]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/kmemleak.c
Merge tag 'efi-urgent-for-v6.0-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-kernels.git] / mm / kmemleak.c
CommitLineData
45051539 1// SPDX-License-Identifier: GPL-2.0-only
3c7b4e6b
CM
2/*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
3c7b4e6b 8 * For more information on the algorithm and kmemleak usage, please see
22901c6c 9 * Documentation/dev-tools/kmemleak.rst.
3c7b4e6b
CM
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
8c96f1bc 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
0c24e061
PW
17 * accesses to the object_tree_root (or object_phys_tree_root). The
18 * object_list is the main list holding the metadata (struct kmemleak_object)
19 * for the allocated memory blocks. The object_tree_root and object_phys_tree_root
20 * are red black trees used to look-up metadata based on a pointer to the
21 * corresponding memory block. The object_phys_tree_root is for objects
22 * allocated with physical address. The kmemleak_object structures are
23 * added to the object_list and object_tree_root (or object_phys_tree_root)
24 * in the create_object() function called from the kmemleak_alloc() (or
25 * kmemleak_alloc_phys()) callback and removed in delete_object() called from
26 * the kmemleak_free() callback
8c96f1bc
HZ
27 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
28 * Accesses to the metadata (e.g. count) are protected by this lock. Note
29 * that some members of this structure may be protected by other means
30 * (atomic or kmemleak_lock). This lock is also held when scanning the
31 * corresponding memory block to avoid the kernel freeing it via the
32 * kmemleak_free() callback. This is less heavyweight than holding a global
33 * lock like kmemleak_lock during scanning.
3c7b4e6b
CM
34 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
35 * unreferenced objects at a time. The gray_list contains the objects which
36 * are already referenced or marked as false positives and need to be
37 * scanned. This list is only modified during a scanning episode when the
38 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
39 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
40 * added to the gray_list and therefore cannot be freed. This mutex also
41 * prevents multiple users of the "kmemleak" debugfs file together with
42 * modifications to the memory scanning parameters including the scan_thread
43 * pointer
3c7b4e6b 44 *
93ada579 45 * Locks and mutexes are acquired/nested in the following order:
9d5a4c73 46 *
93ada579
CM
47 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
48 *
49 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
50 * regions.
9d5a4c73 51 *
3c7b4e6b
CM
52 * The kmemleak_object structures have a use_count incremented or decremented
53 * using the get_object()/put_object() functions. When the use_count becomes
54 * 0, this count can no longer be incremented and put_object() schedules the
55 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
56 * function must be protected by rcu_read_lock() to avoid accessing a freed
57 * structure.
58 */
59
ae281064
JP
60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
3c7b4e6b
CM
62#include <linux/init.h>
63#include <linux/kernel.h>
64#include <linux/list.h>
3f07c014 65#include <linux/sched/signal.h>
29930025 66#include <linux/sched/task.h>
68db0cf1 67#include <linux/sched/task_stack.h>
3c7b4e6b
CM
68#include <linux/jiffies.h>
69#include <linux/delay.h>
b95f1b31 70#include <linux/export.h>
3c7b4e6b 71#include <linux/kthread.h>
85d3a316 72#include <linux/rbtree.h>
3c7b4e6b
CM
73#include <linux/fs.h>
74#include <linux/debugfs.h>
75#include <linux/seq_file.h>
76#include <linux/cpumask.h>
77#include <linux/spinlock.h>
154221c3 78#include <linux/module.h>
3c7b4e6b
CM
79#include <linux/mutex.h>
80#include <linux/rcupdate.h>
81#include <linux/stacktrace.h>
82#include <linux/cache.h>
83#include <linux/percpu.h>
57c8a661 84#include <linux/memblock.h>
9099daed 85#include <linux/pfn.h>
3c7b4e6b
CM
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
179a8100 94#include <linux/workqueue.h>
04609ccc 95#include <linux/crc32.h>
3c7b4e6b
CM
96
97#include <asm/sections.h>
98#include <asm/processor.h>
60063497 99#include <linux/atomic.h>
3c7b4e6b 100
e79ed2f1 101#include <linux/kasan.h>
95511580 102#include <linux/kfence.h>
3c7b4e6b 103#include <linux/kmemleak.h>
029aeff5 104#include <linux/memory_hotplug.h>
3c7b4e6b
CM
105
106/*
107 * Kmemleak configuration and common defines.
108 */
109#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 110#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
111#define SECS_FIRST_SCAN 60 /* delay before the first scan */
112#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 113#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
114
115#define BYTES_PER_POINTER sizeof(void *)
116
216c04b0 117/* GFP bitmask for kmemleak internal allocations */
79d37050
NA
118#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
119 __GFP_NOLOCKDEP)) | \
6ae4bd1f 120 __GFP_NORETRY | __GFP_NOMEMALLOC | \
df9576de 121 __GFP_NOWARN)
216c04b0 122
3c7b4e6b
CM
123/* scanning area inside a memory block */
124struct kmemleak_scan_area {
125 struct hlist_node node;
c017b4be
CM
126 unsigned long start;
127 size_t size;
3c7b4e6b
CM
128};
129
a1084c87
LR
130#define KMEMLEAK_GREY 0
131#define KMEMLEAK_BLACK -1
132
3c7b4e6b
CM
133/*
134 * Structure holding the metadata for each allocated memory block.
135 * Modifications to such objects should be made while holding the
136 * object->lock. Insertions or deletions from object_list, gray_list or
85d3a316 137 * rb_node are already protected by the corresponding locks or mutex (see
3c7b4e6b
CM
138 * the notes on locking above). These objects are reference-counted
139 * (use_count) and freed using the RCU mechanism.
140 */
141struct kmemleak_object {
8c96f1bc 142 raw_spinlock_t lock;
f66abf09 143 unsigned int flags; /* object status flags */
3c7b4e6b
CM
144 struct list_head object_list;
145 struct list_head gray_list;
85d3a316 146 struct rb_node rb_node;
3c7b4e6b
CM
147 struct rcu_head rcu; /* object_list lockless traversal */
148 /* object usage count; object freed when use_count == 0 */
149 atomic_t use_count;
150 unsigned long pointer;
151 size_t size;
94f4a161
CM
152 /* pass surplus references to this pointer */
153 unsigned long excess_ref;
3c7b4e6b
CM
154 /* minimum number of a pointers found before it is considered leak */
155 int min_count;
156 /* the total number of pointers found pointing to this object */
157 int count;
04609ccc
CM
158 /* checksum for detecting modified objects */
159 u32 checksum;
3c7b4e6b
CM
160 /* memory ranges to be scanned inside an object (empty for all) */
161 struct hlist_head area_list;
162 unsigned long trace[MAX_TRACE];
163 unsigned int trace_len;
164 unsigned long jiffies; /* creation timestamp */
165 pid_t pid; /* pid of the current task */
166 char comm[TASK_COMM_LEN]; /* executable name */
167};
168
169/* flag representing the memory block allocation status */
170#define OBJECT_ALLOCATED (1 << 0)
171/* flag set after the first reporting of an unreference object */
172#define OBJECT_REPORTED (1 << 1)
173/* flag set to not scan the object */
174#define OBJECT_NO_SCAN (1 << 2)
dba82d94
CM
175/* flag set to fully scan the object when scan_area allocation failed */
176#define OBJECT_FULL_SCAN (1 << 3)
8e0c4ab3
PW
177/* flag set for object allocated with physical address */
178#define OBJECT_PHYS (1 << 4)
3c7b4e6b 179
154221c3 180#define HEX_PREFIX " "
0494e082
SS
181/* number of bytes to print per line; must be 16 or 32 */
182#define HEX_ROW_SIZE 16
183/* number of bytes to print at a time (1, 2, 4, 8) */
184#define HEX_GROUP_SIZE 1
185/* include ASCII after the hex output */
186#define HEX_ASCII 1
187/* max number of lines to be printed */
188#define HEX_MAX_LINES 2
189
3c7b4e6b
CM
190/* the list of all allocated objects */
191static LIST_HEAD(object_list);
192/* the list of gray-colored objects (see color_gray comment below) */
193static LIST_HEAD(gray_list);
0647398a 194/* memory pool allocation */
c5665868 195static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
0647398a
CM
196static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
197static LIST_HEAD(mem_pool_free_list);
85d3a316
ML
198/* search tree for object boundaries */
199static struct rb_root object_tree_root = RB_ROOT;
0c24e061
PW
200/* search tree for object (with OBJECT_PHYS flag) boundaries */
201static struct rb_root object_phys_tree_root = RB_ROOT;
202/* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
8c96f1bc 203static DEFINE_RAW_SPINLOCK(kmemleak_lock);
3c7b4e6b
CM
204
205/* allocation caches for kmemleak internal data */
206static struct kmem_cache *object_cache;
207static struct kmem_cache *scan_area_cache;
208
209/* set if tracing memory operations is enabled */
c5665868 210static int kmemleak_enabled = 1;
c5f3b1a5 211/* same as above but only for the kmemleak_free() callback */
c5665868 212static int kmemleak_free_enabled = 1;
3c7b4e6b 213/* set in the late_initcall if there were no errors */
8910ae89 214static int kmemleak_initialized;
5f79020c 215/* set if a kmemleak warning was issued */
8910ae89 216static int kmemleak_warning;
5f79020c 217/* set if a fatal kmemleak error has occurred */
8910ae89 218static int kmemleak_error;
3c7b4e6b
CM
219
220/* minimum and maximum address that may be valid pointers */
221static unsigned long min_addr = ULONG_MAX;
222static unsigned long max_addr;
223
3c7b4e6b 224static struct task_struct *scan_thread;
acf4968e 225/* used to avoid reporting of recently allocated objects */
3c7b4e6b 226static unsigned long jiffies_min_age;
acf4968e 227static unsigned long jiffies_last_scan;
3c7b4e6b 228/* delay between automatic memory scannings */
54dd200c 229static unsigned long jiffies_scan_wait;
3c7b4e6b 230/* enables or disables the task stacks scanning */
e0a2a160 231static int kmemleak_stack_scan = 1;
4698c1f2 232/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 233static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
234/* setting kmemleak=on, will set this var, skipping the disable */
235static int kmemleak_skip_disable;
dc9b3f42
LZ
236/* If there are leaks that can be reported */
237static bool kmemleak_found_leaks;
3c7b4e6b 238
154221c3
VW
239static bool kmemleak_verbose;
240module_param_named(verbose, kmemleak_verbose, bool, 0600);
241
3c7b4e6b
CM
242static void kmemleak_disable(void);
243
244/*
245 * Print a warning and dump the stack trace.
246 */
5f79020c 247#define kmemleak_warn(x...) do { \
598d8091 248 pr_warn(x); \
5f79020c 249 dump_stack(); \
8910ae89 250 kmemleak_warning = 1; \
3c7b4e6b
CM
251} while (0)
252
253/*
25985edc 254 * Macro invoked when a serious kmemleak condition occurred and cannot be
2030117d 255 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
256 * tracing no longer available.
257 */
000814f4 258#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
259 kmemleak_warn(x); \
260 kmemleak_disable(); \
261} while (0)
262
154221c3
VW
263#define warn_or_seq_printf(seq, fmt, ...) do { \
264 if (seq) \
265 seq_printf(seq, fmt, ##__VA_ARGS__); \
266 else \
267 pr_warn(fmt, ##__VA_ARGS__); \
268} while (0)
269
270static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
271 int rowsize, int groupsize, const void *buf,
272 size_t len, bool ascii)
273{
274 if (seq)
275 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
276 buf, len, ascii);
277 else
278 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
279 rowsize, groupsize, buf, len, ascii);
280}
281
0494e082
SS
282/*
283 * Printing of the objects hex dump to the seq file. The number of lines to be
284 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
285 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
286 * with the object->lock held.
287 */
288static void hex_dump_object(struct seq_file *seq,
289 struct kmemleak_object *object)
290{
291 const u8 *ptr = (const u8 *)object->pointer;
6fc37c49 292 size_t len;
0494e082 293
0c24e061
PW
294 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
295 return;
296
0494e082 297 /* limit the number of lines to HEX_MAX_LINES */
6fc37c49 298 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
0494e082 299
154221c3 300 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
5c335fe0 301 kasan_disable_current();
154221c3 302 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
6c7a00b8 303 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
5c335fe0 304 kasan_enable_current();
0494e082
SS
305}
306
3c7b4e6b
CM
307/*
308 * Object colors, encoded with count and min_count:
309 * - white - orphan object, not enough references to it (count < min_count)
310 * - gray - not orphan, not marked as false positive (min_count == 0) or
311 * sufficient references to it (count >= min_count)
312 * - black - ignore, it doesn't contain references (e.g. text section)
313 * (min_count == -1). No function defined for this color.
314 * Newly created objects don't have any color assigned (object->count == -1)
315 * before the next memory scan when they become white.
316 */
4a558dd6 317static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 318{
a1084c87
LR
319 return object->count != KMEMLEAK_BLACK &&
320 object->count < object->min_count;
3c7b4e6b
CM
321}
322
4a558dd6 323static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 324{
a1084c87
LR
325 return object->min_count != KMEMLEAK_BLACK &&
326 object->count >= object->min_count;
3c7b4e6b
CM
327}
328
3c7b4e6b
CM
329/*
330 * Objects are considered unreferenced only if their color is white, they have
331 * not be deleted and have a minimum age to avoid false positives caused by
332 * pointers temporarily stored in CPU registers.
333 */
4a558dd6 334static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 335{
04609ccc 336 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
337 time_before_eq(object->jiffies + jiffies_min_age,
338 jiffies_last_scan);
3c7b4e6b
CM
339}
340
341/*
bab4a34a
CM
342 * Printing of the unreferenced objects information to the seq file. The
343 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 344 */
3c7b4e6b
CM
345static void print_unreferenced(struct seq_file *seq,
346 struct kmemleak_object *object)
347{
348 int i;
fefdd336 349 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 350
154221c3 351 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
bab4a34a 352 object->pointer, object->size);
154221c3 353 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
fefdd336
CM
354 object->comm, object->pid, object->jiffies,
355 msecs_age / 1000, msecs_age % 1000);
0494e082 356 hex_dump_object(seq, object);
154221c3 357 warn_or_seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
358
359 for (i = 0; i < object->trace_len; i++) {
360 void *ptr = (void *)object->trace[i];
154221c3 361 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
362 }
363}
364
365/*
366 * Print the kmemleak_object information. This function is used mainly for
367 * debugging special cases when kmemleak operations. It must be called with
368 * the object->lock held.
369 */
370static void dump_object_info(struct kmemleak_object *object)
371{
ae281064 372 pr_notice("Object 0x%08lx (size %zu):\n",
85d3a316 373 object->pointer, object->size);
3c7b4e6b
CM
374 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
375 object->comm, object->pid, object->jiffies);
376 pr_notice(" min_count = %d\n", object->min_count);
377 pr_notice(" count = %d\n", object->count);
f66abf09 378 pr_notice(" flags = 0x%x\n", object->flags);
aae0ad7a 379 pr_notice(" checksum = %u\n", object->checksum);
3c7b4e6b 380 pr_notice(" backtrace:\n");
07984aad 381 stack_trace_print(object->trace, object->trace_len, 4);
3c7b4e6b
CM
382}
383
384/*
85d3a316 385 * Look-up a memory block metadata (kmemleak_object) in the object search
3c7b4e6b
CM
386 * tree based on a pointer value. If alias is 0, only values pointing to the
387 * beginning of the memory block are allowed. The kmemleak_lock must be held
388 * when calling this function.
389 */
0c24e061
PW
390static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
391 bool is_phys)
3c7b4e6b 392{
0c24e061
PW
393 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
394 object_tree_root.rb_node;
ad1a3e15 395 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
85d3a316
ML
396
397 while (rb) {
ad1a3e15
KYL
398 struct kmemleak_object *object;
399 unsigned long untagged_objp;
400
401 object = rb_entry(rb, struct kmemleak_object, rb_node);
402 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
403
404 if (untagged_ptr < untagged_objp)
85d3a316 405 rb = object->rb_node.rb_left;
ad1a3e15 406 else if (untagged_objp + object->size <= untagged_ptr)
85d3a316 407 rb = object->rb_node.rb_right;
ad1a3e15 408 else if (untagged_objp == untagged_ptr || alias)
85d3a316
ML
409 return object;
410 else {
5f79020c
CM
411 kmemleak_warn("Found object by alias at 0x%08lx\n",
412 ptr);
a7686a45 413 dump_object_info(object);
85d3a316 414 break;
3c7b4e6b 415 }
85d3a316
ML
416 }
417 return NULL;
3c7b4e6b
CM
418}
419
0c24e061
PW
420/* Look-up a kmemleak object which allocated with virtual address. */
421static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
422{
423 return __lookup_object(ptr, alias, false);
424}
425
3c7b4e6b
CM
426/*
427 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
428 * that once an object's use_count reached 0, the RCU freeing was already
429 * registered and the object should no longer be used. This function must be
430 * called under the protection of rcu_read_lock().
431 */
432static int get_object(struct kmemleak_object *object)
433{
434 return atomic_inc_not_zero(&object->use_count);
435}
436
0647398a
CM
437/*
438 * Memory pool allocation and freeing. kmemleak_lock must not be held.
439 */
440static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
441{
442 unsigned long flags;
443 struct kmemleak_object *object;
444
445 /* try the slab allocator first */
c5665868
CM
446 if (object_cache) {
447 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
448 if (object)
449 return object;
450 }
0647398a
CM
451
452 /* slab allocation failed, try the memory pool */
8c96f1bc 453 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0647398a
CM
454 object = list_first_entry_or_null(&mem_pool_free_list,
455 typeof(*object), object_list);
456 if (object)
457 list_del(&object->object_list);
458 else if (mem_pool_free_count)
459 object = &mem_pool[--mem_pool_free_count];
c5665868
CM
460 else
461 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
8c96f1bc 462 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
0647398a
CM
463
464 return object;
465}
466
467/*
468 * Return the object to either the slab allocator or the memory pool.
469 */
470static void mem_pool_free(struct kmemleak_object *object)
471{
472 unsigned long flags;
473
474 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
475 kmem_cache_free(object_cache, object);
476 return;
477 }
478
479 /* add the object to the memory pool free list */
8c96f1bc 480 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0647398a 481 list_add(&object->object_list, &mem_pool_free_list);
8c96f1bc 482 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
0647398a
CM
483}
484
3c7b4e6b
CM
485/*
486 * RCU callback to free a kmemleak_object.
487 */
488static void free_object_rcu(struct rcu_head *rcu)
489{
b67bfe0d 490 struct hlist_node *tmp;
3c7b4e6b
CM
491 struct kmemleak_scan_area *area;
492 struct kmemleak_object *object =
493 container_of(rcu, struct kmemleak_object, rcu);
494
495 /*
496 * Once use_count is 0 (guaranteed by put_object), there is no other
497 * code accessing this object, hence no need for locking.
498 */
b67bfe0d
SL
499 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
500 hlist_del(&area->node);
3c7b4e6b
CM
501 kmem_cache_free(scan_area_cache, area);
502 }
0647398a 503 mem_pool_free(object);
3c7b4e6b
CM
504}
505
506/*
507 * Decrement the object use_count. Once the count is 0, free the object using
508 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
509 * delete_object() path, the delayed RCU freeing ensures that there is no
510 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
511 * is also possible.
512 */
513static void put_object(struct kmemleak_object *object)
514{
515 if (!atomic_dec_and_test(&object->use_count))
516 return;
517
518 /* should only get here after delete_object was called */
519 WARN_ON(object->flags & OBJECT_ALLOCATED);
520
c5665868
CM
521 /*
522 * It may be too early for the RCU callbacks, however, there is no
523 * concurrent object_list traversal when !object_cache and all objects
524 * came from the memory pool. Free the object directly.
525 */
526 if (object_cache)
527 call_rcu(&object->rcu, free_object_rcu);
528 else
529 free_object_rcu(&object->rcu);
3c7b4e6b
CM
530}
531
532/*
85d3a316 533 * Look up an object in the object search tree and increase its use_count.
3c7b4e6b 534 */
0c24e061
PW
535static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
536 bool is_phys)
3c7b4e6b
CM
537{
538 unsigned long flags;
9fbed254 539 struct kmemleak_object *object;
3c7b4e6b
CM
540
541 rcu_read_lock();
8c96f1bc 542 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0c24e061 543 object = __lookup_object(ptr, alias, is_phys);
8c96f1bc 544 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
3c7b4e6b
CM
545
546 /* check whether the object is still available */
547 if (object && !get_object(object))
548 object = NULL;
549 rcu_read_unlock();
550
551 return object;
552}
553
0c24e061
PW
554/* Look up and get an object which allocated with virtual address. */
555static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
556{
557 return __find_and_get_object(ptr, alias, false);
558}
559
2abd839a 560/*
0c24e061
PW
561 * Remove an object from the object_tree_root (or object_phys_tree_root)
562 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
563 * is still enabled.
2abd839a
CM
564 */
565static void __remove_object(struct kmemleak_object *object)
566{
0c24e061
PW
567 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
568 &object_phys_tree_root :
569 &object_tree_root);
2abd839a
CM
570 list_del_rcu(&object->object_list);
571}
572
e781a9ab
CM
573/*
574 * Look up an object in the object search tree and remove it from both
0c24e061
PW
575 * object_tree_root (or object_phys_tree_root) and object_list. The
576 * returned object's use_count should be at least 1, as initially set
577 * by create_object().
e781a9ab 578 */
0c24e061
PW
579static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
580 bool is_phys)
e781a9ab
CM
581{
582 unsigned long flags;
583 struct kmemleak_object *object;
584
8c96f1bc 585 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0c24e061 586 object = __lookup_object(ptr, alias, is_phys);
2abd839a
CM
587 if (object)
588 __remove_object(object);
8c96f1bc 589 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
e781a9ab
CM
590
591 return object;
592}
593
fd678967
CM
594/*
595 * Save stack trace to the given array of MAX_TRACE size.
596 */
597static int __save_stack_trace(unsigned long *trace)
598{
07984aad 599 return stack_trace_save(trace, MAX_TRACE, 2);
fd678967
CM
600}
601
3c7b4e6b
CM
602/*
603 * Create the metadata (struct kmemleak_object) corresponding to an allocated
0c24e061
PW
604 * memory block and add it to the object_list and object_tree_root (or
605 * object_phys_tree_root).
3c7b4e6b 606 */
8e0c4ab3
PW
607static struct kmemleak_object *__create_object(unsigned long ptr, size_t size,
608 int min_count, gfp_t gfp,
609 bool is_phys)
3c7b4e6b
CM
610{
611 unsigned long flags;
85d3a316
ML
612 struct kmemleak_object *object, *parent;
613 struct rb_node **link, *rb_parent;
a2f77575 614 unsigned long untagged_ptr;
ad1a3e15 615 unsigned long untagged_objp;
3c7b4e6b 616
0647398a 617 object = mem_pool_alloc(gfp);
3c7b4e6b 618 if (!object) {
598d8091 619 pr_warn("Cannot allocate a kmemleak_object structure\n");
6ae4bd1f 620 kmemleak_disable();
fd678967 621 return NULL;
3c7b4e6b
CM
622 }
623
624 INIT_LIST_HEAD(&object->object_list);
625 INIT_LIST_HEAD(&object->gray_list);
626 INIT_HLIST_HEAD(&object->area_list);
8c96f1bc 627 raw_spin_lock_init(&object->lock);
3c7b4e6b 628 atomic_set(&object->use_count, 1);
8e0c4ab3 629 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
3c7b4e6b 630 object->pointer = ptr;
95511580 631 object->size = kfence_ksize((void *)ptr) ?: size;
94f4a161 632 object->excess_ref = 0;
3c7b4e6b 633 object->min_count = min_count;
04609ccc 634 object->count = 0; /* white color initially */
3c7b4e6b 635 object->jiffies = jiffies;
04609ccc 636 object->checksum = 0;
3c7b4e6b
CM
637
638 /* task information */
ea0eafea 639 if (in_hardirq()) {
3c7b4e6b
CM
640 object->pid = 0;
641 strncpy(object->comm, "hardirq", sizeof(object->comm));
6ef90569 642 } else if (in_serving_softirq()) {
3c7b4e6b
CM
643 object->pid = 0;
644 strncpy(object->comm, "softirq", sizeof(object->comm));
645 } else {
646 object->pid = current->pid;
647 /*
648 * There is a small chance of a race with set_task_comm(),
649 * however using get_task_comm() here may cause locking
650 * dependency issues with current->alloc_lock. In the worst
651 * case, the command line is not correct.
652 */
653 strncpy(object->comm, current->comm, sizeof(object->comm));
654 }
655
656 /* kernel backtrace */
fd678967 657 object->trace_len = __save_stack_trace(object->trace);
3c7b4e6b 658
8c96f1bc 659 raw_spin_lock_irqsave(&kmemleak_lock, flags);
0580a181 660
a2f77575 661 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
0c24e061
PW
662 /*
663 * Only update min_addr and max_addr with object
664 * storing virtual address.
665 */
666 if (!is_phys) {
667 min_addr = min(min_addr, untagged_ptr);
668 max_addr = max(max_addr, untagged_ptr + size);
669 }
670 link = is_phys ? &object_phys_tree_root.rb_node :
671 &object_tree_root.rb_node;
85d3a316
ML
672 rb_parent = NULL;
673 while (*link) {
674 rb_parent = *link;
675 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
ad1a3e15
KYL
676 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
677 if (untagged_ptr + size <= untagged_objp)
85d3a316 678 link = &parent->rb_node.rb_left;
ad1a3e15 679 else if (untagged_objp + parent->size <= untagged_ptr)
85d3a316
ML
680 link = &parent->rb_node.rb_right;
681 else {
756a025f 682 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
85d3a316 683 ptr);
9d5a4c73
CM
684 /*
685 * No need for parent->lock here since "parent" cannot
686 * be freed while the kmemleak_lock is held.
687 */
688 dump_object_info(parent);
85d3a316 689 kmem_cache_free(object_cache, object);
9d5a4c73 690 object = NULL;
85d3a316
ML
691 goto out;
692 }
3c7b4e6b 693 }
85d3a316 694 rb_link_node(&object->rb_node, rb_parent, link);
0c24e061
PW
695 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
696 &object_tree_root);
85d3a316 697
3c7b4e6b
CM
698 list_add_tail_rcu(&object->object_list, &object_list);
699out:
8c96f1bc 700 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
fd678967 701 return object;
3c7b4e6b
CM
702}
703
8e0c4ab3
PW
704/* Create kmemleak object which allocated with virtual address. */
705static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
706 int min_count, gfp_t gfp)
707{
708 return __create_object(ptr, size, min_count, gfp, false);
709}
710
711/* Create kmemleak object which allocated with physical address. */
712static struct kmemleak_object *create_object_phys(unsigned long ptr, size_t size,
713 int min_count, gfp_t gfp)
714{
715 return __create_object(ptr, size, min_count, gfp, true);
716}
717
3c7b4e6b 718/*
e781a9ab 719 * Mark the object as not allocated and schedule RCU freeing via put_object().
3c7b4e6b 720 */
53238a60 721static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
722{
723 unsigned long flags;
3c7b4e6b 724
3c7b4e6b 725 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
e781a9ab 726 WARN_ON(atomic_read(&object->use_count) < 1);
3c7b4e6b
CM
727
728 /*
729 * Locking here also ensures that the corresponding memory block
730 * cannot be freed when it is being scanned.
731 */
8c96f1bc 732 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b 733 object->flags &= ~OBJECT_ALLOCATED;
8c96f1bc 734 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
735 put_object(object);
736}
737
53238a60
CM
738/*
739 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
740 * delete it.
741 */
742static void delete_object_full(unsigned long ptr)
743{
744 struct kmemleak_object *object;
745
0c24e061 746 object = find_and_remove_object(ptr, 0, false);
53238a60
CM
747 if (!object) {
748#ifdef DEBUG
749 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
750 ptr);
751#endif
752 return;
753 }
754 __delete_object(object);
53238a60
CM
755}
756
757/*
758 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
759 * delete it. If the memory block is partially freed, the function may create
760 * additional metadata for the remaining parts of the block.
761 */
0c24e061 762static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
53238a60
CM
763{
764 struct kmemleak_object *object;
765 unsigned long start, end;
766
0c24e061 767 object = find_and_remove_object(ptr, 1, is_phys);
53238a60
CM
768 if (!object) {
769#ifdef DEBUG
756a025f
JP
770 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
771 ptr, size);
53238a60
CM
772#endif
773 return;
774 }
53238a60
CM
775
776 /*
777 * Create one or two objects that may result from the memory block
778 * split. Note that partial freeing is only done by free_bootmem() and
c5665868 779 * this happens before kmemleak_init() is called.
53238a60
CM
780 */
781 start = object->pointer;
782 end = object->pointer + object->size;
783 if (ptr > start)
8e0c4ab3 784 __create_object(start, ptr - start, object->min_count,
0c24e061 785 GFP_KERNEL, is_phys);
53238a60 786 if (ptr + size < end)
8e0c4ab3 787 __create_object(ptr + size, end - ptr - size, object->min_count,
0c24e061 788 GFP_KERNEL, is_phys);
53238a60 789
e781a9ab 790 __delete_object(object);
53238a60 791}
a1084c87
LR
792
793static void __paint_it(struct kmemleak_object *object, int color)
794{
795 object->min_count = color;
796 if (color == KMEMLEAK_BLACK)
797 object->flags |= OBJECT_NO_SCAN;
798}
799
800static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
801{
802 unsigned long flags;
a1084c87 803
8c96f1bc 804 raw_spin_lock_irqsave(&object->lock, flags);
a1084c87 805 __paint_it(object, color);
8c96f1bc 806 raw_spin_unlock_irqrestore(&object->lock, flags);
a1084c87
LR
807}
808
0c24e061 809static void paint_ptr(unsigned long ptr, int color, bool is_phys)
a1084c87 810{
3c7b4e6b
CM
811 struct kmemleak_object *object;
812
0c24e061 813 object = __find_and_get_object(ptr, 0, is_phys);
3c7b4e6b 814 if (!object) {
756a025f
JP
815 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
816 ptr,
a1084c87
LR
817 (color == KMEMLEAK_GREY) ? "Grey" :
818 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
819 return;
820 }
a1084c87 821 paint_it(object, color);
3c7b4e6b
CM
822 put_object(object);
823}
824
a1084c87 825/*
145b64b9 826 * Mark an object permanently as gray-colored so that it can no longer be
a1084c87
LR
827 * reported as a leak. This is used in general to mark a false positive.
828 */
829static void make_gray_object(unsigned long ptr)
830{
0c24e061 831 paint_ptr(ptr, KMEMLEAK_GREY, false);
a1084c87
LR
832}
833
3c7b4e6b
CM
834/*
835 * Mark the object as black-colored so that it is ignored from scans and
836 * reporting.
837 */
0c24e061 838static void make_black_object(unsigned long ptr, bool is_phys)
3c7b4e6b 839{
0c24e061 840 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
3c7b4e6b
CM
841}
842
843/*
844 * Add a scanning area to the object. If at least one such area is added,
845 * kmemleak will only scan these ranges rather than the whole memory block.
846 */
c017b4be 847static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
848{
849 unsigned long flags;
850 struct kmemleak_object *object;
c5665868 851 struct kmemleak_scan_area *area = NULL;
bfc8089f
KYL
852 unsigned long untagged_ptr;
853 unsigned long untagged_objp;
3c7b4e6b 854
c017b4be 855 object = find_and_get_object(ptr, 1);
3c7b4e6b 856 if (!object) {
ae281064
JP
857 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
858 ptr);
3c7b4e6b
CM
859 return;
860 }
861
bfc8089f
KYL
862 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
863 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
864
c5665868
CM
865 if (scan_area_cache)
866 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 867
8c96f1bc 868 raw_spin_lock_irqsave(&object->lock, flags);
dba82d94
CM
869 if (!area) {
870 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
871 /* mark the object for full scan to avoid false positives */
872 object->flags |= OBJECT_FULL_SCAN;
873 goto out_unlock;
874 }
7f88f88f 875 if (size == SIZE_MAX) {
bfc8089f
KYL
876 size = untagged_objp + object->size - untagged_ptr;
877 } else if (untagged_ptr + size > untagged_objp + object->size) {
ae281064 878 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
879 dump_object_info(object);
880 kmem_cache_free(scan_area_cache, area);
881 goto out_unlock;
882 }
883
884 INIT_HLIST_NODE(&area->node);
c017b4be
CM
885 area->start = ptr;
886 area->size = size;
3c7b4e6b
CM
887
888 hlist_add_head(&area->node, &object->area_list);
889out_unlock:
8c96f1bc 890 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
891 put_object(object);
892}
893
94f4a161
CM
894/*
895 * Any surplus references (object already gray) to 'ptr' are passed to
896 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
897 * vm_struct may be used as an alternative reference to the vmalloc'ed object
898 * (see free_thread_stack()).
899 */
900static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
901{
902 unsigned long flags;
903 struct kmemleak_object *object;
904
905 object = find_and_get_object(ptr, 0);
906 if (!object) {
907 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
908 ptr);
909 return;
910 }
911
8c96f1bc 912 raw_spin_lock_irqsave(&object->lock, flags);
94f4a161 913 object->excess_ref = excess_ref;
8c96f1bc 914 raw_spin_unlock_irqrestore(&object->lock, flags);
94f4a161
CM
915 put_object(object);
916}
917
3c7b4e6b
CM
918/*
919 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
920 * pointer. Such object will not be scanned by kmemleak but references to it
921 * are searched.
922 */
923static void object_no_scan(unsigned long ptr)
924{
925 unsigned long flags;
926 struct kmemleak_object *object;
927
928 object = find_and_get_object(ptr, 0);
929 if (!object) {
ae281064 930 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
931 return;
932 }
933
8c96f1bc 934 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b 935 object->flags |= OBJECT_NO_SCAN;
8c96f1bc 936 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
937 put_object(object);
938}
939
a2b6bf63
CM
940/**
941 * kmemleak_alloc - register a newly allocated object
942 * @ptr: pointer to beginning of the object
943 * @size: size of the object
944 * @min_count: minimum number of references to this object. If during memory
945 * scanning a number of references less than @min_count is found,
946 * the object is reported as a memory leak. If @min_count is 0,
947 * the object is never reported as a leak. If @min_count is -1,
948 * the object is ignored (not scanned and not reported as a leak)
949 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
950 *
951 * This function is called from the kernel allocators when a new object
94f4a161 952 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
3c7b4e6b 953 */
a6186d89
CM
954void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
955 gfp_t gfp)
3c7b4e6b
CM
956{
957 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
958
8910ae89 959 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 960 create_object((unsigned long)ptr, size, min_count, gfp);
3c7b4e6b
CM
961}
962EXPORT_SYMBOL_GPL(kmemleak_alloc);
963
f528f0b8
CM
964/**
965 * kmemleak_alloc_percpu - register a newly allocated __percpu object
966 * @ptr: __percpu pointer to beginning of the object
967 * @size: size of the object
8a8c35fa 968 * @gfp: flags used for kmemleak internal memory allocations
f528f0b8
CM
969 *
970 * This function is called from the kernel percpu allocator when a new object
8a8c35fa 971 * (memory block) is allocated (alloc_percpu).
f528f0b8 972 */
8a8c35fa
LF
973void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
974 gfp_t gfp)
f528f0b8
CM
975{
976 unsigned int cpu;
977
978 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
979
980 /*
981 * Percpu allocations are only scanned and not reported as leaks
982 * (min_count is set to 0).
983 */
8910ae89 984 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
985 for_each_possible_cpu(cpu)
986 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
8a8c35fa 987 size, 0, gfp);
f528f0b8
CM
988}
989EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
990
94f4a161
CM
991/**
992 * kmemleak_vmalloc - register a newly vmalloc'ed object
993 * @area: pointer to vm_struct
994 * @size: size of the object
995 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
996 *
997 * This function is called from the vmalloc() kernel allocator when a new
998 * object (memory block) is allocated.
999 */
1000void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1001{
1002 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1003
1004 /*
1005 * A min_count = 2 is needed because vm_struct contains a reference to
1006 * the virtual address of the vmalloc'ed block.
1007 */
1008 if (kmemleak_enabled) {
1009 create_object((unsigned long)area->addr, size, 2, gfp);
1010 object_set_excess_ref((unsigned long)area,
1011 (unsigned long)area->addr);
94f4a161
CM
1012 }
1013}
1014EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1015
a2b6bf63
CM
1016/**
1017 * kmemleak_free - unregister a previously registered object
1018 * @ptr: pointer to beginning of the object
1019 *
1020 * This function is called from the kernel allocators when an object (memory
1021 * block) is freed (kmem_cache_free, kfree, vfree etc.).
3c7b4e6b 1022 */
a6186d89 1023void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
1024{
1025 pr_debug("%s(0x%p)\n", __func__, ptr);
1026
c5f3b1a5 1027 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
53238a60 1028 delete_object_full((unsigned long)ptr);
3c7b4e6b
CM
1029}
1030EXPORT_SYMBOL_GPL(kmemleak_free);
1031
a2b6bf63
CM
1032/**
1033 * kmemleak_free_part - partially unregister a previously registered object
1034 * @ptr: pointer to the beginning or inside the object. This also
1035 * represents the start of the range to be freed
1036 * @size: size to be unregistered
1037 *
1038 * This function is called when only a part of a memory block is freed
1039 * (usually from the bootmem allocator).
53238a60 1040 */
a6186d89 1041void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
1042{
1043 pr_debug("%s(0x%p)\n", __func__, ptr);
1044
8910ae89 1045 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
0c24e061 1046 delete_object_part((unsigned long)ptr, size, false);
53238a60
CM
1047}
1048EXPORT_SYMBOL_GPL(kmemleak_free_part);
1049
f528f0b8
CM
1050/**
1051 * kmemleak_free_percpu - unregister a previously registered __percpu object
1052 * @ptr: __percpu pointer to beginning of the object
1053 *
1054 * This function is called from the kernel percpu allocator when an object
1055 * (memory block) is freed (free_percpu).
1056 */
1057void __ref kmemleak_free_percpu(const void __percpu *ptr)
1058{
1059 unsigned int cpu;
1060
1061 pr_debug("%s(0x%p)\n", __func__, ptr);
1062
c5f3b1a5 1063 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1064 for_each_possible_cpu(cpu)
1065 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1066 cpu));
f528f0b8
CM
1067}
1068EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1069
ffe2c748
CM
1070/**
1071 * kmemleak_update_trace - update object allocation stack trace
1072 * @ptr: pointer to beginning of the object
1073 *
1074 * Override the object allocation stack trace for cases where the actual
1075 * allocation place is not always useful.
1076 */
1077void __ref kmemleak_update_trace(const void *ptr)
1078{
1079 struct kmemleak_object *object;
1080 unsigned long flags;
1081
1082 pr_debug("%s(0x%p)\n", __func__, ptr);
1083
1084 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1085 return;
1086
1087 object = find_and_get_object((unsigned long)ptr, 1);
1088 if (!object) {
1089#ifdef DEBUG
1090 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1091 ptr);
1092#endif
1093 return;
1094 }
1095
8c96f1bc 1096 raw_spin_lock_irqsave(&object->lock, flags);
ffe2c748 1097 object->trace_len = __save_stack_trace(object->trace);
8c96f1bc 1098 raw_spin_unlock_irqrestore(&object->lock, flags);
ffe2c748
CM
1099
1100 put_object(object);
1101}
1102EXPORT_SYMBOL(kmemleak_update_trace);
1103
a2b6bf63
CM
1104/**
1105 * kmemleak_not_leak - mark an allocated object as false positive
1106 * @ptr: pointer to beginning of the object
1107 *
1108 * Calling this function on an object will cause the memory block to no longer
1109 * be reported as leak and always be scanned.
3c7b4e6b 1110 */
a6186d89 1111void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
1112{
1113 pr_debug("%s(0x%p)\n", __func__, ptr);
1114
8910ae89 1115 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1116 make_gray_object((unsigned long)ptr);
3c7b4e6b
CM
1117}
1118EXPORT_SYMBOL(kmemleak_not_leak);
1119
a2b6bf63
CM
1120/**
1121 * kmemleak_ignore - ignore an allocated object
1122 * @ptr: pointer to beginning of the object
1123 *
1124 * Calling this function on an object will cause the memory block to be
1125 * ignored (not scanned and not reported as a leak). This is usually done when
1126 * it is known that the corresponding block is not a leak and does not contain
1127 * any references to other allocated memory blocks.
3c7b4e6b 1128 */
a6186d89 1129void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
1130{
1131 pr_debug("%s(0x%p)\n", __func__, ptr);
1132
8910ae89 1133 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
0c24e061 1134 make_black_object((unsigned long)ptr, false);
3c7b4e6b
CM
1135}
1136EXPORT_SYMBOL(kmemleak_ignore);
1137
a2b6bf63
CM
1138/**
1139 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1140 * @ptr: pointer to beginning or inside the object. This also
1141 * represents the start of the scan area
1142 * @size: size of the scan area
1143 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1144 *
1145 * This function is used when it is known that only certain parts of an object
1146 * contain references to other objects. Kmemleak will only scan these areas
1147 * reducing the number false negatives.
3c7b4e6b 1148 */
c017b4be 1149void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
1150{
1151 pr_debug("%s(0x%p)\n", __func__, ptr);
1152
8910ae89 1153 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
c017b4be 1154 add_scan_area((unsigned long)ptr, size, gfp);
3c7b4e6b
CM
1155}
1156EXPORT_SYMBOL(kmemleak_scan_area);
1157
a2b6bf63
CM
1158/**
1159 * kmemleak_no_scan - do not scan an allocated object
1160 * @ptr: pointer to beginning of the object
1161 *
1162 * This function notifies kmemleak not to scan the given memory block. Useful
1163 * in situations where it is known that the given object does not contain any
1164 * references to other objects. Kmemleak will not scan such objects reducing
1165 * the number of false negatives.
3c7b4e6b 1166 */
a6186d89 1167void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
1168{
1169 pr_debug("%s(0x%p)\n", __func__, ptr);
1170
8910ae89 1171 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1172 object_no_scan((unsigned long)ptr);
3c7b4e6b
CM
1173}
1174EXPORT_SYMBOL(kmemleak_no_scan);
1175
9099daed
CM
1176/**
1177 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1178 * address argument
e8b098fc
MR
1179 * @phys: physical address of the object
1180 * @size: size of the object
e8b098fc 1181 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
9099daed 1182 */
c200d900 1183void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
9099daed 1184{
8e0c4ab3
PW
1185 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1186
84c32629 1187 if (kmemleak_enabled)
8e0c4ab3
PW
1188 /*
1189 * Create object with OBJECT_PHYS flag and
1190 * assume min_count 0.
1191 */
0c24e061 1192 create_object_phys((unsigned long)phys, size, 0, gfp);
9099daed
CM
1193}
1194EXPORT_SYMBOL(kmemleak_alloc_phys);
1195
1196/**
1197 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1198 * physical address argument
e8b098fc
MR
1199 * @phys: physical address if the beginning or inside an object. This
1200 * also represents the start of the range to be freed
1201 * @size: size to be unregistered
9099daed
CM
1202 */
1203void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1204{
0c24e061
PW
1205 pr_debug("%s(0x%pa)\n", __func__, &phys);
1206
84c32629 1207 if (kmemleak_enabled)
0c24e061 1208 delete_object_part((unsigned long)phys, size, true);
9099daed
CM
1209}
1210EXPORT_SYMBOL(kmemleak_free_part_phys);
1211
9099daed
CM
1212/**
1213 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1214 * address argument
e8b098fc 1215 * @phys: physical address of the object
9099daed
CM
1216 */
1217void __ref kmemleak_ignore_phys(phys_addr_t phys)
1218{
0c24e061
PW
1219 pr_debug("%s(0x%pa)\n", __func__, &phys);
1220
84c32629 1221 if (kmemleak_enabled)
0c24e061 1222 make_black_object((unsigned long)phys, true);
9099daed
CM
1223}
1224EXPORT_SYMBOL(kmemleak_ignore_phys);
1225
04609ccc
CM
1226/*
1227 * Update an object's checksum and return true if it was modified.
1228 */
1229static bool update_checksum(struct kmemleak_object *object)
1230{
1231 u32 old_csum = object->checksum;
1232
0c24e061
PW
1233 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1234 return false;
1235
e79ed2f1 1236 kasan_disable_current();
69d0b54d 1237 kcsan_disable_current();
6c7a00b8 1238 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
e79ed2f1 1239 kasan_enable_current();
69d0b54d 1240 kcsan_enable_current();
e79ed2f1 1241
04609ccc
CM
1242 return object->checksum != old_csum;
1243}
1244
04f70d13
CM
1245/*
1246 * Update an object's references. object->lock must be held by the caller.
1247 */
1248static void update_refs(struct kmemleak_object *object)
1249{
1250 if (!color_white(object)) {
1251 /* non-orphan, ignored or new */
1252 return;
1253 }
1254
1255 /*
1256 * Increase the object's reference count (number of pointers to the
1257 * memory block). If this count reaches the required minimum, the
1258 * object's color will become gray and it will be added to the
1259 * gray_list.
1260 */
1261 object->count++;
1262 if (color_gray(object)) {
1263 /* put_object() called when removing from gray_list */
1264 WARN_ON(!get_object(object));
1265 list_add_tail(&object->gray_list, &gray_list);
1266 }
1267}
1268
3c7b4e6b 1269/*
0b5121ef 1270 * Memory scanning is a long process and it needs to be interruptible. This
25985edc 1271 * function checks whether such interrupt condition occurred.
3c7b4e6b
CM
1272 */
1273static int scan_should_stop(void)
1274{
8910ae89 1275 if (!kmemleak_enabled)
3c7b4e6b
CM
1276 return 1;
1277
1278 /*
1279 * This function may be called from either process or kthread context,
1280 * hence the need to check for both stop conditions.
1281 */
1282 if (current->mm)
1283 return signal_pending(current);
1284 else
1285 return kthread_should_stop();
1286
1287 return 0;
1288}
1289
1290/*
1291 * Scan a memory block (exclusive range) for valid pointers and add those
1292 * found to the gray list.
1293 */
1294static void scan_block(void *_start, void *_end,
93ada579 1295 struct kmemleak_object *scanned)
3c7b4e6b
CM
1296{
1297 unsigned long *ptr;
1298 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1299 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
93ada579 1300 unsigned long flags;
a2f77575 1301 unsigned long untagged_ptr;
3c7b4e6b 1302
8c96f1bc 1303 raw_spin_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b 1304 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 1305 struct kmemleak_object *object;
8e019366 1306 unsigned long pointer;
94f4a161 1307 unsigned long excess_ref;
3c7b4e6b
CM
1308
1309 if (scan_should_stop())
1310 break;
1311
e79ed2f1 1312 kasan_disable_current();
6c7a00b8 1313 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
e79ed2f1 1314 kasan_enable_current();
8e019366 1315
a2f77575
AK
1316 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1317 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
93ada579
CM
1318 continue;
1319
1320 /*
1321 * No need for get_object() here since we hold kmemleak_lock.
1322 * object->use_count cannot be dropped to 0 while the object
1323 * is still present in object_tree_root and object_list
1324 * (with updates protected by kmemleak_lock).
1325 */
1326 object = lookup_object(pointer, 1);
3c7b4e6b
CM
1327 if (!object)
1328 continue;
93ada579 1329 if (object == scanned)
3c7b4e6b 1330 /* self referenced, ignore */
3c7b4e6b 1331 continue;
3c7b4e6b
CM
1332
1333 /*
1334 * Avoid the lockdep recursive warning on object->lock being
1335 * previously acquired in scan_object(). These locks are
1336 * enclosed by scan_mutex.
1337 */
8c96f1bc 1338 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161
CM
1339 /* only pass surplus references (object already gray) */
1340 if (color_gray(object)) {
1341 excess_ref = object->excess_ref;
1342 /* no need for update_refs() if object already gray */
1343 } else {
1344 excess_ref = 0;
1345 update_refs(object);
1346 }
8c96f1bc 1347 raw_spin_unlock(&object->lock);
94f4a161
CM
1348
1349 if (excess_ref) {
1350 object = lookup_object(excess_ref, 0);
1351 if (!object)
1352 continue;
1353 if (object == scanned)
1354 /* circular reference, ignore */
1355 continue;
8c96f1bc 1356 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161 1357 update_refs(object);
8c96f1bc 1358 raw_spin_unlock(&object->lock);
94f4a161 1359 }
93ada579 1360 }
8c96f1bc 1361 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
93ada579 1362}
0587da40 1363
93ada579
CM
1364/*
1365 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1366 */
dce5b0bd 1367#ifdef CONFIG_SMP
93ada579
CM
1368static void scan_large_block(void *start, void *end)
1369{
1370 void *next;
1371
1372 while (start < end) {
1373 next = min(start + MAX_SCAN_SIZE, end);
1374 scan_block(start, next, NULL);
1375 start = next;
1376 cond_resched();
3c7b4e6b
CM
1377 }
1378}
dce5b0bd 1379#endif
3c7b4e6b
CM
1380
1381/*
1382 * Scan a memory block corresponding to a kmemleak_object. A condition is
1383 * that object->use_count >= 1.
1384 */
1385static void scan_object(struct kmemleak_object *object)
1386{
1387 struct kmemleak_scan_area *area;
3c7b4e6b 1388 unsigned long flags;
0c24e061 1389 void *obj_ptr;
3c7b4e6b
CM
1390
1391 /*
21ae2956
UKK
1392 * Once the object->lock is acquired, the corresponding memory block
1393 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b 1394 */
8c96f1bc 1395 raw_spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
1396 if (object->flags & OBJECT_NO_SCAN)
1397 goto out;
1398 if (!(object->flags & OBJECT_ALLOCATED))
1399 /* already freed object */
1400 goto out;
0c24e061
PW
1401
1402 obj_ptr = object->flags & OBJECT_PHYS ?
1403 __va((phys_addr_t)object->pointer) :
1404 (void *)object->pointer;
1405
dba82d94
CM
1406 if (hlist_empty(&object->area_list) ||
1407 object->flags & OBJECT_FULL_SCAN) {
0c24e061
PW
1408 void *start = obj_ptr;
1409 void *end = obj_ptr + object->size;
93ada579
CM
1410 void *next;
1411
1412 do {
1413 next = min(start + MAX_SCAN_SIZE, end);
1414 scan_block(start, next, object);
af98603d 1415
93ada579
CM
1416 start = next;
1417 if (start >= end)
1418 break;
af98603d 1419
8c96f1bc 1420 raw_spin_unlock_irqrestore(&object->lock, flags);
af98603d 1421 cond_resched();
8c96f1bc 1422 raw_spin_lock_irqsave(&object->lock, flags);
93ada579 1423 } while (object->flags & OBJECT_ALLOCATED);
af98603d 1424 } else
b67bfe0d 1425 hlist_for_each_entry(area, &object->area_list, node)
c017b4be
CM
1426 scan_block((void *)area->start,
1427 (void *)(area->start + area->size),
93ada579 1428 object);
3c7b4e6b 1429out:
8c96f1bc 1430 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
1431}
1432
04609ccc
CM
1433/*
1434 * Scan the objects already referenced (gray objects). More objects will be
1435 * referenced and, if there are no memory leaks, all the objects are scanned.
1436 */
1437static void scan_gray_list(void)
1438{
1439 struct kmemleak_object *object, *tmp;
1440
1441 /*
1442 * The list traversal is safe for both tail additions and removals
1443 * from inside the loop. The kmemleak objects cannot be freed from
1444 * outside the loop because their use_count was incremented.
1445 */
1446 object = list_entry(gray_list.next, typeof(*object), gray_list);
1447 while (&object->gray_list != &gray_list) {
1448 cond_resched();
1449
1450 /* may add new objects to the list */
1451 if (!scan_should_stop())
1452 scan_object(object);
1453
1454 tmp = list_entry(object->gray_list.next, typeof(*object),
1455 gray_list);
1456
1457 /* remove the object from the list and release it */
1458 list_del(&object->gray_list);
1459 put_object(object);
1460
1461 object = tmp;
1462 }
1463 WARN_ON(!list_empty(&gray_list));
1464}
1465
3c7b4e6b
CM
1466/*
1467 * Scan data sections and all the referenced memory blocks allocated via the
1468 * kernel's standard allocators. This function must be called with the
1469 * scan_mutex held.
1470 */
1471static void kmemleak_scan(void)
1472{
04609ccc 1473 struct kmemleak_object *object;
c10a0f87
LY
1474 struct zone *zone;
1475 int __maybe_unused i;
4698c1f2 1476 int new_leaks = 0;
6edda04c 1477 int loop1_cnt = 0;
3c7b4e6b 1478
acf4968e
CM
1479 jiffies_last_scan = jiffies;
1480
3c7b4e6b
CM
1481 /* prepare the kmemleak_object's */
1482 rcu_read_lock();
1483 list_for_each_entry_rcu(object, &object_list, object_list) {
6edda04c
WL
1484 bool obj_pinned = false;
1485
1486 loop1_cnt++;
00c15506 1487 raw_spin_lock_irq(&object->lock);
3c7b4e6b
CM
1488#ifdef DEBUG
1489 /*
1490 * With a few exceptions there should be a maximum of
1491 * 1 reference to any object at this point.
1492 */
1493 if (atomic_read(&object->use_count) > 1) {
ae281064 1494 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1495 atomic_read(&object->use_count));
1496 dump_object_info(object);
1497 }
1498#endif
84c32629
PW
1499
1500 /* ignore objects outside lowmem (paint them black) */
1501 if ((object->flags & OBJECT_PHYS) &&
1502 !(object->flags & OBJECT_NO_SCAN)) {
1503 unsigned long phys = object->pointer;
1504
1505 if (PHYS_PFN(phys) < min_low_pfn ||
1506 PHYS_PFN(phys + object->size) >= max_low_pfn)
1507 __paint_it(object, KMEMLEAK_BLACK);
1508 }
1509
3c7b4e6b
CM
1510 /* reset the reference count (whiten the object) */
1511 object->count = 0;
6edda04c 1512 if (color_gray(object) && get_object(object)) {
3c7b4e6b 1513 list_add_tail(&object->gray_list, &gray_list);
6edda04c
WL
1514 obj_pinned = true;
1515 }
3c7b4e6b 1516
00c15506 1517 raw_spin_unlock_irq(&object->lock);
6edda04c
WL
1518
1519 /*
1520 * Do a cond_resched() to avoid soft lockup every 64k objects.
1521 * Make sure a reference has been taken so that the object
1522 * won't go away without RCU read lock.
1523 */
1524 if (!(loop1_cnt & 0xffff)) {
1525 if (!obj_pinned && !get_object(object)) {
1526 /* Try the next object instead */
1527 loop1_cnt--;
1528 continue;
1529 }
1530
1531 rcu_read_unlock();
1532 cond_resched();
1533 rcu_read_lock();
1534
1535 if (!obj_pinned)
1536 put_object(object);
1537 }
3c7b4e6b
CM
1538 }
1539 rcu_read_unlock();
1540
3c7b4e6b
CM
1541#ifdef CONFIG_SMP
1542 /* per-cpu sections scanning */
1543 for_each_possible_cpu(i)
93ada579
CM
1544 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1545 __per_cpu_end + per_cpu_offset(i));
3c7b4e6b
CM
1546#endif
1547
1548 /*
029aeff5 1549 * Struct page scanning for each node.
3c7b4e6b 1550 */
bfc8c901 1551 get_online_mems();
c10a0f87
LY
1552 for_each_populated_zone(zone) {
1553 unsigned long start_pfn = zone->zone_start_pfn;
1554 unsigned long end_pfn = zone_end_pfn(zone);
3c7b4e6b
CM
1555 unsigned long pfn;
1556
1557 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
9f1eb38e 1558 struct page *page = pfn_to_online_page(pfn);
3c7b4e6b 1559
9f1eb38e
OS
1560 if (!page)
1561 continue;
1562
c10a0f87
LY
1563 /* only scan pages belonging to this zone */
1564 if (page_zone(page) != zone)
3c7b4e6b 1565 continue;
3c7b4e6b
CM
1566 /* only scan if page is in use */
1567 if (page_count(page) == 0)
1568 continue;
93ada579 1569 scan_block(page, page + 1, NULL);
13ab183d 1570 if (!(pfn & 63))
bde5f6bc 1571 cond_resched();
3c7b4e6b
CM
1572 }
1573 }
bfc8c901 1574 put_online_mems();
3c7b4e6b
CM
1575
1576 /*
43ed5d6e 1577 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1578 */
1579 if (kmemleak_stack_scan) {
43ed5d6e
CM
1580 struct task_struct *p, *g;
1581
c4b28963
DB
1582 rcu_read_lock();
1583 for_each_process_thread(g, p) {
37df49f4
CM
1584 void *stack = try_get_task_stack(p);
1585 if (stack) {
1586 scan_block(stack, stack + THREAD_SIZE, NULL);
1587 put_task_stack(p);
1588 }
c4b28963
DB
1589 }
1590 rcu_read_unlock();
3c7b4e6b
CM
1591 }
1592
1593 /*
1594 * Scan the objects already referenced from the sections scanned
04609ccc 1595 * above.
3c7b4e6b 1596 */
04609ccc 1597 scan_gray_list();
2587362e
CM
1598
1599 /*
04609ccc
CM
1600 * Check for new or unreferenced objects modified since the previous
1601 * scan and color them gray until the next scan.
2587362e
CM
1602 */
1603 rcu_read_lock();
1604 list_for_each_entry_rcu(object, &object_list, object_list) {
64977918
WL
1605 /*
1606 * This is racy but we can save the overhead of lock/unlock
1607 * calls. The missed objects, if any, should be caught in
1608 * the next scan.
1609 */
1610 if (!color_white(object))
1611 continue;
00c15506 1612 raw_spin_lock_irq(&object->lock);
04609ccc
CM
1613 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1614 && update_checksum(object) && get_object(object)) {
1615 /* color it gray temporarily */
1616 object->count = object->min_count;
2587362e
CM
1617 list_add_tail(&object->gray_list, &gray_list);
1618 }
00c15506 1619 raw_spin_unlock_irq(&object->lock);
2587362e
CM
1620 }
1621 rcu_read_unlock();
1622
04609ccc
CM
1623 /*
1624 * Re-scan the gray list for modified unreferenced objects.
1625 */
1626 scan_gray_list();
4698c1f2 1627
17bb9e0d 1628 /*
04609ccc 1629 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1630 */
04609ccc 1631 if (scan_should_stop())
17bb9e0d
CM
1632 return;
1633
4698c1f2
CM
1634 /*
1635 * Scanning result reporting.
1636 */
1637 rcu_read_lock();
1638 list_for_each_entry_rcu(object, &object_list, object_list) {
64977918
WL
1639 /*
1640 * This is racy but we can save the overhead of lock/unlock
1641 * calls. The missed objects, if any, should be caught in
1642 * the next scan.
1643 */
1644 if (!color_white(object))
1645 continue;
00c15506 1646 raw_spin_lock_irq(&object->lock);
4698c1f2
CM
1647 if (unreferenced_object(object) &&
1648 !(object->flags & OBJECT_REPORTED)) {
1649 object->flags |= OBJECT_REPORTED;
154221c3
VW
1650
1651 if (kmemleak_verbose)
1652 print_unreferenced(NULL, object);
1653
4698c1f2
CM
1654 new_leaks++;
1655 }
00c15506 1656 raw_spin_unlock_irq(&object->lock);
4698c1f2
CM
1657 }
1658 rcu_read_unlock();
1659
dc9b3f42
LZ
1660 if (new_leaks) {
1661 kmemleak_found_leaks = true;
1662
756a025f
JP
1663 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1664 new_leaks);
dc9b3f42 1665 }
4698c1f2 1666
3c7b4e6b
CM
1667}
1668
1669/*
1670 * Thread function performing automatic memory scanning. Unreferenced objects
1671 * at the end of a memory scan are reported but only the first time.
1672 */
1673static int kmemleak_scan_thread(void *arg)
1674{
d53ce042 1675 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
3c7b4e6b 1676
ae281064 1677 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1678 set_user_nice(current, 10);
3c7b4e6b
CM
1679
1680 /*
1681 * Wait before the first scan to allow the system to fully initialize.
1682 */
1683 if (first_run) {
98c42d94 1684 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
3c7b4e6b 1685 first_run = 0;
98c42d94
VN
1686 while (timeout && !kthread_should_stop())
1687 timeout = schedule_timeout_interruptible(timeout);
3c7b4e6b
CM
1688 }
1689
1690 while (!kthread_should_stop()) {
54dd200c 1691 signed long timeout = READ_ONCE(jiffies_scan_wait);
3c7b4e6b
CM
1692
1693 mutex_lock(&scan_mutex);
3c7b4e6b 1694 kmemleak_scan();
3c7b4e6b 1695 mutex_unlock(&scan_mutex);
4698c1f2 1696
3c7b4e6b
CM
1697 /* wait before the next scan */
1698 while (timeout && !kthread_should_stop())
1699 timeout = schedule_timeout_interruptible(timeout);
1700 }
1701
ae281064 1702 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1703
1704 return 0;
1705}
1706
1707/*
1708 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1709 * with the scan_mutex held.
3c7b4e6b 1710 */
7eb0d5e5 1711static void start_scan_thread(void)
3c7b4e6b
CM
1712{
1713 if (scan_thread)
1714 return;
1715 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1716 if (IS_ERR(scan_thread)) {
598d8091 1717 pr_warn("Failed to create the scan thread\n");
3c7b4e6b
CM
1718 scan_thread = NULL;
1719 }
1720}
1721
1722/*
914b6dff 1723 * Stop the automatic memory scanning thread.
3c7b4e6b 1724 */
7eb0d5e5 1725static void stop_scan_thread(void)
3c7b4e6b
CM
1726{
1727 if (scan_thread) {
1728 kthread_stop(scan_thread);
1729 scan_thread = NULL;
1730 }
1731}
1732
1733/*
1734 * Iterate over the object_list and return the first valid object at or after
1735 * the required position with its use_count incremented. The function triggers
1736 * a memory scanning when the pos argument points to the first position.
1737 */
1738static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1739{
1740 struct kmemleak_object *object;
1741 loff_t n = *pos;
b87324d0
CM
1742 int err;
1743
1744 err = mutex_lock_interruptible(&scan_mutex);
1745 if (err < 0)
1746 return ERR_PTR(err);
3c7b4e6b 1747
3c7b4e6b
CM
1748 rcu_read_lock();
1749 list_for_each_entry_rcu(object, &object_list, object_list) {
1750 if (n-- > 0)
1751 continue;
1752 if (get_object(object))
1753 goto out;
1754 }
1755 object = NULL;
1756out:
3c7b4e6b
CM
1757 return object;
1758}
1759
1760/*
1761 * Return the next object in the object_list. The function decrements the
1762 * use_count of the previous object and increases that of the next one.
1763 */
1764static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1765{
1766 struct kmemleak_object *prev_obj = v;
1767 struct kmemleak_object *next_obj = NULL;
58fac095 1768 struct kmemleak_object *obj = prev_obj;
3c7b4e6b
CM
1769
1770 ++(*pos);
3c7b4e6b 1771
58fac095 1772 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
52c3ce4e
CM
1773 if (get_object(obj)) {
1774 next_obj = obj;
3c7b4e6b 1775 break;
52c3ce4e 1776 }
3c7b4e6b 1777 }
288c857d 1778
3c7b4e6b
CM
1779 put_object(prev_obj);
1780 return next_obj;
1781}
1782
1783/*
1784 * Decrement the use_count of the last object required, if any.
1785 */
1786static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1787{
b87324d0
CM
1788 if (!IS_ERR(v)) {
1789 /*
1790 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1791 * waiting was interrupted, so only release it if !IS_ERR.
1792 */
f5886c7f 1793 rcu_read_unlock();
b87324d0
CM
1794 mutex_unlock(&scan_mutex);
1795 if (v)
1796 put_object(v);
1797 }
3c7b4e6b
CM
1798}
1799
1800/*
1801 * Print the information for an unreferenced object to the seq file.
1802 */
1803static int kmemleak_seq_show(struct seq_file *seq, void *v)
1804{
1805 struct kmemleak_object *object = v;
1806 unsigned long flags;
1807
8c96f1bc 1808 raw_spin_lock_irqsave(&object->lock, flags);
288c857d 1809 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1810 print_unreferenced(seq, object);
8c96f1bc 1811 raw_spin_unlock_irqrestore(&object->lock, flags);
3c7b4e6b
CM
1812 return 0;
1813}
1814
1815static const struct seq_operations kmemleak_seq_ops = {
1816 .start = kmemleak_seq_start,
1817 .next = kmemleak_seq_next,
1818 .stop = kmemleak_seq_stop,
1819 .show = kmemleak_seq_show,
1820};
1821
1822static int kmemleak_open(struct inode *inode, struct file *file)
1823{
b87324d0 1824 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1825}
1826
189d84ed
CM
1827static int dump_str_object_info(const char *str)
1828{
1829 unsigned long flags;
1830 struct kmemleak_object *object;
1831 unsigned long addr;
1832
dc053733
AP
1833 if (kstrtoul(str, 0, &addr))
1834 return -EINVAL;
189d84ed
CM
1835 object = find_and_get_object(addr, 0);
1836 if (!object) {
1837 pr_info("Unknown object at 0x%08lx\n", addr);
1838 return -EINVAL;
1839 }
1840
8c96f1bc 1841 raw_spin_lock_irqsave(&object->lock, flags);
189d84ed 1842 dump_object_info(object);
8c96f1bc 1843 raw_spin_unlock_irqrestore(&object->lock, flags);
189d84ed
CM
1844
1845 put_object(object);
1846 return 0;
1847}
1848
30b37101
LR
1849/*
1850 * We use grey instead of black to ensure we can do future scans on the same
1851 * objects. If we did not do future scans these black objects could
1852 * potentially contain references to newly allocated objects in the future and
1853 * we'd end up with false positives.
1854 */
1855static void kmemleak_clear(void)
1856{
1857 struct kmemleak_object *object;
30b37101
LR
1858
1859 rcu_read_lock();
1860 list_for_each_entry_rcu(object, &object_list, object_list) {
00c15506 1861 raw_spin_lock_irq(&object->lock);
30b37101
LR
1862 if ((object->flags & OBJECT_REPORTED) &&
1863 unreferenced_object(object))
a1084c87 1864 __paint_it(object, KMEMLEAK_GREY);
00c15506 1865 raw_spin_unlock_irq(&object->lock);
30b37101
LR
1866 }
1867 rcu_read_unlock();
dc9b3f42
LZ
1868
1869 kmemleak_found_leaks = false;
30b37101
LR
1870}
1871
c89da70c
LZ
1872static void __kmemleak_do_cleanup(void);
1873
3c7b4e6b
CM
1874/*
1875 * File write operation to configure kmemleak at run-time. The following
1876 * commands can be written to the /sys/kernel/debug/kmemleak file:
1877 * off - disable kmemleak (irreversible)
1878 * stack=on - enable the task stacks scanning
1879 * stack=off - disable the tasks stacks scanning
1880 * scan=on - start the automatic memory scanning thread
1881 * scan=off - stop the automatic memory scanning thread
1882 * scan=... - set the automatic memory scanning period in seconds (0 to
1883 * disable it)
4698c1f2 1884 * scan - trigger a memory scan
30b37101 1885 * clear - mark all current reported unreferenced kmemleak objects as
c89da70c
LZ
1886 * grey to ignore printing them, or free all kmemleak objects
1887 * if kmemleak has been disabled.
189d84ed 1888 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1889 */
1890static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1891 size_t size, loff_t *ppos)
1892{
1893 char buf[64];
1894 int buf_size;
b87324d0 1895 int ret;
3c7b4e6b
CM
1896
1897 buf_size = min(size, (sizeof(buf) - 1));
1898 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1899 return -EFAULT;
1900 buf[buf_size] = 0;
1901
b87324d0
CM
1902 ret = mutex_lock_interruptible(&scan_mutex);
1903 if (ret < 0)
1904 return ret;
1905
c89da70c 1906 if (strncmp(buf, "clear", 5) == 0) {
8910ae89 1907 if (kmemleak_enabled)
c89da70c
LZ
1908 kmemleak_clear();
1909 else
1910 __kmemleak_do_cleanup();
1911 goto out;
1912 }
1913
8910ae89 1914 if (!kmemleak_enabled) {
4e4dfce2 1915 ret = -EPERM;
c89da70c
LZ
1916 goto out;
1917 }
1918
3c7b4e6b
CM
1919 if (strncmp(buf, "off", 3) == 0)
1920 kmemleak_disable();
1921 else if (strncmp(buf, "stack=on", 8) == 0)
1922 kmemleak_stack_scan = 1;
1923 else if (strncmp(buf, "stack=off", 9) == 0)
1924 kmemleak_stack_scan = 0;
1925 else if (strncmp(buf, "scan=on", 7) == 0)
1926 start_scan_thread();
1927 else if (strncmp(buf, "scan=off", 8) == 0)
1928 stop_scan_thread();
1929 else if (strncmp(buf, "scan=", 5) == 0) {
54dd200c
YX
1930 unsigned secs;
1931 unsigned long msecs;
3c7b4e6b 1932
54dd200c 1933 ret = kstrtouint(buf + 5, 0, &secs);
b87324d0
CM
1934 if (ret < 0)
1935 goto out;
54dd200c
YX
1936
1937 msecs = secs * MSEC_PER_SEC;
1938 if (msecs > UINT_MAX)
1939 msecs = UINT_MAX;
1940
3c7b4e6b 1941 stop_scan_thread();
54dd200c
YX
1942 if (msecs) {
1943 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
3c7b4e6b
CM
1944 start_scan_thread();
1945 }
4698c1f2
CM
1946 } else if (strncmp(buf, "scan", 4) == 0)
1947 kmemleak_scan();
189d84ed
CM
1948 else if (strncmp(buf, "dump=", 5) == 0)
1949 ret = dump_str_object_info(buf + 5);
4698c1f2 1950 else
b87324d0
CM
1951 ret = -EINVAL;
1952
1953out:
1954 mutex_unlock(&scan_mutex);
1955 if (ret < 0)
1956 return ret;
3c7b4e6b
CM
1957
1958 /* ignore the rest of the buffer, only one command at a time */
1959 *ppos += size;
1960 return size;
1961}
1962
1963static const struct file_operations kmemleak_fops = {
1964 .owner = THIS_MODULE,
1965 .open = kmemleak_open,
1966 .read = seq_read,
1967 .write = kmemleak_write,
1968 .llseek = seq_lseek,
5f3bf19a 1969 .release = seq_release,
3c7b4e6b
CM
1970};
1971
c89da70c
LZ
1972static void __kmemleak_do_cleanup(void)
1973{
2abd839a 1974 struct kmemleak_object *object, *tmp;
c89da70c 1975
2abd839a
CM
1976 /*
1977 * Kmemleak has already been disabled, no need for RCU list traversal
1978 * or kmemleak_lock held.
1979 */
1980 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1981 __remove_object(object);
1982 __delete_object(object);
1983 }
c89da70c
LZ
1984}
1985
3c7b4e6b 1986/*
74341703
CM
1987 * Stop the memory scanning thread and free the kmemleak internal objects if
1988 * no previous scan thread (otherwise, kmemleak may still have some useful
1989 * information on memory leaks).
3c7b4e6b 1990 */
179a8100 1991static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b 1992{
3c7b4e6b 1993 stop_scan_thread();
3c7b4e6b 1994
914b6dff 1995 mutex_lock(&scan_mutex);
c5f3b1a5 1996 /*
914b6dff
VM
1997 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1998 * longer track object freeing. Ordering of the scan thread stopping and
1999 * the memory accesses below is guaranteed by the kthread_stop()
2000 * function.
c5f3b1a5
CM
2001 */
2002 kmemleak_free_enabled = 0;
914b6dff 2003 mutex_unlock(&scan_mutex);
c5f3b1a5 2004
c89da70c
LZ
2005 if (!kmemleak_found_leaks)
2006 __kmemleak_do_cleanup();
2007 else
756a025f 2008 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
3c7b4e6b
CM
2009}
2010
179a8100 2011static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
2012
2013/*
2014 * Disable kmemleak. No memory allocation/freeing will be traced once this
2015 * function is called. Disabling kmemleak is an irreversible operation.
2016 */
2017static void kmemleak_disable(void)
2018{
2019 /* atomically check whether it was already invoked */
8910ae89 2020 if (cmpxchg(&kmemleak_error, 0, 1))
3c7b4e6b
CM
2021 return;
2022
2023 /* stop any memory operation tracing */
8910ae89 2024 kmemleak_enabled = 0;
3c7b4e6b
CM
2025
2026 /* check whether it is too early for a kernel thread */
8910ae89 2027 if (kmemleak_initialized)
179a8100 2028 schedule_work(&cleanup_work);
c5f3b1a5
CM
2029 else
2030 kmemleak_free_enabled = 0;
3c7b4e6b
CM
2031
2032 pr_info("Kernel memory leak detector disabled\n");
2033}
2034
2035/*
2036 * Allow boot-time kmemleak disabling (enabled by default).
2037 */
8bd30c10 2038static int __init kmemleak_boot_config(char *str)
3c7b4e6b
CM
2039{
2040 if (!str)
2041 return -EINVAL;
2042 if (strcmp(str, "off") == 0)
2043 kmemleak_disable();
ab0155a2
JB
2044 else if (strcmp(str, "on") == 0)
2045 kmemleak_skip_disable = 1;
2046 else
3c7b4e6b
CM
2047 return -EINVAL;
2048 return 0;
2049}
2050early_param("kmemleak", kmemleak_boot_config);
2051
2052/*
2030117d 2053 * Kmemleak initialization.
3c7b4e6b
CM
2054 */
2055void __init kmemleak_init(void)
2056{
ab0155a2
JB
2057#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2058 if (!kmemleak_skip_disable) {
2059 kmemleak_disable();
2060 return;
2061 }
2062#endif
2063
c5665868
CM
2064 if (kmemleak_error)
2065 return;
2066
3c7b4e6b
CM
2067 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2068 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2069
2070 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2071 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
3c7b4e6b 2072
298a32b1
CM
2073 /* register the data/bss sections */
2074 create_object((unsigned long)_sdata, _edata - _sdata,
2075 KMEMLEAK_GREY, GFP_ATOMIC);
2076 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2077 KMEMLEAK_GREY, GFP_ATOMIC);
2078 /* only register .data..ro_after_init if not within .data */
b0d14fc4 2079 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
298a32b1
CM
2080 create_object((unsigned long)__start_ro_after_init,
2081 __end_ro_after_init - __start_ro_after_init,
2082 KMEMLEAK_GREY, GFP_ATOMIC);
3c7b4e6b
CM
2083}
2084
2085/*
2086 * Late initialization function.
2087 */
2088static int __init kmemleak_late_init(void)
2089{
8910ae89 2090 kmemleak_initialized = 1;
3c7b4e6b 2091
282401df 2092 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
b353756b 2093
8910ae89 2094 if (kmemleak_error) {
3c7b4e6b 2095 /*
25985edc 2096 * Some error occurred and kmemleak was disabled. There is a
3c7b4e6b
CM
2097 * small chance that kmemleak_disable() was called immediately
2098 * after setting kmemleak_initialized and we may end up with
2099 * two clean-up threads but serialized by scan_mutex.
2100 */
179a8100 2101 schedule_work(&cleanup_work);
3c7b4e6b
CM
2102 return -ENOMEM;
2103 }
2104
d53ce042
SK
2105 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2106 mutex_lock(&scan_mutex);
2107 start_scan_thread();
2108 mutex_unlock(&scan_mutex);
2109 }
3c7b4e6b 2110
0e965a6b
QC
2111 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2112 mem_pool_free_count);
3c7b4e6b
CM
2113
2114 return 0;
2115}
2116late_initcall(kmemleak_late_init);