]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/hugetlb.c
mm/hugeltb: remove redundant VM_BUG_ON() in region_add()
[mirror_ubuntu-jammy-kernel.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
d6606683 33
63551ae0 34#include <asm/page.h>
ca15ca40 35#include <asm/pgalloc.h>
24669e58 36#include <asm/tlb.h>
63551ae0 37
24669e58 38#include <linux/io.h>
63551ae0 39#include <linux/hugetlb.h>
9dd540e2 40#include <linux/hugetlb_cgroup.h>
9a305230 41#include <linux/node.h>
1a1aad8a 42#include <linux/userfaultfd_k.h>
ab5ac90a 43#include <linux/page_owner.h>
7835e98b 44#include "internal.h"
1da177e4 45
c3f38a38 46int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
47unsigned int default_hstate_idx;
48struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 49
dbda8fea 50#ifdef CONFIG_CMA
cf11e85f 51static struct cma *hugetlb_cma[MAX_NUMNODES];
dbda8fea
BS
52#endif
53static unsigned long hugetlb_cma_size __initdata;
cf11e85f 54
641844f5
NH
55/*
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
58 */
59static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 60
53ba51d2
JT
61__initdata LIST_HEAD(huge_boot_pages);
62
e5ff2159
AK
63/* for command line parsing */
64static struct hstate * __initdata parsed_hstate;
65static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 66static bool __initdata parsed_valid_hugepagesz = true;
282f4214 67static bool __initdata parsed_default_hugepagesz;
e5ff2159 68
3935baa9 69/*
31caf665
NH
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
3935baa9 72 */
c3f38a38 73DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 74
8382d914
DB
75/*
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
78 */
79static int num_fault_mutexes;
c672c7f2 80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 81
7ca02d0a
MK
82/* Forward declaration */
83static int hugetlb_acct_memory(struct hstate *h, long delta);
84
1d88433b 85static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 86{
1d88433b
ML
87 if (spool->count)
88 return false;
89 if (spool->max_hpages != -1)
90 return spool->used_hpages == 0;
91 if (spool->min_hpages != -1)
92 return spool->rsv_hpages == spool->min_hpages;
93
94 return true;
95}
90481622 96
1d88433b
ML
97static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98{
90481622
DG
99 spin_unlock(&spool->lock);
100
101 /* If no pages are used, and no other handles to the subpool
7c8de358 102 * remain, give up any reservations based on minimum size and
7ca02d0a 103 * free the subpool */
1d88433b 104 if (subpool_is_free(spool)) {
7ca02d0a
MK
105 if (spool->min_hpages != -1)
106 hugetlb_acct_memory(spool->hstate,
107 -spool->min_hpages);
90481622 108 kfree(spool);
7ca02d0a 109 }
90481622
DG
110}
111
7ca02d0a
MK
112struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113 long min_hpages)
90481622
DG
114{
115 struct hugepage_subpool *spool;
116
c6a91820 117 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
118 if (!spool)
119 return NULL;
120
121 spin_lock_init(&spool->lock);
122 spool->count = 1;
7ca02d0a
MK
123 spool->max_hpages = max_hpages;
124 spool->hstate = h;
125 spool->min_hpages = min_hpages;
126
127 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128 kfree(spool);
129 return NULL;
130 }
131 spool->rsv_hpages = min_hpages;
90481622
DG
132
133 return spool;
134}
135
136void hugepage_put_subpool(struct hugepage_subpool *spool)
137{
138 spin_lock(&spool->lock);
139 BUG_ON(!spool->count);
140 spool->count--;
141 unlock_or_release_subpool(spool);
142}
143
1c5ecae3
MK
144/*
145 * Subpool accounting for allocating and reserving pages.
146 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 147 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
148 * global pools must be adjusted (upward). The returned value may
149 * only be different than the passed value (delta) in the case where
7c8de358 150 * a subpool minimum size must be maintained.
1c5ecae3
MK
151 */
152static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
153 long delta)
154{
1c5ecae3 155 long ret = delta;
90481622
DG
156
157 if (!spool)
1c5ecae3 158 return ret;
90481622
DG
159
160 spin_lock(&spool->lock);
1c5ecae3
MK
161
162 if (spool->max_hpages != -1) { /* maximum size accounting */
163 if ((spool->used_hpages + delta) <= spool->max_hpages)
164 spool->used_hpages += delta;
165 else {
166 ret = -ENOMEM;
167 goto unlock_ret;
168 }
90481622 169 }
90481622 170
09a95e29
MK
171 /* minimum size accounting */
172 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
173 if (delta > spool->rsv_hpages) {
174 /*
175 * Asking for more reserves than those already taken on
176 * behalf of subpool. Return difference.
177 */
178 ret = delta - spool->rsv_hpages;
179 spool->rsv_hpages = 0;
180 } else {
181 ret = 0; /* reserves already accounted for */
182 spool->rsv_hpages -= delta;
183 }
184 }
185
186unlock_ret:
187 spin_unlock(&spool->lock);
90481622
DG
188 return ret;
189}
190
1c5ecae3
MK
191/*
192 * Subpool accounting for freeing and unreserving pages.
193 * Return the number of global page reservations that must be dropped.
194 * The return value may only be different than the passed value (delta)
195 * in the case where a subpool minimum size must be maintained.
196 */
197static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
198 long delta)
199{
1c5ecae3
MK
200 long ret = delta;
201
90481622 202 if (!spool)
1c5ecae3 203 return delta;
90481622
DG
204
205 spin_lock(&spool->lock);
1c5ecae3
MK
206
207 if (spool->max_hpages != -1) /* maximum size accounting */
208 spool->used_hpages -= delta;
209
09a95e29
MK
210 /* minimum size accounting */
211 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
212 if (spool->rsv_hpages + delta <= spool->min_hpages)
213 ret = 0;
214 else
215 ret = spool->rsv_hpages + delta - spool->min_hpages;
216
217 spool->rsv_hpages += delta;
218 if (spool->rsv_hpages > spool->min_hpages)
219 spool->rsv_hpages = spool->min_hpages;
220 }
221
222 /*
223 * If hugetlbfs_put_super couldn't free spool due to an outstanding
224 * quota reference, free it now.
225 */
90481622 226 unlock_or_release_subpool(spool);
1c5ecae3
MK
227
228 return ret;
90481622
DG
229}
230
231static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232{
233 return HUGETLBFS_SB(inode->i_sb)->spool;
234}
235
236static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237{
496ad9aa 238 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
239}
240
0db9d74e
MA
241/* Helper that removes a struct file_region from the resv_map cache and returns
242 * it for use.
243 */
244static struct file_region *
245get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246{
247 struct file_region *nrg = NULL;
248
249 VM_BUG_ON(resv->region_cache_count <= 0);
250
251 resv->region_cache_count--;
252 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
253 list_del(&nrg->link);
254
255 nrg->from = from;
256 nrg->to = to;
257
258 return nrg;
259}
260
075a61d0
MA
261static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262 struct file_region *rg)
263{
264#ifdef CONFIG_CGROUP_HUGETLB
265 nrg->reservation_counter = rg->reservation_counter;
266 nrg->css = rg->css;
267 if (rg->css)
268 css_get(rg->css);
269#endif
270}
271
272/* Helper that records hugetlb_cgroup uncharge info. */
273static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274 struct hstate *h,
275 struct resv_map *resv,
276 struct file_region *nrg)
277{
278#ifdef CONFIG_CGROUP_HUGETLB
279 if (h_cg) {
280 nrg->reservation_counter =
281 &h_cg->rsvd_hugepage[hstate_index(h)];
282 nrg->css = &h_cg->css;
d85aecf2
ML
283 /*
284 * The caller will hold exactly one h_cg->css reference for the
285 * whole contiguous reservation region. But this area might be
286 * scattered when there are already some file_regions reside in
287 * it. As a result, many file_regions may share only one css
288 * reference. In order to ensure that one file_region must hold
289 * exactly one h_cg->css reference, we should do css_get for
290 * each file_region and leave the reference held by caller
291 * untouched.
292 */
293 css_get(&h_cg->css);
075a61d0
MA
294 if (!resv->pages_per_hpage)
295 resv->pages_per_hpage = pages_per_huge_page(h);
296 /* pages_per_hpage should be the same for all entries in
297 * a resv_map.
298 */
299 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
300 } else {
301 nrg->reservation_counter = NULL;
302 nrg->css = NULL;
303 }
304#endif
305}
306
d85aecf2
ML
307static void put_uncharge_info(struct file_region *rg)
308{
309#ifdef CONFIG_CGROUP_HUGETLB
310 if (rg->css)
311 css_put(rg->css);
312#endif
313}
314
a9b3f867
MA
315static bool has_same_uncharge_info(struct file_region *rg,
316 struct file_region *org)
317{
318#ifdef CONFIG_CGROUP_HUGETLB
319 return rg && org &&
320 rg->reservation_counter == org->reservation_counter &&
321 rg->css == org->css;
322
323#else
324 return true;
325#endif
326}
327
328static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
329{
330 struct file_region *nrg = NULL, *prg = NULL;
331
332 prg = list_prev_entry(rg, link);
333 if (&prg->link != &resv->regions && prg->to == rg->from &&
334 has_same_uncharge_info(prg, rg)) {
335 prg->to = rg->to;
336
337 list_del(&rg->link);
d85aecf2 338 put_uncharge_info(rg);
a9b3f867
MA
339 kfree(rg);
340
7db5e7b6 341 rg = prg;
a9b3f867
MA
342 }
343
344 nrg = list_next_entry(rg, link);
345 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
346 has_same_uncharge_info(nrg, rg)) {
347 nrg->from = rg->from;
348
349 list_del(&rg->link);
d85aecf2 350 put_uncharge_info(rg);
a9b3f867 351 kfree(rg);
a9b3f867
MA
352 }
353}
354
2103cf9c
PX
355static inline long
356hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
357 long to, struct hstate *h, struct hugetlb_cgroup *cg,
358 long *regions_needed)
359{
360 struct file_region *nrg;
361
362 if (!regions_needed) {
363 nrg = get_file_region_entry_from_cache(map, from, to);
364 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
365 list_add(&nrg->link, rg->link.prev);
366 coalesce_file_region(map, nrg);
367 } else
368 *regions_needed += 1;
369
370 return to - from;
371}
372
972a3da3
WY
373/*
374 * Must be called with resv->lock held.
375 *
376 * Calling this with regions_needed != NULL will count the number of pages
377 * to be added but will not modify the linked list. And regions_needed will
378 * indicate the number of file_regions needed in the cache to carry out to add
379 * the regions for this range.
d75c6af9
MA
380 */
381static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 382 struct hugetlb_cgroup *h_cg,
972a3da3 383 struct hstate *h, long *regions_needed)
d75c6af9 384{
0db9d74e 385 long add = 0;
d75c6af9 386 struct list_head *head = &resv->regions;
0db9d74e 387 long last_accounted_offset = f;
2103cf9c 388 struct file_region *rg = NULL, *trg = NULL;
d75c6af9 389
0db9d74e
MA
390 if (regions_needed)
391 *regions_needed = 0;
d75c6af9 392
0db9d74e
MA
393 /* In this loop, we essentially handle an entry for the range
394 * [last_accounted_offset, rg->from), at every iteration, with some
395 * bounds checking.
396 */
397 list_for_each_entry_safe(rg, trg, head, link) {
398 /* Skip irrelevant regions that start before our range. */
399 if (rg->from < f) {
400 /* If this region ends after the last accounted offset,
401 * then we need to update last_accounted_offset.
402 */
403 if (rg->to > last_accounted_offset)
404 last_accounted_offset = rg->to;
405 continue;
406 }
d75c6af9 407
0db9d74e
MA
408 /* When we find a region that starts beyond our range, we've
409 * finished.
410 */
ca7e0457 411 if (rg->from >= t)
d75c6af9
MA
412 break;
413
0db9d74e
MA
414 /* Add an entry for last_accounted_offset -> rg->from, and
415 * update last_accounted_offset.
416 */
2103cf9c
PX
417 if (rg->from > last_accounted_offset)
418 add += hugetlb_resv_map_add(resv, rg,
419 last_accounted_offset,
420 rg->from, h, h_cg,
421 regions_needed);
0db9d74e
MA
422
423 last_accounted_offset = rg->to;
424 }
425
426 /* Handle the case where our range extends beyond
427 * last_accounted_offset.
428 */
2103cf9c
PX
429 if (last_accounted_offset < t)
430 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
431 t, h, h_cg, regions_needed);
0db9d74e
MA
432
433 VM_BUG_ON(add < 0);
434 return add;
435}
436
437/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
438 */
439static int allocate_file_region_entries(struct resv_map *resv,
440 int regions_needed)
441 __must_hold(&resv->lock)
442{
443 struct list_head allocated_regions;
444 int to_allocate = 0, i = 0;
445 struct file_region *trg = NULL, *rg = NULL;
446
447 VM_BUG_ON(regions_needed < 0);
448
449 INIT_LIST_HEAD(&allocated_regions);
450
451 /*
452 * Check for sufficient descriptors in the cache to accommodate
453 * the number of in progress add operations plus regions_needed.
454 *
455 * This is a while loop because when we drop the lock, some other call
456 * to region_add or region_del may have consumed some region_entries,
457 * so we keep looping here until we finally have enough entries for
458 * (adds_in_progress + regions_needed).
459 */
460 while (resv->region_cache_count <
461 (resv->adds_in_progress + regions_needed)) {
462 to_allocate = resv->adds_in_progress + regions_needed -
463 resv->region_cache_count;
464
465 /* At this point, we should have enough entries in the cache
466 * for all the existings adds_in_progress. We should only be
467 * needing to allocate for regions_needed.
d75c6af9 468 */
0db9d74e
MA
469 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
470
471 spin_unlock(&resv->lock);
472 for (i = 0; i < to_allocate; i++) {
473 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
474 if (!trg)
475 goto out_of_memory;
476 list_add(&trg->link, &allocated_regions);
d75c6af9 477 }
d75c6af9 478
0db9d74e
MA
479 spin_lock(&resv->lock);
480
d3ec7b6e
WY
481 list_splice(&allocated_regions, &resv->region_cache);
482 resv->region_cache_count += to_allocate;
d75c6af9
MA
483 }
484
0db9d74e 485 return 0;
d75c6af9 486
0db9d74e
MA
487out_of_memory:
488 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
489 list_del(&rg->link);
490 kfree(rg);
491 }
492 return -ENOMEM;
d75c6af9
MA
493}
494
1dd308a7
MK
495/*
496 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
497 * map. Regions will be taken from the cache to fill in this range.
498 * Sufficient regions should exist in the cache due to the previous
499 * call to region_chg with the same range, but in some cases the cache will not
500 * have sufficient entries due to races with other code doing region_add or
501 * region_del. The extra needed entries will be allocated.
cf3ad20b 502 *
0db9d74e
MA
503 * regions_needed is the out value provided by a previous call to region_chg.
504 *
505 * Return the number of new huge pages added to the map. This number is greater
506 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 507 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
508 * region_add of regions of length 1 never allocate file_regions and cannot
509 * fail; region_chg will always allocate at least 1 entry and a region_add for
510 * 1 page will only require at most 1 entry.
1dd308a7 511 */
0db9d74e 512static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
513 long in_regions_needed, struct hstate *h,
514 struct hugetlb_cgroup *h_cg)
96822904 515{
0db9d74e 516 long add = 0, actual_regions_needed = 0;
96822904 517
7b24d861 518 spin_lock(&resv->lock);
0db9d74e
MA
519retry:
520
521 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
522 add_reservation_in_range(resv, f, t, NULL, NULL,
523 &actual_regions_needed);
96822904 524
5e911373 525 /*
0db9d74e
MA
526 * Check for sufficient descriptors in the cache to accommodate
527 * this add operation. Note that actual_regions_needed may be greater
528 * than in_regions_needed, as the resv_map may have been modified since
529 * the region_chg call. In this case, we need to make sure that we
530 * allocate extra entries, such that we have enough for all the
531 * existing adds_in_progress, plus the excess needed for this
532 * operation.
5e911373 533 */
0db9d74e
MA
534 if (actual_regions_needed > in_regions_needed &&
535 resv->region_cache_count <
536 resv->adds_in_progress +
537 (actual_regions_needed - in_regions_needed)) {
538 /* region_add operation of range 1 should never need to
539 * allocate file_region entries.
540 */
541 VM_BUG_ON(t - f <= 1);
5e911373 542
0db9d74e
MA
543 if (allocate_file_region_entries(
544 resv, actual_regions_needed - in_regions_needed)) {
545 return -ENOMEM;
546 }
5e911373 547
0db9d74e 548 goto retry;
5e911373
MK
549 }
550
972a3da3 551 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
552
553 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 554
7b24d861 555 spin_unlock(&resv->lock);
cf3ad20b 556 return add;
96822904
AW
557}
558
1dd308a7
MK
559/*
560 * Examine the existing reserve map and determine how many
561 * huge pages in the specified range [f, t) are NOT currently
562 * represented. This routine is called before a subsequent
563 * call to region_add that will actually modify the reserve
564 * map to add the specified range [f, t). region_chg does
565 * not change the number of huge pages represented by the
0db9d74e
MA
566 * map. A number of new file_region structures is added to the cache as a
567 * placeholder, for the subsequent region_add call to use. At least 1
568 * file_region structure is added.
569 *
570 * out_regions_needed is the number of regions added to the
571 * resv->adds_in_progress. This value needs to be provided to a follow up call
572 * to region_add or region_abort for proper accounting.
5e911373
MK
573 *
574 * Returns the number of huge pages that need to be added to the existing
575 * reservation map for the range [f, t). This number is greater or equal to
576 * zero. -ENOMEM is returned if a new file_region structure or cache entry
577 * is needed and can not be allocated.
1dd308a7 578 */
0db9d74e
MA
579static long region_chg(struct resv_map *resv, long f, long t,
580 long *out_regions_needed)
96822904 581{
96822904
AW
582 long chg = 0;
583
7b24d861 584 spin_lock(&resv->lock);
5e911373 585
972a3da3 586 /* Count how many hugepages in this range are NOT represented. */
075a61d0 587 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 588 out_regions_needed);
5e911373 589
0db9d74e
MA
590 if (*out_regions_needed == 0)
591 *out_regions_needed = 1;
5e911373 592
0db9d74e
MA
593 if (allocate_file_region_entries(resv, *out_regions_needed))
594 return -ENOMEM;
5e911373 595
0db9d74e 596 resv->adds_in_progress += *out_regions_needed;
7b24d861 597
7b24d861 598 spin_unlock(&resv->lock);
96822904
AW
599 return chg;
600}
601
5e911373
MK
602/*
603 * Abort the in progress add operation. The adds_in_progress field
604 * of the resv_map keeps track of the operations in progress between
605 * calls to region_chg and region_add. Operations are sometimes
606 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
607 * is called to decrement the adds_in_progress counter. regions_needed
608 * is the value returned by the region_chg call, it is used to decrement
609 * the adds_in_progress counter.
5e911373
MK
610 *
611 * NOTE: The range arguments [f, t) are not needed or used in this
612 * routine. They are kept to make reading the calling code easier as
613 * arguments will match the associated region_chg call.
614 */
0db9d74e
MA
615static void region_abort(struct resv_map *resv, long f, long t,
616 long regions_needed)
5e911373
MK
617{
618 spin_lock(&resv->lock);
619 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 620 resv->adds_in_progress -= regions_needed;
5e911373
MK
621 spin_unlock(&resv->lock);
622}
623
1dd308a7 624/*
feba16e2
MK
625 * Delete the specified range [f, t) from the reserve map. If the
626 * t parameter is LONG_MAX, this indicates that ALL regions after f
627 * should be deleted. Locate the regions which intersect [f, t)
628 * and either trim, delete or split the existing regions.
629 *
630 * Returns the number of huge pages deleted from the reserve map.
631 * In the normal case, the return value is zero or more. In the
632 * case where a region must be split, a new region descriptor must
633 * be allocated. If the allocation fails, -ENOMEM will be returned.
634 * NOTE: If the parameter t == LONG_MAX, then we will never split
635 * a region and possibly return -ENOMEM. Callers specifying
636 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 637 */
feba16e2 638static long region_del(struct resv_map *resv, long f, long t)
96822904 639{
1406ec9b 640 struct list_head *head = &resv->regions;
96822904 641 struct file_region *rg, *trg;
feba16e2
MK
642 struct file_region *nrg = NULL;
643 long del = 0;
96822904 644
feba16e2 645retry:
7b24d861 646 spin_lock(&resv->lock);
feba16e2 647 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
648 /*
649 * Skip regions before the range to be deleted. file_region
650 * ranges are normally of the form [from, to). However, there
651 * may be a "placeholder" entry in the map which is of the form
652 * (from, to) with from == to. Check for placeholder entries
653 * at the beginning of the range to be deleted.
654 */
655 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 656 continue;
dbe409e4 657
feba16e2 658 if (rg->from >= t)
96822904 659 break;
96822904 660
feba16e2
MK
661 if (f > rg->from && t < rg->to) { /* Must split region */
662 /*
663 * Check for an entry in the cache before dropping
664 * lock and attempting allocation.
665 */
666 if (!nrg &&
667 resv->region_cache_count > resv->adds_in_progress) {
668 nrg = list_first_entry(&resv->region_cache,
669 struct file_region,
670 link);
671 list_del(&nrg->link);
672 resv->region_cache_count--;
673 }
96822904 674
feba16e2
MK
675 if (!nrg) {
676 spin_unlock(&resv->lock);
677 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
678 if (!nrg)
679 return -ENOMEM;
680 goto retry;
681 }
682
683 del += t - f;
79aa925b 684 hugetlb_cgroup_uncharge_file_region(
d85aecf2 685 resv, rg, t - f, false);
feba16e2
MK
686
687 /* New entry for end of split region */
688 nrg->from = t;
689 nrg->to = rg->to;
075a61d0
MA
690
691 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
692
feba16e2
MK
693 INIT_LIST_HEAD(&nrg->link);
694
695 /* Original entry is trimmed */
696 rg->to = f;
697
698 list_add(&nrg->link, &rg->link);
699 nrg = NULL;
96822904 700 break;
feba16e2
MK
701 }
702
703 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
704 del += rg->to - rg->from;
075a61d0 705 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 706 rg->to - rg->from, true);
feba16e2
MK
707 list_del(&rg->link);
708 kfree(rg);
709 continue;
710 }
711
712 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 713 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 714 t - rg->from, false);
075a61d0 715
79aa925b
MK
716 del += t - rg->from;
717 rg->from = t;
718 } else { /* Trim end of region */
075a61d0 719 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 720 rg->to - f, false);
79aa925b
MK
721
722 del += rg->to - f;
723 rg->to = f;
feba16e2 724 }
96822904 725 }
7b24d861 726
7b24d861 727 spin_unlock(&resv->lock);
feba16e2
MK
728 kfree(nrg);
729 return del;
96822904
AW
730}
731
b5cec28d
MK
732/*
733 * A rare out of memory error was encountered which prevented removal of
734 * the reserve map region for a page. The huge page itself was free'ed
735 * and removed from the page cache. This routine will adjust the subpool
736 * usage count, and the global reserve count if needed. By incrementing
737 * these counts, the reserve map entry which could not be deleted will
738 * appear as a "reserved" entry instead of simply dangling with incorrect
739 * counts.
740 */
72e2936c 741void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
742{
743 struct hugepage_subpool *spool = subpool_inode(inode);
744 long rsv_adjust;
745
746 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 747 if (rsv_adjust) {
b5cec28d
MK
748 struct hstate *h = hstate_inode(inode);
749
750 hugetlb_acct_memory(h, 1);
751 }
752}
753
1dd308a7
MK
754/*
755 * Count and return the number of huge pages in the reserve map
756 * that intersect with the range [f, t).
757 */
1406ec9b 758static long region_count(struct resv_map *resv, long f, long t)
84afd99b 759{
1406ec9b 760 struct list_head *head = &resv->regions;
84afd99b
AW
761 struct file_region *rg;
762 long chg = 0;
763
7b24d861 764 spin_lock(&resv->lock);
84afd99b
AW
765 /* Locate each segment we overlap with, and count that overlap. */
766 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
767 long seg_from;
768 long seg_to;
84afd99b
AW
769
770 if (rg->to <= f)
771 continue;
772 if (rg->from >= t)
773 break;
774
775 seg_from = max(rg->from, f);
776 seg_to = min(rg->to, t);
777
778 chg += seg_to - seg_from;
779 }
7b24d861 780 spin_unlock(&resv->lock);
84afd99b
AW
781
782 return chg;
783}
784
e7c4b0bf
AW
785/*
786 * Convert the address within this vma to the page offset within
787 * the mapping, in pagecache page units; huge pages here.
788 */
a5516438
AK
789static pgoff_t vma_hugecache_offset(struct hstate *h,
790 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 791{
a5516438
AK
792 return ((address - vma->vm_start) >> huge_page_shift(h)) +
793 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
794}
795
0fe6e20b
NH
796pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
797 unsigned long address)
798{
799 return vma_hugecache_offset(hstate_vma(vma), vma, address);
800}
dee41079 801EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 802
08fba699
MG
803/*
804 * Return the size of the pages allocated when backing a VMA. In the majority
805 * cases this will be same size as used by the page table entries.
806 */
807unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
808{
05ea8860
DW
809 if (vma->vm_ops && vma->vm_ops->pagesize)
810 return vma->vm_ops->pagesize(vma);
811 return PAGE_SIZE;
08fba699 812}
f340ca0f 813EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 814
3340289d
MG
815/*
816 * Return the page size being used by the MMU to back a VMA. In the majority
817 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
818 * architectures where it differs, an architecture-specific 'strong'
819 * version of this symbol is required.
3340289d 820 */
09135cc5 821__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
822{
823 return vma_kernel_pagesize(vma);
824}
3340289d 825
84afd99b
AW
826/*
827 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
828 * bits of the reservation map pointer, which are always clear due to
829 * alignment.
830 */
831#define HPAGE_RESV_OWNER (1UL << 0)
832#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 833#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 834
a1e78772
MG
835/*
836 * These helpers are used to track how many pages are reserved for
837 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
838 * is guaranteed to have their future faults succeed.
839 *
840 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
841 * the reserve counters are updated with the hugetlb_lock held. It is safe
842 * to reset the VMA at fork() time as it is not in use yet and there is no
843 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
844 *
845 * The private mapping reservation is represented in a subtly different
846 * manner to a shared mapping. A shared mapping has a region map associated
847 * with the underlying file, this region map represents the backing file
848 * pages which have ever had a reservation assigned which this persists even
849 * after the page is instantiated. A private mapping has a region map
850 * associated with the original mmap which is attached to all VMAs which
851 * reference it, this region map represents those offsets which have consumed
852 * reservation ie. where pages have been instantiated.
a1e78772 853 */
e7c4b0bf
AW
854static unsigned long get_vma_private_data(struct vm_area_struct *vma)
855{
856 return (unsigned long)vma->vm_private_data;
857}
858
859static void set_vma_private_data(struct vm_area_struct *vma,
860 unsigned long value)
861{
862 vma->vm_private_data = (void *)value;
863}
864
e9fe92ae
MA
865static void
866resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
867 struct hugetlb_cgroup *h_cg,
868 struct hstate *h)
869{
870#ifdef CONFIG_CGROUP_HUGETLB
871 if (!h_cg || !h) {
872 resv_map->reservation_counter = NULL;
873 resv_map->pages_per_hpage = 0;
874 resv_map->css = NULL;
875 } else {
876 resv_map->reservation_counter =
877 &h_cg->rsvd_hugepage[hstate_index(h)];
878 resv_map->pages_per_hpage = pages_per_huge_page(h);
879 resv_map->css = &h_cg->css;
880 }
881#endif
882}
883
9119a41e 884struct resv_map *resv_map_alloc(void)
84afd99b
AW
885{
886 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
887 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
888
889 if (!resv_map || !rg) {
890 kfree(resv_map);
891 kfree(rg);
84afd99b 892 return NULL;
5e911373 893 }
84afd99b
AW
894
895 kref_init(&resv_map->refs);
7b24d861 896 spin_lock_init(&resv_map->lock);
84afd99b
AW
897 INIT_LIST_HEAD(&resv_map->regions);
898
5e911373 899 resv_map->adds_in_progress = 0;
e9fe92ae
MA
900 /*
901 * Initialize these to 0. On shared mappings, 0's here indicate these
902 * fields don't do cgroup accounting. On private mappings, these will be
903 * re-initialized to the proper values, to indicate that hugetlb cgroup
904 * reservations are to be un-charged from here.
905 */
906 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
907
908 INIT_LIST_HEAD(&resv_map->region_cache);
909 list_add(&rg->link, &resv_map->region_cache);
910 resv_map->region_cache_count = 1;
911
84afd99b
AW
912 return resv_map;
913}
914
9119a41e 915void resv_map_release(struct kref *ref)
84afd99b
AW
916{
917 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
918 struct list_head *head = &resv_map->region_cache;
919 struct file_region *rg, *trg;
84afd99b
AW
920
921 /* Clear out any active regions before we release the map. */
feba16e2 922 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
923
924 /* ... and any entries left in the cache */
925 list_for_each_entry_safe(rg, trg, head, link) {
926 list_del(&rg->link);
927 kfree(rg);
928 }
929
930 VM_BUG_ON(resv_map->adds_in_progress);
931
84afd99b
AW
932 kfree(resv_map);
933}
934
4e35f483
JK
935static inline struct resv_map *inode_resv_map(struct inode *inode)
936{
f27a5136
MK
937 /*
938 * At inode evict time, i_mapping may not point to the original
939 * address space within the inode. This original address space
940 * contains the pointer to the resv_map. So, always use the
941 * address space embedded within the inode.
942 * The VERY common case is inode->mapping == &inode->i_data but,
943 * this may not be true for device special inodes.
944 */
945 return (struct resv_map *)(&inode->i_data)->private_data;
4e35f483
JK
946}
947
84afd99b 948static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 949{
81d1b09c 950 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
951 if (vma->vm_flags & VM_MAYSHARE) {
952 struct address_space *mapping = vma->vm_file->f_mapping;
953 struct inode *inode = mapping->host;
954
955 return inode_resv_map(inode);
956
957 } else {
84afd99b
AW
958 return (struct resv_map *)(get_vma_private_data(vma) &
959 ~HPAGE_RESV_MASK);
4e35f483 960 }
a1e78772
MG
961}
962
84afd99b 963static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 964{
81d1b09c
SL
965 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
966 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 967
84afd99b
AW
968 set_vma_private_data(vma, (get_vma_private_data(vma) &
969 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
970}
971
972static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
973{
81d1b09c
SL
974 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
975 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
976
977 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
978}
979
980static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
981{
81d1b09c 982 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
983
984 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
985}
986
04f2cbe3 987/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
988void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
989{
81d1b09c 990 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 991 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
992 vma->vm_private_data = (void *)0;
993}
994
995/* Returns true if the VMA has associated reserve pages */
559ec2f8 996static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 997{
af0ed73e
JK
998 if (vma->vm_flags & VM_NORESERVE) {
999 /*
1000 * This address is already reserved by other process(chg == 0),
1001 * so, we should decrement reserved count. Without decrementing,
1002 * reserve count remains after releasing inode, because this
1003 * allocated page will go into page cache and is regarded as
1004 * coming from reserved pool in releasing step. Currently, we
1005 * don't have any other solution to deal with this situation
1006 * properly, so add work-around here.
1007 */
1008 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1009 return true;
af0ed73e 1010 else
559ec2f8 1011 return false;
af0ed73e 1012 }
a63884e9
JK
1013
1014 /* Shared mappings always use reserves */
1fb1b0e9
MK
1015 if (vma->vm_flags & VM_MAYSHARE) {
1016 /*
1017 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1018 * be a region map for all pages. The only situation where
1019 * there is no region map is if a hole was punched via
7c8de358 1020 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1021 * use. This situation is indicated if chg != 0.
1022 */
1023 if (chg)
1024 return false;
1025 else
1026 return true;
1027 }
a63884e9
JK
1028
1029 /*
1030 * Only the process that called mmap() has reserves for
1031 * private mappings.
1032 */
67961f9d
MK
1033 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1034 /*
1035 * Like the shared case above, a hole punch or truncate
1036 * could have been performed on the private mapping.
1037 * Examine the value of chg to determine if reserves
1038 * actually exist or were previously consumed.
1039 * Very Subtle - The value of chg comes from a previous
1040 * call to vma_needs_reserves(). The reserve map for
1041 * private mappings has different (opposite) semantics
1042 * than that of shared mappings. vma_needs_reserves()
1043 * has already taken this difference in semantics into
1044 * account. Therefore, the meaning of chg is the same
1045 * as in the shared case above. Code could easily be
1046 * combined, but keeping it separate draws attention to
1047 * subtle differences.
1048 */
1049 if (chg)
1050 return false;
1051 else
1052 return true;
1053 }
a63884e9 1054
559ec2f8 1055 return false;
a1e78772
MG
1056}
1057
a5516438 1058static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
1059{
1060 int nid = page_to_nid(page);
0edaecfa 1061 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1062 h->free_huge_pages++;
1063 h->free_huge_pages_node[nid]++;
6c037149 1064 SetHPageFreed(page);
1da177e4
LT
1065}
1066
94310cbc 1067static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
1068{
1069 struct page *page;
bbe88753
JK
1070 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1071
1072 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1073 if (nocma && is_migrate_cma_page(page))
1074 continue;
bf50bab2 1075
6664bfc8
WY
1076 if (PageHWPoison(page))
1077 continue;
1078
1079 list_move(&page->lru, &h->hugepage_activelist);
1080 set_page_refcounted(page);
6c037149 1081 ClearHPageFreed(page);
6664bfc8
WY
1082 h->free_huge_pages--;
1083 h->free_huge_pages_node[nid]--;
1084 return page;
bbe88753
JK
1085 }
1086
6664bfc8 1087 return NULL;
bf50bab2
NH
1088}
1089
3e59fcb0
MH
1090static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1091 nodemask_t *nmask)
94310cbc 1092{
3e59fcb0
MH
1093 unsigned int cpuset_mems_cookie;
1094 struct zonelist *zonelist;
1095 struct zone *zone;
1096 struct zoneref *z;
98fa15f3 1097 int node = NUMA_NO_NODE;
94310cbc 1098
3e59fcb0
MH
1099 zonelist = node_zonelist(nid, gfp_mask);
1100
1101retry_cpuset:
1102 cpuset_mems_cookie = read_mems_allowed_begin();
1103 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1104 struct page *page;
1105
1106 if (!cpuset_zone_allowed(zone, gfp_mask))
1107 continue;
1108 /*
1109 * no need to ask again on the same node. Pool is node rather than
1110 * zone aware
1111 */
1112 if (zone_to_nid(zone) == node)
1113 continue;
1114 node = zone_to_nid(zone);
94310cbc 1115
94310cbc
AK
1116 page = dequeue_huge_page_node_exact(h, node);
1117 if (page)
1118 return page;
1119 }
3e59fcb0
MH
1120 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1121 goto retry_cpuset;
1122
94310cbc
AK
1123 return NULL;
1124}
1125
a5516438
AK
1126static struct page *dequeue_huge_page_vma(struct hstate *h,
1127 struct vm_area_struct *vma,
af0ed73e
JK
1128 unsigned long address, int avoid_reserve,
1129 long chg)
1da177e4 1130{
3e59fcb0 1131 struct page *page;
480eccf9 1132 struct mempolicy *mpol;
04ec6264 1133 gfp_t gfp_mask;
3e59fcb0 1134 nodemask_t *nodemask;
04ec6264 1135 int nid;
1da177e4 1136
a1e78772
MG
1137 /*
1138 * A child process with MAP_PRIVATE mappings created by their parent
1139 * have no page reserves. This check ensures that reservations are
1140 * not "stolen". The child may still get SIGKILLed
1141 */
af0ed73e 1142 if (!vma_has_reserves(vma, chg) &&
a5516438 1143 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 1144 goto err;
a1e78772 1145
04f2cbe3 1146 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 1147 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 1148 goto err;
04f2cbe3 1149
04ec6264
VB
1150 gfp_mask = htlb_alloc_mask(h);
1151 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
1152 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1153 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
d6995da3 1154 SetHPageRestoreReserve(page);
3e59fcb0 1155 h->resv_huge_pages--;
1da177e4 1156 }
cc9a6c87 1157
52cd3b07 1158 mpol_cond_put(mpol);
1da177e4 1159 return page;
cc9a6c87
MG
1160
1161err:
cc9a6c87 1162 return NULL;
1da177e4
LT
1163}
1164
1cac6f2c
LC
1165/*
1166 * common helper functions for hstate_next_node_to_{alloc|free}.
1167 * We may have allocated or freed a huge page based on a different
1168 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1169 * be outside of *nodes_allowed. Ensure that we use an allowed
1170 * node for alloc or free.
1171 */
1172static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1173{
0edaf86c 1174 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1175 VM_BUG_ON(nid >= MAX_NUMNODES);
1176
1177 return nid;
1178}
1179
1180static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1181{
1182 if (!node_isset(nid, *nodes_allowed))
1183 nid = next_node_allowed(nid, nodes_allowed);
1184 return nid;
1185}
1186
1187/*
1188 * returns the previously saved node ["this node"] from which to
1189 * allocate a persistent huge page for the pool and advance the
1190 * next node from which to allocate, handling wrap at end of node
1191 * mask.
1192 */
1193static int hstate_next_node_to_alloc(struct hstate *h,
1194 nodemask_t *nodes_allowed)
1195{
1196 int nid;
1197
1198 VM_BUG_ON(!nodes_allowed);
1199
1200 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1201 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1202
1203 return nid;
1204}
1205
1206/*
1207 * helper for free_pool_huge_page() - return the previously saved
1208 * node ["this node"] from which to free a huge page. Advance the
1209 * next node id whether or not we find a free huge page to free so
1210 * that the next attempt to free addresses the next node.
1211 */
1212static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1213{
1214 int nid;
1215
1216 VM_BUG_ON(!nodes_allowed);
1217
1218 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1219 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1220
1221 return nid;
1222}
1223
1224#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1225 for (nr_nodes = nodes_weight(*mask); \
1226 nr_nodes > 0 && \
1227 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1228 nr_nodes--)
1229
1230#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1231 for (nr_nodes = nodes_weight(*mask); \
1232 nr_nodes > 0 && \
1233 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1234 nr_nodes--)
1235
e1073d1e 1236#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1237static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1238 unsigned int order)
944d9fec
LC
1239{
1240 int i;
1241 int nr_pages = 1 << order;
1242 struct page *p = page + 1;
1243
c8cc708a 1244 atomic_set(compound_mapcount_ptr(page), 0);
5291c09b 1245 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1246
944d9fec 1247 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1248 clear_compound_head(p);
944d9fec 1249 set_page_refcounted(p);
944d9fec
LC
1250 }
1251
1252 set_compound_order(page, 0);
ba9c1201 1253 page[1].compound_nr = 0;
944d9fec
LC
1254 __ClearPageHead(page);
1255}
1256
d00181b9 1257static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec 1258{
cf11e85f
RG
1259 /*
1260 * If the page isn't allocated using the cma allocator,
1261 * cma_release() returns false.
1262 */
dbda8fea
BS
1263#ifdef CONFIG_CMA
1264 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
cf11e85f 1265 return;
dbda8fea 1266#endif
cf11e85f 1267
944d9fec
LC
1268 free_contig_range(page_to_pfn(page), 1 << order);
1269}
1270
4eb0716e 1271#ifdef CONFIG_CONTIG_ALLOC
d9cc948f
MH
1272static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1273 int nid, nodemask_t *nodemask)
944d9fec 1274{
04adbc3f 1275 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1276 if (nid == NUMA_NO_NODE)
1277 nid = numa_mem_id();
944d9fec 1278
dbda8fea
BS
1279#ifdef CONFIG_CMA
1280 {
cf11e85f
RG
1281 struct page *page;
1282 int node;
1283
953f064a
LX
1284 if (hugetlb_cma[nid]) {
1285 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1286 huge_page_order(h), true);
cf11e85f
RG
1287 if (page)
1288 return page;
1289 }
953f064a
LX
1290
1291 if (!(gfp_mask & __GFP_THISNODE)) {
1292 for_each_node_mask(node, *nodemask) {
1293 if (node == nid || !hugetlb_cma[node])
1294 continue;
1295
1296 page = cma_alloc(hugetlb_cma[node], nr_pages,
1297 huge_page_order(h), true);
1298 if (page)
1299 return page;
1300 }
1301 }
cf11e85f 1302 }
dbda8fea 1303#endif
cf11e85f 1304
5e27a2df 1305 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
944d9fec
LC
1306}
1307
1308static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1309static void prep_compound_gigantic_page(struct page *page, unsigned int order);
4eb0716e
AG
1310#else /* !CONFIG_CONTIG_ALLOC */
1311static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1312 int nid, nodemask_t *nodemask)
1313{
1314 return NULL;
1315}
1316#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1317
e1073d1e 1318#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
d9cc948f 1319static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1320 int nid, nodemask_t *nodemask)
1321{
1322 return NULL;
1323}
d00181b9 1324static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1325static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1326 unsigned int order) { }
944d9fec
LC
1327#endif
1328
a5516438 1329static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1330{
1331 int i;
dbfee5ae 1332 struct page *subpage = page;
a5516438 1333
4eb0716e 1334 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1335 return;
18229df5 1336
a5516438
AK
1337 h->nr_huge_pages--;
1338 h->nr_huge_pages_node[page_to_nid(page)]--;
dbfee5ae
MK
1339 for (i = 0; i < pages_per_huge_page(h);
1340 i++, subpage = mem_map_next(subpage, page, i)) {
1341 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
32f84528 1342 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1343 1 << PG_active | 1 << PG_private |
1344 1 << PG_writeback);
6af2acb6 1345 }
309381fe 1346 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1adc4d41 1347 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
f1e61557 1348 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1349 set_page_refcounted(page);
944d9fec 1350 if (hstate_is_gigantic(h)) {
cf11e85f
RG
1351 /*
1352 * Temporarily drop the hugetlb_lock, because
1353 * we might block in free_gigantic_page().
1354 */
1355 spin_unlock(&hugetlb_lock);
944d9fec
LC
1356 destroy_compound_gigantic_page(page, huge_page_order(h));
1357 free_gigantic_page(page, huge_page_order(h));
cf11e85f 1358 spin_lock(&hugetlb_lock);
944d9fec 1359 } else {
944d9fec
LC
1360 __free_pages(page, huge_page_order(h));
1361 }
6af2acb6
AL
1362}
1363
e5ff2159
AK
1364struct hstate *size_to_hstate(unsigned long size)
1365{
1366 struct hstate *h;
1367
1368 for_each_hstate(h) {
1369 if (huge_page_size(h) == size)
1370 return h;
1371 }
1372 return NULL;
1373}
1374
c77c0a8a 1375static void __free_huge_page(struct page *page)
27a85ef1 1376{
a5516438
AK
1377 /*
1378 * Can't pass hstate in here because it is called from the
1379 * compound page destructor.
1380 */
e5ff2159 1381 struct hstate *h = page_hstate(page);
7893d1d5 1382 int nid = page_to_nid(page);
d6995da3 1383 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
07443a85 1384 bool restore_reserve;
27a85ef1 1385
b4330afb
MK
1386 VM_BUG_ON_PAGE(page_count(page), page);
1387 VM_BUG_ON_PAGE(page_mapcount(page), page);
8ace22bc 1388
d6995da3 1389 hugetlb_set_page_subpool(page, NULL);
8ace22bc 1390 page->mapping = NULL;
d6995da3
MK
1391 restore_reserve = HPageRestoreReserve(page);
1392 ClearHPageRestoreReserve(page);
27a85ef1 1393
1c5ecae3 1394 /*
d6995da3 1395 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1396 * reservation. If the page was associated with a subpool, there
1397 * would have been a page reserved in the subpool before allocation
1398 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1399 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1400 * remove the reserved page from the subpool.
1c5ecae3 1401 */
0919e1b6
MK
1402 if (!restore_reserve) {
1403 /*
1404 * A return code of zero implies that the subpool will be
1405 * under its minimum size if the reservation is not restored
1406 * after page is free. Therefore, force restore_reserve
1407 * operation.
1408 */
1409 if (hugepage_subpool_put_pages(spool, 1) == 0)
1410 restore_reserve = true;
1411 }
1c5ecae3 1412
27a85ef1 1413 spin_lock(&hugetlb_lock);
8f251a3d 1414 ClearHPageMigratable(page);
6d76dcf4
AK
1415 hugetlb_cgroup_uncharge_page(hstate_index(h),
1416 pages_per_huge_page(h), page);
08cf9faf
MA
1417 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1418 pages_per_huge_page(h), page);
07443a85
JK
1419 if (restore_reserve)
1420 h->resv_huge_pages++;
1421
9157c311 1422 if (HPageTemporary(page)) {
ab5ac90a 1423 list_del(&page->lru);
9157c311 1424 ClearHPageTemporary(page);
ab5ac90a
MH
1425 update_and_free_page(h, page);
1426 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1427 /* remove the page from active list */
1428 list_del(&page->lru);
a5516438
AK
1429 update_and_free_page(h, page);
1430 h->surplus_huge_pages--;
1431 h->surplus_huge_pages_node[nid]--;
7893d1d5 1432 } else {
5d3a551c 1433 arch_clear_hugepage_flags(page);
a5516438 1434 enqueue_huge_page(h, page);
7893d1d5 1435 }
27a85ef1
DG
1436 spin_unlock(&hugetlb_lock);
1437}
1438
c77c0a8a
WL
1439/*
1440 * As free_huge_page() can be called from a non-task context, we have
1441 * to defer the actual freeing in a workqueue to prevent potential
1442 * hugetlb_lock deadlock.
1443 *
1444 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1445 * be freed and frees them one-by-one. As the page->mapping pointer is
1446 * going to be cleared in __free_huge_page() anyway, it is reused as the
1447 * llist_node structure of a lockless linked list of huge pages to be freed.
1448 */
1449static LLIST_HEAD(hpage_freelist);
1450
1451static void free_hpage_workfn(struct work_struct *work)
1452{
1453 struct llist_node *node;
1454 struct page *page;
1455
1456 node = llist_del_all(&hpage_freelist);
1457
1458 while (node) {
1459 page = container_of((struct address_space **)node,
1460 struct page, mapping);
1461 node = node->next;
1462 __free_huge_page(page);
1463 }
1464}
1465static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1466
1467void free_huge_page(struct page *page)
1468{
1469 /*
1470 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1471 */
1472 if (!in_task()) {
1473 /*
1474 * Only call schedule_work() if hpage_freelist is previously
1475 * empty. Otherwise, schedule_work() had been called but the
1476 * workfn hasn't retrieved the list yet.
1477 */
1478 if (llist_add((struct llist_node *)&page->mapping,
1479 &hpage_freelist))
1480 schedule_work(&free_hpage_work);
1481 return;
1482 }
1483
1484 __free_huge_page(page);
1485}
1486
a5516438 1487static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1488{
0edaecfa 1489 INIT_LIST_HEAD(&page->lru);
f1e61557 1490 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
ff546117 1491 hugetlb_set_page_subpool(page, NULL);
9dd540e2 1492 set_hugetlb_cgroup(page, NULL);
1adc4d41 1493 set_hugetlb_cgroup_rsvd(page, NULL);
2f37511c 1494 spin_lock(&hugetlb_lock);
a5516438
AK
1495 h->nr_huge_pages++;
1496 h->nr_huge_pages_node[nid]++;
6c037149 1497 ClearHPageFreed(page);
b7ba30c6 1498 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1499}
1500
d00181b9 1501static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1502{
1503 int i;
1504 int nr_pages = 1 << order;
1505 struct page *p = page + 1;
1506
1507 /* we rely on prep_new_huge_page to set the destructor */
1508 set_compound_order(page, order);
ef5a22be 1509 __ClearPageReserved(page);
de09d31d 1510 __SetPageHead(page);
20a0307c 1511 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1512 /*
1513 * For gigantic hugepages allocated through bootmem at
1514 * boot, it's safer to be consistent with the not-gigantic
1515 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 1516 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
1517 * pages may get the reference counting wrong if they see
1518 * PG_reserved set on a tail page (despite the head page not
1519 * having PG_reserved set). Enforcing this consistency between
1520 * head and tail pages allows drivers to optimize away a check
1521 * on the head page when they need know if put_page() is needed
1522 * after get_user_pages().
1523 */
1524 __ClearPageReserved(p);
58a84aa9 1525 set_page_count(p, 0);
1d798ca3 1526 set_compound_head(p, page);
20a0307c 1527 }
b4330afb 1528 atomic_set(compound_mapcount_ptr(page), -1);
5291c09b 1529 atomic_set(compound_pincount_ptr(page), 0);
20a0307c
WF
1530}
1531
7795912c
AM
1532/*
1533 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1534 * transparent huge pages. See the PageTransHuge() documentation for more
1535 * details.
1536 */
20a0307c
WF
1537int PageHuge(struct page *page)
1538{
20a0307c
WF
1539 if (!PageCompound(page))
1540 return 0;
1541
1542 page = compound_head(page);
f1e61557 1543 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1544}
43131e14
NH
1545EXPORT_SYMBOL_GPL(PageHuge);
1546
27c73ae7
AA
1547/*
1548 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1549 * normal or transparent huge pages.
1550 */
1551int PageHeadHuge(struct page *page_head)
1552{
27c73ae7
AA
1553 if (!PageHead(page_head))
1554 return 0;
1555
d4af73e3 1556 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
27c73ae7 1557}
27c73ae7 1558
c0d0381a
MK
1559/*
1560 * Find and lock address space (mapping) in write mode.
1561 *
336bf30e
MK
1562 * Upon entry, the page is locked which means that page_mapping() is
1563 * stable. Due to locking order, we can only trylock_write. If we can
1564 * not get the lock, simply return NULL to caller.
c0d0381a
MK
1565 */
1566struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1567{
336bf30e 1568 struct address_space *mapping = page_mapping(hpage);
c0d0381a 1569
c0d0381a
MK
1570 if (!mapping)
1571 return mapping;
1572
c0d0381a
MK
1573 if (i_mmap_trylock_write(mapping))
1574 return mapping;
1575
336bf30e 1576 return NULL;
c0d0381a
MK
1577}
1578
13d60f4b
ZY
1579pgoff_t __basepage_index(struct page *page)
1580{
1581 struct page *page_head = compound_head(page);
1582 pgoff_t index = page_index(page_head);
1583 unsigned long compound_idx;
1584
1585 if (!PageHuge(page_head))
1586 return page_index(page);
1587
1588 if (compound_order(page_head) >= MAX_ORDER)
1589 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1590 else
1591 compound_idx = page - page_head;
1592
1593 return (index << compound_order(page_head)) + compound_idx;
1594}
1595
0c397dae 1596static struct page *alloc_buddy_huge_page(struct hstate *h,
f60858f9
MK
1597 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1598 nodemask_t *node_alloc_noretry)
1da177e4 1599{
af0fb9df 1600 int order = huge_page_order(h);
1da177e4 1601 struct page *page;
f60858f9 1602 bool alloc_try_hard = true;
f96efd58 1603
f60858f9
MK
1604 /*
1605 * By default we always try hard to allocate the page with
1606 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1607 * a loop (to adjust global huge page counts) and previous allocation
1608 * failed, do not continue to try hard on the same node. Use the
1609 * node_alloc_noretry bitmap to manage this state information.
1610 */
1611 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1612 alloc_try_hard = false;
1613 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1614 if (alloc_try_hard)
1615 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
1616 if (nid == NUMA_NO_NODE)
1617 nid = numa_mem_id();
84172f4b 1618 page = __alloc_pages(gfp_mask, order, nid, nmask);
af0fb9df
MH
1619 if (page)
1620 __count_vm_event(HTLB_BUDDY_PGALLOC);
1621 else
1622 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c 1623
f60858f9
MK
1624 /*
1625 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1626 * indicates an overall state change. Clear bit so that we resume
1627 * normal 'try hard' allocations.
1628 */
1629 if (node_alloc_noretry && page && !alloc_try_hard)
1630 node_clear(nid, *node_alloc_noretry);
1631
1632 /*
1633 * If we tried hard to get a page but failed, set bit so that
1634 * subsequent attempts will not try as hard until there is an
1635 * overall state change.
1636 */
1637 if (node_alloc_noretry && !page && alloc_try_hard)
1638 node_set(nid, *node_alloc_noretry);
1639
63b4613c
NA
1640 return page;
1641}
1642
0c397dae
MH
1643/*
1644 * Common helper to allocate a fresh hugetlb page. All specific allocators
1645 * should use this function to get new hugetlb pages
1646 */
1647static struct page *alloc_fresh_huge_page(struct hstate *h,
f60858f9
MK
1648 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1649 nodemask_t *node_alloc_noretry)
0c397dae
MH
1650{
1651 struct page *page;
1652
1653 if (hstate_is_gigantic(h))
1654 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1655 else
1656 page = alloc_buddy_huge_page(h, gfp_mask,
f60858f9 1657 nid, nmask, node_alloc_noretry);
0c397dae
MH
1658 if (!page)
1659 return NULL;
1660
1661 if (hstate_is_gigantic(h))
1662 prep_compound_gigantic_page(page, huge_page_order(h));
1663 prep_new_huge_page(h, page, page_to_nid(page));
1664
1665 return page;
1666}
1667
af0fb9df
MH
1668/*
1669 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1670 * manner.
1671 */
f60858f9
MK
1672static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1673 nodemask_t *node_alloc_noretry)
b2261026
JK
1674{
1675 struct page *page;
1676 int nr_nodes, node;
af0fb9df 1677 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1678
1679 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
f60858f9
MK
1680 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1681 node_alloc_noretry);
af0fb9df 1682 if (page)
b2261026 1683 break;
b2261026
JK
1684 }
1685
af0fb9df
MH
1686 if (!page)
1687 return 0;
b2261026 1688
af0fb9df
MH
1689 put_page(page); /* free it into the hugepage allocator */
1690
1691 return 1;
b2261026
JK
1692}
1693
e8c5c824
LS
1694/*
1695 * Free huge page from pool from next node to free.
1696 * Attempt to keep persistent huge pages more or less
1697 * balanced over allowed nodes.
1698 * Called with hugetlb_lock locked.
1699 */
6ae11b27
LS
1700static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1701 bool acct_surplus)
e8c5c824 1702{
b2261026 1703 int nr_nodes, node;
e8c5c824
LS
1704 int ret = 0;
1705
b2261026 1706 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1707 /*
1708 * If we're returning unused surplus pages, only examine
1709 * nodes with surplus pages.
1710 */
b2261026
JK
1711 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1712 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1713 struct page *page =
b2261026 1714 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1715 struct page, lru);
1716 list_del(&page->lru);
1717 h->free_huge_pages--;
b2261026 1718 h->free_huge_pages_node[node]--;
685f3457
LS
1719 if (acct_surplus) {
1720 h->surplus_huge_pages--;
b2261026 1721 h->surplus_huge_pages_node[node]--;
685f3457 1722 }
e8c5c824
LS
1723 update_and_free_page(h, page);
1724 ret = 1;
9a76db09 1725 break;
e8c5c824 1726 }
b2261026 1727 }
e8c5c824
LS
1728
1729 return ret;
1730}
1731
c8721bbb
NH
1732/*
1733 * Dissolve a given free hugepage into free buddy pages. This function does
faf53def
NH
1734 * nothing for in-use hugepages and non-hugepages.
1735 * This function returns values like below:
1736 *
1737 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1738 * (allocated or reserved.)
1739 * 0: successfully dissolved free hugepages or the page is not a
1740 * hugepage (considered as already dissolved)
c8721bbb 1741 */
c3114a84 1742int dissolve_free_huge_page(struct page *page)
c8721bbb 1743{
6bc9b564 1744 int rc = -EBUSY;
082d5b6b 1745
7ffddd49 1746retry:
faf53def
NH
1747 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1748 if (!PageHuge(page))
1749 return 0;
1750
c8721bbb 1751 spin_lock(&hugetlb_lock);
faf53def
NH
1752 if (!PageHuge(page)) {
1753 rc = 0;
1754 goto out;
1755 }
1756
1757 if (!page_count(page)) {
2247bb33
GS
1758 struct page *head = compound_head(page);
1759 struct hstate *h = page_hstate(head);
1760 int nid = page_to_nid(head);
6bc9b564 1761 if (h->free_huge_pages - h->resv_huge_pages == 0)
082d5b6b 1762 goto out;
7ffddd49
MS
1763
1764 /*
1765 * We should make sure that the page is already on the free list
1766 * when it is dissolved.
1767 */
6c037149 1768 if (unlikely(!HPageFreed(head))) {
7ffddd49
MS
1769 spin_unlock(&hugetlb_lock);
1770 cond_resched();
1771
1772 /*
1773 * Theoretically, we should return -EBUSY when we
1774 * encounter this race. In fact, we have a chance
1775 * to successfully dissolve the page if we do a
1776 * retry. Because the race window is quite small.
1777 * If we seize this opportunity, it is an optimization
1778 * for increasing the success rate of dissolving page.
1779 */
1780 goto retry;
1781 }
1782
c3114a84
AK
1783 /*
1784 * Move PageHWPoison flag from head page to the raw error page,
1785 * which makes any subpages rather than the error page reusable.
1786 */
1787 if (PageHWPoison(head) && page != head) {
1788 SetPageHWPoison(page);
1789 ClearPageHWPoison(head);
1790 }
2247bb33 1791 list_del(&head->lru);
c8721bbb
NH
1792 h->free_huge_pages--;
1793 h->free_huge_pages_node[nid]--;
c1470b33 1794 h->max_huge_pages--;
2247bb33 1795 update_and_free_page(h, head);
6bc9b564 1796 rc = 0;
c8721bbb 1797 }
082d5b6b 1798out:
c8721bbb 1799 spin_unlock(&hugetlb_lock);
082d5b6b 1800 return rc;
c8721bbb
NH
1801}
1802
1803/*
1804 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1805 * make specified memory blocks removable from the system.
2247bb33
GS
1806 * Note that this will dissolve a free gigantic hugepage completely, if any
1807 * part of it lies within the given range.
082d5b6b
GS
1808 * Also note that if dissolve_free_huge_page() returns with an error, all
1809 * free hugepages that were dissolved before that error are lost.
c8721bbb 1810 */
082d5b6b 1811int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1812{
c8721bbb 1813 unsigned long pfn;
eb03aa00 1814 struct page *page;
082d5b6b 1815 int rc = 0;
c8721bbb 1816
d0177639 1817 if (!hugepages_supported())
082d5b6b 1818 return rc;
d0177639 1819
eb03aa00
GS
1820 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1821 page = pfn_to_page(pfn);
faf53def
NH
1822 rc = dissolve_free_huge_page(page);
1823 if (rc)
1824 break;
eb03aa00 1825 }
082d5b6b
GS
1826
1827 return rc;
c8721bbb
NH
1828}
1829
ab5ac90a
MH
1830/*
1831 * Allocates a fresh surplus page from the page allocator.
1832 */
0c397dae 1833static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1834 int nid, nodemask_t *nmask)
7893d1d5 1835{
9980d744 1836 struct page *page = NULL;
7893d1d5 1837
bae7f4ae 1838 if (hstate_is_gigantic(h))
aa888a74
AK
1839 return NULL;
1840
d1c3fb1f 1841 spin_lock(&hugetlb_lock);
9980d744
MH
1842 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1843 goto out_unlock;
d1c3fb1f
NA
1844 spin_unlock(&hugetlb_lock);
1845
f60858f9 1846 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
9980d744 1847 if (!page)
0c397dae 1848 return NULL;
d1c3fb1f
NA
1849
1850 spin_lock(&hugetlb_lock);
9980d744
MH
1851 /*
1852 * We could have raced with the pool size change.
1853 * Double check that and simply deallocate the new page
1854 * if we would end up overcommiting the surpluses. Abuse
1855 * temporary page to workaround the nasty free_huge_page
1856 * codeflow
1857 */
1858 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
9157c311 1859 SetHPageTemporary(page);
2bf753e6 1860 spin_unlock(&hugetlb_lock);
9980d744 1861 put_page(page);
2bf753e6 1862 return NULL;
9980d744 1863 } else {
9980d744 1864 h->surplus_huge_pages++;
4704dea3 1865 h->surplus_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1866 }
9980d744
MH
1867
1868out_unlock:
d1c3fb1f 1869 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1870
1871 return page;
1872}
1873
bbe88753 1874static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 1875 int nid, nodemask_t *nmask)
ab5ac90a
MH
1876{
1877 struct page *page;
1878
1879 if (hstate_is_gigantic(h))
1880 return NULL;
1881
f60858f9 1882 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
ab5ac90a
MH
1883 if (!page)
1884 return NULL;
1885
1886 /*
1887 * We do not account these pages as surplus because they are only
1888 * temporary and will be released properly on the last reference
1889 */
9157c311 1890 SetHPageTemporary(page);
ab5ac90a
MH
1891
1892 return page;
1893}
1894
099730d6
DH
1895/*
1896 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1897 */
e0ec90ee 1898static
0c397dae 1899struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1900 struct vm_area_struct *vma, unsigned long addr)
1901{
aaf14e40
MH
1902 struct page *page;
1903 struct mempolicy *mpol;
1904 gfp_t gfp_mask = htlb_alloc_mask(h);
1905 int nid;
1906 nodemask_t *nodemask;
1907
1908 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1909 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1910 mpol_cond_put(mpol);
1911
1912 return page;
099730d6
DH
1913}
1914
ab5ac90a 1915/* page migration callback function */
3e59fcb0 1916struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
d92bbc27 1917 nodemask_t *nmask, gfp_t gfp_mask)
4db9b2ef 1918{
4db9b2ef
MH
1919 spin_lock(&hugetlb_lock);
1920 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1921 struct page *page;
1922
1923 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1924 if (page) {
1925 spin_unlock(&hugetlb_lock);
1926 return page;
4db9b2ef
MH
1927 }
1928 }
1929 spin_unlock(&hugetlb_lock);
4db9b2ef 1930
0c397dae 1931 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1932}
1933
ebd63723 1934/* mempolicy aware migration callback */
389c8178
MH
1935struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1936 unsigned long address)
ebd63723
MH
1937{
1938 struct mempolicy *mpol;
1939 nodemask_t *nodemask;
1940 struct page *page;
ebd63723
MH
1941 gfp_t gfp_mask;
1942 int node;
1943
ebd63723
MH
1944 gfp_mask = htlb_alloc_mask(h);
1945 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
d92bbc27 1946 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
ebd63723
MH
1947 mpol_cond_put(mpol);
1948
1949 return page;
1950}
1951
e4e574b7 1952/*
25985edc 1953 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1954 * of size 'delta'.
1955 */
0a4f3d1b 1956static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 1957 __must_hold(&hugetlb_lock)
e4e574b7
AL
1958{
1959 struct list_head surplus_list;
1960 struct page *page, *tmp;
0a4f3d1b
LX
1961 int ret;
1962 long i;
1963 long needed, allocated;
28073b02 1964 bool alloc_ok = true;
e4e574b7 1965
a5516438 1966 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1967 if (needed <= 0) {
a5516438 1968 h->resv_huge_pages += delta;
e4e574b7 1969 return 0;
ac09b3a1 1970 }
e4e574b7
AL
1971
1972 allocated = 0;
1973 INIT_LIST_HEAD(&surplus_list);
1974
1975 ret = -ENOMEM;
1976retry:
1977 spin_unlock(&hugetlb_lock);
1978 for (i = 0; i < needed; i++) {
0c397dae 1979 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1980 NUMA_NO_NODE, NULL);
28073b02
HD
1981 if (!page) {
1982 alloc_ok = false;
1983 break;
1984 }
e4e574b7 1985 list_add(&page->lru, &surplus_list);
69ed779a 1986 cond_resched();
e4e574b7 1987 }
28073b02 1988 allocated += i;
e4e574b7
AL
1989
1990 /*
1991 * After retaking hugetlb_lock, we need to recalculate 'needed'
1992 * because either resv_huge_pages or free_huge_pages may have changed.
1993 */
1994 spin_lock(&hugetlb_lock);
a5516438
AK
1995 needed = (h->resv_huge_pages + delta) -
1996 (h->free_huge_pages + allocated);
28073b02
HD
1997 if (needed > 0) {
1998 if (alloc_ok)
1999 goto retry;
2000 /*
2001 * We were not able to allocate enough pages to
2002 * satisfy the entire reservation so we free what
2003 * we've allocated so far.
2004 */
2005 goto free;
2006 }
e4e574b7
AL
2007 /*
2008 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2009 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2010 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2011 * allocator. Commit the entire reservation here to prevent another
2012 * process from stealing the pages as they are added to the pool but
2013 * before they are reserved.
e4e574b7
AL
2014 */
2015 needed += allocated;
a5516438 2016 h->resv_huge_pages += delta;
e4e574b7 2017 ret = 0;
a9869b83 2018
19fc3f0a 2019 /* Free the needed pages to the hugetlb pool */
e4e574b7 2020 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
e558464b
MS
2021 int zeroed;
2022
19fc3f0a
AL
2023 if ((--needed) < 0)
2024 break;
a9869b83
NH
2025 /*
2026 * This page is now managed by the hugetlb allocator and has
2027 * no users -- drop the buddy allocator's reference.
2028 */
e558464b
MS
2029 zeroed = put_page_testzero(page);
2030 VM_BUG_ON_PAGE(!zeroed, page);
a5516438 2031 enqueue_huge_page(h, page);
19fc3f0a 2032 }
28073b02 2033free:
b0365c8d 2034 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
2035
2036 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
2037 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2038 put_page(page);
a9869b83 2039 spin_lock(&hugetlb_lock);
e4e574b7
AL
2040
2041 return ret;
2042}
2043
2044/*
e5bbc8a6
MK
2045 * This routine has two main purposes:
2046 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2047 * in unused_resv_pages. This corresponds to the prior adjustments made
2048 * to the associated reservation map.
2049 * 2) Free any unused surplus pages that may have been allocated to satisfy
2050 * the reservation. As many as unused_resv_pages may be freed.
2051 *
2052 * Called with hugetlb_lock held. However, the lock could be dropped (and
2053 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2054 * we must make sure nobody else can claim pages we are in the process of
2055 * freeing. Do this by ensuring resv_huge_page always is greater than the
2056 * number of huge pages we plan to free when dropping the lock.
e4e574b7 2057 */
a5516438
AK
2058static void return_unused_surplus_pages(struct hstate *h,
2059 unsigned long unused_resv_pages)
e4e574b7 2060{
e4e574b7
AL
2061 unsigned long nr_pages;
2062
aa888a74 2063 /* Cannot return gigantic pages currently */
bae7f4ae 2064 if (hstate_is_gigantic(h))
e5bbc8a6 2065 goto out;
aa888a74 2066
e5bbc8a6
MK
2067 /*
2068 * Part (or even all) of the reservation could have been backed
2069 * by pre-allocated pages. Only free surplus pages.
2070 */
a5516438 2071 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2072
685f3457
LS
2073 /*
2074 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2075 * evenly across all nodes with memory. Iterate across these nodes
2076 * until we can no longer free unreserved surplus pages. This occurs
2077 * when the nodes with surplus pages have no free pages.
9e7ee400 2078 * free_pool_huge_page() will balance the freed pages across the
9b5e5d0f 2079 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
2080 *
2081 * Note that we decrement resv_huge_pages as we free the pages. If
2082 * we drop the lock, resv_huge_pages will still be sufficiently large
2083 * to cover subsequent pages we may free.
685f3457
LS
2084 */
2085 while (nr_pages--) {
e5bbc8a6
MK
2086 h->resv_huge_pages--;
2087 unused_resv_pages--;
8cebfcd0 2088 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 2089 goto out;
7848a4bf 2090 cond_resched_lock(&hugetlb_lock);
e4e574b7 2091 }
e5bbc8a6
MK
2092
2093out:
2094 /* Fully uncommit the reservation */
2095 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
2096}
2097
5e911373 2098
c37f9fb1 2099/*
feba16e2 2100 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2101 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2102 *
2103 * vma_needs_reservation is called to determine if the huge page at addr
2104 * within the vma has an associated reservation. If a reservation is
2105 * needed, the value 1 is returned. The caller is then responsible for
2106 * managing the global reservation and subpool usage counts. After
2107 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2108 * to add the page to the reservation map. If the page allocation fails,
2109 * the reservation must be ended instead of committed. vma_end_reservation
2110 * is called in such cases.
cf3ad20b
MK
2111 *
2112 * In the normal case, vma_commit_reservation returns the same value
2113 * as the preceding vma_needs_reservation call. The only time this
2114 * is not the case is if a reserve map was changed between calls. It
2115 * is the responsibility of the caller to notice the difference and
2116 * take appropriate action.
96b96a96
MK
2117 *
2118 * vma_add_reservation is used in error paths where a reservation must
2119 * be restored when a newly allocated huge page must be freed. It is
2120 * to be called after calling vma_needs_reservation to determine if a
2121 * reservation exists.
c37f9fb1 2122 */
5e911373
MK
2123enum vma_resv_mode {
2124 VMA_NEEDS_RESV,
2125 VMA_COMMIT_RESV,
feba16e2 2126 VMA_END_RESV,
96b96a96 2127 VMA_ADD_RESV,
5e911373 2128};
cf3ad20b
MK
2129static long __vma_reservation_common(struct hstate *h,
2130 struct vm_area_struct *vma, unsigned long addr,
5e911373 2131 enum vma_resv_mode mode)
c37f9fb1 2132{
4e35f483
JK
2133 struct resv_map *resv;
2134 pgoff_t idx;
cf3ad20b 2135 long ret;
0db9d74e 2136 long dummy_out_regions_needed;
c37f9fb1 2137
4e35f483
JK
2138 resv = vma_resv_map(vma);
2139 if (!resv)
84afd99b 2140 return 1;
c37f9fb1 2141
4e35f483 2142 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2143 switch (mode) {
2144 case VMA_NEEDS_RESV:
0db9d74e
MA
2145 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2146 /* We assume that vma_reservation_* routines always operate on
2147 * 1 page, and that adding to resv map a 1 page entry can only
2148 * ever require 1 region.
2149 */
2150 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2151 break;
2152 case VMA_COMMIT_RESV:
075a61d0 2153 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2154 /* region_add calls of range 1 should never fail. */
2155 VM_BUG_ON(ret < 0);
5e911373 2156 break;
feba16e2 2157 case VMA_END_RESV:
0db9d74e 2158 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2159 ret = 0;
2160 break;
96b96a96 2161 case VMA_ADD_RESV:
0db9d74e 2162 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2163 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2164 /* region_add calls of range 1 should never fail. */
2165 VM_BUG_ON(ret < 0);
2166 } else {
2167 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2168 ret = region_del(resv, idx, idx + 1);
2169 }
2170 break;
5e911373
MK
2171 default:
2172 BUG();
2173 }
84afd99b 2174
4e35f483 2175 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 2176 return ret;
67961f9d
MK
2177 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2178 /*
2179 * In most cases, reserves always exist for private mappings.
2180 * However, a file associated with mapping could have been
2181 * hole punched or truncated after reserves were consumed.
2182 * As subsequent fault on such a range will not use reserves.
2183 * Subtle - The reserve map for private mappings has the
2184 * opposite meaning than that of shared mappings. If NO
2185 * entry is in the reserve map, it means a reservation exists.
2186 * If an entry exists in the reserve map, it means the
2187 * reservation has already been consumed. As a result, the
2188 * return value of this routine is the opposite of the
2189 * value returned from reserve map manipulation routines above.
2190 */
2191 if (ret)
2192 return 0;
2193 else
2194 return 1;
2195 }
4e35f483 2196 else
cf3ad20b 2197 return ret < 0 ? ret : 0;
c37f9fb1 2198}
cf3ad20b
MK
2199
2200static long vma_needs_reservation(struct hstate *h,
a5516438 2201 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2202{
5e911373 2203 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2204}
84afd99b 2205
cf3ad20b
MK
2206static long vma_commit_reservation(struct hstate *h,
2207 struct vm_area_struct *vma, unsigned long addr)
2208{
5e911373
MK
2209 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2210}
2211
feba16e2 2212static void vma_end_reservation(struct hstate *h,
5e911373
MK
2213 struct vm_area_struct *vma, unsigned long addr)
2214{
feba16e2 2215 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2216}
2217
96b96a96
MK
2218static long vma_add_reservation(struct hstate *h,
2219 struct vm_area_struct *vma, unsigned long addr)
2220{
2221 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2222}
2223
2224/*
2225 * This routine is called to restore a reservation on error paths. In the
2226 * specific error paths, a huge page was allocated (via alloc_huge_page)
2227 * and is about to be freed. If a reservation for the page existed,
d6995da3
MK
2228 * alloc_huge_page would have consumed the reservation and set
2229 * HPageRestoreReserve in the newly allocated page. When the page is freed
2230 * via free_huge_page, the global reservation count will be incremented if
2231 * HPageRestoreReserve is set. However, free_huge_page can not adjust the
2232 * reserve map. Adjust the reserve map here to be consistent with global
2233 * reserve count adjustments to be made by free_huge_page.
96b96a96
MK
2234 */
2235static void restore_reserve_on_error(struct hstate *h,
2236 struct vm_area_struct *vma, unsigned long address,
2237 struct page *page)
2238{
d6995da3 2239 if (unlikely(HPageRestoreReserve(page))) {
96b96a96
MK
2240 long rc = vma_needs_reservation(h, vma, address);
2241
2242 if (unlikely(rc < 0)) {
2243 /*
2244 * Rare out of memory condition in reserve map
d6995da3 2245 * manipulation. Clear HPageRestoreReserve so that
96b96a96
MK
2246 * global reserve count will not be incremented
2247 * by free_huge_page. This will make it appear
2248 * as though the reservation for this page was
2249 * consumed. This may prevent the task from
2250 * faulting in the page at a later time. This
2251 * is better than inconsistent global huge page
2252 * accounting of reserve counts.
2253 */
d6995da3 2254 ClearHPageRestoreReserve(page);
96b96a96
MK
2255 } else if (rc) {
2256 rc = vma_add_reservation(h, vma, address);
2257 if (unlikely(rc < 0))
2258 /*
2259 * See above comment about rare out of
2260 * memory condition.
2261 */
d6995da3 2262 ClearHPageRestoreReserve(page);
96b96a96
MK
2263 } else
2264 vma_end_reservation(h, vma, address);
2265 }
2266}
2267
70c3547e 2268struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 2269 unsigned long addr, int avoid_reserve)
1da177e4 2270{
90481622 2271 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2272 struct hstate *h = hstate_vma(vma);
348ea204 2273 struct page *page;
d85f69b0
MK
2274 long map_chg, map_commit;
2275 long gbl_chg;
6d76dcf4
AK
2276 int ret, idx;
2277 struct hugetlb_cgroup *h_cg;
08cf9faf 2278 bool deferred_reserve;
a1e78772 2279
6d76dcf4 2280 idx = hstate_index(h);
a1e78772 2281 /*
d85f69b0
MK
2282 * Examine the region/reserve map to determine if the process
2283 * has a reservation for the page to be allocated. A return
2284 * code of zero indicates a reservation exists (no change).
a1e78772 2285 */
d85f69b0
MK
2286 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2287 if (map_chg < 0)
76dcee75 2288 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2289
2290 /*
2291 * Processes that did not create the mapping will have no
2292 * reserves as indicated by the region/reserve map. Check
2293 * that the allocation will not exceed the subpool limit.
2294 * Allocations for MAP_NORESERVE mappings also need to be
2295 * checked against any subpool limit.
2296 */
2297 if (map_chg || avoid_reserve) {
2298 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2299 if (gbl_chg < 0) {
feba16e2 2300 vma_end_reservation(h, vma, addr);
76dcee75 2301 return ERR_PTR(-ENOSPC);
5e911373 2302 }
1da177e4 2303
d85f69b0
MK
2304 /*
2305 * Even though there was no reservation in the region/reserve
2306 * map, there could be reservations associated with the
2307 * subpool that can be used. This would be indicated if the
2308 * return value of hugepage_subpool_get_pages() is zero.
2309 * However, if avoid_reserve is specified we still avoid even
2310 * the subpool reservations.
2311 */
2312 if (avoid_reserve)
2313 gbl_chg = 1;
2314 }
2315
08cf9faf
MA
2316 /* If this allocation is not consuming a reservation, charge it now.
2317 */
6501fe5f 2318 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
2319 if (deferred_reserve) {
2320 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2321 idx, pages_per_huge_page(h), &h_cg);
2322 if (ret)
2323 goto out_subpool_put;
2324 }
2325
6d76dcf4 2326 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 2327 if (ret)
08cf9faf 2328 goto out_uncharge_cgroup_reservation;
8f34af6f 2329
1da177e4 2330 spin_lock(&hugetlb_lock);
d85f69b0
MK
2331 /*
2332 * glb_chg is passed to indicate whether or not a page must be taken
2333 * from the global free pool (global change). gbl_chg == 0 indicates
2334 * a reservation exists for the allocation.
2335 */
2336 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2337 if (!page) {
94ae8ba7 2338 spin_unlock(&hugetlb_lock);
0c397dae 2339 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2340 if (!page)
2341 goto out_uncharge_cgroup;
a88c7695 2342 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
d6995da3 2343 SetHPageRestoreReserve(page);
a88c7695
NH
2344 h->resv_huge_pages--;
2345 }
79dbb236 2346 spin_lock(&hugetlb_lock);
15a8d68e 2347 list_add(&page->lru, &h->hugepage_activelist);
81a6fcae 2348 /* Fall through */
68842c9b 2349 }
81a6fcae 2350 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
08cf9faf
MA
2351 /* If allocation is not consuming a reservation, also store the
2352 * hugetlb_cgroup pointer on the page.
2353 */
2354 if (deferred_reserve) {
2355 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2356 h_cg, page);
2357 }
2358
81a6fcae 2359 spin_unlock(&hugetlb_lock);
348ea204 2360
d6995da3 2361 hugetlb_set_page_subpool(page, spool);
90d8b7e6 2362
d85f69b0
MK
2363 map_commit = vma_commit_reservation(h, vma, addr);
2364 if (unlikely(map_chg > map_commit)) {
33039678
MK
2365 /*
2366 * The page was added to the reservation map between
2367 * vma_needs_reservation and vma_commit_reservation.
2368 * This indicates a race with hugetlb_reserve_pages.
2369 * Adjust for the subpool count incremented above AND
2370 * in hugetlb_reserve_pages for the same page. Also,
2371 * the reservation count added in hugetlb_reserve_pages
2372 * no longer applies.
2373 */
2374 long rsv_adjust;
2375
2376 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2377 hugetlb_acct_memory(h, -rsv_adjust);
79aa925b
MK
2378 if (deferred_reserve)
2379 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2380 pages_per_huge_page(h), page);
33039678 2381 }
90d8b7e6 2382 return page;
8f34af6f
JZ
2383
2384out_uncharge_cgroup:
2385 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
2386out_uncharge_cgroup_reservation:
2387 if (deferred_reserve)
2388 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2389 h_cg);
8f34af6f 2390out_subpool_put:
d85f69b0 2391 if (map_chg || avoid_reserve)
8f34af6f 2392 hugepage_subpool_put_pages(spool, 1);
feba16e2 2393 vma_end_reservation(h, vma, addr);
8f34af6f 2394 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2395}
2396
e24a1307
AK
2397int alloc_bootmem_huge_page(struct hstate *h)
2398 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2399int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2400{
2401 struct huge_bootmem_page *m;
b2261026 2402 int nr_nodes, node;
aa888a74 2403
b2261026 2404 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2405 void *addr;
2406
eb31d559 2407 addr = memblock_alloc_try_nid_raw(
8b89a116 2408 huge_page_size(h), huge_page_size(h),
97ad1087 2409 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2410 if (addr) {
2411 /*
2412 * Use the beginning of the huge page to store the
2413 * huge_bootmem_page struct (until gather_bootmem
2414 * puts them into the mem_map).
2415 */
2416 m = addr;
91f47662 2417 goto found;
aa888a74 2418 }
aa888a74
AK
2419 }
2420 return 0;
2421
2422found:
df994ead 2423 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74 2424 /* Put them into a private list first because mem_map is not up yet */
330d6e48 2425 INIT_LIST_HEAD(&m->list);
aa888a74
AK
2426 list_add(&m->list, &huge_boot_pages);
2427 m->hstate = h;
2428 return 1;
2429}
2430
d00181b9
KS
2431static void __init prep_compound_huge_page(struct page *page,
2432 unsigned int order)
18229df5
AW
2433{
2434 if (unlikely(order > (MAX_ORDER - 1)))
2435 prep_compound_gigantic_page(page, order);
2436 else
2437 prep_compound_page(page, order);
2438}
2439
aa888a74
AK
2440/* Put bootmem huge pages into the standard lists after mem_map is up */
2441static void __init gather_bootmem_prealloc(void)
2442{
2443 struct huge_bootmem_page *m;
2444
2445 list_for_each_entry(m, &huge_boot_pages, list) {
40d18ebf 2446 struct page *page = virt_to_page(m);
aa888a74 2447 struct hstate *h = m->hstate;
ee8f248d 2448
aa888a74 2449 WARN_ON(page_count(page) != 1);
c78a7f36 2450 prep_compound_huge_page(page, huge_page_order(h));
ef5a22be 2451 WARN_ON(PageReserved(page));
aa888a74 2452 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2453 put_page(page); /* free it into the hugepage allocator */
2454
b0320c7b
RA
2455 /*
2456 * If we had gigantic hugepages allocated at boot time, we need
2457 * to restore the 'stolen' pages to totalram_pages in order to
2458 * fix confusing memory reports from free(1) and another
2459 * side-effects, like CommitLimit going negative.
2460 */
bae7f4ae 2461 if (hstate_is_gigantic(h))
c78a7f36 2462 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 2463 cond_resched();
aa888a74
AK
2464 }
2465}
2466
8faa8b07 2467static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2468{
2469 unsigned long i;
f60858f9
MK
2470 nodemask_t *node_alloc_noretry;
2471
2472 if (!hstate_is_gigantic(h)) {
2473 /*
2474 * Bit mask controlling how hard we retry per-node allocations.
2475 * Ignore errors as lower level routines can deal with
2476 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2477 * time, we are likely in bigger trouble.
2478 */
2479 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2480 GFP_KERNEL);
2481 } else {
2482 /* allocations done at boot time */
2483 node_alloc_noretry = NULL;
2484 }
2485
2486 /* bit mask controlling how hard we retry per-node allocations */
2487 if (node_alloc_noretry)
2488 nodes_clear(*node_alloc_noretry);
a5516438 2489
e5ff2159 2490 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2491 if (hstate_is_gigantic(h)) {
dbda8fea 2492 if (hugetlb_cma_size) {
cf11e85f 2493 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
7ecc9565 2494 goto free;
cf11e85f 2495 }
aa888a74
AK
2496 if (!alloc_bootmem_huge_page(h))
2497 break;
0c397dae 2498 } else if (!alloc_pool_huge_page(h,
f60858f9
MK
2499 &node_states[N_MEMORY],
2500 node_alloc_noretry))
1da177e4 2501 break;
69ed779a 2502 cond_resched();
1da177e4 2503 }
d715cf80
LH
2504 if (i < h->max_huge_pages) {
2505 char buf[32];
2506
c6247f72 2507 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2508 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2509 h->max_huge_pages, buf, i);
2510 h->max_huge_pages = i;
2511 }
7ecc9565 2512free:
f60858f9 2513 kfree(node_alloc_noretry);
e5ff2159
AK
2514}
2515
2516static void __init hugetlb_init_hstates(void)
2517{
2518 struct hstate *h;
2519
2520 for_each_hstate(h) {
641844f5
NH
2521 if (minimum_order > huge_page_order(h))
2522 minimum_order = huge_page_order(h);
2523
8faa8b07 2524 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2525 if (!hstate_is_gigantic(h))
8faa8b07 2526 hugetlb_hstate_alloc_pages(h);
e5ff2159 2527 }
641844f5 2528 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2529}
2530
2531static void __init report_hugepages(void)
2532{
2533 struct hstate *h;
2534
2535 for_each_hstate(h) {
4abd32db 2536 char buf[32];
c6247f72
MW
2537
2538 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2539 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2540 buf, h->free_huge_pages);
e5ff2159
AK
2541 }
2542}
2543
1da177e4 2544#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2545static void try_to_free_low(struct hstate *h, unsigned long count,
2546 nodemask_t *nodes_allowed)
1da177e4 2547{
4415cc8d
CL
2548 int i;
2549
bae7f4ae 2550 if (hstate_is_gigantic(h))
aa888a74
AK
2551 return;
2552
6ae11b27 2553 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2554 struct page *page, *next;
a5516438
AK
2555 struct list_head *freel = &h->hugepage_freelists[i];
2556 list_for_each_entry_safe(page, next, freel, lru) {
2557 if (count >= h->nr_huge_pages)
6b0c880d 2558 return;
1da177e4
LT
2559 if (PageHighMem(page))
2560 continue;
2561 list_del(&page->lru);
e5ff2159 2562 update_and_free_page(h, page);
a5516438
AK
2563 h->free_huge_pages--;
2564 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2565 }
2566 }
2567}
2568#else
6ae11b27
LS
2569static inline void try_to_free_low(struct hstate *h, unsigned long count,
2570 nodemask_t *nodes_allowed)
1da177e4
LT
2571{
2572}
2573#endif
2574
20a0307c
WF
2575/*
2576 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2577 * balanced by operating on them in a round-robin fashion.
2578 * Returns 1 if an adjustment was made.
2579 */
6ae11b27
LS
2580static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2581 int delta)
20a0307c 2582{
b2261026 2583 int nr_nodes, node;
20a0307c
WF
2584
2585 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2586
b2261026
JK
2587 if (delta < 0) {
2588 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2589 if (h->surplus_huge_pages_node[node])
2590 goto found;
e8c5c824 2591 }
b2261026
JK
2592 } else {
2593 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2594 if (h->surplus_huge_pages_node[node] <
2595 h->nr_huge_pages_node[node])
2596 goto found;
e8c5c824 2597 }
b2261026
JK
2598 }
2599 return 0;
20a0307c 2600
b2261026
JK
2601found:
2602 h->surplus_huge_pages += delta;
2603 h->surplus_huge_pages_node[node] += delta;
2604 return 1;
20a0307c
WF
2605}
2606
a5516438 2607#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 2608static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 2609 nodemask_t *nodes_allowed)
1da177e4 2610{
7893d1d5 2611 unsigned long min_count, ret;
f60858f9
MK
2612 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2613
2614 /*
2615 * Bit mask controlling how hard we retry per-node allocations.
2616 * If we can not allocate the bit mask, do not attempt to allocate
2617 * the requested huge pages.
2618 */
2619 if (node_alloc_noretry)
2620 nodes_clear(*node_alloc_noretry);
2621 else
2622 return -ENOMEM;
1da177e4 2623
4eb0716e
AG
2624 spin_lock(&hugetlb_lock);
2625
fd875dca
MK
2626 /*
2627 * Check for a node specific request.
2628 * Changing node specific huge page count may require a corresponding
2629 * change to the global count. In any case, the passed node mask
2630 * (nodes_allowed) will restrict alloc/free to the specified node.
2631 */
2632 if (nid != NUMA_NO_NODE) {
2633 unsigned long old_count = count;
2634
2635 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2636 /*
2637 * User may have specified a large count value which caused the
2638 * above calculation to overflow. In this case, they wanted
2639 * to allocate as many huge pages as possible. Set count to
2640 * largest possible value to align with their intention.
2641 */
2642 if (count < old_count)
2643 count = ULONG_MAX;
2644 }
2645
4eb0716e
AG
2646 /*
2647 * Gigantic pages runtime allocation depend on the capability for large
2648 * page range allocation.
2649 * If the system does not provide this feature, return an error when
2650 * the user tries to allocate gigantic pages but let the user free the
2651 * boottime allocated gigantic pages.
2652 */
2653 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2654 if (count > persistent_huge_pages(h)) {
2655 spin_unlock(&hugetlb_lock);
f60858f9 2656 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
2657 return -EINVAL;
2658 }
2659 /* Fall through to decrease pool */
2660 }
aa888a74 2661
7893d1d5
AL
2662 /*
2663 * Increase the pool size
2664 * First take pages out of surplus state. Then make up the
2665 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2666 *
0c397dae 2667 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2668 * to convert a surplus huge page to a normal huge page. That is
2669 * not critical, though, it just means the overall size of the
2670 * pool might be one hugepage larger than it needs to be, but
2671 * within all the constraints specified by the sysctls.
7893d1d5 2672 */
a5516438 2673 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2674 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2675 break;
2676 }
2677
a5516438 2678 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2679 /*
2680 * If this allocation races such that we no longer need the
2681 * page, free_huge_page will handle it by freeing the page
2682 * and reducing the surplus.
2683 */
2684 spin_unlock(&hugetlb_lock);
649920c6
JH
2685
2686 /* yield cpu to avoid soft lockup */
2687 cond_resched();
2688
f60858f9
MK
2689 ret = alloc_pool_huge_page(h, nodes_allowed,
2690 node_alloc_noretry);
7893d1d5
AL
2691 spin_lock(&hugetlb_lock);
2692 if (!ret)
2693 goto out;
2694
536240f2
MG
2695 /* Bail for signals. Probably ctrl-c from user */
2696 if (signal_pending(current))
2697 goto out;
7893d1d5 2698 }
7893d1d5
AL
2699
2700 /*
2701 * Decrease the pool size
2702 * First return free pages to the buddy allocator (being careful
2703 * to keep enough around to satisfy reservations). Then place
2704 * pages into surplus state as needed so the pool will shrink
2705 * to the desired size as pages become free.
d1c3fb1f
NA
2706 *
2707 * By placing pages into the surplus state independent of the
2708 * overcommit value, we are allowing the surplus pool size to
2709 * exceed overcommit. There are few sane options here. Since
0c397dae 2710 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2711 * though, we'll note that we're not allowed to exceed surplus
2712 * and won't grow the pool anywhere else. Not until one of the
2713 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2714 */
a5516438 2715 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2716 min_count = max(count, min_count);
6ae11b27 2717 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2718 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2719 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2720 break;
55f67141 2721 cond_resched_lock(&hugetlb_lock);
1da177e4 2722 }
a5516438 2723 while (count < persistent_huge_pages(h)) {
6ae11b27 2724 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2725 break;
2726 }
2727out:
4eb0716e 2728 h->max_huge_pages = persistent_huge_pages(h);
1da177e4 2729 spin_unlock(&hugetlb_lock);
4eb0716e 2730
f60858f9
MK
2731 NODEMASK_FREE(node_alloc_noretry);
2732
4eb0716e 2733 return 0;
1da177e4
LT
2734}
2735
a3437870
NA
2736#define HSTATE_ATTR_RO(_name) \
2737 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2738
2739#define HSTATE_ATTR(_name) \
2740 static struct kobj_attribute _name##_attr = \
2741 __ATTR(_name, 0644, _name##_show, _name##_store)
2742
2743static struct kobject *hugepages_kobj;
2744static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2745
9a305230
LS
2746static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2747
2748static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2749{
2750 int i;
9a305230 2751
a3437870 2752 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2753 if (hstate_kobjs[i] == kobj) {
2754 if (nidp)
2755 *nidp = NUMA_NO_NODE;
a3437870 2756 return &hstates[i];
9a305230
LS
2757 }
2758
2759 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2760}
2761
06808b08 2762static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2763 struct kobj_attribute *attr, char *buf)
2764{
9a305230
LS
2765 struct hstate *h;
2766 unsigned long nr_huge_pages;
2767 int nid;
2768
2769 h = kobj_to_hstate(kobj, &nid);
2770 if (nid == NUMA_NO_NODE)
2771 nr_huge_pages = h->nr_huge_pages;
2772 else
2773 nr_huge_pages = h->nr_huge_pages_node[nid];
2774
ae7a927d 2775 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 2776}
adbe8726 2777
238d3c13
DR
2778static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2779 struct hstate *h, int nid,
2780 unsigned long count, size_t len)
a3437870
NA
2781{
2782 int err;
2d0adf7e 2783 nodemask_t nodes_allowed, *n_mask;
a3437870 2784
2d0adf7e
OS
2785 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2786 return -EINVAL;
adbe8726 2787
9a305230
LS
2788 if (nid == NUMA_NO_NODE) {
2789 /*
2790 * global hstate attribute
2791 */
2792 if (!(obey_mempolicy &&
2d0adf7e
OS
2793 init_nodemask_of_mempolicy(&nodes_allowed)))
2794 n_mask = &node_states[N_MEMORY];
2795 else
2796 n_mask = &nodes_allowed;
2797 } else {
9a305230 2798 /*
fd875dca
MK
2799 * Node specific request. count adjustment happens in
2800 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 2801 */
2d0adf7e
OS
2802 init_nodemask_of_node(&nodes_allowed, nid);
2803 n_mask = &nodes_allowed;
fd875dca 2804 }
9a305230 2805
2d0adf7e 2806 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 2807
4eb0716e 2808 return err ? err : len;
06808b08
LS
2809}
2810
238d3c13
DR
2811static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2812 struct kobject *kobj, const char *buf,
2813 size_t len)
2814{
2815 struct hstate *h;
2816 unsigned long count;
2817 int nid;
2818 int err;
2819
2820 err = kstrtoul(buf, 10, &count);
2821 if (err)
2822 return err;
2823
2824 h = kobj_to_hstate(kobj, &nid);
2825 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2826}
2827
06808b08
LS
2828static ssize_t nr_hugepages_show(struct kobject *kobj,
2829 struct kobj_attribute *attr, char *buf)
2830{
2831 return nr_hugepages_show_common(kobj, attr, buf);
2832}
2833
2834static ssize_t nr_hugepages_store(struct kobject *kobj,
2835 struct kobj_attribute *attr, const char *buf, size_t len)
2836{
238d3c13 2837 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2838}
2839HSTATE_ATTR(nr_hugepages);
2840
06808b08
LS
2841#ifdef CONFIG_NUMA
2842
2843/*
2844 * hstate attribute for optionally mempolicy-based constraint on persistent
2845 * huge page alloc/free.
2846 */
2847static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
2848 struct kobj_attribute *attr,
2849 char *buf)
06808b08
LS
2850{
2851 return nr_hugepages_show_common(kobj, attr, buf);
2852}
2853
2854static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2855 struct kobj_attribute *attr, const char *buf, size_t len)
2856{
238d3c13 2857 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2858}
2859HSTATE_ATTR(nr_hugepages_mempolicy);
2860#endif
2861
2862
a3437870
NA
2863static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2864 struct kobj_attribute *attr, char *buf)
2865{
9a305230 2866 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2867 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 2868}
adbe8726 2869
a3437870
NA
2870static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2871 struct kobj_attribute *attr, const char *buf, size_t count)
2872{
2873 int err;
2874 unsigned long input;
9a305230 2875 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2876
bae7f4ae 2877 if (hstate_is_gigantic(h))
adbe8726
EM
2878 return -EINVAL;
2879
3dbb95f7 2880 err = kstrtoul(buf, 10, &input);
a3437870 2881 if (err)
73ae31e5 2882 return err;
a3437870
NA
2883
2884 spin_lock(&hugetlb_lock);
2885 h->nr_overcommit_huge_pages = input;
2886 spin_unlock(&hugetlb_lock);
2887
2888 return count;
2889}
2890HSTATE_ATTR(nr_overcommit_hugepages);
2891
2892static ssize_t free_hugepages_show(struct kobject *kobj,
2893 struct kobj_attribute *attr, char *buf)
2894{
9a305230
LS
2895 struct hstate *h;
2896 unsigned long free_huge_pages;
2897 int nid;
2898
2899 h = kobj_to_hstate(kobj, &nid);
2900 if (nid == NUMA_NO_NODE)
2901 free_huge_pages = h->free_huge_pages;
2902 else
2903 free_huge_pages = h->free_huge_pages_node[nid];
2904
ae7a927d 2905 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
2906}
2907HSTATE_ATTR_RO(free_hugepages);
2908
2909static ssize_t resv_hugepages_show(struct kobject *kobj,
2910 struct kobj_attribute *attr, char *buf)
2911{
9a305230 2912 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 2913 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
2914}
2915HSTATE_ATTR_RO(resv_hugepages);
2916
2917static ssize_t surplus_hugepages_show(struct kobject *kobj,
2918 struct kobj_attribute *attr, char *buf)
2919{
9a305230
LS
2920 struct hstate *h;
2921 unsigned long surplus_huge_pages;
2922 int nid;
2923
2924 h = kobj_to_hstate(kobj, &nid);
2925 if (nid == NUMA_NO_NODE)
2926 surplus_huge_pages = h->surplus_huge_pages;
2927 else
2928 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2929
ae7a927d 2930 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2931}
2932HSTATE_ATTR_RO(surplus_hugepages);
2933
2934static struct attribute *hstate_attrs[] = {
2935 &nr_hugepages_attr.attr,
2936 &nr_overcommit_hugepages_attr.attr,
2937 &free_hugepages_attr.attr,
2938 &resv_hugepages_attr.attr,
2939 &surplus_hugepages_attr.attr,
06808b08
LS
2940#ifdef CONFIG_NUMA
2941 &nr_hugepages_mempolicy_attr.attr,
2942#endif
a3437870
NA
2943 NULL,
2944};
2945
67e5ed96 2946static const struct attribute_group hstate_attr_group = {
a3437870
NA
2947 .attrs = hstate_attrs,
2948};
2949
094e9539
JM
2950static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2951 struct kobject **hstate_kobjs,
67e5ed96 2952 const struct attribute_group *hstate_attr_group)
a3437870
NA
2953{
2954 int retval;
972dc4de 2955 int hi = hstate_index(h);
a3437870 2956
9a305230
LS
2957 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2958 if (!hstate_kobjs[hi])
a3437870
NA
2959 return -ENOMEM;
2960
9a305230 2961 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 2962 if (retval) {
9a305230 2963 kobject_put(hstate_kobjs[hi]);
cc2205a6
ML
2964 hstate_kobjs[hi] = NULL;
2965 }
a3437870
NA
2966
2967 return retval;
2968}
2969
2970static void __init hugetlb_sysfs_init(void)
2971{
2972 struct hstate *h;
2973 int err;
2974
2975 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2976 if (!hugepages_kobj)
2977 return;
2978
2979 for_each_hstate(h) {
9a305230
LS
2980 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2981 hstate_kobjs, &hstate_attr_group);
a3437870 2982 if (err)
282f4214 2983 pr_err("HugeTLB: Unable to add hstate %s", h->name);
a3437870
NA
2984 }
2985}
2986
9a305230
LS
2987#ifdef CONFIG_NUMA
2988
2989/*
2990 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2991 * with node devices in node_devices[] using a parallel array. The array
2992 * index of a node device or _hstate == node id.
2993 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2994 * the base kernel, on the hugetlb module.
2995 */
2996struct node_hstate {
2997 struct kobject *hugepages_kobj;
2998 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2999};
b4e289a6 3000static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
3001
3002/*
10fbcf4c 3003 * A subset of global hstate attributes for node devices
9a305230
LS
3004 */
3005static struct attribute *per_node_hstate_attrs[] = {
3006 &nr_hugepages_attr.attr,
3007 &free_hugepages_attr.attr,
3008 &surplus_hugepages_attr.attr,
3009 NULL,
3010};
3011
67e5ed96 3012static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
3013 .attrs = per_node_hstate_attrs,
3014};
3015
3016/*
10fbcf4c 3017 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
3018 * Returns node id via non-NULL nidp.
3019 */
3020static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3021{
3022 int nid;
3023
3024 for (nid = 0; nid < nr_node_ids; nid++) {
3025 struct node_hstate *nhs = &node_hstates[nid];
3026 int i;
3027 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3028 if (nhs->hstate_kobjs[i] == kobj) {
3029 if (nidp)
3030 *nidp = nid;
3031 return &hstates[i];
3032 }
3033 }
3034
3035 BUG();
3036 return NULL;
3037}
3038
3039/*
10fbcf4c 3040 * Unregister hstate attributes from a single node device.
9a305230
LS
3041 * No-op if no hstate attributes attached.
3042 */
3cd8b44f 3043static void hugetlb_unregister_node(struct node *node)
9a305230
LS
3044{
3045 struct hstate *h;
10fbcf4c 3046 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3047
3048 if (!nhs->hugepages_kobj)
9b5e5d0f 3049 return; /* no hstate attributes */
9a305230 3050
972dc4de
AK
3051 for_each_hstate(h) {
3052 int idx = hstate_index(h);
3053 if (nhs->hstate_kobjs[idx]) {
3054 kobject_put(nhs->hstate_kobjs[idx]);
3055 nhs->hstate_kobjs[idx] = NULL;
9a305230 3056 }
972dc4de 3057 }
9a305230
LS
3058
3059 kobject_put(nhs->hugepages_kobj);
3060 nhs->hugepages_kobj = NULL;
3061}
3062
9a305230
LS
3063
3064/*
10fbcf4c 3065 * Register hstate attributes for a single node device.
9a305230
LS
3066 * No-op if attributes already registered.
3067 */
3cd8b44f 3068static void hugetlb_register_node(struct node *node)
9a305230
LS
3069{
3070 struct hstate *h;
10fbcf4c 3071 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
3072 int err;
3073
3074 if (nhs->hugepages_kobj)
3075 return; /* already allocated */
3076
3077 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 3078 &node->dev.kobj);
9a305230
LS
3079 if (!nhs->hugepages_kobj)
3080 return;
3081
3082 for_each_hstate(h) {
3083 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3084 nhs->hstate_kobjs,
3085 &per_node_hstate_attr_group);
3086 if (err) {
282f4214 3087 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 3088 h->name, node->dev.id);
9a305230
LS
3089 hugetlb_unregister_node(node);
3090 break;
3091 }
3092 }
3093}
3094
3095/*
9b5e5d0f 3096 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
3097 * devices of nodes that have memory. All on-line nodes should have
3098 * registered their associated device by this time.
9a305230 3099 */
7d9ca000 3100static void __init hugetlb_register_all_nodes(void)
9a305230
LS
3101{
3102 int nid;
3103
8cebfcd0 3104 for_each_node_state(nid, N_MEMORY) {
8732794b 3105 struct node *node = node_devices[nid];
10fbcf4c 3106 if (node->dev.id == nid)
9a305230
LS
3107 hugetlb_register_node(node);
3108 }
3109
3110 /*
10fbcf4c 3111 * Let the node device driver know we're here so it can
9a305230
LS
3112 * [un]register hstate attributes on node hotplug.
3113 */
3114 register_hugetlbfs_with_node(hugetlb_register_node,
3115 hugetlb_unregister_node);
3116}
3117#else /* !CONFIG_NUMA */
3118
3119static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3120{
3121 BUG();
3122 if (nidp)
3123 *nidp = -1;
3124 return NULL;
3125}
3126
9a305230
LS
3127static void hugetlb_register_all_nodes(void) { }
3128
3129#endif
3130
a3437870
NA
3131static int __init hugetlb_init(void)
3132{
8382d914
DB
3133 int i;
3134
d6995da3
MK
3135 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3136 __NR_HPAGEFLAGS);
3137
c2833a5b
MK
3138 if (!hugepages_supported()) {
3139 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3140 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 3141 return 0;
c2833a5b 3142 }
a3437870 3143
282f4214
MK
3144 /*
3145 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3146 * architectures depend on setup being done here.
3147 */
3148 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3149 if (!parsed_default_hugepagesz) {
3150 /*
3151 * If we did not parse a default huge page size, set
3152 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3153 * number of huge pages for this default size was implicitly
3154 * specified, set that here as well.
3155 * Note that the implicit setting will overwrite an explicit
3156 * setting. A warning will be printed in this case.
3157 */
3158 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3159 if (default_hstate_max_huge_pages) {
3160 if (default_hstate.max_huge_pages) {
3161 char buf[32];
3162
3163 string_get_size(huge_page_size(&default_hstate),
3164 1, STRING_UNITS_2, buf, 32);
3165 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3166 default_hstate.max_huge_pages, buf);
3167 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3168 default_hstate_max_huge_pages);
3169 }
3170 default_hstate.max_huge_pages =
3171 default_hstate_max_huge_pages;
d715cf80 3172 }
f8b74815 3173 }
a3437870 3174
cf11e85f 3175 hugetlb_cma_check();
a3437870 3176 hugetlb_init_hstates();
aa888a74 3177 gather_bootmem_prealloc();
a3437870
NA
3178 report_hugepages();
3179
3180 hugetlb_sysfs_init();
9a305230 3181 hugetlb_register_all_nodes();
7179e7bf 3182 hugetlb_cgroup_file_init();
9a305230 3183
8382d914
DB
3184#ifdef CONFIG_SMP
3185 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3186#else
3187 num_fault_mutexes = 1;
3188#endif
c672c7f2 3189 hugetlb_fault_mutex_table =
6da2ec56
KC
3190 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3191 GFP_KERNEL);
c672c7f2 3192 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
3193
3194 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 3195 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
3196 return 0;
3197}
3e89e1c5 3198subsys_initcall(hugetlb_init);
a3437870 3199
ae94da89
MK
3200/* Overwritten by architectures with more huge page sizes */
3201bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 3202{
ae94da89 3203 return size == HPAGE_SIZE;
9fee021d
VT
3204}
3205
d00181b9 3206void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
3207{
3208 struct hstate *h;
8faa8b07
AK
3209 unsigned long i;
3210
a3437870 3211 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
3212 return;
3213 }
47d38344 3214 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 3215 BUG_ON(order == 0);
47d38344 3216 h = &hstates[hugetlb_max_hstate++];
a3437870 3217 h->order = order;
aca78307 3218 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
3219 for (i = 0; i < MAX_NUMNODES; ++i)
3220 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 3221 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
3222 h->next_nid_to_alloc = first_memory_node;
3223 h->next_nid_to_free = first_memory_node;
a3437870
NA
3224 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3225 huge_page_size(h)/1024);
8faa8b07 3226
a3437870
NA
3227 parsed_hstate = h;
3228}
3229
282f4214
MK
3230/*
3231 * hugepages command line processing
3232 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3233 * specification. If not, ignore the hugepages value. hugepages can also
3234 * be the first huge page command line option in which case it implicitly
3235 * specifies the number of huge pages for the default size.
3236 */
3237static int __init hugepages_setup(char *s)
a3437870
NA
3238{
3239 unsigned long *mhp;
8faa8b07 3240 static unsigned long *last_mhp;
a3437870 3241
9fee021d 3242 if (!parsed_valid_hugepagesz) {
282f4214 3243 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 3244 parsed_valid_hugepagesz = true;
282f4214 3245 return 0;
9fee021d 3246 }
282f4214 3247
a3437870 3248 /*
282f4214
MK
3249 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3250 * yet, so this hugepages= parameter goes to the "default hstate".
3251 * Otherwise, it goes with the previously parsed hugepagesz or
3252 * default_hugepagesz.
a3437870 3253 */
9fee021d 3254 else if (!hugetlb_max_hstate)
a3437870
NA
3255 mhp = &default_hstate_max_huge_pages;
3256 else
3257 mhp = &parsed_hstate->max_huge_pages;
3258
8faa8b07 3259 if (mhp == last_mhp) {
282f4214
MK
3260 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3261 return 0;
8faa8b07
AK
3262 }
3263
a3437870
NA
3264 if (sscanf(s, "%lu", mhp) <= 0)
3265 *mhp = 0;
3266
8faa8b07
AK
3267 /*
3268 * Global state is always initialized later in hugetlb_init.
04adbc3f 3269 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
3270 * use the bootmem allocator.
3271 */
04adbc3f 3272 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
3273 hugetlb_hstate_alloc_pages(parsed_hstate);
3274
3275 last_mhp = mhp;
3276
a3437870
NA
3277 return 1;
3278}
282f4214 3279__setup("hugepages=", hugepages_setup);
e11bfbfc 3280
282f4214
MK
3281/*
3282 * hugepagesz command line processing
3283 * A specific huge page size can only be specified once with hugepagesz.
3284 * hugepagesz is followed by hugepages on the command line. The global
3285 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3286 * hugepagesz argument was valid.
3287 */
359f2544 3288static int __init hugepagesz_setup(char *s)
e11bfbfc 3289{
359f2544 3290 unsigned long size;
282f4214
MK
3291 struct hstate *h;
3292
3293 parsed_valid_hugepagesz = false;
359f2544
MK
3294 size = (unsigned long)memparse(s, NULL);
3295
3296 if (!arch_hugetlb_valid_size(size)) {
282f4214 3297 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
359f2544
MK
3298 return 0;
3299 }
3300
282f4214
MK
3301 h = size_to_hstate(size);
3302 if (h) {
3303 /*
3304 * hstate for this size already exists. This is normally
3305 * an error, but is allowed if the existing hstate is the
3306 * default hstate. More specifically, it is only allowed if
3307 * the number of huge pages for the default hstate was not
3308 * previously specified.
3309 */
3310 if (!parsed_default_hugepagesz || h != &default_hstate ||
3311 default_hstate.max_huge_pages) {
3312 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3313 return 0;
3314 }
3315
3316 /*
3317 * No need to call hugetlb_add_hstate() as hstate already
3318 * exists. But, do set parsed_hstate so that a following
3319 * hugepages= parameter will be applied to this hstate.
3320 */
3321 parsed_hstate = h;
3322 parsed_valid_hugepagesz = true;
3323 return 1;
38237830
MK
3324 }
3325
359f2544 3326 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 3327 parsed_valid_hugepagesz = true;
e11bfbfc
NP
3328 return 1;
3329}
359f2544
MK
3330__setup("hugepagesz=", hugepagesz_setup);
3331
282f4214
MK
3332/*
3333 * default_hugepagesz command line input
3334 * Only one instance of default_hugepagesz allowed on command line.
3335 */
ae94da89 3336static int __init default_hugepagesz_setup(char *s)
e11bfbfc 3337{
ae94da89
MK
3338 unsigned long size;
3339
282f4214 3340 parsed_valid_hugepagesz = false;
282f4214
MK
3341 if (parsed_default_hugepagesz) {
3342 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3343 return 0;
3344 }
3345
ae94da89
MK
3346 size = (unsigned long)memparse(s, NULL);
3347
3348 if (!arch_hugetlb_valid_size(size)) {
282f4214 3349 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
ae94da89
MK
3350 return 0;
3351 }
3352
282f4214
MK
3353 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3354 parsed_valid_hugepagesz = true;
3355 parsed_default_hugepagesz = true;
3356 default_hstate_idx = hstate_index(size_to_hstate(size));
3357
3358 /*
3359 * The number of default huge pages (for this size) could have been
3360 * specified as the first hugetlb parameter: hugepages=X. If so,
3361 * then default_hstate_max_huge_pages is set. If the default huge
3362 * page size is gigantic (>= MAX_ORDER), then the pages must be
3363 * allocated here from bootmem allocator.
3364 */
3365 if (default_hstate_max_huge_pages) {
3366 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3367 if (hstate_is_gigantic(&default_hstate))
3368 hugetlb_hstate_alloc_pages(&default_hstate);
3369 default_hstate_max_huge_pages = 0;
3370 }
3371
e11bfbfc
NP
3372 return 1;
3373}
ae94da89 3374__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 3375
8ca39e68 3376static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
3377{
3378 int node;
3379 unsigned int nr = 0;
8ca39e68
MS
3380 nodemask_t *mpol_allowed;
3381 unsigned int *array = h->free_huge_pages_node;
3382 gfp_t gfp_mask = htlb_alloc_mask(h);
3383
3384 mpol_allowed = policy_nodemask_current(gfp_mask);
8a213460 3385
8ca39e68 3386 for_each_node_mask(node, cpuset_current_mems_allowed) {
c93b0a99 3387 if (!mpol_allowed || node_isset(node, *mpol_allowed))
8ca39e68
MS
3388 nr += array[node];
3389 }
8a213460
NA
3390
3391 return nr;
3392}
3393
3394#ifdef CONFIG_SYSCTL
17743798
MS
3395static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3396 void *buffer, size_t *length,
3397 loff_t *ppos, unsigned long *out)
3398{
3399 struct ctl_table dup_table;
3400
3401 /*
3402 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3403 * can duplicate the @table and alter the duplicate of it.
3404 */
3405 dup_table = *table;
3406 dup_table.data = out;
3407
3408 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3409}
3410
06808b08
LS
3411static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3412 struct ctl_table *table, int write,
32927393 3413 void *buffer, size_t *length, loff_t *ppos)
1da177e4 3414{
e5ff2159 3415 struct hstate *h = &default_hstate;
238d3c13 3416 unsigned long tmp = h->max_huge_pages;
08d4a246 3417 int ret;
e5ff2159 3418
457c1b27 3419 if (!hugepages_supported())
86613628 3420 return -EOPNOTSUPP;
457c1b27 3421
17743798
MS
3422 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3423 &tmp);
08d4a246
MH
3424 if (ret)
3425 goto out;
e5ff2159 3426
238d3c13
DR
3427 if (write)
3428 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3429 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
3430out:
3431 return ret;
1da177e4 3432}
396faf03 3433
06808b08 3434int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 3435 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3436{
3437
3438 return hugetlb_sysctl_handler_common(false, table, write,
3439 buffer, length, ppos);
3440}
3441
3442#ifdef CONFIG_NUMA
3443int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 3444 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
3445{
3446 return hugetlb_sysctl_handler_common(true, table, write,
3447 buffer, length, ppos);
3448}
3449#endif /* CONFIG_NUMA */
3450
a3d0c6aa 3451int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 3452 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 3453{
a5516438 3454 struct hstate *h = &default_hstate;
e5ff2159 3455 unsigned long tmp;
08d4a246 3456 int ret;
e5ff2159 3457
457c1b27 3458 if (!hugepages_supported())
86613628 3459 return -EOPNOTSUPP;
457c1b27 3460
c033a93c 3461 tmp = h->nr_overcommit_huge_pages;
e5ff2159 3462
bae7f4ae 3463 if (write && hstate_is_gigantic(h))
adbe8726
EM
3464 return -EINVAL;
3465
17743798
MS
3466 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3467 &tmp);
08d4a246
MH
3468 if (ret)
3469 goto out;
e5ff2159
AK
3470
3471 if (write) {
3472 spin_lock(&hugetlb_lock);
3473 h->nr_overcommit_huge_pages = tmp;
3474 spin_unlock(&hugetlb_lock);
3475 }
08d4a246
MH
3476out:
3477 return ret;
a3d0c6aa
NA
3478}
3479
1da177e4
LT
3480#endif /* CONFIG_SYSCTL */
3481
e1759c21 3482void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 3483{
fcb2b0c5
RG
3484 struct hstate *h;
3485 unsigned long total = 0;
3486
457c1b27
NA
3487 if (!hugepages_supported())
3488 return;
fcb2b0c5
RG
3489
3490 for_each_hstate(h) {
3491 unsigned long count = h->nr_huge_pages;
3492
aca78307 3493 total += huge_page_size(h) * count;
fcb2b0c5
RG
3494
3495 if (h == &default_hstate)
3496 seq_printf(m,
3497 "HugePages_Total: %5lu\n"
3498 "HugePages_Free: %5lu\n"
3499 "HugePages_Rsvd: %5lu\n"
3500 "HugePages_Surp: %5lu\n"
3501 "Hugepagesize: %8lu kB\n",
3502 count,
3503 h->free_huge_pages,
3504 h->resv_huge_pages,
3505 h->surplus_huge_pages,
aca78307 3506 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
3507 }
3508
aca78307 3509 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
3510}
3511
7981593b 3512int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 3513{
a5516438 3514 struct hstate *h = &default_hstate;
7981593b 3515
457c1b27
NA
3516 if (!hugepages_supported())
3517 return 0;
7981593b
JP
3518
3519 return sysfs_emit_at(buf, len,
3520 "Node %d HugePages_Total: %5u\n"
3521 "Node %d HugePages_Free: %5u\n"
3522 "Node %d HugePages_Surp: %5u\n",
3523 nid, h->nr_huge_pages_node[nid],
3524 nid, h->free_huge_pages_node[nid],
3525 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3526}
3527
949f7ec5
DR
3528void hugetlb_show_meminfo(void)
3529{
3530 struct hstate *h;
3531 int nid;
3532
457c1b27
NA
3533 if (!hugepages_supported())
3534 return;
3535
949f7ec5
DR
3536 for_each_node_state(nid, N_MEMORY)
3537 for_each_hstate(h)
3538 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3539 nid,
3540 h->nr_huge_pages_node[nid],
3541 h->free_huge_pages_node[nid],
3542 h->surplus_huge_pages_node[nid],
aca78307 3543 huge_page_size(h) / SZ_1K);
949f7ec5
DR
3544}
3545
5d317b2b
NH
3546void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3547{
3548 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3549 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3550}
3551
1da177e4
LT
3552/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3553unsigned long hugetlb_total_pages(void)
3554{
d0028588
WL
3555 struct hstate *h;
3556 unsigned long nr_total_pages = 0;
3557
3558 for_each_hstate(h)
3559 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3560 return nr_total_pages;
1da177e4 3561}
1da177e4 3562
a5516438 3563static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3564{
3565 int ret = -ENOMEM;
3566
0aa7f354
ML
3567 if (!delta)
3568 return 0;
3569
fc1b8a73
MG
3570 spin_lock(&hugetlb_lock);
3571 /*
3572 * When cpuset is configured, it breaks the strict hugetlb page
3573 * reservation as the accounting is done on a global variable. Such
3574 * reservation is completely rubbish in the presence of cpuset because
3575 * the reservation is not checked against page availability for the
3576 * current cpuset. Application can still potentially OOM'ed by kernel
3577 * with lack of free htlb page in cpuset that the task is in.
3578 * Attempt to enforce strict accounting with cpuset is almost
3579 * impossible (or too ugly) because cpuset is too fluid that
3580 * task or memory node can be dynamically moved between cpusets.
3581 *
3582 * The change of semantics for shared hugetlb mapping with cpuset is
3583 * undesirable. However, in order to preserve some of the semantics,
3584 * we fall back to check against current free page availability as
3585 * a best attempt and hopefully to minimize the impact of changing
3586 * semantics that cpuset has.
8ca39e68
MS
3587 *
3588 * Apart from cpuset, we also have memory policy mechanism that
3589 * also determines from which node the kernel will allocate memory
3590 * in a NUMA system. So similar to cpuset, we also should consider
3591 * the memory policy of the current task. Similar to the description
3592 * above.
fc1b8a73
MG
3593 */
3594 if (delta > 0) {
a5516438 3595 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3596 goto out;
3597
8ca39e68 3598 if (delta > allowed_mems_nr(h)) {
a5516438 3599 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3600 goto out;
3601 }
3602 }
3603
3604 ret = 0;
3605 if (delta < 0)
a5516438 3606 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3607
3608out:
3609 spin_unlock(&hugetlb_lock);
3610 return ret;
3611}
3612
84afd99b
AW
3613static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3614{
f522c3ac 3615 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3616
3617 /*
3618 * This new VMA should share its siblings reservation map if present.
3619 * The VMA will only ever have a valid reservation map pointer where
3620 * it is being copied for another still existing VMA. As that VMA
25985edc 3621 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3622 * after this open call completes. It is therefore safe to take a
3623 * new reference here without additional locking.
3624 */
4e35f483 3625 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3626 kref_get(&resv->refs);
84afd99b
AW
3627}
3628
a1e78772
MG
3629static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3630{
a5516438 3631 struct hstate *h = hstate_vma(vma);
f522c3ac 3632 struct resv_map *resv = vma_resv_map(vma);
90481622 3633 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3634 unsigned long reserve, start, end;
1c5ecae3 3635 long gbl_reserve;
84afd99b 3636
4e35f483
JK
3637 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3638 return;
84afd99b 3639
4e35f483
JK
3640 start = vma_hugecache_offset(h, vma, vma->vm_start);
3641 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3642
4e35f483 3643 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 3644 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 3645 if (reserve) {
1c5ecae3
MK
3646 /*
3647 * Decrement reserve counts. The global reserve count may be
3648 * adjusted if the subpool has a minimum size.
3649 */
3650 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3651 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3652 }
e9fe92ae
MA
3653
3654 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
3655}
3656
31383c68
DW
3657static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3658{
3659 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3660 return -EINVAL;
3661 return 0;
3662}
3663
05ea8860
DW
3664static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3665{
aca78307 3666 return huge_page_size(hstate_vma(vma));
05ea8860
DW
3667}
3668
1da177e4
LT
3669/*
3670 * We cannot handle pagefaults against hugetlb pages at all. They cause
3671 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 3672 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
3673 * this far.
3674 */
b3ec9f33 3675static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3676{
3677 BUG();
d0217ac0 3678 return 0;
1da177e4
LT
3679}
3680
eec3636a
JC
3681/*
3682 * When a new function is introduced to vm_operations_struct and added
3683 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3684 * This is because under System V memory model, mappings created via
3685 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3686 * their original vm_ops are overwritten with shm_vm_ops.
3687 */
f0f37e2f 3688const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3689 .fault = hugetlb_vm_op_fault,
84afd99b 3690 .open = hugetlb_vm_op_open,
a1e78772 3691 .close = hugetlb_vm_op_close,
dd3b614f 3692 .may_split = hugetlb_vm_op_split,
05ea8860 3693 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
3694};
3695
1e8f889b
DG
3696static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3697 int writable)
63551ae0
DG
3698{
3699 pte_t entry;
3700
1e8f889b 3701 if (writable) {
106c992a
GS
3702 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3703 vma->vm_page_prot)));
63551ae0 3704 } else {
106c992a
GS
3705 entry = huge_pte_wrprotect(mk_huge_pte(page,
3706 vma->vm_page_prot));
63551ae0
DG
3707 }
3708 entry = pte_mkyoung(entry);
3709 entry = pte_mkhuge(entry);
d9ed9faa 3710 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3711
3712 return entry;
3713}
3714
1e8f889b
DG
3715static void set_huge_ptep_writable(struct vm_area_struct *vma,
3716 unsigned long address, pte_t *ptep)
3717{
3718 pte_t entry;
3719
106c992a 3720 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3721 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3722 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3723}
3724
d5ed7444 3725bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3726{
3727 swp_entry_t swp;
3728
3729 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3730 return false;
4a705fef 3731 swp = pte_to_swp_entry(pte);
d79d176a 3732 if (is_migration_entry(swp))
d5ed7444 3733 return true;
4a705fef 3734 else
d5ed7444 3735 return false;
4a705fef
NH
3736}
3737
3e5c3600 3738static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
3739{
3740 swp_entry_t swp;
3741
3742 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 3743 return false;
4a705fef 3744 swp = pte_to_swp_entry(pte);
d79d176a 3745 if (is_hwpoison_entry(swp))
3e5c3600 3746 return true;
4a705fef 3747 else
3e5c3600 3748 return false;
4a705fef 3749}
1e8f889b 3750
4eae4efa
PX
3751static void
3752hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3753 struct page *new_page)
3754{
3755 __SetPageUptodate(new_page);
3756 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3757 hugepage_add_new_anon_rmap(new_page, vma, addr);
3758 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3759 ClearHPageRestoreReserve(new_page);
3760 SetHPageMigratable(new_page);
3761}
3762
63551ae0
DG
3763int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3764 struct vm_area_struct *vma)
3765{
5e41540c 3766 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3767 struct page *ptepage;
1c59827d 3768 unsigned long addr;
ca6eb14d 3769 bool cow = is_cow_mapping(vma->vm_flags);
a5516438
AK
3770 struct hstate *h = hstate_vma(vma);
3771 unsigned long sz = huge_page_size(h);
4eae4efa 3772 unsigned long npages = pages_per_huge_page(h);
c0d0381a 3773 struct address_space *mapping = vma->vm_file->f_mapping;
ac46d4f3 3774 struct mmu_notifier_range range;
e8569dd2 3775 int ret = 0;
1e8f889b 3776
ac46d4f3 3777 if (cow) {
7269f999 3778 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
6f4f13e8 3779 vma->vm_start,
ac46d4f3
JG
3780 vma->vm_end);
3781 mmu_notifier_invalidate_range_start(&range);
c0d0381a
MK
3782 } else {
3783 /*
3784 * For shared mappings i_mmap_rwsem must be held to call
3785 * huge_pte_alloc, otherwise the returned ptep could go
3786 * away if part of a shared pmd and another thread calls
3787 * huge_pmd_unshare.
3788 */
3789 i_mmap_lock_read(mapping);
ac46d4f3 3790 }
e8569dd2 3791
a5516438 3792 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3793 spinlock_t *src_ptl, *dst_ptl;
7868a208 3794 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3795 if (!src_pte)
3796 continue;
aec44e0f 3797 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
e8569dd2
AS
3798 if (!dst_pte) {
3799 ret = -ENOMEM;
3800 break;
3801 }
c5c99429 3802
5e41540c
MK
3803 /*
3804 * If the pagetables are shared don't copy or take references.
3805 * dst_pte == src_pte is the common case of src/dest sharing.
3806 *
3807 * However, src could have 'unshared' and dst shares with
3808 * another vma. If dst_pte !none, this implies sharing.
3809 * Check here before taking page table lock, and once again
3810 * after taking the lock below.
3811 */
3812 dst_entry = huge_ptep_get(dst_pte);
3813 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3814 continue;
3815
cb900f41
KS
3816 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3817 src_ptl = huge_pte_lockptr(h, src, src_pte);
3818 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3819 entry = huge_ptep_get(src_pte);
5e41540c 3820 dst_entry = huge_ptep_get(dst_pte);
4eae4efa 3821again:
5e41540c
MK
3822 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3823 /*
3824 * Skip if src entry none. Also, skip in the
3825 * unlikely case dst entry !none as this implies
3826 * sharing with another vma.
3827 */
4a705fef
NH
3828 ;
3829 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3830 is_hugetlb_entry_hwpoisoned(entry))) {
3831 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3832
3833 if (is_write_migration_entry(swp_entry) && cow) {
3834 /*
3835 * COW mappings require pages in both
3836 * parent and child to be set to read.
3837 */
3838 make_migration_entry_read(&swp_entry);
3839 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3840 set_huge_swap_pte_at(src, addr, src_pte,
3841 entry, sz);
4a705fef 3842 }
e5251fd4 3843 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3844 } else {
4eae4efa
PX
3845 entry = huge_ptep_get(src_pte);
3846 ptepage = pte_page(entry);
3847 get_page(ptepage);
3848
3849 /*
3850 * This is a rare case where we see pinned hugetlb
3851 * pages while they're prone to COW. We need to do the
3852 * COW earlier during fork.
3853 *
3854 * When pre-allocating the page or copying data, we
3855 * need to be without the pgtable locks since we could
3856 * sleep during the process.
3857 */
3858 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3859 pte_t src_pte_old = entry;
3860 struct page *new;
3861
3862 spin_unlock(src_ptl);
3863 spin_unlock(dst_ptl);
3864 /* Do not use reserve as it's private owned */
3865 new = alloc_huge_page(vma, addr, 1);
3866 if (IS_ERR(new)) {
3867 put_page(ptepage);
3868 ret = PTR_ERR(new);
3869 break;
3870 }
3871 copy_user_huge_page(new, ptepage, addr, vma,
3872 npages);
3873 put_page(ptepage);
3874
3875 /* Install the new huge page if src pte stable */
3876 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3877 src_ptl = huge_pte_lockptr(h, src, src_pte);
3878 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3879 entry = huge_ptep_get(src_pte);
3880 if (!pte_same(src_pte_old, entry)) {
3881 put_page(new);
3882 /* dst_entry won't change as in child */
3883 goto again;
3884 }
3885 hugetlb_install_page(vma, dst_pte, addr, new);
3886 spin_unlock(src_ptl);
3887 spin_unlock(dst_ptl);
3888 continue;
3889 }
3890
34ee645e 3891 if (cow) {
0f10851e
JG
3892 /*
3893 * No need to notify as we are downgrading page
3894 * table protection not changing it to point
3895 * to a new page.
3896 *
ad56b738 3897 * See Documentation/vm/mmu_notifier.rst
0f10851e 3898 */
7f2e9525 3899 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3900 }
4eae4efa 3901
53f9263b 3902 page_dup_rmap(ptepage, true);
1c59827d 3903 set_huge_pte_at(dst, addr, dst_pte, entry);
4eae4efa 3904 hugetlb_count_add(npages, dst);
1c59827d 3905 }
cb900f41
KS
3906 spin_unlock(src_ptl);
3907 spin_unlock(dst_ptl);
63551ae0 3908 }
63551ae0 3909
e8569dd2 3910 if (cow)
ac46d4f3 3911 mmu_notifier_invalidate_range_end(&range);
c0d0381a
MK
3912 else
3913 i_mmap_unlock_read(mapping);
e8569dd2
AS
3914
3915 return ret;
63551ae0
DG
3916}
3917
24669e58
AK
3918void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3919 unsigned long start, unsigned long end,
3920 struct page *ref_page)
63551ae0
DG
3921{
3922 struct mm_struct *mm = vma->vm_mm;
3923 unsigned long address;
c7546f8f 3924 pte_t *ptep;
63551ae0 3925 pte_t pte;
cb900f41 3926 spinlock_t *ptl;
63551ae0 3927 struct page *page;
a5516438
AK
3928 struct hstate *h = hstate_vma(vma);
3929 unsigned long sz = huge_page_size(h);
ac46d4f3 3930 struct mmu_notifier_range range;
a5516438 3931
63551ae0 3932 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3933 BUG_ON(start & ~huge_page_mask(h));
3934 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3935
07e32661
AK
3936 /*
3937 * This is a hugetlb vma, all the pte entries should point
3938 * to huge page.
3939 */
ed6a7935 3940 tlb_change_page_size(tlb, sz);
24669e58 3941 tlb_start_vma(tlb, vma);
dff11abe
MK
3942
3943 /*
3944 * If sharing possible, alert mmu notifiers of worst case.
3945 */
6f4f13e8
JG
3946 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3947 end);
ac46d4f3
JG
3948 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3949 mmu_notifier_invalidate_range_start(&range);
569f48b8 3950 address = start;
569f48b8 3951 for (; address < end; address += sz) {
7868a208 3952 ptep = huge_pte_offset(mm, address, sz);
4c887265 3953 if (!ptep)
c7546f8f
DG
3954 continue;
3955
cb900f41 3956 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 3957 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
31d49da5 3958 spin_unlock(ptl);
dff11abe
MK
3959 /*
3960 * We just unmapped a page of PMDs by clearing a PUD.
3961 * The caller's TLB flush range should cover this area.
3962 */
31d49da5
AK
3963 continue;
3964 }
39dde65c 3965
6629326b 3966 pte = huge_ptep_get(ptep);
31d49da5
AK
3967 if (huge_pte_none(pte)) {
3968 spin_unlock(ptl);
3969 continue;
3970 }
6629326b
HD
3971
3972 /*
9fbc1f63
NH
3973 * Migrating hugepage or HWPoisoned hugepage is already
3974 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3975 */
9fbc1f63 3976 if (unlikely(!pte_present(pte))) {
9386fac3 3977 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3978 spin_unlock(ptl);
3979 continue;
8c4894c6 3980 }
6629326b
HD
3981
3982 page = pte_page(pte);
04f2cbe3
MG
3983 /*
3984 * If a reference page is supplied, it is because a specific
3985 * page is being unmapped, not a range. Ensure the page we
3986 * are about to unmap is the actual page of interest.
3987 */
3988 if (ref_page) {
31d49da5
AK
3989 if (page != ref_page) {
3990 spin_unlock(ptl);
3991 continue;
3992 }
04f2cbe3
MG
3993 /*
3994 * Mark the VMA as having unmapped its page so that
3995 * future faults in this VMA will fail rather than
3996 * looking like data was lost
3997 */
3998 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3999 }
4000
c7546f8f 4001 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 4002 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 4003 if (huge_pte_dirty(pte))
6649a386 4004 set_page_dirty(page);
9e81130b 4005
5d317b2b 4006 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 4007 page_remove_rmap(page, true);
31d49da5 4008
cb900f41 4009 spin_unlock(ptl);
e77b0852 4010 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
4011 /*
4012 * Bail out after unmapping reference page if supplied
4013 */
4014 if (ref_page)
4015 break;
fe1668ae 4016 }
ac46d4f3 4017 mmu_notifier_invalidate_range_end(&range);
24669e58 4018 tlb_end_vma(tlb, vma);
1da177e4 4019}
63551ae0 4020
d833352a
MG
4021void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4022 struct vm_area_struct *vma, unsigned long start,
4023 unsigned long end, struct page *ref_page)
4024{
4025 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4026
4027 /*
4028 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4029 * test will fail on a vma being torn down, and not grab a page table
4030 * on its way out. We're lucky that the flag has such an appropriate
4031 * name, and can in fact be safely cleared here. We could clear it
4032 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 4033 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 4034 * because in the context this is called, the VMA is about to be
c8c06efa 4035 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
4036 */
4037 vma->vm_flags &= ~VM_MAYSHARE;
4038}
4039
502717f4 4040void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 4041 unsigned long end, struct page *ref_page)
502717f4 4042{
24669e58 4043 struct mmu_gather tlb;
dff11abe 4044
a72afd87 4045 tlb_gather_mmu(&tlb, vma->vm_mm);
24669e58 4046 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
ae8eba8b 4047 tlb_finish_mmu(&tlb);
502717f4
KC
4048}
4049
04f2cbe3
MG
4050/*
4051 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 4052 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
4053 * from other VMAs and let the children be SIGKILLed if they are faulting the
4054 * same region.
4055 */
2f4612af
DB
4056static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4057 struct page *page, unsigned long address)
04f2cbe3 4058{
7526674d 4059 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
4060 struct vm_area_struct *iter_vma;
4061 struct address_space *mapping;
04f2cbe3
MG
4062 pgoff_t pgoff;
4063
4064 /*
4065 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4066 * from page cache lookup which is in HPAGE_SIZE units.
4067 */
7526674d 4068 address = address & huge_page_mask(h);
36e4f20a
MH
4069 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4070 vma->vm_pgoff;
93c76a3d 4071 mapping = vma->vm_file->f_mapping;
04f2cbe3 4072
4eb2b1dc
MG
4073 /*
4074 * Take the mapping lock for the duration of the table walk. As
4075 * this mapping should be shared between all the VMAs,
4076 * __unmap_hugepage_range() is called as the lock is already held
4077 */
83cde9e8 4078 i_mmap_lock_write(mapping);
6b2dbba8 4079 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
4080 /* Do not unmap the current VMA */
4081 if (iter_vma == vma)
4082 continue;
4083
2f84a899
MG
4084 /*
4085 * Shared VMAs have their own reserves and do not affect
4086 * MAP_PRIVATE accounting but it is possible that a shared
4087 * VMA is using the same page so check and skip such VMAs.
4088 */
4089 if (iter_vma->vm_flags & VM_MAYSHARE)
4090 continue;
4091
04f2cbe3
MG
4092 /*
4093 * Unmap the page from other VMAs without their own reserves.
4094 * They get marked to be SIGKILLed if they fault in these
4095 * areas. This is because a future no-page fault on this VMA
4096 * could insert a zeroed page instead of the data existing
4097 * from the time of fork. This would look like data corruption
4098 */
4099 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
4100 unmap_hugepage_range(iter_vma, address,
4101 address + huge_page_size(h), page);
04f2cbe3 4102 }
83cde9e8 4103 i_mmap_unlock_write(mapping);
04f2cbe3
MG
4104}
4105
0fe6e20b
NH
4106/*
4107 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
4108 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4109 * cannot race with other handlers or page migration.
4110 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 4111 */
2b740303 4112static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
974e6d66 4113 unsigned long address, pte_t *ptep,
3999f52e 4114 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 4115{
3999f52e 4116 pte_t pte;
a5516438 4117 struct hstate *h = hstate_vma(vma);
1e8f889b 4118 struct page *old_page, *new_page;
2b740303
SJ
4119 int outside_reserve = 0;
4120 vm_fault_t ret = 0;
974e6d66 4121 unsigned long haddr = address & huge_page_mask(h);
ac46d4f3 4122 struct mmu_notifier_range range;
1e8f889b 4123
3999f52e 4124 pte = huge_ptep_get(ptep);
1e8f889b
DG
4125 old_page = pte_page(pte);
4126
04f2cbe3 4127retry_avoidcopy:
1e8f889b
DG
4128 /* If no-one else is actually using this page, avoid the copy
4129 * and just make the page writable */
37a2140d 4130 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 4131 page_move_anon_rmap(old_page, vma);
5b7a1d40 4132 set_huge_ptep_writable(vma, haddr, ptep);
83c54070 4133 return 0;
1e8f889b
DG
4134 }
4135
04f2cbe3
MG
4136 /*
4137 * If the process that created a MAP_PRIVATE mapping is about to
4138 * perform a COW due to a shared page count, attempt to satisfy
4139 * the allocation without using the existing reserves. The pagecache
4140 * page is used to determine if the reserve at this address was
4141 * consumed or not. If reserves were used, a partial faulted mapping
4142 * at the time of fork() could consume its reserves on COW instead
4143 * of the full address range.
4144 */
5944d011 4145 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
4146 old_page != pagecache_page)
4147 outside_reserve = 1;
4148
09cbfeaf 4149 get_page(old_page);
b76c8cfb 4150
ad4404a2
DB
4151 /*
4152 * Drop page table lock as buddy allocator may be called. It will
4153 * be acquired again before returning to the caller, as expected.
4154 */
cb900f41 4155 spin_unlock(ptl);
5b7a1d40 4156 new_page = alloc_huge_page(vma, haddr, outside_reserve);
1e8f889b 4157
2fc39cec 4158 if (IS_ERR(new_page)) {
04f2cbe3
MG
4159 /*
4160 * If a process owning a MAP_PRIVATE mapping fails to COW,
4161 * it is due to references held by a child and an insufficient
4162 * huge page pool. To guarantee the original mappers
4163 * reliability, unmap the page from child processes. The child
4164 * may get SIGKILLed if it later faults.
4165 */
4166 if (outside_reserve) {
e7dd91c4
MK
4167 struct address_space *mapping = vma->vm_file->f_mapping;
4168 pgoff_t idx;
4169 u32 hash;
4170
09cbfeaf 4171 put_page(old_page);
04f2cbe3 4172 BUG_ON(huge_pte_none(pte));
e7dd91c4
MK
4173 /*
4174 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4175 * unmapping. unmapping needs to hold i_mmap_rwsem
4176 * in write mode. Dropping i_mmap_rwsem in read mode
4177 * here is OK as COW mappings do not interact with
4178 * PMD sharing.
4179 *
4180 * Reacquire both after unmap operation.
4181 */
4182 idx = vma_hugecache_offset(h, vma, haddr);
4183 hash = hugetlb_fault_mutex_hash(mapping, idx);
4184 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4185 i_mmap_unlock_read(mapping);
4186
5b7a1d40 4187 unmap_ref_private(mm, vma, old_page, haddr);
e7dd91c4
MK
4188
4189 i_mmap_lock_read(mapping);
4190 mutex_lock(&hugetlb_fault_mutex_table[hash]);
2f4612af 4191 spin_lock(ptl);
5b7a1d40 4192 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
2f4612af
DB
4193 if (likely(ptep &&
4194 pte_same(huge_ptep_get(ptep), pte)))
4195 goto retry_avoidcopy;
4196 /*
4197 * race occurs while re-acquiring page table
4198 * lock, and our job is done.
4199 */
4200 return 0;
04f2cbe3
MG
4201 }
4202
2b740303 4203 ret = vmf_error(PTR_ERR(new_page));
ad4404a2 4204 goto out_release_old;
1e8f889b
DG
4205 }
4206
0fe6e20b
NH
4207 /*
4208 * When the original hugepage is shared one, it does not have
4209 * anon_vma prepared.
4210 */
44e2aa93 4211 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
4212 ret = VM_FAULT_OOM;
4213 goto out_release_all;
44e2aa93 4214 }
0fe6e20b 4215
974e6d66 4216 copy_user_huge_page(new_page, old_page, address, vma,
47ad8475 4217 pages_per_huge_page(h));
0ed361de 4218 __SetPageUptodate(new_page);
1e8f889b 4219
7269f999 4220 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
6f4f13e8 4221 haddr + huge_page_size(h));
ac46d4f3 4222 mmu_notifier_invalidate_range_start(&range);
ad4404a2 4223
b76c8cfb 4224 /*
cb900f41 4225 * Retake the page table lock to check for racing updates
b76c8cfb
LW
4226 * before the page tables are altered
4227 */
cb900f41 4228 spin_lock(ptl);
5b7a1d40 4229 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
a9af0c5d 4230 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
d6995da3 4231 ClearHPageRestoreReserve(new_page);
07443a85 4232
1e8f889b 4233 /* Break COW */
5b7a1d40 4234 huge_ptep_clear_flush(vma, haddr, ptep);
ac46d4f3 4235 mmu_notifier_invalidate_range(mm, range.start, range.end);
5b7a1d40 4236 set_huge_pte_at(mm, haddr, ptep,
1e8f889b 4237 make_huge_pte(vma, new_page, 1));
d281ee61 4238 page_remove_rmap(old_page, true);
5b7a1d40 4239 hugepage_add_new_anon_rmap(new_page, vma, haddr);
8f251a3d 4240 SetHPageMigratable(new_page);
1e8f889b
DG
4241 /* Make the old page be freed below */
4242 new_page = old_page;
4243 }
cb900f41 4244 spin_unlock(ptl);
ac46d4f3 4245 mmu_notifier_invalidate_range_end(&range);
ad4404a2 4246out_release_all:
5b7a1d40 4247 restore_reserve_on_error(h, vma, haddr, new_page);
09cbfeaf 4248 put_page(new_page);
ad4404a2 4249out_release_old:
09cbfeaf 4250 put_page(old_page);
8312034f 4251
ad4404a2
DB
4252 spin_lock(ptl); /* Caller expects lock to be held */
4253 return ret;
1e8f889b
DG
4254}
4255
04f2cbe3 4256/* Return the pagecache page at a given address within a VMA */
a5516438
AK
4257static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4258 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
4259{
4260 struct address_space *mapping;
e7c4b0bf 4261 pgoff_t idx;
04f2cbe3
MG
4262
4263 mapping = vma->vm_file->f_mapping;
a5516438 4264 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
4265
4266 return find_lock_page(mapping, idx);
4267}
4268
3ae77f43
HD
4269/*
4270 * Return whether there is a pagecache page to back given address within VMA.
4271 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4272 */
4273static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
4274 struct vm_area_struct *vma, unsigned long address)
4275{
4276 struct address_space *mapping;
4277 pgoff_t idx;
4278 struct page *page;
4279
4280 mapping = vma->vm_file->f_mapping;
4281 idx = vma_hugecache_offset(h, vma, address);
4282
4283 page = find_get_page(mapping, idx);
4284 if (page)
4285 put_page(page);
4286 return page != NULL;
4287}
4288
ab76ad54
MK
4289int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4290 pgoff_t idx)
4291{
4292 struct inode *inode = mapping->host;
4293 struct hstate *h = hstate_inode(inode);
4294 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4295
4296 if (err)
4297 return err;
d6995da3 4298 ClearHPageRestoreReserve(page);
ab76ad54 4299
22146c3c
MK
4300 /*
4301 * set page dirty so that it will not be removed from cache/file
4302 * by non-hugetlbfs specific code paths.
4303 */
4304 set_page_dirty(page);
4305
ab76ad54
MK
4306 spin_lock(&inode->i_lock);
4307 inode->i_blocks += blocks_per_huge_page(h);
4308 spin_unlock(&inode->i_lock);
4309 return 0;
4310}
4311
2b740303
SJ
4312static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4313 struct vm_area_struct *vma,
4314 struct address_space *mapping, pgoff_t idx,
4315 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 4316{
a5516438 4317 struct hstate *h = hstate_vma(vma);
2b740303 4318 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 4319 int anon_rmap = 0;
4c887265 4320 unsigned long size;
4c887265 4321 struct page *page;
1e8f889b 4322 pte_t new_pte;
cb900f41 4323 spinlock_t *ptl;
285b8dca 4324 unsigned long haddr = address & huge_page_mask(h);
cb6acd01 4325 bool new_page = false;
4c887265 4326
04f2cbe3
MG
4327 /*
4328 * Currently, we are forced to kill the process in the event the
4329 * original mapper has unmapped pages from the child due to a failed
25985edc 4330 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
4331 */
4332 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 4333 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 4334 current->pid);
04f2cbe3
MG
4335 return ret;
4336 }
4337
4c887265 4338 /*
87bf91d3
MK
4339 * We can not race with truncation due to holding i_mmap_rwsem.
4340 * i_size is modified when holding i_mmap_rwsem, so check here
4341 * once for faults beyond end of file.
4c887265 4342 */
87bf91d3
MK
4343 size = i_size_read(mapping->host) >> huge_page_shift(h);
4344 if (idx >= size)
4345 goto out;
4346
6bda666a
CL
4347retry:
4348 page = find_lock_page(mapping, idx);
4349 if (!page) {
1a1aad8a
MK
4350 /*
4351 * Check for page in userfault range
4352 */
4353 if (userfaultfd_missing(vma)) {
4354 u32 hash;
4355 struct vm_fault vmf = {
4356 .vma = vma,
285b8dca 4357 .address = haddr,
1a1aad8a
MK
4358 .flags = flags,
4359 /*
4360 * Hard to debug if it ends up being
4361 * used by a callee that assumes
4362 * something about the other
4363 * uninitialized fields... same as in
4364 * memory.c
4365 */
4366 };
4367
4368 /*
c0d0381a
MK
4369 * hugetlb_fault_mutex and i_mmap_rwsem must be
4370 * dropped before handling userfault. Reacquire
4371 * after handling fault to make calling code simpler.
1a1aad8a 4372 */
188b04a7 4373 hash = hugetlb_fault_mutex_hash(mapping, idx);
1a1aad8a 4374 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4375 i_mmap_unlock_read(mapping);
1a1aad8a 4376 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
c0d0381a 4377 i_mmap_lock_read(mapping);
1a1aad8a
MK
4378 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4379 goto out;
4380 }
4381
285b8dca 4382 page = alloc_huge_page(vma, haddr, 0);
2fc39cec 4383 if (IS_ERR(page)) {
4643d67e
MK
4384 /*
4385 * Returning error will result in faulting task being
4386 * sent SIGBUS. The hugetlb fault mutex prevents two
4387 * tasks from racing to fault in the same page which
4388 * could result in false unable to allocate errors.
4389 * Page migration does not take the fault mutex, but
4390 * does a clear then write of pte's under page table
4391 * lock. Page fault code could race with migration,
4392 * notice the clear pte and try to allocate a page
4393 * here. Before returning error, get ptl and make
4394 * sure there really is no pte entry.
4395 */
4396 ptl = huge_pte_lock(h, mm, ptep);
d83e6c8a
ML
4397 ret = 0;
4398 if (huge_pte_none(huge_ptep_get(ptep)))
4399 ret = vmf_error(PTR_ERR(page));
4643d67e 4400 spin_unlock(ptl);
6bda666a
CL
4401 goto out;
4402 }
47ad8475 4403 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 4404 __SetPageUptodate(page);
cb6acd01 4405 new_page = true;
ac9b9c66 4406
f83a275d 4407 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 4408 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
4409 if (err) {
4410 put_page(page);
6bda666a
CL
4411 if (err == -EEXIST)
4412 goto retry;
4413 goto out;
4414 }
23be7468 4415 } else {
6bda666a 4416 lock_page(page);
0fe6e20b
NH
4417 if (unlikely(anon_vma_prepare(vma))) {
4418 ret = VM_FAULT_OOM;
4419 goto backout_unlocked;
4420 }
409eb8c2 4421 anon_rmap = 1;
23be7468 4422 }
0fe6e20b 4423 } else {
998b4382
NH
4424 /*
4425 * If memory error occurs between mmap() and fault, some process
4426 * don't have hwpoisoned swap entry for errored virtual address.
4427 * So we need to block hugepage fault by PG_hwpoison bit check.
4428 */
4429 if (unlikely(PageHWPoison(page))) {
0eb98f15 4430 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 4431 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
4432 goto backout_unlocked;
4433 }
6bda666a 4434 }
1e8f889b 4435
57303d80
AW
4436 /*
4437 * If we are going to COW a private mapping later, we examine the
4438 * pending reservations for this page now. This will ensure that
4439 * any allocations necessary to record that reservation occur outside
4440 * the spinlock.
4441 */
5e911373 4442 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
285b8dca 4443 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c
AW
4444 ret = VM_FAULT_OOM;
4445 goto backout_unlocked;
4446 }
5e911373 4447 /* Just decrements count, does not deallocate */
285b8dca 4448 vma_end_reservation(h, vma, haddr);
5e911373 4449 }
57303d80 4450
8bea8052 4451 ptl = huge_pte_lock(h, mm, ptep);
83c54070 4452 ret = 0;
7f2e9525 4453 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
4454 goto backout;
4455
07443a85 4456 if (anon_rmap) {
d6995da3 4457 ClearHPageRestoreReserve(page);
285b8dca 4458 hugepage_add_new_anon_rmap(page, vma, haddr);
ac714904 4459 } else
53f9263b 4460 page_dup_rmap(page, true);
1e8f889b
DG
4461 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4462 && (vma->vm_flags & VM_SHARED)));
285b8dca 4463 set_huge_pte_at(mm, haddr, ptep, new_pte);
1e8f889b 4464
5d317b2b 4465 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 4466 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 4467 /* Optimization, do the COW without a second fault */
974e6d66 4468 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
4469 }
4470
cb900f41 4471 spin_unlock(ptl);
cb6acd01
MK
4472
4473 /*
8f251a3d
MK
4474 * Only set HPageMigratable in newly allocated pages. Existing pages
4475 * found in the pagecache may not have HPageMigratableset if they have
4476 * been isolated for migration.
cb6acd01
MK
4477 */
4478 if (new_page)
8f251a3d 4479 SetHPageMigratable(page);
cb6acd01 4480
4c887265
AL
4481 unlock_page(page);
4482out:
ac9b9c66 4483 return ret;
4c887265
AL
4484
4485backout:
cb900f41 4486 spin_unlock(ptl);
2b26736c 4487backout_unlocked:
4c887265 4488 unlock_page(page);
285b8dca 4489 restore_reserve_on_error(h, vma, haddr, page);
4c887265
AL
4490 put_page(page);
4491 goto out;
ac9b9c66
HD
4492}
4493
8382d914 4494#ifdef CONFIG_SMP
188b04a7 4495u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4496{
4497 unsigned long key[2];
4498 u32 hash;
4499
1b426bac
MK
4500 key[0] = (unsigned long) mapping;
4501 key[1] = idx;
8382d914 4502
55254636 4503 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
4504
4505 return hash & (num_fault_mutexes - 1);
4506}
4507#else
4508/*
6c26d310 4509 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
4510 * return 0 and avoid the hashing overhead.
4511 */
188b04a7 4512u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
4513{
4514 return 0;
4515}
4516#endif
4517
2b740303 4518vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 4519 unsigned long address, unsigned int flags)
86e5216f 4520{
8382d914 4521 pte_t *ptep, entry;
cb900f41 4522 spinlock_t *ptl;
2b740303 4523 vm_fault_t ret;
8382d914
DB
4524 u32 hash;
4525 pgoff_t idx;
0fe6e20b 4526 struct page *page = NULL;
57303d80 4527 struct page *pagecache_page = NULL;
a5516438 4528 struct hstate *h = hstate_vma(vma);
8382d914 4529 struct address_space *mapping;
0f792cf9 4530 int need_wait_lock = 0;
285b8dca 4531 unsigned long haddr = address & huge_page_mask(h);
86e5216f 4532
285b8dca 4533 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
fd6a03ed 4534 if (ptep) {
c0d0381a
MK
4535 /*
4536 * Since we hold no locks, ptep could be stale. That is
4537 * OK as we are only making decisions based on content and
4538 * not actually modifying content here.
4539 */
fd6a03ed 4540 entry = huge_ptep_get(ptep);
290408d4 4541 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 4542 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
4543 return 0;
4544 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 4545 return VM_FAULT_HWPOISON_LARGE |
972dc4de 4546 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
4547 }
4548
c0d0381a
MK
4549 /*
4550 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
87bf91d3
MK
4551 * until finished with ptep. This serves two purposes:
4552 * 1) It prevents huge_pmd_unshare from being called elsewhere
4553 * and making the ptep no longer valid.
4554 * 2) It synchronizes us with i_size modifications during truncation.
c0d0381a
MK
4555 *
4556 * ptep could have already be assigned via huge_pte_offset. That
4557 * is OK, as huge_pte_alloc will return the same value unless
4558 * something has changed.
4559 */
8382d914 4560 mapping = vma->vm_file->f_mapping;
c0d0381a 4561 i_mmap_lock_read(mapping);
aec44e0f 4562 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
c0d0381a
MK
4563 if (!ptep) {
4564 i_mmap_unlock_read(mapping);
4565 return VM_FAULT_OOM;
4566 }
8382d914 4567
3935baa9
DG
4568 /*
4569 * Serialize hugepage allocation and instantiation, so that we don't
4570 * get spurious allocation failures if two CPUs race to instantiate
4571 * the same page in the page cache.
4572 */
c0d0381a 4573 idx = vma_hugecache_offset(h, vma, haddr);
188b04a7 4574 hash = hugetlb_fault_mutex_hash(mapping, idx);
c672c7f2 4575 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 4576
7f2e9525
GS
4577 entry = huge_ptep_get(ptep);
4578 if (huge_pte_none(entry)) {
8382d914 4579 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 4580 goto out_mutex;
3935baa9 4581 }
86e5216f 4582
83c54070 4583 ret = 0;
1e8f889b 4584
0f792cf9
NH
4585 /*
4586 * entry could be a migration/hwpoison entry at this point, so this
4587 * check prevents the kernel from going below assuming that we have
7c8de358
EP
4588 * an active hugepage in pagecache. This goto expects the 2nd page
4589 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4590 * properly handle it.
0f792cf9
NH
4591 */
4592 if (!pte_present(entry))
4593 goto out_mutex;
4594
57303d80
AW
4595 /*
4596 * If we are going to COW the mapping later, we examine the pending
4597 * reservations for this page now. This will ensure that any
4598 * allocations necessary to record that reservation occur outside the
4599 * spinlock. For private mappings, we also lookup the pagecache
4600 * page now as it is used to determine if a reservation has been
4601 * consumed.
4602 */
106c992a 4603 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
285b8dca 4604 if (vma_needs_reservation(h, vma, haddr) < 0) {
2b26736c 4605 ret = VM_FAULT_OOM;
b4d1d99f 4606 goto out_mutex;
2b26736c 4607 }
5e911373 4608 /* Just decrements count, does not deallocate */
285b8dca 4609 vma_end_reservation(h, vma, haddr);
57303d80 4610
f83a275d 4611 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80 4612 pagecache_page = hugetlbfs_pagecache_page(h,
285b8dca 4613 vma, haddr);
57303d80
AW
4614 }
4615
0f792cf9
NH
4616 ptl = huge_pte_lock(h, mm, ptep);
4617
4618 /* Check for a racing update before calling hugetlb_cow */
4619 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4620 goto out_ptl;
4621
56c9cfb1
NH
4622 /*
4623 * hugetlb_cow() requires page locks of pte_page(entry) and
4624 * pagecache_page, so here we need take the former one
4625 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
4626 */
4627 page = pte_page(entry);
4628 if (page != pagecache_page)
0f792cf9
NH
4629 if (!trylock_page(page)) {
4630 need_wait_lock = 1;
4631 goto out_ptl;
4632 }
b4d1d99f 4633
0f792cf9 4634 get_page(page);
b4d1d99f 4635
788c7df4 4636 if (flags & FAULT_FLAG_WRITE) {
106c992a 4637 if (!huge_pte_write(entry)) {
974e6d66 4638 ret = hugetlb_cow(mm, vma, address, ptep,
3999f52e 4639 pagecache_page, ptl);
0f792cf9 4640 goto out_put_page;
b4d1d99f 4641 }
106c992a 4642 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
4643 }
4644 entry = pte_mkyoung(entry);
285b8dca 4645 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
788c7df4 4646 flags & FAULT_FLAG_WRITE))
285b8dca 4647 update_mmu_cache(vma, haddr, ptep);
0f792cf9
NH
4648out_put_page:
4649 if (page != pagecache_page)
4650 unlock_page(page);
4651 put_page(page);
cb900f41
KS
4652out_ptl:
4653 spin_unlock(ptl);
57303d80
AW
4654
4655 if (pagecache_page) {
4656 unlock_page(pagecache_page);
4657 put_page(pagecache_page);
4658 }
b4d1d99f 4659out_mutex:
c672c7f2 4660 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
c0d0381a 4661 i_mmap_unlock_read(mapping);
0f792cf9
NH
4662 /*
4663 * Generally it's safe to hold refcount during waiting page lock. But
4664 * here we just wait to defer the next page fault to avoid busy loop and
4665 * the page is not used after unlocked before returning from the current
4666 * page fault. So we are safe from accessing freed page, even if we wait
4667 * here without taking refcount.
4668 */
4669 if (need_wait_lock)
4670 wait_on_page_locked(page);
1e8f889b 4671 return ret;
86e5216f
AL
4672}
4673
8fb5debc
MK
4674/*
4675 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4676 * modifications for huge pages.
4677 */
4678int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4679 pte_t *dst_pte,
4680 struct vm_area_struct *dst_vma,
4681 unsigned long dst_addr,
4682 unsigned long src_addr,
4683 struct page **pagep)
4684{
1e392147
AA
4685 struct address_space *mapping;
4686 pgoff_t idx;
4687 unsigned long size;
1c9e8def 4688 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4689 struct hstate *h = hstate_vma(dst_vma);
4690 pte_t _dst_pte;
4691 spinlock_t *ptl;
4692 int ret;
4693 struct page *page;
4694
4695 if (!*pagep) {
4696 ret = -ENOMEM;
4697 page = alloc_huge_page(dst_vma, dst_addr, 0);
4698 if (IS_ERR(page))
4699 goto out;
4700
4701 ret = copy_huge_page_from_user(page,
4702 (const void __user *) src_addr,
810a56b9 4703 pages_per_huge_page(h), false);
8fb5debc 4704
c1e8d7c6 4705 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 4706 if (unlikely(ret)) {
9e368259 4707 ret = -ENOENT;
8fb5debc
MK
4708 *pagep = page;
4709 /* don't free the page */
4710 goto out;
4711 }
4712 } else {
4713 page = *pagep;
4714 *pagep = NULL;
4715 }
4716
4717 /*
4718 * The memory barrier inside __SetPageUptodate makes sure that
4719 * preceding stores to the page contents become visible before
4720 * the set_pte_at() write.
4721 */
4722 __SetPageUptodate(page);
8fb5debc 4723
1e392147
AA
4724 mapping = dst_vma->vm_file->f_mapping;
4725 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4726
1c9e8def
MK
4727 /*
4728 * If shared, add to page cache
4729 */
4730 if (vm_shared) {
1e392147
AA
4731 size = i_size_read(mapping->host) >> huge_page_shift(h);
4732 ret = -EFAULT;
4733 if (idx >= size)
4734 goto out_release_nounlock;
1c9e8def 4735
1e392147
AA
4736 /*
4737 * Serialization between remove_inode_hugepages() and
4738 * huge_add_to_page_cache() below happens through the
4739 * hugetlb_fault_mutex_table that here must be hold by
4740 * the caller.
4741 */
1c9e8def
MK
4742 ret = huge_add_to_page_cache(page, mapping, idx);
4743 if (ret)
4744 goto out_release_nounlock;
4745 }
4746
8fb5debc
MK
4747 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4748 spin_lock(ptl);
4749
1e392147
AA
4750 /*
4751 * Recheck the i_size after holding PT lock to make sure not
4752 * to leave any page mapped (as page_mapped()) beyond the end
4753 * of the i_size (remove_inode_hugepages() is strict about
4754 * enforcing that). If we bail out here, we'll also leave a
4755 * page in the radix tree in the vm_shared case beyond the end
4756 * of the i_size, but remove_inode_hugepages() will take care
4757 * of it as soon as we drop the hugetlb_fault_mutex_table.
4758 */
4759 size = i_size_read(mapping->host) >> huge_page_shift(h);
4760 ret = -EFAULT;
4761 if (idx >= size)
4762 goto out_release_unlock;
4763
8fb5debc
MK
4764 ret = -EEXIST;
4765 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4766 goto out_release_unlock;
4767
1c9e8def
MK
4768 if (vm_shared) {
4769 page_dup_rmap(page, true);
4770 } else {
d6995da3 4771 ClearHPageRestoreReserve(page);
1c9e8def
MK
4772 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4773 }
8fb5debc
MK
4774
4775 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4776 if (dst_vma->vm_flags & VM_WRITE)
4777 _dst_pte = huge_pte_mkdirty(_dst_pte);
4778 _dst_pte = pte_mkyoung(_dst_pte);
4779
4780 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4781
4782 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4783 dst_vma->vm_flags & VM_WRITE);
4784 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4785
4786 /* No need to invalidate - it was non-present before */
4787 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4788
4789 spin_unlock(ptl);
8f251a3d 4790 SetHPageMigratable(page);
1c9e8def
MK
4791 if (vm_shared)
4792 unlock_page(page);
8fb5debc
MK
4793 ret = 0;
4794out:
4795 return ret;
4796out_release_unlock:
4797 spin_unlock(ptl);
1c9e8def
MK
4798 if (vm_shared)
4799 unlock_page(page);
5af10dfd 4800out_release_nounlock:
8fb5debc
MK
4801 put_page(page);
4802 goto out;
4803}
4804
82e5d378
JM
4805static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4806 int refs, struct page **pages,
4807 struct vm_area_struct **vmas)
4808{
4809 int nr;
4810
4811 for (nr = 0; nr < refs; nr++) {
4812 if (likely(pages))
4813 pages[nr] = mem_map_offset(page, nr);
4814 if (vmas)
4815 vmas[nr] = vma;
4816 }
4817}
4818
28a35716
ML
4819long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4820 struct page **pages, struct vm_area_struct **vmas,
4821 unsigned long *position, unsigned long *nr_pages,
4f6da934 4822 long i, unsigned int flags, int *locked)
63551ae0 4823{
d5d4b0aa
KC
4824 unsigned long pfn_offset;
4825 unsigned long vaddr = *position;
28a35716 4826 unsigned long remainder = *nr_pages;
a5516438 4827 struct hstate *h = hstate_vma(vma);
0fa5bc40 4828 int err = -EFAULT, refs;
63551ae0 4829
63551ae0 4830 while (vaddr < vma->vm_end && remainder) {
4c887265 4831 pte_t *pte;
cb900f41 4832 spinlock_t *ptl = NULL;
2a15efc9 4833 int absent;
4c887265 4834 struct page *page;
63551ae0 4835
02057967
DR
4836 /*
4837 * If we have a pending SIGKILL, don't keep faulting pages and
4838 * potentially allocating memory.
4839 */
fa45f116 4840 if (fatal_signal_pending(current)) {
02057967
DR
4841 remainder = 0;
4842 break;
4843 }
4844
4c887265
AL
4845 /*
4846 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4847 * each hugepage. We have to make sure we get the
4c887265 4848 * first, for the page indexing below to work.
cb900f41
KS
4849 *
4850 * Note that page table lock is not held when pte is null.
4c887265 4851 */
7868a208
PA
4852 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4853 huge_page_size(h));
cb900f41
KS
4854 if (pte)
4855 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4856 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4857
4858 /*
4859 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4860 * an error where there's an empty slot with no huge pagecache
4861 * to back it. This way, we avoid allocating a hugepage, and
4862 * the sparse dumpfile avoids allocating disk blocks, but its
4863 * huge holes still show up with zeroes where they need to be.
2a15efc9 4864 */
3ae77f43
HD
4865 if (absent && (flags & FOLL_DUMP) &&
4866 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4867 if (pte)
4868 spin_unlock(ptl);
2a15efc9
HD
4869 remainder = 0;
4870 break;
4871 }
63551ae0 4872
9cc3a5bd
NH
4873 /*
4874 * We need call hugetlb_fault for both hugepages under migration
4875 * (in which case hugetlb_fault waits for the migration,) and
4876 * hwpoisoned hugepages (in which case we need to prevent the
4877 * caller from accessing to them.) In order to do this, we use
4878 * here is_swap_pte instead of is_hugetlb_entry_migration and
4879 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4880 * both cases, and because we can't follow correct pages
4881 * directly from any kind of swap entries.
4882 */
4883 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4884 ((flags & FOLL_WRITE) &&
4885 !huge_pte_write(huge_ptep_get(pte)))) {
2b740303 4886 vm_fault_t ret;
87ffc118 4887 unsigned int fault_flags = 0;
63551ae0 4888
cb900f41
KS
4889 if (pte)
4890 spin_unlock(ptl);
87ffc118
AA
4891 if (flags & FOLL_WRITE)
4892 fault_flags |= FAULT_FLAG_WRITE;
4f6da934 4893 if (locked)
71335f37
PX
4894 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4895 FAULT_FLAG_KILLABLE;
87ffc118
AA
4896 if (flags & FOLL_NOWAIT)
4897 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4898 FAULT_FLAG_RETRY_NOWAIT;
4899 if (flags & FOLL_TRIED) {
4426e945
PX
4900 /*
4901 * Note: FAULT_FLAG_ALLOW_RETRY and
4902 * FAULT_FLAG_TRIED can co-exist
4903 */
87ffc118
AA
4904 fault_flags |= FAULT_FLAG_TRIED;
4905 }
4906 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4907 if (ret & VM_FAULT_ERROR) {
2be7cfed 4908 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4909 remainder = 0;
4910 break;
4911 }
4912 if (ret & VM_FAULT_RETRY) {
4f6da934 4913 if (locked &&
1ac25013 4914 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4f6da934 4915 *locked = 0;
87ffc118
AA
4916 *nr_pages = 0;
4917 /*
4918 * VM_FAULT_RETRY must not return an
4919 * error, it will return zero
4920 * instead.
4921 *
4922 * No need to update "position" as the
4923 * caller will not check it after
4924 * *nr_pages is set to 0.
4925 */
4926 return i;
4927 }
4928 continue;
4c887265
AL
4929 }
4930
a5516438 4931 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4932 page = pte_page(huge_ptep_get(pte));
8fde12ca 4933
acbfb087
ZL
4934 /*
4935 * If subpage information not requested, update counters
4936 * and skip the same_page loop below.
4937 */
4938 if (!pages && !vmas && !pfn_offset &&
4939 (vaddr + huge_page_size(h) < vma->vm_end) &&
4940 (remainder >= pages_per_huge_page(h))) {
4941 vaddr += huge_page_size(h);
4942 remainder -= pages_per_huge_page(h);
4943 i += pages_per_huge_page(h);
4944 spin_unlock(ptl);
4945 continue;
4946 }
4947
82e5d378
JM
4948 refs = min3(pages_per_huge_page(h) - pfn_offset,
4949 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
0fa5bc40 4950
82e5d378
JM
4951 if (pages || vmas)
4952 record_subpages_vmas(mem_map_offset(page, pfn_offset),
4953 vma, refs,
4954 likely(pages) ? pages + i : NULL,
4955 vmas ? vmas + i : NULL);
63551ae0 4956
82e5d378 4957 if (pages) {
0fa5bc40
JM
4958 /*
4959 * try_grab_compound_head() should always succeed here,
4960 * because: a) we hold the ptl lock, and b) we've just
4961 * checked that the huge page is present in the page
4962 * tables. If the huge page is present, then the tail
4963 * pages must also be present. The ptl prevents the
4964 * head page and tail pages from being rearranged in
4965 * any way. So this page must be available at this
4966 * point, unless the page refcount overflowed:
4967 */
82e5d378 4968 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
0fa5bc40
JM
4969 refs,
4970 flags))) {
4971 spin_unlock(ptl);
4972 remainder = 0;
4973 err = -ENOMEM;
4974 break;
4975 }
d5d4b0aa 4976 }
82e5d378
JM
4977
4978 vaddr += (refs << PAGE_SHIFT);
4979 remainder -= refs;
4980 i += refs;
4981
cb900f41 4982 spin_unlock(ptl);
63551ae0 4983 }
28a35716 4984 *nr_pages = remainder;
87ffc118
AA
4985 /*
4986 * setting position is actually required only if remainder is
4987 * not zero but it's faster not to add a "if (remainder)"
4988 * branch.
4989 */
63551ae0
DG
4990 *position = vaddr;
4991
2be7cfed 4992 return i ? i : err;
63551ae0 4993}
8f860591 4994
7da4d641 4995unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4996 unsigned long address, unsigned long end, pgprot_t newprot)
4997{
4998 struct mm_struct *mm = vma->vm_mm;
4999 unsigned long start = address;
5000 pte_t *ptep;
5001 pte_t pte;
a5516438 5002 struct hstate *h = hstate_vma(vma);
7da4d641 5003 unsigned long pages = 0;
dff11abe 5004 bool shared_pmd = false;
ac46d4f3 5005 struct mmu_notifier_range range;
dff11abe
MK
5006
5007 /*
5008 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 5009 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
5010 * range if PMD sharing is possible.
5011 */
7269f999
JG
5012 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5013 0, vma, mm, start, end);
ac46d4f3 5014 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
5015
5016 BUG_ON(address >= end);
ac46d4f3 5017 flush_cache_range(vma, range.start, range.end);
8f860591 5018
ac46d4f3 5019 mmu_notifier_invalidate_range_start(&range);
83cde9e8 5020 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 5021 for (; address < end; address += huge_page_size(h)) {
cb900f41 5022 spinlock_t *ptl;
7868a208 5023 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
5024 if (!ptep)
5025 continue;
cb900f41 5026 ptl = huge_pte_lock(h, mm, ptep);
34ae204f 5027 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
7da4d641 5028 pages++;
cb900f41 5029 spin_unlock(ptl);
dff11abe 5030 shared_pmd = true;
39dde65c 5031 continue;
7da4d641 5032 }
a8bda28d
NH
5033 pte = huge_ptep_get(ptep);
5034 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5035 spin_unlock(ptl);
5036 continue;
5037 }
5038 if (unlikely(is_hugetlb_entry_migration(pte))) {
5039 swp_entry_t entry = pte_to_swp_entry(pte);
5040
5041 if (is_write_migration_entry(entry)) {
5042 pte_t newpte;
5043
5044 make_migration_entry_read(&entry);
5045 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
5046 set_huge_swap_pte_at(mm, address, ptep,
5047 newpte, huge_page_size(h));
a8bda28d
NH
5048 pages++;
5049 }
5050 spin_unlock(ptl);
5051 continue;
5052 }
5053 if (!huge_pte_none(pte)) {
023bdd00
AK
5054 pte_t old_pte;
5055
5056 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5057 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
be7517d6 5058 pte = arch_make_huge_pte(pte, vma, NULL, 0);
023bdd00 5059 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 5060 pages++;
8f860591 5061 }
cb900f41 5062 spin_unlock(ptl);
8f860591 5063 }
d833352a 5064 /*
c8c06efa 5065 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 5066 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 5067 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
5068 * and that page table be reused and filled with junk. If we actually
5069 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 5070 */
dff11abe 5071 if (shared_pmd)
ac46d4f3 5072 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
5073 else
5074 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
5075 /*
5076 * No need to call mmu_notifier_invalidate_range() we are downgrading
5077 * page table protection not changing it to point to a new page.
5078 *
ad56b738 5079 * See Documentation/vm/mmu_notifier.rst
0f10851e 5080 */
83cde9e8 5081 i_mmap_unlock_write(vma->vm_file->f_mapping);
ac46d4f3 5082 mmu_notifier_invalidate_range_end(&range);
7da4d641
PZ
5083
5084 return pages << h->order;
8f860591
ZY
5085}
5086
33b8f84a
MK
5087/* Return true if reservation was successful, false otherwise. */
5088bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 5089 long from, long to,
5a6fe125 5090 struct vm_area_struct *vma,
ca16d140 5091 vm_flags_t vm_flags)
e4e574b7 5092{
33b8f84a 5093 long chg, add = -1;
a5516438 5094 struct hstate *h = hstate_inode(inode);
90481622 5095 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 5096 struct resv_map *resv_map;
075a61d0 5097 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 5098 long gbl_reserve, regions_needed = 0;
e4e574b7 5099
63489f8e
MK
5100 /* This should never happen */
5101 if (from > to) {
5102 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 5103 return false;
63489f8e
MK
5104 }
5105
17c9d12e
MG
5106 /*
5107 * Only apply hugepage reservation if asked. At fault time, an
5108 * attempt will be made for VM_NORESERVE to allocate a page
90481622 5109 * without using reserves
17c9d12e 5110 */
ca16d140 5111 if (vm_flags & VM_NORESERVE)
33b8f84a 5112 return true;
17c9d12e 5113
a1e78772
MG
5114 /*
5115 * Shared mappings base their reservation on the number of pages that
5116 * are already allocated on behalf of the file. Private mappings need
5117 * to reserve the full area even if read-only as mprotect() may be
5118 * called to make the mapping read-write. Assume !vma is a shm mapping
5119 */
9119a41e 5120 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
5121 /*
5122 * resv_map can not be NULL as hugetlb_reserve_pages is only
5123 * called for inodes for which resv_maps were created (see
5124 * hugetlbfs_get_inode).
5125 */
4e35f483 5126 resv_map = inode_resv_map(inode);
9119a41e 5127
0db9d74e 5128 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e
JK
5129
5130 } else {
e9fe92ae 5131 /* Private mapping. */
9119a41e 5132 resv_map = resv_map_alloc();
17c9d12e 5133 if (!resv_map)
33b8f84a 5134 return false;
17c9d12e 5135
a1e78772 5136 chg = to - from;
84afd99b 5137
17c9d12e
MG
5138 set_vma_resv_map(vma, resv_map);
5139 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5140 }
5141
33b8f84a 5142 if (chg < 0)
c50ac050 5143 goto out_err;
8a630112 5144
33b8f84a
MK
5145 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5146 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 5147 goto out_err;
075a61d0
MA
5148
5149 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5150 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5151 * of the resv_map.
5152 */
5153 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5154 }
5155
1c5ecae3
MK
5156 /*
5157 * There must be enough pages in the subpool for the mapping. If
5158 * the subpool has a minimum size, there may be some global
5159 * reservations already in place (gbl_reserve).
5160 */
5161 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 5162 if (gbl_reserve < 0)
075a61d0 5163 goto out_uncharge_cgroup;
5a6fe125
MG
5164
5165 /*
17c9d12e 5166 * Check enough hugepages are available for the reservation.
90481622 5167 * Hand the pages back to the subpool if there are not
5a6fe125 5168 */
33b8f84a 5169 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 5170 goto out_put_pages;
17c9d12e
MG
5171
5172 /*
5173 * Account for the reservations made. Shared mappings record regions
5174 * that have reservations as they are shared by multiple VMAs.
5175 * When the last VMA disappears, the region map says how much
5176 * the reservation was and the page cache tells how much of
5177 * the reservation was consumed. Private mappings are per-VMA and
5178 * only the consumed reservations are tracked. When the VMA
5179 * disappears, the original reservation is the VMA size and the
5180 * consumed reservations are stored in the map. Hence, nothing
5181 * else has to be done for private mappings here
5182 */
33039678 5183 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 5184 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
5185
5186 if (unlikely(add < 0)) {
5187 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 5188 goto out_put_pages;
0db9d74e 5189 } else if (unlikely(chg > add)) {
33039678
MK
5190 /*
5191 * pages in this range were added to the reserve
5192 * map between region_chg and region_add. This
5193 * indicates a race with alloc_huge_page. Adjust
5194 * the subpool and reserve counts modified above
5195 * based on the difference.
5196 */
5197 long rsv_adjust;
5198
d85aecf2
ML
5199 /*
5200 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5201 * reference to h_cg->css. See comment below for detail.
5202 */
075a61d0
MA
5203 hugetlb_cgroup_uncharge_cgroup_rsvd(
5204 hstate_index(h),
5205 (chg - add) * pages_per_huge_page(h), h_cg);
5206
33039678
MK
5207 rsv_adjust = hugepage_subpool_put_pages(spool,
5208 chg - add);
5209 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
5210 } else if (h_cg) {
5211 /*
5212 * The file_regions will hold their own reference to
5213 * h_cg->css. So we should release the reference held
5214 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5215 * done.
5216 */
5217 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
5218 }
5219 }
33b8f84a
MK
5220 return true;
5221
075a61d0
MA
5222out_put_pages:
5223 /* put back original number of pages, chg */
5224 (void)hugepage_subpool_put_pages(spool, chg);
5225out_uncharge_cgroup:
5226 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5227 chg * pages_per_huge_page(h), h_cg);
c50ac050 5228out_err:
5e911373 5229 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
5230 /* Only call region_abort if the region_chg succeeded but the
5231 * region_add failed or didn't run.
5232 */
5233 if (chg >= 0 && add < 0)
5234 region_abort(resv_map, from, to, regions_needed);
f031dd27
JK
5235 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5236 kref_put(&resv_map->refs, resv_map_release);
33b8f84a 5237 return false;
a43a8c39
KC
5238}
5239
b5cec28d
MK
5240long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5241 long freed)
a43a8c39 5242{
a5516438 5243 struct hstate *h = hstate_inode(inode);
4e35f483 5244 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 5245 long chg = 0;
90481622 5246 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 5247 long gbl_reserve;
45c682a6 5248
f27a5136
MK
5249 /*
5250 * Since this routine can be called in the evict inode path for all
5251 * hugetlbfs inodes, resv_map could be NULL.
5252 */
b5cec28d
MK
5253 if (resv_map) {
5254 chg = region_del(resv_map, start, end);
5255 /*
5256 * region_del() can fail in the rare case where a region
5257 * must be split and another region descriptor can not be
5258 * allocated. If end == LONG_MAX, it will not fail.
5259 */
5260 if (chg < 0)
5261 return chg;
5262 }
5263
45c682a6 5264 spin_lock(&inode->i_lock);
e4c6f8be 5265 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
5266 spin_unlock(&inode->i_lock);
5267
1c5ecae3
MK
5268 /*
5269 * If the subpool has a minimum size, the number of global
5270 * reservations to be released may be adjusted.
5271 */
5272 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5273 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
5274
5275 return 0;
a43a8c39 5276}
93f70f90 5277
3212b535
SC
5278#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5279static unsigned long page_table_shareable(struct vm_area_struct *svma,
5280 struct vm_area_struct *vma,
5281 unsigned long addr, pgoff_t idx)
5282{
5283 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5284 svma->vm_start;
5285 unsigned long sbase = saddr & PUD_MASK;
5286 unsigned long s_end = sbase + PUD_SIZE;
5287
5288 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
5289 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5290 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
5291
5292 /*
5293 * match the virtual addresses, permission and the alignment of the
5294 * page table page.
5295 */
5296 if (pmd_index(addr) != pmd_index(saddr) ||
5297 vm_flags != svm_flags ||
07e51edf 5298 !range_in_vma(svma, sbase, s_end))
3212b535
SC
5299 return 0;
5300
5301 return saddr;
5302}
5303
31aafb45 5304static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
5305{
5306 unsigned long base = addr & PUD_MASK;
5307 unsigned long end = base + PUD_SIZE;
5308
5309 /*
5310 * check on proper vm_flags and page table alignment
5311 */
017b1660 5312 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
5313 return true;
5314 return false;
3212b535
SC
5315}
5316
c1991e07
PX
5317bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5318{
5319#ifdef CONFIG_USERFAULTFD
5320 if (uffd_disable_huge_pmd_share(vma))
5321 return false;
5322#endif
5323 return vma_shareable(vma, addr);
5324}
5325
017b1660
MK
5326/*
5327 * Determine if start,end range within vma could be mapped by shared pmd.
5328 * If yes, adjust start and end to cover range associated with possible
5329 * shared pmd mappings.
5330 */
5331void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5332 unsigned long *start, unsigned long *end)
5333{
a1ba9da8
LX
5334 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5335 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 5336
a1ba9da8
LX
5337 /*
5338 * vma need span at least one aligned PUD size and the start,end range
5339 * must at least partialy within it.
5340 */
5341 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5342 (*end <= v_start) || (*start >= v_end))
017b1660
MK
5343 return;
5344
75802ca6 5345 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
5346 if (*start > v_start)
5347 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 5348
a1ba9da8
LX
5349 if (*end < v_end)
5350 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
5351}
5352
3212b535
SC
5353/*
5354 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5355 * and returns the corresponding pte. While this is not necessary for the
5356 * !shared pmd case because we can allocate the pmd later as well, it makes the
c0d0381a
MK
5357 * code much cleaner.
5358 *
0bf7b64e
MK
5359 * This routine must be called with i_mmap_rwsem held in at least read mode if
5360 * sharing is possible. For hugetlbfs, this prevents removal of any page
5361 * table entries associated with the address space. This is important as we
5362 * are setting up sharing based on existing page table entries (mappings).
5363 *
5364 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5365 * huge_pte_alloc know that sharing is not possible and do not take
5366 * i_mmap_rwsem as a performance optimization. This is handled by the
5367 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5368 * only required for subsequent processing.
3212b535 5369 */
aec44e0f
PX
5370pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5371 unsigned long addr, pud_t *pud)
3212b535 5372{
3212b535
SC
5373 struct address_space *mapping = vma->vm_file->f_mapping;
5374 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5375 vma->vm_pgoff;
5376 struct vm_area_struct *svma;
5377 unsigned long saddr;
5378 pte_t *spte = NULL;
5379 pte_t *pte;
cb900f41 5380 spinlock_t *ptl;
3212b535 5381
0bf7b64e 5382 i_mmap_assert_locked(mapping);
3212b535
SC
5383 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5384 if (svma == vma)
5385 continue;
5386
5387 saddr = page_table_shareable(svma, vma, addr, idx);
5388 if (saddr) {
7868a208
PA
5389 spte = huge_pte_offset(svma->vm_mm, saddr,
5390 vma_mmu_pagesize(svma));
3212b535
SC
5391 if (spte) {
5392 get_page(virt_to_page(spte));
5393 break;
5394 }
5395 }
5396 }
5397
5398 if (!spte)
5399 goto out;
5400
8bea8052 5401 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 5402 if (pud_none(*pud)) {
3212b535
SC
5403 pud_populate(mm, pud,
5404 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 5405 mm_inc_nr_pmds(mm);
dc6c9a35 5406 } else {
3212b535 5407 put_page(virt_to_page(spte));
dc6c9a35 5408 }
cb900f41 5409 spin_unlock(ptl);
3212b535
SC
5410out:
5411 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3212b535
SC
5412 return pte;
5413}
5414
5415/*
5416 * unmap huge page backed by shared pte.
5417 *
5418 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5419 * indicated by page_count > 1, unmap is achieved by clearing pud and
5420 * decrementing the ref count. If count == 1, the pte page is not shared.
5421 *
c0d0381a 5422 * Called with page table lock held and i_mmap_rwsem held in write mode.
3212b535
SC
5423 *
5424 * returns: 1 successfully unmapped a shared pte page
5425 * 0 the underlying pte page is not shared, or it is the last user
5426 */
34ae204f
MK
5427int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5428 unsigned long *addr, pte_t *ptep)
3212b535
SC
5429{
5430 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
5431 p4d_t *p4d = p4d_offset(pgd, *addr);
5432 pud_t *pud = pud_offset(p4d, *addr);
3212b535 5433
34ae204f 5434 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
3212b535
SC
5435 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5436 if (page_count(virt_to_page(ptep)) == 1)
5437 return 0;
5438
5439 pud_clear(pud);
5440 put_page(virt_to_page(ptep));
dc6c9a35 5441 mm_dec_nr_pmds(mm);
3212b535
SC
5442 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5443 return 1;
5444}
c1991e07 5445
9e5fc74c 5446#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
aec44e0f
PX
5447pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5448 unsigned long addr, pud_t *pud)
9e5fc74c
SC
5449{
5450 return NULL;
5451}
e81f2d22 5452
34ae204f
MK
5453int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5454 unsigned long *addr, pte_t *ptep)
e81f2d22
ZZ
5455{
5456 return 0;
5457}
017b1660
MK
5458
5459void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5460 unsigned long *start, unsigned long *end)
5461{
5462}
c1991e07
PX
5463
5464bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5465{
5466 return false;
5467}
3212b535
SC
5468#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5469
9e5fc74c 5470#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 5471pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
5472 unsigned long addr, unsigned long sz)
5473{
5474 pgd_t *pgd;
c2febafc 5475 p4d_t *p4d;
9e5fc74c
SC
5476 pud_t *pud;
5477 pte_t *pte = NULL;
5478
5479 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
5480 p4d = p4d_alloc(mm, pgd, addr);
5481 if (!p4d)
5482 return NULL;
c2febafc 5483 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
5484 if (pud) {
5485 if (sz == PUD_SIZE) {
5486 pte = (pte_t *)pud;
5487 } else {
5488 BUG_ON(sz != PMD_SIZE);
c1991e07 5489 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 5490 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
5491 else
5492 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5493 }
5494 }
4e666314 5495 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
5496
5497 return pte;
5498}
5499
9b19df29
PA
5500/*
5501 * huge_pte_offset() - Walk the page table to resolve the hugepage
5502 * entry at address @addr
5503 *
8ac0b81a
LX
5504 * Return: Pointer to page table entry (PUD or PMD) for
5505 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
5506 * size @sz doesn't match the hugepage size at this level of the page
5507 * table.
5508 */
7868a208
PA
5509pte_t *huge_pte_offset(struct mm_struct *mm,
5510 unsigned long addr, unsigned long sz)
9e5fc74c
SC
5511{
5512 pgd_t *pgd;
c2febafc 5513 p4d_t *p4d;
8ac0b81a
LX
5514 pud_t *pud;
5515 pmd_t *pmd;
9e5fc74c
SC
5516
5517 pgd = pgd_offset(mm, addr);
c2febafc
KS
5518 if (!pgd_present(*pgd))
5519 return NULL;
5520 p4d = p4d_offset(pgd, addr);
5521 if (!p4d_present(*p4d))
5522 return NULL;
9b19df29 5523
c2febafc 5524 pud = pud_offset(p4d, addr);
8ac0b81a
LX
5525 if (sz == PUD_SIZE)
5526 /* must be pud huge, non-present or none */
c2febafc 5527 return (pte_t *)pud;
8ac0b81a 5528 if (!pud_present(*pud))
9b19df29 5529 return NULL;
8ac0b81a 5530 /* must have a valid entry and size to go further */
9b19df29 5531
8ac0b81a
LX
5532 pmd = pmd_offset(pud, addr);
5533 /* must be pmd huge, non-present or none */
5534 return (pte_t *)pmd;
9e5fc74c
SC
5535}
5536
61f77eda
NH
5537#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5538
5539/*
5540 * These functions are overwritable if your architecture needs its own
5541 * behavior.
5542 */
5543struct page * __weak
5544follow_huge_addr(struct mm_struct *mm, unsigned long address,
5545 int write)
5546{
5547 return ERR_PTR(-EINVAL);
5548}
5549
4dc71451
AK
5550struct page * __weak
5551follow_huge_pd(struct vm_area_struct *vma,
5552 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5553{
5554 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5555 return NULL;
5556}
5557
61f77eda 5558struct page * __weak
9e5fc74c 5559follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 5560 pmd_t *pmd, int flags)
9e5fc74c 5561{
e66f17ff
NH
5562 struct page *page = NULL;
5563 spinlock_t *ptl;
c9d398fa 5564 pte_t pte;
3faa52c0
JH
5565
5566 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5567 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5568 (FOLL_PIN | FOLL_GET)))
5569 return NULL;
5570
e66f17ff
NH
5571retry:
5572 ptl = pmd_lockptr(mm, pmd);
5573 spin_lock(ptl);
5574 /*
5575 * make sure that the address range covered by this pmd is not
5576 * unmapped from other threads.
5577 */
5578 if (!pmd_huge(*pmd))
5579 goto out;
c9d398fa
NH
5580 pte = huge_ptep_get((pte_t *)pmd);
5581 if (pte_present(pte)) {
97534127 5582 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3faa52c0
JH
5583 /*
5584 * try_grab_page() should always succeed here, because: a) we
5585 * hold the pmd (ptl) lock, and b) we've just checked that the
5586 * huge pmd (head) page is present in the page tables. The ptl
5587 * prevents the head page and tail pages from being rearranged
5588 * in any way. So this page must be available at this point,
5589 * unless the page refcount overflowed:
5590 */
5591 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5592 page = NULL;
5593 goto out;
5594 }
e66f17ff 5595 } else {
c9d398fa 5596 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
5597 spin_unlock(ptl);
5598 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5599 goto retry;
5600 }
5601 /*
5602 * hwpoisoned entry is treated as no_page_table in
5603 * follow_page_mask().
5604 */
5605 }
5606out:
5607 spin_unlock(ptl);
9e5fc74c
SC
5608 return page;
5609}
5610
61f77eda 5611struct page * __weak
9e5fc74c 5612follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 5613 pud_t *pud, int flags)
9e5fc74c 5614{
3faa52c0 5615 if (flags & (FOLL_GET | FOLL_PIN))
e66f17ff 5616 return NULL;
9e5fc74c 5617
e66f17ff 5618 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
5619}
5620
faaa5b62
AK
5621struct page * __weak
5622follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5623{
3faa52c0 5624 if (flags & (FOLL_GET | FOLL_PIN))
faaa5b62
AK
5625 return NULL;
5626
5627 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5628}
5629
31caf665
NH
5630bool isolate_huge_page(struct page *page, struct list_head *list)
5631{
bcc54222
NH
5632 bool ret = true;
5633
31caf665 5634 spin_lock(&hugetlb_lock);
8f251a3d
MK
5635 if (!PageHeadHuge(page) ||
5636 !HPageMigratable(page) ||
0eb2df2b 5637 !get_page_unless_zero(page)) {
bcc54222
NH
5638 ret = false;
5639 goto unlock;
5640 }
8f251a3d 5641 ClearHPageMigratable(page);
31caf665 5642 list_move_tail(&page->lru, list);
bcc54222 5643unlock:
31caf665 5644 spin_unlock(&hugetlb_lock);
bcc54222 5645 return ret;
31caf665
NH
5646}
5647
5648void putback_active_hugepage(struct page *page)
5649{
31caf665 5650 spin_lock(&hugetlb_lock);
8f251a3d 5651 SetHPageMigratable(page);
31caf665
NH
5652 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5653 spin_unlock(&hugetlb_lock);
5654 put_page(page);
5655}
ab5ac90a
MH
5656
5657void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5658{
5659 struct hstate *h = page_hstate(oldpage);
5660
5661 hugetlb_cgroup_migrate(oldpage, newpage);
5662 set_page_owner_migrate_reason(newpage, reason);
5663
5664 /*
5665 * transfer temporary state of the new huge page. This is
5666 * reverse to other transitions because the newpage is going to
5667 * be final while the old one will be freed so it takes over
5668 * the temporary status.
5669 *
5670 * Also note that we have to transfer the per-node surplus state
5671 * here as well otherwise the global surplus count will not match
5672 * the per-node's.
5673 */
9157c311 5674 if (HPageTemporary(newpage)) {
ab5ac90a
MH
5675 int old_nid = page_to_nid(oldpage);
5676 int new_nid = page_to_nid(newpage);
5677
9157c311
MK
5678 SetHPageTemporary(oldpage);
5679 ClearHPageTemporary(newpage);
ab5ac90a 5680
5af1ab1d
ML
5681 /*
5682 * There is no need to transfer the per-node surplus state
5683 * when we do not cross the node.
5684 */
5685 if (new_nid == old_nid)
5686 return;
ab5ac90a
MH
5687 spin_lock(&hugetlb_lock);
5688 if (h->surplus_huge_pages_node[old_nid]) {
5689 h->surplus_huge_pages_node[old_nid]--;
5690 h->surplus_huge_pages_node[new_nid]++;
5691 }
5692 spin_unlock(&hugetlb_lock);
5693 }
5694}
cf11e85f 5695
6dfeaff9
PX
5696/*
5697 * This function will unconditionally remove all the shared pmd pgtable entries
5698 * within the specific vma for a hugetlbfs memory range.
5699 */
5700void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5701{
5702 struct hstate *h = hstate_vma(vma);
5703 unsigned long sz = huge_page_size(h);
5704 struct mm_struct *mm = vma->vm_mm;
5705 struct mmu_notifier_range range;
5706 unsigned long address, start, end;
5707 spinlock_t *ptl;
5708 pte_t *ptep;
5709
5710 if (!(vma->vm_flags & VM_MAYSHARE))
5711 return;
5712
5713 start = ALIGN(vma->vm_start, PUD_SIZE);
5714 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5715
5716 if (start >= end)
5717 return;
5718
5719 /*
5720 * No need to call adjust_range_if_pmd_sharing_possible(), because
5721 * we have already done the PUD_SIZE alignment.
5722 */
5723 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5724 start, end);
5725 mmu_notifier_invalidate_range_start(&range);
5726 i_mmap_lock_write(vma->vm_file->f_mapping);
5727 for (address = start; address < end; address += PUD_SIZE) {
5728 unsigned long tmp = address;
5729
5730 ptep = huge_pte_offset(mm, address, sz);
5731 if (!ptep)
5732 continue;
5733 ptl = huge_pte_lock(h, mm, ptep);
5734 /* We don't want 'address' to be changed */
5735 huge_pmd_unshare(mm, vma, &tmp, ptep);
5736 spin_unlock(ptl);
5737 }
5738 flush_hugetlb_tlb_range(vma, start, end);
5739 i_mmap_unlock_write(vma->vm_file->f_mapping);
5740 /*
5741 * No need to call mmu_notifier_invalidate_range(), see
5742 * Documentation/vm/mmu_notifier.rst.
5743 */
5744 mmu_notifier_invalidate_range_end(&range);
5745}
5746
cf11e85f 5747#ifdef CONFIG_CMA
cf11e85f
RG
5748static bool cma_reserve_called __initdata;
5749
5750static int __init cmdline_parse_hugetlb_cma(char *p)
5751{
5752 hugetlb_cma_size = memparse(p, &p);
5753 return 0;
5754}
5755
5756early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5757
5758void __init hugetlb_cma_reserve(int order)
5759{
5760 unsigned long size, reserved, per_node;
5761 int nid;
5762
5763 cma_reserve_called = true;
5764
5765 if (!hugetlb_cma_size)
5766 return;
5767
5768 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5769 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5770 (PAGE_SIZE << order) / SZ_1M);
5771 return;
5772 }
5773
5774 /*
5775 * If 3 GB area is requested on a machine with 4 numa nodes,
5776 * let's allocate 1 GB on first three nodes and ignore the last one.
5777 */
5778 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5779 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5780 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5781
5782 reserved = 0;
5783 for_each_node_state(nid, N_ONLINE) {
5784 int res;
2281f797 5785 char name[CMA_MAX_NAME];
cf11e85f
RG
5786
5787 size = min(per_node, hugetlb_cma_size - reserved);
5788 size = round_up(size, PAGE_SIZE << order);
5789
2281f797 5790 snprintf(name, sizeof(name), "hugetlb%d", nid);
cf11e85f 5791 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
29d0f41d 5792 0, false, name,
cf11e85f
RG
5793 &hugetlb_cma[nid], nid);
5794 if (res) {
5795 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5796 res, nid);
5797 continue;
5798 }
5799
5800 reserved += size;
5801 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5802 size / SZ_1M, nid);
5803
5804 if (reserved >= hugetlb_cma_size)
5805 break;
5806 }
5807}
5808
5809void __init hugetlb_cma_check(void)
5810{
5811 if (!hugetlb_cma_size || cma_reserve_called)
5812 return;
5813
5814 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5815}
5816
5817#endif /* CONFIG_CMA */