]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/kmemleak.c
kmemleak: Do not trigger a scan when reading the debug/kmemleak file
[mirror_ubuntu-hirsute-kernel.git] / mm / kmemleak.c
CommitLineData
3c7b4e6b
CM
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
3c7b4e6b
CM
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
ae281064
JP
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
3c7b4e6b
CM
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
75#include <linux/gfp.h>
76#include <linux/fs.h>
77#include <linux/debugfs.h>
78#include <linux/seq_file.h>
79#include <linux/cpumask.h>
80#include <linux/spinlock.h>
81#include <linux/mutex.h>
82#include <linux/rcupdate.h>
83#include <linux/stacktrace.h>
84#include <linux/cache.h>
85#include <linux/percpu.h>
86#include <linux/hardirq.h>
87#include <linux/mmzone.h>
88#include <linux/slab.h>
89#include <linux/thread_info.h>
90#include <linux/err.h>
91#include <linux/uaccess.h>
92#include <linux/string.h>
93#include <linux/nodemask.h>
94#include <linux/mm.h>
95
96#include <asm/sections.h>
97#include <asm/processor.h>
98#include <asm/atomic.h>
99
100#include <linux/kmemleak.h>
101
102/*
103 * Kmemleak configuration and common defines.
104 */
105#define MAX_TRACE 16 /* stack trace length */
106#define REPORTS_NR 50 /* maximum number of reported leaks */
107#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
108#define MSECS_SCAN_YIELD 10 /* CPU yielding period */
109#define SECS_FIRST_SCAN 60 /* delay before the first scan */
110#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
111
112#define BYTES_PER_POINTER sizeof(void *)
113
216c04b0
CM
114/* GFP bitmask for kmemleak internal allocations */
115#define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
116
3c7b4e6b
CM
117/* scanning area inside a memory block */
118struct kmemleak_scan_area {
119 struct hlist_node node;
120 unsigned long offset;
121 size_t length;
122};
123
124/*
125 * Structure holding the metadata for each allocated memory block.
126 * Modifications to such objects should be made while holding the
127 * object->lock. Insertions or deletions from object_list, gray_list or
128 * tree_node are already protected by the corresponding locks or mutex (see
129 * the notes on locking above). These objects are reference-counted
130 * (use_count) and freed using the RCU mechanism.
131 */
132struct kmemleak_object {
133 spinlock_t lock;
134 unsigned long flags; /* object status flags */
135 struct list_head object_list;
136 struct list_head gray_list;
137 struct prio_tree_node tree_node;
138 struct rcu_head rcu; /* object_list lockless traversal */
139 /* object usage count; object freed when use_count == 0 */
140 atomic_t use_count;
141 unsigned long pointer;
142 size_t size;
143 /* minimum number of a pointers found before it is considered leak */
144 int min_count;
145 /* the total number of pointers found pointing to this object */
146 int count;
147 /* memory ranges to be scanned inside an object (empty for all) */
148 struct hlist_head area_list;
149 unsigned long trace[MAX_TRACE];
150 unsigned int trace_len;
151 unsigned long jiffies; /* creation timestamp */
152 pid_t pid; /* pid of the current task */
153 char comm[TASK_COMM_LEN]; /* executable name */
154};
155
156/* flag representing the memory block allocation status */
157#define OBJECT_ALLOCATED (1 << 0)
158/* flag set after the first reporting of an unreference object */
159#define OBJECT_REPORTED (1 << 1)
160/* flag set to not scan the object */
161#define OBJECT_NO_SCAN (1 << 2)
162
163/* the list of all allocated objects */
164static LIST_HEAD(object_list);
165/* the list of gray-colored objects (see color_gray comment below) */
166static LIST_HEAD(gray_list);
167/* prio search tree for object boundaries */
168static struct prio_tree_root object_tree_root;
169/* rw_lock protecting the access to object_list and prio_tree_root */
170static DEFINE_RWLOCK(kmemleak_lock);
171
172/* allocation caches for kmemleak internal data */
173static struct kmem_cache *object_cache;
174static struct kmem_cache *scan_area_cache;
175
176/* set if tracing memory operations is enabled */
177static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
178/* set in the late_initcall if there were no errors */
179static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
180/* enables or disables early logging of the memory operations */
181static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
182/* set if a fata kmemleak error has occurred */
183static atomic_t kmemleak_error = ATOMIC_INIT(0);
184
185/* minimum and maximum address that may be valid pointers */
186static unsigned long min_addr = ULONG_MAX;
187static unsigned long max_addr;
188
189/* used for yielding the CPU to other tasks during scanning */
190static unsigned long next_scan_yield;
191static struct task_struct *scan_thread;
192static unsigned long jiffies_scan_yield;
193static unsigned long jiffies_min_age;
194/* delay between automatic memory scannings */
195static signed long jiffies_scan_wait;
196/* enables or disables the task stacks scanning */
e0a2a160 197static int kmemleak_stack_scan = 1;
4698c1f2 198/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 199static DEFINE_MUTEX(scan_mutex);
3c7b4e6b
CM
200
201/* number of leaks reported (for limitation purposes) */
202static int reported_leaks;
203
204/*
2030117d 205 * Early object allocation/freeing logging. Kmemleak is initialized after the
3c7b4e6b 206 * kernel allocator. However, both the kernel allocator and kmemleak may
2030117d 207 * allocate memory blocks which need to be tracked. Kmemleak defines an
3c7b4e6b
CM
208 * arbitrary buffer to hold the allocation/freeing information before it is
209 * fully initialized.
210 */
211
212/* kmemleak operation type for early logging */
213enum {
214 KMEMLEAK_ALLOC,
215 KMEMLEAK_FREE,
216 KMEMLEAK_NOT_LEAK,
217 KMEMLEAK_IGNORE,
218 KMEMLEAK_SCAN_AREA,
219 KMEMLEAK_NO_SCAN
220};
221
222/*
223 * Structure holding the information passed to kmemleak callbacks during the
224 * early logging.
225 */
226struct early_log {
227 int op_type; /* kmemleak operation type */
228 const void *ptr; /* allocated/freed memory block */
229 size_t size; /* memory block size */
230 int min_count; /* minimum reference count */
231 unsigned long offset; /* scan area offset */
232 size_t length; /* scan area length */
233};
234
235/* early logging buffer and current position */
a9d9058a 236static struct early_log early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE];
3c7b4e6b
CM
237static int crt_early_log;
238
239static void kmemleak_disable(void);
240
241/*
242 * Print a warning and dump the stack trace.
243 */
244#define kmemleak_warn(x...) do { \
245 pr_warning(x); \
246 dump_stack(); \
247} while (0)
248
249/*
250 * Macro invoked when a serious kmemleak condition occured and cannot be
2030117d 251 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
252 * tracing no longer available.
253 */
000814f4 254#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
255 kmemleak_warn(x); \
256 kmemleak_disable(); \
257} while (0)
258
259/*
260 * Object colors, encoded with count and min_count:
261 * - white - orphan object, not enough references to it (count < min_count)
262 * - gray - not orphan, not marked as false positive (min_count == 0) or
263 * sufficient references to it (count >= min_count)
264 * - black - ignore, it doesn't contain references (e.g. text section)
265 * (min_count == -1). No function defined for this color.
266 * Newly created objects don't have any color assigned (object->count == -1)
267 * before the next memory scan when they become white.
268 */
269static int color_white(const struct kmemleak_object *object)
270{
271 return object->count != -1 && object->count < object->min_count;
272}
273
274static int color_gray(const struct kmemleak_object *object)
275{
276 return object->min_count != -1 && object->count >= object->min_count;
277}
278
3c7b4e6b
CM
279/*
280 * Objects are considered unreferenced only if their color is white, they have
281 * not be deleted and have a minimum age to avoid false positives caused by
282 * pointers temporarily stored in CPU registers.
283 */
284static int unreferenced_object(struct kmemleak_object *object)
285{
286 return (object->flags & OBJECT_ALLOCATED) && color_white(object) &&
287 time_is_before_eq_jiffies(object->jiffies + jiffies_min_age);
288}
289
290/*
bab4a34a
CM
291 * Printing of the unreferenced objects information to the seq file. The
292 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 293 */
3c7b4e6b
CM
294static void print_unreferenced(struct seq_file *seq,
295 struct kmemleak_object *object)
296{
297 int i;
298
bab4a34a
CM
299 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
300 object->pointer, object->size);
301 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n",
302 object->comm, object->pid, object->jiffies);
303 seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
304
305 for (i = 0; i < object->trace_len; i++) {
306 void *ptr = (void *)object->trace[i];
bab4a34a 307 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
308 }
309}
310
311/*
312 * Print the kmemleak_object information. This function is used mainly for
313 * debugging special cases when kmemleak operations. It must be called with
314 * the object->lock held.
315 */
316static void dump_object_info(struct kmemleak_object *object)
317{
318 struct stack_trace trace;
319
320 trace.nr_entries = object->trace_len;
321 trace.entries = object->trace;
322
ae281064 323 pr_notice("Object 0x%08lx (size %zu):\n",
3c7b4e6b
CM
324 object->tree_node.start, object->size);
325 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
326 object->comm, object->pid, object->jiffies);
327 pr_notice(" min_count = %d\n", object->min_count);
328 pr_notice(" count = %d\n", object->count);
329 pr_notice(" backtrace:\n");
330 print_stack_trace(&trace, 4);
331}
332
333/*
334 * Look-up a memory block metadata (kmemleak_object) in the priority search
335 * tree based on a pointer value. If alias is 0, only values pointing to the
336 * beginning of the memory block are allowed. The kmemleak_lock must be held
337 * when calling this function.
338 */
339static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
340{
341 struct prio_tree_node *node;
342 struct prio_tree_iter iter;
343 struct kmemleak_object *object;
344
345 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
346 node = prio_tree_next(&iter);
347 if (node) {
348 object = prio_tree_entry(node, struct kmemleak_object,
349 tree_node);
350 if (!alias && object->pointer != ptr) {
ae281064 351 kmemleak_warn("Found object by alias");
3c7b4e6b
CM
352 object = NULL;
353 }
354 } else
355 object = NULL;
356
357 return object;
358}
359
360/*
361 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
362 * that once an object's use_count reached 0, the RCU freeing was already
363 * registered and the object should no longer be used. This function must be
364 * called under the protection of rcu_read_lock().
365 */
366static int get_object(struct kmemleak_object *object)
367{
368 return atomic_inc_not_zero(&object->use_count);
369}
370
371/*
372 * RCU callback to free a kmemleak_object.
373 */
374static void free_object_rcu(struct rcu_head *rcu)
375{
376 struct hlist_node *elem, *tmp;
377 struct kmemleak_scan_area *area;
378 struct kmemleak_object *object =
379 container_of(rcu, struct kmemleak_object, rcu);
380
381 /*
382 * Once use_count is 0 (guaranteed by put_object), there is no other
383 * code accessing this object, hence no need for locking.
384 */
385 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
386 hlist_del(elem);
387 kmem_cache_free(scan_area_cache, area);
388 }
389 kmem_cache_free(object_cache, object);
390}
391
392/*
393 * Decrement the object use_count. Once the count is 0, free the object using
394 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
395 * delete_object() path, the delayed RCU freeing ensures that there is no
396 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
397 * is also possible.
398 */
399static void put_object(struct kmemleak_object *object)
400{
401 if (!atomic_dec_and_test(&object->use_count))
402 return;
403
404 /* should only get here after delete_object was called */
405 WARN_ON(object->flags & OBJECT_ALLOCATED);
406
407 call_rcu(&object->rcu, free_object_rcu);
408}
409
410/*
411 * Look up an object in the prio search tree and increase its use_count.
412 */
413static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
414{
415 unsigned long flags;
416 struct kmemleak_object *object = NULL;
417
418 rcu_read_lock();
419 read_lock_irqsave(&kmemleak_lock, flags);
420 if (ptr >= min_addr && ptr < max_addr)
421 object = lookup_object(ptr, alias);
422 read_unlock_irqrestore(&kmemleak_lock, flags);
423
424 /* check whether the object is still available */
425 if (object && !get_object(object))
426 object = NULL;
427 rcu_read_unlock();
428
429 return object;
430}
431
432/*
433 * Create the metadata (struct kmemleak_object) corresponding to an allocated
434 * memory block and add it to the object_list and object_tree_root.
435 */
436static void create_object(unsigned long ptr, size_t size, int min_count,
437 gfp_t gfp)
438{
439 unsigned long flags;
440 struct kmemleak_object *object;
441 struct prio_tree_node *node;
442 struct stack_trace trace;
443
216c04b0 444 object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
3c7b4e6b 445 if (!object) {
ae281064 446 kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
3c7b4e6b
CM
447 return;
448 }
449
450 INIT_LIST_HEAD(&object->object_list);
451 INIT_LIST_HEAD(&object->gray_list);
452 INIT_HLIST_HEAD(&object->area_list);
453 spin_lock_init(&object->lock);
454 atomic_set(&object->use_count, 1);
455 object->flags = OBJECT_ALLOCATED;
456 object->pointer = ptr;
457 object->size = size;
458 object->min_count = min_count;
459 object->count = -1; /* no color initially */
460 object->jiffies = jiffies;
461
462 /* task information */
463 if (in_irq()) {
464 object->pid = 0;
465 strncpy(object->comm, "hardirq", sizeof(object->comm));
466 } else if (in_softirq()) {
467 object->pid = 0;
468 strncpy(object->comm, "softirq", sizeof(object->comm));
469 } else {
470 object->pid = current->pid;
471 /*
472 * There is a small chance of a race with set_task_comm(),
473 * however using get_task_comm() here may cause locking
474 * dependency issues with current->alloc_lock. In the worst
475 * case, the command line is not correct.
476 */
477 strncpy(object->comm, current->comm, sizeof(object->comm));
478 }
479
480 /* kernel backtrace */
481 trace.max_entries = MAX_TRACE;
482 trace.nr_entries = 0;
483 trace.entries = object->trace;
484 trace.skip = 1;
485 save_stack_trace(&trace);
486 object->trace_len = trace.nr_entries;
487
488 INIT_PRIO_TREE_NODE(&object->tree_node);
489 object->tree_node.start = ptr;
490 object->tree_node.last = ptr + size - 1;
491
492 write_lock_irqsave(&kmemleak_lock, flags);
493 min_addr = min(min_addr, ptr);
494 max_addr = max(max_addr, ptr + size);
495 node = prio_tree_insert(&object_tree_root, &object->tree_node);
496 /*
497 * The code calling the kernel does not yet have the pointer to the
498 * memory block to be able to free it. However, we still hold the
499 * kmemleak_lock here in case parts of the kernel started freeing
500 * random memory blocks.
501 */
502 if (node != &object->tree_node) {
503 unsigned long flags;
504
ae281064
JP
505 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
506 "(already existing)\n", ptr);
3c7b4e6b
CM
507 object = lookup_object(ptr, 1);
508 spin_lock_irqsave(&object->lock, flags);
509 dump_object_info(object);
510 spin_unlock_irqrestore(&object->lock, flags);
511
512 goto out;
513 }
514 list_add_tail_rcu(&object->object_list, &object_list);
515out:
516 write_unlock_irqrestore(&kmemleak_lock, flags);
517}
518
519/*
520 * Remove the metadata (struct kmemleak_object) for a memory block from the
521 * object_list and object_tree_root and decrement its use_count.
522 */
523static void delete_object(unsigned long ptr)
524{
525 unsigned long flags;
526 struct kmemleak_object *object;
527
528 write_lock_irqsave(&kmemleak_lock, flags);
529 object = lookup_object(ptr, 0);
530 if (!object) {
ae281064 531 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
3c7b4e6b
CM
532 ptr);
533 write_unlock_irqrestore(&kmemleak_lock, flags);
534 return;
535 }
536 prio_tree_remove(&object_tree_root, &object->tree_node);
537 list_del_rcu(&object->object_list);
538 write_unlock_irqrestore(&kmemleak_lock, flags);
539
540 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
541 WARN_ON(atomic_read(&object->use_count) < 1);
542
543 /*
544 * Locking here also ensures that the corresponding memory block
545 * cannot be freed when it is being scanned.
546 */
547 spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
548 object->flags &= ~OBJECT_ALLOCATED;
549 spin_unlock_irqrestore(&object->lock, flags);
550 put_object(object);
551}
552
553/*
554 * Make a object permanently as gray-colored so that it can no longer be
555 * reported as a leak. This is used in general to mark a false positive.
556 */
557static void make_gray_object(unsigned long ptr)
558{
559 unsigned long flags;
560 struct kmemleak_object *object;
561
562 object = find_and_get_object(ptr, 0);
563 if (!object) {
ae281064 564 kmemleak_warn("Graying unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
565 return;
566 }
567
568 spin_lock_irqsave(&object->lock, flags);
569 object->min_count = 0;
570 spin_unlock_irqrestore(&object->lock, flags);
571 put_object(object);
572}
573
574/*
575 * Mark the object as black-colored so that it is ignored from scans and
576 * reporting.
577 */
578static void make_black_object(unsigned long ptr)
579{
580 unsigned long flags;
581 struct kmemleak_object *object;
582
583 object = find_and_get_object(ptr, 0);
584 if (!object) {
ae281064 585 kmemleak_warn("Blacking unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
586 return;
587 }
588
589 spin_lock_irqsave(&object->lock, flags);
590 object->min_count = -1;
591 spin_unlock_irqrestore(&object->lock, flags);
592 put_object(object);
593}
594
595/*
596 * Add a scanning area to the object. If at least one such area is added,
597 * kmemleak will only scan these ranges rather than the whole memory block.
598 */
599static void add_scan_area(unsigned long ptr, unsigned long offset,
600 size_t length, gfp_t gfp)
601{
602 unsigned long flags;
603 struct kmemleak_object *object;
604 struct kmemleak_scan_area *area;
605
606 object = find_and_get_object(ptr, 0);
607 if (!object) {
ae281064
JP
608 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
609 ptr);
3c7b4e6b
CM
610 return;
611 }
612
216c04b0 613 area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
3c7b4e6b 614 if (!area) {
ae281064 615 kmemleak_warn("Cannot allocate a scan area\n");
3c7b4e6b
CM
616 goto out;
617 }
618
619 spin_lock_irqsave(&object->lock, flags);
620 if (offset + length > object->size) {
ae281064 621 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
622 dump_object_info(object);
623 kmem_cache_free(scan_area_cache, area);
624 goto out_unlock;
625 }
626
627 INIT_HLIST_NODE(&area->node);
628 area->offset = offset;
629 area->length = length;
630
631 hlist_add_head(&area->node, &object->area_list);
632out_unlock:
633 spin_unlock_irqrestore(&object->lock, flags);
634out:
635 put_object(object);
636}
637
638/*
639 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
640 * pointer. Such object will not be scanned by kmemleak but references to it
641 * are searched.
642 */
643static void object_no_scan(unsigned long ptr)
644{
645 unsigned long flags;
646 struct kmemleak_object *object;
647
648 object = find_and_get_object(ptr, 0);
649 if (!object) {
ae281064 650 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
651 return;
652 }
653
654 spin_lock_irqsave(&object->lock, flags);
655 object->flags |= OBJECT_NO_SCAN;
656 spin_unlock_irqrestore(&object->lock, flags);
657 put_object(object);
658}
659
660/*
661 * Log an early kmemleak_* call to the early_log buffer. These calls will be
662 * processed later once kmemleak is fully initialized.
663 */
664static void log_early(int op_type, const void *ptr, size_t size,
665 int min_count, unsigned long offset, size_t length)
666{
667 unsigned long flags;
668 struct early_log *log;
669
670 if (crt_early_log >= ARRAY_SIZE(early_log)) {
a9d9058a
CM
671 pr_warning("Early log buffer exceeded\n");
672 kmemleak_disable();
3c7b4e6b
CM
673 return;
674 }
675
676 /*
677 * There is no need for locking since the kernel is still in UP mode
678 * at this stage. Disabling the IRQs is enough.
679 */
680 local_irq_save(flags);
681 log = &early_log[crt_early_log];
682 log->op_type = op_type;
683 log->ptr = ptr;
684 log->size = size;
685 log->min_count = min_count;
686 log->offset = offset;
687 log->length = length;
688 crt_early_log++;
689 local_irq_restore(flags);
690}
691
692/*
693 * Memory allocation function callback. This function is called from the
694 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
695 * vmalloc etc.).
696 */
697void kmemleak_alloc(const void *ptr, size_t size, int min_count, gfp_t gfp)
698{
699 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
700
701 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
702 create_object((unsigned long)ptr, size, min_count, gfp);
703 else if (atomic_read(&kmemleak_early_log))
704 log_early(KMEMLEAK_ALLOC, ptr, size, min_count, 0, 0);
705}
706EXPORT_SYMBOL_GPL(kmemleak_alloc);
707
708/*
709 * Memory freeing function callback. This function is called from the kernel
710 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
711 */
712void kmemleak_free(const void *ptr)
713{
714 pr_debug("%s(0x%p)\n", __func__, ptr);
715
716 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
717 delete_object((unsigned long)ptr);
718 else if (atomic_read(&kmemleak_early_log))
719 log_early(KMEMLEAK_FREE, ptr, 0, 0, 0, 0);
720}
721EXPORT_SYMBOL_GPL(kmemleak_free);
722
723/*
724 * Mark an already allocated memory block as a false positive. This will cause
725 * the block to no longer be reported as leak and always be scanned.
726 */
727void kmemleak_not_leak(const void *ptr)
728{
729 pr_debug("%s(0x%p)\n", __func__, ptr);
730
731 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
732 make_gray_object((unsigned long)ptr);
733 else if (atomic_read(&kmemleak_early_log))
734 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0, 0, 0);
735}
736EXPORT_SYMBOL(kmemleak_not_leak);
737
738/*
739 * Ignore a memory block. This is usually done when it is known that the
740 * corresponding block is not a leak and does not contain any references to
741 * other allocated memory blocks.
742 */
743void kmemleak_ignore(const void *ptr)
744{
745 pr_debug("%s(0x%p)\n", __func__, ptr);
746
747 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
748 make_black_object((unsigned long)ptr);
749 else if (atomic_read(&kmemleak_early_log))
750 log_early(KMEMLEAK_IGNORE, ptr, 0, 0, 0, 0);
751}
752EXPORT_SYMBOL(kmemleak_ignore);
753
754/*
755 * Limit the range to be scanned in an allocated memory block.
756 */
757void kmemleak_scan_area(const void *ptr, unsigned long offset, size_t length,
758 gfp_t gfp)
759{
760 pr_debug("%s(0x%p)\n", __func__, ptr);
761
762 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
763 add_scan_area((unsigned long)ptr, offset, length, gfp);
764 else if (atomic_read(&kmemleak_early_log))
765 log_early(KMEMLEAK_SCAN_AREA, ptr, 0, 0, offset, length);
766}
767EXPORT_SYMBOL(kmemleak_scan_area);
768
769/*
770 * Inform kmemleak not to scan the given memory block.
771 */
772void kmemleak_no_scan(const void *ptr)
773{
774 pr_debug("%s(0x%p)\n", __func__, ptr);
775
776 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
777 object_no_scan((unsigned long)ptr);
778 else if (atomic_read(&kmemleak_early_log))
779 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0, 0, 0);
780}
781EXPORT_SYMBOL(kmemleak_no_scan);
782
783/*
784 * Yield the CPU so that other tasks get a chance to run. The yielding is
785 * rate-limited to avoid excessive number of calls to the schedule() function
786 * during memory scanning.
787 */
788static void scan_yield(void)
789{
790 might_sleep();
791
792 if (time_is_before_eq_jiffies(next_scan_yield)) {
793 schedule();
794 next_scan_yield = jiffies + jiffies_scan_yield;
795 }
796}
797
798/*
799 * Memory scanning is a long process and it needs to be interruptable. This
800 * function checks whether such interrupt condition occured.
801 */
802static int scan_should_stop(void)
803{
804 if (!atomic_read(&kmemleak_enabled))
805 return 1;
806
807 /*
808 * This function may be called from either process or kthread context,
809 * hence the need to check for both stop conditions.
810 */
811 if (current->mm)
812 return signal_pending(current);
813 else
814 return kthread_should_stop();
815
816 return 0;
817}
818
819/*
820 * Scan a memory block (exclusive range) for valid pointers and add those
821 * found to the gray list.
822 */
823static void scan_block(void *_start, void *_end,
824 struct kmemleak_object *scanned)
825{
826 unsigned long *ptr;
827 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
828 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
829
830 for (ptr = start; ptr < end; ptr++) {
831 unsigned long flags;
832 unsigned long pointer = *ptr;
833 struct kmemleak_object *object;
834
835 if (scan_should_stop())
836 break;
837
838 /*
839 * When scanning a memory block with a corresponding
840 * kmemleak_object, the CPU yielding is handled in the calling
841 * code since it holds the object->lock to avoid the block
842 * freeing.
843 */
844 if (!scanned)
845 scan_yield();
846
847 object = find_and_get_object(pointer, 1);
848 if (!object)
849 continue;
850 if (object == scanned) {
851 /* self referenced, ignore */
852 put_object(object);
853 continue;
854 }
855
856 /*
857 * Avoid the lockdep recursive warning on object->lock being
858 * previously acquired in scan_object(). These locks are
859 * enclosed by scan_mutex.
860 */
861 spin_lock_irqsave_nested(&object->lock, flags,
862 SINGLE_DEPTH_NESTING);
863 if (!color_white(object)) {
864 /* non-orphan, ignored or new */
865 spin_unlock_irqrestore(&object->lock, flags);
866 put_object(object);
867 continue;
868 }
869
870 /*
871 * Increase the object's reference count (number of pointers
872 * to the memory block). If this count reaches the required
873 * minimum, the object's color will become gray and it will be
874 * added to the gray_list.
875 */
876 object->count++;
877 if (color_gray(object))
878 list_add_tail(&object->gray_list, &gray_list);
879 else
880 put_object(object);
881 spin_unlock_irqrestore(&object->lock, flags);
882 }
883}
884
885/*
886 * Scan a memory block corresponding to a kmemleak_object. A condition is
887 * that object->use_count >= 1.
888 */
889static void scan_object(struct kmemleak_object *object)
890{
891 struct kmemleak_scan_area *area;
892 struct hlist_node *elem;
893 unsigned long flags;
894
895 /*
896 * Once the object->lock is aquired, the corresponding memory block
897 * cannot be freed (the same lock is aquired in delete_object).
898 */
899 spin_lock_irqsave(&object->lock, flags);
900 if (object->flags & OBJECT_NO_SCAN)
901 goto out;
902 if (!(object->flags & OBJECT_ALLOCATED))
903 /* already freed object */
904 goto out;
905 if (hlist_empty(&object->area_list))
906 scan_block((void *)object->pointer,
907 (void *)(object->pointer + object->size), object);
908 else
909 hlist_for_each_entry(area, elem, &object->area_list, node)
910 scan_block((void *)(object->pointer + area->offset),
911 (void *)(object->pointer + area->offset
912 + area->length), object);
913out:
914 spin_unlock_irqrestore(&object->lock, flags);
915}
916
917/*
918 * Scan data sections and all the referenced memory blocks allocated via the
919 * kernel's standard allocators. This function must be called with the
920 * scan_mutex held.
921 */
922static void kmemleak_scan(void)
923{
924 unsigned long flags;
925 struct kmemleak_object *object, *tmp;
926 struct task_struct *task;
927 int i;
4698c1f2 928 int new_leaks = 0;
3c7b4e6b
CM
929
930 /* prepare the kmemleak_object's */
931 rcu_read_lock();
932 list_for_each_entry_rcu(object, &object_list, object_list) {
933 spin_lock_irqsave(&object->lock, flags);
934#ifdef DEBUG
935 /*
936 * With a few exceptions there should be a maximum of
937 * 1 reference to any object at this point.
938 */
939 if (atomic_read(&object->use_count) > 1) {
ae281064 940 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
941 atomic_read(&object->use_count));
942 dump_object_info(object);
943 }
944#endif
945 /* reset the reference count (whiten the object) */
946 object->count = 0;
947 if (color_gray(object) && get_object(object))
948 list_add_tail(&object->gray_list, &gray_list);
949
950 spin_unlock_irqrestore(&object->lock, flags);
951 }
952 rcu_read_unlock();
953
954 /* data/bss scanning */
955 scan_block(_sdata, _edata, NULL);
956 scan_block(__bss_start, __bss_stop, NULL);
957
958#ifdef CONFIG_SMP
959 /* per-cpu sections scanning */
960 for_each_possible_cpu(i)
961 scan_block(__per_cpu_start + per_cpu_offset(i),
962 __per_cpu_end + per_cpu_offset(i), NULL);
963#endif
964
965 /*
966 * Struct page scanning for each node. The code below is not yet safe
967 * with MEMORY_HOTPLUG.
968 */
969 for_each_online_node(i) {
970 pg_data_t *pgdat = NODE_DATA(i);
971 unsigned long start_pfn = pgdat->node_start_pfn;
972 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
973 unsigned long pfn;
974
975 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
976 struct page *page;
977
978 if (!pfn_valid(pfn))
979 continue;
980 page = pfn_to_page(pfn);
981 /* only scan if page is in use */
982 if (page_count(page) == 0)
983 continue;
984 scan_block(page, page + 1, NULL);
985 }
986 }
987
988 /*
989 * Scanning the task stacks may introduce false negatives and it is
990 * not enabled by default.
991 */
992 if (kmemleak_stack_scan) {
993 read_lock(&tasklist_lock);
994 for_each_process(task)
995 scan_block(task_stack_page(task),
996 task_stack_page(task) + THREAD_SIZE, NULL);
997 read_unlock(&tasklist_lock);
998 }
999
1000 /*
1001 * Scan the objects already referenced from the sections scanned
1002 * above. More objects will be referenced and, if there are no memory
1003 * leaks, all the objects will be scanned. The list traversal is safe
1004 * for both tail additions and removals from inside the loop. The
1005 * kmemleak objects cannot be freed from outside the loop because their
1006 * use_count was increased.
1007 */
1008 object = list_entry(gray_list.next, typeof(*object), gray_list);
1009 while (&object->gray_list != &gray_list) {
1010 scan_yield();
1011
1012 /* may add new objects to the list */
1013 if (!scan_should_stop())
1014 scan_object(object);
1015
1016 tmp = list_entry(object->gray_list.next, typeof(*object),
1017 gray_list);
1018
1019 /* remove the object from the list and release it */
1020 list_del(&object->gray_list);
1021 put_object(object);
1022
1023 object = tmp;
1024 }
1025 WARN_ON(!list_empty(&gray_list));
4698c1f2
CM
1026
1027 /*
1028 * Scanning result reporting.
1029 */
1030 rcu_read_lock();
1031 list_for_each_entry_rcu(object, &object_list, object_list) {
1032 spin_lock_irqsave(&object->lock, flags);
1033 if (unreferenced_object(object) &&
1034 !(object->flags & OBJECT_REPORTED)) {
1035 object->flags |= OBJECT_REPORTED;
1036 new_leaks++;
1037 }
1038 spin_unlock_irqrestore(&object->lock, flags);
1039 }
1040 rcu_read_unlock();
1041
1042 if (new_leaks)
1043 pr_info("%d new suspected memory leaks (see "
1044 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1045
3c7b4e6b
CM
1046}
1047
1048/*
1049 * Thread function performing automatic memory scanning. Unreferenced objects
1050 * at the end of a memory scan are reported but only the first time.
1051 */
1052static int kmemleak_scan_thread(void *arg)
1053{
1054 static int first_run = 1;
1055
ae281064 1056 pr_info("Automatic memory scanning thread started\n");
3c7b4e6b
CM
1057
1058 /*
1059 * Wait before the first scan to allow the system to fully initialize.
1060 */
1061 if (first_run) {
1062 first_run = 0;
1063 ssleep(SECS_FIRST_SCAN);
1064 }
1065
1066 while (!kthread_should_stop()) {
3c7b4e6b
CM
1067 signed long timeout = jiffies_scan_wait;
1068
1069 mutex_lock(&scan_mutex);
3c7b4e6b 1070 kmemleak_scan();
3c7b4e6b 1071 mutex_unlock(&scan_mutex);
4698c1f2 1072
3c7b4e6b
CM
1073 /* wait before the next scan */
1074 while (timeout && !kthread_should_stop())
1075 timeout = schedule_timeout_interruptible(timeout);
1076 }
1077
ae281064 1078 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1079
1080 return 0;
1081}
1082
1083/*
1084 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1085 * with the scan_mutex held.
3c7b4e6b
CM
1086 */
1087void start_scan_thread(void)
1088{
1089 if (scan_thread)
1090 return;
1091 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1092 if (IS_ERR(scan_thread)) {
ae281064 1093 pr_warning("Failed to create the scan thread\n");
3c7b4e6b
CM
1094 scan_thread = NULL;
1095 }
1096}
1097
1098/*
1099 * Stop the automatic memory scanning thread. This function must be called
4698c1f2 1100 * with the scan_mutex held.
3c7b4e6b
CM
1101 */
1102void stop_scan_thread(void)
1103{
1104 if (scan_thread) {
1105 kthread_stop(scan_thread);
1106 scan_thread = NULL;
1107 }
1108}
1109
1110/*
1111 * Iterate over the object_list and return the first valid object at or after
1112 * the required position with its use_count incremented. The function triggers
1113 * a memory scanning when the pos argument points to the first position.
1114 */
1115static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1116{
1117 struct kmemleak_object *object;
1118 loff_t n = *pos;
1119
4698c1f2 1120 if (!n)
3c7b4e6b 1121 reported_leaks = 0;
3c7b4e6b
CM
1122 if (reported_leaks >= REPORTS_NR)
1123 return NULL;
1124
1125 rcu_read_lock();
1126 list_for_each_entry_rcu(object, &object_list, object_list) {
1127 if (n-- > 0)
1128 continue;
1129 if (get_object(object))
1130 goto out;
1131 }
1132 object = NULL;
1133out:
1134 rcu_read_unlock();
1135 return object;
1136}
1137
1138/*
1139 * Return the next object in the object_list. The function decrements the
1140 * use_count of the previous object and increases that of the next one.
1141 */
1142static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1143{
1144 struct kmemleak_object *prev_obj = v;
1145 struct kmemleak_object *next_obj = NULL;
1146 struct list_head *n = &prev_obj->object_list;
1147
1148 ++(*pos);
1149 if (reported_leaks >= REPORTS_NR)
1150 goto out;
1151
1152 rcu_read_lock();
1153 list_for_each_continue_rcu(n, &object_list) {
1154 next_obj = list_entry(n, struct kmemleak_object, object_list);
1155 if (get_object(next_obj))
1156 break;
1157 }
1158 rcu_read_unlock();
1159out:
1160 put_object(prev_obj);
1161 return next_obj;
1162}
1163
1164/*
1165 * Decrement the use_count of the last object required, if any.
1166 */
1167static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1168{
1169 if (v)
1170 put_object(v);
1171}
1172
1173/*
1174 * Print the information for an unreferenced object to the seq file.
1175 */
1176static int kmemleak_seq_show(struct seq_file *seq, void *v)
1177{
1178 struct kmemleak_object *object = v;
1179 unsigned long flags;
1180
1181 spin_lock_irqsave(&object->lock, flags);
1182 if (!unreferenced_object(object))
1183 goto out;
1184 print_unreferenced(seq, object);
1185 reported_leaks++;
1186out:
1187 spin_unlock_irqrestore(&object->lock, flags);
1188 return 0;
1189}
1190
1191static const struct seq_operations kmemleak_seq_ops = {
1192 .start = kmemleak_seq_start,
1193 .next = kmemleak_seq_next,
1194 .stop = kmemleak_seq_stop,
1195 .show = kmemleak_seq_show,
1196};
1197
1198static int kmemleak_open(struct inode *inode, struct file *file)
1199{
1200 int ret = 0;
1201
1202 if (!atomic_read(&kmemleak_enabled))
1203 return -EBUSY;
1204
4698c1f2 1205 ret = mutex_lock_interruptible(&scan_mutex);
3c7b4e6b
CM
1206 if (ret < 0)
1207 goto out;
1208 if (file->f_mode & FMODE_READ) {
3c7b4e6b
CM
1209 ret = seq_open(file, &kmemleak_seq_ops);
1210 if (ret < 0)
1211 goto scan_unlock;
1212 }
1213 return ret;
1214
1215scan_unlock:
1216 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
1217out:
1218 return ret;
1219}
1220
1221static int kmemleak_release(struct inode *inode, struct file *file)
1222{
1223 int ret = 0;
1224
4698c1f2 1225 if (file->f_mode & FMODE_READ)
3c7b4e6b 1226 seq_release(inode, file);
4698c1f2 1227 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
1228
1229 return ret;
1230}
1231
1232/*
1233 * File write operation to configure kmemleak at run-time. The following
1234 * commands can be written to the /sys/kernel/debug/kmemleak file:
1235 * off - disable kmemleak (irreversible)
1236 * stack=on - enable the task stacks scanning
1237 * stack=off - disable the tasks stacks scanning
1238 * scan=on - start the automatic memory scanning thread
1239 * scan=off - stop the automatic memory scanning thread
1240 * scan=... - set the automatic memory scanning period in seconds (0 to
1241 * disable it)
4698c1f2 1242 * scan - trigger a memory scan
3c7b4e6b
CM
1243 */
1244static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1245 size_t size, loff_t *ppos)
1246{
1247 char buf[64];
1248 int buf_size;
1249
1250 if (!atomic_read(&kmemleak_enabled))
1251 return -EBUSY;
1252
1253 buf_size = min(size, (sizeof(buf) - 1));
1254 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1255 return -EFAULT;
1256 buf[buf_size] = 0;
1257
1258 if (strncmp(buf, "off", 3) == 0)
1259 kmemleak_disable();
1260 else if (strncmp(buf, "stack=on", 8) == 0)
1261 kmemleak_stack_scan = 1;
1262 else if (strncmp(buf, "stack=off", 9) == 0)
1263 kmemleak_stack_scan = 0;
1264 else if (strncmp(buf, "scan=on", 7) == 0)
1265 start_scan_thread();
1266 else if (strncmp(buf, "scan=off", 8) == 0)
1267 stop_scan_thread();
1268 else if (strncmp(buf, "scan=", 5) == 0) {
1269 unsigned long secs;
1270 int err;
1271
1272 err = strict_strtoul(buf + 5, 0, &secs);
1273 if (err < 0)
1274 return err;
1275 stop_scan_thread();
1276 if (secs) {
1277 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1278 start_scan_thread();
1279 }
4698c1f2
CM
1280 } else if (strncmp(buf, "scan", 4) == 0)
1281 kmemleak_scan();
1282 else
3c7b4e6b
CM
1283 return -EINVAL;
1284
1285 /* ignore the rest of the buffer, only one command at a time */
1286 *ppos += size;
1287 return size;
1288}
1289
1290static const struct file_operations kmemleak_fops = {
1291 .owner = THIS_MODULE,
1292 .open = kmemleak_open,
1293 .read = seq_read,
1294 .write = kmemleak_write,
1295 .llseek = seq_lseek,
1296 .release = kmemleak_release,
1297};
1298
1299/*
1300 * Perform the freeing of the kmemleak internal objects after waiting for any
1301 * current memory scan to complete.
1302 */
1303static int kmemleak_cleanup_thread(void *arg)
1304{
1305 struct kmemleak_object *object;
1306
4698c1f2 1307 mutex_lock(&scan_mutex);
3c7b4e6b 1308 stop_scan_thread();
3c7b4e6b 1309
3c7b4e6b
CM
1310 rcu_read_lock();
1311 list_for_each_entry_rcu(object, &object_list, object_list)
1312 delete_object(object->pointer);
1313 rcu_read_unlock();
1314 mutex_unlock(&scan_mutex);
1315
1316 return 0;
1317}
1318
1319/*
1320 * Start the clean-up thread.
1321 */
1322static void kmemleak_cleanup(void)
1323{
1324 struct task_struct *cleanup_thread;
1325
1326 cleanup_thread = kthread_run(kmemleak_cleanup_thread, NULL,
1327 "kmemleak-clean");
1328 if (IS_ERR(cleanup_thread))
ae281064 1329 pr_warning("Failed to create the clean-up thread\n");
3c7b4e6b
CM
1330}
1331
1332/*
1333 * Disable kmemleak. No memory allocation/freeing will be traced once this
1334 * function is called. Disabling kmemleak is an irreversible operation.
1335 */
1336static void kmemleak_disable(void)
1337{
1338 /* atomically check whether it was already invoked */
1339 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1340 return;
1341
1342 /* stop any memory operation tracing */
1343 atomic_set(&kmemleak_early_log, 0);
1344 atomic_set(&kmemleak_enabled, 0);
1345
1346 /* check whether it is too early for a kernel thread */
1347 if (atomic_read(&kmemleak_initialized))
1348 kmemleak_cleanup();
1349
1350 pr_info("Kernel memory leak detector disabled\n");
1351}
1352
1353/*
1354 * Allow boot-time kmemleak disabling (enabled by default).
1355 */
1356static int kmemleak_boot_config(char *str)
1357{
1358 if (!str)
1359 return -EINVAL;
1360 if (strcmp(str, "off") == 0)
1361 kmemleak_disable();
1362 else if (strcmp(str, "on") != 0)
1363 return -EINVAL;
1364 return 0;
1365}
1366early_param("kmemleak", kmemleak_boot_config);
1367
1368/*
2030117d 1369 * Kmemleak initialization.
3c7b4e6b
CM
1370 */
1371void __init kmemleak_init(void)
1372{
1373 int i;
1374 unsigned long flags;
1375
1376 jiffies_scan_yield = msecs_to_jiffies(MSECS_SCAN_YIELD);
1377 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1378 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1379
1380 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1381 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1382 INIT_PRIO_TREE_ROOT(&object_tree_root);
1383
1384 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1385 local_irq_save(flags);
1386 if (!atomic_read(&kmemleak_error)) {
1387 atomic_set(&kmemleak_enabled, 1);
1388 atomic_set(&kmemleak_early_log, 0);
1389 }
1390 local_irq_restore(flags);
1391
1392 /*
1393 * This is the point where tracking allocations is safe. Automatic
1394 * scanning is started during the late initcall. Add the early logged
1395 * callbacks to the kmemleak infrastructure.
1396 */
1397 for (i = 0; i < crt_early_log; i++) {
1398 struct early_log *log = &early_log[i];
1399
1400 switch (log->op_type) {
1401 case KMEMLEAK_ALLOC:
1402 kmemleak_alloc(log->ptr, log->size, log->min_count,
1403 GFP_KERNEL);
1404 break;
1405 case KMEMLEAK_FREE:
1406 kmemleak_free(log->ptr);
1407 break;
1408 case KMEMLEAK_NOT_LEAK:
1409 kmemleak_not_leak(log->ptr);
1410 break;
1411 case KMEMLEAK_IGNORE:
1412 kmemleak_ignore(log->ptr);
1413 break;
1414 case KMEMLEAK_SCAN_AREA:
1415 kmemleak_scan_area(log->ptr, log->offset, log->length,
1416 GFP_KERNEL);
1417 break;
1418 case KMEMLEAK_NO_SCAN:
1419 kmemleak_no_scan(log->ptr);
1420 break;
1421 default:
1422 WARN_ON(1);
1423 }
1424 }
1425}
1426
1427/*
1428 * Late initialization function.
1429 */
1430static int __init kmemleak_late_init(void)
1431{
1432 struct dentry *dentry;
1433
1434 atomic_set(&kmemleak_initialized, 1);
1435
1436 if (atomic_read(&kmemleak_error)) {
1437 /*
1438 * Some error occured and kmemleak was disabled. There is a
1439 * small chance that kmemleak_disable() was called immediately
1440 * after setting kmemleak_initialized and we may end up with
1441 * two clean-up threads but serialized by scan_mutex.
1442 */
1443 kmemleak_cleanup();
1444 return -ENOMEM;
1445 }
1446
1447 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1448 &kmemleak_fops);
1449 if (!dentry)
ae281064 1450 pr_warning("Failed to create the debugfs kmemleak file\n");
4698c1f2 1451 mutex_lock(&scan_mutex);
3c7b4e6b 1452 start_scan_thread();
4698c1f2 1453 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
1454
1455 pr_info("Kernel memory leak detector initialized\n");
1456
1457 return 0;
1458}
1459late_initcall(kmemleak_late_init);