]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/hugetlb.c
modedb: fix incorrect sync and vmode flags for CVT modes
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5#include <linux/gfp.h>
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/module.h>
9#include <linux/mm.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
aea47ff3 15#include <linux/cpuset.h>
3935baa9 16#include <linux/mutex.h>
5da7ca86 17
63551ae0
DG
18#include <asm/page.h>
19#include <asm/pgtable.h>
20
21#include <linux/hugetlb.h>
7835e98b 22#include "internal.h"
1da177e4
LT
23
24const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
a43a8c39 25static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
7893d1d5 26static unsigned long surplus_huge_pages;
064d9efe 27static unsigned long nr_overcommit_huge_pages;
1da177e4 28unsigned long max_huge_pages;
064d9efe 29unsigned long sysctl_overcommit_huge_pages;
1da177e4
LT
30static struct list_head hugepage_freelists[MAX_NUMNODES];
31static unsigned int nr_huge_pages_node[MAX_NUMNODES];
32static unsigned int free_huge_pages_node[MAX_NUMNODES];
7893d1d5 33static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
396faf03
MG
34static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35unsigned long hugepages_treat_as_movable;
63b4613c 36static int hugetlb_next_nid;
396faf03 37
3935baa9
DG
38/*
39 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
40 */
41static DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 42
79ac6ba4
DG
43static void clear_huge_page(struct page *page, unsigned long addr)
44{
45 int i;
46
47 might_sleep();
48 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
49 cond_resched();
281e0e3b 50 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
79ac6ba4
DG
51 }
52}
53
54static void copy_huge_page(struct page *dst, struct page *src,
9de455b2 55 unsigned long addr, struct vm_area_struct *vma)
79ac6ba4
DG
56{
57 int i;
58
59 might_sleep();
60 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
61 cond_resched();
9de455b2 62 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
79ac6ba4
DG
63 }
64}
65
1da177e4
LT
66static void enqueue_huge_page(struct page *page)
67{
68 int nid = page_to_nid(page);
69 list_add(&page->lru, &hugepage_freelists[nid]);
70 free_huge_pages++;
71 free_huge_pages_node[nid]++;
72}
73
348e1e04
NA
74static struct page *dequeue_huge_page(void)
75{
76 int nid;
77 struct page *page = NULL;
78
79 for (nid = 0; nid < MAX_NUMNODES; ++nid) {
80 if (!list_empty(&hugepage_freelists[nid])) {
81 page = list_entry(hugepage_freelists[nid].next,
82 struct page, lru);
83 list_del(&page->lru);
84 free_huge_pages--;
85 free_huge_pages_node[nid]--;
86 break;
87 }
88 }
89 return page;
90}
91
92static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
5da7ca86 93 unsigned long address)
1da177e4 94{
31a5c6e4 95 int nid;
1da177e4 96 struct page *page = NULL;
480eccf9 97 struct mempolicy *mpol;
19770b32 98 nodemask_t *nodemask;
396faf03 99 struct zonelist *zonelist = huge_zonelist(vma, address,
19770b32 100 htlb_alloc_mask, &mpol, &nodemask);
dd1a239f
MG
101 struct zone *zone;
102 struct zoneref *z;
1da177e4 103
19770b32
MG
104 for_each_zone_zonelist_nodemask(zone, z, zonelist,
105 MAX_NR_ZONES - 1, nodemask) {
54a6eb5c
MG
106 nid = zone_to_nid(zone);
107 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
3abf7afd
AM
108 !list_empty(&hugepage_freelists[nid])) {
109 page = list_entry(hugepage_freelists[nid].next,
110 struct page, lru);
111 list_del(&page->lru);
112 free_huge_pages--;
113 free_huge_pages_node[nid]--;
e4e574b7
AL
114 if (vma && vma->vm_flags & VM_MAYSHARE)
115 resv_huge_pages--;
5ab3ee7b 116 break;
3abf7afd 117 }
1da177e4 118 }
52cd3b07 119 mpol_cond_put(mpol);
1da177e4
LT
120 return page;
121}
122
6af2acb6
AL
123static void update_and_free_page(struct page *page)
124{
125 int i;
126 nr_huge_pages--;
127 nr_huge_pages_node[page_to_nid(page)]--;
128 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
129 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
130 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
131 1 << PG_private | 1<< PG_writeback);
132 }
133 set_compound_page_dtor(page, NULL);
134 set_page_refcounted(page);
7f2e9525 135 arch_release_hugepage(page);
6af2acb6
AL
136 __free_pages(page, HUGETLB_PAGE_ORDER);
137}
138
27a85ef1
DG
139static void free_huge_page(struct page *page)
140{
7893d1d5 141 int nid = page_to_nid(page);
c79fb75e 142 struct address_space *mapping;
27a85ef1 143
c79fb75e 144 mapping = (struct address_space *) page_private(page);
e5df70ab 145 set_page_private(page, 0);
7893d1d5 146 BUG_ON(page_count(page));
27a85ef1
DG
147 INIT_LIST_HEAD(&page->lru);
148
149 spin_lock(&hugetlb_lock);
7893d1d5
AL
150 if (surplus_huge_pages_node[nid]) {
151 update_and_free_page(page);
152 surplus_huge_pages--;
153 surplus_huge_pages_node[nid]--;
154 } else {
155 enqueue_huge_page(page);
156 }
27a85ef1 157 spin_unlock(&hugetlb_lock);
c79fb75e 158 if (mapping)
9a119c05 159 hugetlb_put_quota(mapping, 1);
27a85ef1
DG
160}
161
7893d1d5
AL
162/*
163 * Increment or decrement surplus_huge_pages. Keep node-specific counters
164 * balanced by operating on them in a round-robin fashion.
165 * Returns 1 if an adjustment was made.
166 */
167static int adjust_pool_surplus(int delta)
168{
169 static int prev_nid;
170 int nid = prev_nid;
171 int ret = 0;
172
173 VM_BUG_ON(delta != -1 && delta != 1);
174 do {
175 nid = next_node(nid, node_online_map);
176 if (nid == MAX_NUMNODES)
177 nid = first_node(node_online_map);
178
179 /* To shrink on this node, there must be a surplus page */
180 if (delta < 0 && !surplus_huge_pages_node[nid])
181 continue;
182 /* Surplus cannot exceed the total number of pages */
183 if (delta > 0 && surplus_huge_pages_node[nid] >=
184 nr_huge_pages_node[nid])
185 continue;
186
187 surplus_huge_pages += delta;
188 surplus_huge_pages_node[nid] += delta;
189 ret = 1;
190 break;
191 } while (nid != prev_nid);
192
193 prev_nid = nid;
194 return ret;
195}
196
63b4613c 197static struct page *alloc_fresh_huge_page_node(int nid)
1da177e4 198{
1da177e4 199 struct page *page;
f96efd58 200
63b4613c 201 page = alloc_pages_node(nid,
551883ae
NA
202 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
203 __GFP_REPEAT|__GFP_NOWARN,
63b4613c 204 HUGETLB_PAGE_ORDER);
1da177e4 205 if (page) {
7f2e9525
GS
206 if (arch_prepare_hugepage(page)) {
207 __free_pages(page, HUGETLB_PAGE_ORDER);
7b8ee84d 208 return NULL;
7f2e9525 209 }
33f2ef89 210 set_compound_page_dtor(page, free_huge_page);
0bd0f9fb 211 spin_lock(&hugetlb_lock);
1da177e4 212 nr_huge_pages++;
63b4613c 213 nr_huge_pages_node[nid]++;
0bd0f9fb 214 spin_unlock(&hugetlb_lock);
a482289d 215 put_page(page); /* free it into the hugepage allocator */
1da177e4 216 }
63b4613c
NA
217
218 return page;
219}
220
221static int alloc_fresh_huge_page(void)
222{
223 struct page *page;
224 int start_nid;
225 int next_nid;
226 int ret = 0;
227
228 start_nid = hugetlb_next_nid;
229
230 do {
231 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
232 if (page)
233 ret = 1;
234 /*
235 * Use a helper variable to find the next node and then
236 * copy it back to hugetlb_next_nid afterwards:
237 * otherwise there's a window in which a racer might
238 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
239 * But we don't need to use a spin_lock here: it really
240 * doesn't matter if occasionally a racer chooses the
241 * same nid as we do. Move nid forward in the mask even
242 * if we just successfully allocated a hugepage so that
243 * the next caller gets hugepages on the next node.
244 */
245 next_nid = next_node(hugetlb_next_nid, node_online_map);
246 if (next_nid == MAX_NUMNODES)
247 next_nid = first_node(node_online_map);
248 hugetlb_next_nid = next_nid;
249 } while (!page && hugetlb_next_nid != start_nid);
250
3b116300
AL
251 if (ret)
252 count_vm_event(HTLB_BUDDY_PGALLOC);
253 else
254 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
255
63b4613c 256 return ret;
1da177e4
LT
257}
258
7893d1d5
AL
259static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
260 unsigned long address)
261{
262 struct page *page;
d1c3fb1f 263 unsigned int nid;
7893d1d5 264
d1c3fb1f
NA
265 /*
266 * Assume we will successfully allocate the surplus page to
267 * prevent racing processes from causing the surplus to exceed
268 * overcommit
269 *
270 * This however introduces a different race, where a process B
271 * tries to grow the static hugepage pool while alloc_pages() is
272 * called by process A. B will only examine the per-node
273 * counters in determining if surplus huge pages can be
274 * converted to normal huge pages in adjust_pool_surplus(). A
275 * won't be able to increment the per-node counter, until the
276 * lock is dropped by B, but B doesn't drop hugetlb_lock until
277 * no more huge pages can be converted from surplus to normal
278 * state (and doesn't try to convert again). Thus, we have a
279 * case where a surplus huge page exists, the pool is grown, and
280 * the surplus huge page still exists after, even though it
281 * should just have been converted to a normal huge page. This
282 * does not leak memory, though, as the hugepage will be freed
283 * once it is out of use. It also does not allow the counters to
284 * go out of whack in adjust_pool_surplus() as we don't modify
285 * the node values until we've gotten the hugepage and only the
286 * per-node value is checked there.
287 */
288 spin_lock(&hugetlb_lock);
289 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
290 spin_unlock(&hugetlb_lock);
291 return NULL;
292 } else {
293 nr_huge_pages++;
294 surplus_huge_pages++;
295 }
296 spin_unlock(&hugetlb_lock);
297
551883ae
NA
298 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
299 __GFP_REPEAT|__GFP_NOWARN,
7893d1d5 300 HUGETLB_PAGE_ORDER);
d1c3fb1f
NA
301
302 spin_lock(&hugetlb_lock);
7893d1d5 303 if (page) {
2668db91
AL
304 /*
305 * This page is now managed by the hugetlb allocator and has
306 * no users -- drop the buddy allocator's reference.
307 */
308 put_page_testzero(page);
309 VM_BUG_ON(page_count(page));
d1c3fb1f 310 nid = page_to_nid(page);
7893d1d5 311 set_compound_page_dtor(page, free_huge_page);
d1c3fb1f
NA
312 /*
313 * We incremented the global counters already
314 */
315 nr_huge_pages_node[nid]++;
316 surplus_huge_pages_node[nid]++;
3b116300 317 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f
NA
318 } else {
319 nr_huge_pages--;
320 surplus_huge_pages--;
3b116300 321 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 322 }
d1c3fb1f 323 spin_unlock(&hugetlb_lock);
7893d1d5
AL
324
325 return page;
326}
327
e4e574b7
AL
328/*
329 * Increase the hugetlb pool such that it can accomodate a reservation
330 * of size 'delta'.
331 */
332static int gather_surplus_pages(int delta)
333{
334 struct list_head surplus_list;
335 struct page *page, *tmp;
336 int ret, i;
337 int needed, allocated;
338
339 needed = (resv_huge_pages + delta) - free_huge_pages;
ac09b3a1
AL
340 if (needed <= 0) {
341 resv_huge_pages += delta;
e4e574b7 342 return 0;
ac09b3a1 343 }
e4e574b7
AL
344
345 allocated = 0;
346 INIT_LIST_HEAD(&surplus_list);
347
348 ret = -ENOMEM;
349retry:
350 spin_unlock(&hugetlb_lock);
351 for (i = 0; i < needed; i++) {
352 page = alloc_buddy_huge_page(NULL, 0);
353 if (!page) {
354 /*
355 * We were not able to allocate enough pages to
356 * satisfy the entire reservation so we free what
357 * we've allocated so far.
358 */
359 spin_lock(&hugetlb_lock);
360 needed = 0;
361 goto free;
362 }
363
364 list_add(&page->lru, &surplus_list);
365 }
366 allocated += needed;
367
368 /*
369 * After retaking hugetlb_lock, we need to recalculate 'needed'
370 * because either resv_huge_pages or free_huge_pages may have changed.
371 */
372 spin_lock(&hugetlb_lock);
373 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
374 if (needed > 0)
375 goto retry;
376
377 /*
378 * The surplus_list now contains _at_least_ the number of extra pages
379 * needed to accomodate the reservation. Add the appropriate number
380 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
381 * allocator. Commit the entire reservation here to prevent another
382 * process from stealing the pages as they are added to the pool but
383 * before they are reserved.
e4e574b7
AL
384 */
385 needed += allocated;
ac09b3a1 386 resv_huge_pages += delta;
e4e574b7
AL
387 ret = 0;
388free:
19fc3f0a 389 /* Free the needed pages to the hugetlb pool */
e4e574b7 390 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
391 if ((--needed) < 0)
392 break;
e4e574b7 393 list_del(&page->lru);
19fc3f0a
AL
394 enqueue_huge_page(page);
395 }
396
397 /* Free unnecessary surplus pages to the buddy allocator */
398 if (!list_empty(&surplus_list)) {
399 spin_unlock(&hugetlb_lock);
400 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
401 list_del(&page->lru);
af767cbd 402 /*
2668db91
AL
403 * The page has a reference count of zero already, so
404 * call free_huge_page directly instead of using
405 * put_page. This must be done with hugetlb_lock
af767cbd
AL
406 * unlocked which is safe because free_huge_page takes
407 * hugetlb_lock before deciding how to free the page.
408 */
2668db91 409 free_huge_page(page);
af767cbd 410 }
19fc3f0a 411 spin_lock(&hugetlb_lock);
e4e574b7
AL
412 }
413
414 return ret;
415}
416
417/*
418 * When releasing a hugetlb pool reservation, any surplus pages that were
419 * allocated to satisfy the reservation must be explicitly freed if they were
420 * never used.
421 */
8cde045c 422static void return_unused_surplus_pages(unsigned long unused_resv_pages)
e4e574b7
AL
423{
424 static int nid = -1;
425 struct page *page;
426 unsigned long nr_pages;
427
11320d17
NA
428 /*
429 * We want to release as many surplus pages as possible, spread
430 * evenly across all nodes. Iterate across all nodes until we
431 * can no longer free unreserved surplus pages. This occurs when
432 * the nodes with surplus pages have no free pages.
433 */
434 unsigned long remaining_iterations = num_online_nodes();
435
ac09b3a1
AL
436 /* Uncommit the reservation */
437 resv_huge_pages -= unused_resv_pages;
438
e4e574b7
AL
439 nr_pages = min(unused_resv_pages, surplus_huge_pages);
440
11320d17 441 while (remaining_iterations-- && nr_pages) {
e4e574b7
AL
442 nid = next_node(nid, node_online_map);
443 if (nid == MAX_NUMNODES)
444 nid = first_node(node_online_map);
445
446 if (!surplus_huge_pages_node[nid])
447 continue;
448
449 if (!list_empty(&hugepage_freelists[nid])) {
450 page = list_entry(hugepage_freelists[nid].next,
451 struct page, lru);
452 list_del(&page->lru);
453 update_and_free_page(page);
454 free_huge_pages--;
455 free_huge_pages_node[nid]--;
456 surplus_huge_pages--;
457 surplus_huge_pages_node[nid]--;
458 nr_pages--;
11320d17 459 remaining_iterations = num_online_nodes();
e4e574b7
AL
460 }
461 }
462}
463
348ea204
AL
464
465static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
466 unsigned long addr)
1da177e4 467{
348ea204 468 struct page *page;
1da177e4
LT
469
470 spin_lock(&hugetlb_lock);
348e1e04 471 page = dequeue_huge_page_vma(vma, addr);
1da177e4 472 spin_unlock(&hugetlb_lock);
90d8b7e6 473 return page ? page : ERR_PTR(-VM_FAULT_OOM);
348ea204 474}
b45b5bd6 475
348ea204
AL
476static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
477 unsigned long addr)
478{
479 struct page *page = NULL;
7893d1d5 480
90d8b7e6
AL
481 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
482 return ERR_PTR(-VM_FAULT_SIGBUS);
483
348ea204
AL
484 spin_lock(&hugetlb_lock);
485 if (free_huge_pages > resv_huge_pages)
348e1e04 486 page = dequeue_huge_page_vma(vma, addr);
348ea204 487 spin_unlock(&hugetlb_lock);
68842c9b 488 if (!page) {
7893d1d5 489 page = alloc_buddy_huge_page(vma, addr);
68842c9b
KC
490 if (!page) {
491 hugetlb_put_quota(vma->vm_file->f_mapping, 1);
492 return ERR_PTR(-VM_FAULT_OOM);
493 }
494 }
495 return page;
348ea204
AL
496}
497
498static struct page *alloc_huge_page(struct vm_area_struct *vma,
499 unsigned long addr)
500{
501 struct page *page;
2fc39cec
AL
502 struct address_space *mapping = vma->vm_file->f_mapping;
503
348ea204
AL
504 if (vma->vm_flags & VM_MAYSHARE)
505 page = alloc_huge_page_shared(vma, addr);
506 else
507 page = alloc_huge_page_private(vma, addr);
90d8b7e6
AL
508
509 if (!IS_ERR(page)) {
348ea204 510 set_page_refcounted(page);
2fc39cec 511 set_page_private(page, (unsigned long) mapping);
90d8b7e6
AL
512 }
513 return page;
b45b5bd6
DG
514}
515
1da177e4
LT
516static int __init hugetlb_init(void)
517{
518 unsigned long i;
1da177e4 519
3c726f8d
BH
520 if (HPAGE_SHIFT == 0)
521 return 0;
522
1da177e4
LT
523 for (i = 0; i < MAX_NUMNODES; ++i)
524 INIT_LIST_HEAD(&hugepage_freelists[i]);
525
63b4613c
NA
526 hugetlb_next_nid = first_node(node_online_map);
527
1da177e4 528 for (i = 0; i < max_huge_pages; ++i) {
a482289d 529 if (!alloc_fresh_huge_page())
1da177e4 530 break;
1da177e4
LT
531 }
532 max_huge_pages = free_huge_pages = nr_huge_pages = i;
533 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
534 return 0;
535}
536module_init(hugetlb_init);
537
538static int __init hugetlb_setup(char *s)
539{
540 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
541 max_huge_pages = 0;
542 return 1;
543}
544__setup("hugepages=", hugetlb_setup);
545
8a630112
KC
546static unsigned int cpuset_mems_nr(unsigned int *array)
547{
548 int node;
549 unsigned int nr = 0;
550
551 for_each_node_mask(node, cpuset_current_mems_allowed)
552 nr += array[node];
553
554 return nr;
555}
556
1da177e4 557#ifdef CONFIG_SYSCTL
1da177e4
LT
558#ifdef CONFIG_HIGHMEM
559static void try_to_free_low(unsigned long count)
560{
4415cc8d
CL
561 int i;
562
1da177e4
LT
563 for (i = 0; i < MAX_NUMNODES; ++i) {
564 struct page *page, *next;
565 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
6b0c880d
AL
566 if (count >= nr_huge_pages)
567 return;
1da177e4
LT
568 if (PageHighMem(page))
569 continue;
570 list_del(&page->lru);
571 update_and_free_page(page);
1da177e4 572 free_huge_pages--;
4415cc8d 573 free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
574 }
575 }
576}
577#else
578static inline void try_to_free_low(unsigned long count)
579{
580}
581#endif
582
7893d1d5 583#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
1da177e4
LT
584static unsigned long set_max_huge_pages(unsigned long count)
585{
7893d1d5 586 unsigned long min_count, ret;
1da177e4 587
7893d1d5
AL
588 /*
589 * Increase the pool size
590 * First take pages out of surplus state. Then make up the
591 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
592 *
593 * We might race with alloc_buddy_huge_page() here and be unable
594 * to convert a surplus huge page to a normal huge page. That is
595 * not critical, though, it just means the overall size of the
596 * pool might be one hugepage larger than it needs to be, but
597 * within all the constraints specified by the sysctls.
7893d1d5 598 */
1da177e4 599 spin_lock(&hugetlb_lock);
7893d1d5
AL
600 while (surplus_huge_pages && count > persistent_huge_pages) {
601 if (!adjust_pool_surplus(-1))
602 break;
603 }
604
605 while (count > persistent_huge_pages) {
606 int ret;
607 /*
608 * If this allocation races such that we no longer need the
609 * page, free_huge_page will handle it by freeing the page
610 * and reducing the surplus.
611 */
612 spin_unlock(&hugetlb_lock);
613 ret = alloc_fresh_huge_page();
614 spin_lock(&hugetlb_lock);
615 if (!ret)
616 goto out;
617
618 }
7893d1d5
AL
619
620 /*
621 * Decrease the pool size
622 * First return free pages to the buddy allocator (being careful
623 * to keep enough around to satisfy reservations). Then place
624 * pages into surplus state as needed so the pool will shrink
625 * to the desired size as pages become free.
d1c3fb1f
NA
626 *
627 * By placing pages into the surplus state independent of the
628 * overcommit value, we are allowing the surplus pool size to
629 * exceed overcommit. There are few sane options here. Since
630 * alloc_buddy_huge_page() is checking the global counter,
631 * though, we'll note that we're not allowed to exceed surplus
632 * and won't grow the pool anywhere else. Not until one of the
633 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 634 */
6b0c880d
AL
635 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
636 min_count = max(count, min_count);
7893d1d5
AL
637 try_to_free_low(min_count);
638 while (min_count < persistent_huge_pages) {
348e1e04 639 struct page *page = dequeue_huge_page();
1da177e4
LT
640 if (!page)
641 break;
642 update_and_free_page(page);
643 }
7893d1d5
AL
644 while (count < persistent_huge_pages) {
645 if (!adjust_pool_surplus(1))
646 break;
647 }
648out:
649 ret = persistent_huge_pages;
1da177e4 650 spin_unlock(&hugetlb_lock);
7893d1d5 651 return ret;
1da177e4
LT
652}
653
654int hugetlb_sysctl_handler(struct ctl_table *table, int write,
655 struct file *file, void __user *buffer,
656 size_t *length, loff_t *ppos)
657{
658 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
659 max_huge_pages = set_max_huge_pages(max_huge_pages);
660 return 0;
661}
396faf03
MG
662
663int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
664 struct file *file, void __user *buffer,
665 size_t *length, loff_t *ppos)
666{
667 proc_dointvec(table, write, file, buffer, length, ppos);
668 if (hugepages_treat_as_movable)
669 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
670 else
671 htlb_alloc_mask = GFP_HIGHUSER;
672 return 0;
673}
674
a3d0c6aa
NA
675int hugetlb_overcommit_handler(struct ctl_table *table, int write,
676 struct file *file, void __user *buffer,
677 size_t *length, loff_t *ppos)
678{
a3d0c6aa 679 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
064d9efe
NA
680 spin_lock(&hugetlb_lock);
681 nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
a3d0c6aa
NA
682 spin_unlock(&hugetlb_lock);
683 return 0;
684}
685
1da177e4
LT
686#endif /* CONFIG_SYSCTL */
687
688int hugetlb_report_meminfo(char *buf)
689{
690 return sprintf(buf,
691 "HugePages_Total: %5lu\n"
692 "HugePages_Free: %5lu\n"
a43a8c39 693 "HugePages_Rsvd: %5lu\n"
7893d1d5 694 "HugePages_Surp: %5lu\n"
1da177e4
LT
695 "Hugepagesize: %5lu kB\n",
696 nr_huge_pages,
697 free_huge_pages,
a43a8c39 698 resv_huge_pages,
7893d1d5 699 surplus_huge_pages,
1da177e4
LT
700 HPAGE_SIZE/1024);
701}
702
703int hugetlb_report_node_meminfo(int nid, char *buf)
704{
705 return sprintf(buf,
706 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
707 "Node %d HugePages_Free: %5u\n"
708 "Node %d HugePages_Surp: %5u\n",
1da177e4 709 nid, nr_huge_pages_node[nid],
a1de0919
NA
710 nid, free_huge_pages_node[nid],
711 nid, surplus_huge_pages_node[nid]);
1da177e4
LT
712}
713
1da177e4
LT
714/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
715unsigned long hugetlb_total_pages(void)
716{
717 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
718}
1da177e4
LT
719
720/*
721 * We cannot handle pagefaults against hugetlb pages at all. They cause
722 * handle_mm_fault() to try to instantiate regular-sized pages in the
723 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
724 * this far.
725 */
d0217ac0 726static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
727{
728 BUG();
d0217ac0 729 return 0;
1da177e4
LT
730}
731
732struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 733 .fault = hugetlb_vm_op_fault,
1da177e4
LT
734};
735
1e8f889b
DG
736static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
737 int writable)
63551ae0
DG
738{
739 pte_t entry;
740
1e8f889b 741 if (writable) {
63551ae0
DG
742 entry =
743 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
744 } else {
7f2e9525 745 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
63551ae0
DG
746 }
747 entry = pte_mkyoung(entry);
748 entry = pte_mkhuge(entry);
749
750 return entry;
751}
752
1e8f889b
DG
753static void set_huge_ptep_writable(struct vm_area_struct *vma,
754 unsigned long address, pte_t *ptep)
755{
756 pte_t entry;
757
7f2e9525
GS
758 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
759 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
8dab5241 760 update_mmu_cache(vma, address, entry);
8dab5241 761 }
1e8f889b
DG
762}
763
764
63551ae0
DG
765int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
766 struct vm_area_struct *vma)
767{
768 pte_t *src_pte, *dst_pte, entry;
769 struct page *ptepage;
1c59827d 770 unsigned long addr;
1e8f889b
DG
771 int cow;
772
773 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 774
1c59827d 775 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
c74df32c
HD
776 src_pte = huge_pte_offset(src, addr);
777 if (!src_pte)
778 continue;
63551ae0
DG
779 dst_pte = huge_pte_alloc(dst, addr);
780 if (!dst_pte)
781 goto nomem;
c5c99429
LW
782
783 /* If the pagetables are shared don't copy or take references */
784 if (dst_pte == src_pte)
785 continue;
786
c74df32c 787 spin_lock(&dst->page_table_lock);
1c59827d 788 spin_lock(&src->page_table_lock);
7f2e9525 789 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 790 if (cow)
7f2e9525
GS
791 huge_ptep_set_wrprotect(src, addr, src_pte);
792 entry = huge_ptep_get(src_pte);
1c59827d
HD
793 ptepage = pte_page(entry);
794 get_page(ptepage);
1c59827d
HD
795 set_huge_pte_at(dst, addr, dst_pte, entry);
796 }
797 spin_unlock(&src->page_table_lock);
c74df32c 798 spin_unlock(&dst->page_table_lock);
63551ae0
DG
799 }
800 return 0;
801
802nomem:
803 return -ENOMEM;
804}
805
502717f4
KC
806void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
807 unsigned long end)
63551ae0
DG
808{
809 struct mm_struct *mm = vma->vm_mm;
810 unsigned long address;
c7546f8f 811 pte_t *ptep;
63551ae0
DG
812 pte_t pte;
813 struct page *page;
fe1668ae 814 struct page *tmp;
c0a499c2
KC
815 /*
816 * A page gathering list, protected by per file i_mmap_lock. The
817 * lock is used to avoid list corruption from multiple unmapping
818 * of the same page since we are using page->lru.
819 */
fe1668ae 820 LIST_HEAD(page_list);
63551ae0
DG
821
822 WARN_ON(!is_vm_hugetlb_page(vma));
823 BUG_ON(start & ~HPAGE_MASK);
824 BUG_ON(end & ~HPAGE_MASK);
825
508034a3 826 spin_lock(&mm->page_table_lock);
63551ae0 827 for (address = start; address < end; address += HPAGE_SIZE) {
c7546f8f 828 ptep = huge_pte_offset(mm, address);
4c887265 829 if (!ptep)
c7546f8f
DG
830 continue;
831
39dde65c
KC
832 if (huge_pmd_unshare(mm, &address, ptep))
833 continue;
834
c7546f8f 835 pte = huge_ptep_get_and_clear(mm, address, ptep);
7f2e9525 836 if (huge_pte_none(pte))
63551ae0 837 continue;
c7546f8f 838
63551ae0 839 page = pte_page(pte);
6649a386
KC
840 if (pte_dirty(pte))
841 set_page_dirty(page);
fe1668ae 842 list_add(&page->lru, &page_list);
63551ae0 843 }
1da177e4 844 spin_unlock(&mm->page_table_lock);
508034a3 845 flush_tlb_range(vma, start, end);
fe1668ae
KC
846 list_for_each_entry_safe(page, tmp, &page_list, lru) {
847 list_del(&page->lru);
848 put_page(page);
849 }
1da177e4 850}
63551ae0 851
502717f4
KC
852void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
853 unsigned long end)
854{
855 /*
856 * It is undesirable to test vma->vm_file as it should be non-null
857 * for valid hugetlb area. However, vm_file will be NULL in the error
858 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
859 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
860 * to clean up. Since no pte has actually been setup, it is safe to
861 * do nothing in this case.
862 */
863 if (vma->vm_file) {
864 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
865 __unmap_hugepage_range(vma, start, end);
866 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
867 }
868}
869
1e8f889b
DG
870static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
871 unsigned long address, pte_t *ptep, pte_t pte)
872{
873 struct page *old_page, *new_page;
79ac6ba4 874 int avoidcopy;
1e8f889b
DG
875
876 old_page = pte_page(pte);
877
878 /* If no-one else is actually using this page, avoid the copy
879 * and just make the page writable */
880 avoidcopy = (page_count(old_page) == 1);
881 if (avoidcopy) {
882 set_huge_ptep_writable(vma, address, ptep);
83c54070 883 return 0;
1e8f889b
DG
884 }
885
886 page_cache_get(old_page);
5da7ca86 887 new_page = alloc_huge_page(vma, address);
1e8f889b 888
2fc39cec 889 if (IS_ERR(new_page)) {
1e8f889b 890 page_cache_release(old_page);
2fc39cec 891 return -PTR_ERR(new_page);
1e8f889b
DG
892 }
893
894 spin_unlock(&mm->page_table_lock);
9de455b2 895 copy_huge_page(new_page, old_page, address, vma);
0ed361de 896 __SetPageUptodate(new_page);
1e8f889b
DG
897 spin_lock(&mm->page_table_lock);
898
899 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
7f2e9525 900 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1e8f889b 901 /* Break COW */
8fe627ec 902 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
903 set_huge_pte_at(mm, address, ptep,
904 make_huge_pte(vma, new_page, 1));
905 /* Make the old page be freed below */
906 new_page = old_page;
907 }
908 page_cache_release(new_page);
909 page_cache_release(old_page);
83c54070 910 return 0;
1e8f889b
DG
911}
912
a1ed3dda 913static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1e8f889b 914 unsigned long address, pte_t *ptep, int write_access)
ac9b9c66
HD
915{
916 int ret = VM_FAULT_SIGBUS;
4c887265
AL
917 unsigned long idx;
918 unsigned long size;
4c887265
AL
919 struct page *page;
920 struct address_space *mapping;
1e8f889b 921 pte_t new_pte;
4c887265 922
4c887265
AL
923 mapping = vma->vm_file->f_mapping;
924 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
925 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
926
927 /*
928 * Use page lock to guard against racing truncation
929 * before we get page_table_lock.
930 */
6bda666a
CL
931retry:
932 page = find_lock_page(mapping, idx);
933 if (!page) {
ebed4bfc
HD
934 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
935 if (idx >= size)
936 goto out;
6bda666a 937 page = alloc_huge_page(vma, address);
2fc39cec
AL
938 if (IS_ERR(page)) {
939 ret = -PTR_ERR(page);
6bda666a
CL
940 goto out;
941 }
79ac6ba4 942 clear_huge_page(page, address);
0ed361de 943 __SetPageUptodate(page);
ac9b9c66 944
6bda666a
CL
945 if (vma->vm_flags & VM_SHARED) {
946 int err;
45c682a6 947 struct inode *inode = mapping->host;
6bda666a
CL
948
949 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
950 if (err) {
951 put_page(page);
6bda666a
CL
952 if (err == -EEXIST)
953 goto retry;
954 goto out;
955 }
45c682a6
KC
956
957 spin_lock(&inode->i_lock);
958 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
959 spin_unlock(&inode->i_lock);
6bda666a
CL
960 } else
961 lock_page(page);
962 }
1e8f889b 963
ac9b9c66 964 spin_lock(&mm->page_table_lock);
4c887265
AL
965 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
966 if (idx >= size)
967 goto backout;
968
83c54070 969 ret = 0;
7f2e9525 970 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
971 goto backout;
972
1e8f889b
DG
973 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
974 && (vma->vm_flags & VM_SHARED)));
975 set_huge_pte_at(mm, address, ptep, new_pte);
976
977 if (write_access && !(vma->vm_flags & VM_SHARED)) {
978 /* Optimization, do the COW without a second fault */
979 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
980 }
981
ac9b9c66 982 spin_unlock(&mm->page_table_lock);
4c887265
AL
983 unlock_page(page);
984out:
ac9b9c66 985 return ret;
4c887265
AL
986
987backout:
988 spin_unlock(&mm->page_table_lock);
4c887265
AL
989 unlock_page(page);
990 put_page(page);
991 goto out;
ac9b9c66
HD
992}
993
86e5216f
AL
994int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
995 unsigned long address, int write_access)
996{
997 pte_t *ptep;
998 pte_t entry;
1e8f889b 999 int ret;
3935baa9 1000 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
86e5216f
AL
1001
1002 ptep = huge_pte_alloc(mm, address);
1003 if (!ptep)
1004 return VM_FAULT_OOM;
1005
3935baa9
DG
1006 /*
1007 * Serialize hugepage allocation and instantiation, so that we don't
1008 * get spurious allocation failures if two CPUs race to instantiate
1009 * the same page in the page cache.
1010 */
1011 mutex_lock(&hugetlb_instantiation_mutex);
7f2e9525
GS
1012 entry = huge_ptep_get(ptep);
1013 if (huge_pte_none(entry)) {
3935baa9
DG
1014 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
1015 mutex_unlock(&hugetlb_instantiation_mutex);
1016 return ret;
1017 }
86e5216f 1018
83c54070 1019 ret = 0;
1e8f889b
DG
1020
1021 spin_lock(&mm->page_table_lock);
1022 /* Check for a racing update before calling hugetlb_cow */
7f2e9525 1023 if (likely(pte_same(entry, huge_ptep_get(ptep))))
1e8f889b
DG
1024 if (write_access && !pte_write(entry))
1025 ret = hugetlb_cow(mm, vma, address, ptep, entry);
1026 spin_unlock(&mm->page_table_lock);
3935baa9 1027 mutex_unlock(&hugetlb_instantiation_mutex);
1e8f889b
DG
1028
1029 return ret;
86e5216f
AL
1030}
1031
63551ae0
DG
1032int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
1033 struct page **pages, struct vm_area_struct **vmas,
5b23dbe8
AL
1034 unsigned long *position, int *length, int i,
1035 int write)
63551ae0 1036{
d5d4b0aa
KC
1037 unsigned long pfn_offset;
1038 unsigned long vaddr = *position;
63551ae0
DG
1039 int remainder = *length;
1040
1c59827d 1041 spin_lock(&mm->page_table_lock);
63551ae0 1042 while (vaddr < vma->vm_end && remainder) {
4c887265
AL
1043 pte_t *pte;
1044 struct page *page;
63551ae0 1045
4c887265
AL
1046 /*
1047 * Some archs (sparc64, sh*) have multiple pte_ts to
1048 * each hugepage. We have to make * sure we get the
1049 * first, for the page indexing below to work.
1050 */
1051 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
63551ae0 1052
7f2e9525
GS
1053 if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
1054 (write && !pte_write(huge_ptep_get(pte)))) {
4c887265 1055 int ret;
63551ae0 1056
4c887265 1057 spin_unlock(&mm->page_table_lock);
5b23dbe8 1058 ret = hugetlb_fault(mm, vma, vaddr, write);
4c887265 1059 spin_lock(&mm->page_table_lock);
a89182c7 1060 if (!(ret & VM_FAULT_ERROR))
4c887265 1061 continue;
63551ae0 1062
4c887265
AL
1063 remainder = 0;
1064 if (!i)
1065 i = -EFAULT;
1066 break;
1067 }
1068
d5d4b0aa 1069 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
7f2e9525 1070 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 1071same_page:
d6692183
KC
1072 if (pages) {
1073 get_page(page);
d5d4b0aa 1074 pages[i] = page + pfn_offset;
d6692183 1075 }
63551ae0
DG
1076
1077 if (vmas)
1078 vmas[i] = vma;
1079
1080 vaddr += PAGE_SIZE;
d5d4b0aa 1081 ++pfn_offset;
63551ae0
DG
1082 --remainder;
1083 ++i;
d5d4b0aa
KC
1084 if (vaddr < vma->vm_end && remainder &&
1085 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1086 /*
1087 * We use pfn_offset to avoid touching the pageframes
1088 * of this compound page.
1089 */
1090 goto same_page;
1091 }
63551ae0 1092 }
1c59827d 1093 spin_unlock(&mm->page_table_lock);
63551ae0
DG
1094 *length = remainder;
1095 *position = vaddr;
1096
1097 return i;
1098}
8f860591
ZY
1099
1100void hugetlb_change_protection(struct vm_area_struct *vma,
1101 unsigned long address, unsigned long end, pgprot_t newprot)
1102{
1103 struct mm_struct *mm = vma->vm_mm;
1104 unsigned long start = address;
1105 pte_t *ptep;
1106 pte_t pte;
1107
1108 BUG_ON(address >= end);
1109 flush_cache_range(vma, address, end);
1110
39dde65c 1111 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
1112 spin_lock(&mm->page_table_lock);
1113 for (; address < end; address += HPAGE_SIZE) {
1114 ptep = huge_pte_offset(mm, address);
1115 if (!ptep)
1116 continue;
39dde65c
KC
1117 if (huge_pmd_unshare(mm, &address, ptep))
1118 continue;
7f2e9525 1119 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591
ZY
1120 pte = huge_ptep_get_and_clear(mm, address, ptep);
1121 pte = pte_mkhuge(pte_modify(pte, newprot));
1122 set_huge_pte_at(mm, address, ptep, pte);
8f860591
ZY
1123 }
1124 }
1125 spin_unlock(&mm->page_table_lock);
39dde65c 1126 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
8f860591
ZY
1127
1128 flush_tlb_range(vma, start, end);
1129}
1130
a43a8c39
KC
1131struct file_region {
1132 struct list_head link;
1133 long from;
1134 long to;
1135};
1136
1137static long region_add(struct list_head *head, long f, long t)
1138{
1139 struct file_region *rg, *nrg, *trg;
1140
1141 /* Locate the region we are either in or before. */
1142 list_for_each_entry(rg, head, link)
1143 if (f <= rg->to)
1144 break;
1145
1146 /* Round our left edge to the current segment if it encloses us. */
1147 if (f > rg->from)
1148 f = rg->from;
1149
1150 /* Check for and consume any regions we now overlap with. */
1151 nrg = rg;
1152 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1153 if (&rg->link == head)
1154 break;
1155 if (rg->from > t)
1156 break;
1157
1158 /* If this area reaches higher then extend our area to
1159 * include it completely. If this is not the first area
1160 * which we intend to reuse, free it. */
1161 if (rg->to > t)
1162 t = rg->to;
1163 if (rg != nrg) {
1164 list_del(&rg->link);
1165 kfree(rg);
1166 }
1167 }
1168 nrg->from = f;
1169 nrg->to = t;
1170 return 0;
1171}
1172
1173static long region_chg(struct list_head *head, long f, long t)
1174{
1175 struct file_region *rg, *nrg;
1176 long chg = 0;
1177
1178 /* Locate the region we are before or in. */
1179 list_for_each_entry(rg, head, link)
1180 if (f <= rg->to)
1181 break;
1182
1183 /* If we are below the current region then a new region is required.
1184 * Subtle, allocate a new region at the position but make it zero
183ff22b 1185 * size such that we can guarantee to record the reservation. */
a43a8c39
KC
1186 if (&rg->link == head || t < rg->from) {
1187 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
c80544dc 1188 if (!nrg)
a43a8c39
KC
1189 return -ENOMEM;
1190 nrg->from = f;
1191 nrg->to = f;
1192 INIT_LIST_HEAD(&nrg->link);
1193 list_add(&nrg->link, rg->link.prev);
1194
1195 return t - f;
1196 }
1197
1198 /* Round our left edge to the current segment if it encloses us. */
1199 if (f > rg->from)
1200 f = rg->from;
1201 chg = t - f;
1202
1203 /* Check for and consume any regions we now overlap with. */
1204 list_for_each_entry(rg, rg->link.prev, link) {
1205 if (&rg->link == head)
1206 break;
1207 if (rg->from > t)
1208 return chg;
1209
1210 /* We overlap with this area, if it extends futher than
1211 * us then we must extend ourselves. Account for its
1212 * existing reservation. */
1213 if (rg->to > t) {
1214 chg += rg->to - t;
1215 t = rg->to;
1216 }
1217 chg -= rg->to - rg->from;
1218 }
1219 return chg;
1220}
1221
1222static long region_truncate(struct list_head *head, long end)
1223{
1224 struct file_region *rg, *trg;
1225 long chg = 0;
1226
1227 /* Locate the region we are either in or before. */
1228 list_for_each_entry(rg, head, link)
1229 if (end <= rg->to)
1230 break;
1231 if (&rg->link == head)
1232 return 0;
1233
1234 /* If we are in the middle of a region then adjust it. */
1235 if (end > rg->from) {
1236 chg = rg->to - end;
1237 rg->to = end;
1238 rg = list_entry(rg->link.next, typeof(*rg), link);
1239 }
1240
1241 /* Drop any remaining regions. */
1242 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1243 if (&rg->link == head)
1244 break;
1245 chg += rg->to - rg->from;
1246 list_del(&rg->link);
1247 kfree(rg);
1248 }
1249 return chg;
1250}
1251
1252static int hugetlb_acct_memory(long delta)
1253{
1254 int ret = -ENOMEM;
1255
1256 spin_lock(&hugetlb_lock);
8a630112
KC
1257 /*
1258 * When cpuset is configured, it breaks the strict hugetlb page
1259 * reservation as the accounting is done on a global variable. Such
1260 * reservation is completely rubbish in the presence of cpuset because
1261 * the reservation is not checked against page availability for the
1262 * current cpuset. Application can still potentially OOM'ed by kernel
1263 * with lack of free htlb page in cpuset that the task is in.
1264 * Attempt to enforce strict accounting with cpuset is almost
1265 * impossible (or too ugly) because cpuset is too fluid that
1266 * task or memory node can be dynamically moved between cpusets.
1267 *
1268 * The change of semantics for shared hugetlb mapping with cpuset is
1269 * undesirable. However, in order to preserve some of the semantics,
1270 * we fall back to check against current free page availability as
1271 * a best attempt and hopefully to minimize the impact of changing
1272 * semantics that cpuset has.
1273 */
e4e574b7
AL
1274 if (delta > 0) {
1275 if (gather_surplus_pages(delta) < 0)
1276 goto out;
1277
ac09b3a1
AL
1278 if (delta > cpuset_mems_nr(free_huge_pages_node)) {
1279 return_unused_surplus_pages(delta);
e4e574b7 1280 goto out;
ac09b3a1 1281 }
e4e574b7
AL
1282 }
1283
1284 ret = 0;
e4e574b7
AL
1285 if (delta < 0)
1286 return_unused_surplus_pages((unsigned long) -delta);
1287
1288out:
1289 spin_unlock(&hugetlb_lock);
1290 return ret;
1291}
1292
1293int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1294{
1295 long ret, chg;
1296
1297 chg = region_chg(&inode->i_mapping->private_list, from, to);
1298 if (chg < 0)
1299 return chg;
8a630112 1300
90d8b7e6
AL
1301 if (hugetlb_get_quota(inode->i_mapping, chg))
1302 return -ENOSPC;
a43a8c39 1303 ret = hugetlb_acct_memory(chg);
68842c9b
KC
1304 if (ret < 0) {
1305 hugetlb_put_quota(inode->i_mapping, chg);
a43a8c39 1306 return ret;
68842c9b 1307 }
a43a8c39
KC
1308 region_add(&inode->i_mapping->private_list, from, to);
1309 return 0;
1310}
1311
1312void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1313{
1314 long chg = region_truncate(&inode->i_mapping->private_list, offset);
45c682a6
KC
1315
1316 spin_lock(&inode->i_lock);
1317 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1318 spin_unlock(&inode->i_lock);
1319
90d8b7e6
AL
1320 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1321 hugetlb_acct_memory(-(chg - freed));
a43a8c39 1322}