]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/kmemleak.c
HID: wacom: fixup quirks setup for WACOM_DEVICETYPE_PAD
[mirror_ubuntu-artful-kernel.git] / mm / kmemleak.c
CommitLineData
3c7b4e6b
CM
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
85d3a316 32 * blocks. The object_tree_root is a red black tree used to look-up
3c7b4e6b
CM
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
3c7b4e6b 55 *
93ada579 56 * Locks and mutexes are acquired/nested in the following order:
9d5a4c73 57 *
93ada579
CM
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
9d5a4c73 62 *
3c7b4e6b
CM
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
ae281064
JP
71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
3c7b4e6b
CM
73#include <linux/init.h>
74#include <linux/kernel.h>
75#include <linux/list.h>
76#include <linux/sched.h>
77#include <linux/jiffies.h>
78#include <linux/delay.h>
b95f1b31 79#include <linux/export.h>
3c7b4e6b 80#include <linux/kthread.h>
85d3a316 81#include <linux/rbtree.h>
3c7b4e6b
CM
82#include <linux/fs.h>
83#include <linux/debugfs.h>
84#include <linux/seq_file.h>
85#include <linux/cpumask.h>
86#include <linux/spinlock.h>
87#include <linux/mutex.h>
88#include <linux/rcupdate.h>
89#include <linux/stacktrace.h>
90#include <linux/cache.h>
91#include <linux/percpu.h>
92#include <linux/hardirq.h>
93#include <linux/mmzone.h>
94#include <linux/slab.h>
95#include <linux/thread_info.h>
96#include <linux/err.h>
97#include <linux/uaccess.h>
98#include <linux/string.h>
99#include <linux/nodemask.h>
100#include <linux/mm.h>
179a8100 101#include <linux/workqueue.h>
04609ccc 102#include <linux/crc32.h>
3c7b4e6b
CM
103
104#include <asm/sections.h>
105#include <asm/processor.h>
60063497 106#include <linux/atomic.h>
3c7b4e6b 107
e79ed2f1 108#include <linux/kasan.h>
8e019366 109#include <linux/kmemcheck.h>
3c7b4e6b 110#include <linux/kmemleak.h>
029aeff5 111#include <linux/memory_hotplug.h>
3c7b4e6b
CM
112
113/*
114 * Kmemleak configuration and common defines.
115 */
116#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 117#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
118#define SECS_FIRST_SCAN 60 /* delay before the first scan */
119#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 120#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
121
122#define BYTES_PER_POINTER sizeof(void *)
123
216c04b0 124/* GFP bitmask for kmemleak internal allocations */
8f4fc071
VD
125#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
126 __GFP_NOACCOUNT)) | \
6ae4bd1f
CM
127 __GFP_NORETRY | __GFP_NOMEMALLOC | \
128 __GFP_NOWARN)
216c04b0 129
3c7b4e6b
CM
130/* scanning area inside a memory block */
131struct kmemleak_scan_area {
132 struct hlist_node node;
c017b4be
CM
133 unsigned long start;
134 size_t size;
3c7b4e6b
CM
135};
136
a1084c87
LR
137#define KMEMLEAK_GREY 0
138#define KMEMLEAK_BLACK -1
139
3c7b4e6b
CM
140/*
141 * Structure holding the metadata for each allocated memory block.
142 * Modifications to such objects should be made while holding the
143 * object->lock. Insertions or deletions from object_list, gray_list or
85d3a316 144 * rb_node are already protected by the corresponding locks or mutex (see
3c7b4e6b
CM
145 * the notes on locking above). These objects are reference-counted
146 * (use_count) and freed using the RCU mechanism.
147 */
148struct kmemleak_object {
149 spinlock_t lock;
150 unsigned long flags; /* object status flags */
151 struct list_head object_list;
152 struct list_head gray_list;
85d3a316 153 struct rb_node rb_node;
3c7b4e6b
CM
154 struct rcu_head rcu; /* object_list lockless traversal */
155 /* object usage count; object freed when use_count == 0 */
156 atomic_t use_count;
157 unsigned long pointer;
158 size_t size;
159 /* minimum number of a pointers found before it is considered leak */
160 int min_count;
161 /* the total number of pointers found pointing to this object */
162 int count;
04609ccc
CM
163 /* checksum for detecting modified objects */
164 u32 checksum;
3c7b4e6b
CM
165 /* memory ranges to be scanned inside an object (empty for all) */
166 struct hlist_head area_list;
167 unsigned long trace[MAX_TRACE];
168 unsigned int trace_len;
169 unsigned long jiffies; /* creation timestamp */
170 pid_t pid; /* pid of the current task */
171 char comm[TASK_COMM_LEN]; /* executable name */
172};
173
174/* flag representing the memory block allocation status */
175#define OBJECT_ALLOCATED (1 << 0)
176/* flag set after the first reporting of an unreference object */
177#define OBJECT_REPORTED (1 << 1)
178/* flag set to not scan the object */
179#define OBJECT_NO_SCAN (1 << 2)
180
0494e082
SS
181/* number of bytes to print per line; must be 16 or 32 */
182#define HEX_ROW_SIZE 16
183/* number of bytes to print at a time (1, 2, 4, 8) */
184#define HEX_GROUP_SIZE 1
185/* include ASCII after the hex output */
186#define HEX_ASCII 1
187/* max number of lines to be printed */
188#define HEX_MAX_LINES 2
189
3c7b4e6b
CM
190/* the list of all allocated objects */
191static LIST_HEAD(object_list);
192/* the list of gray-colored objects (see color_gray comment below) */
193static LIST_HEAD(gray_list);
85d3a316
ML
194/* search tree for object boundaries */
195static struct rb_root object_tree_root = RB_ROOT;
196/* rw_lock protecting the access to object_list and object_tree_root */
3c7b4e6b
CM
197static DEFINE_RWLOCK(kmemleak_lock);
198
199/* allocation caches for kmemleak internal data */
200static struct kmem_cache *object_cache;
201static struct kmem_cache *scan_area_cache;
202
203/* set if tracing memory operations is enabled */
8910ae89 204static int kmemleak_enabled;
c5f3b1a5
CM
205/* same as above but only for the kmemleak_free() callback */
206static int kmemleak_free_enabled;
3c7b4e6b 207/* set in the late_initcall if there were no errors */
8910ae89 208static int kmemleak_initialized;
3c7b4e6b 209/* enables or disables early logging of the memory operations */
8910ae89 210static int kmemleak_early_log = 1;
5f79020c 211/* set if a kmemleak warning was issued */
8910ae89 212static int kmemleak_warning;
5f79020c 213/* set if a fatal kmemleak error has occurred */
8910ae89 214static int kmemleak_error;
3c7b4e6b
CM
215
216/* minimum and maximum address that may be valid pointers */
217static unsigned long min_addr = ULONG_MAX;
218static unsigned long max_addr;
219
3c7b4e6b 220static struct task_struct *scan_thread;
acf4968e 221/* used to avoid reporting of recently allocated objects */
3c7b4e6b 222static unsigned long jiffies_min_age;
acf4968e 223static unsigned long jiffies_last_scan;
3c7b4e6b
CM
224/* delay between automatic memory scannings */
225static signed long jiffies_scan_wait;
226/* enables or disables the task stacks scanning */
e0a2a160 227static int kmemleak_stack_scan = 1;
4698c1f2 228/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 229static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
230/* setting kmemleak=on, will set this var, skipping the disable */
231static int kmemleak_skip_disable;
dc9b3f42
LZ
232/* If there are leaks that can be reported */
233static bool kmemleak_found_leaks;
3c7b4e6b 234
3c7b4e6b 235/*
2030117d 236 * Early object allocation/freeing logging. Kmemleak is initialized after the
3c7b4e6b 237 * kernel allocator. However, both the kernel allocator and kmemleak may
2030117d 238 * allocate memory blocks which need to be tracked. Kmemleak defines an
3c7b4e6b
CM
239 * arbitrary buffer to hold the allocation/freeing information before it is
240 * fully initialized.
241 */
242
243/* kmemleak operation type for early logging */
244enum {
245 KMEMLEAK_ALLOC,
f528f0b8 246 KMEMLEAK_ALLOC_PERCPU,
3c7b4e6b 247 KMEMLEAK_FREE,
53238a60 248 KMEMLEAK_FREE_PART,
f528f0b8 249 KMEMLEAK_FREE_PERCPU,
3c7b4e6b
CM
250 KMEMLEAK_NOT_LEAK,
251 KMEMLEAK_IGNORE,
252 KMEMLEAK_SCAN_AREA,
253 KMEMLEAK_NO_SCAN
254};
255
256/*
257 * Structure holding the information passed to kmemleak callbacks during the
258 * early logging.
259 */
260struct early_log {
261 int op_type; /* kmemleak operation type */
262 const void *ptr; /* allocated/freed memory block */
263 size_t size; /* memory block size */
264 int min_count; /* minimum reference count */
fd678967
CM
265 unsigned long trace[MAX_TRACE]; /* stack trace */
266 unsigned int trace_len; /* stack trace length */
3c7b4e6b
CM
267};
268
269/* early logging buffer and current position */
a6186d89
CM
270static struct early_log
271 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
272static int crt_early_log __initdata;
3c7b4e6b
CM
273
274static void kmemleak_disable(void);
275
276/*
277 * Print a warning and dump the stack trace.
278 */
5f79020c
CM
279#define kmemleak_warn(x...) do { \
280 pr_warning(x); \
281 dump_stack(); \
8910ae89 282 kmemleak_warning = 1; \
3c7b4e6b
CM
283} while (0)
284
285/*
25985edc 286 * Macro invoked when a serious kmemleak condition occurred and cannot be
2030117d 287 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
288 * tracing no longer available.
289 */
000814f4 290#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
291 kmemleak_warn(x); \
292 kmemleak_disable(); \
293} while (0)
294
0494e082
SS
295/*
296 * Printing of the objects hex dump to the seq file. The number of lines to be
297 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
298 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
299 * with the object->lock held.
300 */
301static void hex_dump_object(struct seq_file *seq,
302 struct kmemleak_object *object)
303{
304 const u8 *ptr = (const u8 *)object->pointer;
6fc37c49 305 size_t len;
0494e082
SS
306
307 /* limit the number of lines to HEX_MAX_LINES */
6fc37c49 308 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
0494e082 309
6fc37c49
AS
310 seq_printf(seq, " hex dump (first %zu bytes):\n", len);
311 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
312 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
0494e082
SS
313}
314
3c7b4e6b
CM
315/*
316 * Object colors, encoded with count and min_count:
317 * - white - orphan object, not enough references to it (count < min_count)
318 * - gray - not orphan, not marked as false positive (min_count == 0) or
319 * sufficient references to it (count >= min_count)
320 * - black - ignore, it doesn't contain references (e.g. text section)
321 * (min_count == -1). No function defined for this color.
322 * Newly created objects don't have any color assigned (object->count == -1)
323 * before the next memory scan when they become white.
324 */
4a558dd6 325static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 326{
a1084c87
LR
327 return object->count != KMEMLEAK_BLACK &&
328 object->count < object->min_count;
3c7b4e6b
CM
329}
330
4a558dd6 331static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 332{
a1084c87
LR
333 return object->min_count != KMEMLEAK_BLACK &&
334 object->count >= object->min_count;
3c7b4e6b
CM
335}
336
3c7b4e6b
CM
337/*
338 * Objects are considered unreferenced only if their color is white, they have
339 * not be deleted and have a minimum age to avoid false positives caused by
340 * pointers temporarily stored in CPU registers.
341 */
4a558dd6 342static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 343{
04609ccc 344 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
345 time_before_eq(object->jiffies + jiffies_min_age,
346 jiffies_last_scan);
3c7b4e6b
CM
347}
348
349/*
bab4a34a
CM
350 * Printing of the unreferenced objects information to the seq file. The
351 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 352 */
3c7b4e6b
CM
353static void print_unreferenced(struct seq_file *seq,
354 struct kmemleak_object *object)
355{
356 int i;
fefdd336 357 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 358
bab4a34a
CM
359 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
360 object->pointer, object->size);
fefdd336
CM
361 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
362 object->comm, object->pid, object->jiffies,
363 msecs_age / 1000, msecs_age % 1000);
0494e082 364 hex_dump_object(seq, object);
bab4a34a 365 seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
366
367 for (i = 0; i < object->trace_len; i++) {
368 void *ptr = (void *)object->trace[i];
bab4a34a 369 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
370 }
371}
372
373/*
374 * Print the kmemleak_object information. This function is used mainly for
375 * debugging special cases when kmemleak operations. It must be called with
376 * the object->lock held.
377 */
378static void dump_object_info(struct kmemleak_object *object)
379{
380 struct stack_trace trace;
381
382 trace.nr_entries = object->trace_len;
383 trace.entries = object->trace;
384
ae281064 385 pr_notice("Object 0x%08lx (size %zu):\n",
85d3a316 386 object->pointer, object->size);
3c7b4e6b
CM
387 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
388 object->comm, object->pid, object->jiffies);
389 pr_notice(" min_count = %d\n", object->min_count);
390 pr_notice(" count = %d\n", object->count);
189d84ed 391 pr_notice(" flags = 0x%lx\n", object->flags);
aae0ad7a 392 pr_notice(" checksum = %u\n", object->checksum);
3c7b4e6b
CM
393 pr_notice(" backtrace:\n");
394 print_stack_trace(&trace, 4);
395}
396
397/*
85d3a316 398 * Look-up a memory block metadata (kmemleak_object) in the object search
3c7b4e6b
CM
399 * tree based on a pointer value. If alias is 0, only values pointing to the
400 * beginning of the memory block are allowed. The kmemleak_lock must be held
401 * when calling this function.
402 */
403static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
404{
85d3a316
ML
405 struct rb_node *rb = object_tree_root.rb_node;
406
407 while (rb) {
408 struct kmemleak_object *object =
409 rb_entry(rb, struct kmemleak_object, rb_node);
410 if (ptr < object->pointer)
411 rb = object->rb_node.rb_left;
412 else if (object->pointer + object->size <= ptr)
413 rb = object->rb_node.rb_right;
414 else if (object->pointer == ptr || alias)
415 return object;
416 else {
5f79020c
CM
417 kmemleak_warn("Found object by alias at 0x%08lx\n",
418 ptr);
a7686a45 419 dump_object_info(object);
85d3a316 420 break;
3c7b4e6b 421 }
85d3a316
ML
422 }
423 return NULL;
3c7b4e6b
CM
424}
425
426/*
427 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
428 * that once an object's use_count reached 0, the RCU freeing was already
429 * registered and the object should no longer be used. This function must be
430 * called under the protection of rcu_read_lock().
431 */
432static int get_object(struct kmemleak_object *object)
433{
434 return atomic_inc_not_zero(&object->use_count);
435}
436
437/*
438 * RCU callback to free a kmemleak_object.
439 */
440static void free_object_rcu(struct rcu_head *rcu)
441{
b67bfe0d 442 struct hlist_node *tmp;
3c7b4e6b
CM
443 struct kmemleak_scan_area *area;
444 struct kmemleak_object *object =
445 container_of(rcu, struct kmemleak_object, rcu);
446
447 /*
448 * Once use_count is 0 (guaranteed by put_object), there is no other
449 * code accessing this object, hence no need for locking.
450 */
b67bfe0d
SL
451 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
452 hlist_del(&area->node);
3c7b4e6b
CM
453 kmem_cache_free(scan_area_cache, area);
454 }
455 kmem_cache_free(object_cache, object);
456}
457
458/*
459 * Decrement the object use_count. Once the count is 0, free the object using
460 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
461 * delete_object() path, the delayed RCU freeing ensures that there is no
462 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
463 * is also possible.
464 */
465static void put_object(struct kmemleak_object *object)
466{
467 if (!atomic_dec_and_test(&object->use_count))
468 return;
469
470 /* should only get here after delete_object was called */
471 WARN_ON(object->flags & OBJECT_ALLOCATED);
472
473 call_rcu(&object->rcu, free_object_rcu);
474}
475
476/*
85d3a316 477 * Look up an object in the object search tree and increase its use_count.
3c7b4e6b
CM
478 */
479static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
480{
481 unsigned long flags;
9fbed254 482 struct kmemleak_object *object;
3c7b4e6b
CM
483
484 rcu_read_lock();
485 read_lock_irqsave(&kmemleak_lock, flags);
93ada579 486 object = lookup_object(ptr, alias);
3c7b4e6b
CM
487 read_unlock_irqrestore(&kmemleak_lock, flags);
488
489 /* check whether the object is still available */
490 if (object && !get_object(object))
491 object = NULL;
492 rcu_read_unlock();
493
494 return object;
495}
496
e781a9ab
CM
497/*
498 * Look up an object in the object search tree and remove it from both
499 * object_tree_root and object_list. The returned object's use_count should be
500 * at least 1, as initially set by create_object().
501 */
502static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
503{
504 unsigned long flags;
505 struct kmemleak_object *object;
506
507 write_lock_irqsave(&kmemleak_lock, flags);
508 object = lookup_object(ptr, alias);
509 if (object) {
510 rb_erase(&object->rb_node, &object_tree_root);
511 list_del_rcu(&object->object_list);
512 }
513 write_unlock_irqrestore(&kmemleak_lock, flags);
514
515 return object;
516}
517
fd678967
CM
518/*
519 * Save stack trace to the given array of MAX_TRACE size.
520 */
521static int __save_stack_trace(unsigned long *trace)
522{
523 struct stack_trace stack_trace;
524
525 stack_trace.max_entries = MAX_TRACE;
526 stack_trace.nr_entries = 0;
527 stack_trace.entries = trace;
528 stack_trace.skip = 2;
529 save_stack_trace(&stack_trace);
530
531 return stack_trace.nr_entries;
532}
533
3c7b4e6b
CM
534/*
535 * Create the metadata (struct kmemleak_object) corresponding to an allocated
536 * memory block and add it to the object_list and object_tree_root.
537 */
fd678967
CM
538static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
539 int min_count, gfp_t gfp)
3c7b4e6b
CM
540{
541 unsigned long flags;
85d3a316
ML
542 struct kmemleak_object *object, *parent;
543 struct rb_node **link, *rb_parent;
3c7b4e6b 544
6ae4bd1f 545 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 546 if (!object) {
6ae4bd1f
CM
547 pr_warning("Cannot allocate a kmemleak_object structure\n");
548 kmemleak_disable();
fd678967 549 return NULL;
3c7b4e6b
CM
550 }
551
552 INIT_LIST_HEAD(&object->object_list);
553 INIT_LIST_HEAD(&object->gray_list);
554 INIT_HLIST_HEAD(&object->area_list);
555 spin_lock_init(&object->lock);
556 atomic_set(&object->use_count, 1);
04609ccc 557 object->flags = OBJECT_ALLOCATED;
3c7b4e6b
CM
558 object->pointer = ptr;
559 object->size = size;
560 object->min_count = min_count;
04609ccc 561 object->count = 0; /* white color initially */
3c7b4e6b 562 object->jiffies = jiffies;
04609ccc 563 object->checksum = 0;
3c7b4e6b
CM
564
565 /* task information */
566 if (in_irq()) {
567 object->pid = 0;
568 strncpy(object->comm, "hardirq", sizeof(object->comm));
569 } else if (in_softirq()) {
570 object->pid = 0;
571 strncpy(object->comm, "softirq", sizeof(object->comm));
572 } else {
573 object->pid = current->pid;
574 /*
575 * There is a small chance of a race with set_task_comm(),
576 * however using get_task_comm() here may cause locking
577 * dependency issues with current->alloc_lock. In the worst
578 * case, the command line is not correct.
579 */
580 strncpy(object->comm, current->comm, sizeof(object->comm));
581 }
582
583 /* kernel backtrace */
fd678967 584 object->trace_len = __save_stack_trace(object->trace);
3c7b4e6b 585
3c7b4e6b 586 write_lock_irqsave(&kmemleak_lock, flags);
0580a181 587
3c7b4e6b
CM
588 min_addr = min(min_addr, ptr);
589 max_addr = max(max_addr, ptr + size);
85d3a316
ML
590 link = &object_tree_root.rb_node;
591 rb_parent = NULL;
592 while (*link) {
593 rb_parent = *link;
594 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
595 if (ptr + size <= parent->pointer)
596 link = &parent->rb_node.rb_left;
597 else if (parent->pointer + parent->size <= ptr)
598 link = &parent->rb_node.rb_right;
599 else {
600 kmemleak_stop("Cannot insert 0x%lx into the object "
601 "search tree (overlaps existing)\n",
602 ptr);
9d5a4c73
CM
603 /*
604 * No need for parent->lock here since "parent" cannot
605 * be freed while the kmemleak_lock is held.
606 */
607 dump_object_info(parent);
85d3a316 608 kmem_cache_free(object_cache, object);
9d5a4c73 609 object = NULL;
85d3a316
ML
610 goto out;
611 }
3c7b4e6b 612 }
85d3a316
ML
613 rb_link_node(&object->rb_node, rb_parent, link);
614 rb_insert_color(&object->rb_node, &object_tree_root);
615
3c7b4e6b
CM
616 list_add_tail_rcu(&object->object_list, &object_list);
617out:
618 write_unlock_irqrestore(&kmemleak_lock, flags);
fd678967 619 return object;
3c7b4e6b
CM
620}
621
622/*
e781a9ab 623 * Mark the object as not allocated and schedule RCU freeing via put_object().
3c7b4e6b 624 */
53238a60 625static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
626{
627 unsigned long flags;
3c7b4e6b 628
3c7b4e6b 629 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
e781a9ab 630 WARN_ON(atomic_read(&object->use_count) < 1);
3c7b4e6b
CM
631
632 /*
633 * Locking here also ensures that the corresponding memory block
634 * cannot be freed when it is being scanned.
635 */
636 spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
637 object->flags &= ~OBJECT_ALLOCATED;
638 spin_unlock_irqrestore(&object->lock, flags);
639 put_object(object);
640}
641
53238a60
CM
642/*
643 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
644 * delete it.
645 */
646static void delete_object_full(unsigned long ptr)
647{
648 struct kmemleak_object *object;
649
e781a9ab 650 object = find_and_remove_object(ptr, 0);
53238a60
CM
651 if (!object) {
652#ifdef DEBUG
653 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
654 ptr);
655#endif
656 return;
657 }
658 __delete_object(object);
53238a60
CM
659}
660
661/*
662 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
663 * delete it. If the memory block is partially freed, the function may create
664 * additional metadata for the remaining parts of the block.
665 */
666static void delete_object_part(unsigned long ptr, size_t size)
667{
668 struct kmemleak_object *object;
669 unsigned long start, end;
670
e781a9ab 671 object = find_and_remove_object(ptr, 1);
53238a60
CM
672 if (!object) {
673#ifdef DEBUG
674 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
675 "(size %zu)\n", ptr, size);
676#endif
677 return;
678 }
53238a60
CM
679
680 /*
681 * Create one or two objects that may result from the memory block
682 * split. Note that partial freeing is only done by free_bootmem() and
683 * this happens before kmemleak_init() is called. The path below is
684 * only executed during early log recording in kmemleak_init(), so
685 * GFP_KERNEL is enough.
686 */
687 start = object->pointer;
688 end = object->pointer + object->size;
689 if (ptr > start)
690 create_object(start, ptr - start, object->min_count,
691 GFP_KERNEL);
692 if (ptr + size < end)
693 create_object(ptr + size, end - ptr - size, object->min_count,
694 GFP_KERNEL);
695
e781a9ab 696 __delete_object(object);
53238a60 697}
a1084c87
LR
698
699static void __paint_it(struct kmemleak_object *object, int color)
700{
701 object->min_count = color;
702 if (color == KMEMLEAK_BLACK)
703 object->flags |= OBJECT_NO_SCAN;
704}
705
706static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
707{
708 unsigned long flags;
a1084c87
LR
709
710 spin_lock_irqsave(&object->lock, flags);
711 __paint_it(object, color);
712 spin_unlock_irqrestore(&object->lock, flags);
713}
714
715static void paint_ptr(unsigned long ptr, int color)
716{
3c7b4e6b
CM
717 struct kmemleak_object *object;
718
719 object = find_and_get_object(ptr, 0);
720 if (!object) {
a1084c87
LR
721 kmemleak_warn("Trying to color unknown object "
722 "at 0x%08lx as %s\n", ptr,
723 (color == KMEMLEAK_GREY) ? "Grey" :
724 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
725 return;
726 }
a1084c87 727 paint_it(object, color);
3c7b4e6b
CM
728 put_object(object);
729}
730
a1084c87 731/*
145b64b9 732 * Mark an object permanently as gray-colored so that it can no longer be
a1084c87
LR
733 * reported as a leak. This is used in general to mark a false positive.
734 */
735static void make_gray_object(unsigned long ptr)
736{
737 paint_ptr(ptr, KMEMLEAK_GREY);
738}
739
3c7b4e6b
CM
740/*
741 * Mark the object as black-colored so that it is ignored from scans and
742 * reporting.
743 */
744static void make_black_object(unsigned long ptr)
745{
a1084c87 746 paint_ptr(ptr, KMEMLEAK_BLACK);
3c7b4e6b
CM
747}
748
749/*
750 * Add a scanning area to the object. If at least one such area is added,
751 * kmemleak will only scan these ranges rather than the whole memory block.
752 */
c017b4be 753static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
754{
755 unsigned long flags;
756 struct kmemleak_object *object;
757 struct kmemleak_scan_area *area;
758
c017b4be 759 object = find_and_get_object(ptr, 1);
3c7b4e6b 760 if (!object) {
ae281064
JP
761 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
762 ptr);
3c7b4e6b
CM
763 return;
764 }
765
6ae4bd1f 766 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 767 if (!area) {
6ae4bd1f 768 pr_warning("Cannot allocate a scan area\n");
3c7b4e6b
CM
769 goto out;
770 }
771
772 spin_lock_irqsave(&object->lock, flags);
7f88f88f
CM
773 if (size == SIZE_MAX) {
774 size = object->pointer + object->size - ptr;
775 } else if (ptr + size > object->pointer + object->size) {
ae281064 776 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
777 dump_object_info(object);
778 kmem_cache_free(scan_area_cache, area);
779 goto out_unlock;
780 }
781
782 INIT_HLIST_NODE(&area->node);
c017b4be
CM
783 area->start = ptr;
784 area->size = size;
3c7b4e6b
CM
785
786 hlist_add_head(&area->node, &object->area_list);
787out_unlock:
788 spin_unlock_irqrestore(&object->lock, flags);
789out:
790 put_object(object);
791}
792
793/*
794 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
795 * pointer. Such object will not be scanned by kmemleak but references to it
796 * are searched.
797 */
798static void object_no_scan(unsigned long ptr)
799{
800 unsigned long flags;
801 struct kmemleak_object *object;
802
803 object = find_and_get_object(ptr, 0);
804 if (!object) {
ae281064 805 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
806 return;
807 }
808
809 spin_lock_irqsave(&object->lock, flags);
810 object->flags |= OBJECT_NO_SCAN;
811 spin_unlock_irqrestore(&object->lock, flags);
812 put_object(object);
813}
814
815/*
816 * Log an early kmemleak_* call to the early_log buffer. These calls will be
817 * processed later once kmemleak is fully initialized.
818 */
a6186d89 819static void __init log_early(int op_type, const void *ptr, size_t size,
c017b4be 820 int min_count)
3c7b4e6b
CM
821{
822 unsigned long flags;
823 struct early_log *log;
824
8910ae89 825 if (kmemleak_error) {
b6693005
CM
826 /* kmemleak stopped recording, just count the requests */
827 crt_early_log++;
828 return;
829 }
830
3c7b4e6b 831 if (crt_early_log >= ARRAY_SIZE(early_log)) {
21cd3a60 832 crt_early_log++;
a9d9058a 833 kmemleak_disable();
3c7b4e6b
CM
834 return;
835 }
836
837 /*
838 * There is no need for locking since the kernel is still in UP mode
839 * at this stage. Disabling the IRQs is enough.
840 */
841 local_irq_save(flags);
842 log = &early_log[crt_early_log];
843 log->op_type = op_type;
844 log->ptr = ptr;
845 log->size = size;
846 log->min_count = min_count;
5f79020c 847 log->trace_len = __save_stack_trace(log->trace);
3c7b4e6b
CM
848 crt_early_log++;
849 local_irq_restore(flags);
850}
851
fd678967
CM
852/*
853 * Log an early allocated block and populate the stack trace.
854 */
855static void early_alloc(struct early_log *log)
856{
857 struct kmemleak_object *object;
858 unsigned long flags;
859 int i;
860
8910ae89 861 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
fd678967
CM
862 return;
863
864 /*
865 * RCU locking needed to ensure object is not freed via put_object().
866 */
867 rcu_read_lock();
868 object = create_object((unsigned long)log->ptr, log->size,
c1bcd6b3 869 log->min_count, GFP_ATOMIC);
0d5d1aad
CM
870 if (!object)
871 goto out;
fd678967
CM
872 spin_lock_irqsave(&object->lock, flags);
873 for (i = 0; i < log->trace_len; i++)
874 object->trace[i] = log->trace[i];
875 object->trace_len = log->trace_len;
876 spin_unlock_irqrestore(&object->lock, flags);
0d5d1aad 877out:
fd678967
CM
878 rcu_read_unlock();
879}
880
f528f0b8
CM
881/*
882 * Log an early allocated block and populate the stack trace.
883 */
884static void early_alloc_percpu(struct early_log *log)
885{
886 unsigned int cpu;
887 const void __percpu *ptr = log->ptr;
888
889 for_each_possible_cpu(cpu) {
890 log->ptr = per_cpu_ptr(ptr, cpu);
891 early_alloc(log);
892 }
893}
894
a2b6bf63
CM
895/**
896 * kmemleak_alloc - register a newly allocated object
897 * @ptr: pointer to beginning of the object
898 * @size: size of the object
899 * @min_count: minimum number of references to this object. If during memory
900 * scanning a number of references less than @min_count is found,
901 * the object is reported as a memory leak. If @min_count is 0,
902 * the object is never reported as a leak. If @min_count is -1,
903 * the object is ignored (not scanned and not reported as a leak)
904 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
905 *
906 * This function is called from the kernel allocators when a new object
907 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
3c7b4e6b 908 */
a6186d89
CM
909void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
910 gfp_t gfp)
3c7b4e6b
CM
911{
912 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
913
8910ae89 914 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 915 create_object((unsigned long)ptr, size, min_count, gfp);
8910ae89 916 else if (kmemleak_early_log)
c017b4be 917 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
3c7b4e6b
CM
918}
919EXPORT_SYMBOL_GPL(kmemleak_alloc);
920
f528f0b8
CM
921/**
922 * kmemleak_alloc_percpu - register a newly allocated __percpu object
923 * @ptr: __percpu pointer to beginning of the object
924 * @size: size of the object
8a8c35fa 925 * @gfp: flags used for kmemleak internal memory allocations
f528f0b8
CM
926 *
927 * This function is called from the kernel percpu allocator when a new object
8a8c35fa 928 * (memory block) is allocated (alloc_percpu).
f528f0b8 929 */
8a8c35fa
LF
930void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
931 gfp_t gfp)
f528f0b8
CM
932{
933 unsigned int cpu;
934
935 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
936
937 /*
938 * Percpu allocations are only scanned and not reported as leaks
939 * (min_count is set to 0).
940 */
8910ae89 941 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
942 for_each_possible_cpu(cpu)
943 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
8a8c35fa 944 size, 0, gfp);
8910ae89 945 else if (kmemleak_early_log)
f528f0b8
CM
946 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
947}
948EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
949
a2b6bf63
CM
950/**
951 * kmemleak_free - unregister a previously registered object
952 * @ptr: pointer to beginning of the object
953 *
954 * This function is called from the kernel allocators when an object (memory
955 * block) is freed (kmem_cache_free, kfree, vfree etc.).
3c7b4e6b 956 */
a6186d89 957void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
958{
959 pr_debug("%s(0x%p)\n", __func__, ptr);
960
c5f3b1a5 961 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
53238a60 962 delete_object_full((unsigned long)ptr);
8910ae89 963 else if (kmemleak_early_log)
c017b4be 964 log_early(KMEMLEAK_FREE, ptr, 0, 0);
3c7b4e6b
CM
965}
966EXPORT_SYMBOL_GPL(kmemleak_free);
967
a2b6bf63
CM
968/**
969 * kmemleak_free_part - partially unregister a previously registered object
970 * @ptr: pointer to the beginning or inside the object. This also
971 * represents the start of the range to be freed
972 * @size: size to be unregistered
973 *
974 * This function is called when only a part of a memory block is freed
975 * (usually from the bootmem allocator).
53238a60 976 */
a6186d89 977void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
978{
979 pr_debug("%s(0x%p)\n", __func__, ptr);
980
8910ae89 981 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
53238a60 982 delete_object_part((unsigned long)ptr, size);
8910ae89 983 else if (kmemleak_early_log)
c017b4be 984 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
53238a60
CM
985}
986EXPORT_SYMBOL_GPL(kmemleak_free_part);
987
f528f0b8
CM
988/**
989 * kmemleak_free_percpu - unregister a previously registered __percpu object
990 * @ptr: __percpu pointer to beginning of the object
991 *
992 * This function is called from the kernel percpu allocator when an object
993 * (memory block) is freed (free_percpu).
994 */
995void __ref kmemleak_free_percpu(const void __percpu *ptr)
996{
997 unsigned int cpu;
998
999 pr_debug("%s(0x%p)\n", __func__, ptr);
1000
c5f3b1a5 1001 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1002 for_each_possible_cpu(cpu)
1003 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1004 cpu));
8910ae89 1005 else if (kmemleak_early_log)
f528f0b8
CM
1006 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1007}
1008EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1009
ffe2c748
CM
1010/**
1011 * kmemleak_update_trace - update object allocation stack trace
1012 * @ptr: pointer to beginning of the object
1013 *
1014 * Override the object allocation stack trace for cases where the actual
1015 * allocation place is not always useful.
1016 */
1017void __ref kmemleak_update_trace(const void *ptr)
1018{
1019 struct kmemleak_object *object;
1020 unsigned long flags;
1021
1022 pr_debug("%s(0x%p)\n", __func__, ptr);
1023
1024 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1025 return;
1026
1027 object = find_and_get_object((unsigned long)ptr, 1);
1028 if (!object) {
1029#ifdef DEBUG
1030 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1031 ptr);
1032#endif
1033 return;
1034 }
1035
1036 spin_lock_irqsave(&object->lock, flags);
1037 object->trace_len = __save_stack_trace(object->trace);
1038 spin_unlock_irqrestore(&object->lock, flags);
1039
1040 put_object(object);
1041}
1042EXPORT_SYMBOL(kmemleak_update_trace);
1043
a2b6bf63
CM
1044/**
1045 * kmemleak_not_leak - mark an allocated object as false positive
1046 * @ptr: pointer to beginning of the object
1047 *
1048 * Calling this function on an object will cause the memory block to no longer
1049 * be reported as leak and always be scanned.
3c7b4e6b 1050 */
a6186d89 1051void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
1052{
1053 pr_debug("%s(0x%p)\n", __func__, ptr);
1054
8910ae89 1055 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1056 make_gray_object((unsigned long)ptr);
8910ae89 1057 else if (kmemleak_early_log)
c017b4be 1058 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
3c7b4e6b
CM
1059}
1060EXPORT_SYMBOL(kmemleak_not_leak);
1061
a2b6bf63
CM
1062/**
1063 * kmemleak_ignore - ignore an allocated object
1064 * @ptr: pointer to beginning of the object
1065 *
1066 * Calling this function on an object will cause the memory block to be
1067 * ignored (not scanned and not reported as a leak). This is usually done when
1068 * it is known that the corresponding block is not a leak and does not contain
1069 * any references to other allocated memory blocks.
3c7b4e6b 1070 */
a6186d89 1071void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
1072{
1073 pr_debug("%s(0x%p)\n", __func__, ptr);
1074
8910ae89 1075 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1076 make_black_object((unsigned long)ptr);
8910ae89 1077 else if (kmemleak_early_log)
c017b4be 1078 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
3c7b4e6b
CM
1079}
1080EXPORT_SYMBOL(kmemleak_ignore);
1081
a2b6bf63
CM
1082/**
1083 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1084 * @ptr: pointer to beginning or inside the object. This also
1085 * represents the start of the scan area
1086 * @size: size of the scan area
1087 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1088 *
1089 * This function is used when it is known that only certain parts of an object
1090 * contain references to other objects. Kmemleak will only scan these areas
1091 * reducing the number false negatives.
3c7b4e6b 1092 */
c017b4be 1093void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
1094{
1095 pr_debug("%s(0x%p)\n", __func__, ptr);
1096
8910ae89 1097 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
c017b4be 1098 add_scan_area((unsigned long)ptr, size, gfp);
8910ae89 1099 else if (kmemleak_early_log)
c017b4be 1100 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
3c7b4e6b
CM
1101}
1102EXPORT_SYMBOL(kmemleak_scan_area);
1103
a2b6bf63
CM
1104/**
1105 * kmemleak_no_scan - do not scan an allocated object
1106 * @ptr: pointer to beginning of the object
1107 *
1108 * This function notifies kmemleak not to scan the given memory block. Useful
1109 * in situations where it is known that the given object does not contain any
1110 * references to other objects. Kmemleak will not scan such objects reducing
1111 * the number of false negatives.
3c7b4e6b 1112 */
a6186d89 1113void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
1114{
1115 pr_debug("%s(0x%p)\n", __func__, ptr);
1116
8910ae89 1117 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1118 object_no_scan((unsigned long)ptr);
8910ae89 1119 else if (kmemleak_early_log)
c017b4be 1120 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
3c7b4e6b
CM
1121}
1122EXPORT_SYMBOL(kmemleak_no_scan);
1123
04609ccc
CM
1124/*
1125 * Update an object's checksum and return true if it was modified.
1126 */
1127static bool update_checksum(struct kmemleak_object *object)
1128{
1129 u32 old_csum = object->checksum;
1130
1131 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1132 return false;
1133
e79ed2f1 1134 kasan_disable_current();
04609ccc 1135 object->checksum = crc32(0, (void *)object->pointer, object->size);
e79ed2f1
AR
1136 kasan_enable_current();
1137
04609ccc
CM
1138 return object->checksum != old_csum;
1139}
1140
3c7b4e6b
CM
1141/*
1142 * Memory scanning is a long process and it needs to be interruptable. This
25985edc 1143 * function checks whether such interrupt condition occurred.
3c7b4e6b
CM
1144 */
1145static int scan_should_stop(void)
1146{
8910ae89 1147 if (!kmemleak_enabled)
3c7b4e6b
CM
1148 return 1;
1149
1150 /*
1151 * This function may be called from either process or kthread context,
1152 * hence the need to check for both stop conditions.
1153 */
1154 if (current->mm)
1155 return signal_pending(current);
1156 else
1157 return kthread_should_stop();
1158
1159 return 0;
1160}
1161
1162/*
1163 * Scan a memory block (exclusive range) for valid pointers and add those
1164 * found to the gray list.
1165 */
1166static void scan_block(void *_start, void *_end,
93ada579 1167 struct kmemleak_object *scanned)
3c7b4e6b
CM
1168{
1169 unsigned long *ptr;
1170 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1171 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
93ada579 1172 unsigned long flags;
3c7b4e6b 1173
93ada579 1174 read_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b 1175 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 1176 struct kmemleak_object *object;
8e019366 1177 unsigned long pointer;
3c7b4e6b
CM
1178
1179 if (scan_should_stop())
1180 break;
1181
8e019366
PE
1182 /* don't scan uninitialized memory */
1183 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1184 BYTES_PER_POINTER))
1185 continue;
1186
e79ed2f1 1187 kasan_disable_current();
8e019366 1188 pointer = *ptr;
e79ed2f1 1189 kasan_enable_current();
8e019366 1190
93ada579
CM
1191 if (pointer < min_addr || pointer >= max_addr)
1192 continue;
1193
1194 /*
1195 * No need for get_object() here since we hold kmemleak_lock.
1196 * object->use_count cannot be dropped to 0 while the object
1197 * is still present in object_tree_root and object_list
1198 * (with updates protected by kmemleak_lock).
1199 */
1200 object = lookup_object(pointer, 1);
3c7b4e6b
CM
1201 if (!object)
1202 continue;
93ada579 1203 if (object == scanned)
3c7b4e6b 1204 /* self referenced, ignore */
3c7b4e6b 1205 continue;
3c7b4e6b
CM
1206
1207 /*
1208 * Avoid the lockdep recursive warning on object->lock being
1209 * previously acquired in scan_object(). These locks are
1210 * enclosed by scan_mutex.
1211 */
93ada579 1212 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
3c7b4e6b
CM
1213 if (!color_white(object)) {
1214 /* non-orphan, ignored or new */
93ada579 1215 spin_unlock(&object->lock);
3c7b4e6b
CM
1216 continue;
1217 }
1218
1219 /*
1220 * Increase the object's reference count (number of pointers
1221 * to the memory block). If this count reaches the required
1222 * minimum, the object's color will become gray and it will be
1223 * added to the gray_list.
1224 */
1225 object->count++;
0587da40 1226 if (color_gray(object)) {
93ada579
CM
1227 /* put_object() called when removing from gray_list */
1228 WARN_ON(!get_object(object));
3c7b4e6b 1229 list_add_tail(&object->gray_list, &gray_list);
0587da40 1230 }
93ada579
CM
1231 spin_unlock(&object->lock);
1232 }
1233 read_unlock_irqrestore(&kmemleak_lock, flags);
1234}
0587da40 1235
93ada579
CM
1236/*
1237 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1238 */
1239static void scan_large_block(void *start, void *end)
1240{
1241 void *next;
1242
1243 while (start < end) {
1244 next = min(start + MAX_SCAN_SIZE, end);
1245 scan_block(start, next, NULL);
1246 start = next;
1247 cond_resched();
3c7b4e6b
CM
1248 }
1249}
1250
1251/*
1252 * Scan a memory block corresponding to a kmemleak_object. A condition is
1253 * that object->use_count >= 1.
1254 */
1255static void scan_object(struct kmemleak_object *object)
1256{
1257 struct kmemleak_scan_area *area;
3c7b4e6b
CM
1258 unsigned long flags;
1259
1260 /*
21ae2956
UKK
1261 * Once the object->lock is acquired, the corresponding memory block
1262 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b
CM
1263 */
1264 spin_lock_irqsave(&object->lock, flags);
1265 if (object->flags & OBJECT_NO_SCAN)
1266 goto out;
1267 if (!(object->flags & OBJECT_ALLOCATED))
1268 /* already freed object */
1269 goto out;
af98603d
CM
1270 if (hlist_empty(&object->area_list)) {
1271 void *start = (void *)object->pointer;
1272 void *end = (void *)(object->pointer + object->size);
93ada579
CM
1273 void *next;
1274
1275 do {
1276 next = min(start + MAX_SCAN_SIZE, end);
1277 scan_block(start, next, object);
af98603d 1278
93ada579
CM
1279 start = next;
1280 if (start >= end)
1281 break;
af98603d
CM
1282
1283 spin_unlock_irqrestore(&object->lock, flags);
1284 cond_resched();
1285 spin_lock_irqsave(&object->lock, flags);
93ada579 1286 } while (object->flags & OBJECT_ALLOCATED);
af98603d 1287 } else
b67bfe0d 1288 hlist_for_each_entry(area, &object->area_list, node)
c017b4be
CM
1289 scan_block((void *)area->start,
1290 (void *)(area->start + area->size),
93ada579 1291 object);
3c7b4e6b
CM
1292out:
1293 spin_unlock_irqrestore(&object->lock, flags);
1294}
1295
04609ccc
CM
1296/*
1297 * Scan the objects already referenced (gray objects). More objects will be
1298 * referenced and, if there are no memory leaks, all the objects are scanned.
1299 */
1300static void scan_gray_list(void)
1301{
1302 struct kmemleak_object *object, *tmp;
1303
1304 /*
1305 * The list traversal is safe for both tail additions and removals
1306 * from inside the loop. The kmemleak objects cannot be freed from
1307 * outside the loop because their use_count was incremented.
1308 */
1309 object = list_entry(gray_list.next, typeof(*object), gray_list);
1310 while (&object->gray_list != &gray_list) {
1311 cond_resched();
1312
1313 /* may add new objects to the list */
1314 if (!scan_should_stop())
1315 scan_object(object);
1316
1317 tmp = list_entry(object->gray_list.next, typeof(*object),
1318 gray_list);
1319
1320 /* remove the object from the list and release it */
1321 list_del(&object->gray_list);
1322 put_object(object);
1323
1324 object = tmp;
1325 }
1326 WARN_ON(!list_empty(&gray_list));
1327}
1328
3c7b4e6b
CM
1329/*
1330 * Scan data sections and all the referenced memory blocks allocated via the
1331 * kernel's standard allocators. This function must be called with the
1332 * scan_mutex held.
1333 */
1334static void kmemleak_scan(void)
1335{
1336 unsigned long flags;
04609ccc 1337 struct kmemleak_object *object;
3c7b4e6b 1338 int i;
4698c1f2 1339 int new_leaks = 0;
3c7b4e6b 1340
acf4968e
CM
1341 jiffies_last_scan = jiffies;
1342
3c7b4e6b
CM
1343 /* prepare the kmemleak_object's */
1344 rcu_read_lock();
1345 list_for_each_entry_rcu(object, &object_list, object_list) {
1346 spin_lock_irqsave(&object->lock, flags);
1347#ifdef DEBUG
1348 /*
1349 * With a few exceptions there should be a maximum of
1350 * 1 reference to any object at this point.
1351 */
1352 if (atomic_read(&object->use_count) > 1) {
ae281064 1353 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1354 atomic_read(&object->use_count));
1355 dump_object_info(object);
1356 }
1357#endif
1358 /* reset the reference count (whiten the object) */
1359 object->count = 0;
1360 if (color_gray(object) && get_object(object))
1361 list_add_tail(&object->gray_list, &gray_list);
1362
1363 spin_unlock_irqrestore(&object->lock, flags);
1364 }
1365 rcu_read_unlock();
1366
1367 /* data/bss scanning */
93ada579
CM
1368 scan_large_block(_sdata, _edata);
1369 scan_large_block(__bss_start, __bss_stop);
3c7b4e6b
CM
1370
1371#ifdef CONFIG_SMP
1372 /* per-cpu sections scanning */
1373 for_each_possible_cpu(i)
93ada579
CM
1374 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1375 __per_cpu_end + per_cpu_offset(i));
3c7b4e6b
CM
1376#endif
1377
1378 /*
029aeff5 1379 * Struct page scanning for each node.
3c7b4e6b 1380 */
bfc8c901 1381 get_online_mems();
3c7b4e6b 1382 for_each_online_node(i) {
108bcc96
CS
1383 unsigned long start_pfn = node_start_pfn(i);
1384 unsigned long end_pfn = node_end_pfn(i);
3c7b4e6b
CM
1385 unsigned long pfn;
1386
1387 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1388 struct page *page;
1389
1390 if (!pfn_valid(pfn))
1391 continue;
1392 page = pfn_to_page(pfn);
1393 /* only scan if page is in use */
1394 if (page_count(page) == 0)
1395 continue;
93ada579 1396 scan_block(page, page + 1, NULL);
3c7b4e6b
CM
1397 }
1398 }
bfc8c901 1399 put_online_mems();
3c7b4e6b
CM
1400
1401 /*
43ed5d6e 1402 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1403 */
1404 if (kmemleak_stack_scan) {
43ed5d6e
CM
1405 struct task_struct *p, *g;
1406
3c7b4e6b 1407 read_lock(&tasklist_lock);
43ed5d6e
CM
1408 do_each_thread(g, p) {
1409 scan_block(task_stack_page(p), task_stack_page(p) +
93ada579 1410 THREAD_SIZE, NULL);
43ed5d6e 1411 } while_each_thread(g, p);
3c7b4e6b
CM
1412 read_unlock(&tasklist_lock);
1413 }
1414
1415 /*
1416 * Scan the objects already referenced from the sections scanned
04609ccc 1417 * above.
3c7b4e6b 1418 */
04609ccc 1419 scan_gray_list();
2587362e
CM
1420
1421 /*
04609ccc
CM
1422 * Check for new or unreferenced objects modified since the previous
1423 * scan and color them gray until the next scan.
2587362e
CM
1424 */
1425 rcu_read_lock();
1426 list_for_each_entry_rcu(object, &object_list, object_list) {
1427 spin_lock_irqsave(&object->lock, flags);
04609ccc
CM
1428 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1429 && update_checksum(object) && get_object(object)) {
1430 /* color it gray temporarily */
1431 object->count = object->min_count;
2587362e
CM
1432 list_add_tail(&object->gray_list, &gray_list);
1433 }
1434 spin_unlock_irqrestore(&object->lock, flags);
1435 }
1436 rcu_read_unlock();
1437
04609ccc
CM
1438 /*
1439 * Re-scan the gray list for modified unreferenced objects.
1440 */
1441 scan_gray_list();
4698c1f2 1442
17bb9e0d 1443 /*
04609ccc 1444 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1445 */
04609ccc 1446 if (scan_should_stop())
17bb9e0d
CM
1447 return;
1448
4698c1f2
CM
1449 /*
1450 * Scanning result reporting.
1451 */
1452 rcu_read_lock();
1453 list_for_each_entry_rcu(object, &object_list, object_list) {
1454 spin_lock_irqsave(&object->lock, flags);
1455 if (unreferenced_object(object) &&
1456 !(object->flags & OBJECT_REPORTED)) {
1457 object->flags |= OBJECT_REPORTED;
1458 new_leaks++;
1459 }
1460 spin_unlock_irqrestore(&object->lock, flags);
1461 }
1462 rcu_read_unlock();
1463
dc9b3f42
LZ
1464 if (new_leaks) {
1465 kmemleak_found_leaks = true;
1466
4698c1f2
CM
1467 pr_info("%d new suspected memory leaks (see "
1468 "/sys/kernel/debug/kmemleak)\n", new_leaks);
dc9b3f42 1469 }
4698c1f2 1470
3c7b4e6b
CM
1471}
1472
1473/*
1474 * Thread function performing automatic memory scanning. Unreferenced objects
1475 * at the end of a memory scan are reported but only the first time.
1476 */
1477static int kmemleak_scan_thread(void *arg)
1478{
1479 static int first_run = 1;
1480
ae281064 1481 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1482 set_user_nice(current, 10);
3c7b4e6b
CM
1483
1484 /*
1485 * Wait before the first scan to allow the system to fully initialize.
1486 */
1487 if (first_run) {
1488 first_run = 0;
1489 ssleep(SECS_FIRST_SCAN);
1490 }
1491
1492 while (!kthread_should_stop()) {
3c7b4e6b
CM
1493 signed long timeout = jiffies_scan_wait;
1494
1495 mutex_lock(&scan_mutex);
3c7b4e6b 1496 kmemleak_scan();
3c7b4e6b 1497 mutex_unlock(&scan_mutex);
4698c1f2 1498
3c7b4e6b
CM
1499 /* wait before the next scan */
1500 while (timeout && !kthread_should_stop())
1501 timeout = schedule_timeout_interruptible(timeout);
1502 }
1503
ae281064 1504 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1505
1506 return 0;
1507}
1508
1509/*
1510 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1511 * with the scan_mutex held.
3c7b4e6b 1512 */
7eb0d5e5 1513static void start_scan_thread(void)
3c7b4e6b
CM
1514{
1515 if (scan_thread)
1516 return;
1517 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1518 if (IS_ERR(scan_thread)) {
ae281064 1519 pr_warning("Failed to create the scan thread\n");
3c7b4e6b
CM
1520 scan_thread = NULL;
1521 }
1522}
1523
1524/*
1525 * Stop the automatic memory scanning thread. This function must be called
4698c1f2 1526 * with the scan_mutex held.
3c7b4e6b 1527 */
7eb0d5e5 1528static void stop_scan_thread(void)
3c7b4e6b
CM
1529{
1530 if (scan_thread) {
1531 kthread_stop(scan_thread);
1532 scan_thread = NULL;
1533 }
1534}
1535
1536/*
1537 * Iterate over the object_list and return the first valid object at or after
1538 * the required position with its use_count incremented. The function triggers
1539 * a memory scanning when the pos argument points to the first position.
1540 */
1541static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1542{
1543 struct kmemleak_object *object;
1544 loff_t n = *pos;
b87324d0
CM
1545 int err;
1546
1547 err = mutex_lock_interruptible(&scan_mutex);
1548 if (err < 0)
1549 return ERR_PTR(err);
3c7b4e6b 1550
3c7b4e6b
CM
1551 rcu_read_lock();
1552 list_for_each_entry_rcu(object, &object_list, object_list) {
1553 if (n-- > 0)
1554 continue;
1555 if (get_object(object))
1556 goto out;
1557 }
1558 object = NULL;
1559out:
3c7b4e6b
CM
1560 return object;
1561}
1562
1563/*
1564 * Return the next object in the object_list. The function decrements the
1565 * use_count of the previous object and increases that of the next one.
1566 */
1567static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1568{
1569 struct kmemleak_object *prev_obj = v;
1570 struct kmemleak_object *next_obj = NULL;
58fac095 1571 struct kmemleak_object *obj = prev_obj;
3c7b4e6b
CM
1572
1573 ++(*pos);
3c7b4e6b 1574
58fac095 1575 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
52c3ce4e
CM
1576 if (get_object(obj)) {
1577 next_obj = obj;
3c7b4e6b 1578 break;
52c3ce4e 1579 }
3c7b4e6b 1580 }
288c857d 1581
3c7b4e6b
CM
1582 put_object(prev_obj);
1583 return next_obj;
1584}
1585
1586/*
1587 * Decrement the use_count of the last object required, if any.
1588 */
1589static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1590{
b87324d0
CM
1591 if (!IS_ERR(v)) {
1592 /*
1593 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1594 * waiting was interrupted, so only release it if !IS_ERR.
1595 */
f5886c7f 1596 rcu_read_unlock();
b87324d0
CM
1597 mutex_unlock(&scan_mutex);
1598 if (v)
1599 put_object(v);
1600 }
3c7b4e6b
CM
1601}
1602
1603/*
1604 * Print the information for an unreferenced object to the seq file.
1605 */
1606static int kmemleak_seq_show(struct seq_file *seq, void *v)
1607{
1608 struct kmemleak_object *object = v;
1609 unsigned long flags;
1610
1611 spin_lock_irqsave(&object->lock, flags);
288c857d 1612 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1613 print_unreferenced(seq, object);
3c7b4e6b
CM
1614 spin_unlock_irqrestore(&object->lock, flags);
1615 return 0;
1616}
1617
1618static const struct seq_operations kmemleak_seq_ops = {
1619 .start = kmemleak_seq_start,
1620 .next = kmemleak_seq_next,
1621 .stop = kmemleak_seq_stop,
1622 .show = kmemleak_seq_show,
1623};
1624
1625static int kmemleak_open(struct inode *inode, struct file *file)
1626{
b87324d0 1627 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1628}
1629
189d84ed
CM
1630static int dump_str_object_info(const char *str)
1631{
1632 unsigned long flags;
1633 struct kmemleak_object *object;
1634 unsigned long addr;
1635
dc053733
AP
1636 if (kstrtoul(str, 0, &addr))
1637 return -EINVAL;
189d84ed
CM
1638 object = find_and_get_object(addr, 0);
1639 if (!object) {
1640 pr_info("Unknown object at 0x%08lx\n", addr);
1641 return -EINVAL;
1642 }
1643
1644 spin_lock_irqsave(&object->lock, flags);
1645 dump_object_info(object);
1646 spin_unlock_irqrestore(&object->lock, flags);
1647
1648 put_object(object);
1649 return 0;
1650}
1651
30b37101
LR
1652/*
1653 * We use grey instead of black to ensure we can do future scans on the same
1654 * objects. If we did not do future scans these black objects could
1655 * potentially contain references to newly allocated objects in the future and
1656 * we'd end up with false positives.
1657 */
1658static void kmemleak_clear(void)
1659{
1660 struct kmemleak_object *object;
1661 unsigned long flags;
1662
1663 rcu_read_lock();
1664 list_for_each_entry_rcu(object, &object_list, object_list) {
1665 spin_lock_irqsave(&object->lock, flags);
1666 if ((object->flags & OBJECT_REPORTED) &&
1667 unreferenced_object(object))
a1084c87 1668 __paint_it(object, KMEMLEAK_GREY);
30b37101
LR
1669 spin_unlock_irqrestore(&object->lock, flags);
1670 }
1671 rcu_read_unlock();
dc9b3f42
LZ
1672
1673 kmemleak_found_leaks = false;
30b37101
LR
1674}
1675
c89da70c
LZ
1676static void __kmemleak_do_cleanup(void);
1677
3c7b4e6b
CM
1678/*
1679 * File write operation to configure kmemleak at run-time. The following
1680 * commands can be written to the /sys/kernel/debug/kmemleak file:
1681 * off - disable kmemleak (irreversible)
1682 * stack=on - enable the task stacks scanning
1683 * stack=off - disable the tasks stacks scanning
1684 * scan=on - start the automatic memory scanning thread
1685 * scan=off - stop the automatic memory scanning thread
1686 * scan=... - set the automatic memory scanning period in seconds (0 to
1687 * disable it)
4698c1f2 1688 * scan - trigger a memory scan
30b37101 1689 * clear - mark all current reported unreferenced kmemleak objects as
c89da70c
LZ
1690 * grey to ignore printing them, or free all kmemleak objects
1691 * if kmemleak has been disabled.
189d84ed 1692 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1693 */
1694static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1695 size_t size, loff_t *ppos)
1696{
1697 char buf[64];
1698 int buf_size;
b87324d0 1699 int ret;
3c7b4e6b
CM
1700
1701 buf_size = min(size, (sizeof(buf) - 1));
1702 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1703 return -EFAULT;
1704 buf[buf_size] = 0;
1705
b87324d0
CM
1706 ret = mutex_lock_interruptible(&scan_mutex);
1707 if (ret < 0)
1708 return ret;
1709
c89da70c 1710 if (strncmp(buf, "clear", 5) == 0) {
8910ae89 1711 if (kmemleak_enabled)
c89da70c
LZ
1712 kmemleak_clear();
1713 else
1714 __kmemleak_do_cleanup();
1715 goto out;
1716 }
1717
8910ae89 1718 if (!kmemleak_enabled) {
c89da70c
LZ
1719 ret = -EBUSY;
1720 goto out;
1721 }
1722
3c7b4e6b
CM
1723 if (strncmp(buf, "off", 3) == 0)
1724 kmemleak_disable();
1725 else if (strncmp(buf, "stack=on", 8) == 0)
1726 kmemleak_stack_scan = 1;
1727 else if (strncmp(buf, "stack=off", 9) == 0)
1728 kmemleak_stack_scan = 0;
1729 else if (strncmp(buf, "scan=on", 7) == 0)
1730 start_scan_thread();
1731 else if (strncmp(buf, "scan=off", 8) == 0)
1732 stop_scan_thread();
1733 else if (strncmp(buf, "scan=", 5) == 0) {
1734 unsigned long secs;
3c7b4e6b 1735
3dbb95f7 1736 ret = kstrtoul(buf + 5, 0, &secs);
b87324d0
CM
1737 if (ret < 0)
1738 goto out;
3c7b4e6b
CM
1739 stop_scan_thread();
1740 if (secs) {
1741 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1742 start_scan_thread();
1743 }
4698c1f2
CM
1744 } else if (strncmp(buf, "scan", 4) == 0)
1745 kmemleak_scan();
189d84ed
CM
1746 else if (strncmp(buf, "dump=", 5) == 0)
1747 ret = dump_str_object_info(buf + 5);
4698c1f2 1748 else
b87324d0
CM
1749 ret = -EINVAL;
1750
1751out:
1752 mutex_unlock(&scan_mutex);
1753 if (ret < 0)
1754 return ret;
3c7b4e6b
CM
1755
1756 /* ignore the rest of the buffer, only one command at a time */
1757 *ppos += size;
1758 return size;
1759}
1760
1761static const struct file_operations kmemleak_fops = {
1762 .owner = THIS_MODULE,
1763 .open = kmemleak_open,
1764 .read = seq_read,
1765 .write = kmemleak_write,
1766 .llseek = seq_lseek,
5f3bf19a 1767 .release = seq_release,
3c7b4e6b
CM
1768};
1769
c89da70c
LZ
1770static void __kmemleak_do_cleanup(void)
1771{
1772 struct kmemleak_object *object;
1773
1774 rcu_read_lock();
1775 list_for_each_entry_rcu(object, &object_list, object_list)
1776 delete_object_full(object->pointer);
1777 rcu_read_unlock();
1778}
1779
3c7b4e6b 1780/*
74341703
CM
1781 * Stop the memory scanning thread and free the kmemleak internal objects if
1782 * no previous scan thread (otherwise, kmemleak may still have some useful
1783 * information on memory leaks).
3c7b4e6b 1784 */
179a8100 1785static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b 1786{
3c7b4e6b 1787 stop_scan_thread();
3c7b4e6b 1788
c5f3b1a5
CM
1789 /*
1790 * Once the scan thread has stopped, it is safe to no longer track
1791 * object freeing. Ordering of the scan thread stopping and the memory
1792 * accesses below is guaranteed by the kthread_stop() function.
1793 */
1794 kmemleak_free_enabled = 0;
1795
c89da70c
LZ
1796 if (!kmemleak_found_leaks)
1797 __kmemleak_do_cleanup();
1798 else
1799 pr_info("Kmemleak disabled without freeing internal data. "
1800 "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
3c7b4e6b
CM
1801}
1802
179a8100 1803static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
1804
1805/*
1806 * Disable kmemleak. No memory allocation/freeing will be traced once this
1807 * function is called. Disabling kmemleak is an irreversible operation.
1808 */
1809static void kmemleak_disable(void)
1810{
1811 /* atomically check whether it was already invoked */
8910ae89 1812 if (cmpxchg(&kmemleak_error, 0, 1))
3c7b4e6b
CM
1813 return;
1814
1815 /* stop any memory operation tracing */
8910ae89 1816 kmemleak_enabled = 0;
3c7b4e6b
CM
1817
1818 /* check whether it is too early for a kernel thread */
8910ae89 1819 if (kmemleak_initialized)
179a8100 1820 schedule_work(&cleanup_work);
c5f3b1a5
CM
1821 else
1822 kmemleak_free_enabled = 0;
3c7b4e6b
CM
1823
1824 pr_info("Kernel memory leak detector disabled\n");
1825}
1826
1827/*
1828 * Allow boot-time kmemleak disabling (enabled by default).
1829 */
1830static int kmemleak_boot_config(char *str)
1831{
1832 if (!str)
1833 return -EINVAL;
1834 if (strcmp(str, "off") == 0)
1835 kmemleak_disable();
ab0155a2
JB
1836 else if (strcmp(str, "on") == 0)
1837 kmemleak_skip_disable = 1;
1838 else
3c7b4e6b
CM
1839 return -EINVAL;
1840 return 0;
1841}
1842early_param("kmemleak", kmemleak_boot_config);
1843
5f79020c
CM
1844static void __init print_log_trace(struct early_log *log)
1845{
1846 struct stack_trace trace;
1847
1848 trace.nr_entries = log->trace_len;
1849 trace.entries = log->trace;
1850
1851 pr_notice("Early log backtrace:\n");
1852 print_stack_trace(&trace, 2);
1853}
1854
3c7b4e6b 1855/*
2030117d 1856 * Kmemleak initialization.
3c7b4e6b
CM
1857 */
1858void __init kmemleak_init(void)
1859{
1860 int i;
1861 unsigned long flags;
1862
ab0155a2
JB
1863#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1864 if (!kmemleak_skip_disable) {
3551a928 1865 kmemleak_early_log = 0;
ab0155a2
JB
1866 kmemleak_disable();
1867 return;
1868 }
1869#endif
1870
3c7b4e6b
CM
1871 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1872 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1873
1874 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1875 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
3c7b4e6b 1876
21cd3a60 1877 if (crt_early_log > ARRAY_SIZE(early_log))
b6693005
CM
1878 pr_warning("Early log buffer exceeded (%d), please increase "
1879 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1880
3c7b4e6b
CM
1881 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1882 local_irq_save(flags);
3551a928 1883 kmemleak_early_log = 0;
8910ae89 1884 if (kmemleak_error) {
b6693005
CM
1885 local_irq_restore(flags);
1886 return;
c5f3b1a5 1887 } else {
8910ae89 1888 kmemleak_enabled = 1;
c5f3b1a5
CM
1889 kmemleak_free_enabled = 1;
1890 }
3c7b4e6b
CM
1891 local_irq_restore(flags);
1892
1893 /*
1894 * This is the point where tracking allocations is safe. Automatic
1895 * scanning is started during the late initcall. Add the early logged
1896 * callbacks to the kmemleak infrastructure.
1897 */
1898 for (i = 0; i < crt_early_log; i++) {
1899 struct early_log *log = &early_log[i];
1900
1901 switch (log->op_type) {
1902 case KMEMLEAK_ALLOC:
fd678967 1903 early_alloc(log);
3c7b4e6b 1904 break;
f528f0b8
CM
1905 case KMEMLEAK_ALLOC_PERCPU:
1906 early_alloc_percpu(log);
1907 break;
3c7b4e6b
CM
1908 case KMEMLEAK_FREE:
1909 kmemleak_free(log->ptr);
1910 break;
53238a60
CM
1911 case KMEMLEAK_FREE_PART:
1912 kmemleak_free_part(log->ptr, log->size);
1913 break;
f528f0b8
CM
1914 case KMEMLEAK_FREE_PERCPU:
1915 kmemleak_free_percpu(log->ptr);
1916 break;
3c7b4e6b
CM
1917 case KMEMLEAK_NOT_LEAK:
1918 kmemleak_not_leak(log->ptr);
1919 break;
1920 case KMEMLEAK_IGNORE:
1921 kmemleak_ignore(log->ptr);
1922 break;
1923 case KMEMLEAK_SCAN_AREA:
c017b4be 1924 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
3c7b4e6b
CM
1925 break;
1926 case KMEMLEAK_NO_SCAN:
1927 kmemleak_no_scan(log->ptr);
1928 break;
1929 default:
5f79020c
CM
1930 kmemleak_warn("Unknown early log operation: %d\n",
1931 log->op_type);
1932 }
1933
8910ae89 1934 if (kmemleak_warning) {
5f79020c 1935 print_log_trace(log);
8910ae89 1936 kmemleak_warning = 0;
3c7b4e6b
CM
1937 }
1938 }
1939}
1940
1941/*
1942 * Late initialization function.
1943 */
1944static int __init kmemleak_late_init(void)
1945{
1946 struct dentry *dentry;
1947
8910ae89 1948 kmemleak_initialized = 1;
3c7b4e6b 1949
8910ae89 1950 if (kmemleak_error) {
3c7b4e6b 1951 /*
25985edc 1952 * Some error occurred and kmemleak was disabled. There is a
3c7b4e6b
CM
1953 * small chance that kmemleak_disable() was called immediately
1954 * after setting kmemleak_initialized and we may end up with
1955 * two clean-up threads but serialized by scan_mutex.
1956 */
179a8100 1957 schedule_work(&cleanup_work);
3c7b4e6b
CM
1958 return -ENOMEM;
1959 }
1960
1961 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1962 &kmemleak_fops);
1963 if (!dentry)
ae281064 1964 pr_warning("Failed to create the debugfs kmemleak file\n");
4698c1f2 1965 mutex_lock(&scan_mutex);
3c7b4e6b 1966 start_scan_thread();
4698c1f2 1967 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
1968
1969 pr_info("Kernel memory leak detector initialized\n");
1970
1971 return 0;
1972}
1973late_initcall(kmemleak_late_init);