]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/kmemleak.c
userfaultfd: hugetlbfs: prevent UFFDIO_COPY to fill beyond the end of i_size
[mirror_ubuntu-artful-kernel.git] / mm / kmemleak.c
CommitLineData
3c7b4e6b
CM
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22901c6c 22 * Documentation/dev-tools/kmemleak.rst.
3c7b4e6b
CM
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
85d3a316 32 * blocks. The object_tree_root is a red black tree used to look-up
3c7b4e6b
CM
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
3c7b4e6b 55 *
93ada579 56 * Locks and mutexes are acquired/nested in the following order:
9d5a4c73 57 *
93ada579
CM
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
9d5a4c73 62 *
3c7b4e6b
CM
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
ae281064
JP
71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
3c7b4e6b
CM
73#include <linux/init.h>
74#include <linux/kernel.h>
75#include <linux/list.h>
3f07c014 76#include <linux/sched/signal.h>
29930025 77#include <linux/sched/task.h>
68db0cf1 78#include <linux/sched/task_stack.h>
3c7b4e6b
CM
79#include <linux/jiffies.h>
80#include <linux/delay.h>
b95f1b31 81#include <linux/export.h>
3c7b4e6b 82#include <linux/kthread.h>
85d3a316 83#include <linux/rbtree.h>
3c7b4e6b
CM
84#include <linux/fs.h>
85#include <linux/debugfs.h>
86#include <linux/seq_file.h>
87#include <linux/cpumask.h>
88#include <linux/spinlock.h>
89#include <linux/mutex.h>
90#include <linux/rcupdate.h>
91#include <linux/stacktrace.h>
92#include <linux/cache.h>
93#include <linux/percpu.h>
94#include <linux/hardirq.h>
9099daed
CM
95#include <linux/bootmem.h>
96#include <linux/pfn.h>
3c7b4e6b
CM
97#include <linux/mmzone.h>
98#include <linux/slab.h>
99#include <linux/thread_info.h>
100#include <linux/err.h>
101#include <linux/uaccess.h>
102#include <linux/string.h>
103#include <linux/nodemask.h>
104#include <linux/mm.h>
179a8100 105#include <linux/workqueue.h>
04609ccc 106#include <linux/crc32.h>
3c7b4e6b
CM
107
108#include <asm/sections.h>
109#include <asm/processor.h>
60063497 110#include <linux/atomic.h>
3c7b4e6b 111
e79ed2f1 112#include <linux/kasan.h>
8e019366 113#include <linux/kmemcheck.h>
3c7b4e6b 114#include <linux/kmemleak.h>
029aeff5 115#include <linux/memory_hotplug.h>
3c7b4e6b
CM
116
117/*
118 * Kmemleak configuration and common defines.
119 */
120#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 121#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
122#define SECS_FIRST_SCAN 60 /* delay before the first scan */
123#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 124#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
125
126#define BYTES_PER_POINTER sizeof(void *)
127
216c04b0 128/* GFP bitmask for kmemleak internal allocations */
20b5c303 129#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
6ae4bd1f
CM
130 __GFP_NORETRY | __GFP_NOMEMALLOC | \
131 __GFP_NOWARN)
216c04b0 132
3c7b4e6b
CM
133/* scanning area inside a memory block */
134struct kmemleak_scan_area {
135 struct hlist_node node;
c017b4be
CM
136 unsigned long start;
137 size_t size;
3c7b4e6b
CM
138};
139
a1084c87
LR
140#define KMEMLEAK_GREY 0
141#define KMEMLEAK_BLACK -1
142
3c7b4e6b
CM
143/*
144 * Structure holding the metadata for each allocated memory block.
145 * Modifications to such objects should be made while holding the
146 * object->lock. Insertions or deletions from object_list, gray_list or
85d3a316 147 * rb_node are already protected by the corresponding locks or mutex (see
3c7b4e6b
CM
148 * the notes on locking above). These objects are reference-counted
149 * (use_count) and freed using the RCU mechanism.
150 */
151struct kmemleak_object {
152 spinlock_t lock;
f66abf09 153 unsigned int flags; /* object status flags */
3c7b4e6b
CM
154 struct list_head object_list;
155 struct list_head gray_list;
85d3a316 156 struct rb_node rb_node;
3c7b4e6b
CM
157 struct rcu_head rcu; /* object_list lockless traversal */
158 /* object usage count; object freed when use_count == 0 */
159 atomic_t use_count;
160 unsigned long pointer;
161 size_t size;
94f4a161
CM
162 /* pass surplus references to this pointer */
163 unsigned long excess_ref;
3c7b4e6b
CM
164 /* minimum number of a pointers found before it is considered leak */
165 int min_count;
166 /* the total number of pointers found pointing to this object */
167 int count;
04609ccc
CM
168 /* checksum for detecting modified objects */
169 u32 checksum;
3c7b4e6b
CM
170 /* memory ranges to be scanned inside an object (empty for all) */
171 struct hlist_head area_list;
172 unsigned long trace[MAX_TRACE];
173 unsigned int trace_len;
174 unsigned long jiffies; /* creation timestamp */
175 pid_t pid; /* pid of the current task */
176 char comm[TASK_COMM_LEN]; /* executable name */
177};
178
179/* flag representing the memory block allocation status */
180#define OBJECT_ALLOCATED (1 << 0)
181/* flag set after the first reporting of an unreference object */
182#define OBJECT_REPORTED (1 << 1)
183/* flag set to not scan the object */
184#define OBJECT_NO_SCAN (1 << 2)
185
0494e082
SS
186/* number of bytes to print per line; must be 16 or 32 */
187#define HEX_ROW_SIZE 16
188/* number of bytes to print at a time (1, 2, 4, 8) */
189#define HEX_GROUP_SIZE 1
190/* include ASCII after the hex output */
191#define HEX_ASCII 1
192/* max number of lines to be printed */
193#define HEX_MAX_LINES 2
194
3c7b4e6b
CM
195/* the list of all allocated objects */
196static LIST_HEAD(object_list);
197/* the list of gray-colored objects (see color_gray comment below) */
198static LIST_HEAD(gray_list);
85d3a316
ML
199/* search tree for object boundaries */
200static struct rb_root object_tree_root = RB_ROOT;
201/* rw_lock protecting the access to object_list and object_tree_root */
3c7b4e6b
CM
202static DEFINE_RWLOCK(kmemleak_lock);
203
204/* allocation caches for kmemleak internal data */
205static struct kmem_cache *object_cache;
206static struct kmem_cache *scan_area_cache;
207
208/* set if tracing memory operations is enabled */
8910ae89 209static int kmemleak_enabled;
c5f3b1a5
CM
210/* same as above but only for the kmemleak_free() callback */
211static int kmemleak_free_enabled;
3c7b4e6b 212/* set in the late_initcall if there were no errors */
8910ae89 213static int kmemleak_initialized;
3c7b4e6b 214/* enables or disables early logging of the memory operations */
8910ae89 215static int kmemleak_early_log = 1;
5f79020c 216/* set if a kmemleak warning was issued */
8910ae89 217static int kmemleak_warning;
5f79020c 218/* set if a fatal kmemleak error has occurred */
8910ae89 219static int kmemleak_error;
3c7b4e6b
CM
220
221/* minimum and maximum address that may be valid pointers */
222static unsigned long min_addr = ULONG_MAX;
223static unsigned long max_addr;
224
3c7b4e6b 225static struct task_struct *scan_thread;
acf4968e 226/* used to avoid reporting of recently allocated objects */
3c7b4e6b 227static unsigned long jiffies_min_age;
acf4968e 228static unsigned long jiffies_last_scan;
3c7b4e6b
CM
229/* delay between automatic memory scannings */
230static signed long jiffies_scan_wait;
231/* enables or disables the task stacks scanning */
e0a2a160 232static int kmemleak_stack_scan = 1;
4698c1f2 233/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 234static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
235/* setting kmemleak=on, will set this var, skipping the disable */
236static int kmemleak_skip_disable;
dc9b3f42
LZ
237/* If there are leaks that can be reported */
238static bool kmemleak_found_leaks;
3c7b4e6b 239
3c7b4e6b 240/*
2030117d 241 * Early object allocation/freeing logging. Kmemleak is initialized after the
3c7b4e6b 242 * kernel allocator. However, both the kernel allocator and kmemleak may
2030117d 243 * allocate memory blocks which need to be tracked. Kmemleak defines an
3c7b4e6b
CM
244 * arbitrary buffer to hold the allocation/freeing information before it is
245 * fully initialized.
246 */
247
248/* kmemleak operation type for early logging */
249enum {
250 KMEMLEAK_ALLOC,
f528f0b8 251 KMEMLEAK_ALLOC_PERCPU,
3c7b4e6b 252 KMEMLEAK_FREE,
53238a60 253 KMEMLEAK_FREE_PART,
f528f0b8 254 KMEMLEAK_FREE_PERCPU,
3c7b4e6b
CM
255 KMEMLEAK_NOT_LEAK,
256 KMEMLEAK_IGNORE,
257 KMEMLEAK_SCAN_AREA,
94f4a161
CM
258 KMEMLEAK_NO_SCAN,
259 KMEMLEAK_SET_EXCESS_REF
3c7b4e6b
CM
260};
261
262/*
263 * Structure holding the information passed to kmemleak callbacks during the
264 * early logging.
265 */
266struct early_log {
267 int op_type; /* kmemleak operation type */
f66abf09 268 int min_count; /* minimum reference count */
3c7b4e6b 269 const void *ptr; /* allocated/freed memory block */
94f4a161
CM
270 union {
271 size_t size; /* memory block size */
272 unsigned long excess_ref; /* surplus reference passing */
273 };
fd678967
CM
274 unsigned long trace[MAX_TRACE]; /* stack trace */
275 unsigned int trace_len; /* stack trace length */
3c7b4e6b
CM
276};
277
278/* early logging buffer and current position */
a6186d89
CM
279static struct early_log
280 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
281static int crt_early_log __initdata;
3c7b4e6b
CM
282
283static void kmemleak_disable(void);
284
285/*
286 * Print a warning and dump the stack trace.
287 */
5f79020c 288#define kmemleak_warn(x...) do { \
598d8091 289 pr_warn(x); \
5f79020c 290 dump_stack(); \
8910ae89 291 kmemleak_warning = 1; \
3c7b4e6b
CM
292} while (0)
293
294/*
25985edc 295 * Macro invoked when a serious kmemleak condition occurred and cannot be
2030117d 296 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
297 * tracing no longer available.
298 */
000814f4 299#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
300 kmemleak_warn(x); \
301 kmemleak_disable(); \
302} while (0)
303
0494e082
SS
304/*
305 * Printing of the objects hex dump to the seq file. The number of lines to be
306 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
307 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
308 * with the object->lock held.
309 */
310static void hex_dump_object(struct seq_file *seq,
311 struct kmemleak_object *object)
312{
313 const u8 *ptr = (const u8 *)object->pointer;
6fc37c49 314 size_t len;
0494e082
SS
315
316 /* limit the number of lines to HEX_MAX_LINES */
6fc37c49 317 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
0494e082 318
6fc37c49 319 seq_printf(seq, " hex dump (first %zu bytes):\n", len);
5c335fe0 320 kasan_disable_current();
6fc37c49
AS
321 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
322 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
5c335fe0 323 kasan_enable_current();
0494e082
SS
324}
325
3c7b4e6b
CM
326/*
327 * Object colors, encoded with count and min_count:
328 * - white - orphan object, not enough references to it (count < min_count)
329 * - gray - not orphan, not marked as false positive (min_count == 0) or
330 * sufficient references to it (count >= min_count)
331 * - black - ignore, it doesn't contain references (e.g. text section)
332 * (min_count == -1). No function defined for this color.
333 * Newly created objects don't have any color assigned (object->count == -1)
334 * before the next memory scan when they become white.
335 */
4a558dd6 336static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 337{
a1084c87
LR
338 return object->count != KMEMLEAK_BLACK &&
339 object->count < object->min_count;
3c7b4e6b
CM
340}
341
4a558dd6 342static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 343{
a1084c87
LR
344 return object->min_count != KMEMLEAK_BLACK &&
345 object->count >= object->min_count;
3c7b4e6b
CM
346}
347
3c7b4e6b
CM
348/*
349 * Objects are considered unreferenced only if their color is white, they have
350 * not be deleted and have a minimum age to avoid false positives caused by
351 * pointers temporarily stored in CPU registers.
352 */
4a558dd6 353static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 354{
04609ccc 355 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
356 time_before_eq(object->jiffies + jiffies_min_age,
357 jiffies_last_scan);
3c7b4e6b
CM
358}
359
360/*
bab4a34a
CM
361 * Printing of the unreferenced objects information to the seq file. The
362 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 363 */
3c7b4e6b
CM
364static void print_unreferenced(struct seq_file *seq,
365 struct kmemleak_object *object)
366{
367 int i;
fefdd336 368 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 369
bab4a34a
CM
370 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
371 object->pointer, object->size);
fefdd336
CM
372 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
373 object->comm, object->pid, object->jiffies,
374 msecs_age / 1000, msecs_age % 1000);
0494e082 375 hex_dump_object(seq, object);
bab4a34a 376 seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
377
378 for (i = 0; i < object->trace_len; i++) {
379 void *ptr = (void *)object->trace[i];
bab4a34a 380 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
381 }
382}
383
384/*
385 * Print the kmemleak_object information. This function is used mainly for
386 * debugging special cases when kmemleak operations. It must be called with
387 * the object->lock held.
388 */
389static void dump_object_info(struct kmemleak_object *object)
390{
391 struct stack_trace trace;
392
393 trace.nr_entries = object->trace_len;
394 trace.entries = object->trace;
395
ae281064 396 pr_notice("Object 0x%08lx (size %zu):\n",
85d3a316 397 object->pointer, object->size);
3c7b4e6b
CM
398 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
399 object->comm, object->pid, object->jiffies);
400 pr_notice(" min_count = %d\n", object->min_count);
401 pr_notice(" count = %d\n", object->count);
f66abf09 402 pr_notice(" flags = 0x%x\n", object->flags);
aae0ad7a 403 pr_notice(" checksum = %u\n", object->checksum);
3c7b4e6b
CM
404 pr_notice(" backtrace:\n");
405 print_stack_trace(&trace, 4);
406}
407
408/*
85d3a316 409 * Look-up a memory block metadata (kmemleak_object) in the object search
3c7b4e6b
CM
410 * tree based on a pointer value. If alias is 0, only values pointing to the
411 * beginning of the memory block are allowed. The kmemleak_lock must be held
412 * when calling this function.
413 */
414static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
415{
85d3a316
ML
416 struct rb_node *rb = object_tree_root.rb_node;
417
418 while (rb) {
419 struct kmemleak_object *object =
420 rb_entry(rb, struct kmemleak_object, rb_node);
421 if (ptr < object->pointer)
422 rb = object->rb_node.rb_left;
423 else if (object->pointer + object->size <= ptr)
424 rb = object->rb_node.rb_right;
425 else if (object->pointer == ptr || alias)
426 return object;
427 else {
5f79020c
CM
428 kmemleak_warn("Found object by alias at 0x%08lx\n",
429 ptr);
a7686a45 430 dump_object_info(object);
85d3a316 431 break;
3c7b4e6b 432 }
85d3a316
ML
433 }
434 return NULL;
3c7b4e6b
CM
435}
436
437/*
438 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439 * that once an object's use_count reached 0, the RCU freeing was already
440 * registered and the object should no longer be used. This function must be
441 * called under the protection of rcu_read_lock().
442 */
443static int get_object(struct kmemleak_object *object)
444{
445 return atomic_inc_not_zero(&object->use_count);
446}
447
448/*
449 * RCU callback to free a kmemleak_object.
450 */
451static void free_object_rcu(struct rcu_head *rcu)
452{
b67bfe0d 453 struct hlist_node *tmp;
3c7b4e6b
CM
454 struct kmemleak_scan_area *area;
455 struct kmemleak_object *object =
456 container_of(rcu, struct kmemleak_object, rcu);
457
458 /*
459 * Once use_count is 0 (guaranteed by put_object), there is no other
460 * code accessing this object, hence no need for locking.
461 */
b67bfe0d
SL
462 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
463 hlist_del(&area->node);
3c7b4e6b
CM
464 kmem_cache_free(scan_area_cache, area);
465 }
466 kmem_cache_free(object_cache, object);
467}
468
469/*
470 * Decrement the object use_count. Once the count is 0, free the object using
471 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
472 * delete_object() path, the delayed RCU freeing ensures that there is no
473 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
474 * is also possible.
475 */
476static void put_object(struct kmemleak_object *object)
477{
478 if (!atomic_dec_and_test(&object->use_count))
479 return;
480
481 /* should only get here after delete_object was called */
482 WARN_ON(object->flags & OBJECT_ALLOCATED);
483
484 call_rcu(&object->rcu, free_object_rcu);
485}
486
487/*
85d3a316 488 * Look up an object in the object search tree and increase its use_count.
3c7b4e6b
CM
489 */
490static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
491{
492 unsigned long flags;
9fbed254 493 struct kmemleak_object *object;
3c7b4e6b
CM
494
495 rcu_read_lock();
496 read_lock_irqsave(&kmemleak_lock, flags);
93ada579 497 object = lookup_object(ptr, alias);
3c7b4e6b
CM
498 read_unlock_irqrestore(&kmemleak_lock, flags);
499
500 /* check whether the object is still available */
501 if (object && !get_object(object))
502 object = NULL;
503 rcu_read_unlock();
504
505 return object;
506}
507
e781a9ab
CM
508/*
509 * Look up an object in the object search tree and remove it from both
510 * object_tree_root and object_list. The returned object's use_count should be
511 * at least 1, as initially set by create_object().
512 */
513static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
514{
515 unsigned long flags;
516 struct kmemleak_object *object;
517
518 write_lock_irqsave(&kmemleak_lock, flags);
519 object = lookup_object(ptr, alias);
520 if (object) {
521 rb_erase(&object->rb_node, &object_tree_root);
522 list_del_rcu(&object->object_list);
523 }
524 write_unlock_irqrestore(&kmemleak_lock, flags);
525
526 return object;
527}
528
fd678967
CM
529/*
530 * Save stack trace to the given array of MAX_TRACE size.
531 */
532static int __save_stack_trace(unsigned long *trace)
533{
534 struct stack_trace stack_trace;
535
536 stack_trace.max_entries = MAX_TRACE;
537 stack_trace.nr_entries = 0;
538 stack_trace.entries = trace;
539 stack_trace.skip = 2;
540 save_stack_trace(&stack_trace);
541
542 return stack_trace.nr_entries;
543}
544
3c7b4e6b
CM
545/*
546 * Create the metadata (struct kmemleak_object) corresponding to an allocated
547 * memory block and add it to the object_list and object_tree_root.
548 */
fd678967
CM
549static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
550 int min_count, gfp_t gfp)
3c7b4e6b
CM
551{
552 unsigned long flags;
85d3a316
ML
553 struct kmemleak_object *object, *parent;
554 struct rb_node **link, *rb_parent;
3c7b4e6b 555
6ae4bd1f 556 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 557 if (!object) {
598d8091 558 pr_warn("Cannot allocate a kmemleak_object structure\n");
6ae4bd1f 559 kmemleak_disable();
fd678967 560 return NULL;
3c7b4e6b
CM
561 }
562
563 INIT_LIST_HEAD(&object->object_list);
564 INIT_LIST_HEAD(&object->gray_list);
565 INIT_HLIST_HEAD(&object->area_list);
566 spin_lock_init(&object->lock);
567 atomic_set(&object->use_count, 1);
04609ccc 568 object->flags = OBJECT_ALLOCATED;
3c7b4e6b
CM
569 object->pointer = ptr;
570 object->size = size;
94f4a161 571 object->excess_ref = 0;
3c7b4e6b 572 object->min_count = min_count;
04609ccc 573 object->count = 0; /* white color initially */
3c7b4e6b 574 object->jiffies = jiffies;
04609ccc 575 object->checksum = 0;
3c7b4e6b
CM
576
577 /* task information */
578 if (in_irq()) {
579 object->pid = 0;
580 strncpy(object->comm, "hardirq", sizeof(object->comm));
581 } else if (in_softirq()) {
582 object->pid = 0;
583 strncpy(object->comm, "softirq", sizeof(object->comm));
584 } else {
585 object->pid = current->pid;
586 /*
587 * There is a small chance of a race with set_task_comm(),
588 * however using get_task_comm() here may cause locking
589 * dependency issues with current->alloc_lock. In the worst
590 * case, the command line is not correct.
591 */
592 strncpy(object->comm, current->comm, sizeof(object->comm));
593 }
594
595 /* kernel backtrace */
fd678967 596 object->trace_len = __save_stack_trace(object->trace);
3c7b4e6b 597
3c7b4e6b 598 write_lock_irqsave(&kmemleak_lock, flags);
0580a181 599
3c7b4e6b
CM
600 min_addr = min(min_addr, ptr);
601 max_addr = max(max_addr, ptr + size);
85d3a316
ML
602 link = &object_tree_root.rb_node;
603 rb_parent = NULL;
604 while (*link) {
605 rb_parent = *link;
606 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
607 if (ptr + size <= parent->pointer)
608 link = &parent->rb_node.rb_left;
609 else if (parent->pointer + parent->size <= ptr)
610 link = &parent->rb_node.rb_right;
611 else {
756a025f 612 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
85d3a316 613 ptr);
9d5a4c73
CM
614 /*
615 * No need for parent->lock here since "parent" cannot
616 * be freed while the kmemleak_lock is held.
617 */
618 dump_object_info(parent);
85d3a316 619 kmem_cache_free(object_cache, object);
9d5a4c73 620 object = NULL;
85d3a316
ML
621 goto out;
622 }
3c7b4e6b 623 }
85d3a316
ML
624 rb_link_node(&object->rb_node, rb_parent, link);
625 rb_insert_color(&object->rb_node, &object_tree_root);
626
3c7b4e6b
CM
627 list_add_tail_rcu(&object->object_list, &object_list);
628out:
629 write_unlock_irqrestore(&kmemleak_lock, flags);
fd678967 630 return object;
3c7b4e6b
CM
631}
632
633/*
e781a9ab 634 * Mark the object as not allocated and schedule RCU freeing via put_object().
3c7b4e6b 635 */
53238a60 636static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
637{
638 unsigned long flags;
3c7b4e6b 639
3c7b4e6b 640 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
e781a9ab 641 WARN_ON(atomic_read(&object->use_count) < 1);
3c7b4e6b
CM
642
643 /*
644 * Locking here also ensures that the corresponding memory block
645 * cannot be freed when it is being scanned.
646 */
647 spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
648 object->flags &= ~OBJECT_ALLOCATED;
649 spin_unlock_irqrestore(&object->lock, flags);
650 put_object(object);
651}
652
53238a60
CM
653/*
654 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
655 * delete it.
656 */
657static void delete_object_full(unsigned long ptr)
658{
659 struct kmemleak_object *object;
660
e781a9ab 661 object = find_and_remove_object(ptr, 0);
53238a60
CM
662 if (!object) {
663#ifdef DEBUG
664 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
665 ptr);
666#endif
667 return;
668 }
669 __delete_object(object);
53238a60
CM
670}
671
672/*
673 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
674 * delete it. If the memory block is partially freed, the function may create
675 * additional metadata for the remaining parts of the block.
676 */
677static void delete_object_part(unsigned long ptr, size_t size)
678{
679 struct kmemleak_object *object;
680 unsigned long start, end;
681
e781a9ab 682 object = find_and_remove_object(ptr, 1);
53238a60
CM
683 if (!object) {
684#ifdef DEBUG
756a025f
JP
685 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
686 ptr, size);
53238a60
CM
687#endif
688 return;
689 }
53238a60
CM
690
691 /*
692 * Create one or two objects that may result from the memory block
693 * split. Note that partial freeing is only done by free_bootmem() and
694 * this happens before kmemleak_init() is called. The path below is
695 * only executed during early log recording in kmemleak_init(), so
696 * GFP_KERNEL is enough.
697 */
698 start = object->pointer;
699 end = object->pointer + object->size;
700 if (ptr > start)
701 create_object(start, ptr - start, object->min_count,
702 GFP_KERNEL);
703 if (ptr + size < end)
704 create_object(ptr + size, end - ptr - size, object->min_count,
705 GFP_KERNEL);
706
e781a9ab 707 __delete_object(object);
53238a60 708}
a1084c87
LR
709
710static void __paint_it(struct kmemleak_object *object, int color)
711{
712 object->min_count = color;
713 if (color == KMEMLEAK_BLACK)
714 object->flags |= OBJECT_NO_SCAN;
715}
716
717static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
718{
719 unsigned long flags;
a1084c87
LR
720
721 spin_lock_irqsave(&object->lock, flags);
722 __paint_it(object, color);
723 spin_unlock_irqrestore(&object->lock, flags);
724}
725
726static void paint_ptr(unsigned long ptr, int color)
727{
3c7b4e6b
CM
728 struct kmemleak_object *object;
729
730 object = find_and_get_object(ptr, 0);
731 if (!object) {
756a025f
JP
732 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
733 ptr,
a1084c87
LR
734 (color == KMEMLEAK_GREY) ? "Grey" :
735 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
736 return;
737 }
a1084c87 738 paint_it(object, color);
3c7b4e6b
CM
739 put_object(object);
740}
741
a1084c87 742/*
145b64b9 743 * Mark an object permanently as gray-colored so that it can no longer be
a1084c87
LR
744 * reported as a leak. This is used in general to mark a false positive.
745 */
746static void make_gray_object(unsigned long ptr)
747{
748 paint_ptr(ptr, KMEMLEAK_GREY);
749}
750
3c7b4e6b
CM
751/*
752 * Mark the object as black-colored so that it is ignored from scans and
753 * reporting.
754 */
755static void make_black_object(unsigned long ptr)
756{
a1084c87 757 paint_ptr(ptr, KMEMLEAK_BLACK);
3c7b4e6b
CM
758}
759
760/*
761 * Add a scanning area to the object. If at least one such area is added,
762 * kmemleak will only scan these ranges rather than the whole memory block.
763 */
c017b4be 764static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
765{
766 unsigned long flags;
767 struct kmemleak_object *object;
768 struct kmemleak_scan_area *area;
769
c017b4be 770 object = find_and_get_object(ptr, 1);
3c7b4e6b 771 if (!object) {
ae281064
JP
772 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
773 ptr);
3c7b4e6b
CM
774 return;
775 }
776
6ae4bd1f 777 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 778 if (!area) {
598d8091 779 pr_warn("Cannot allocate a scan area\n");
3c7b4e6b
CM
780 goto out;
781 }
782
783 spin_lock_irqsave(&object->lock, flags);
7f88f88f
CM
784 if (size == SIZE_MAX) {
785 size = object->pointer + object->size - ptr;
786 } else if (ptr + size > object->pointer + object->size) {
ae281064 787 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
788 dump_object_info(object);
789 kmem_cache_free(scan_area_cache, area);
790 goto out_unlock;
791 }
792
793 INIT_HLIST_NODE(&area->node);
c017b4be
CM
794 area->start = ptr;
795 area->size = size;
3c7b4e6b
CM
796
797 hlist_add_head(&area->node, &object->area_list);
798out_unlock:
799 spin_unlock_irqrestore(&object->lock, flags);
800out:
801 put_object(object);
802}
803
94f4a161
CM
804/*
805 * Any surplus references (object already gray) to 'ptr' are passed to
806 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
807 * vm_struct may be used as an alternative reference to the vmalloc'ed object
808 * (see free_thread_stack()).
809 */
810static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
811{
812 unsigned long flags;
813 struct kmemleak_object *object;
814
815 object = find_and_get_object(ptr, 0);
816 if (!object) {
817 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
818 ptr);
819 return;
820 }
821
822 spin_lock_irqsave(&object->lock, flags);
823 object->excess_ref = excess_ref;
824 spin_unlock_irqrestore(&object->lock, flags);
825 put_object(object);
826}
827
3c7b4e6b
CM
828/*
829 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
830 * pointer. Such object will not be scanned by kmemleak but references to it
831 * are searched.
832 */
833static void object_no_scan(unsigned long ptr)
834{
835 unsigned long flags;
836 struct kmemleak_object *object;
837
838 object = find_and_get_object(ptr, 0);
839 if (!object) {
ae281064 840 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
841 return;
842 }
843
844 spin_lock_irqsave(&object->lock, flags);
845 object->flags |= OBJECT_NO_SCAN;
846 spin_unlock_irqrestore(&object->lock, flags);
847 put_object(object);
848}
849
850/*
851 * Log an early kmemleak_* call to the early_log buffer. These calls will be
852 * processed later once kmemleak is fully initialized.
853 */
a6186d89 854static void __init log_early(int op_type, const void *ptr, size_t size,
c017b4be 855 int min_count)
3c7b4e6b
CM
856{
857 unsigned long flags;
858 struct early_log *log;
859
8910ae89 860 if (kmemleak_error) {
b6693005
CM
861 /* kmemleak stopped recording, just count the requests */
862 crt_early_log++;
863 return;
864 }
865
3c7b4e6b 866 if (crt_early_log >= ARRAY_SIZE(early_log)) {
21cd3a60 867 crt_early_log++;
a9d9058a 868 kmemleak_disable();
3c7b4e6b
CM
869 return;
870 }
871
872 /*
873 * There is no need for locking since the kernel is still in UP mode
874 * at this stage. Disabling the IRQs is enough.
875 */
876 local_irq_save(flags);
877 log = &early_log[crt_early_log];
878 log->op_type = op_type;
879 log->ptr = ptr;
880 log->size = size;
881 log->min_count = min_count;
5f79020c 882 log->trace_len = __save_stack_trace(log->trace);
3c7b4e6b
CM
883 crt_early_log++;
884 local_irq_restore(flags);
885}
886
fd678967
CM
887/*
888 * Log an early allocated block and populate the stack trace.
889 */
890static void early_alloc(struct early_log *log)
891{
892 struct kmemleak_object *object;
893 unsigned long flags;
894 int i;
895
8910ae89 896 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
fd678967
CM
897 return;
898
899 /*
900 * RCU locking needed to ensure object is not freed via put_object().
901 */
902 rcu_read_lock();
903 object = create_object((unsigned long)log->ptr, log->size,
c1bcd6b3 904 log->min_count, GFP_ATOMIC);
0d5d1aad
CM
905 if (!object)
906 goto out;
fd678967
CM
907 spin_lock_irqsave(&object->lock, flags);
908 for (i = 0; i < log->trace_len; i++)
909 object->trace[i] = log->trace[i];
910 object->trace_len = log->trace_len;
911 spin_unlock_irqrestore(&object->lock, flags);
0d5d1aad 912out:
fd678967
CM
913 rcu_read_unlock();
914}
915
f528f0b8
CM
916/*
917 * Log an early allocated block and populate the stack trace.
918 */
919static void early_alloc_percpu(struct early_log *log)
920{
921 unsigned int cpu;
922 const void __percpu *ptr = log->ptr;
923
924 for_each_possible_cpu(cpu) {
925 log->ptr = per_cpu_ptr(ptr, cpu);
926 early_alloc(log);
927 }
928}
929
a2b6bf63
CM
930/**
931 * kmemleak_alloc - register a newly allocated object
932 * @ptr: pointer to beginning of the object
933 * @size: size of the object
934 * @min_count: minimum number of references to this object. If during memory
935 * scanning a number of references less than @min_count is found,
936 * the object is reported as a memory leak. If @min_count is 0,
937 * the object is never reported as a leak. If @min_count is -1,
938 * the object is ignored (not scanned and not reported as a leak)
939 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
940 *
941 * This function is called from the kernel allocators when a new object
94f4a161 942 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
3c7b4e6b 943 */
a6186d89
CM
944void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
945 gfp_t gfp)
3c7b4e6b
CM
946{
947 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
948
8910ae89 949 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 950 create_object((unsigned long)ptr, size, min_count, gfp);
8910ae89 951 else if (kmemleak_early_log)
c017b4be 952 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
3c7b4e6b
CM
953}
954EXPORT_SYMBOL_GPL(kmemleak_alloc);
955
f528f0b8
CM
956/**
957 * kmemleak_alloc_percpu - register a newly allocated __percpu object
958 * @ptr: __percpu pointer to beginning of the object
959 * @size: size of the object
8a8c35fa 960 * @gfp: flags used for kmemleak internal memory allocations
f528f0b8
CM
961 *
962 * This function is called from the kernel percpu allocator when a new object
8a8c35fa 963 * (memory block) is allocated (alloc_percpu).
f528f0b8 964 */
8a8c35fa
LF
965void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
966 gfp_t gfp)
f528f0b8
CM
967{
968 unsigned int cpu;
969
970 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
971
972 /*
973 * Percpu allocations are only scanned and not reported as leaks
974 * (min_count is set to 0).
975 */
8910ae89 976 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
977 for_each_possible_cpu(cpu)
978 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
8a8c35fa 979 size, 0, gfp);
8910ae89 980 else if (kmemleak_early_log)
f528f0b8
CM
981 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
982}
983EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
984
94f4a161
CM
985/**
986 * kmemleak_vmalloc - register a newly vmalloc'ed object
987 * @area: pointer to vm_struct
988 * @size: size of the object
989 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
990 *
991 * This function is called from the vmalloc() kernel allocator when a new
992 * object (memory block) is allocated.
993 */
994void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
995{
996 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
997
998 /*
999 * A min_count = 2 is needed because vm_struct contains a reference to
1000 * the virtual address of the vmalloc'ed block.
1001 */
1002 if (kmemleak_enabled) {
1003 create_object((unsigned long)area->addr, size, 2, gfp);
1004 object_set_excess_ref((unsigned long)area,
1005 (unsigned long)area->addr);
1006 } else if (kmemleak_early_log) {
1007 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1008 /* reusing early_log.size for storing area->addr */
1009 log_early(KMEMLEAK_SET_EXCESS_REF,
1010 area, (unsigned long)area->addr, 0);
1011 }
1012}
1013EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1014
a2b6bf63
CM
1015/**
1016 * kmemleak_free - unregister a previously registered object
1017 * @ptr: pointer to beginning of the object
1018 *
1019 * This function is called from the kernel allocators when an object (memory
1020 * block) is freed (kmem_cache_free, kfree, vfree etc.).
3c7b4e6b 1021 */
a6186d89 1022void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
1023{
1024 pr_debug("%s(0x%p)\n", __func__, ptr);
1025
c5f3b1a5 1026 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
53238a60 1027 delete_object_full((unsigned long)ptr);
8910ae89 1028 else if (kmemleak_early_log)
c017b4be 1029 log_early(KMEMLEAK_FREE, ptr, 0, 0);
3c7b4e6b
CM
1030}
1031EXPORT_SYMBOL_GPL(kmemleak_free);
1032
a2b6bf63
CM
1033/**
1034 * kmemleak_free_part - partially unregister a previously registered object
1035 * @ptr: pointer to the beginning or inside the object. This also
1036 * represents the start of the range to be freed
1037 * @size: size to be unregistered
1038 *
1039 * This function is called when only a part of a memory block is freed
1040 * (usually from the bootmem allocator).
53238a60 1041 */
a6186d89 1042void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
1043{
1044 pr_debug("%s(0x%p)\n", __func__, ptr);
1045
8910ae89 1046 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
53238a60 1047 delete_object_part((unsigned long)ptr, size);
8910ae89 1048 else if (kmemleak_early_log)
c017b4be 1049 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
53238a60
CM
1050}
1051EXPORT_SYMBOL_GPL(kmemleak_free_part);
1052
f528f0b8
CM
1053/**
1054 * kmemleak_free_percpu - unregister a previously registered __percpu object
1055 * @ptr: __percpu pointer to beginning of the object
1056 *
1057 * This function is called from the kernel percpu allocator when an object
1058 * (memory block) is freed (free_percpu).
1059 */
1060void __ref kmemleak_free_percpu(const void __percpu *ptr)
1061{
1062 unsigned int cpu;
1063
1064 pr_debug("%s(0x%p)\n", __func__, ptr);
1065
c5f3b1a5 1066 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1067 for_each_possible_cpu(cpu)
1068 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1069 cpu));
8910ae89 1070 else if (kmemleak_early_log)
f528f0b8
CM
1071 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1072}
1073EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1074
ffe2c748
CM
1075/**
1076 * kmemleak_update_trace - update object allocation stack trace
1077 * @ptr: pointer to beginning of the object
1078 *
1079 * Override the object allocation stack trace for cases where the actual
1080 * allocation place is not always useful.
1081 */
1082void __ref kmemleak_update_trace(const void *ptr)
1083{
1084 struct kmemleak_object *object;
1085 unsigned long flags;
1086
1087 pr_debug("%s(0x%p)\n", __func__, ptr);
1088
1089 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1090 return;
1091
1092 object = find_and_get_object((unsigned long)ptr, 1);
1093 if (!object) {
1094#ifdef DEBUG
1095 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1096 ptr);
1097#endif
1098 return;
1099 }
1100
1101 spin_lock_irqsave(&object->lock, flags);
1102 object->trace_len = __save_stack_trace(object->trace);
1103 spin_unlock_irqrestore(&object->lock, flags);
1104
1105 put_object(object);
1106}
1107EXPORT_SYMBOL(kmemleak_update_trace);
1108
a2b6bf63
CM
1109/**
1110 * kmemleak_not_leak - mark an allocated object as false positive
1111 * @ptr: pointer to beginning of the object
1112 *
1113 * Calling this function on an object will cause the memory block to no longer
1114 * be reported as leak and always be scanned.
3c7b4e6b 1115 */
a6186d89 1116void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
1117{
1118 pr_debug("%s(0x%p)\n", __func__, ptr);
1119
8910ae89 1120 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1121 make_gray_object((unsigned long)ptr);
8910ae89 1122 else if (kmemleak_early_log)
c017b4be 1123 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
3c7b4e6b
CM
1124}
1125EXPORT_SYMBOL(kmemleak_not_leak);
1126
a2b6bf63
CM
1127/**
1128 * kmemleak_ignore - ignore an allocated object
1129 * @ptr: pointer to beginning of the object
1130 *
1131 * Calling this function on an object will cause the memory block to be
1132 * ignored (not scanned and not reported as a leak). This is usually done when
1133 * it is known that the corresponding block is not a leak and does not contain
1134 * any references to other allocated memory blocks.
3c7b4e6b 1135 */
a6186d89 1136void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
1137{
1138 pr_debug("%s(0x%p)\n", __func__, ptr);
1139
8910ae89 1140 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1141 make_black_object((unsigned long)ptr);
8910ae89 1142 else if (kmemleak_early_log)
c017b4be 1143 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
3c7b4e6b
CM
1144}
1145EXPORT_SYMBOL(kmemleak_ignore);
1146
a2b6bf63
CM
1147/**
1148 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1149 * @ptr: pointer to beginning or inside the object. This also
1150 * represents the start of the scan area
1151 * @size: size of the scan area
1152 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1153 *
1154 * This function is used when it is known that only certain parts of an object
1155 * contain references to other objects. Kmemleak will only scan these areas
1156 * reducing the number false negatives.
3c7b4e6b 1157 */
c017b4be 1158void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
1159{
1160 pr_debug("%s(0x%p)\n", __func__, ptr);
1161
8910ae89 1162 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
c017b4be 1163 add_scan_area((unsigned long)ptr, size, gfp);
8910ae89 1164 else if (kmemleak_early_log)
c017b4be 1165 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
3c7b4e6b
CM
1166}
1167EXPORT_SYMBOL(kmemleak_scan_area);
1168
a2b6bf63
CM
1169/**
1170 * kmemleak_no_scan - do not scan an allocated object
1171 * @ptr: pointer to beginning of the object
1172 *
1173 * This function notifies kmemleak not to scan the given memory block. Useful
1174 * in situations where it is known that the given object does not contain any
1175 * references to other objects. Kmemleak will not scan such objects reducing
1176 * the number of false negatives.
3c7b4e6b 1177 */
a6186d89 1178void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
1179{
1180 pr_debug("%s(0x%p)\n", __func__, ptr);
1181
8910ae89 1182 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1183 object_no_scan((unsigned long)ptr);
8910ae89 1184 else if (kmemleak_early_log)
c017b4be 1185 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
3c7b4e6b
CM
1186}
1187EXPORT_SYMBOL(kmemleak_no_scan);
1188
9099daed
CM
1189/**
1190 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1191 * address argument
1192 */
1193void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1194 gfp_t gfp)
1195{
1196 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1197 kmemleak_alloc(__va(phys), size, min_count, gfp);
1198}
1199EXPORT_SYMBOL(kmemleak_alloc_phys);
1200
1201/**
1202 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1203 * physical address argument
1204 */
1205void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1206{
1207 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1208 kmemleak_free_part(__va(phys), size);
1209}
1210EXPORT_SYMBOL(kmemleak_free_part_phys);
1211
1212/**
1213 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1214 * address argument
1215 */
1216void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1217{
1218 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1219 kmemleak_not_leak(__va(phys));
1220}
1221EXPORT_SYMBOL(kmemleak_not_leak_phys);
1222
1223/**
1224 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1225 * address argument
1226 */
1227void __ref kmemleak_ignore_phys(phys_addr_t phys)
1228{
1229 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1230 kmemleak_ignore(__va(phys));
1231}
1232EXPORT_SYMBOL(kmemleak_ignore_phys);
1233
04609ccc
CM
1234/*
1235 * Update an object's checksum and return true if it was modified.
1236 */
1237static bool update_checksum(struct kmemleak_object *object)
1238{
1239 u32 old_csum = object->checksum;
1240
1241 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1242 return false;
1243
e79ed2f1 1244 kasan_disable_current();
04609ccc 1245 object->checksum = crc32(0, (void *)object->pointer, object->size);
e79ed2f1
AR
1246 kasan_enable_current();
1247
04609ccc
CM
1248 return object->checksum != old_csum;
1249}
1250
04f70d13
CM
1251/*
1252 * Update an object's references. object->lock must be held by the caller.
1253 */
1254static void update_refs(struct kmemleak_object *object)
1255{
1256 if (!color_white(object)) {
1257 /* non-orphan, ignored or new */
1258 return;
1259 }
1260
1261 /*
1262 * Increase the object's reference count (number of pointers to the
1263 * memory block). If this count reaches the required minimum, the
1264 * object's color will become gray and it will be added to the
1265 * gray_list.
1266 */
1267 object->count++;
1268 if (color_gray(object)) {
1269 /* put_object() called when removing from gray_list */
1270 WARN_ON(!get_object(object));
1271 list_add_tail(&object->gray_list, &gray_list);
1272 }
1273}
1274
3c7b4e6b
CM
1275/*
1276 * Memory scanning is a long process and it needs to be interruptable. This
25985edc 1277 * function checks whether such interrupt condition occurred.
3c7b4e6b
CM
1278 */
1279static int scan_should_stop(void)
1280{
8910ae89 1281 if (!kmemleak_enabled)
3c7b4e6b
CM
1282 return 1;
1283
1284 /*
1285 * This function may be called from either process or kthread context,
1286 * hence the need to check for both stop conditions.
1287 */
1288 if (current->mm)
1289 return signal_pending(current);
1290 else
1291 return kthread_should_stop();
1292
1293 return 0;
1294}
1295
1296/*
1297 * Scan a memory block (exclusive range) for valid pointers and add those
1298 * found to the gray list.
1299 */
1300static void scan_block(void *_start, void *_end,
93ada579 1301 struct kmemleak_object *scanned)
3c7b4e6b
CM
1302{
1303 unsigned long *ptr;
1304 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1305 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
93ada579 1306 unsigned long flags;
3c7b4e6b 1307
93ada579 1308 read_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b 1309 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 1310 struct kmemleak_object *object;
8e019366 1311 unsigned long pointer;
94f4a161 1312 unsigned long excess_ref;
3c7b4e6b
CM
1313
1314 if (scan_should_stop())
1315 break;
1316
8e019366
PE
1317 /* don't scan uninitialized memory */
1318 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1319 BYTES_PER_POINTER))
1320 continue;
1321
e79ed2f1 1322 kasan_disable_current();
8e019366 1323 pointer = *ptr;
e79ed2f1 1324 kasan_enable_current();
8e019366 1325
93ada579
CM
1326 if (pointer < min_addr || pointer >= max_addr)
1327 continue;
1328
1329 /*
1330 * No need for get_object() here since we hold kmemleak_lock.
1331 * object->use_count cannot be dropped to 0 while the object
1332 * is still present in object_tree_root and object_list
1333 * (with updates protected by kmemleak_lock).
1334 */
1335 object = lookup_object(pointer, 1);
3c7b4e6b
CM
1336 if (!object)
1337 continue;
93ada579 1338 if (object == scanned)
3c7b4e6b 1339 /* self referenced, ignore */
3c7b4e6b 1340 continue;
3c7b4e6b
CM
1341
1342 /*
1343 * Avoid the lockdep recursive warning on object->lock being
1344 * previously acquired in scan_object(). These locks are
1345 * enclosed by scan_mutex.
1346 */
93ada579 1347 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161
CM
1348 /* only pass surplus references (object already gray) */
1349 if (color_gray(object)) {
1350 excess_ref = object->excess_ref;
1351 /* no need for update_refs() if object already gray */
1352 } else {
1353 excess_ref = 0;
1354 update_refs(object);
1355 }
93ada579 1356 spin_unlock(&object->lock);
94f4a161
CM
1357
1358 if (excess_ref) {
1359 object = lookup_object(excess_ref, 0);
1360 if (!object)
1361 continue;
1362 if (object == scanned)
1363 /* circular reference, ignore */
1364 continue;
1365 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1366 update_refs(object);
1367 spin_unlock(&object->lock);
1368 }
93ada579
CM
1369 }
1370 read_unlock_irqrestore(&kmemleak_lock, flags);
1371}
0587da40 1372
93ada579
CM
1373/*
1374 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1375 */
1376static void scan_large_block(void *start, void *end)
1377{
1378 void *next;
1379
1380 while (start < end) {
1381 next = min(start + MAX_SCAN_SIZE, end);
1382 scan_block(start, next, NULL);
1383 start = next;
1384 cond_resched();
3c7b4e6b
CM
1385 }
1386}
1387
1388/*
1389 * Scan a memory block corresponding to a kmemleak_object. A condition is
1390 * that object->use_count >= 1.
1391 */
1392static void scan_object(struct kmemleak_object *object)
1393{
1394 struct kmemleak_scan_area *area;
3c7b4e6b
CM
1395 unsigned long flags;
1396
1397 /*
21ae2956
UKK
1398 * Once the object->lock is acquired, the corresponding memory block
1399 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b
CM
1400 */
1401 spin_lock_irqsave(&object->lock, flags);
1402 if (object->flags & OBJECT_NO_SCAN)
1403 goto out;
1404 if (!(object->flags & OBJECT_ALLOCATED))
1405 /* already freed object */
1406 goto out;
af98603d
CM
1407 if (hlist_empty(&object->area_list)) {
1408 void *start = (void *)object->pointer;
1409 void *end = (void *)(object->pointer + object->size);
93ada579
CM
1410 void *next;
1411
1412 do {
1413 next = min(start + MAX_SCAN_SIZE, end);
1414 scan_block(start, next, object);
af98603d 1415
93ada579
CM
1416 start = next;
1417 if (start >= end)
1418 break;
af98603d
CM
1419
1420 spin_unlock_irqrestore(&object->lock, flags);
1421 cond_resched();
1422 spin_lock_irqsave(&object->lock, flags);
93ada579 1423 } while (object->flags & OBJECT_ALLOCATED);
af98603d 1424 } else
b67bfe0d 1425 hlist_for_each_entry(area, &object->area_list, node)
c017b4be
CM
1426 scan_block((void *)area->start,
1427 (void *)(area->start + area->size),
93ada579 1428 object);
3c7b4e6b
CM
1429out:
1430 spin_unlock_irqrestore(&object->lock, flags);
1431}
1432
04609ccc
CM
1433/*
1434 * Scan the objects already referenced (gray objects). More objects will be
1435 * referenced and, if there are no memory leaks, all the objects are scanned.
1436 */
1437static void scan_gray_list(void)
1438{
1439 struct kmemleak_object *object, *tmp;
1440
1441 /*
1442 * The list traversal is safe for both tail additions and removals
1443 * from inside the loop. The kmemleak objects cannot be freed from
1444 * outside the loop because their use_count was incremented.
1445 */
1446 object = list_entry(gray_list.next, typeof(*object), gray_list);
1447 while (&object->gray_list != &gray_list) {
1448 cond_resched();
1449
1450 /* may add new objects to the list */
1451 if (!scan_should_stop())
1452 scan_object(object);
1453
1454 tmp = list_entry(object->gray_list.next, typeof(*object),
1455 gray_list);
1456
1457 /* remove the object from the list and release it */
1458 list_del(&object->gray_list);
1459 put_object(object);
1460
1461 object = tmp;
1462 }
1463 WARN_ON(!list_empty(&gray_list));
1464}
1465
3c7b4e6b
CM
1466/*
1467 * Scan data sections and all the referenced memory blocks allocated via the
1468 * kernel's standard allocators. This function must be called with the
1469 * scan_mutex held.
1470 */
1471static void kmemleak_scan(void)
1472{
1473 unsigned long flags;
04609ccc 1474 struct kmemleak_object *object;
3c7b4e6b 1475 int i;
4698c1f2 1476 int new_leaks = 0;
3c7b4e6b 1477
acf4968e
CM
1478 jiffies_last_scan = jiffies;
1479
3c7b4e6b
CM
1480 /* prepare the kmemleak_object's */
1481 rcu_read_lock();
1482 list_for_each_entry_rcu(object, &object_list, object_list) {
1483 spin_lock_irqsave(&object->lock, flags);
1484#ifdef DEBUG
1485 /*
1486 * With a few exceptions there should be a maximum of
1487 * 1 reference to any object at this point.
1488 */
1489 if (atomic_read(&object->use_count) > 1) {
ae281064 1490 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1491 atomic_read(&object->use_count));
1492 dump_object_info(object);
1493 }
1494#endif
1495 /* reset the reference count (whiten the object) */
1496 object->count = 0;
1497 if (color_gray(object) && get_object(object))
1498 list_add_tail(&object->gray_list, &gray_list);
1499
1500 spin_unlock_irqrestore(&object->lock, flags);
1501 }
1502 rcu_read_unlock();
1503
1504 /* data/bss scanning */
93ada579
CM
1505 scan_large_block(_sdata, _edata);
1506 scan_large_block(__bss_start, __bss_stop);
906f2a51 1507 scan_large_block(__start_ro_after_init, __end_ro_after_init);
3c7b4e6b
CM
1508
1509#ifdef CONFIG_SMP
1510 /* per-cpu sections scanning */
1511 for_each_possible_cpu(i)
93ada579
CM
1512 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1513 __per_cpu_end + per_cpu_offset(i));
3c7b4e6b
CM
1514#endif
1515
1516 /*
029aeff5 1517 * Struct page scanning for each node.
3c7b4e6b 1518 */
bfc8c901 1519 get_online_mems();
3c7b4e6b 1520 for_each_online_node(i) {
108bcc96
CS
1521 unsigned long start_pfn = node_start_pfn(i);
1522 unsigned long end_pfn = node_end_pfn(i);
3c7b4e6b
CM
1523 unsigned long pfn;
1524
1525 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1526 struct page *page;
1527
1528 if (!pfn_valid(pfn))
1529 continue;
1530 page = pfn_to_page(pfn);
1531 /* only scan if page is in use */
1532 if (page_count(page) == 0)
1533 continue;
93ada579 1534 scan_block(page, page + 1, NULL);
3c7b4e6b
CM
1535 }
1536 }
bfc8c901 1537 put_online_mems();
3c7b4e6b
CM
1538
1539 /*
43ed5d6e 1540 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1541 */
1542 if (kmemleak_stack_scan) {
43ed5d6e
CM
1543 struct task_struct *p, *g;
1544
3c7b4e6b 1545 read_lock(&tasklist_lock);
43ed5d6e 1546 do_each_thread(g, p) {
37df49f4
CM
1547 void *stack = try_get_task_stack(p);
1548 if (stack) {
1549 scan_block(stack, stack + THREAD_SIZE, NULL);
1550 put_task_stack(p);
1551 }
43ed5d6e 1552 } while_each_thread(g, p);
3c7b4e6b
CM
1553 read_unlock(&tasklist_lock);
1554 }
1555
1556 /*
1557 * Scan the objects already referenced from the sections scanned
04609ccc 1558 * above.
3c7b4e6b 1559 */
04609ccc 1560 scan_gray_list();
2587362e
CM
1561
1562 /*
04609ccc
CM
1563 * Check for new or unreferenced objects modified since the previous
1564 * scan and color them gray until the next scan.
2587362e
CM
1565 */
1566 rcu_read_lock();
1567 list_for_each_entry_rcu(object, &object_list, object_list) {
1568 spin_lock_irqsave(&object->lock, flags);
04609ccc
CM
1569 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1570 && update_checksum(object) && get_object(object)) {
1571 /* color it gray temporarily */
1572 object->count = object->min_count;
2587362e
CM
1573 list_add_tail(&object->gray_list, &gray_list);
1574 }
1575 spin_unlock_irqrestore(&object->lock, flags);
1576 }
1577 rcu_read_unlock();
1578
04609ccc
CM
1579 /*
1580 * Re-scan the gray list for modified unreferenced objects.
1581 */
1582 scan_gray_list();
4698c1f2 1583
17bb9e0d 1584 /*
04609ccc 1585 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1586 */
04609ccc 1587 if (scan_should_stop())
17bb9e0d
CM
1588 return;
1589
4698c1f2
CM
1590 /*
1591 * Scanning result reporting.
1592 */
1593 rcu_read_lock();
1594 list_for_each_entry_rcu(object, &object_list, object_list) {
1595 spin_lock_irqsave(&object->lock, flags);
1596 if (unreferenced_object(object) &&
1597 !(object->flags & OBJECT_REPORTED)) {
1598 object->flags |= OBJECT_REPORTED;
1599 new_leaks++;
1600 }
1601 spin_unlock_irqrestore(&object->lock, flags);
1602 }
1603 rcu_read_unlock();
1604
dc9b3f42
LZ
1605 if (new_leaks) {
1606 kmemleak_found_leaks = true;
1607
756a025f
JP
1608 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1609 new_leaks);
dc9b3f42 1610 }
4698c1f2 1611
3c7b4e6b
CM
1612}
1613
1614/*
1615 * Thread function performing automatic memory scanning. Unreferenced objects
1616 * at the end of a memory scan are reported but only the first time.
1617 */
1618static int kmemleak_scan_thread(void *arg)
1619{
1620 static int first_run = 1;
1621
ae281064 1622 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1623 set_user_nice(current, 10);
3c7b4e6b
CM
1624
1625 /*
1626 * Wait before the first scan to allow the system to fully initialize.
1627 */
1628 if (first_run) {
98c42d94 1629 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
3c7b4e6b 1630 first_run = 0;
98c42d94
VN
1631 while (timeout && !kthread_should_stop())
1632 timeout = schedule_timeout_interruptible(timeout);
3c7b4e6b
CM
1633 }
1634
1635 while (!kthread_should_stop()) {
3c7b4e6b
CM
1636 signed long timeout = jiffies_scan_wait;
1637
1638 mutex_lock(&scan_mutex);
3c7b4e6b 1639 kmemleak_scan();
3c7b4e6b 1640 mutex_unlock(&scan_mutex);
4698c1f2 1641
3c7b4e6b
CM
1642 /* wait before the next scan */
1643 while (timeout && !kthread_should_stop())
1644 timeout = schedule_timeout_interruptible(timeout);
1645 }
1646
ae281064 1647 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1648
1649 return 0;
1650}
1651
1652/*
1653 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1654 * with the scan_mutex held.
3c7b4e6b 1655 */
7eb0d5e5 1656static void start_scan_thread(void)
3c7b4e6b
CM
1657{
1658 if (scan_thread)
1659 return;
1660 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1661 if (IS_ERR(scan_thread)) {
598d8091 1662 pr_warn("Failed to create the scan thread\n");
3c7b4e6b
CM
1663 scan_thread = NULL;
1664 }
1665}
1666
1667/*
1668 * Stop the automatic memory scanning thread. This function must be called
4698c1f2 1669 * with the scan_mutex held.
3c7b4e6b 1670 */
7eb0d5e5 1671static void stop_scan_thread(void)
3c7b4e6b
CM
1672{
1673 if (scan_thread) {
1674 kthread_stop(scan_thread);
1675 scan_thread = NULL;
1676 }
1677}
1678
1679/*
1680 * Iterate over the object_list and return the first valid object at or after
1681 * the required position with its use_count incremented. The function triggers
1682 * a memory scanning when the pos argument points to the first position.
1683 */
1684static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1685{
1686 struct kmemleak_object *object;
1687 loff_t n = *pos;
b87324d0
CM
1688 int err;
1689
1690 err = mutex_lock_interruptible(&scan_mutex);
1691 if (err < 0)
1692 return ERR_PTR(err);
3c7b4e6b 1693
3c7b4e6b
CM
1694 rcu_read_lock();
1695 list_for_each_entry_rcu(object, &object_list, object_list) {
1696 if (n-- > 0)
1697 continue;
1698 if (get_object(object))
1699 goto out;
1700 }
1701 object = NULL;
1702out:
3c7b4e6b
CM
1703 return object;
1704}
1705
1706/*
1707 * Return the next object in the object_list. The function decrements the
1708 * use_count of the previous object and increases that of the next one.
1709 */
1710static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1711{
1712 struct kmemleak_object *prev_obj = v;
1713 struct kmemleak_object *next_obj = NULL;
58fac095 1714 struct kmemleak_object *obj = prev_obj;
3c7b4e6b
CM
1715
1716 ++(*pos);
3c7b4e6b 1717
58fac095 1718 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
52c3ce4e
CM
1719 if (get_object(obj)) {
1720 next_obj = obj;
3c7b4e6b 1721 break;
52c3ce4e 1722 }
3c7b4e6b 1723 }
288c857d 1724
3c7b4e6b
CM
1725 put_object(prev_obj);
1726 return next_obj;
1727}
1728
1729/*
1730 * Decrement the use_count of the last object required, if any.
1731 */
1732static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1733{
b87324d0
CM
1734 if (!IS_ERR(v)) {
1735 /*
1736 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1737 * waiting was interrupted, so only release it if !IS_ERR.
1738 */
f5886c7f 1739 rcu_read_unlock();
b87324d0
CM
1740 mutex_unlock(&scan_mutex);
1741 if (v)
1742 put_object(v);
1743 }
3c7b4e6b
CM
1744}
1745
1746/*
1747 * Print the information for an unreferenced object to the seq file.
1748 */
1749static int kmemleak_seq_show(struct seq_file *seq, void *v)
1750{
1751 struct kmemleak_object *object = v;
1752 unsigned long flags;
1753
1754 spin_lock_irqsave(&object->lock, flags);
288c857d 1755 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1756 print_unreferenced(seq, object);
3c7b4e6b
CM
1757 spin_unlock_irqrestore(&object->lock, flags);
1758 return 0;
1759}
1760
1761static const struct seq_operations kmemleak_seq_ops = {
1762 .start = kmemleak_seq_start,
1763 .next = kmemleak_seq_next,
1764 .stop = kmemleak_seq_stop,
1765 .show = kmemleak_seq_show,
1766};
1767
1768static int kmemleak_open(struct inode *inode, struct file *file)
1769{
b87324d0 1770 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1771}
1772
189d84ed
CM
1773static int dump_str_object_info(const char *str)
1774{
1775 unsigned long flags;
1776 struct kmemleak_object *object;
1777 unsigned long addr;
1778
dc053733
AP
1779 if (kstrtoul(str, 0, &addr))
1780 return -EINVAL;
189d84ed
CM
1781 object = find_and_get_object(addr, 0);
1782 if (!object) {
1783 pr_info("Unknown object at 0x%08lx\n", addr);
1784 return -EINVAL;
1785 }
1786
1787 spin_lock_irqsave(&object->lock, flags);
1788 dump_object_info(object);
1789 spin_unlock_irqrestore(&object->lock, flags);
1790
1791 put_object(object);
1792 return 0;
1793}
1794
30b37101
LR
1795/*
1796 * We use grey instead of black to ensure we can do future scans on the same
1797 * objects. If we did not do future scans these black objects could
1798 * potentially contain references to newly allocated objects in the future and
1799 * we'd end up with false positives.
1800 */
1801static void kmemleak_clear(void)
1802{
1803 struct kmemleak_object *object;
1804 unsigned long flags;
1805
1806 rcu_read_lock();
1807 list_for_each_entry_rcu(object, &object_list, object_list) {
1808 spin_lock_irqsave(&object->lock, flags);
1809 if ((object->flags & OBJECT_REPORTED) &&
1810 unreferenced_object(object))
a1084c87 1811 __paint_it(object, KMEMLEAK_GREY);
30b37101
LR
1812 spin_unlock_irqrestore(&object->lock, flags);
1813 }
1814 rcu_read_unlock();
dc9b3f42
LZ
1815
1816 kmemleak_found_leaks = false;
30b37101
LR
1817}
1818
c89da70c
LZ
1819static void __kmemleak_do_cleanup(void);
1820
3c7b4e6b
CM
1821/*
1822 * File write operation to configure kmemleak at run-time. The following
1823 * commands can be written to the /sys/kernel/debug/kmemleak file:
1824 * off - disable kmemleak (irreversible)
1825 * stack=on - enable the task stacks scanning
1826 * stack=off - disable the tasks stacks scanning
1827 * scan=on - start the automatic memory scanning thread
1828 * scan=off - stop the automatic memory scanning thread
1829 * scan=... - set the automatic memory scanning period in seconds (0 to
1830 * disable it)
4698c1f2 1831 * scan - trigger a memory scan
30b37101 1832 * clear - mark all current reported unreferenced kmemleak objects as
c89da70c
LZ
1833 * grey to ignore printing them, or free all kmemleak objects
1834 * if kmemleak has been disabled.
189d84ed 1835 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1836 */
1837static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1838 size_t size, loff_t *ppos)
1839{
1840 char buf[64];
1841 int buf_size;
b87324d0 1842 int ret;
3c7b4e6b
CM
1843
1844 buf_size = min(size, (sizeof(buf) - 1));
1845 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1846 return -EFAULT;
1847 buf[buf_size] = 0;
1848
b87324d0
CM
1849 ret = mutex_lock_interruptible(&scan_mutex);
1850 if (ret < 0)
1851 return ret;
1852
c89da70c 1853 if (strncmp(buf, "clear", 5) == 0) {
8910ae89 1854 if (kmemleak_enabled)
c89da70c
LZ
1855 kmemleak_clear();
1856 else
1857 __kmemleak_do_cleanup();
1858 goto out;
1859 }
1860
8910ae89 1861 if (!kmemleak_enabled) {
c89da70c
LZ
1862 ret = -EBUSY;
1863 goto out;
1864 }
1865
3c7b4e6b
CM
1866 if (strncmp(buf, "off", 3) == 0)
1867 kmemleak_disable();
1868 else if (strncmp(buf, "stack=on", 8) == 0)
1869 kmemleak_stack_scan = 1;
1870 else if (strncmp(buf, "stack=off", 9) == 0)
1871 kmemleak_stack_scan = 0;
1872 else if (strncmp(buf, "scan=on", 7) == 0)
1873 start_scan_thread();
1874 else if (strncmp(buf, "scan=off", 8) == 0)
1875 stop_scan_thread();
1876 else if (strncmp(buf, "scan=", 5) == 0) {
1877 unsigned long secs;
3c7b4e6b 1878
3dbb95f7 1879 ret = kstrtoul(buf + 5, 0, &secs);
b87324d0
CM
1880 if (ret < 0)
1881 goto out;
3c7b4e6b
CM
1882 stop_scan_thread();
1883 if (secs) {
1884 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1885 start_scan_thread();
1886 }
4698c1f2
CM
1887 } else if (strncmp(buf, "scan", 4) == 0)
1888 kmemleak_scan();
189d84ed
CM
1889 else if (strncmp(buf, "dump=", 5) == 0)
1890 ret = dump_str_object_info(buf + 5);
4698c1f2 1891 else
b87324d0
CM
1892 ret = -EINVAL;
1893
1894out:
1895 mutex_unlock(&scan_mutex);
1896 if (ret < 0)
1897 return ret;
3c7b4e6b
CM
1898
1899 /* ignore the rest of the buffer, only one command at a time */
1900 *ppos += size;
1901 return size;
1902}
1903
1904static const struct file_operations kmemleak_fops = {
1905 .owner = THIS_MODULE,
1906 .open = kmemleak_open,
1907 .read = seq_read,
1908 .write = kmemleak_write,
1909 .llseek = seq_lseek,
5f3bf19a 1910 .release = seq_release,
3c7b4e6b
CM
1911};
1912
c89da70c
LZ
1913static void __kmemleak_do_cleanup(void)
1914{
1915 struct kmemleak_object *object;
1916
1917 rcu_read_lock();
1918 list_for_each_entry_rcu(object, &object_list, object_list)
1919 delete_object_full(object->pointer);
1920 rcu_read_unlock();
1921}
1922
3c7b4e6b 1923/*
74341703
CM
1924 * Stop the memory scanning thread and free the kmemleak internal objects if
1925 * no previous scan thread (otherwise, kmemleak may still have some useful
1926 * information on memory leaks).
3c7b4e6b 1927 */
179a8100 1928static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b 1929{
3c7b4e6b 1930 stop_scan_thread();
3c7b4e6b 1931
c5f3b1a5
CM
1932 /*
1933 * Once the scan thread has stopped, it is safe to no longer track
1934 * object freeing. Ordering of the scan thread stopping and the memory
1935 * accesses below is guaranteed by the kthread_stop() function.
1936 */
1937 kmemleak_free_enabled = 0;
1938
c89da70c
LZ
1939 if (!kmemleak_found_leaks)
1940 __kmemleak_do_cleanup();
1941 else
756a025f 1942 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
3c7b4e6b
CM
1943}
1944
179a8100 1945static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
1946
1947/*
1948 * Disable kmemleak. No memory allocation/freeing will be traced once this
1949 * function is called. Disabling kmemleak is an irreversible operation.
1950 */
1951static void kmemleak_disable(void)
1952{
1953 /* atomically check whether it was already invoked */
8910ae89 1954 if (cmpxchg(&kmemleak_error, 0, 1))
3c7b4e6b
CM
1955 return;
1956
1957 /* stop any memory operation tracing */
8910ae89 1958 kmemleak_enabled = 0;
3c7b4e6b
CM
1959
1960 /* check whether it is too early for a kernel thread */
8910ae89 1961 if (kmemleak_initialized)
179a8100 1962 schedule_work(&cleanup_work);
c5f3b1a5
CM
1963 else
1964 kmemleak_free_enabled = 0;
3c7b4e6b
CM
1965
1966 pr_info("Kernel memory leak detector disabled\n");
1967}
1968
1969/*
1970 * Allow boot-time kmemleak disabling (enabled by default).
1971 */
1972static int kmemleak_boot_config(char *str)
1973{
1974 if (!str)
1975 return -EINVAL;
1976 if (strcmp(str, "off") == 0)
1977 kmemleak_disable();
ab0155a2
JB
1978 else if (strcmp(str, "on") == 0)
1979 kmemleak_skip_disable = 1;
1980 else
3c7b4e6b
CM
1981 return -EINVAL;
1982 return 0;
1983}
1984early_param("kmemleak", kmemleak_boot_config);
1985
5f79020c
CM
1986static void __init print_log_trace(struct early_log *log)
1987{
1988 struct stack_trace trace;
1989
1990 trace.nr_entries = log->trace_len;
1991 trace.entries = log->trace;
1992
1993 pr_notice("Early log backtrace:\n");
1994 print_stack_trace(&trace, 2);
1995}
1996
3c7b4e6b 1997/*
2030117d 1998 * Kmemleak initialization.
3c7b4e6b
CM
1999 */
2000void __init kmemleak_init(void)
2001{
2002 int i;
2003 unsigned long flags;
2004
ab0155a2
JB
2005#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2006 if (!kmemleak_skip_disable) {
3551a928 2007 kmemleak_early_log = 0;
ab0155a2
JB
2008 kmemleak_disable();
2009 return;
2010 }
2011#endif
2012
3c7b4e6b
CM
2013 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2014 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2015
2016 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2017 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
3c7b4e6b 2018
21cd3a60 2019 if (crt_early_log > ARRAY_SIZE(early_log))
598d8091
JP
2020 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2021 crt_early_log);
b6693005 2022
3c7b4e6b
CM
2023 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2024 local_irq_save(flags);
3551a928 2025 kmemleak_early_log = 0;
8910ae89 2026 if (kmemleak_error) {
b6693005
CM
2027 local_irq_restore(flags);
2028 return;
c5f3b1a5 2029 } else {
8910ae89 2030 kmemleak_enabled = 1;
c5f3b1a5
CM
2031 kmemleak_free_enabled = 1;
2032 }
3c7b4e6b
CM
2033 local_irq_restore(flags);
2034
2035 /*
2036 * This is the point where tracking allocations is safe. Automatic
2037 * scanning is started during the late initcall. Add the early logged
2038 * callbacks to the kmemleak infrastructure.
2039 */
2040 for (i = 0; i < crt_early_log; i++) {
2041 struct early_log *log = &early_log[i];
2042
2043 switch (log->op_type) {
2044 case KMEMLEAK_ALLOC:
fd678967 2045 early_alloc(log);
3c7b4e6b 2046 break;
f528f0b8
CM
2047 case KMEMLEAK_ALLOC_PERCPU:
2048 early_alloc_percpu(log);
2049 break;
3c7b4e6b
CM
2050 case KMEMLEAK_FREE:
2051 kmemleak_free(log->ptr);
2052 break;
53238a60
CM
2053 case KMEMLEAK_FREE_PART:
2054 kmemleak_free_part(log->ptr, log->size);
2055 break;
f528f0b8
CM
2056 case KMEMLEAK_FREE_PERCPU:
2057 kmemleak_free_percpu(log->ptr);
2058 break;
3c7b4e6b
CM
2059 case KMEMLEAK_NOT_LEAK:
2060 kmemleak_not_leak(log->ptr);
2061 break;
2062 case KMEMLEAK_IGNORE:
2063 kmemleak_ignore(log->ptr);
2064 break;
2065 case KMEMLEAK_SCAN_AREA:
c017b4be 2066 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
3c7b4e6b
CM
2067 break;
2068 case KMEMLEAK_NO_SCAN:
2069 kmemleak_no_scan(log->ptr);
2070 break;
94f4a161
CM
2071 case KMEMLEAK_SET_EXCESS_REF:
2072 object_set_excess_ref((unsigned long)log->ptr,
2073 log->excess_ref);
2074 break;
3c7b4e6b 2075 default:
5f79020c
CM
2076 kmemleak_warn("Unknown early log operation: %d\n",
2077 log->op_type);
2078 }
2079
8910ae89 2080 if (kmemleak_warning) {
5f79020c 2081 print_log_trace(log);
8910ae89 2082 kmemleak_warning = 0;
3c7b4e6b
CM
2083 }
2084 }
2085}
2086
2087/*
2088 * Late initialization function.
2089 */
2090static int __init kmemleak_late_init(void)
2091{
2092 struct dentry *dentry;
2093
8910ae89 2094 kmemleak_initialized = 1;
3c7b4e6b 2095
8910ae89 2096 if (kmemleak_error) {
3c7b4e6b 2097 /*
25985edc 2098 * Some error occurred and kmemleak was disabled. There is a
3c7b4e6b
CM
2099 * small chance that kmemleak_disable() was called immediately
2100 * after setting kmemleak_initialized and we may end up with
2101 * two clean-up threads but serialized by scan_mutex.
2102 */
179a8100 2103 schedule_work(&cleanup_work);
3c7b4e6b
CM
2104 return -ENOMEM;
2105 }
2106
2107 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
2108 &kmemleak_fops);
2109 if (!dentry)
598d8091 2110 pr_warn("Failed to create the debugfs kmemleak file\n");
4698c1f2 2111 mutex_lock(&scan_mutex);
3c7b4e6b 2112 start_scan_thread();
4698c1f2 2113 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
2114
2115 pr_info("Kernel memory leak detector initialized\n");
2116
2117 return 0;
2118}
2119late_initcall(kmemleak_late_init);