]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/kasan/kasan.c
Merge tag 'renesas-fixes3-for-v4.13' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / mm / kasan / kasan.c
CommitLineData
0b24becc
AR
1/*
2 * This file contains shadow memory manipulation code.
3 *
4 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
2baf9e89 5 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
0b24becc 6 *
5d0926ef 7 * Some code borrowed from https://github.com/xairy/kasan-prototype by
0b24becc
AR
8 * Andrey Konovalov <adech.fo@gmail.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 */
15
16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17#define DISABLE_BRANCH_PROFILING
18
19#include <linux/export.h>
cd11016e 20#include <linux/interrupt.h>
0b24becc 21#include <linux/init.h>
cd11016e 22#include <linux/kasan.h>
0b24becc 23#include <linux/kernel.h>
45937254 24#include <linux/kmemleak.h>
e3ae1163 25#include <linux/linkage.h>
0b24becc 26#include <linux/memblock.h>
786a8959 27#include <linux/memory.h>
0b24becc 28#include <linux/mm.h>
bebf56a1 29#include <linux/module.h>
0b24becc
AR
30#include <linux/printk.h>
31#include <linux/sched.h>
68db0cf1 32#include <linux/sched/task_stack.h>
0b24becc
AR
33#include <linux/slab.h>
34#include <linux/stacktrace.h>
35#include <linux/string.h>
36#include <linux/types.h>
a5af5aa8 37#include <linux/vmalloc.h>
9f7d416c 38#include <linux/bug.h>
0b24becc
AR
39
40#include "kasan.h"
0316bec2 41#include "../slab.h"
0b24becc 42
af8601ad
IM
43void kasan_enable_current(void)
44{
45 current->kasan_depth++;
46}
47
48void kasan_disable_current(void)
49{
50 current->kasan_depth--;
51}
52
0b24becc
AR
53/*
54 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
55 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
56 */
57static void kasan_poison_shadow(const void *address, size_t size, u8 value)
58{
59 void *shadow_start, *shadow_end;
60
61 shadow_start = kasan_mem_to_shadow(address);
62 shadow_end = kasan_mem_to_shadow(address + size);
63
64 memset(shadow_start, value, shadow_end - shadow_start);
65}
66
67void kasan_unpoison_shadow(const void *address, size_t size)
68{
69 kasan_poison_shadow(address, size, 0);
70
71 if (size & KASAN_SHADOW_MASK) {
72 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
73 *shadow = size & KASAN_SHADOW_MASK;
74 }
75}
76
9f7d416c 77static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
e3ae1163
MR
78{
79 void *base = task_stack_page(task);
80 size_t size = sp - base;
81
82 kasan_unpoison_shadow(base, size);
83}
84
85/* Unpoison the entire stack for a task. */
86void kasan_unpoison_task_stack(struct task_struct *task)
87{
88 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
89}
90
91/* Unpoison the stack for the current task beyond a watermark sp value. */
9f7d416c 92asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
e3ae1163 93{
b53f40db
JP
94 /*
95 * Calculate the task stack base address. Avoid using 'current'
96 * because this function is called by early resume code which hasn't
97 * yet set up the percpu register (%gs).
98 */
99 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
100
101 kasan_unpoison_shadow(base, watermark - base);
9f7d416c
DV
102}
103
104/*
105 * Clear all poison for the region between the current SP and a provided
106 * watermark value, as is sometimes required prior to hand-crafted asm function
107 * returns in the middle of functions.
108 */
109void kasan_unpoison_stack_above_sp_to(const void *watermark)
110{
111 const void *sp = __builtin_frame_address(0);
112 size_t size = watermark - sp;
113
114 if (WARN_ON(sp > watermark))
115 return;
116 kasan_unpoison_shadow(sp, size);
e3ae1163 117}
0b24becc
AR
118
119/*
120 * All functions below always inlined so compiler could
121 * perform better optimizations in each of __asan_loadX/__assn_storeX
122 * depending on memory access size X.
123 */
124
125static __always_inline bool memory_is_poisoned_1(unsigned long addr)
126{
127 s8 shadow_value = *(s8 *)kasan_mem_to_shadow((void *)addr);
128
129 if (unlikely(shadow_value)) {
130 s8 last_accessible_byte = addr & KASAN_SHADOW_MASK;
131 return unlikely(last_accessible_byte >= shadow_value);
132 }
133
134 return false;
135}
136
c634d807
AR
137static __always_inline bool memory_is_poisoned_2_4_8(unsigned long addr,
138 unsigned long size)
0b24becc 139{
c634d807 140 u8 *shadow_addr = (u8 *)kasan_mem_to_shadow((void *)addr);
0b24becc 141
c634d807
AR
142 /*
143 * Access crosses 8(shadow size)-byte boundary. Such access maps
144 * into 2 shadow bytes, so we need to check them both.
145 */
146 if (unlikely(((addr + size - 1) & KASAN_SHADOW_MASK) < size - 1))
147 return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
0b24becc 148
c634d807 149 return memory_is_poisoned_1(addr + size - 1);
0b24becc
AR
150}
151
152static __always_inline bool memory_is_poisoned_16(unsigned long addr)
153{
c634d807 154 u16 *shadow_addr = (u16 *)kasan_mem_to_shadow((void *)addr);
0b24becc 155
c634d807
AR
156 /* Unaligned 16-bytes access maps into 3 shadow bytes. */
157 if (unlikely(!IS_ALIGNED(addr, KASAN_SHADOW_SCALE_SIZE)))
158 return *shadow_addr || memory_is_poisoned_1(addr + 15);
0b24becc 159
c634d807 160 return *shadow_addr;
0b24becc
AR
161}
162
f5bd62cd 163static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
0b24becc
AR
164 size_t size)
165{
166 while (size) {
167 if (unlikely(*start))
168 return (unsigned long)start;
169 start++;
170 size--;
171 }
172
173 return 0;
174}
175
f5bd62cd 176static __always_inline unsigned long memory_is_nonzero(const void *start,
0b24becc
AR
177 const void *end)
178{
179 unsigned int words;
180 unsigned long ret;
181 unsigned int prefix = (unsigned long)start % 8;
182
183 if (end - start <= 16)
f5bd62cd 184 return bytes_is_nonzero(start, end - start);
0b24becc
AR
185
186 if (prefix) {
187 prefix = 8 - prefix;
f5bd62cd 188 ret = bytes_is_nonzero(start, prefix);
0b24becc
AR
189 if (unlikely(ret))
190 return ret;
191 start += prefix;
192 }
193
194 words = (end - start) / 8;
195 while (words) {
196 if (unlikely(*(u64 *)start))
f5bd62cd 197 return bytes_is_nonzero(start, 8);
0b24becc
AR
198 start += 8;
199 words--;
200 }
201
f5bd62cd 202 return bytes_is_nonzero(start, (end - start) % 8);
0b24becc
AR
203}
204
205static __always_inline bool memory_is_poisoned_n(unsigned long addr,
206 size_t size)
207{
208 unsigned long ret;
209
f5bd62cd 210 ret = memory_is_nonzero(kasan_mem_to_shadow((void *)addr),
0b24becc
AR
211 kasan_mem_to_shadow((void *)addr + size - 1) + 1);
212
213 if (unlikely(ret)) {
214 unsigned long last_byte = addr + size - 1;
215 s8 *last_shadow = (s8 *)kasan_mem_to_shadow((void *)last_byte);
216
217 if (unlikely(ret != (unsigned long)last_shadow ||
e0d57714 218 ((long)(last_byte & KASAN_SHADOW_MASK) >= *last_shadow)))
0b24becc
AR
219 return true;
220 }
221 return false;
222}
223
224static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size)
225{
226 if (__builtin_constant_p(size)) {
227 switch (size) {
228 case 1:
229 return memory_is_poisoned_1(addr);
230 case 2:
0b24becc 231 case 4:
0b24becc 232 case 8:
c634d807 233 return memory_is_poisoned_2_4_8(addr, size);
0b24becc
AR
234 case 16:
235 return memory_is_poisoned_16(addr);
236 default:
237 BUILD_BUG();
238 }
239 }
240
241 return memory_is_poisoned_n(addr, size);
242}
243
936bb4bb
AR
244static __always_inline void check_memory_region_inline(unsigned long addr,
245 size_t size, bool write,
246 unsigned long ret_ip)
0b24becc 247{
0b24becc
AR
248 if (unlikely(size == 0))
249 return;
250
251 if (unlikely((void *)addr <
252 kasan_shadow_to_mem((void *)KASAN_SHADOW_START))) {
936bb4bb 253 kasan_report(addr, size, write, ret_ip);
0b24becc
AR
254 return;
255 }
256
257 if (likely(!memory_is_poisoned(addr, size)))
258 return;
259
936bb4bb 260 kasan_report(addr, size, write, ret_ip);
0b24becc
AR
261}
262
936bb4bb
AR
263static void check_memory_region(unsigned long addr,
264 size_t size, bool write,
265 unsigned long ret_ip)
266{
267 check_memory_region_inline(addr, size, write, ret_ip);
268}
393f203f 269
64f8ebaf
AR
270void kasan_check_read(const void *p, unsigned int size)
271{
272 check_memory_region((unsigned long)p, size, false, _RET_IP_);
273}
274EXPORT_SYMBOL(kasan_check_read);
275
276void kasan_check_write(const void *p, unsigned int size)
277{
278 check_memory_region((unsigned long)p, size, true, _RET_IP_);
279}
280EXPORT_SYMBOL(kasan_check_write);
281
393f203f
AR
282#undef memset
283void *memset(void *addr, int c, size_t len)
284{
936bb4bb 285 check_memory_region((unsigned long)addr, len, true, _RET_IP_);
393f203f
AR
286
287 return __memset(addr, c, len);
288}
289
290#undef memmove
291void *memmove(void *dest, const void *src, size_t len)
292{
936bb4bb
AR
293 check_memory_region((unsigned long)src, len, false, _RET_IP_);
294 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
393f203f
AR
295
296 return __memmove(dest, src, len);
297}
298
299#undef memcpy
300void *memcpy(void *dest, const void *src, size_t len)
301{
936bb4bb
AR
302 check_memory_region((unsigned long)src, len, false, _RET_IP_);
303 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
393f203f
AR
304
305 return __memcpy(dest, src, len);
306}
307
b8c73fc2
AR
308void kasan_alloc_pages(struct page *page, unsigned int order)
309{
310 if (likely(!PageHighMem(page)))
311 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
312}
313
314void kasan_free_pages(struct page *page, unsigned int order)
315{
316 if (likely(!PageHighMem(page)))
317 kasan_poison_shadow(page_address(page),
318 PAGE_SIZE << order,
319 KASAN_FREE_PAGE);
320}
321
7ed2f9e6
AP
322/*
323 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
324 * For larger allocations larger redzones are used.
325 */
326static size_t optimal_redzone(size_t object_size)
327{
328 int rz =
329 object_size <= 64 - 16 ? 16 :
330 object_size <= 128 - 32 ? 32 :
331 object_size <= 512 - 64 ? 64 :
332 object_size <= 4096 - 128 ? 128 :
333 object_size <= (1 << 14) - 256 ? 256 :
334 object_size <= (1 << 15) - 512 ? 512 :
335 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
336 return rz;
337}
338
339void kasan_cache_create(struct kmem_cache *cache, size_t *size,
340 unsigned long *flags)
341{
342 int redzone_adjust;
80a9201a
AP
343 int orig_size = *size;
344
7ed2f9e6
AP
345 /* Add alloc meta. */
346 cache->kasan_info.alloc_meta_offset = *size;
347 *size += sizeof(struct kasan_alloc_meta);
348
349 /* Add free meta. */
5f0d5a3a 350 if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
7ed2f9e6
AP
351 cache->object_size < sizeof(struct kasan_free_meta)) {
352 cache->kasan_info.free_meta_offset = *size;
353 *size += sizeof(struct kasan_free_meta);
354 }
355 redzone_adjust = optimal_redzone(cache->object_size) -
356 (*size - cache->object_size);
80a9201a 357
7ed2f9e6
AP
358 if (redzone_adjust > 0)
359 *size += redzone_adjust;
80a9201a
AP
360
361 *size = min(KMALLOC_MAX_SIZE, max(*size, cache->object_size +
362 optimal_redzone(cache->object_size)));
363
364 /*
365 * If the metadata doesn't fit, don't enable KASAN at all.
366 */
367 if (*size <= cache->kasan_info.alloc_meta_offset ||
368 *size <= cache->kasan_info.free_meta_offset) {
369 cache->kasan_info.alloc_meta_offset = 0;
370 cache->kasan_info.free_meta_offset = 0;
371 *size = orig_size;
372 return;
373 }
374
375 *flags |= SLAB_KASAN;
7ed2f9e6 376}
7ed2f9e6 377
55834c59
AP
378void kasan_cache_shrink(struct kmem_cache *cache)
379{
380 quarantine_remove_cache(cache);
381}
382
f9fa1d91 383void kasan_cache_shutdown(struct kmem_cache *cache)
55834c59
AP
384{
385 quarantine_remove_cache(cache);
386}
387
80a9201a
AP
388size_t kasan_metadata_size(struct kmem_cache *cache)
389{
390 return (cache->kasan_info.alloc_meta_offset ?
391 sizeof(struct kasan_alloc_meta) : 0) +
392 (cache->kasan_info.free_meta_offset ?
393 sizeof(struct kasan_free_meta) : 0);
394}
395
0316bec2
AR
396void kasan_poison_slab(struct page *page)
397{
398 kasan_poison_shadow(page_address(page),
399 PAGE_SIZE << compound_order(page),
400 KASAN_KMALLOC_REDZONE);
401}
402
403void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
404{
405 kasan_unpoison_shadow(object, cache->object_size);
406}
407
408void kasan_poison_object_data(struct kmem_cache *cache, void *object)
409{
410 kasan_poison_shadow(object,
411 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
412 KASAN_KMALLOC_REDZONE);
413}
414
cd11016e
AP
415static inline int in_irqentry_text(unsigned long ptr)
416{
417 return (ptr >= (unsigned long)&__irqentry_text_start &&
418 ptr < (unsigned long)&__irqentry_text_end) ||
419 (ptr >= (unsigned long)&__softirqentry_text_start &&
420 ptr < (unsigned long)&__softirqentry_text_end);
421}
422
423static inline void filter_irq_stacks(struct stack_trace *trace)
424{
425 int i;
426
427 if (!trace->nr_entries)
428 return;
429 for (i = 0; i < trace->nr_entries; i++)
430 if (in_irqentry_text(trace->entries[i])) {
431 /* Include the irqentry function into the stack. */
432 trace->nr_entries = i + 1;
433 break;
434 }
435}
436
437static inline depot_stack_handle_t save_stack(gfp_t flags)
438{
439 unsigned long entries[KASAN_STACK_DEPTH];
440 struct stack_trace trace = {
441 .nr_entries = 0,
442 .entries = entries,
443 .max_entries = KASAN_STACK_DEPTH,
444 .skip = 0
445 };
446
447 save_stack_trace(&trace);
448 filter_irq_stacks(&trace);
449 if (trace.nr_entries != 0 &&
450 trace.entries[trace.nr_entries-1] == ULONG_MAX)
451 trace.nr_entries--;
452
453 return depot_save_stack(&trace, flags);
454}
455
456static inline void set_track(struct kasan_track *track, gfp_t flags)
7ed2f9e6 457{
7ed2f9e6 458 track->pid = current->pid;
cd11016e 459 track->stack = save_stack(flags);
7ed2f9e6
AP
460}
461
7ed2f9e6
AP
462struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
463 const void *object)
464{
cd11016e 465 BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
7ed2f9e6
AP
466 return (void *)object + cache->kasan_info.alloc_meta_offset;
467}
468
469struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
470 const void *object)
471{
cd11016e 472 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
7ed2f9e6
AP
473 return (void *)object + cache->kasan_info.free_meta_offset;
474}
7ed2f9e6 475
b3cbd9bf
AR
476void kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
477{
478 struct kasan_alloc_meta *alloc_info;
479
480 if (!(cache->flags & SLAB_KASAN))
481 return;
482
483 alloc_info = get_alloc_info(cache, object);
484 __memset(alloc_info, 0, sizeof(*alloc_info));
485}
486
505f5dcb 487void kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
0316bec2 488{
505f5dcb 489 kasan_kmalloc(cache, object, cache->object_size, flags);
0316bec2
AR
490}
491
9b75a867 492static void kasan_poison_slab_free(struct kmem_cache *cache, void *object)
0316bec2
AR
493{
494 unsigned long size = cache->object_size;
495 unsigned long rounded_up_size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
496
497 /* RCU slabs could be legally used after free within the RCU period */
5f0d5a3a 498 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
0316bec2
AR
499 return;
500
55834c59
AP
501 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
502}
503
504bool kasan_slab_free(struct kmem_cache *cache, void *object)
505{
b3cbd9bf
AR
506 s8 shadow_byte;
507
55834c59 508 /* RCU slabs could be legally used after free within the RCU period */
5f0d5a3a 509 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
55834c59
AP
510 return false;
511
b3cbd9bf
AR
512 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
513 if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
5ab6d91a
AK
514 kasan_report_double_free(cache, object,
515 __builtin_return_address(1));
b3cbd9bf
AR
516 return true;
517 }
80a9201a 518
b3cbd9bf 519 kasan_poison_slab_free(cache, object);
55834c59 520
b3cbd9bf
AR
521 if (unlikely(!(cache->flags & SLAB_KASAN)))
522 return false;
523
524 set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
525 quarantine_put(get_free_info(cache, object), cache);
526 return true;
0316bec2
AR
527}
528
505f5dcb
AP
529void kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
530 gfp_t flags)
0316bec2
AR
531{
532 unsigned long redzone_start;
533 unsigned long redzone_end;
534
4b3ec5a3 535 if (gfpflags_allow_blocking(flags))
55834c59
AP
536 quarantine_reduce();
537
0316bec2
AR
538 if (unlikely(object == NULL))
539 return;
540
541 redzone_start = round_up((unsigned long)(object + size),
542 KASAN_SHADOW_SCALE_SIZE);
543 redzone_end = round_up((unsigned long)object + cache->object_size,
544 KASAN_SHADOW_SCALE_SIZE);
545
546 kasan_unpoison_shadow(object, size);
547 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
548 KASAN_KMALLOC_REDZONE);
7ed2f9e6 549
b3cbd9bf
AR
550 if (cache->flags & SLAB_KASAN)
551 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
0316bec2
AR
552}
553EXPORT_SYMBOL(kasan_kmalloc);
554
505f5dcb 555void kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
0316bec2
AR
556{
557 struct page *page;
558 unsigned long redzone_start;
559 unsigned long redzone_end;
560
4b3ec5a3 561 if (gfpflags_allow_blocking(flags))
55834c59
AP
562 quarantine_reduce();
563
0316bec2
AR
564 if (unlikely(ptr == NULL))
565 return;
566
567 page = virt_to_page(ptr);
568 redzone_start = round_up((unsigned long)(ptr + size),
569 KASAN_SHADOW_SCALE_SIZE);
570 redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
571
572 kasan_unpoison_shadow(ptr, size);
573 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
574 KASAN_PAGE_REDZONE);
575}
576
505f5dcb 577void kasan_krealloc(const void *object, size_t size, gfp_t flags)
0316bec2
AR
578{
579 struct page *page;
580
581 if (unlikely(object == ZERO_SIZE_PTR))
582 return;
583
584 page = virt_to_head_page(object);
585
586 if (unlikely(!PageSlab(page)))
505f5dcb 587 kasan_kmalloc_large(object, size, flags);
0316bec2 588 else
505f5dcb 589 kasan_kmalloc(page->slab_cache, object, size, flags);
0316bec2
AR
590}
591
9b75a867 592void kasan_poison_kfree(void *ptr)
92393615
AR
593{
594 struct page *page;
595
596 page = virt_to_head_page(ptr);
597
598 if (unlikely(!PageSlab(page)))
599 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
600 KASAN_FREE_PAGE);
601 else
9b75a867 602 kasan_poison_slab_free(page->slab_cache, ptr);
92393615
AR
603}
604
0316bec2
AR
605void kasan_kfree_large(const void *ptr)
606{
607 struct page *page = virt_to_page(ptr);
608
609 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
610 KASAN_FREE_PAGE);
611}
612
bebf56a1
AR
613int kasan_module_alloc(void *addr, size_t size)
614{
615 void *ret;
616 size_t shadow_size;
617 unsigned long shadow_start;
618
619 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
620 shadow_size = round_up(size >> KASAN_SHADOW_SCALE_SHIFT,
621 PAGE_SIZE);
622
623 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
624 return -EINVAL;
625
626 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
627 shadow_start + shadow_size,
19809c2d 628 GFP_KERNEL | __GFP_ZERO,
bebf56a1
AR
629 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
630 __builtin_return_address(0));
a5af5aa8
AR
631
632 if (ret) {
633 find_vm_area(addr)->flags |= VM_KASAN;
45937254 634 kmemleak_ignore(ret);
a5af5aa8
AR
635 return 0;
636 }
637
638 return -ENOMEM;
bebf56a1
AR
639}
640
a5af5aa8 641void kasan_free_shadow(const struct vm_struct *vm)
bebf56a1 642{
a5af5aa8
AR
643 if (vm->flags & VM_KASAN)
644 vfree(kasan_mem_to_shadow(vm->addr));
bebf56a1
AR
645}
646
647static void register_global(struct kasan_global *global)
648{
649 size_t aligned_size = round_up(global->size, KASAN_SHADOW_SCALE_SIZE);
650
651 kasan_unpoison_shadow(global->beg, global->size);
652
653 kasan_poison_shadow(global->beg + aligned_size,
654 global->size_with_redzone - aligned_size,
655 KASAN_GLOBAL_REDZONE);
656}
657
658void __asan_register_globals(struct kasan_global *globals, size_t size)
659{
660 int i;
661
662 for (i = 0; i < size; i++)
663 register_global(&globals[i]);
664}
665EXPORT_SYMBOL(__asan_register_globals);
666
667void __asan_unregister_globals(struct kasan_global *globals, size_t size)
668{
669}
670EXPORT_SYMBOL(__asan_unregister_globals);
671
936bb4bb
AR
672#define DEFINE_ASAN_LOAD_STORE(size) \
673 void __asan_load##size(unsigned long addr) \
674 { \
675 check_memory_region_inline(addr, size, false, _RET_IP_);\
676 } \
677 EXPORT_SYMBOL(__asan_load##size); \
678 __alias(__asan_load##size) \
679 void __asan_load##size##_noabort(unsigned long); \
680 EXPORT_SYMBOL(__asan_load##size##_noabort); \
681 void __asan_store##size(unsigned long addr) \
682 { \
683 check_memory_region_inline(addr, size, true, _RET_IP_); \
684 } \
685 EXPORT_SYMBOL(__asan_store##size); \
686 __alias(__asan_store##size) \
687 void __asan_store##size##_noabort(unsigned long); \
0b24becc
AR
688 EXPORT_SYMBOL(__asan_store##size##_noabort)
689
690DEFINE_ASAN_LOAD_STORE(1);
691DEFINE_ASAN_LOAD_STORE(2);
692DEFINE_ASAN_LOAD_STORE(4);
693DEFINE_ASAN_LOAD_STORE(8);
694DEFINE_ASAN_LOAD_STORE(16);
695
696void __asan_loadN(unsigned long addr, size_t size)
697{
936bb4bb 698 check_memory_region(addr, size, false, _RET_IP_);
0b24becc
AR
699}
700EXPORT_SYMBOL(__asan_loadN);
701
702__alias(__asan_loadN)
703void __asan_loadN_noabort(unsigned long, size_t);
704EXPORT_SYMBOL(__asan_loadN_noabort);
705
706void __asan_storeN(unsigned long addr, size_t size)
707{
936bb4bb 708 check_memory_region(addr, size, true, _RET_IP_);
0b24becc
AR
709}
710EXPORT_SYMBOL(__asan_storeN);
711
712__alias(__asan_storeN)
713void __asan_storeN_noabort(unsigned long, size_t);
714EXPORT_SYMBOL(__asan_storeN_noabort);
715
716/* to shut up compiler complaints */
717void __asan_handle_no_return(void) {}
718EXPORT_SYMBOL(__asan_handle_no_return);
786a8959 719
828347f8
DV
720/* Emitted by compiler to poison large objects when they go out of scope. */
721void __asan_poison_stack_memory(const void *addr, size_t size)
722{
723 /*
724 * Addr is KASAN_SHADOW_SCALE_SIZE-aligned and the object is surrounded
725 * by redzones, so we simply round up size to simplify logic.
726 */
727 kasan_poison_shadow(addr, round_up(size, KASAN_SHADOW_SCALE_SIZE),
728 KASAN_USE_AFTER_SCOPE);
729}
730EXPORT_SYMBOL(__asan_poison_stack_memory);
731
732/* Emitted by compiler to unpoison large objects when they go into scope. */
733void __asan_unpoison_stack_memory(const void *addr, size_t size)
734{
735 kasan_unpoison_shadow(addr, size);
736}
737EXPORT_SYMBOL(__asan_unpoison_stack_memory);
738
786a8959 739#ifdef CONFIG_MEMORY_HOTPLUG
fa69b598 740static int __meminit kasan_mem_notifier(struct notifier_block *nb,
786a8959
AR
741 unsigned long action, void *data)
742{
fa69b598
AR
743 struct memory_notify *mem_data = data;
744 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
745 unsigned long shadow_end, shadow_size;
746
747 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
748 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
749 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
750 shadow_size = nr_shadow_pages << PAGE_SHIFT;
751 shadow_end = shadow_start + shadow_size;
752
753 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
754 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
755 return NOTIFY_BAD;
756
757 switch (action) {
758 case MEM_GOING_ONLINE: {
759 void *ret;
760
761 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
762 shadow_end, GFP_KERNEL,
763 PAGE_KERNEL, VM_NO_GUARD,
764 pfn_to_nid(mem_data->start_pfn),
765 __builtin_return_address(0));
766 if (!ret)
767 return NOTIFY_BAD;
768
769 kmemleak_ignore(ret);
770 return NOTIFY_OK;
771 }
772 case MEM_OFFLINE:
773 vfree((void *)shadow_start);
774 }
775
776 return NOTIFY_OK;
786a8959
AR
777}
778
779static int __init kasan_memhotplug_init(void)
780{
786a8959
AR
781 hotplug_memory_notifier(kasan_mem_notifier, 0);
782
783 return 0;
784}
785
786module_init(kasan_memhotplug_init);
787#endif