(current))
2694 goto out;
7893d1d5 2695 }
7893d1d5
AL
2696
2697 /*
2698 * Decrease the pool size
2699 * First return free pages to the buddy allocator (being careful
2700 * to keep enough around to satisfy reservations). Then place
2701 * pages into surplus state as needed so the pool will shrink
2702 * to the desired size as pages become free.
d1c3fb1f
NA
2703 *
2704 * By placing pages into the surplus state independent of the
2705 * overcommit value, we are allowing the surplus pool size to
2706 * exceed overcommit. There are few sane options here. Since
0c397dae 2707 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2708 * though, we'll note that we're not allowed to exceed surplus
2709 * and won't grow the pool anywhere else. Not until one of the
2710 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2711 */
a5516438 2712 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2713 min_count = max(count, min_count);
6ae11b27 2714 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
2715
2716 /*
2717 * Collect pages to be removed on list without dropping lock
2718 */
a5516438 2719 while (min_count < persistent_huge_pages(h)) {
10c6ec49
MK
2720 page = remove_pool_huge_page(h, nodes_allowed, 0);
2721 if (!page)
1da177e4 2722 break;
10c6ec49
MK
2723
2724 list_add(&page->lru, &page_list);
1da177e4 2725 }
10c6ec49 2726 /* free the pages after dropping lock */
db71ef79 2727 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2728 update_and_free_pages_bulk(h, &page_list);
db71ef79 2729 spin_lock_irq(&hugetlb_lock);
10c6ec49 2730
a5516438 2731 while (count < persistent_huge_pages(h)) {
6ae11b27 2732 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2733 break;
2734 }
2735out:
4eb0716e 2736 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 2737 spin_unlock_irq(&hugetlb_lock);
29383967 2738 mutex_unlock(&h->resize_lock);
4eb0716e 2739
f60858f9
MK
2740 NODEMASK_FREE(node_alloc_noretry);
2741
4eb0716e 2742 return 0;
1da177e4
LT
2743}
2744
a3437870
NA
2745#define HSTATE_ATTR_RO(_name) \
2746 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2747
2748#define HSTATE_ATTR(_name) \
2749 static struct kobj_attribute _name##_attr = \
2750 __ATTR(_name, 0644, _name##_show, _name##_store)
2751
2752static struct kobject *hugepages_kobj;
2753static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2754
9a305230
LS
2755static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2756
2757static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2758{
2759 int i;
9a305230 2760
a3437870 2761 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2762 if (hstate_kobjs[i] == kobj) {
2763 if (nidp)
2764 *nidp = NUMA_NO_NODE;
a3437870 2765 return &hstates[i];
9a305230
LS
2766 }
2767
2768 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2769}
2770
06808b08 2771static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2772 struct kobj_attribute *attr, char *buf)
2773{
9a305230
LS
2774 struct hstate *h;
2775 unsigned long nr_huge_pages;
2776 int nid;
2777
2778 h = kobj_to_hstate(kobj, &nid);
2779 if (nid == NUMA_NO_NODE)
2780 nr_huge_pages = h->nr_huge_pages;
2781 else
2782 nr_huge_pages = h->nr_huge_pages_node[nid];
2783
ae7a927d 2784 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 2785}
adbe8726 2786
238d3c13
DR
2787static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2788 struct hstate *h, int nid,
2789 unsigned long count, size_t len)
a3437870
NA
2790{
2791 int err;
2d0adf7e 2792 nodemask_t nodes_allowed, *n_mask;
a3437870 2793
2d0adf7e
OS
2794 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2795 return -EINVAL;
adbe8726 2796
9a305230
LS
2797 if (nid == NUMA_NO_NODE) {
2798 /*
2799 * global hstate attribute
2800 */
2801 if (!(obey_mempolicy &&
2d0adf7e
OS
2802 init_nodemask_of_mempolicy(&nodes_allowed)))
2803 n_mask = &node_states[N_MEMORY];
2804 else
2805 n_mask = &nodes_allowed;
2806 } else {
9a305230 2807 /*
fd875dca
MK
2808 * Node specific request. count adjustment happens in
2809 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2810 */
2d0adf7e
OS
2811 init_nodemask_of_node(&nodes_allowed, nid);
2812 n_mask = &nodes_allowed;
fd875dca 2813 }
9a305230 2814
2d0adf7e 2815 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2816
4eb0716e 2817 return err ? err : len;
06808b08
LS
2818}
2819
238d3c13
DR
2820static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2821 struct kobject *kobj, const char *buf,
2822 size_t len)
2823{
2824 struct hstate *h;
2825 unsigned long count;
2826 int nid;
2827 int err;
2828
2829 err = kstrtoul(buf, 10, &count);
2830 if (err)
2831 return err;
2832
2833 h = kobj_to_hstate(kobj, &nid);
2834 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2835}
2836
06808b08
LS
2837static ssize_t nr_hugepages_show(struct kobject *kobj,
2838 struct kobj_attribute *attr, char *buf)
2839{
2840 return nr_hugepages_show_common(kobj, attr, buf);
2841}
2842
2843static ssize_t nr_hugepages_store(struct kobject *kobj,
2844 struct kobj_attribute *attr, const char *buf, size_t len)
2845{
238d3c13 2846 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2847}
2848HSTATE_ATTR(nr_hugepages);
2849
06808b08
LS
2850#ifdef CONFIG_NUMA
2851
2852/*
2853 * hstate attribute for optionally mempolicy-based constraint on persistent
2854 * huge page alloc/free.
2855 */
2856static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
2857 struct kobj_attribute *attr,
2858 char *buf)
06808b08
LS
2859{
2860 return nr_hugepages_show_common(kobj, attr, buf);
2861}
2862
2863static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2864 struct kobj_attribute *attr, const char *buf, size_t len)
2865{
238d3c13 2866 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2867}
2868HSTATE_ATTR(nr_hugepages_mempolicy);
2869#endif
2870
2871
a3437870
NA
2872static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2873 struct kobj_attribute *attr, char *buf)
2874{
9a305230 2875 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2876 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 2877}
adbe8726 2878
a3437870
NA
2879static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2880 struct kobj_attribute *attr, const char *buf, size_t count)
2881{
2882 int err;
2883 unsigned long input;
9a305230 2884 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2885
bae7f4ae 2886 if (hstate_is_gigantic(h))
adbe8726
EM
2887 return -EINVAL;
2888
3dbb95f7 2889 err = kstrtoul(buf, 10, &input);
a3437870 2890 if (err)
73ae31e5 2891 return err;
a3437870 2892
db71ef79 2893 spin_lock_irq(&hugetlb_lock);
a3437870 2894 h->nr_overcommit_huge_pages = input;
db71ef79 2895 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
2896
2897 return count;
2898}
2899HSTATE_ATTR(nr_overcommit_hugepages);
2900
2901static ssize_t free_hugepages_show(struct kobject *kobj,
2902 struct kobj_attribute *attr, char *buf)
2903{
9a305230
LS
2904 struct hstate *h;
2905 unsigned long free_huge_pages;
2906 int nid;
2907
2908 h = kobj_to_hstate(kobj, &nid);
2909 if (nid == NUMA_NO_NODE)
2910 free_huge_pages = h->free_huge_pages;
2911 else
2912 free_huge_pages = h->free_huge_pages_node[nid];
2913
ae7a927d 2914 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
2915}
2916HSTATE_ATTR_RO(free_hugepages);
2917
2918static ssize_t resv_hugepages_show(struct kobject *kobj,
2919 struct kobj_attribute *attr, char *buf)
2920{
9a305230 2921 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2922 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
2923}
2924HSTATE_ATTR_RO(resv_hugepages);
2925
2926static ssize_t surplus_hugepages_show(struct kobject *kobj,
2927 struct kobj_attribute *attr, char *buf)
2928{
9a305230
LS
2929 struct hstate *h;
2930 unsigned long surplus_huge_pages;
2931 int nid;
2932
2933 h = kobj_to_hstate(kobj, &nid);
2934 if (nid == NUMA_NO_NODE)
2935 surplus_huge_pages = h->surplus_huge_pages;
2936 else
2937 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2938
ae7a927d 2939 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2940}
2941HSTATE_ATTR_RO(surplus_hugepages);
2942
2943static struct attribute *hstate_attrs[] = {
2944 &nr_hugepages_attr.attr,
2945 &nr_overcommit_hugepages_attr.attr,
2946 &free_hugepages_attr.attr,
2947 &resv_hugepages_attr.attr,
2948 &surplus_hugepages_attr.attr,
06808b08
LS
2949#ifdef CONFIG_NUMA
2950 &nr_hugepages_mempolicy_attr.attr,
2951#endif
a3437870
NA
2952 NULL,
2953};
2954
67e5ed96 2955static const struct attribute_group hstate_attr_group = {
a3437870
NA
2956 .attrs = hstate_attrs,
2957};
2958
094e9539
JM
2959static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2960 struct kobject **hstate_kobjs,
67e5ed96 2961 const struct attribute_group *hstate_attr_group)
a3437870
NA
2962{
2963 int retval;
972dc4de 2964 int hi = hstate_index(h);
a3437870 2965
9a305230
LS
2966 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2967 if (!hstate_kobjs[hi])
a3437870
NA
2968 return -ENOMEM;
2969
9a305230 2970 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 2971 if (retval) {
9a305230 2972 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
2973 hstate_kobjs[hi] = NULL;
2974 }
a3437870
NA
2975
2976 return retval;
2977}
2978
2979static void __init hugetlb_sysfs_init(void)
2980{
2981 struct hstate *h;
2982 int err;
2983
2984 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2985 if (!hugepages_kobj)
2986 return;
2987
2988 for_each_hstate(h) {
9a305230
LS
2989 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2990 hstate_kobjs, &hstate_attr_group);
a3437870 2991 if (err)
282f4214 2992 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
2993 }
2994}
2995
9a305230
LS
2996#ifdef CONFIG_NUMA
2997
2998/*
2999 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
3000 * with node devices in node_devices[] using a parallel array. The array
3001 * index of a node device or _hstate == node id.
3002 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
3003 * the base kernel, on the hugetlb module.
3004 */
3005struct node_hstate {
3006 struct kobject *hugepages_kobj;
3007 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3008};
b4e289a6 3009static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3010
3011/*
10fbcf4c 3012 * A subset of global hstate attributes for node devices
9a305230
LS
3013 */
3014static struct attribute *per_node_hstate_attrs[] = {
3015 &nr_hugepages_attr.attr,
3016 &free_hugepages_attr.attr,
3017 &surplus_hugepages_attr.attr,
3018 NULL,
3019};
3020
67e5ed96 3021static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3022 .attrs = per_node_hstate_attrs,
3023};
3024
3025/*
10fbcf4c 3026 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3027 * Returns node id via non-NULL nidp.
3028 */
3029static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3030{
3031 int nid;
3032
3033 for (nid = 0; nid < nr_node_ids; nid++) {
3034 struct node_hstate *nhs = &node_hstates[nid];
3035 int i;
3036 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3037 if (nhs->hstate_kobjs[i] == kobj) {
3038 if (nidp)
3039 *nidp = nid;
3040 return &hstates[i];
3041 }
3042 }
3043
3044 BUG();
3045 return NULL;
3046}
3047
3048/*
10fbcf4c 3049 * Unregister hstate attributes from a single node device.
9a305230
LS
3050 * No-op if no hstate attributes attached.
3051 */
3cd8b44f 3052static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3053{
3054 struct hstate *h;
10fbcf4c 3055 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3056
3057 if (!nhs->hugepages_kobj)
9b5e5d0f 3058 return; /* no hstate attributes */
9a305230 3059
972dc4de
AK
3060 for_each_hstate(h) {
3061 int idx = hstate_index(h);
3062 if (nhs->hstate_kobjs[idx]) {
3063 kobject_put(nhs->hstate_kobjs[idx]);
3064 nhs->hstate_kobjs[idx] = NULL;
9a305230 3065 }
972dc4de 3066 }
9a305230
LS
3067
3068 kobject_put(nhs->hugepages_kobj);
3069 nhs->hugepages_kobj = NULL;
3070}
3071
9a305230
LS
3072
3073/*
10fbcf4c 3074 * Register hstate attributes for a single node device.
9a305230
LS
3075 * No-op if attributes already registered.
3076 */
3cd8b44f 3077static void hugetlb_register_node(struct node *node)
9a305230
LS
3078{
3079 struct hstate *h;
10fbcf4c 3080 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3081 int err;
3082
3083 if (nhs->hugepages_kobj)
3084 return; /* already allocated */
3085
3086 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3087 &node->dev.kobj);
9a305230
LS
3088 if (!nhs->hugepages_kobj)
3089 return;
3090
3091 for_each_hstate(h) {
3092 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3093 nhs->hstate_kobjs,
3094 &per_node_hstate_attr_group);
3095 if (err) {
282f4214 3096 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3097 h->name, node->dev.id);
9a305230
LS
3098 hugetlb_unregister_node(node);
3099 break;
3100 }
3101 }
3102}
3103
3104/*
9b5e5d0f 3105 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3106 * devices of nodes that have memory. All on-line nodes should have
3107 * registered their associated device by this time.
9a305230 3108 */
7d9ca000 3109static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3110{
3111 int nid;
3112
8cebfcd0 3113 for_each_node_state(nid, N_MEMORY) {
8732794b 3114 struct node *node = node_devices[nid];
10fbcf4c 3115 if (node->dev.id == nid)
9a305230
LS
3116 hugetlb_register_node(node);
3117 }
3118
3119 /*
10fbcf4c 3120 * Let the node device driver know we're here so it can
9a305230
LS
3121 * [un]register hstate attributes on node hotplug.
3122 */
3123 register_hugetlbfs_with_node(hugetlb_register_node,
3124 hugetlb_unregister_node);
3125}
3126#else /* !CONFIG_NUMA */
3127
3128static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3129{
3130 BUG();
3131 if (nidp)
3132 *nidp = -1;
3133 return NULL;
3134}
3135
9a305230
LS
3136static void hugetlb_register_all_nodes(void) { }
3137
3138#endif
3139
a3437870
NA
3140static int __init hugetlb_init(void)
3141{
8382d914
DB
3142 int i;
3143
d6995da3
MK
3144 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3145 __NR_HPAGEFLAGS);
3146
c2833a5b
MK
3147 if (!hugepages_supported()) {
3148 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3149 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3150 return 0;
c2833a5b 3151 }
a3437870 3152
282f4214
MK
3153 /*
3154 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3155 * architectures depend on setup being done here.
3156 */
3157 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3158 if (!parsed_default_hugepagesz) {
3159 /*
3160 * If we did not parse a default huge page size, set
3161 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3162 * number of huge pages for this default size was implicitly
3163 * specified, set that here as well.
3164 * Note that the implicit setting will overwrite an explicit
3165 * setting. A warning will be printed in this case.
3166 */
3167 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3168 if (default_hstate_max_huge_pages) {
3169 if (default_hstate.max_huge_pages) {
3170 char buf[32];
3171
3172 string_get_size(huge_page_size(&default_hstate),
3173 1, STRING_UNITS_2, buf, 32);
3174 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3175 default_hstate.max_huge_pages, buf);
3176 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3177 default_hstate_max_huge_pages);
3178 }
3179 default_hstate.max_huge_pages =
3180 default_hstate_max_huge_pages;
d715cf80 3181 }
f8b74815 3182 }
a3437870 3183
cf11e85f 3184 hugetlb_cma_check();
a3437870 3185 hugetlb_init_hstates();
aa888a74 3186 gather_bootmem_prealloc();
a3437870
NA
3187 report_hugepages();
3188
3189 hugetlb_sysfs_init();
9a305230 3190 hugetlb_register_all_nodes();
7179e7bf 3191 hugetlb_cgroup_file_init();
9a305230 3192
8382d914
DB
3193#ifdef CONFIG_SMP
3194 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3195#else
3196 num_fault_mutexes = 1;
3197#endif
c672c7f2 3198 hugetlb_fault_mutex_table =
6da2ec56
KC
3199 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3200 GFP_KERNEL);
c672c7f2 3201 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3202
3203 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3204 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3205 return 0;
3206}
3e89e1c5 3207subsys_initcall(hugetlb_init);
a3437870 3208
ae94da89
MK
3209/* Overwritten by architectures with more huge page sizes */
3210bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3211{
ae94da89 3212 return size == HPAGE_SIZE;
9fee021d
VT
3213}
3214
d00181b9 3215void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3216{
3217 struct hstate *h;
8faa8b07
AK
3218 unsigned long i;
3219
a3437870 3220 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3221 return;
3222 }
47d38344 3223 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3224 BUG_ON(order == 0);
47d38344 3225 h = &hstates[hugetlb_max_hstate++];
29383967 3226 mutex_init(&h->resize_lock);
a3437870 3227 h->order = order;
aca78307 3228 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
3229 for (i = 0; i < MAX_NUMNODES; ++i)
3230 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3231 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3232 h->next_nid_to_alloc = first_memory_node;
3233 h->next_nid_to_free = first_memory_node;
a3437870
NA
3234 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3235 huge_page_size(h)/1024);
8faa8b07 3236
a3437870
NA
3237 parsed_hstate = h;
3238}
3239
282f4214
MK
3240/*
3241 * hugepages command line processing
3242 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3243 * specification. If not, ignore the hugepages value. hugepages can also
3244 * be the first huge page command line option in which case it implicitly
3245 * specifies the number of huge pages for the default size.
3246 */
3247static int __init hugepages_setup(char *s)
a3437870
NA
3248{
3249 unsigned long *mhp;
8faa8b07 3250 static unsigned long *last_mhp;
a3437870 3251
9fee021d 3252 if (!parsed_valid_hugepagesz) {
282f4214 3253 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3254 parsed_valid_hugepagesz = true;
282f4214 3255 return 0;
9fee021d 3256 }
282f4214 3257
a3437870 3258 /*
282f4214
MK
3259 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3260 * yet, so this hugepages= parameter goes to the "default hstate".
3261 * Otherwise, it goes with the previously parsed hugepagesz or
3262 * default_hugepagesz.
a3437870 3263 */
9fee021d 3264 else if (!hugetlb_max_hstate)
a3437870
NA
3265 mhp = &default_hstate_max_huge_pages;
3266 else
3267 mhp = &parsed_hstate->max_huge_pages;
3268
8faa8b07 3269 if (mhp == last_mhp) {
282f4214
MK
3270 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3271 return 0;
8faa8b07
AK
3272 }
3273
a3437870
NA
3274 if (sscanf(s, "%lu", mhp) <= 0)
3275 *mhp = 0;
3276
8faa8b07
AK
3277 /*
3278 * Global state is always initialized later in hugetlb_init.
04adbc3f 3279 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
3280 * use the bootmem allocator.
3281 */
04adbc3f 3282 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
3283 hugetlb_hstate_alloc_pages(parsed_hstate);
3284
3285 last_mhp = mhp;
3286
a3437870
NA
3287 return 1;
3288}
282f4214 3289__setup("hugepages=", hugepages_setup);
e11bfbfc 3290
282f4214
MK
3291/*
3292 * hugepagesz command line processing
3293 * A specific huge page size can only be specified once with hugepagesz.
3294 * hugepagesz is followed by hugepages on the command line. The global
3295 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3296 * hugepagesz argument was valid.
3297 */
359f2544 3298static int __init hugepagesz_setup(char *s)
e11bfbfc 3299{
359f2544 3300 unsigned long size;
282f4214
MK
3301 struct hstate *h;
3302
3303 parsed_valid_hugepagesz = false;
359f2544
MK
3304 size = (unsigned long)memparse(s, NULL);
3305
3306 if (!arch_hugetlb_valid_size(size)) {
282f4214 3307 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3308 return 0;
3309 }
3310
282f4214
MK
3311 h = size_to_hstate(size);
3312 if (h) {
3313 /*
3314 * hstate for this size already exists. This is normally
3315 * an error, but is allowed if the existing hstate is the
3316 * default hstate. More specifically, it is only allowed if
3317 * the number of huge pages for the default hstate was not
3318 * previously specified.
3319 */
3320 if (!parsed_default_hugepagesz || h != &default_hstate ||
3321 default_hstate.max_huge_pages) {
3322 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3323 return 0;
3324 }
3325
3326 /*
3327 * No need to call hugetlb_add_hstate() as hstate already
3328 * exists. But, do set parsed_hstate so that a following
3329 * hugepages= parameter will be applied to this hstate.
3330 */
3331 parsed_hstate = h;
3332 parsed_valid_hugepagesz = true;
3333 return 1;
38237830
MK
3334 }
3335
359f2544 3336 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3337 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3338 return 1;
3339}
359f2544
MK
3340__setup("hugepagesz=", hugepagesz_setup);
3341
282f4214
MK
3342/*
3343 * default_hugepagesz command line input
3344 * Only one instance of default_hugepagesz allowed on command line.
3345 */
ae94da89 3346static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3347{
ae94da89
MK
3348 unsigned long size;
3349
282f4214 3350 parsed_valid_hugepagesz = false;
282f4214
MK
3351 if (parsed_default_hugepagesz) {
3352 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3353 return 0;
3354 }
3355
ae94da89
MK
3356 size = (unsigned long)memparse(s, NULL);
3357
3358 if (!arch_hugetlb_valid_size(size)) {
282f4214 3359 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3360 return 0;
3361 }
3362
282f4214
MK
3363 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3364 parsed_valid_hugepagesz = true;
3365 parsed_default_hugepagesz = true;
3366 default_hstate_idx = hstate_index(size_to_hstate(size));
3367
3368 /*
3369 * The number of default huge pages (for this size) could have been
3370 * specified as the first hugetlb parameter: hugepages=X. If so,
3371 * then default_hstate_max_huge_pages is set. If the default huge
3372 * page size is gigantic (>= MAX_ORDER), then the pages must be
3373 * allocated here from bootmem allocator.
3374 */
3375 if (default_hstate_max_huge_pages) {
3376 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3377 if (hstate_is_gigantic(&default_hstate))
3378 hugetlb_hstate_alloc_pages(&default_hstate);
3379 default_hstate_max_huge_pages = 0;
3380 }
3381
e11bfbfc
NP
3382 return 1;
3383}
ae94da89 3384__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3385
8ca39e68 3386static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3387{
3388 int node;
3389 unsigned int nr = 0;
8ca39e68
MS
3390 nodemask_t *mpol_allowed;
3391 unsigned int *array = h->free_huge_pages_node;
3392 gfp_t gfp_mask = htlb_alloc_mask(h);
3393
3394 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3395
8ca39e68 3396 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 3397 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
3398 nr += array[node];
3399 }
8a213460
NA
3400
3401 return nr;
3402}
3403
3404#ifdef CONFIG_SYSCTL
17743798
MS
3405static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3406 void *buffer, size_t *length,
3407 loff_t *ppos, unsigned long *out)
3408{
3409 struct ctl_table dup_table;
3410
3411 /*
3412 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3413 * can duplicate the @table and alter the duplicate of it.
3414 */
3415 dup_table = *table;
3416 dup_table.data = out;
3417
3418 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3419}
3420
06808b08
LS
3421static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3422 struct ctl_table *table, int write,
32927393 3423 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3424{
e5ff2159 3425 struct hstate *h = &default_hstate;
238d3c13 3426 unsigned long tmp = h->max_huge_pages;
08d4a246 3427 int ret;
e5ff2159 3428
457c1b27 3429 if (!hugepages_supported())
86613628 3430 return -EOPNOTSUPP;
457c1b27 3431
17743798
MS
3432 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3433 &tmp);
08d4a246
MH
3434 if (ret)
3435 goto out;
e5ff2159 3436
238d3c13
DR
3437 if (write)
3438 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3439 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3440out:
3441 return ret;
1da177e4 3442}
396faf03 3443
06808b08 3444int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3445 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3446{
3447
3448 return hugetlb_sysctl_handler_common(false, table, write,
3449 buffer, length, ppos);
3450}
3451
3452#ifdef CONFIG_NUMA
3453int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3454 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3455{
3456 return hugetlb_sysctl_handler_common(true, table, write,
3457 buffer, length, ppos);
3458}
3459#endif /* CONFIG_NUMA */
3460
a3d0c6aa 3461int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3462 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3463{
a5516438 3464 struct hstate *h = &default_hstate;
e5ff2159 3465 unsigned long tmp;
08d4a246 3466 int ret;
e5ff2159 3467
457c1b27 3468 if (!hugepages_supported())
86613628 3469 return -EOPNOTSUPP;
457c1b27 3470
c033a93c 3471 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3472
bae7f4ae 3473 if (write && hstate_is_gigantic(h))
adbe8726
EM
3474 return -EINVAL;
3475
17743798
MS
3476 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3477 &tmp);
08d4a246
MH
3478 if (ret)
3479 goto out;
e5ff2159
AK
3480
3481 if (write) {
db71ef79 3482 spin_lock_irq(&hugetlb_lock);
e5ff2159 3483 h->nr_overcommit_huge_pages = tmp;
db71ef79 3484 spin_unlock_irq(&hugetlb_lock);
e5ff2159 3485 }
08d4a246
MH
3486out:
3487 return ret;
a3d0c6aa
NA
3488}
3489
1da177e4
LT
3490#endif /* CONFIG_SYSCTL */
3491
e1759c21 3492void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3493{
fcb2b0c5
RG
3494 struct hstate *h;
3495 unsigned long total = 0;
3496
457c1b27
NA
3497 if (!hugepages_supported())
3498 return;
fcb2b0c5
RG
3499
3500 for_each_hstate(h) {
3501 unsigned long count = h->nr_huge_pages;
3502
aca78307 3503 total += huge_page_size(h) * count;
fcb2b0c5
RG
3504
3505 if (h == &default_hstate)
3506 seq_printf(m,
3507 "HugePages_Total: %5lu\n"
3508 "HugePages_Free: %5lu\n"
3509 "HugePages_Rsvd: %5lu\n"
3510 "HugePages_Surp: %5lu\n"
3511 "Hugepagesize: %8lu kB\n",
3512 count,
3513 h->free_huge_pages,
3514 h->resv_huge_pages,
3515 h->surplus_huge_pages,
aca78307 3516 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
3517 }
3518
aca78307 3519 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
3520}
3521
7981593b 3522int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3523{
a5516438 3524 struct hstate *h = &default_hstate;
7981593b 3525
457c1b27
NA
3526 if (!hugepages_supported())
3527 return 0;
7981593b
JP
3528
3529 return sysfs_emit_at(buf, len,
3530 "Node %d HugePages_Total: %5u\n"
3531 "Node %d HugePages_Free: %5u\n"
3532 "Node %d HugePages_Surp: %5u\n",
3533 nid, h->nr_huge_pages_node[nid],
3534 nid, h->free_huge_pages_node[nid],
3535 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3536}
3537
949f7ec5
DR
3538void hugetlb_show_meminfo(void)
3539{
3540 struct hstate *h;
3541 int nid;
3542
457c1b27
NA
3543 if (!hugepages_supported())
3544 return;
3545
949f7ec5
DR
3546 for_each_node_state(nid, N_MEMORY)
3547 for_each_hstate(h)
3548 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3549 nid,
3550 h->nr_huge_pages_node[nid],
3551 h->free_huge_pages_node[nid],
3552 h->surplus_huge_pages_node[nid],
aca78307 3553 huge_page_size(h) / SZ_1K);
949f7ec5
DR
3554}
3555
5d317b2b
NH
3556void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3557{
3558 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3559 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3560}
3561
1da177e4
LT
3562/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3563unsigned long hugetlb_total_pages(void)
3564{
d0028588
WL
3565 struct hstate *h;
3566 unsigned long nr_total_pages = 0;
3567
3568 for_each_hstate(h)
3569 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3570 return nr_total_pages;
1da177e4 3571}
1da177e4 3572
a5516438 3573static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3574{
3575 int ret = -ENOMEM;
3576
0aa7f354
ML
3577 if (!delta)
3578 return 0;
3579
db71ef79 3580 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
3581 /*
3582 * When cpuset is configured, it breaks the strict hugetlb page
3583 * reservation as the accounting is done on a global variable. Such
3584 * reservation is completely rubbish in the presence of cpuset because
3585 * the reservation is not checked against page availability for the
3586 * current cpuset. Application can still potentially OOM'ed by kernel
3587 * with lack of free htlb page in cpuset that the task is in.
3588 * Attempt to enforce strict accounting with cpuset is almost
3589 * impossible (or too ugly) because cpuset is too fluid that
3590 * task or memory node can be dynamically moved between cpusets.
3591 *
3592 * The change of semantics for shared hugetlb mapping with cpuset is
3593 * undesirable. However, in order to preserve some of the semantics,
3594 * we fall back to check against current free page availability as
3595 * a best attempt and hopefully to minimize the impact of changing
3596 * semantics that cpuset has.
8ca39e68
MS
3597 *
3598 * Apart from cpuset, we also have memory policy mechanism that
3599 * also determines from which node the kernel will allocate memory
3600 * in a NUMA system. So similar to cpuset, we also should consider
3601 * the memory policy of the current task. Similar to the description
3602 * above.
fc1b8a73
MG
3603 */
3604 if (delta > 0) {
a5516438 3605 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3606 goto out;
3607
8ca39e68 3608 if (delta > allowed_mems_nr(h)) {
a5516438 3609 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3610 goto out;
3611 }
3612 }
3613
3614 ret = 0;
3615 if (delta < 0)
a5516438 3616 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3617
3618out:
db71ef79 3619 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
3620 return ret;
3621}
3622
84afd99b
AW
3623static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3624{
f522c3ac 3625 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3626
3627 /*
3628 * This new VMA should share its siblings reservation map if present.
3629 * The VMA will only ever have a valid reservation map pointer where
3630 * it is being copied for another still existing VMA. As that VMA
25985edc 3631 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3632 * after this open call completes. It is therefore safe to take a
3633 * new reference here without additional locking.
3634 */
4e35f483 3635 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3636 kref_get(&resv->refs);
84afd99b
AW
3637}
3638
a1e78772
MG
3639static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3640{
a5516438 3641 struct hstate *h = hstate_vma(vma);
f522c3ac 3642 struct resv_map *resv = vma_resv_map(vma);
90481622 3643 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3644 unsigned long reserve, start, end;
1c5ecae3 3645 long gbl_reserve;
84afd99b 3646
4e35f483
JK
3647 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3648 return;
84afd99b 3649
4e35f483
JK
3650 start = vma_hugecache_offset(h, vma, vma->vm_start);
3651 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3652
4e35f483 3653 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3654 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3655 if (reserve) {
1c5ecae3
MK
3656 /*
3657 * Decrement reserve counts. The global reserve count may be
3658 * adjusted if the subpool has a minimum size.
3659 */
3660 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3661 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3662 }
e9fe92ae
MA
3663
3664 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3665}
3666
31383c68
DW
3667static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3668{
3669 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3670 return -EINVAL;
3671 return 0;
3672}
3673
05ea8860
DW
3674static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3675{
aca78307 3676 return huge_page_size(hstate_vma(vma));
05ea8860
DW
3677}
3678
1da177e4
LT
3679/*
3680 * We cannot handle pagefaults against hugetlb pages at all. They cause
3681 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 3682 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
3683 * this far.
3684 */
b3ec9f33 3685static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3686{
3687 BUG();
d0217ac0 3688 return 0;
1da177e4
LT
3689}
3690
eec3636a
JC
3691/*
3692 * When a new function is introduced to vm_operations_struct and added
3693 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3694 * This is because under System V memory model, mappings created via
3695 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3696 * their original vm_ops are overwritten with shm_vm_ops.
3697 */
f0f37e2f 3698const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3699 .fault = hugetlb_vm_op_fault,
84afd99b 3700 .open = hugetlb_vm_op_open,
a1e78772 3701 .close = hugetlb_vm_op_close,
dd3b614f 3702 .may_split = hugetlb_vm_op_split,
05ea8860 3703 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3704};
3705
1e8f889b
DG
3706static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3707 int writable)
63551ae0
DG
3708{
3709 pte_t entry;
3710
1e8f889b 3711 if (writable) {
106c992a
GS
3712 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3713 vma->vm_page_prot)));
63551ae0 3714 } else {
106c992a
GS
3715 entry = huge_pte_wrprotect(mk_huge_pte(page,
3716 vma->vm_page_prot));
63551ae0
DG
3717 }
3718 entry = pte_mkyoung(entry);
3719 entry = pte_mkhuge(entry);
d9ed9faa 3720 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3721
3722 return entry;
3723}
3724
1e8f889b
DG
3725static void set_huge_ptep_writable(struct vm_area_struct *vma,
3726 unsigned long address, pte_t *ptep)
3727{
3728 pte_t entry;
3729
106c992a 3730 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3731 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3732 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3733}
3734
d5ed7444 3735bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3736{
3737 swp_entry_t swp;
3738
3739 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3740 return false;
4a705fef 3741 swp = pte_to_swp_entry(pte);
d79d176a 3742 if (is_migration_entry(swp))
d5ed7444 3743 return true;
4a705fef 3744 else
d5ed7444 3745 return false;
4a705fef
NH
3746}
3747
3e5c3600 3748static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
3749{
3750 swp_entry_t swp;
3751
3752 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 3753 return false;
4a705fef 3754 swp = pte_to_swp_entry(pte);
d79d176a 3755 if (is_hwpoison_entry(swp))
3e5c3600 3756 return true;
4a705fef 3757 else
3e5c3600 3758 return false;
4a705fef 3759}
1e8f889b 3760
4eae4efa
PX
3761static void
3762hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3763 struct page *new_page)
3764{
3765 __SetPageUptodate(new_page);
3766 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3767 hugepage_add_new_anon_rmap(new_page, vma, addr);
3768 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3769 ClearHPageRestoreReserve(new_page);
3770 SetHPageMigratable(new_page);
3771}
3772
63551ae0
DG
3773int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3774 struct vm_area_struct *vma)
3775{
5e41540c 3776 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3777 struct page *ptepage;
1c59827d 3778 unsigned long addr;
ca6eb14d 3779 bool cow = is_cow_mapping(vma->vm_flags);
a5516438
AK
3780 struct hstate *h = hstate_vma(vma);
3781 unsigned long sz = huge_page_size(h);
4eae4efa 3782 unsigned long npages = pages_per_huge_page(h);
c0d0381a 3783 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3784 struct mmu_notifier_range range;
e8569dd2 3785 int ret = 0;
1e8f889b 3786
ac46d4f3 3787 if (cow) {
7269f999 3788 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3789 vma->vm_start,
ac46d4f3
JG
3790 vma->vm_end);
3791 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3792 } else {
3793 /*
3794 * For shared mappings i_mmap_rwsem must be held to call
3795 * huge_pte_alloc, otherwise the returned ptep could go
3796 * away if part of a shared pmd and another thread calls
3797 * huge_pmd_unshare.
3798 */
3799 i_mmap_lock_read(mapping);
ac46d4f3 3800 }
e8569dd2 3801
a5516438 3802 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3803 spinlock_t *src_ptl, *dst_ptl;
7868a208 3804 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3805 if (!src_pte)
3806 continue;
aec44e0f 3807 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
e8569dd2
AS
3808 if (!dst_pte) {
3809 ret = -ENOMEM;
3810 break;
3811 }
c5c99429 3812
5e41540c
MK
3813 /*
3814 * If the pagetables are shared don't copy or take references.
3815 * dst_pte == src_pte is the common case of src/dest sharing.
3816 *
3817 * However, src could have 'unshared' and dst shares with
3818 * another vma. If dst_pte !none, this implies sharing.
3819 * Check here before taking page table lock, and once again
3820 * after taking the lock below.
3821 */
3822 dst_entry = huge_ptep_get(dst_pte);
3823 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3824 continue;
3825
cb900f41
KS
3826 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3827 src_ptl = huge_pte_lockptr(h, src, src_pte);
3828 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3829 entry = huge_ptep_get(src_pte);
5e41540c 3830 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 3831again:
5e41540c
MK
3832 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3833 /*
3834 * Skip if src entry none. Also, skip in the
3835 * unlikely case dst entry !none as this implies
3836 * sharing with another vma.
3837 */
4a705fef
NH
3838 ;
3839 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3840 is_hugetlb_entry_hwpoisoned(entry))) {
3841 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3842
3843 if (is_write_migration_entry(swp_entry) && cow) {
3844 /*
3845 * COW mappings require pages in both
3846 * parent and child to be set to read.
3847 */
3848 make_migration_entry_read(&swp_entry);
3849 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3850 set_huge_swap_pte_at(src, addr, src_pte,
3851 entry, sz);
4a705fef 3852 }
e5251fd4 3853 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3854 } else {
4eae4efa
PX
3855 entry = huge_ptep_get(src_pte);
3856 ptepage = pte_page(entry);
3857 get_page(ptepage);
3858
3859 /*
3860 * This is a rare case where we see pinned hugetlb
3861 * pages while they're prone to COW. We need to do the
3862 * COW earlier during fork.
3863 *
3864 * When pre-allocating the page or copying data, we
3865 * need to be without the pgtable locks since we could
3866 * sleep during the process.
3867 */
3868 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3869 pte_t src_pte_old = entry;
3870 struct page *new;
3871
3872 spin_unlock(src_ptl);
3873 spin_unlock(dst_ptl);
3874 /* Do not use reserve as it's private owned */
3875 new = alloc_huge_page(vma, addr, 1);
3876 if (IS_ERR(new)) {
3877 put_page(ptepage);
3878 ret = PTR_ERR(new);
3879 break;
3880 }
3881 copy_user_huge_page(new, ptepage, addr, vma,
3882 npages);
3883 put_page(ptepage);
3884
3885 /* Install the new huge page if src pte stable */
3886 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3887 src_ptl = huge_pte_lockptr(h, src, src_pte);
3888 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3889 entry = huge_ptep_get(src_pte);
3890 if (!pte_same(src_pte_old, entry)) {
3891 put_page(new);
3892 /* dst_entry won't change as in child */
3893 goto again;
3894 }
3895 hugetlb_install_page(vma, dst_pte, addr, new);
3896 spin_unlock(src_ptl);
3897 spin_unlock(dst_ptl);
3898 continue;
3899 }
3900
34ee645e 3901 if (cow) {
0f10851e
JG
3902 /*
3903 * No need to notify as we are downgrading page
3904 * table protection not changing it to point
3905 * to a new page.
3906 *
ad56b738 3907 * See Documentation/vm/mmu_notifier.rst
0f10851e 3908 */
7f2e9525 3909 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3910 }
4eae4efa 3911
53f9263b 3912 page_dup_rmap(ptepage, true);
1c59827d 3913 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 3914 hugetlb_count_add(npages, dst);
1c59827d 3915 }
cb900f41
KS
3916 spin_unlock(src_ptl);
3917 spin_unlock(dst_ptl);
63551ae0 3918 }
63551ae0 3919
e8569dd2 3920 if (cow)
ac46d4f3 3921 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3922 else
3923 i_mmap_unlock_read(mapping);
e8569dd2
AS
3924
3925 return ret;
63551ae0
DG
3926}
3927
24669e58
AK
3928void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3929 unsigned long start, unsigned long end,
3930 struct page *ref_page)
63551ae0
DG
3931{
3932 struct mm_struct *mm = vma->vm_mm;
3933 unsigned long address;
c7546f8f 3934 pte_t *ptep;
63551ae0 3935 pte_t pte;
cb900f41 3936 spinlock_t *ptl;
63551ae0 3937 struct page *page;
a5516438
AK
3938 struct hstate *h = hstate_vma(vma);
3939 unsigned long sz = huge_page_size(h);
ac46d4f3 3940 struct mmu_notifier_range range;
a5516438 3941
63551ae0 3942 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3943 BUG_ON(start & ~huge_page_mask(h));
3944 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3945
07e32661
AK
3946 /*
3947 * This is a hugetlb vma, all the pte entries should point
3948 * to huge page.
3949 */
ed6a7935 3950 tlb_change_page_size(tlb, sz);
24669e58 3951 tlb_start_vma(tlb, vma);
dff11abe
MK
3952
3953 /*
3954 * If sharing possible, alert mmu notifiers of worst case.
3955 */
6f4f13e8
JG
3956 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3957 end);
ac46d4f3
JG
3958 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3959 mmu_notifier_invalidate_range_start(&range);
569f48b8 3960 address = start;
569f48b8 3961 for (; address < end; address += sz) {
7868a208 3962 ptep = huge_pte_offset(mm, address, sz);
4c887265 3963 if (!ptep)
c7546f8f
DG
3964 continue;
3965
cb900f41 3966 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 3967 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 3968 spin_unlock(ptl);
dff11abe
MK
3969 /*
3970 * We just unmapped a page of PMDs by clearing a PUD.
3971 * The caller's TLB flush range should cover this area.
3972 */
31d49da5
AK
3973 continue;
3974 }
39dde65c 3975
6629326b 3976 pte = huge_ptep_get(ptep);
31d49da5
AK
3977 if (huge_pte_none(pte)) {
3978 spin_unlock(ptl);
3979 continue;
3980 }
6629326b
HD
3981
3982 /*
9fbc1f63
NH
3983 * Migrating hugepage or HWPoisoned hugepage is already
3984 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3985 */
9fbc1f63 3986 if (unlikely(!pte_present(pte))) {
9386fac3 3987 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3988 spin_unlock(ptl);
3989 continue;
8c4894c6 3990 }
6629326b
HD
3991
3992 page = pte_page(pte);
04f2cbe3
MG
3993 /*
3994 * If a reference page is supplied, it is because a specific
3995 * page is being unmapped, not a range. Ensure the page we
3996 * are about to unmap is the actual page of interest.
3997 */
3998 if (ref_page) {
31d49da5
AK
3999 if (page != ref_page) {
4000 spin_unlock(ptl);
4001 continue;
4002 }
04f2cbe3
MG
4003 /*
4004 * Mark the VMA as having unmapped its page so that
4005 * future faults in this VMA will fail rather than
4006 * looking like data was lost
4007 */
4008 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4009 }
4010
c7546f8f 4011 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 4012 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 4013 if (huge_pte_dirty(pte))
6649a386 4014 set_page_dirty(page);
9e81130b 4015
5d317b2b 4016 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4017 page_remove_rmap(page, true);
31d49da5 4018
cb900f41 4019 spin_unlock(ptl);
e77b0852 4020 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4021 /*
4022 * Bail out after unmapping reference page if supplied
4023 */
4024 if (ref_page)
4025 break;
fe1668ae 4026 }
ac46d4f3 4027 mmu_notifier_invalidate_range_end(&range);
24669e58 4028 tlb_end_vma(tlb, vma);
1da177e4 4029}
63551ae0 4030
d833352a
MG
4031void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4032 struct vm_area_struct *vma, unsigned long start,
4033 unsigned long end, struct page *ref_page)
4034{
4035 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4036
4037 /*
4038 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4039 * test will fail on a vma being torn down, and not grab a page table
4040 * on its way out. We're lucky that the flag has such an appropriate
4041 * name, and can in fact be safely cleared here. We could clear it
4042 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4043 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4044 * because in the context this is called, the VMA is about to be
c8c06efa 4045 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4046 */
4047 vma->vm_flags &= ~VM_MAYSHARE;
4048}
4049
502717f4 4050void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4051 unsigned long end, struct page *ref_page)
502717f4 4052{
24669e58 4053 struct mmu_gather tlb;
dff11abe 4054
a72afd87 4055 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 4056 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 4057 tlb_finish_mmu(&tlb);
502717f4
KC
4058}
4059
04f2cbe3
MG
4060/*
4061 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 4062 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
4063 * from other VMAs and let the children be SIGKILLed if they are faulting the
4064 * same region.
4065 */
2f4612af
DB
4066static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4067 struct page *page, unsigned long address)
04f2cbe3 4068{
7526674d 4069 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4070 struct vm_area_struct *iter_vma;
4071 struct address_space *mapping;
04f2cbe3
MG
4072 pgoff_t pgoff;
4073
4074 /*
4075 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4076 * from page cache lookup which is in HPAGE_SIZE units.
4077 */
7526674d 4078 address = address & huge_page_mask(h);
36e4f20a
MH
4079 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4080 vma->vm_pgoff;
93c76a3d 4081 mapping = vma->vm_file->f_mapping;
04f2cbe3 4082
4eb2b1dc
MG
4083 /*
4084 * Take the mapping lock for the duration of the table walk. As
4085 * this mapping should be shared between all the VMAs,
4086 * __unmap_hugepage_range() is called as the lock is already held
4087 */
83cde9e8 4088 i_mmap_lock_write(mapping);
6b2dbba8 4089 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4090 /* Do not unmap the current VMA */
4091 if (iter_vma == vma)
4092 continue;
4093
2f84a899
MG
4094 /*
4095 * Shared VMAs have their own reserves and do not affect
4096 * MAP_PRIVATE accounting but it is possible that a shared
4097 * VMA is using the same page so check and skip such VMAs.
4098 */
4099 if (iter_vma->vm_flags & VM_MAYSHARE)
4100 continue;
4101
04f2cbe3
MG
4102 /*
4103 * Unmap the page from other VMAs without their own reserves.
4104 * They get marked to be SIGKILLed if they fault in these
4105 * areas. This is because a future no-page fault on this VMA
4106 * could insert a zeroed page instead of the data existing
4107 * from the time of fork. This would look like data corruption
4108 */
4109 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4110 unmap_hugepage_range(iter_vma, address,
4111 address + huge_page_size(h), page);
04f2cbe3 4112 }
83cde9e8 4113 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4114}
4115
0fe6e20b
NH
4116/*
4117 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4118 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4119 * cannot race with other handlers or page migration.
4120 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4121 */
2b740303 4122static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4123 unsigned long address, pte_t *ptep,
3999f52e 4124 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4125{
3999f52e 4126 pte_t pte;
a5516438 4127 struct hstate *h = hstate_vma(vma);
1e8f889b 4128 struct page *old_page, *new_page;
2b740303
SJ
4129 int outside_reserve = 0;
4130 vm_fault_t ret = 0;
974e6d66 4131 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4132 struct mmu_notifier_range range;
1e8f889b 4133
3999f52e 4134 pte = huge_ptep_get(ptep);
1e8f889b
DG
4135 old_page = pte_page(pte);
4136
04f2cbe3 4137retry_avoidcopy:
1e8f889b
DG
4138 /* If no-one else is actually using this page, avoid the copy
4139 * and just make the page writable */
37a2140d 4140 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4141 page_move_anon_rmap(old_page, vma);
5b7a1d40 4142 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4143 return 0;
1e8f889b
DG
4144 }
4145
04f2cbe3
MG
4146 /*
4147 * If the process that created a MAP_PRIVATE mapping is about to
4148 * perform a COW due to a shared page count, attempt to satisfy
4149 * the allocation without using the existing reserves. The pagecache
4150 * page is used to determine if the reserve at this address was
4151 * consumed or not. If reserves were used, a partial faulted mapping
4152 * at the time of fork() could consume its reserves on COW instead
4153 * of the full address range.
4154 */
5944d011 4155 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4156 old_page != pagecache_page)
4157 outside_reserve = 1;
4158
09cbfeaf 4159 get_page(old_page);
b76c8cfb 4160
ad4404a2
DB
4161 /*
4162 * Drop page table lock as buddy allocator may be called. It will
4163 * be acquired again before returning to the caller, as expected.
4164 */
cb900f41 4165 spin_unlock(ptl);
5b7a1d40 4166 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4167
2fc39cec 4168 if (IS_ERR(new_page)) {
04f2cbe3
MG
4169 /*
4170 * If a process owning a MAP_PRIVATE mapping fails to COW,
4171 * it is due to references held by a child and an insufficient
4172 * huge page pool. To guarantee the original mappers
4173 * reliability, unmap the page from child processes. The child
4174 * may get SIGKILLed if it later faults.
4175 */
4176 if (outside_reserve) {
e7dd91c4
MK
4177 struct address_space *mapping = vma->vm_file->f_mapping;
4178 pgoff_t idx;
4179 u32 hash;
4180
09cbfeaf 4181 put_page(old_page);
04f2cbe3 4182 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4183 /*
4184 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4185 * unmapping. unmapping needs to hold i_mmap_rwsem
4186 * in write mode. Dropping i_mmap_rwsem in read mode
4187 * here is OK as COW mappings do not interact with
4188 * PMD sharing.
4189 *
4190 * Reacquire both after unmap operation.
4191 */
4192 idx = vma_hugecache_offset(h, vma, haddr);
4193 hash = hugetlb_fault_mutex_hash(mapping, idx);
4194 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4195 i_mmap_unlock_read(mapping);
4196
5b7a1d40 4197 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4198
4199 i_mmap_lock_read(mapping);
4200 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4201 spin_lock(ptl);
5b7a1d40 4202 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4203 if (likely(ptep &&
4204 pte_same(huge_ptep_get(ptep), pte)))
4205 goto retry_avoidcopy;
4206 /*
4207 * race occurs while re-acquiring page table
4208 * lock, and our job is done.
4209 */
4210 return 0;
04f2cbe3
MG
4211 }
4212
2b740303 4213 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4214 goto out_release_old;
1e8f889b
DG
4215 }
4216
0fe6e20b
NH
4217 /*
4218 * When the original hugepage is shared one, it does not have
4219 * anon_vma prepared.
4220 */
44e2aa93 4221 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4222 ret = VM_FAULT_OOM;
4223 goto out_release_all;
44e2aa93 4224 }
0fe6e20b 4225
974e6d66 4226 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4227 pages_per_huge_page(h));
0ed361de 4228 __SetPageUptodate(new_page);
1e8f889b 4229
7269f999 4230 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4231 haddr + huge_page_size(h));
ac46d4f3 4232 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4233
b76c8cfb 4234 /*
cb900f41 4235 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4236 * before the page tables are altered
4237 */
cb900f41 4238 spin_lock(ptl);
5b7a1d40 4239 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4240 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 4241 ClearHPageRestoreReserve(new_page);
07443a85 4242
1e8f889b 4243 /* Break COW */
5b7a1d40 4244 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4245 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4246 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4247 make_huge_pte(vma, new_page, 1));
d281ee61 4248 page_remove_rmap(old_page, true);
5b7a1d40 4249 hugepage_add_new_anon_rmap(new_page, vma, haddr);
8f251a3d 4250 SetHPageMigratable(new_page);
1e8f889b
DG
4251 /* Make the old page be freed below */
4252 new_page = old_page;
4253 }
cb900f41 4254 spin_unlock(ptl);
ac46d4f3 4255 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4256out_release_all:
5b7a1d40 4257 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4258 put_page(new_page);
ad4404a2 4259out_release_old:
09cbfeaf 4260 put_page(old_page);
8312034f 4261
ad4404a2
DB
4262 spin_lock(ptl); /* Caller expects lock to be held */
4263 return ret;
1e8f889b
DG
4264}
4265
04f2cbe3 4266/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4267static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4268 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4269{
4270 struct address_space *mapping;
e7c4b0bf 4271 pgoff_t idx;
04f2cbe3
MG
4272
4273 mapping = vma->vm_file->f_mapping;
a5516438 4274 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4275
4276 return find_lock_page(mapping, idx);
4277}
4278
3ae77f43
HD
4279/*
4280 * Return whether there is a pagecache page to back given address within VMA.
4281 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4282 */
4283static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4284 struct vm_area_struct *vma, unsigned long address)
4285{
4286 struct address_space *mapping;
4287 pgoff_t idx;
4288 struct page *page;
4289
4290 mapping = vma->vm_file->f_mapping;
4291 idx = vma_hugecache_offset(h, vma, address);
4292
4293 page = find_get_page(mapping, idx);
4294 if (page)
4295 put_page(page);
4296 return page != NULL;
4297}
4298
ab76ad54
MK
4299int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4300 pgoff_t idx)
4301{
4302 struct inode *inode = mapping->host;
4303 struct hstate *h = hstate_inode(inode);
4304 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4305
4306 if (err)
4307 return err;
d6995da3 4308 ClearHPageRestoreReserve(page);
ab76ad54 4309
22146c3c
MK
4310 /*
4311 * set page dirty so that it will not be removed from cache/file
4312 * by non-hugetlbfs specific code paths.
4313 */
4314 set_page_dirty(page);
4315
ab76ad54
MK
4316 spin_lock(&inode->i_lock);
4317 inode->i_blocks += blocks_per_huge_page(h);
4318 spin_unlock(&inode->i_lock);
4319 return 0;
4320}
4321
2b740303
SJ
4322static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4323 struct vm_area_struct *vma,
4324 struct address_space *mapping, pgoff_t idx,
4325 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4326{
a5516438 4327 struct hstate *h = hstate_vma(vma);
2b740303 4328 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4329 int anon_rmap = 0;
4c887265 4330 unsigned long size;
4c887265 4331 struct page *page;
1e8f889b 4332 pte_t new_pte;
cb900f41 4333 spinlock_t *ptl;
285b8dca 4334 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4335 bool new_page = false;
4c887265 4336
04f2cbe3
MG
4337 /*
4338 * Currently, we are forced to kill the process in the event the
4339 * original mapper has unmapped pages from the child due to a failed
25985edc 4340 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4341 */
4342 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4343 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4344 current->pid);
04f2cbe3
MG
4345 return ret;
4346 }
4347
4c887265 4348 /*
87bf91d3
MK
4349 * We can not race with truncation due to holding i_mmap_rwsem.
4350 * i_size is modified when holding i_mmap_rwsem, so check here
4351 * once for faults beyond end of file.
4c887265 4352 */
87bf91d3
MK
4353 size = i_size_read(mapping->host) >> huge_page_shift(h);
4354 if (idx >= size)
4355 goto out;
4356
6bda666a
CL
4357retry:
4358 page = find_lock_page(mapping, idx);
4359 if (!page) {
1a1aad8a
MK
4360 /*
4361 * Check for page in userfault range
4362 */
4363 if (userfaultfd_missing(vma)) {
4364 u32 hash;
4365 struct vm_fault vmf = {
4366 .vma = vma,
285b8dca 4367 .address = haddr,
1a1aad8a
MK
4368 .flags = flags,
4369 /*
4370 * Hard to debug if it ends up being
4371 * used by a callee that assumes
4372 * something about the other
4373 * uninitialized fields... same as in
4374 * memory.c
4375 */
4376 };
4377
4378 /*
c0d0381a
MK
4379 * hugetlb_fault_mutex and i_mmap_rwsem must be
4380 * dropped before handling userfault. Reacquire
4381 * after handling fault to make calling code simpler.
1a1aad8a 4382 */
188b04a7 4383 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 4384 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4385 i_mmap_unlock_read(mapping);
1a1aad8a 4386 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 4387 i_mmap_lock_read(mapping);
1a1aad8a
MK
4388 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4389 goto out;
4390 }
4391
285b8dca 4392 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4393 if (IS_ERR(page)) {
4643d67e
MK
4394 /*
4395 * Returning error will result in faulting task being
4396 * sent SIGBUS. The hugetlb fault mutex prevents two
4397 * tasks from racing to fault in the same page which
4398 * could result in false unable to allocate errors.
4399 * Page migration does not take the fault mutex, but
4400 * does a clear then write of pte's under page table
4401 * lock. Page fault code could race with migration,
4402 * notice the clear pte and try to allocate a page
4403 * here. Before returning error, get ptl and make
4404 * sure there really is no pte entry.
4405 */
4406 ptl = huge_pte_lock(h, mm, ptep);
d83e6c8a
ML
4407 ret = 0;
4408 if (huge_pte_none(huge_ptep_get(ptep)))
4409 ret = vmf_error(PTR_ERR(page));
4643d67e 4410 spin_unlock(ptl);
6bda666a
CL
4411 goto out;
4412 }
47ad8475 4413 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4414 __SetPageUptodate(page);
cb6acd01 4415 new_page = true;
ac9b9c66 4416
f83a275d 4417 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4418 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4419 if (err) {
4420 put_page(page);
6bda666a
CL
4421 if (err == -EEXIST)
4422 goto retry;
4423 goto out;
4424 }
23be7468 4425 } else {
6bda666a 4426 lock_page(page);
0fe6e20b
NH
4427 if (unlikely(anon_vma_prepare(vma))) {
4428 ret = VM_FAULT_OOM;
4429 goto backout_unlocked;
4430 }
409eb8c2 4431 anon_rmap = 1;
23be7468 4432 }
0fe6e20b 4433 } else {
998b4382
NH
4434 /*
4435 * If memory error occurs between mmap() and fault, some process
4436 * don't have hwpoisoned swap entry for errored virtual address.
4437 * So we need to block hugepage fault by PG_hwpoison bit check.
4438 */
4439 if (unlikely(PageHWPoison(page))) {
0eb98f15 4440 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4441 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4442 goto backout_unlocked;
4443 }
6bda666a 4444 }
1e8f889b 4445
57303d80
AW
4446 /*
4447 * If we are going to COW a private mapping later, we examine the
4448 * pending reservations for this page now. This will ensure that
4449 * any allocations necessary to record that reservation occur outside
4450 * the spinlock.
4451 */
5e911373 4452 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4453 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4454 ret = VM_FAULT_OOM;
4455 goto backout_unlocked;
4456 }
5e911373 4457 /* Just decrements count, does not deallocate */
285b8dca 4458 vma_end_reservation(h, vma, haddr);
5e911373 4459 }
57303d80 4460
8bea8052 4461 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4462 ret = 0;
7f2e9525 4463 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4464 goto backout;
4465
07443a85 4466 if (anon_rmap) {
d6995da3 4467 ClearHPageRestoreReserve(page);
285b8dca 4468 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4469 } else
53f9263b 4470 page_dup_rmap(page, true);
1e8f889b
DG
4471 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4472 && (vma->vm_flags & VM_SHARED)));
285b8dca 4473 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4474
5d317b2b 4475 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4476 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4477 /* Optimization, do the COW without a second fault */
974e6d66 4478 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4479 }
4480
cb900f41 4481 spin_unlock(ptl);
cb6acd01
MK
4482
4483 /*
8f251a3d
MK
4484 * Only set HPageMigratable in newly allocated pages. Existing pages
4485 * found in the pagecache may not have HPageMigratableset if they have
4486 * been isolated for migration.
cb6acd01
MK
4487 */
4488 if (new_page)
8f251a3d 4489 SetHPageMigratable(page);
cb6acd01 4490
4c887265
AL
4491 unlock_page(page);
4492out:
ac9b9c66 4493 return ret;
4c887265
AL
4494
4495backout:
cb900f41 4496 spin_unlock(ptl);
2b26736c 4497backout_unlocked:
4c887265 4498 unlock_page(page);
285b8dca 4499 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4500 put_page(page);
4501 goto out;
ac9b9c66
HD
4502}
4503
8382d914 4504#ifdef CONFIG_SMP
188b04a7 4505u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4506{
4507 unsigned long key[2];
4508 u32 hash;
4509
1b426bac
MK
4510 key[0] = (unsigned long) mapping;
4511 key[1] = idx;
8382d914 4512
55254636 4513 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4514
4515 return hash & (num_fault_mutexes - 1);
4516}
4517#else
4518/*
6c26d310 4519 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
4520 * return 0 and avoid the hashing overhead.
4521 */
188b04a7 4522u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4523{
4524 return 0;
4525}
4526#endif
4527
2b740303 4528vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4529 unsigned long address, unsigned int flags)
86e5216f 4530{
8382d914 4531 pte_t *ptep, entry;
cb900f41 4532 spinlock_t *ptl;
2b740303 4533 vm_fault_t ret;
8382d914
DB
4534 u32 hash;
4535 pgoff_t idx;
0fe6e20b 4536 struct page *page = NULL;
57303d80 4537 struct page *pagecache_page = NULL;
a5516438 4538 struct hstate *h = hstate_vma(vma);
8382d914 4539 struct address_space *mapping;
0f792cf9 4540 int need_wait_lock = 0;
285b8dca 4541 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4542
285b8dca 4543 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4544 if (ptep) {
c0d0381a
MK
4545 /*
4546 * Since we hold no locks, ptep could be stale. That is
4547 * OK as we are only making decisions based on content and
4548 * not actually modifying content here.
4549 */
fd6a03ed 4550 entry = huge_ptep_get(ptep);
290408d4 4551 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4552 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4553 return 0;
4554 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4555 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4556 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4557 }
4558
c0d0381a
MK
4559 /*
4560 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4561 * until finished with ptep. This serves two purposes:
4562 * 1) It prevents huge_pmd_unshare from being called elsewhere
4563 * and making the ptep no longer valid.
4564 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4565 *
4566 * ptep could have already be assigned via huge_pte_offset. That
4567 * is OK, as huge_pte_alloc will return the same value unless
4568 * something has changed.
4569 */
8382d914 4570 mapping = vma->vm_file->f_mapping;
c0d0381a 4571 i_mmap_lock_read(mapping);
aec44e0f 4572 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
c0d0381a
MK
4573 if (!ptep) {
4574 i_mmap_unlock_read(mapping);
4575 return VM_FAULT_OOM;
4576 }
8382d914 4577
3935baa9
DG
4578 /*
4579 * Serialize hugepage allocation and instantiation, so that we don't
4580 * get spurious allocation failures if two CPUs race to instantiate
4581 * the same page in the page cache.
4582 */
c0d0381a 4583 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4584 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4585 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4586
7f2e9525
GS
4587 entry = huge_ptep_get(ptep);
4588 if (huge_pte_none(entry)) {
8382d914 4589 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4590 goto out_mutex;
3935baa9 4591 }
86e5216f 4592
83c54070 4593 ret = 0;
1e8f889b 4594
0f792cf9
NH
4595 /*
4596 * entry could be a migration/hwpoison entry at this point, so this
4597 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4598 * an active hugepage in pagecache. This goto expects the 2nd page
4599 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4600 * properly handle it.
0f792cf9
NH
4601 */
4602 if (!pte_present(entry))
4603 goto out_mutex;
4604
57303d80
AW
4605 /*
4606 * If we are going to COW the mapping later, we examine the pending
4607 * reservations for this page now. This will ensure that any
4608 * allocations necessary to record that reservation occur outside the
4609 * spinlock. For private mappings, we also lookup the pagecache
4610 * page now as it is used to determine if a reservation has been
4611 * consumed.
4612 */
106c992a 4613 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4614 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4615 ret = VM_FAULT_OOM;
b4d1d99f 4616 goto out_mutex;
2b26736c 4617 }
5e911373 4618 /* Just decrements count, does not deallocate */
285b8dca 4619 vma_end_reservation(h, vma, haddr);
57303d80 4620
f83a275d 4621 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4622 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4623 vma, haddr);
57303d80
AW
4624 }
4625
0f792cf9
NH
4626 ptl = huge_pte_lock(h, mm, ptep);
4627
4628 /* Check for a racing update before calling hugetlb_cow */
4629 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4630 goto out_ptl;
4631
56c9cfb1
NH
4632 /*
4633 * hugetlb_cow() requires page locks of pte_page(entry) and
4634 * pagecache_page, so here we need take the former one
4635 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4636 */
4637 page = pte_page(entry);
4638 if (page != pagecache_page)
0f792cf9
NH
4639 if (!trylock_page(page)) {
4640 need_wait_lock = 1;
4641 goto out_ptl;
4642 }
b4d1d99f 4643
0f792cf9 4644 get_page(page);
b4d1d99f 4645
788c7df4 4646 if (flags & FAULT_FLAG_WRITE) {
106c992a 4647 if (!huge_pte_write(entry)) {
974e6d66 4648 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4649 pagecache_page, ptl);
0f792cf9 4650 goto out_put_page;
b4d1d99f 4651 }
106c992a 4652 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4653 }
4654 entry = pte_mkyoung(entry);
285b8dca 4655 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4656 flags & FAULT_FLAG_WRITE))
285b8dca 4657 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4658out_put_page:
4659 if (page != pagecache_page)
4660 unlock_page(page);
4661 put_page(page);
cb900f41
KS
4662out_ptl:
4663 spin_unlock(ptl);
57303d80
AW
4664
4665 if (pagecache_page) {
4666 unlock_page(pagecache_page);
4667 put_page(pagecache_page);
4668 }
b4d1d99f 4669out_mutex:
c672c7f2 4670 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4671 i_mmap_unlock_read(mapping);
0f792cf9
NH
4672 /*
4673 * Generally it's safe to hold refcount during waiting page lock. But
4674 * here we just wait to defer the next page fault to avoid busy loop and
4675 * the page is not used after unlocked before returning from the current
4676 * page fault. So we are safe from accessing freed page, even if we wait
4677 * here without taking refcount.
4678 */
4679 if (need_wait_lock)
4680 wait_on_page_locked(page);
1e8f889b 4681 return ret;
86e5216f
AL
4682}
4683
8fb5debc
MK
4684/*
4685 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4686 * modifications for huge pages.
4687 */
4688int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4689 pte_t *dst_pte,
4690 struct vm_area_struct *dst_vma,
4691 unsigned long dst_addr,
4692 unsigned long src_addr,
4693 struct page **pagep)
4694{
1e392147
AA
4695 struct address_space *mapping;
4696 pgoff_t idx;
4697 unsigned long size;
1c9e8def 4698 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4699 struct hstate *h = hstate_vma(dst_vma);
4700 pte_t _dst_pte;
4701 spinlock_t *ptl;
4702 int ret;
4703 struct page *page;
4704
4705 if (!*pagep) {
4706 ret = -ENOMEM;
4707 page = alloc_huge_page(dst_vma, dst_addr, 0);
4708 if (IS_ERR(page))
4709 goto out;
4710
4711 ret = copy_huge_page_from_user(page,
4712 (const void __user *) src_addr,
810a56b9 4713 pages_per_huge_page(h), false);
8fb5debc 4714
c1e8d7c6 4715 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 4716 if (unlikely(ret)) {
9e368259 4717 ret = -ENOENT;
8fb5debc
MK
4718 *pagep = page;
4719 /* don't free the page */
4720 goto out;
4721 }
4722 } else {
4723 page = *pagep;
4724 *pagep = NULL;
4725 }
4726
4727 /*
4728 * The memory barrier inside __SetPageUptodate makes sure that
4729 * preceding stores to the page contents become visible before
4730 * the set_pte_at() write.
4731 */
4732 __SetPageUptodate(page);
8fb5debc 4733
1e392147
AA
4734 mapping = dst_vma->vm_file->f_mapping;
4735 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4736
1c9e8def
MK
4737 /*
4738 * If shared, add to page cache
4739 */
4740 if (vm_shared) {
1e392147
AA
4741 size = i_size_read(mapping->host) >> huge_page_shift(h);
4742 ret = -EFAULT;
4743 if (idx >= size)
4744 goto out_release_nounlock;
1c9e8def 4745
1e392147
AA
4746 /*
4747 * Serialization between remove_inode_hugepages() and
4748 * huge_add_to_page_cache() below happens through the
4749 * hugetlb_fault_mutex_table that here must be hold by
4750 * the caller.
4751 */
1c9e8def
MK
4752 ret = huge_add_to_page_cache(page, mapping, idx);
4753 if (ret)
4754 goto out_release_nounlock;
4755 }
4756
8fb5debc
MK
4757 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4758 spin_lock(ptl);
4759
1e392147
AA
4760 /*
4761 * Recheck the i_size after holding PT lock to make sure not
4762 * to leave any page mapped (as page_mapped()) beyond the end
4763 * of the i_size (remove_inode_hugepages() is strict about
4764 * enforcing that). If we bail out here, we'll also leave a
4765 * page in the radix tree in the vm_shared case beyond the end
4766 * of the i_size, but remove_inode_hugepages() will take care
4767 * of it as soon as we drop the hugetlb_fault_mutex_table.
4768 */
4769 size = i_size_read(mapping->host) >> huge_page_shift(h);
4770 ret = -EFAULT;
4771 if (idx >= size)
4772 goto out_release_unlock;
4773
8fb5debc
MK
4774 ret = -EEXIST;
4775 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4776 goto out_release_unlock;
4777
1c9e8def
MK
4778 if (vm_shared) {
4779 page_dup_rmap(page, true);
4780 } else {
d6995da3 4781 ClearHPageRestoreReserve(page);
1c9e8def
MK
4782 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4783 }
8fb5debc
MK
4784
4785 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4786 if (dst_vma->vm_flags & VM_WRITE)
4787 _dst_pte = huge_pte_mkdirty(_dst_pte);
4788 _dst_pte = pte_mkyoung(_dst_pte);
4789
4790 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4791
4792 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4793 dst_vma->vm_flags & VM_WRITE);
4794 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4795
4796 /* No need to invalidate - it was non-present before */
4797 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4798
4799 spin_unlock(ptl);
8f251a3d 4800 SetHPageMigratable(page);
1c9e8def
MK
4801 if (vm_shared)
4802 unlock_page(page);
8fb5debc
MK
4803 ret = 0;
4804out:
4805 return ret;
4806out_release_unlock:
4807 spin_unlock(ptl);
1c9e8def
MK
4808 if (vm_shared)
4809 unlock_page(page);
5af10dfd 4810out_release_nounlock:
8fb5debc
MK
4811 put_page(page);
4812 goto out;
4813}
4814
82e5d378
JM
4815static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4816 int refs, struct page **pages,
4817 struct vm_area_struct **vmas)
4818{
4819 int nr;
4820
4821 for (nr = 0; nr < refs; nr++) {
4822 if (likely(pages))
4823 pages[nr] = mem_map_offset(page, nr);
4824 if (vmas)
4825 vmas[nr] = vma;
4826 }
4827}
4828
28a35716
ML
4829long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4830 struct page **pages, struct vm_area_struct **vmas,
4831 unsigned long *position, unsigned long *nr_pages,
4f6da934 4832 long i, unsigned int flags, int *locked)
63551ae0 4833{
d5d4b0aa
KC
4834 unsigned long pfn_offset;
4835 unsigned long vaddr = *position;
28a35716 4836 unsigned long remainder = *nr_pages;
a5516438 4837 struct hstate *h = hstate_vma(vma);
0fa5bc40 4838 int err = -EFAULT, refs;
63551ae0 4839
63551ae0 4840 while (vaddr < vma->vm_end && remainder) {
4c887265 4841 pte_t *pte;
cb900f41 4842 spinlock_t *ptl = NULL;
2a15efc9 4843 int absent;
4c887265 4844 struct page *page;
63551ae0 4845
02057967
DR
4846 /*
4847 * If we have a pending SIGKILL, don't keep faulting pages and
4848 * potentially allocating memory.
4849 */
fa45f116 4850 if (fatal_signal_pending(current)) {
02057967
DR
4851 remainder = 0;
4852 break;
4853 }
4854
4c887265
AL
4855 /*
4856 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4857 * each hugepage. We have to make sure we get the
4c887265 4858 * first, for the page indexing below to work.
cb900f41
KS
4859 *
4860 * Note that page table lock is not held when pte is null.
4c887265 4861 */
7868a208
PA
4862 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4863 huge_page_size(h));
cb900f41
KS
4864 if (pte)
4865 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4866 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4867
4868 /*
4869 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4870 * an error where there's an empty slot with no huge pagecache
4871 * to back it. This way, we avoid allocating a hugepage, and
4872 * the sparse dumpfile avoids allocating disk blocks, but its
4873 * huge holes still show up with zeroes where they need to be.
2a15efc9 4874 */
3ae77f43
HD
4875 if (absent && (flags & FOLL_DUMP) &&
4876 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4877 if (pte)
4878 spin_unlock(ptl);
2a15efc9
HD
4879 remainder = 0;
4880 break;
4881 }
63551ae0 4882
9cc3a5bd
NH
4883 /*
4884 * We need call hugetlb_fault for both hugepages under migration
4885 * (in which case hugetlb_fault waits for the migration,) and
4886 * hwpoisoned hugepages (in which case we need to prevent the
4887 * caller from accessing to them.) In order to do this, we use
4888 * here is_swap_pte instead of is_hugetlb_entry_migration and
4889 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4890 * both cases, and because we can't follow correct pages
4891 * directly from any kind of swap entries.
4892 */
4893 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4894 ((flags & FOLL_WRITE) &&
4895 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4896 vm_fault_t ret;
87ffc118 4897 unsigned int fault_flags = 0;
63551ae0 4898
cb900f41
KS
4899 if (pte)
4900 spin_unlock(ptl);
87ffc118
AA
4901 if (flags & FOLL_WRITE)
4902 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4903 if (locked)
71335f37
PX
4904 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4905 FAULT_FLAG_KILLABLE;
87ffc118
AA
4906 if (flags & FOLL_NOWAIT)
4907 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4908 FAULT_FLAG_RETRY_NOWAIT;
4909 if (flags & FOLL_TRIED) {
4426e945
PX
4910 /*
4911 * Note: FAULT_FLAG_ALLOW_RETRY and
4912 * FAULT_FLAG_TRIED can co-exist
4913 */
87ffc118
AA
4914 fault_flags |= FAULT_FLAG_TRIED;
4915 }
4916 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4917 if (ret & VM_FAULT_ERROR) {
2be7cfed 4918 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4919 remainder = 0;
4920 break;
4921 }
4922 if (ret & VM_FAULT_RETRY) {
4f6da934 4923 if (locked &&
1ac25013 4924 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4925 *locked = 0;
87ffc118
AA
4926 *nr_pages = 0;
4927 /*
4928 * VM_FAULT_RETRY must not return an
4929 * error, it will return zero
4930 * instead.
4931 *
4932 * No need to update "position" as the
4933 * caller will not check it after
4934 * *nr_pages is set to 0.
4935 */
4936 return i;
4937 }
4938 continue;
4c887265
AL
4939 }
4940
a5516438 4941 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4942 page = pte_page(huge_ptep_get(pte));
8fde12ca 4943
acbfb087
ZL
4944 /*
4945 * If subpage information not requested, update counters
4946 * and skip the same_page loop below.
4947 */
4948 if (!pages && !vmas && !pfn_offset &&
4949 (vaddr + huge_page_size(h) < vma->vm_end) &&
4950 (remainder >= pages_per_huge_page(h))) {
4951 vaddr += huge_page_size(h);
4952 remainder -= pages_per_huge_page(h);
4953 i += pages_per_huge_page(h);
4954 spin_unlock(ptl);
4955 continue;
4956 }
4957
82e5d378
JM
4958 refs = min3(pages_per_huge_page(h) - pfn_offset,
4959 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
0fa5bc40 4960
82e5d378
JM
4961 if (pages || vmas)
4962 record_subpages_vmas(mem_map_offset(page, pfn_offset),
4963 vma, refs,
4964 likely(pages) ? pages + i : NULL,
4965 vmas ? vmas + i : NULL);
63551ae0 4966
82e5d378 4967 if (pages) {
0fa5bc40
JM
4968 /*
4969 * try_grab_compound_head() should always succeed here,
4970 * because: a) we hold the ptl lock, and b) we've just
4971 * checked that the huge page is present in the page
4972 * tables. If the huge page is present, then the tail
4973 * pages must also be present. The ptl prevents the
4974 * head page and tail pages from being rearranged in
4975 * any way. So this page must be available at this
4976 * point, unless the page refcount overflowed:
4977 */
82e5d378 4978 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
4979 refs,
4980 flags))) {
4981 spin_unlock(ptl);
4982 remainder = 0;
4983 err = -ENOMEM;
4984 break;
4985 }
d5d4b0aa 4986 }
82e5d378
JM
4987
4988 vaddr += (refs << PAGE_SHIFT);
4989 remainder -= refs;
4990 i += refs;
4991
cb900f41 4992 spin_unlock(ptl);
63551ae0 4993 }
28a35716 4994 *nr_pages = remainder;
87ffc118
AA
4995 /*
4996 * setting position is actually required only if remainder is
4997 * not zero but it's faster not to add a "if (remainder)"
4998 * branch.
4999 */
63551ae0
DG
5000 *position = vaddr;
5001
2be7cfed 5002 return i ? i : err;
63551ae0 5003}
8f860591 5004
7da4d641 5005unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
5006 unsigned long address, unsigned long end, pgprot_t newprot)
5007{
5008 struct mm_struct *mm = vma->vm_mm;
5009 unsigned long start = address;
5010 pte_t *ptep;
5011 pte_t pte;
a5516438 5012 struct hstate *h = hstate_vma(vma);
7da4d641 5013 unsigned long pages = 0;
dff11abe 5014 bool shared_pmd = false;
ac46d4f3 5015 struct mmu_notifier_range range;
dff11abe
MK
5016
5017 /*
5018 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5019 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5020 * range if PMD sharing is possible.
5021 */
7269f999
JG
5022 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5023 0, vma, mm, start, end);
ac46d4f3 5024 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5025
5026 BUG_ON(address >= end);
ac46d4f3 5027 flush_cache_range(vma, range.start, range.end);
8f860591 5028
ac46d4f3 5029 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5030 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5031 for (; address < end; address += huge_page_size(h)) {
cb900f41 5032 spinlock_t *ptl;
7868a208 5033 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5034 if (!ptep)
5035 continue;
cb900f41 5036 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5037 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5038 pages++;
cb900f41 5039 spin_unlock(ptl);
dff11abe 5040 shared_pmd = true;
39dde65c 5041 continue;
7da4d641 5042 }
a8bda28d
NH
5043 pte = huge_ptep_get(ptep);
5044 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5045 spin_unlock(ptl);
5046 continue;
5047 }
5048 if (unlikely(is_hugetlb_entry_migration(pte))) {
5049 swp_entry_t entry = pte_to_swp_entry(pte);
5050
5051 if (is_write_migration_entry(entry)) {
5052 pte_t newpte;
5053
5054 make_migration_entry_read(&entry);
5055 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5056 set_huge_swap_pte_at(mm, address, ptep,
5057 newpte, huge_page_size(h));
a8bda28d
NH
5058 pages++;
5059 }
5060 spin_unlock(ptl);
5061 continue;
5062 }
5063 if (!huge_pte_none(pte)) {
023bdd00
AK
5064 pte_t old_pte;
5065
5066 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5067 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5068 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5069 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5070 pages++;
8f860591 5071 }
cb900f41 5072 spin_unlock(ptl);
8f860591 5073 }
d833352a 5074 /*
c8c06efa 5075 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5076 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5077 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5078 * and that page table be reused and filled with junk. If we actually
5079 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5080 */
dff11abe 5081 if (shared_pmd)
ac46d4f3 5082 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5083 else
5084 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5085 /*
5086 * No need to call mmu_notifier_invalidate_range() we are downgrading
5087 * page table protection not changing it to point to a new page.
5088 *
ad56b738 5089 * See Documentation/vm/mmu_notifier.rst
0f10851e 5090 */
83cde9e8 5091 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5092 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5093
5094 return pages << h->order;
8f860591
ZY
5095}
5096
33b8f84a
MK
5097/* Return true if reservation was successful, false otherwise. */
5098bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 5099 long from, long to,
5a6fe125 5100 struct vm_area_struct *vma,
ca16d140 5101 vm_flags_t vm_flags)
e4e574b7 5102{
33b8f84a 5103 long chg, add = -1;
a5516438 5104 struct hstate *h = hstate_inode(inode);
90481622 5105 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5106 struct resv_map *resv_map;
075a61d0 5107 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5108 long gbl_reserve, regions_needed = 0;
e4e574b7 5109
63489f8e
MK
5110 /* This should never happen */
5111 if (from > to) {
5112 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 5113 return false;
63489f8e
MK
5114 }
5115
17c9d12e
MG
5116 /*
5117 * Only apply hugepage reservation if asked. At fault time, an
5118 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5119 * without using reserves
17c9d12e 5120 */
ca16d140 5121 if (vm_flags & VM_NORESERVE)
33b8f84a 5122 return true;
17c9d12e 5123
a1e78772
MG
5124 /*
5125 * Shared mappings base their reservation on the number of pages that
5126 * are already allocated on behalf of the file. Private mappings need
5127 * to reserve the full area even if read-only as mprotect() may be
5128 * called to make the mapping read-write. Assume !vma is a shm mapping
5129 */
9119a41e 5130 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5131 /*
5132 * resv_map can not be NULL as hugetlb_reserve_pages is only
5133 * called for inodes for which resv_maps were created (see
5134 * hugetlbfs_get_inode).
5135 */
4e35f483 5136 resv_map = inode_resv_map(inode);
9119a41e 5137
0db9d74e 5138 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5139
5140 } else {
e9fe92ae 5141 /* Private mapping. */
9119a41e 5142 resv_map = resv_map_alloc();
17c9d12e 5143 if (!resv_map)
33b8f84a 5144 return false;
17c9d12e 5145
a1e78772 5146 chg = to - from;
84afd99b 5147
17c9d12e
MG
5148 set_vma_resv_map(vma, resv_map);
5149 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5150 }
5151
33b8f84a 5152 if (chg < 0)
c50ac050 5153 goto out_err;
8a630112 5154
33b8f84a
MK
5155 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5156 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 5157 goto out_err;
075a61d0
MA
5158
5159 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5160 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5161 * of the resv_map.
5162 */
5163 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5164 }
5165
1c5ecae3
MK
5166 /*
5167 * There must be enough pages in the subpool for the mapping. If
5168 * the subpool has a minimum size, there may be some global
5169 * reservations already in place (gbl_reserve).
5170 */
5171 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 5172 if (gbl_reserve < 0)
075a61d0 5173 goto out_uncharge_cgroup;
5a6fe125
MG
5174
5175 /*
17c9d12e 5176 * Check enough hugepages are available for the reservation.
90481622 5177 * Hand the pages back to the subpool if there are not
5a6fe125 5178 */
33b8f84a 5179 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 5180 goto out_put_pages;
17c9d12e
MG
5181
5182 /*
5183 * Account for the reservations made. Shared mappings record regions
5184 * that have reservations as they are shared by multiple VMAs.
5185 * When the last VMA disappears, the region map says how much
5186 * the reservation was and the page cache tells how much of
5187 * the reservation was consumed. Private mappings are per-VMA and
5188 * only the consumed reservations are tracked. When the VMA
5189 * disappears, the original reservation is the VMA size and the
5190 * consumed reservations are stored in the map. Hence, nothing
5191 * else has to be done for private mappings here
5192 */
33039678 5193 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5194 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5195
5196 if (unlikely(add < 0)) {
5197 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5198 goto out_put_pages;
0db9d74e 5199 } else if (unlikely(chg > add)) {
33039678
MK
5200 /*
5201 * pages in this range were added to the reserve
5202 * map between region_chg and region_add. This
5203 * indicates a race with alloc_huge_page. Adjust
5204 * the subpool and reserve counts modified above
5205 * based on the difference.
5206 */
5207 long rsv_adjust;
5208
d85aecf2
ML
5209 /*
5210 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5211 * reference to h_cg->css. See comment below for detail.
5212 */
075a61d0
MA
5213 hugetlb_cgroup_uncharge_cgroup_rsvd(
5214 hstate_index(h),
5215 (chg - add) * pages_per_huge_page(h), h_cg);
5216
33039678
MK
5217 rsv_adjust = hugepage_subpool_put_pages(spool,
5218 chg - add);
5219 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
5220 } else if (h_cg) {
5221 /*
5222 * The file_regions will hold their own reference to
5223 * h_cg->css. So we should release the reference held
5224 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5225 * done.
5226 */
5227 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
5228 }
5229 }
33b8f84a
MK
5230 return true;
5231
075a61d0
MA
5232out_put_pages:
5233 /* put back original number of pages, chg */
5234 (void)hugepage_subpool_put_pages(spool, chg);
5235out_uncharge_cgroup:
5236 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5237 chg * pages_per_huge_page(h), h_cg);
c50ac050 5238out_err:
5e911373 5239 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5240 /* Only call region_abort if the region_chg succeeded but the
5241 * region_add failed or didn't run.
5242 */
5243 if (chg >= 0 && add < 0)
5244 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5245 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5246 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 5247 return false;
a43a8c39
KC
5248}
5249
b5cec28d
MK
5250long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5251 long freed)
a43a8c39 5252{
a5516438 5253 struct hstate *h = hstate_inode(inode);
4e35f483 5254 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5255 long chg = 0;
90481622 5256 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5257 long gbl_reserve;
45c682a6 5258
f27a5136
MK
5259 /*
5260 * Since this routine can be called in the evict inode path for all
5261 * hugetlbfs inodes, resv_map could be NULL.
5262 */
b5cec28d
MK
5263 if (resv_map) {
5264 chg = region_del(resv_map, start, end);
5265 /*
5266 * region_del() can fail in the rare case where a region
5267 * must be split and another region descriptor can not be
5268 * allocated. If end == LONG_MAX, it will not fail.
5269 */
5270 if (chg < 0)
5271 return chg;
5272 }
5273
45c682a6 5274 spin_lock(&inode->i_lock);
e4c6f8be 5275 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5276 spin_unlock(&inode->i_lock);
5277
1c5ecae3
MK
5278 /*
5279 * If the subpool has a minimum size, the number of global
5280 * reservations to be released may be adjusted.
dddf31a4
ML
5281 *
5282 * Note that !resv_map implies freed == 0. So (chg - freed)
5283 * won't go negative.
1c5ecae3
MK
5284 */
5285 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5286 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5287
5288 return 0;
a43a8c39 5289}
93f70f90 5290
3212b535
SC
5291#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5292static unsigned long page_table_shareable(struct vm_area_struct *svma,
5293 struct vm_area_struct *vma,
5294 unsigned long addr, pgoff_t idx)
5295{
5296 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5297 svma->vm_start;
5298 unsigned long sbase = saddr & PUD_MASK;
5299 unsigned long s_end = sbase + PUD_SIZE;
5300
5301 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5302 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5303 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5304
5305 /*
5306 * match the virtual addresses, permission and the alignment of the
5307 * page table page.
5308 */
5309 if (pmd_index(addr) != pmd_index(saddr) ||
5310 vm_flags != svm_flags ||
07e51edf 5311 !range_in_vma(svma, sbase, s_end))
3212b535
SC
5312 return 0;
5313
5314 return saddr;
5315}
5316
31aafb45 5317static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5318{
5319 unsigned long base = addr & PUD_MASK;
5320 unsigned long end = base + PUD_SIZE;
5321
5322 /*
5323 * check on proper vm_flags and page table alignment
5324 */
017b1660 5325 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5326 return true;
5327 return false;
3212b535
SC
5328}
5329
c1991e07
PX
5330bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5331{
5332#ifdef CONFIG_USERFAULTFD
5333 if (uffd_disable_huge_pmd_share(vma))
5334 return false;
5335#endif
5336 return vma_shareable(vma, addr);
5337}
5338
017b1660
MK
5339/*
5340 * Determine if start,end range within vma could be mapped by shared pmd.
5341 * If yes, adjust start and end to cover range associated with possible
5342 * shared pmd mappings.
5343 */
5344void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5345 unsigned long *start, unsigned long *end)
5346{
a1ba9da8
LX
5347 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5348 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5349
a1ba9da8
LX
5350 /*
5351 * vma need span at least one aligned PUD size and the start,end range
5352 * must at least partialy within it.
5353 */
5354 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5355 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5356 return;
5357
75802ca6 5358 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
5359 if (*start > v_start)
5360 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5361
a1ba9da8
LX
5362 if (*end < v_end)
5363 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5364}
5365
3212b535
SC
5366/*
5367 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5368 * and returns the corresponding pte. While this is not necessary for the
5369 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5370 * code much cleaner.
5371 *
0bf7b64e
MK
5372 * This routine must be called with i_mmap_rwsem held in at least read mode if
5373 * sharing is possible. For hugetlbfs, this prevents removal of any page
5374 * table entries associated with the address space. This is important as we
5375 * are setting up sharing based on existing page table entries (mappings).
5376 *
5377 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5378 * huge_pte_alloc know that sharing is not possible and do not take
5379 * i_mmap_rwsem as a performance optimization. This is handled by the
5380 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5381 * only required for subsequent processing.
3212b535 5382 */
aec44e0f
PX
5383pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5384 unsigned long addr, pud_t *pud)
3212b535 5385{
3212b535
SC
5386 struct address_space *mapping = vma->vm_file->f_mapping;
5387 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5388 vma->vm_pgoff;
5389 struct vm_area_struct *svma;
5390 unsigned long saddr;
5391 pte_t *spte = NULL;
5392 pte_t *pte;
cb900f41 5393 spinlock_t *ptl;
3212b535 5394
0bf7b64e 5395 i_mmap_assert_locked(mapping);
3212b535
SC
5396 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5397 if (svma == vma)
5398 continue;
5399
5400 saddr = page_table_shareable(svma, vma, addr, idx);
5401 if (saddr) {
7868a208
PA
5402 spte = huge_pte_offset(svma->vm_mm, saddr,
5403 vma_mmu_pagesize(svma));
3212b535
SC
5404 if (spte) {
5405 get_page(virt_to_page(spte));
5406 break;
5407 }
5408 }
5409 }
5410
5411 if (!spte)
5412 goto out;
5413
8bea8052 5414 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5415 if (pud_none(*pud)) {
3212b535
SC
5416 pud_populate(mm, pud,
5417 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5418 mm_inc_nr_pmds(mm);
dc6c9a35 5419 } else {
3212b535 5420 put_page(virt_to_page(spte));
dc6c9a35 5421 }
cb900f41 5422 spin_unlock(ptl);
3212b535
SC
5423out:
5424 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5425 return pte;
5426}
5427
5428/*
5429 * unmap huge page backed by shared pte.
5430 *
5431 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5432 * indicated by page_count > 1, unmap is achieved by clearing pud and
5433 * decrementing the ref count. If count == 1, the pte page is not shared.
5434 *
c0d0381a 5435 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5436 *
5437 * returns: 1 successfully unmapped a shared pte page
5438 * 0 the underlying pte page is not shared, or it is the last user
5439 */
34ae204f
MK
5440int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5441 unsigned long *addr, pte_t *ptep)
3212b535
SC
5442{
5443 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5444 p4d_t *p4d = p4d_offset(pgd, *addr);
5445 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5446
34ae204f 5447 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5448 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5449 if (page_count(virt_to_page(ptep)) == 1)
5450 return 0;
5451
5452 pud_clear(pud);
5453 put_page(virt_to_page(ptep));
dc6c9a35 5454 mm_dec_nr_pmds(mm);
3212b535
SC
5455 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5456 return 1;
5457}
c1991e07 5458
9e5fc74c 5459#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
aec44e0f
PX
5460pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5461 unsigned long addr, pud_t *pud)
9e5fc74c
SC
5462{
5463 return NULL;
5464}
e81f2d22 5465
34ae204f
MK
5466int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5467 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5468{
5469 return 0;
5470}
017b1660
MK
5471
5472void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5473 unsigned long *start, unsigned long *end)
5474{
5475}
c1991e07
PX
5476
5477bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5478{
5479 return false;
5480}
3212b535
SC
5481#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5482
9e5fc74c 5483#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 5484pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
5485 unsigned long addr, unsigned long sz)
5486{
5487 pgd_t *pgd;
c2febafc 5488 p4d_t *p4d;
9e5fc74c
SC
5489 pud_t *pud;
5490 pte_t *pte = NULL;
5491
5492 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5493 p4d = p4d_alloc(mm, pgd, addr);
5494 if (!p4d)
5495 return NULL;
c2febafc 5496 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5497 if (pud) {
5498 if (sz == PUD_SIZE) {
5499 pte = (pte_t *)pud;
5500 } else {
5501 BUG_ON(sz != PMD_SIZE);
c1991e07 5502 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 5503 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
5504 else
5505 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5506 }
5507 }
4e666314 5508 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5509
5510 return pte;
5511}
5512
9b19df29
PA
5513/*
5514 * huge_pte_offset() - Walk the page table to resolve the hugepage
5515 * entry at address @addr
5516 *
8ac0b81a
LX
5517 * Return: Pointer to page table entry (PUD or PMD) for
5518 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5519 * size @sz doesn't match the hugepage size at this level of the page
5520 * table.
5521 */
7868a208
PA
5522pte_t *huge_pte_offset(struct mm_struct *mm,
5523 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5524{
5525 pgd_t *pgd;
c2febafc 5526 p4d_t *p4d;
8ac0b81a
LX
5527 pud_t *pud;
5528 pmd_t *pmd;
9e5fc74c
SC
5529
5530 pgd = pgd_offset(mm, addr);
c2febafc
KS
5531 if (!pgd_present(*pgd))
5532 return NULL;
5533 p4d = p4d_offset(pgd, addr);
5534 if (!p4d_present(*p4d))
5535 return NULL;
9b19df29 5536
c2febafc 5537 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5538 if (sz == PUD_SIZE)
5539 /* must be pud huge, non-present or none */
c2febafc 5540 return (pte_t *)pud;
8ac0b81a 5541 if (!pud_present(*pud))
9b19df29 5542 return NULL;
8ac0b81a 5543 /* must have a valid entry and size to go further */
9b19df29 5544
8ac0b81a
LX
5545 pmd = pmd_offset(pud, addr);
5546 /* must be pmd huge, non-present or none */
5547 return (pte_t *)pmd;
9e5fc74c
SC
5548}
5549
61f77eda
NH
5550#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5551
5552/*
5553 * These functions are overwritable if your architecture needs its own
5554 * behavior.
5555 */
5556struct page * __weak
5557follow_huge_addr(struct mm_struct *mm, unsigned long address,
5558 int write)
5559{
5560 return ERR_PTR(-EINVAL);
5561}
5562
4dc71451
AK
5563struct page * __weak
5564follow_huge_pd(struct vm_area_struct *vma,
5565 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5566{
5567 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5568 return NULL;
5569}
5570
61f77eda 5571struct page * __weak
9e5fc74c 5572follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5573 pmd_t *pmd, int flags)
9e5fc74c 5574{
e66f17ff
NH
5575 struct page *page = NULL;
5576 spinlock_t *ptl;
c9d398fa 5577 pte_t pte;
3faa52c0
JH
5578
5579 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5580 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5581 (FOLL_PIN | FOLL_GET)))
5582 return NULL;
5583
e66f17ff
NH
5584retry:
5585 ptl = pmd_lockptr(mm, pmd);
5586 spin_lock(ptl);
5587 /*
5588 * make sure that the address range covered by this pmd is not
5589 * unmapped from other threads.
5590 */
5591 if (!pmd_huge(*pmd))
5592 goto out;
c9d398fa
NH
5593 pte = huge_ptep_get((pte_t *)pmd);
5594 if (pte_present(pte)) {
97534127 5595 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5596 /*
5597 * try_grab_page() should always succeed here, because: a) we
5598 * hold the pmd (ptl) lock, and b) we've just checked that the
5599 * huge pmd (head) page is present in the page tables. The ptl
5600 * prevents the head page and tail pages from being rearranged
5601 * in any way. So this page must be available at this point,
5602 * unless the page refcount overflowed:
5603 */
5604 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5605 page = NULL;
5606 goto out;
5607 }
e66f17ff 5608 } else {
c9d398fa 5609 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5610 spin_unlock(ptl);
5611 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5612 goto retry;
5613 }
5614 /*
5615 * hwpoisoned entry is treated as no_page_table in
5616 * follow_page_mask().
5617 */
5618 }
5619out:
5620 spin_unlock(ptl);
9e5fc74c
SC
5621 return page;
5622}
5623
61f77eda 5624struct page * __weak
9e5fc74c 5625follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5626 pud_t *pud, int flags)
9e5fc74c 5627{
3faa52c0 5628 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5629 return NULL;
9e5fc74c 5630
e66f17ff 5631 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5632}
5633
faaa5b62
AK
5634struct page * __weak
5635follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5636{
3faa52c0 5637 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5638 return NULL;
5639
5640 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5641}
5642
31caf665
NH
5643bool isolate_huge_page(struct page *page, struct list_head *list)
5644{
bcc54222
NH
5645 bool ret = true;
5646
db71ef79 5647 spin_lock_irq(&hugetlb_lock);
8f251a3d
MK
5648 if (!PageHeadHuge(page) ||
5649 !HPageMigratable(page) ||
0eb2df2b 5650 !get_page_unless_zero(page)) {
bcc54222
NH
5651 ret = false;
5652 goto unlock;
5653 }
8f251a3d 5654 ClearHPageMigratable(page);
31caf665 5655 list_move_tail(&page->lru, list);
bcc54222 5656unlock:
db71ef79 5657 spin_unlock_irq(&hugetlb_lock);
bcc54222 5658 return ret;
31caf665
NH
5659}
5660
5661void putback_active_hugepage(struct page *page)
5662{
db71ef79 5663 spin_lock_irq(&hugetlb_lock);
8f251a3d 5664 SetHPageMigratable(page);
31caf665 5665 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
db71ef79 5666 spin_unlock_irq(&hugetlb_lock);
31caf665
NH
5667 put_page(page);
5668}
ab5ac90a
MH
5669
5670void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5671{
5672 struct hstate *h = page_hstate(oldpage);
5673
5674 hugetlb_cgroup_migrate(oldpage, newpage);
5675 set_page_owner_migrate_reason(newpage, reason);
5676
5677 /*
5678 * transfer temporary state of the new huge page. This is
5679 * reverse to other transitions because the newpage is going to
5680 * be final while the old one will be freed so it takes over
5681 * the temporary status.
5682 *
5683 * Also note that we have to transfer the per-node surplus state
5684 * here as well otherwise the global surplus count will not match
5685 * the per-node's.
5686 */
9157c311 5687 if (HPageTemporary(newpage)) {
ab5ac90a
MH
5688 int old_nid = page_to_nid(oldpage);
5689 int new_nid = page_to_nid(newpage);
5690
9157c311
MK
5691 SetHPageTemporary(oldpage);
5692 ClearHPageTemporary(newpage);
ab5ac90a 5693
5af1ab1d
ML
5694 /*
5695 * There is no need to transfer the per-node surplus state
5696 * when we do not cross the node.
5697 */
5698 if (new_nid == old_nid)
5699 return;
db71ef79 5700 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
5701 if (h->surplus_huge_pages_node[old_nid]) {
5702 h->surplus_huge_pages_node[old_nid]--;
5703 h->surplus_huge_pages_node[new_nid]++;
5704 }
db71ef79 5705 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
5706 }
5707}
cf11e85f 5708
6dfeaff9
PX
5709/*
5710 * This function will unconditionally remove all the shared pmd pgtable entries
5711 * within the specific vma for a hugetlbfs memory range.
5712 */
5713void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5714{
5715 struct hstate *h = hstate_vma(vma);
5716 unsigned long sz = huge_page_size(h);
5717 struct mm_struct *mm = vma->vm_mm;
5718 struct mmu_notifier_range range;
5719 unsigned long address, start, end;
5720 spinlock_t *ptl;
5721 pte_t *ptep;
5722
5723 if (!(vma->vm_flags & VM_MAYSHARE))
5724 return;
5725
5726 start = ALIGN(vma->vm_start, PUD_SIZE);
5727 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5728
5729 if (start >= end)
5730 return;
5731
5732 /*
5733 * No need to call adjust_range_if_pmd_sharing_possible(), because
5734 * we have already done the PUD_SIZE alignment.
5735 */
5736 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5737 start, end);
5738 mmu_notifier_invalidate_range_start(&range);
5739 i_mmap_lock_write(vma->vm_file->f_mapping);
5740 for (address = start; address < end; address += PUD_SIZE) {
5741 unsigned long tmp = address;
5742
5743 ptep = huge_pte_offset(mm, address, sz);
5744 if (!ptep)
5745 continue;
5746 ptl = huge_pte_lock(h, mm, ptep);
5747 /* We don't want 'address' to be changed */
5748 huge_pmd_unshare(mm, vma, &tmp, ptep);
5749 spin_unlock(ptl);
5750 }
5751 flush_hugetlb_tlb_range(vma, start, end);
5752 i_mmap_unlock_write(vma->vm_file->f_mapping);
5753 /*
5754 * No need to call mmu_notifier_invalidate_range(), see
5755 * Documentation/vm/mmu_notifier.rst.
5756 */
5757 mmu_notifier_invalidate_range_end(&range);
5758}
5759
cf11e85f 5760#ifdef CONFIG_CMA
cf11e85f
RG
5761static bool cma_reserve_called __initdata;
5762
5763static int __init cmdline_parse_hugetlb_cma(char *p)
5764{
5765 hugetlb_cma_size = memparse(p, &p);
5766 return 0;
5767}
5768
5769early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5770
5771void __init hugetlb_cma_reserve(int order)
5772{
5773 unsigned long size, reserved, per_node;
5774 int nid;
5775
5776 cma_reserve_called = true;
5777
5778 if (!hugetlb_cma_size)
5779 return;
5780
5781 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5782 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5783 (PAGE_SIZE << order) / SZ_1M);
5784 return;
5785 }
5786
5787 /*
5788 * If 3 GB area is requested on a machine with 4 numa nodes,
5789 * let's allocate 1 GB on first three nodes and ignore the last one.
5790 */
5791 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5792 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5793 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5794
5795 reserved = 0;
5796 for_each_node_state(nid, N_ONLINE) {
5797 int res;
2281f797 5798 char name[CMA_MAX_NAME];
cf11e85f
RG
5799
5800 size = min(per_node, hugetlb_cma_size - reserved);
5801 size = round_up(size, PAGE_SIZE << order);
5802
2281f797 5803 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 5804 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 5805 0, false, name,
cf11e85f
RG
5806 &hugetlb_cma[nid], nid);
5807 if (res) {
5808 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5809 res, nid);
5810 continue;
5811 }
5812
5813 reserved += size;
5814 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5815 size / SZ_1M, nid);
5816
5817 if (reserved >= hugetlb_cma_size)
5818 break;
5819 }
5820}
5821
5822void __init hugetlb_cma_check(void)
5823{
5824 if (!hugetlb_cma_size || cma_reserve_called)
5825 return;
5826
5827 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5828}
5829
5830#endif /* CONFIG_CMA */