]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/khugepaged.c
khugepaged: add support of collapse for tmpfs/shmem pages
[mirror_ubuntu-artful-kernel.git] / mm / khugepaged.c
CommitLineData
b46e756f
KS
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3#include <linux/mm.h>
4#include <linux/sched.h>
5#include <linux/mmu_notifier.h>
6#include <linux/rmap.h>
7#include <linux/swap.h>
8#include <linux/mm_inline.h>
9#include <linux/kthread.h>
10#include <linux/khugepaged.h>
11#include <linux/freezer.h>
12#include <linux/mman.h>
13#include <linux/hashtable.h>
14#include <linux/userfaultfd_k.h>
15#include <linux/page_idle.h>
16#include <linux/swapops.h>
f3f0e1d2 17#include <linux/shmem_fs.h>
b46e756f
KS
18
19#include <asm/tlb.h>
20#include <asm/pgalloc.h>
21#include "internal.h"
22
23enum scan_result {
24 SCAN_FAIL,
25 SCAN_SUCCEED,
26 SCAN_PMD_NULL,
27 SCAN_EXCEED_NONE_PTE,
28 SCAN_PTE_NON_PRESENT,
29 SCAN_PAGE_RO,
30 SCAN_NO_REFERENCED_PAGE,
31 SCAN_PAGE_NULL,
32 SCAN_SCAN_ABORT,
33 SCAN_PAGE_COUNT,
34 SCAN_PAGE_LRU,
35 SCAN_PAGE_LOCK,
36 SCAN_PAGE_ANON,
37 SCAN_PAGE_COMPOUND,
38 SCAN_ANY_PROCESS,
39 SCAN_VMA_NULL,
40 SCAN_VMA_CHECK,
41 SCAN_ADDRESS_RANGE,
42 SCAN_SWAP_CACHE_PAGE,
43 SCAN_DEL_PAGE_LRU,
44 SCAN_ALLOC_HUGE_PAGE_FAIL,
45 SCAN_CGROUP_CHARGE_FAIL,
f3f0e1d2
KS
46 SCAN_EXCEED_SWAP_PTE,
47 SCAN_TRUNCATED,
b46e756f
KS
48};
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/huge_memory.h>
52
53/* default scan 8*512 pte (or vmas) every 30 second */
54static unsigned int khugepaged_pages_to_scan __read_mostly;
55static unsigned int khugepaged_pages_collapsed;
56static unsigned int khugepaged_full_scans;
57static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58/* during fragmentation poll the hugepage allocator once every minute */
59static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60static unsigned long khugepaged_sleep_expire;
61static DEFINE_SPINLOCK(khugepaged_mm_lock);
62static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
63/*
64 * default collapse hugepages if there is at least one pte mapped like
65 * it would have happened if the vma was large enough during page
66 * fault.
67 */
68static unsigned int khugepaged_max_ptes_none __read_mostly;
69static unsigned int khugepaged_max_ptes_swap __read_mostly;
70
71#define MM_SLOTS_HASH_BITS 10
72static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
74static struct kmem_cache *mm_slot_cache __read_mostly;
75
76/**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
81 */
82struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
86};
87
88/**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
93 *
94 * There is only the one khugepaged_scan instance of this cursor structure.
95 */
96struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
100};
101
102static struct khugepaged_scan khugepaged_scan = {
103 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104};
105
106static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
107 struct kobj_attribute *attr,
108 char *buf)
109{
110 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
111}
112
113static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
114 struct kobj_attribute *attr,
115 const char *buf, size_t count)
116{
117 unsigned long msecs;
118 int err;
119
120 err = kstrtoul(buf, 10, &msecs);
121 if (err || msecs > UINT_MAX)
122 return -EINVAL;
123
124 khugepaged_scan_sleep_millisecs = msecs;
125 khugepaged_sleep_expire = 0;
126 wake_up_interruptible(&khugepaged_wait);
127
128 return count;
129}
130static struct kobj_attribute scan_sleep_millisecs_attr =
131 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
132 scan_sleep_millisecs_store);
133
134static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
135 struct kobj_attribute *attr,
136 char *buf)
137{
138 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
139}
140
141static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
142 struct kobj_attribute *attr,
143 const char *buf, size_t count)
144{
145 unsigned long msecs;
146 int err;
147
148 err = kstrtoul(buf, 10, &msecs);
149 if (err || msecs > UINT_MAX)
150 return -EINVAL;
151
152 khugepaged_alloc_sleep_millisecs = msecs;
153 khugepaged_sleep_expire = 0;
154 wake_up_interruptible(&khugepaged_wait);
155
156 return count;
157}
158static struct kobj_attribute alloc_sleep_millisecs_attr =
159 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
160 alloc_sleep_millisecs_store);
161
162static ssize_t pages_to_scan_show(struct kobject *kobj,
163 struct kobj_attribute *attr,
164 char *buf)
165{
166 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
167}
168static ssize_t pages_to_scan_store(struct kobject *kobj,
169 struct kobj_attribute *attr,
170 const char *buf, size_t count)
171{
172 int err;
173 unsigned long pages;
174
175 err = kstrtoul(buf, 10, &pages);
176 if (err || !pages || pages > UINT_MAX)
177 return -EINVAL;
178
179 khugepaged_pages_to_scan = pages;
180
181 return count;
182}
183static struct kobj_attribute pages_to_scan_attr =
184 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
185 pages_to_scan_store);
186
187static ssize_t pages_collapsed_show(struct kobject *kobj,
188 struct kobj_attribute *attr,
189 char *buf)
190{
191 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
192}
193static struct kobj_attribute pages_collapsed_attr =
194 __ATTR_RO(pages_collapsed);
195
196static ssize_t full_scans_show(struct kobject *kobj,
197 struct kobj_attribute *attr,
198 char *buf)
199{
200 return sprintf(buf, "%u\n", khugepaged_full_scans);
201}
202static struct kobj_attribute full_scans_attr =
203 __ATTR_RO(full_scans);
204
205static ssize_t khugepaged_defrag_show(struct kobject *kobj,
206 struct kobj_attribute *attr, char *buf)
207{
208 return single_hugepage_flag_show(kobj, attr, buf,
209 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
210}
211static ssize_t khugepaged_defrag_store(struct kobject *kobj,
212 struct kobj_attribute *attr,
213 const char *buf, size_t count)
214{
215 return single_hugepage_flag_store(kobj, attr, buf, count,
216 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
217}
218static struct kobj_attribute khugepaged_defrag_attr =
219 __ATTR(defrag, 0644, khugepaged_defrag_show,
220 khugepaged_defrag_store);
221
222/*
223 * max_ptes_none controls if khugepaged should collapse hugepages over
224 * any unmapped ptes in turn potentially increasing the memory
225 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
226 * reduce the available free memory in the system as it
227 * runs. Increasing max_ptes_none will instead potentially reduce the
228 * free memory in the system during the khugepaged scan.
229 */
230static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
231 struct kobj_attribute *attr,
232 char *buf)
233{
234 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
235}
236static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
237 struct kobj_attribute *attr,
238 const char *buf, size_t count)
239{
240 int err;
241 unsigned long max_ptes_none;
242
243 err = kstrtoul(buf, 10, &max_ptes_none);
244 if (err || max_ptes_none > HPAGE_PMD_NR-1)
245 return -EINVAL;
246
247 khugepaged_max_ptes_none = max_ptes_none;
248
249 return count;
250}
251static struct kobj_attribute khugepaged_max_ptes_none_attr =
252 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
253 khugepaged_max_ptes_none_store);
254
255static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 char *buf)
258{
259 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
260}
261
262static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
265{
266 int err;
267 unsigned long max_ptes_swap;
268
269 err = kstrtoul(buf, 10, &max_ptes_swap);
270 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
271 return -EINVAL;
272
273 khugepaged_max_ptes_swap = max_ptes_swap;
274
275 return count;
276}
277
278static struct kobj_attribute khugepaged_max_ptes_swap_attr =
279 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
280 khugepaged_max_ptes_swap_store);
281
282static struct attribute *khugepaged_attr[] = {
283 &khugepaged_defrag_attr.attr,
284 &khugepaged_max_ptes_none_attr.attr,
285 &pages_to_scan_attr.attr,
286 &pages_collapsed_attr.attr,
287 &full_scans_attr.attr,
288 &scan_sleep_millisecs_attr.attr,
289 &alloc_sleep_millisecs_attr.attr,
290 &khugepaged_max_ptes_swap_attr.attr,
291 NULL,
292};
293
294struct attribute_group khugepaged_attr_group = {
295 .attrs = khugepaged_attr,
296 .name = "khugepaged",
297};
298
f3f0e1d2 299#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
b46e756f
KS
300
301int hugepage_madvise(struct vm_area_struct *vma,
302 unsigned long *vm_flags, int advice)
303{
304 switch (advice) {
305 case MADV_HUGEPAGE:
306#ifdef CONFIG_S390
307 /*
308 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
309 * can't handle this properly after s390_enable_sie, so we simply
310 * ignore the madvise to prevent qemu from causing a SIGSEGV.
311 */
312 if (mm_has_pgste(vma->vm_mm))
313 return 0;
314#endif
315 *vm_flags &= ~VM_NOHUGEPAGE;
316 *vm_flags |= VM_HUGEPAGE;
317 /*
318 * If the vma become good for khugepaged to scan,
319 * register it here without waiting a page fault that
320 * may not happen any time soon.
321 */
322 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
323 khugepaged_enter_vma_merge(vma, *vm_flags))
324 return -ENOMEM;
325 break;
326 case MADV_NOHUGEPAGE:
327 *vm_flags &= ~VM_HUGEPAGE;
328 *vm_flags |= VM_NOHUGEPAGE;
329 /*
330 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
331 * this vma even if we leave the mm registered in khugepaged if
332 * it got registered before VM_NOHUGEPAGE was set.
333 */
334 break;
335 }
336
337 return 0;
338}
339
340int __init khugepaged_init(void)
341{
342 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
343 sizeof(struct mm_slot),
344 __alignof__(struct mm_slot), 0, NULL);
345 if (!mm_slot_cache)
346 return -ENOMEM;
347
348 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
349 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
350 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
351
352 return 0;
353}
354
355void __init khugepaged_destroy(void)
356{
357 kmem_cache_destroy(mm_slot_cache);
358}
359
360static inline struct mm_slot *alloc_mm_slot(void)
361{
362 if (!mm_slot_cache) /* initialization failed */
363 return NULL;
364 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
365}
366
367static inline void free_mm_slot(struct mm_slot *mm_slot)
368{
369 kmem_cache_free(mm_slot_cache, mm_slot);
370}
371
372static struct mm_slot *get_mm_slot(struct mm_struct *mm)
373{
374 struct mm_slot *mm_slot;
375
376 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
377 if (mm == mm_slot->mm)
378 return mm_slot;
379
380 return NULL;
381}
382
383static void insert_to_mm_slots_hash(struct mm_struct *mm,
384 struct mm_slot *mm_slot)
385{
386 mm_slot->mm = mm;
387 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
388}
389
390static inline int khugepaged_test_exit(struct mm_struct *mm)
391{
392 return atomic_read(&mm->mm_users) == 0;
393}
394
395int __khugepaged_enter(struct mm_struct *mm)
396{
397 struct mm_slot *mm_slot;
398 int wakeup;
399
400 mm_slot = alloc_mm_slot();
401 if (!mm_slot)
402 return -ENOMEM;
403
404 /* __khugepaged_exit() must not run from under us */
405 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
406 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
407 free_mm_slot(mm_slot);
408 return 0;
409 }
410
411 spin_lock(&khugepaged_mm_lock);
412 insert_to_mm_slots_hash(mm, mm_slot);
413 /*
414 * Insert just behind the scanning cursor, to let the area settle
415 * down a little.
416 */
417 wakeup = list_empty(&khugepaged_scan.mm_head);
418 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
419 spin_unlock(&khugepaged_mm_lock);
420
421 atomic_inc(&mm->mm_count);
422 if (wakeup)
423 wake_up_interruptible(&khugepaged_wait);
424
425 return 0;
426}
427
428int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
429 unsigned long vm_flags)
430{
431 unsigned long hstart, hend;
432 if (!vma->anon_vma)
433 /*
434 * Not yet faulted in so we will register later in the
435 * page fault if needed.
436 */
437 return 0;
438 if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
439 /* khugepaged not yet working on file or special mappings */
440 return 0;
441 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
442 hend = vma->vm_end & HPAGE_PMD_MASK;
443 if (hstart < hend)
444 return khugepaged_enter(vma, vm_flags);
445 return 0;
446}
447
448void __khugepaged_exit(struct mm_struct *mm)
449{
450 struct mm_slot *mm_slot;
451 int free = 0;
452
453 spin_lock(&khugepaged_mm_lock);
454 mm_slot = get_mm_slot(mm);
455 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
456 hash_del(&mm_slot->hash);
457 list_del(&mm_slot->mm_node);
458 free = 1;
459 }
460 spin_unlock(&khugepaged_mm_lock);
461
462 if (free) {
463 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
464 free_mm_slot(mm_slot);
465 mmdrop(mm);
466 } else if (mm_slot) {
467 /*
468 * This is required to serialize against
469 * khugepaged_test_exit() (which is guaranteed to run
470 * under mmap sem read mode). Stop here (after we
471 * return all pagetables will be destroyed) until
472 * khugepaged has finished working on the pagetables
473 * under the mmap_sem.
474 */
475 down_write(&mm->mmap_sem);
476 up_write(&mm->mmap_sem);
477 }
478}
479
480static void release_pte_page(struct page *page)
481{
482 /* 0 stands for page_is_file_cache(page) == false */
483 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
484 unlock_page(page);
485 putback_lru_page(page);
486}
487
488static void release_pte_pages(pte_t *pte, pte_t *_pte)
489{
490 while (--_pte >= pte) {
491 pte_t pteval = *_pte;
492 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
493 release_pte_page(pte_page(pteval));
494 }
495}
496
497static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
498 unsigned long address,
499 pte_t *pte)
500{
501 struct page *page = NULL;
502 pte_t *_pte;
503 int none_or_zero = 0, result = 0;
504 bool referenced = false, writable = false;
505
506 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
507 _pte++, address += PAGE_SIZE) {
508 pte_t pteval = *_pte;
509 if (pte_none(pteval) || (pte_present(pteval) &&
510 is_zero_pfn(pte_pfn(pteval)))) {
511 if (!userfaultfd_armed(vma) &&
512 ++none_or_zero <= khugepaged_max_ptes_none) {
513 continue;
514 } else {
515 result = SCAN_EXCEED_NONE_PTE;
516 goto out;
517 }
518 }
519 if (!pte_present(pteval)) {
520 result = SCAN_PTE_NON_PRESENT;
521 goto out;
522 }
523 page = vm_normal_page(vma, address, pteval);
524 if (unlikely(!page)) {
525 result = SCAN_PAGE_NULL;
526 goto out;
527 }
528
529 VM_BUG_ON_PAGE(PageCompound(page), page);
530 VM_BUG_ON_PAGE(!PageAnon(page), page);
531 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
532
533 /*
534 * We can do it before isolate_lru_page because the
535 * page can't be freed from under us. NOTE: PG_lock
536 * is needed to serialize against split_huge_page
537 * when invoked from the VM.
538 */
539 if (!trylock_page(page)) {
540 result = SCAN_PAGE_LOCK;
541 goto out;
542 }
543
544 /*
545 * cannot use mapcount: can't collapse if there's a gup pin.
546 * The page must only be referenced by the scanned process
547 * and page swap cache.
548 */
549 if (page_count(page) != 1 + !!PageSwapCache(page)) {
550 unlock_page(page);
551 result = SCAN_PAGE_COUNT;
552 goto out;
553 }
554 if (pte_write(pteval)) {
555 writable = true;
556 } else {
557 if (PageSwapCache(page) &&
558 !reuse_swap_page(page, NULL)) {
559 unlock_page(page);
560 result = SCAN_SWAP_CACHE_PAGE;
561 goto out;
562 }
563 /*
564 * Page is not in the swap cache. It can be collapsed
565 * into a THP.
566 */
567 }
568
569 /*
570 * Isolate the page to avoid collapsing an hugepage
571 * currently in use by the VM.
572 */
573 if (isolate_lru_page(page)) {
574 unlock_page(page);
575 result = SCAN_DEL_PAGE_LRU;
576 goto out;
577 }
578 /* 0 stands for page_is_file_cache(page) == false */
579 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
580 VM_BUG_ON_PAGE(!PageLocked(page), page);
581 VM_BUG_ON_PAGE(PageLRU(page), page);
582
583 /* If there is no mapped pte young don't collapse the page */
584 if (pte_young(pteval) ||
585 page_is_young(page) || PageReferenced(page) ||
586 mmu_notifier_test_young(vma->vm_mm, address))
587 referenced = true;
588 }
589 if (likely(writable)) {
590 if (likely(referenced)) {
591 result = SCAN_SUCCEED;
592 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
593 referenced, writable, result);
594 return 1;
595 }
596 } else {
597 result = SCAN_PAGE_RO;
598 }
599
600out:
601 release_pte_pages(pte, _pte);
602 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
603 referenced, writable, result);
604 return 0;
605}
606
607static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
608 struct vm_area_struct *vma,
609 unsigned long address,
610 spinlock_t *ptl)
611{
612 pte_t *_pte;
613 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
614 pte_t pteval = *_pte;
615 struct page *src_page;
616
617 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
618 clear_user_highpage(page, address);
619 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
620 if (is_zero_pfn(pte_pfn(pteval))) {
621 /*
622 * ptl mostly unnecessary.
623 */
624 spin_lock(ptl);
625 /*
626 * paravirt calls inside pte_clear here are
627 * superfluous.
628 */
629 pte_clear(vma->vm_mm, address, _pte);
630 spin_unlock(ptl);
631 }
632 } else {
633 src_page = pte_page(pteval);
634 copy_user_highpage(page, src_page, address, vma);
635 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
636 release_pte_page(src_page);
637 /*
638 * ptl mostly unnecessary, but preempt has to
639 * be disabled to update the per-cpu stats
640 * inside page_remove_rmap().
641 */
642 spin_lock(ptl);
643 /*
644 * paravirt calls inside pte_clear here are
645 * superfluous.
646 */
647 pte_clear(vma->vm_mm, address, _pte);
648 page_remove_rmap(src_page, false);
649 spin_unlock(ptl);
650 free_page_and_swap_cache(src_page);
651 }
652
653 address += PAGE_SIZE;
654 page++;
655 }
656}
657
658static void khugepaged_alloc_sleep(void)
659{
660 DEFINE_WAIT(wait);
661
662 add_wait_queue(&khugepaged_wait, &wait);
663 freezable_schedule_timeout_interruptible(
664 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
665 remove_wait_queue(&khugepaged_wait, &wait);
666}
667
668static int khugepaged_node_load[MAX_NUMNODES];
669
670static bool khugepaged_scan_abort(int nid)
671{
672 int i;
673
674 /*
675 * If zone_reclaim_mode is disabled, then no extra effort is made to
676 * allocate memory locally.
677 */
678 if (!zone_reclaim_mode)
679 return false;
680
681 /* If there is a count for this node already, it must be acceptable */
682 if (khugepaged_node_load[nid])
683 return false;
684
685 for (i = 0; i < MAX_NUMNODES; i++) {
686 if (!khugepaged_node_load[i])
687 continue;
688 if (node_distance(nid, i) > RECLAIM_DISTANCE)
689 return true;
690 }
691 return false;
692}
693
694/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
695static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
696{
697 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
698}
699
700#ifdef CONFIG_NUMA
701static int khugepaged_find_target_node(void)
702{
703 static int last_khugepaged_target_node = NUMA_NO_NODE;
704 int nid, target_node = 0, max_value = 0;
705
706 /* find first node with max normal pages hit */
707 for (nid = 0; nid < MAX_NUMNODES; nid++)
708 if (khugepaged_node_load[nid] > max_value) {
709 max_value = khugepaged_node_load[nid];
710 target_node = nid;
711 }
712
713 /* do some balance if several nodes have the same hit record */
714 if (target_node <= last_khugepaged_target_node)
715 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
716 nid++)
717 if (max_value == khugepaged_node_load[nid]) {
718 target_node = nid;
719 break;
720 }
721
722 last_khugepaged_target_node = target_node;
723 return target_node;
724}
725
726static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
727{
728 if (IS_ERR(*hpage)) {
729 if (!*wait)
730 return false;
731
732 *wait = false;
733 *hpage = NULL;
734 khugepaged_alloc_sleep();
735 } else if (*hpage) {
736 put_page(*hpage);
737 *hpage = NULL;
738 }
739
740 return true;
741}
742
743static struct page *
988ddb71 744khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
b46e756f
KS
745{
746 VM_BUG_ON_PAGE(*hpage, *hpage);
747
b46e756f
KS
748 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
749 if (unlikely(!*hpage)) {
750 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
751 *hpage = ERR_PTR(-ENOMEM);
752 return NULL;
753 }
754
755 prep_transhuge_page(*hpage);
756 count_vm_event(THP_COLLAPSE_ALLOC);
757 return *hpage;
758}
759#else
760static int khugepaged_find_target_node(void)
761{
762 return 0;
763}
764
765static inline struct page *alloc_khugepaged_hugepage(void)
766{
767 struct page *page;
768
769 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
770 HPAGE_PMD_ORDER);
771 if (page)
772 prep_transhuge_page(page);
773 return page;
774}
775
776static struct page *khugepaged_alloc_hugepage(bool *wait)
777{
778 struct page *hpage;
779
780 do {
781 hpage = alloc_khugepaged_hugepage();
782 if (!hpage) {
783 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
784 if (!*wait)
785 return NULL;
786
787 *wait = false;
788 khugepaged_alloc_sleep();
789 } else
790 count_vm_event(THP_COLLAPSE_ALLOC);
791 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
792
793 return hpage;
794}
795
796static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
797{
798 if (!*hpage)
799 *hpage = khugepaged_alloc_hugepage(wait);
800
801 if (unlikely(!*hpage))
802 return false;
803
804 return true;
805}
806
807static struct page *
988ddb71 808khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
b46e756f 809{
b46e756f
KS
810 VM_BUG_ON(!*hpage);
811
812 return *hpage;
813}
814#endif
815
816static bool hugepage_vma_check(struct vm_area_struct *vma)
817{
818 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
819 (vma->vm_flags & VM_NOHUGEPAGE))
820 return false;
f3f0e1d2
KS
821 if (shmem_file(vma->vm_file)) {
822 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
823 HPAGE_PMD_NR);
824 }
b46e756f
KS
825 if (!vma->anon_vma || vma->vm_ops)
826 return false;
827 if (is_vma_temporary_stack(vma))
828 return false;
829 return !(vma->vm_flags & VM_NO_KHUGEPAGED);
830}
831
832/*
833 * If mmap_sem temporarily dropped, revalidate vma
834 * before taking mmap_sem.
835 * Return 0 if succeeds, otherwise return none-zero
836 * value (scan code).
837 */
838
839static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
840{
841 struct vm_area_struct *vma;
842 unsigned long hstart, hend;
843
844 if (unlikely(khugepaged_test_exit(mm)))
845 return SCAN_ANY_PROCESS;
846
847 vma = find_vma(mm, address);
848 if (!vma)
849 return SCAN_VMA_NULL;
850
851 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
852 hend = vma->vm_end & HPAGE_PMD_MASK;
853 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
854 return SCAN_ADDRESS_RANGE;
855 if (!hugepage_vma_check(vma))
856 return SCAN_VMA_CHECK;
857 return 0;
858}
859
860/*
861 * Bring missing pages in from swap, to complete THP collapse.
862 * Only done if khugepaged_scan_pmd believes it is worthwhile.
863 *
864 * Called and returns without pte mapped or spinlocks held,
865 * but with mmap_sem held to protect against vma changes.
866 */
867
868static bool __collapse_huge_page_swapin(struct mm_struct *mm,
869 struct vm_area_struct *vma,
870 unsigned long address, pmd_t *pmd)
871{
872 pte_t pteval;
873 int swapped_in = 0, ret = 0;
874 struct fault_env fe = {
875 .vma = vma,
876 .address = address,
877 .flags = FAULT_FLAG_ALLOW_RETRY,
878 .pmd = pmd,
879 };
880
881 fe.pte = pte_offset_map(pmd, address);
882 for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
883 fe.pte++, fe.address += PAGE_SIZE) {
884 pteval = *fe.pte;
885 if (!is_swap_pte(pteval))
886 continue;
887 swapped_in++;
888 ret = do_swap_page(&fe, pteval);
889 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
890 if (ret & VM_FAULT_RETRY) {
891 down_read(&mm->mmap_sem);
892 /* vma is no longer available, don't continue to swapin */
893 if (hugepage_vma_revalidate(mm, address))
894 return false;
895 /* check if the pmd is still valid */
896 if (mm_find_pmd(mm, address) != pmd)
897 return false;
898 }
899 if (ret & VM_FAULT_ERROR) {
900 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
901 return false;
902 }
903 /* pte is unmapped now, we need to map it */
904 fe.pte = pte_offset_map(pmd, fe.address);
905 }
906 fe.pte--;
907 pte_unmap(fe.pte);
908 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
909 return true;
910}
911
912static void collapse_huge_page(struct mm_struct *mm,
913 unsigned long address,
914 struct page **hpage,
915 struct vm_area_struct *vma,
916 int node)
917{
918 pmd_t *pmd, _pmd;
919 pte_t *pte;
920 pgtable_t pgtable;
921 struct page *new_page;
922 spinlock_t *pmd_ptl, *pte_ptl;
923 int isolated = 0, result = 0;
924 struct mem_cgroup *memcg;
925 unsigned long mmun_start; /* For mmu_notifiers */
926 unsigned long mmun_end; /* For mmu_notifiers */
927 gfp_t gfp;
928
929 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
930
931 /* Only allocate from the target node */
932 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
933
988ddb71
KS
934 /*
935 * Before allocating the hugepage, release the mmap_sem read lock.
936 * The allocation can take potentially a long time if it involves
937 * sync compaction, and we do not need to hold the mmap_sem during
938 * that. We will recheck the vma after taking it again in write mode.
939 */
940 up_read(&mm->mmap_sem);
941 new_page = khugepaged_alloc_page(hpage, gfp, node);
b46e756f
KS
942 if (!new_page) {
943 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
944 goto out_nolock;
945 }
946
947 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
948 result = SCAN_CGROUP_CHARGE_FAIL;
949 goto out_nolock;
950 }
951
952 down_read(&mm->mmap_sem);
953 result = hugepage_vma_revalidate(mm, address);
954 if (result) {
955 mem_cgroup_cancel_charge(new_page, memcg, true);
956 up_read(&mm->mmap_sem);
957 goto out_nolock;
958 }
959
960 pmd = mm_find_pmd(mm, address);
961 if (!pmd) {
962 result = SCAN_PMD_NULL;
963 mem_cgroup_cancel_charge(new_page, memcg, true);
964 up_read(&mm->mmap_sem);
965 goto out_nolock;
966 }
967
968 /*
969 * __collapse_huge_page_swapin always returns with mmap_sem locked.
970 * If it fails, release mmap_sem and jump directly out.
971 * Continuing to collapse causes inconsistency.
972 */
973 if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
974 mem_cgroup_cancel_charge(new_page, memcg, true);
975 up_read(&mm->mmap_sem);
976 goto out_nolock;
977 }
978
979 up_read(&mm->mmap_sem);
980 /*
981 * Prevent all access to pagetables with the exception of
982 * gup_fast later handled by the ptep_clear_flush and the VM
983 * handled by the anon_vma lock + PG_lock.
984 */
985 down_write(&mm->mmap_sem);
986 result = hugepage_vma_revalidate(mm, address);
987 if (result)
988 goto out;
989 /* check if the pmd is still valid */
990 if (mm_find_pmd(mm, address) != pmd)
991 goto out;
992
993 anon_vma_lock_write(vma->anon_vma);
994
995 pte = pte_offset_map(pmd, address);
996 pte_ptl = pte_lockptr(mm, pmd);
997
998 mmun_start = address;
999 mmun_end = address + HPAGE_PMD_SIZE;
1000 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1001 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1002 /*
1003 * After this gup_fast can't run anymore. This also removes
1004 * any huge TLB entry from the CPU so we won't allow
1005 * huge and small TLB entries for the same virtual address
1006 * to avoid the risk of CPU bugs in that area.
1007 */
1008 _pmd = pmdp_collapse_flush(vma, address, pmd);
1009 spin_unlock(pmd_ptl);
1010 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1011
1012 spin_lock(pte_ptl);
1013 isolated = __collapse_huge_page_isolate(vma, address, pte);
1014 spin_unlock(pte_ptl);
1015
1016 if (unlikely(!isolated)) {
1017 pte_unmap(pte);
1018 spin_lock(pmd_ptl);
1019 BUG_ON(!pmd_none(*pmd));
1020 /*
1021 * We can only use set_pmd_at when establishing
1022 * hugepmds and never for establishing regular pmds that
1023 * points to regular pagetables. Use pmd_populate for that
1024 */
1025 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1026 spin_unlock(pmd_ptl);
1027 anon_vma_unlock_write(vma->anon_vma);
1028 result = SCAN_FAIL;
1029 goto out;
1030 }
1031
1032 /*
1033 * All pages are isolated and locked so anon_vma rmap
1034 * can't run anymore.
1035 */
1036 anon_vma_unlock_write(vma->anon_vma);
1037
1038 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1039 pte_unmap(pte);
1040 __SetPageUptodate(new_page);
1041 pgtable = pmd_pgtable(_pmd);
1042
1043 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1044 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1045
1046 /*
1047 * spin_lock() below is not the equivalent of smp_wmb(), so
1048 * this is needed to avoid the copy_huge_page writes to become
1049 * visible after the set_pmd_at() write.
1050 */
1051 smp_wmb();
1052
1053 spin_lock(pmd_ptl);
1054 BUG_ON(!pmd_none(*pmd));
1055 page_add_new_anon_rmap(new_page, vma, address, true);
1056 mem_cgroup_commit_charge(new_page, memcg, false, true);
1057 lru_cache_add_active_or_unevictable(new_page, vma);
1058 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1059 set_pmd_at(mm, address, pmd, _pmd);
1060 update_mmu_cache_pmd(vma, address, pmd);
1061 spin_unlock(pmd_ptl);
1062
1063 *hpage = NULL;
1064
1065 khugepaged_pages_collapsed++;
1066 result = SCAN_SUCCEED;
1067out_up_write:
1068 up_write(&mm->mmap_sem);
1069out_nolock:
1070 trace_mm_collapse_huge_page(mm, isolated, result);
1071 return;
1072out:
1073 mem_cgroup_cancel_charge(new_page, memcg, true);
1074 goto out_up_write;
1075}
1076
1077static int khugepaged_scan_pmd(struct mm_struct *mm,
1078 struct vm_area_struct *vma,
1079 unsigned long address,
1080 struct page **hpage)
1081{
1082 pmd_t *pmd;
1083 pte_t *pte, *_pte;
1084 int ret = 0, none_or_zero = 0, result = 0;
1085 struct page *page = NULL;
1086 unsigned long _address;
1087 spinlock_t *ptl;
1088 int node = NUMA_NO_NODE, unmapped = 0;
1089 bool writable = false, referenced = false;
1090
1091 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1092
1093 pmd = mm_find_pmd(mm, address);
1094 if (!pmd) {
1095 result = SCAN_PMD_NULL;
1096 goto out;
1097 }
1098
1099 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1100 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1101 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1102 _pte++, _address += PAGE_SIZE) {
1103 pte_t pteval = *_pte;
1104 if (is_swap_pte(pteval)) {
1105 if (++unmapped <= khugepaged_max_ptes_swap) {
1106 continue;
1107 } else {
1108 result = SCAN_EXCEED_SWAP_PTE;
1109 goto out_unmap;
1110 }
1111 }
1112 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1113 if (!userfaultfd_armed(vma) &&
1114 ++none_or_zero <= khugepaged_max_ptes_none) {
1115 continue;
1116 } else {
1117 result = SCAN_EXCEED_NONE_PTE;
1118 goto out_unmap;
1119 }
1120 }
1121 if (!pte_present(pteval)) {
1122 result = SCAN_PTE_NON_PRESENT;
1123 goto out_unmap;
1124 }
1125 if (pte_write(pteval))
1126 writable = true;
1127
1128 page = vm_normal_page(vma, _address, pteval);
1129 if (unlikely(!page)) {
1130 result = SCAN_PAGE_NULL;
1131 goto out_unmap;
1132 }
1133
1134 /* TODO: teach khugepaged to collapse THP mapped with pte */
1135 if (PageCompound(page)) {
1136 result = SCAN_PAGE_COMPOUND;
1137 goto out_unmap;
1138 }
1139
1140 /*
1141 * Record which node the original page is from and save this
1142 * information to khugepaged_node_load[].
1143 * Khupaged will allocate hugepage from the node has the max
1144 * hit record.
1145 */
1146 node = page_to_nid(page);
1147 if (khugepaged_scan_abort(node)) {
1148 result = SCAN_SCAN_ABORT;
1149 goto out_unmap;
1150 }
1151 khugepaged_node_load[node]++;
1152 if (!PageLRU(page)) {
1153 result = SCAN_PAGE_LRU;
1154 goto out_unmap;
1155 }
1156 if (PageLocked(page)) {
1157 result = SCAN_PAGE_LOCK;
1158 goto out_unmap;
1159 }
1160 if (!PageAnon(page)) {
1161 result = SCAN_PAGE_ANON;
1162 goto out_unmap;
1163 }
1164
1165 /*
1166 * cannot use mapcount: can't collapse if there's a gup pin.
1167 * The page must only be referenced by the scanned process
1168 * and page swap cache.
1169 */
1170 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1171 result = SCAN_PAGE_COUNT;
1172 goto out_unmap;
1173 }
1174 if (pte_young(pteval) ||
1175 page_is_young(page) || PageReferenced(page) ||
1176 mmu_notifier_test_young(vma->vm_mm, address))
1177 referenced = true;
1178 }
1179 if (writable) {
1180 if (referenced) {
1181 result = SCAN_SUCCEED;
1182 ret = 1;
1183 } else {
1184 result = SCAN_NO_REFERENCED_PAGE;
1185 }
1186 } else {
1187 result = SCAN_PAGE_RO;
1188 }
1189out_unmap:
1190 pte_unmap_unlock(pte, ptl);
1191 if (ret) {
1192 node = khugepaged_find_target_node();
1193 /* collapse_huge_page will return with the mmap_sem released */
1194 collapse_huge_page(mm, address, hpage, vma, node);
1195 }
1196out:
1197 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1198 none_or_zero, result, unmapped);
1199 return ret;
1200}
1201
1202static void collect_mm_slot(struct mm_slot *mm_slot)
1203{
1204 struct mm_struct *mm = mm_slot->mm;
1205
1206 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1207
1208 if (khugepaged_test_exit(mm)) {
1209 /* free mm_slot */
1210 hash_del(&mm_slot->hash);
1211 list_del(&mm_slot->mm_node);
1212
1213 /*
1214 * Not strictly needed because the mm exited already.
1215 *
1216 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1217 */
1218
1219 /* khugepaged_mm_lock actually not necessary for the below */
1220 free_mm_slot(mm_slot);
1221 mmdrop(mm);
1222 }
1223}
1224
f3f0e1d2
KS
1225#ifdef CONFIG_SHMEM
1226static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1227{
1228 struct vm_area_struct *vma;
1229 unsigned long addr;
1230 pmd_t *pmd, _pmd;
1231
1232 i_mmap_lock_write(mapping);
1233 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1234 /* probably overkill */
1235 if (vma->anon_vma)
1236 continue;
1237 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1238 if (addr & ~HPAGE_PMD_MASK)
1239 continue;
1240 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1241 continue;
1242 pmd = mm_find_pmd(vma->vm_mm, addr);
1243 if (!pmd)
1244 continue;
1245 /*
1246 * We need exclusive mmap_sem to retract page table.
1247 * If trylock fails we would end up with pte-mapped THP after
1248 * re-fault. Not ideal, but it's more important to not disturb
1249 * the system too much.
1250 */
1251 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1252 spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1253 /* assume page table is clear */
1254 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1255 spin_unlock(ptl);
1256 up_write(&vma->vm_mm->mmap_sem);
1257 atomic_long_dec(&vma->vm_mm->nr_ptes);
1258 pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1259 }
1260 }
1261 i_mmap_unlock_write(mapping);
1262}
1263
1264/**
1265 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1266 *
1267 * Basic scheme is simple, details are more complex:
1268 * - allocate and freeze a new huge page;
1269 * - scan over radix tree replacing old pages the new one
1270 * + swap in pages if necessary;
1271 * + fill in gaps;
1272 * + keep old pages around in case if rollback is required;
1273 * - if replacing succeed:
1274 * + copy data over;
1275 * + free old pages;
1276 * + unfreeze huge page;
1277 * - if replacing failed;
1278 * + put all pages back and unfreeze them;
1279 * + restore gaps in the radix-tree;
1280 * + free huge page;
1281 */
1282static void collapse_shmem(struct mm_struct *mm,
1283 struct address_space *mapping, pgoff_t start,
1284 struct page **hpage, int node)
1285{
1286 gfp_t gfp;
1287 struct page *page, *new_page, *tmp;
1288 struct mem_cgroup *memcg;
1289 pgoff_t index, end = start + HPAGE_PMD_NR;
1290 LIST_HEAD(pagelist);
1291 struct radix_tree_iter iter;
1292 void **slot;
1293 int nr_none = 0, result = SCAN_SUCCEED;
1294
1295 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1296
1297 /* Only allocate from the target node */
1298 gfp = alloc_hugepage_khugepaged_gfpmask() |
1299 __GFP_OTHER_NODE | __GFP_THISNODE;
1300
1301 new_page = khugepaged_alloc_page(hpage, gfp, node);
1302 if (!new_page) {
1303 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1304 goto out;
1305 }
1306
1307 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1308 result = SCAN_CGROUP_CHARGE_FAIL;
1309 goto out;
1310 }
1311
1312 new_page->index = start;
1313 new_page->mapping = mapping;
1314 __SetPageSwapBacked(new_page);
1315 __SetPageLocked(new_page);
1316 BUG_ON(!page_ref_freeze(new_page, 1));
1317
1318
1319 /*
1320 * At this point the new_page is 'frozen' (page_count() is zero), locked
1321 * and not up-to-date. It's safe to insert it into radix tree, because
1322 * nobody would be able to map it or use it in other way until we
1323 * unfreeze it.
1324 */
1325
1326 index = start;
1327 spin_lock_irq(&mapping->tree_lock);
1328 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1329 int n = min(iter.index, end) - index;
1330
1331 /*
1332 * Handle holes in the radix tree: charge it from shmem and
1333 * insert relevant subpage of new_page into the radix-tree.
1334 */
1335 if (n && !shmem_charge(mapping->host, n)) {
1336 result = SCAN_FAIL;
1337 break;
1338 }
1339 nr_none += n;
1340 for (; index < min(iter.index, end); index++) {
1341 radix_tree_insert(&mapping->page_tree, index,
1342 new_page + (index % HPAGE_PMD_NR));
1343 }
1344
1345 /* We are done. */
1346 if (index >= end)
1347 break;
1348
1349 page = radix_tree_deref_slot_protected(slot,
1350 &mapping->tree_lock);
1351 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1352 spin_unlock_irq(&mapping->tree_lock);
1353 /* swap in or instantiate fallocated page */
1354 if (shmem_getpage(mapping->host, index, &page,
1355 SGP_NOHUGE)) {
1356 result = SCAN_FAIL;
1357 goto tree_unlocked;
1358 }
1359 spin_lock_irq(&mapping->tree_lock);
1360 } else if (trylock_page(page)) {
1361 get_page(page);
1362 } else {
1363 result = SCAN_PAGE_LOCK;
1364 break;
1365 }
1366
1367 /*
1368 * The page must be locked, so we can drop the tree_lock
1369 * without racing with truncate.
1370 */
1371 VM_BUG_ON_PAGE(!PageLocked(page), page);
1372 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1373 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1374
1375 if (page_mapping(page) != mapping) {
1376 result = SCAN_TRUNCATED;
1377 goto out_unlock;
1378 }
1379 spin_unlock_irq(&mapping->tree_lock);
1380
1381 if (isolate_lru_page(page)) {
1382 result = SCAN_DEL_PAGE_LRU;
1383 goto out_isolate_failed;
1384 }
1385
1386 if (page_mapped(page))
1387 unmap_mapping_range(mapping, index << PAGE_SHIFT,
1388 PAGE_SIZE, 0);
1389
1390 spin_lock_irq(&mapping->tree_lock);
1391
1392 VM_BUG_ON_PAGE(page_mapped(page), page);
1393
1394 /*
1395 * The page is expected to have page_count() == 3:
1396 * - we hold a pin on it;
1397 * - one reference from radix tree;
1398 * - one from isolate_lru_page;
1399 */
1400 if (!page_ref_freeze(page, 3)) {
1401 result = SCAN_PAGE_COUNT;
1402 goto out_lru;
1403 }
1404
1405 /*
1406 * Add the page to the list to be able to undo the collapse if
1407 * something go wrong.
1408 */
1409 list_add_tail(&page->lru, &pagelist);
1410
1411 /* Finally, replace with the new page. */
1412 radix_tree_replace_slot(slot,
1413 new_page + (index % HPAGE_PMD_NR));
1414
1415 index++;
1416 continue;
1417out_lru:
1418 spin_unlock_irq(&mapping->tree_lock);
1419 putback_lru_page(page);
1420out_isolate_failed:
1421 unlock_page(page);
1422 put_page(page);
1423 goto tree_unlocked;
1424out_unlock:
1425 unlock_page(page);
1426 put_page(page);
1427 break;
1428 }
1429
1430 /*
1431 * Handle hole in radix tree at the end of the range.
1432 * This code only triggers if there's nothing in radix tree
1433 * beyond 'end'.
1434 */
1435 if (result == SCAN_SUCCEED && index < end) {
1436 int n = end - index;
1437
1438 if (!shmem_charge(mapping->host, n)) {
1439 result = SCAN_FAIL;
1440 goto tree_locked;
1441 }
1442
1443 for (; index < end; index++) {
1444 radix_tree_insert(&mapping->page_tree, index,
1445 new_page + (index % HPAGE_PMD_NR));
1446 }
1447 nr_none += n;
1448 }
1449
1450tree_locked:
1451 spin_unlock_irq(&mapping->tree_lock);
1452tree_unlocked:
1453
1454 if (result == SCAN_SUCCEED) {
1455 unsigned long flags;
1456 struct zone *zone = page_zone(new_page);
1457
1458 /*
1459 * Replacing old pages with new one has succeed, now we need to
1460 * copy the content and free old pages.
1461 */
1462 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1463 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1464 page);
1465 list_del(&page->lru);
1466 unlock_page(page);
1467 page_ref_unfreeze(page, 1);
1468 page->mapping = NULL;
1469 ClearPageActive(page);
1470 ClearPageUnevictable(page);
1471 put_page(page);
1472 }
1473
1474 local_irq_save(flags);
1475 __inc_zone_page_state(new_page, NR_SHMEM_THPS);
1476 if (nr_none) {
1477 __mod_zone_page_state(zone, NR_FILE_PAGES, nr_none);
1478 __mod_zone_page_state(zone, NR_SHMEM, nr_none);
1479 }
1480 local_irq_restore(flags);
1481
1482 /*
1483 * Remove pte page tables, so we can re-faulti
1484 * the page as huge.
1485 */
1486 retract_page_tables(mapping, start);
1487
1488 /* Everything is ready, let's unfreeze the new_page */
1489 set_page_dirty(new_page);
1490 SetPageUptodate(new_page);
1491 page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1492 mem_cgroup_commit_charge(new_page, memcg, false, true);
1493 lru_cache_add_anon(new_page);
1494 unlock_page(new_page);
1495
1496 *hpage = NULL;
1497 } else {
1498 /* Something went wrong: rollback changes to the radix-tree */
1499 shmem_uncharge(mapping->host, nr_none);
1500 spin_lock_irq(&mapping->tree_lock);
1501 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1502 start) {
1503 if (iter.index >= end)
1504 break;
1505 page = list_first_entry_or_null(&pagelist,
1506 struct page, lru);
1507 if (!page || iter.index < page->index) {
1508 if (!nr_none)
1509 break;
1510 /* Put holes back where they were */
1511 radix_tree_replace_slot(slot, NULL);
1512 nr_none--;
1513 continue;
1514 }
1515
1516 VM_BUG_ON_PAGE(page->index != iter.index, page);
1517
1518 /* Unfreeze the page. */
1519 list_del(&page->lru);
1520 page_ref_unfreeze(page, 2);
1521 radix_tree_replace_slot(slot, page);
1522 spin_unlock_irq(&mapping->tree_lock);
1523 putback_lru_page(page);
1524 unlock_page(page);
1525 spin_lock_irq(&mapping->tree_lock);
1526 }
1527 VM_BUG_ON(nr_none);
1528 spin_unlock_irq(&mapping->tree_lock);
1529
1530 /* Unfreeze new_page, caller would take care about freeing it */
1531 page_ref_unfreeze(new_page, 1);
1532 mem_cgroup_cancel_charge(new_page, memcg, true);
1533 unlock_page(new_page);
1534 new_page->mapping = NULL;
1535 }
1536out:
1537 VM_BUG_ON(!list_empty(&pagelist));
1538 /* TODO: tracepoints */
1539}
1540
1541static void khugepaged_scan_shmem(struct mm_struct *mm,
1542 struct address_space *mapping,
1543 pgoff_t start, struct page **hpage)
1544{
1545 struct page *page = NULL;
1546 struct radix_tree_iter iter;
1547 void **slot;
1548 int present, swap;
1549 int node = NUMA_NO_NODE;
1550 int result = SCAN_SUCCEED;
1551
1552 present = 0;
1553 swap = 0;
1554 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1555 rcu_read_lock();
1556 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1557 if (iter.index >= start + HPAGE_PMD_NR)
1558 break;
1559
1560 page = radix_tree_deref_slot(slot);
1561 if (radix_tree_deref_retry(page)) {
1562 slot = radix_tree_iter_retry(&iter);
1563 continue;
1564 }
1565
1566 if (radix_tree_exception(page)) {
1567 if (++swap > khugepaged_max_ptes_swap) {
1568 result = SCAN_EXCEED_SWAP_PTE;
1569 break;
1570 }
1571 continue;
1572 }
1573
1574 if (PageTransCompound(page)) {
1575 result = SCAN_PAGE_COMPOUND;
1576 break;
1577 }
1578
1579 node = page_to_nid(page);
1580 if (khugepaged_scan_abort(node)) {
1581 result = SCAN_SCAN_ABORT;
1582 break;
1583 }
1584 khugepaged_node_load[node]++;
1585
1586 if (!PageLRU(page)) {
1587 result = SCAN_PAGE_LRU;
1588 break;
1589 }
1590
1591 if (page_count(page) != 1 + page_mapcount(page)) {
1592 result = SCAN_PAGE_COUNT;
1593 break;
1594 }
1595
1596 /*
1597 * We probably should check if the page is referenced here, but
1598 * nobody would transfer pte_young() to PageReferenced() for us.
1599 * And rmap walk here is just too costly...
1600 */
1601
1602 present++;
1603
1604 if (need_resched()) {
1605 cond_resched_rcu();
1606 slot = radix_tree_iter_next(&iter);
1607 }
1608 }
1609 rcu_read_unlock();
1610
1611 if (result == SCAN_SUCCEED) {
1612 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1613 result = SCAN_EXCEED_NONE_PTE;
1614 } else {
1615 node = khugepaged_find_target_node();
1616 collapse_shmem(mm, mapping, start, hpage, node);
1617 }
1618 }
1619
1620 /* TODO: tracepoints */
1621}
1622#else
1623static void khugepaged_scan_shmem(struct mm_struct *mm,
1624 struct address_space *mapping,
1625 pgoff_t start, struct page **hpage)
1626{
1627 BUILD_BUG();
1628}
1629#endif
1630
b46e756f
KS
1631static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1632 struct page **hpage)
1633 __releases(&khugepaged_mm_lock)
1634 __acquires(&khugepaged_mm_lock)
1635{
1636 struct mm_slot *mm_slot;
1637 struct mm_struct *mm;
1638 struct vm_area_struct *vma;
1639 int progress = 0;
1640
1641 VM_BUG_ON(!pages);
1642 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1643
1644 if (khugepaged_scan.mm_slot)
1645 mm_slot = khugepaged_scan.mm_slot;
1646 else {
1647 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1648 struct mm_slot, mm_node);
1649 khugepaged_scan.address = 0;
1650 khugepaged_scan.mm_slot = mm_slot;
1651 }
1652 spin_unlock(&khugepaged_mm_lock);
1653
1654 mm = mm_slot->mm;
1655 down_read(&mm->mmap_sem);
1656 if (unlikely(khugepaged_test_exit(mm)))
1657 vma = NULL;
1658 else
1659 vma = find_vma(mm, khugepaged_scan.address);
1660
1661 progress++;
1662 for (; vma; vma = vma->vm_next) {
1663 unsigned long hstart, hend;
1664
1665 cond_resched();
1666 if (unlikely(khugepaged_test_exit(mm))) {
1667 progress++;
1668 break;
1669 }
1670 if (!hugepage_vma_check(vma)) {
1671skip:
1672 progress++;
1673 continue;
1674 }
1675 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1676 hend = vma->vm_end & HPAGE_PMD_MASK;
1677 if (hstart >= hend)
1678 goto skip;
1679 if (khugepaged_scan.address > hend)
1680 goto skip;
1681 if (khugepaged_scan.address < hstart)
1682 khugepaged_scan.address = hstart;
1683 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
f3f0e1d2
KS
1684 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
1685 goto skip;
b46e756f
KS
1686
1687 while (khugepaged_scan.address < hend) {
1688 int ret;
1689 cond_resched();
1690 if (unlikely(khugepaged_test_exit(mm)))
1691 goto breakouterloop;
1692
1693 VM_BUG_ON(khugepaged_scan.address < hstart ||
1694 khugepaged_scan.address + HPAGE_PMD_SIZE >
1695 hend);
f3f0e1d2
KS
1696 if (shmem_file(vma->vm_file)) {
1697 struct file *file = get_file(vma->vm_file);
1698 pgoff_t pgoff = linear_page_index(vma,
1699 khugepaged_scan.address);
1700 up_read(&mm->mmap_sem);
1701 ret = 1;
1702 khugepaged_scan_shmem(mm, file->f_mapping,
1703 pgoff, hpage);
1704 fput(file);
1705 } else {
1706 ret = khugepaged_scan_pmd(mm, vma,
1707 khugepaged_scan.address,
1708 hpage);
1709 }
b46e756f
KS
1710 /* move to next address */
1711 khugepaged_scan.address += HPAGE_PMD_SIZE;
1712 progress += HPAGE_PMD_NR;
1713 if (ret)
1714 /* we released mmap_sem so break loop */
1715 goto breakouterloop_mmap_sem;
1716 if (progress >= pages)
1717 goto breakouterloop;
1718 }
1719 }
1720breakouterloop:
1721 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1722breakouterloop_mmap_sem:
1723
1724 spin_lock(&khugepaged_mm_lock);
1725 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1726 /*
1727 * Release the current mm_slot if this mm is about to die, or
1728 * if we scanned all vmas of this mm.
1729 */
1730 if (khugepaged_test_exit(mm) || !vma) {
1731 /*
1732 * Make sure that if mm_users is reaching zero while
1733 * khugepaged runs here, khugepaged_exit will find
1734 * mm_slot not pointing to the exiting mm.
1735 */
1736 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1737 khugepaged_scan.mm_slot = list_entry(
1738 mm_slot->mm_node.next,
1739 struct mm_slot, mm_node);
1740 khugepaged_scan.address = 0;
1741 } else {
1742 khugepaged_scan.mm_slot = NULL;
1743 khugepaged_full_scans++;
1744 }
1745
1746 collect_mm_slot(mm_slot);
1747 }
1748
1749 return progress;
1750}
1751
1752static int khugepaged_has_work(void)
1753{
1754 return !list_empty(&khugepaged_scan.mm_head) &&
1755 khugepaged_enabled();
1756}
1757
1758static int khugepaged_wait_event(void)
1759{
1760 return !list_empty(&khugepaged_scan.mm_head) ||
1761 kthread_should_stop();
1762}
1763
1764static void khugepaged_do_scan(void)
1765{
1766 struct page *hpage = NULL;
1767 unsigned int progress = 0, pass_through_head = 0;
1768 unsigned int pages = khugepaged_pages_to_scan;
1769 bool wait = true;
1770
1771 barrier(); /* write khugepaged_pages_to_scan to local stack */
1772
1773 while (progress < pages) {
1774 if (!khugepaged_prealloc_page(&hpage, &wait))
1775 break;
1776
1777 cond_resched();
1778
1779 if (unlikely(kthread_should_stop() || try_to_freeze()))
1780 break;
1781
1782 spin_lock(&khugepaged_mm_lock);
1783 if (!khugepaged_scan.mm_slot)
1784 pass_through_head++;
1785 if (khugepaged_has_work() &&
1786 pass_through_head < 2)
1787 progress += khugepaged_scan_mm_slot(pages - progress,
1788 &hpage);
1789 else
1790 progress = pages;
1791 spin_unlock(&khugepaged_mm_lock);
1792 }
1793
1794 if (!IS_ERR_OR_NULL(hpage))
1795 put_page(hpage);
1796}
1797
1798static bool khugepaged_should_wakeup(void)
1799{
1800 return kthread_should_stop() ||
1801 time_after_eq(jiffies, khugepaged_sleep_expire);
1802}
1803
1804static void khugepaged_wait_work(void)
1805{
1806 if (khugepaged_has_work()) {
1807 const unsigned long scan_sleep_jiffies =
1808 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1809
1810 if (!scan_sleep_jiffies)
1811 return;
1812
1813 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1814 wait_event_freezable_timeout(khugepaged_wait,
1815 khugepaged_should_wakeup(),
1816 scan_sleep_jiffies);
1817 return;
1818 }
1819
1820 if (khugepaged_enabled())
1821 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1822}
1823
1824static int khugepaged(void *none)
1825{
1826 struct mm_slot *mm_slot;
1827
1828 set_freezable();
1829 set_user_nice(current, MAX_NICE);
1830
1831 while (!kthread_should_stop()) {
1832 khugepaged_do_scan();
1833 khugepaged_wait_work();
1834 }
1835
1836 spin_lock(&khugepaged_mm_lock);
1837 mm_slot = khugepaged_scan.mm_slot;
1838 khugepaged_scan.mm_slot = NULL;
1839 if (mm_slot)
1840 collect_mm_slot(mm_slot);
1841 spin_unlock(&khugepaged_mm_lock);
1842 return 0;
1843}
1844
1845static void set_recommended_min_free_kbytes(void)
1846{
1847 struct zone *zone;
1848 int nr_zones = 0;
1849 unsigned long recommended_min;
1850
1851 for_each_populated_zone(zone)
1852 nr_zones++;
1853
1854 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1855 recommended_min = pageblock_nr_pages * nr_zones * 2;
1856
1857 /*
1858 * Make sure that on average at least two pageblocks are almost free
1859 * of another type, one for a migratetype to fall back to and a
1860 * second to avoid subsequent fallbacks of other types There are 3
1861 * MIGRATE_TYPES we care about.
1862 */
1863 recommended_min += pageblock_nr_pages * nr_zones *
1864 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1865
1866 /* don't ever allow to reserve more than 5% of the lowmem */
1867 recommended_min = min(recommended_min,
1868 (unsigned long) nr_free_buffer_pages() / 20);
1869 recommended_min <<= (PAGE_SHIFT-10);
1870
1871 if (recommended_min > min_free_kbytes) {
1872 if (user_min_free_kbytes >= 0)
1873 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1874 min_free_kbytes, recommended_min);
1875
1876 min_free_kbytes = recommended_min;
1877 }
1878 setup_per_zone_wmarks();
1879}
1880
1881int start_stop_khugepaged(void)
1882{
1883 static struct task_struct *khugepaged_thread __read_mostly;
1884 static DEFINE_MUTEX(khugepaged_mutex);
1885 int err = 0;
1886
1887 mutex_lock(&khugepaged_mutex);
1888 if (khugepaged_enabled()) {
1889 if (!khugepaged_thread)
1890 khugepaged_thread = kthread_run(khugepaged, NULL,
1891 "khugepaged");
1892 if (IS_ERR(khugepaged_thread)) {
1893 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1894 err = PTR_ERR(khugepaged_thread);
1895 khugepaged_thread = NULL;
1896 goto fail;
1897 }
1898
1899 if (!list_empty(&khugepaged_scan.mm_head))
1900 wake_up_interruptible(&khugepaged_wait);
1901
1902 set_recommended_min_free_kbytes();
1903 } else if (khugepaged_thread) {
1904 kthread_stop(khugepaged_thread);
1905 khugepaged_thread = NULL;
1906 }
1907fail:
1908 mutex_unlock(&khugepaged_mutex);
1909 return err;
1910}