]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/kmemleak.c
kmemleak: Show more information for objects found by alias
[mirror_ubuntu-artful-kernel.git] / mm / kmemleak.c
CommitLineData
3c7b4e6b
CM
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
3c7b4e6b
CM
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
ae281064
JP
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
3c7b4e6b
CM
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
3c7b4e6b
CM
75#include <linux/fs.h>
76#include <linux/debugfs.h>
77#include <linux/seq_file.h>
78#include <linux/cpumask.h>
79#include <linux/spinlock.h>
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
83#include <linux/cache.h>
84#include <linux/percpu.h>
85#include <linux/hardirq.h>
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
179a8100 94#include <linux/workqueue.h>
04609ccc 95#include <linux/crc32.h>
3c7b4e6b
CM
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <asm/atomic.h>
100
8e019366 101#include <linux/kmemcheck.h>
3c7b4e6b
CM
102#include <linux/kmemleak.h>
103
104/*
105 * Kmemleak configuration and common defines.
106 */
107#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 108#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
109#define SECS_FIRST_SCAN 60 /* delay before the first scan */
110#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 111#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
112
113#define BYTES_PER_POINTER sizeof(void *)
114
216c04b0
CM
115/* GFP bitmask for kmemleak internal allocations */
116#define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
117
3c7b4e6b
CM
118/* scanning area inside a memory block */
119struct kmemleak_scan_area {
120 struct hlist_node node;
c017b4be
CM
121 unsigned long start;
122 size_t size;
3c7b4e6b
CM
123};
124
a1084c87
LR
125#define KMEMLEAK_GREY 0
126#define KMEMLEAK_BLACK -1
127
3c7b4e6b
CM
128/*
129 * Structure holding the metadata for each allocated memory block.
130 * Modifications to such objects should be made while holding the
131 * object->lock. Insertions or deletions from object_list, gray_list or
132 * tree_node are already protected by the corresponding locks or mutex (see
133 * the notes on locking above). These objects are reference-counted
134 * (use_count) and freed using the RCU mechanism.
135 */
136struct kmemleak_object {
137 spinlock_t lock;
138 unsigned long flags; /* object status flags */
139 struct list_head object_list;
140 struct list_head gray_list;
141 struct prio_tree_node tree_node;
142 struct rcu_head rcu; /* object_list lockless traversal */
143 /* object usage count; object freed when use_count == 0 */
144 atomic_t use_count;
145 unsigned long pointer;
146 size_t size;
147 /* minimum number of a pointers found before it is considered leak */
148 int min_count;
149 /* the total number of pointers found pointing to this object */
150 int count;
04609ccc
CM
151 /* checksum for detecting modified objects */
152 u32 checksum;
3c7b4e6b
CM
153 /* memory ranges to be scanned inside an object (empty for all) */
154 struct hlist_head area_list;
155 unsigned long trace[MAX_TRACE];
156 unsigned int trace_len;
157 unsigned long jiffies; /* creation timestamp */
158 pid_t pid; /* pid of the current task */
159 char comm[TASK_COMM_LEN]; /* executable name */
160};
161
162/* flag representing the memory block allocation status */
163#define OBJECT_ALLOCATED (1 << 0)
164/* flag set after the first reporting of an unreference object */
165#define OBJECT_REPORTED (1 << 1)
166/* flag set to not scan the object */
167#define OBJECT_NO_SCAN (1 << 2)
168
0494e082
SS
169/* number of bytes to print per line; must be 16 or 32 */
170#define HEX_ROW_SIZE 16
171/* number of bytes to print at a time (1, 2, 4, 8) */
172#define HEX_GROUP_SIZE 1
173/* include ASCII after the hex output */
174#define HEX_ASCII 1
175/* max number of lines to be printed */
176#define HEX_MAX_LINES 2
177
3c7b4e6b
CM
178/* the list of all allocated objects */
179static LIST_HEAD(object_list);
180/* the list of gray-colored objects (see color_gray comment below) */
181static LIST_HEAD(gray_list);
182/* prio search tree for object boundaries */
183static struct prio_tree_root object_tree_root;
184/* rw_lock protecting the access to object_list and prio_tree_root */
185static DEFINE_RWLOCK(kmemleak_lock);
186
187/* allocation caches for kmemleak internal data */
188static struct kmem_cache *object_cache;
189static struct kmem_cache *scan_area_cache;
190
191/* set if tracing memory operations is enabled */
192static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
193/* set in the late_initcall if there were no errors */
194static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
195/* enables or disables early logging of the memory operations */
196static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
197/* set if a fata kmemleak error has occurred */
198static atomic_t kmemleak_error = ATOMIC_INIT(0);
199
200/* minimum and maximum address that may be valid pointers */
201static unsigned long min_addr = ULONG_MAX;
202static unsigned long max_addr;
203
3c7b4e6b 204static struct task_struct *scan_thread;
acf4968e 205/* used to avoid reporting of recently allocated objects */
3c7b4e6b 206static unsigned long jiffies_min_age;
acf4968e 207static unsigned long jiffies_last_scan;
3c7b4e6b
CM
208/* delay between automatic memory scannings */
209static signed long jiffies_scan_wait;
210/* enables or disables the task stacks scanning */
e0a2a160 211static int kmemleak_stack_scan = 1;
4698c1f2 212/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 213static DEFINE_MUTEX(scan_mutex);
3c7b4e6b 214
3c7b4e6b 215/*
2030117d 216 * Early object allocation/freeing logging. Kmemleak is initialized after the
3c7b4e6b 217 * kernel allocator. However, both the kernel allocator and kmemleak may
2030117d 218 * allocate memory blocks which need to be tracked. Kmemleak defines an
3c7b4e6b
CM
219 * arbitrary buffer to hold the allocation/freeing information before it is
220 * fully initialized.
221 */
222
223/* kmemleak operation type for early logging */
224enum {
225 KMEMLEAK_ALLOC,
226 KMEMLEAK_FREE,
53238a60 227 KMEMLEAK_FREE_PART,
3c7b4e6b
CM
228 KMEMLEAK_NOT_LEAK,
229 KMEMLEAK_IGNORE,
230 KMEMLEAK_SCAN_AREA,
231 KMEMLEAK_NO_SCAN
232};
233
234/*
235 * Structure holding the information passed to kmemleak callbacks during the
236 * early logging.
237 */
238struct early_log {
239 int op_type; /* kmemleak operation type */
240 const void *ptr; /* allocated/freed memory block */
241 size_t size; /* memory block size */
242 int min_count; /* minimum reference count */
fd678967
CM
243 unsigned long trace[MAX_TRACE]; /* stack trace */
244 unsigned int trace_len; /* stack trace length */
3c7b4e6b
CM
245};
246
247/* early logging buffer and current position */
a6186d89
CM
248static struct early_log
249 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
250static int crt_early_log __initdata;
3c7b4e6b
CM
251
252static void kmemleak_disable(void);
253
254/*
255 * Print a warning and dump the stack trace.
256 */
257#define kmemleak_warn(x...) do { \
258 pr_warning(x); \
259 dump_stack(); \
260} while (0)
261
262/*
263 * Macro invoked when a serious kmemleak condition occured and cannot be
2030117d 264 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
265 * tracing no longer available.
266 */
000814f4 267#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
268 kmemleak_warn(x); \
269 kmemleak_disable(); \
270} while (0)
271
0494e082
SS
272/*
273 * Printing of the objects hex dump to the seq file. The number of lines to be
274 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
275 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
276 * with the object->lock held.
277 */
278static void hex_dump_object(struct seq_file *seq,
279 struct kmemleak_object *object)
280{
281 const u8 *ptr = (const u8 *)object->pointer;
282 int i, len, remaining;
283 unsigned char linebuf[HEX_ROW_SIZE * 5];
284
285 /* limit the number of lines to HEX_MAX_LINES */
286 remaining = len =
287 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
288
289 seq_printf(seq, " hex dump (first %d bytes):\n", len);
290 for (i = 0; i < len; i += HEX_ROW_SIZE) {
291 int linelen = min(remaining, HEX_ROW_SIZE);
292
293 remaining -= HEX_ROW_SIZE;
294 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
295 HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
296 HEX_ASCII);
297 seq_printf(seq, " %s\n", linebuf);
298 }
299}
300
3c7b4e6b
CM
301/*
302 * Object colors, encoded with count and min_count:
303 * - white - orphan object, not enough references to it (count < min_count)
304 * - gray - not orphan, not marked as false positive (min_count == 0) or
305 * sufficient references to it (count >= min_count)
306 * - black - ignore, it doesn't contain references (e.g. text section)
307 * (min_count == -1). No function defined for this color.
308 * Newly created objects don't have any color assigned (object->count == -1)
309 * before the next memory scan when they become white.
310 */
4a558dd6 311static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 312{
a1084c87
LR
313 return object->count != KMEMLEAK_BLACK &&
314 object->count < object->min_count;
3c7b4e6b
CM
315}
316
4a558dd6 317static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 318{
a1084c87
LR
319 return object->min_count != KMEMLEAK_BLACK &&
320 object->count >= object->min_count;
3c7b4e6b
CM
321}
322
3c7b4e6b
CM
323/*
324 * Objects are considered unreferenced only if their color is white, they have
325 * not be deleted and have a minimum age to avoid false positives caused by
326 * pointers temporarily stored in CPU registers.
327 */
4a558dd6 328static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 329{
04609ccc 330 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
331 time_before_eq(object->jiffies + jiffies_min_age,
332 jiffies_last_scan);
3c7b4e6b
CM
333}
334
335/*
bab4a34a
CM
336 * Printing of the unreferenced objects information to the seq file. The
337 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 338 */
3c7b4e6b
CM
339static void print_unreferenced(struct seq_file *seq,
340 struct kmemleak_object *object)
341{
342 int i;
fefdd336 343 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 344
bab4a34a
CM
345 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
346 object->pointer, object->size);
fefdd336
CM
347 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
348 object->comm, object->pid, object->jiffies,
349 msecs_age / 1000, msecs_age % 1000);
0494e082 350 hex_dump_object(seq, object);
bab4a34a 351 seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
352
353 for (i = 0; i < object->trace_len; i++) {
354 void *ptr = (void *)object->trace[i];
bab4a34a 355 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
356 }
357}
358
359/*
360 * Print the kmemleak_object information. This function is used mainly for
361 * debugging special cases when kmemleak operations. It must be called with
362 * the object->lock held.
363 */
364static void dump_object_info(struct kmemleak_object *object)
365{
366 struct stack_trace trace;
367
368 trace.nr_entries = object->trace_len;
369 trace.entries = object->trace;
370
ae281064 371 pr_notice("Object 0x%08lx (size %zu):\n",
3c7b4e6b
CM
372 object->tree_node.start, object->size);
373 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
374 object->comm, object->pid, object->jiffies);
375 pr_notice(" min_count = %d\n", object->min_count);
376 pr_notice(" count = %d\n", object->count);
189d84ed 377 pr_notice(" flags = 0x%lx\n", object->flags);
04609ccc 378 pr_notice(" checksum = %d\n", object->checksum);
3c7b4e6b
CM
379 pr_notice(" backtrace:\n");
380 print_stack_trace(&trace, 4);
381}
382
383/*
384 * Look-up a memory block metadata (kmemleak_object) in the priority search
385 * tree based on a pointer value. If alias is 0, only values pointing to the
386 * beginning of the memory block are allowed. The kmemleak_lock must be held
387 * when calling this function.
388 */
389static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
390{
391 struct prio_tree_node *node;
392 struct prio_tree_iter iter;
393 struct kmemleak_object *object;
394
395 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
396 node = prio_tree_next(&iter);
397 if (node) {
398 object = prio_tree_entry(node, struct kmemleak_object,
399 tree_node);
400 if (!alias && object->pointer != ptr) {
a7686a45
CM
401 pr_warning("Found object by alias at 0x%08lx\n", ptr);
402 dump_stack();
403 dump_object_info(object);
3c7b4e6b
CM
404 object = NULL;
405 }
406 } else
407 object = NULL;
408
409 return object;
410}
411
412/*
413 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
414 * that once an object's use_count reached 0, the RCU freeing was already
415 * registered and the object should no longer be used. This function must be
416 * called under the protection of rcu_read_lock().
417 */
418static int get_object(struct kmemleak_object *object)
419{
420 return atomic_inc_not_zero(&object->use_count);
421}
422
423/*
424 * RCU callback to free a kmemleak_object.
425 */
426static void free_object_rcu(struct rcu_head *rcu)
427{
428 struct hlist_node *elem, *tmp;
429 struct kmemleak_scan_area *area;
430 struct kmemleak_object *object =
431 container_of(rcu, struct kmemleak_object, rcu);
432
433 /*
434 * Once use_count is 0 (guaranteed by put_object), there is no other
435 * code accessing this object, hence no need for locking.
436 */
437 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
438 hlist_del(elem);
439 kmem_cache_free(scan_area_cache, area);
440 }
441 kmem_cache_free(object_cache, object);
442}
443
444/*
445 * Decrement the object use_count. Once the count is 0, free the object using
446 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
447 * delete_object() path, the delayed RCU freeing ensures that there is no
448 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
449 * is also possible.
450 */
451static void put_object(struct kmemleak_object *object)
452{
453 if (!atomic_dec_and_test(&object->use_count))
454 return;
455
456 /* should only get here after delete_object was called */
457 WARN_ON(object->flags & OBJECT_ALLOCATED);
458
459 call_rcu(&object->rcu, free_object_rcu);
460}
461
462/*
463 * Look up an object in the prio search tree and increase its use_count.
464 */
465static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
466{
467 unsigned long flags;
468 struct kmemleak_object *object = NULL;
469
470 rcu_read_lock();
471 read_lock_irqsave(&kmemleak_lock, flags);
472 if (ptr >= min_addr && ptr < max_addr)
473 object = lookup_object(ptr, alias);
474 read_unlock_irqrestore(&kmemleak_lock, flags);
475
476 /* check whether the object is still available */
477 if (object && !get_object(object))
478 object = NULL;
479 rcu_read_unlock();
480
481 return object;
482}
483
fd678967
CM
484/*
485 * Save stack trace to the given array of MAX_TRACE size.
486 */
487static int __save_stack_trace(unsigned long *trace)
488{
489 struct stack_trace stack_trace;
490
491 stack_trace.max_entries = MAX_TRACE;
492 stack_trace.nr_entries = 0;
493 stack_trace.entries = trace;
494 stack_trace.skip = 2;
495 save_stack_trace(&stack_trace);
496
497 return stack_trace.nr_entries;
498}
499
3c7b4e6b
CM
500/*
501 * Create the metadata (struct kmemleak_object) corresponding to an allocated
502 * memory block and add it to the object_list and object_tree_root.
503 */
fd678967
CM
504static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
505 int min_count, gfp_t gfp)
3c7b4e6b
CM
506{
507 unsigned long flags;
508 struct kmemleak_object *object;
509 struct prio_tree_node *node;
3c7b4e6b 510
216c04b0 511 object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
3c7b4e6b 512 if (!object) {
ae281064 513 kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
fd678967 514 return NULL;
3c7b4e6b
CM
515 }
516
517 INIT_LIST_HEAD(&object->object_list);
518 INIT_LIST_HEAD(&object->gray_list);
519 INIT_HLIST_HEAD(&object->area_list);
520 spin_lock_init(&object->lock);
521 atomic_set(&object->use_count, 1);
04609ccc 522 object->flags = OBJECT_ALLOCATED;
3c7b4e6b
CM
523 object->pointer = ptr;
524 object->size = size;
525 object->min_count = min_count;
04609ccc 526 object->count = 0; /* white color initially */
3c7b4e6b 527 object->jiffies = jiffies;
04609ccc 528 object->checksum = 0;
3c7b4e6b
CM
529
530 /* task information */
531 if (in_irq()) {
532 object->pid = 0;
533 strncpy(object->comm, "hardirq", sizeof(object->comm));
534 } else if (in_softirq()) {
535 object->pid = 0;
536 strncpy(object->comm, "softirq", sizeof(object->comm));
537 } else {
538 object->pid = current->pid;
539 /*
540 * There is a small chance of a race with set_task_comm(),
541 * however using get_task_comm() here may cause locking
542 * dependency issues with current->alloc_lock. In the worst
543 * case, the command line is not correct.
544 */
545 strncpy(object->comm, current->comm, sizeof(object->comm));
546 }
547
548 /* kernel backtrace */
fd678967 549 object->trace_len = __save_stack_trace(object->trace);
3c7b4e6b
CM
550
551 INIT_PRIO_TREE_NODE(&object->tree_node);
552 object->tree_node.start = ptr;
553 object->tree_node.last = ptr + size - 1;
554
555 write_lock_irqsave(&kmemleak_lock, flags);
0580a181 556
3c7b4e6b
CM
557 min_addr = min(min_addr, ptr);
558 max_addr = max(max_addr, ptr + size);
559 node = prio_tree_insert(&object_tree_root, &object->tree_node);
560 /*
561 * The code calling the kernel does not yet have the pointer to the
562 * memory block to be able to free it. However, we still hold the
563 * kmemleak_lock here in case parts of the kernel started freeing
564 * random memory blocks.
565 */
566 if (node != &object->tree_node) {
ae281064
JP
567 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
568 "(already existing)\n", ptr);
3c7b4e6b 569 object = lookup_object(ptr, 1);
0580a181 570 spin_lock(&object->lock);
3c7b4e6b 571 dump_object_info(object);
0580a181 572 spin_unlock(&object->lock);
3c7b4e6b
CM
573
574 goto out;
575 }
576 list_add_tail_rcu(&object->object_list, &object_list);
577out:
578 write_unlock_irqrestore(&kmemleak_lock, flags);
fd678967 579 return object;
3c7b4e6b
CM
580}
581
582/*
583 * Remove the metadata (struct kmemleak_object) for a memory block from the
584 * object_list and object_tree_root and decrement its use_count.
585 */
53238a60 586static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
587{
588 unsigned long flags;
3c7b4e6b
CM
589
590 write_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b
CM
591 prio_tree_remove(&object_tree_root, &object->tree_node);
592 list_del_rcu(&object->object_list);
593 write_unlock_irqrestore(&kmemleak_lock, flags);
594
595 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
53238a60 596 WARN_ON(atomic_read(&object->use_count) < 2);
3c7b4e6b
CM
597
598 /*
599 * Locking here also ensures that the corresponding memory block
600 * cannot be freed when it is being scanned.
601 */
602 spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
603 object->flags &= ~OBJECT_ALLOCATED;
604 spin_unlock_irqrestore(&object->lock, flags);
605 put_object(object);
606}
607
53238a60
CM
608/*
609 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
610 * delete it.
611 */
612static void delete_object_full(unsigned long ptr)
613{
614 struct kmemleak_object *object;
615
616 object = find_and_get_object(ptr, 0);
617 if (!object) {
618#ifdef DEBUG
619 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
620 ptr);
621#endif
622 return;
623 }
624 __delete_object(object);
625 put_object(object);
626}
627
628/*
629 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
630 * delete it. If the memory block is partially freed, the function may create
631 * additional metadata for the remaining parts of the block.
632 */
633static void delete_object_part(unsigned long ptr, size_t size)
634{
635 struct kmemleak_object *object;
636 unsigned long start, end;
637
638 object = find_and_get_object(ptr, 1);
639 if (!object) {
640#ifdef DEBUG
641 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
642 "(size %zu)\n", ptr, size);
643#endif
644 return;
645 }
646 __delete_object(object);
647
648 /*
649 * Create one or two objects that may result from the memory block
650 * split. Note that partial freeing is only done by free_bootmem() and
651 * this happens before kmemleak_init() is called. The path below is
652 * only executed during early log recording in kmemleak_init(), so
653 * GFP_KERNEL is enough.
654 */
655 start = object->pointer;
656 end = object->pointer + object->size;
657 if (ptr > start)
658 create_object(start, ptr - start, object->min_count,
659 GFP_KERNEL);
660 if (ptr + size < end)
661 create_object(ptr + size, end - ptr - size, object->min_count,
662 GFP_KERNEL);
663
664 put_object(object);
665}
a1084c87
LR
666
667static void __paint_it(struct kmemleak_object *object, int color)
668{
669 object->min_count = color;
670 if (color == KMEMLEAK_BLACK)
671 object->flags |= OBJECT_NO_SCAN;
672}
673
674static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
675{
676 unsigned long flags;
a1084c87
LR
677
678 spin_lock_irqsave(&object->lock, flags);
679 __paint_it(object, color);
680 spin_unlock_irqrestore(&object->lock, flags);
681}
682
683static void paint_ptr(unsigned long ptr, int color)
684{
3c7b4e6b
CM
685 struct kmemleak_object *object;
686
687 object = find_and_get_object(ptr, 0);
688 if (!object) {
a1084c87
LR
689 kmemleak_warn("Trying to color unknown object "
690 "at 0x%08lx as %s\n", ptr,
691 (color == KMEMLEAK_GREY) ? "Grey" :
692 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
693 return;
694 }
a1084c87 695 paint_it(object, color);
3c7b4e6b
CM
696 put_object(object);
697}
698
a1084c87
LR
699/*
700 * Make a object permanently as gray-colored so that it can no longer be
701 * reported as a leak. This is used in general to mark a false positive.
702 */
703static void make_gray_object(unsigned long ptr)
704{
705 paint_ptr(ptr, KMEMLEAK_GREY);
706}
707
3c7b4e6b
CM
708/*
709 * Mark the object as black-colored so that it is ignored from scans and
710 * reporting.
711 */
712static void make_black_object(unsigned long ptr)
713{
a1084c87 714 paint_ptr(ptr, KMEMLEAK_BLACK);
3c7b4e6b
CM
715}
716
717/*
718 * Add a scanning area to the object. If at least one such area is added,
719 * kmemleak will only scan these ranges rather than the whole memory block.
720 */
c017b4be 721static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
722{
723 unsigned long flags;
724 struct kmemleak_object *object;
725 struct kmemleak_scan_area *area;
726
c017b4be 727 object = find_and_get_object(ptr, 1);
3c7b4e6b 728 if (!object) {
ae281064
JP
729 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
730 ptr);
3c7b4e6b
CM
731 return;
732 }
733
216c04b0 734 area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
3c7b4e6b 735 if (!area) {
ae281064 736 kmemleak_warn("Cannot allocate a scan area\n");
3c7b4e6b
CM
737 goto out;
738 }
739
740 spin_lock_irqsave(&object->lock, flags);
c017b4be 741 if (ptr + size > object->pointer + object->size) {
ae281064 742 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
743 dump_object_info(object);
744 kmem_cache_free(scan_area_cache, area);
745 goto out_unlock;
746 }
747
748 INIT_HLIST_NODE(&area->node);
c017b4be
CM
749 area->start = ptr;
750 area->size = size;
3c7b4e6b
CM
751
752 hlist_add_head(&area->node, &object->area_list);
753out_unlock:
754 spin_unlock_irqrestore(&object->lock, flags);
755out:
756 put_object(object);
757}
758
759/*
760 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
761 * pointer. Such object will not be scanned by kmemleak but references to it
762 * are searched.
763 */
764static void object_no_scan(unsigned long ptr)
765{
766 unsigned long flags;
767 struct kmemleak_object *object;
768
769 object = find_and_get_object(ptr, 0);
770 if (!object) {
ae281064 771 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
772 return;
773 }
774
775 spin_lock_irqsave(&object->lock, flags);
776 object->flags |= OBJECT_NO_SCAN;
777 spin_unlock_irqrestore(&object->lock, flags);
778 put_object(object);
779}
780
781/*
782 * Log an early kmemleak_* call to the early_log buffer. These calls will be
783 * processed later once kmemleak is fully initialized.
784 */
a6186d89 785static void __init log_early(int op_type, const void *ptr, size_t size,
c017b4be 786 int min_count)
3c7b4e6b
CM
787{
788 unsigned long flags;
789 struct early_log *log;
790
791 if (crt_early_log >= ARRAY_SIZE(early_log)) {
addd72c1
CM
792 pr_warning("Early log buffer exceeded, "
793 "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
a9d9058a 794 kmemleak_disable();
3c7b4e6b
CM
795 return;
796 }
797
798 /*
799 * There is no need for locking since the kernel is still in UP mode
800 * at this stage. Disabling the IRQs is enough.
801 */
802 local_irq_save(flags);
803 log = &early_log[crt_early_log];
804 log->op_type = op_type;
805 log->ptr = ptr;
806 log->size = size;
807 log->min_count = min_count;
fd678967
CM
808 if (op_type == KMEMLEAK_ALLOC)
809 log->trace_len = __save_stack_trace(log->trace);
3c7b4e6b
CM
810 crt_early_log++;
811 local_irq_restore(flags);
812}
813
fd678967
CM
814/*
815 * Log an early allocated block and populate the stack trace.
816 */
817static void early_alloc(struct early_log *log)
818{
819 struct kmemleak_object *object;
820 unsigned long flags;
821 int i;
822
823 if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
824 return;
825
826 /*
827 * RCU locking needed to ensure object is not freed via put_object().
828 */
829 rcu_read_lock();
830 object = create_object((unsigned long)log->ptr, log->size,
c1bcd6b3 831 log->min_count, GFP_ATOMIC);
0d5d1aad
CM
832 if (!object)
833 goto out;
fd678967
CM
834 spin_lock_irqsave(&object->lock, flags);
835 for (i = 0; i < log->trace_len; i++)
836 object->trace[i] = log->trace[i];
837 object->trace_len = log->trace_len;
838 spin_unlock_irqrestore(&object->lock, flags);
0d5d1aad 839out:
fd678967
CM
840 rcu_read_unlock();
841}
842
3c7b4e6b
CM
843/*
844 * Memory allocation function callback. This function is called from the
845 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
846 * vmalloc etc.).
847 */
a6186d89
CM
848void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
849 gfp_t gfp)
3c7b4e6b
CM
850{
851 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
852
853 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
854 create_object((unsigned long)ptr, size, min_count, gfp);
855 else if (atomic_read(&kmemleak_early_log))
c017b4be 856 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
3c7b4e6b
CM
857}
858EXPORT_SYMBOL_GPL(kmemleak_alloc);
859
860/*
861 * Memory freeing function callback. This function is called from the kernel
862 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
863 */
a6186d89 864void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
865{
866 pr_debug("%s(0x%p)\n", __func__, ptr);
867
868 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
53238a60 869 delete_object_full((unsigned long)ptr);
3c7b4e6b 870 else if (atomic_read(&kmemleak_early_log))
c017b4be 871 log_early(KMEMLEAK_FREE, ptr, 0, 0);
3c7b4e6b
CM
872}
873EXPORT_SYMBOL_GPL(kmemleak_free);
874
53238a60
CM
875/*
876 * Partial memory freeing function callback. This function is usually called
877 * from bootmem allocator when (part of) a memory block is freed.
878 */
a6186d89 879void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
880{
881 pr_debug("%s(0x%p)\n", __func__, ptr);
882
883 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
884 delete_object_part((unsigned long)ptr, size);
885 else if (atomic_read(&kmemleak_early_log))
c017b4be 886 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
53238a60
CM
887}
888EXPORT_SYMBOL_GPL(kmemleak_free_part);
889
3c7b4e6b
CM
890/*
891 * Mark an already allocated memory block as a false positive. This will cause
892 * the block to no longer be reported as leak and always be scanned.
893 */
a6186d89 894void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
895{
896 pr_debug("%s(0x%p)\n", __func__, ptr);
897
898 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
899 make_gray_object((unsigned long)ptr);
900 else if (atomic_read(&kmemleak_early_log))
c017b4be 901 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
3c7b4e6b
CM
902}
903EXPORT_SYMBOL(kmemleak_not_leak);
904
905/*
906 * Ignore a memory block. This is usually done when it is known that the
907 * corresponding block is not a leak and does not contain any references to
908 * other allocated memory blocks.
909 */
a6186d89 910void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
911{
912 pr_debug("%s(0x%p)\n", __func__, ptr);
913
914 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
915 make_black_object((unsigned long)ptr);
916 else if (atomic_read(&kmemleak_early_log))
c017b4be 917 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
3c7b4e6b
CM
918}
919EXPORT_SYMBOL(kmemleak_ignore);
920
921/*
922 * Limit the range to be scanned in an allocated memory block.
923 */
c017b4be 924void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
925{
926 pr_debug("%s(0x%p)\n", __func__, ptr);
927
928 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
c017b4be 929 add_scan_area((unsigned long)ptr, size, gfp);
3c7b4e6b 930 else if (atomic_read(&kmemleak_early_log))
c017b4be 931 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
3c7b4e6b
CM
932}
933EXPORT_SYMBOL(kmemleak_scan_area);
934
935/*
936 * Inform kmemleak not to scan the given memory block.
937 */
a6186d89 938void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
939{
940 pr_debug("%s(0x%p)\n", __func__, ptr);
941
942 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
943 object_no_scan((unsigned long)ptr);
944 else if (atomic_read(&kmemleak_early_log))
c017b4be 945 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
3c7b4e6b
CM
946}
947EXPORT_SYMBOL(kmemleak_no_scan);
948
04609ccc
CM
949/*
950 * Update an object's checksum and return true if it was modified.
951 */
952static bool update_checksum(struct kmemleak_object *object)
953{
954 u32 old_csum = object->checksum;
955
956 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
957 return false;
958
959 object->checksum = crc32(0, (void *)object->pointer, object->size);
960 return object->checksum != old_csum;
961}
962
3c7b4e6b
CM
963/*
964 * Memory scanning is a long process and it needs to be interruptable. This
965 * function checks whether such interrupt condition occured.
966 */
967static int scan_should_stop(void)
968{
969 if (!atomic_read(&kmemleak_enabled))
970 return 1;
971
972 /*
973 * This function may be called from either process or kthread context,
974 * hence the need to check for both stop conditions.
975 */
976 if (current->mm)
977 return signal_pending(current);
978 else
979 return kthread_should_stop();
980
981 return 0;
982}
983
984/*
985 * Scan a memory block (exclusive range) for valid pointers and add those
986 * found to the gray list.
987 */
988static void scan_block(void *_start, void *_end,
4b8a9674 989 struct kmemleak_object *scanned, int allow_resched)
3c7b4e6b
CM
990{
991 unsigned long *ptr;
992 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
993 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
994
995 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 996 struct kmemleak_object *object;
8e019366
PE
997 unsigned long flags;
998 unsigned long pointer;
3c7b4e6b 999
4b8a9674
CM
1000 if (allow_resched)
1001 cond_resched();
3c7b4e6b
CM
1002 if (scan_should_stop())
1003 break;
1004
8e019366
PE
1005 /* don't scan uninitialized memory */
1006 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1007 BYTES_PER_POINTER))
1008 continue;
1009
1010 pointer = *ptr;
1011
3c7b4e6b
CM
1012 object = find_and_get_object(pointer, 1);
1013 if (!object)
1014 continue;
1015 if (object == scanned) {
1016 /* self referenced, ignore */
1017 put_object(object);
1018 continue;
1019 }
1020
1021 /*
1022 * Avoid the lockdep recursive warning on object->lock being
1023 * previously acquired in scan_object(). These locks are
1024 * enclosed by scan_mutex.
1025 */
1026 spin_lock_irqsave_nested(&object->lock, flags,
1027 SINGLE_DEPTH_NESTING);
1028 if (!color_white(object)) {
1029 /* non-orphan, ignored or new */
1030 spin_unlock_irqrestore(&object->lock, flags);
1031 put_object(object);
1032 continue;
1033 }
1034
1035 /*
1036 * Increase the object's reference count (number of pointers
1037 * to the memory block). If this count reaches the required
1038 * minimum, the object's color will become gray and it will be
1039 * added to the gray_list.
1040 */
1041 object->count++;
0587da40 1042 if (color_gray(object)) {
3c7b4e6b 1043 list_add_tail(&object->gray_list, &gray_list);
0587da40
CM
1044 spin_unlock_irqrestore(&object->lock, flags);
1045 continue;
1046 }
1047
3c7b4e6b 1048 spin_unlock_irqrestore(&object->lock, flags);
0587da40 1049 put_object(object);
3c7b4e6b
CM
1050 }
1051}
1052
1053/*
1054 * Scan a memory block corresponding to a kmemleak_object. A condition is
1055 * that object->use_count >= 1.
1056 */
1057static void scan_object(struct kmemleak_object *object)
1058{
1059 struct kmemleak_scan_area *area;
1060 struct hlist_node *elem;
1061 unsigned long flags;
1062
1063 /*
21ae2956
UKK
1064 * Once the object->lock is acquired, the corresponding memory block
1065 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b
CM
1066 */
1067 spin_lock_irqsave(&object->lock, flags);
1068 if (object->flags & OBJECT_NO_SCAN)
1069 goto out;
1070 if (!(object->flags & OBJECT_ALLOCATED))
1071 /* already freed object */
1072 goto out;
af98603d
CM
1073 if (hlist_empty(&object->area_list)) {
1074 void *start = (void *)object->pointer;
1075 void *end = (void *)(object->pointer + object->size);
1076
1077 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1078 !(object->flags & OBJECT_NO_SCAN)) {
1079 scan_block(start, min(start + MAX_SCAN_SIZE, end),
1080 object, 0);
1081 start += MAX_SCAN_SIZE;
1082
1083 spin_unlock_irqrestore(&object->lock, flags);
1084 cond_resched();
1085 spin_lock_irqsave(&object->lock, flags);
1086 }
1087 } else
3c7b4e6b 1088 hlist_for_each_entry(area, elem, &object->area_list, node)
c017b4be
CM
1089 scan_block((void *)area->start,
1090 (void *)(area->start + area->size),
1091 object, 0);
3c7b4e6b
CM
1092out:
1093 spin_unlock_irqrestore(&object->lock, flags);
1094}
1095
04609ccc
CM
1096/*
1097 * Scan the objects already referenced (gray objects). More objects will be
1098 * referenced and, if there are no memory leaks, all the objects are scanned.
1099 */
1100static void scan_gray_list(void)
1101{
1102 struct kmemleak_object *object, *tmp;
1103
1104 /*
1105 * The list traversal is safe for both tail additions and removals
1106 * from inside the loop. The kmemleak objects cannot be freed from
1107 * outside the loop because their use_count was incremented.
1108 */
1109 object = list_entry(gray_list.next, typeof(*object), gray_list);
1110 while (&object->gray_list != &gray_list) {
1111 cond_resched();
1112
1113 /* may add new objects to the list */
1114 if (!scan_should_stop())
1115 scan_object(object);
1116
1117 tmp = list_entry(object->gray_list.next, typeof(*object),
1118 gray_list);
1119
1120 /* remove the object from the list and release it */
1121 list_del(&object->gray_list);
1122 put_object(object);
1123
1124 object = tmp;
1125 }
1126 WARN_ON(!list_empty(&gray_list));
1127}
1128
3c7b4e6b
CM
1129/*
1130 * Scan data sections and all the referenced memory blocks allocated via the
1131 * kernel's standard allocators. This function must be called with the
1132 * scan_mutex held.
1133 */
1134static void kmemleak_scan(void)
1135{
1136 unsigned long flags;
04609ccc 1137 struct kmemleak_object *object;
3c7b4e6b 1138 int i;
4698c1f2 1139 int new_leaks = 0;
3c7b4e6b 1140
acf4968e
CM
1141 jiffies_last_scan = jiffies;
1142
3c7b4e6b
CM
1143 /* prepare the kmemleak_object's */
1144 rcu_read_lock();
1145 list_for_each_entry_rcu(object, &object_list, object_list) {
1146 spin_lock_irqsave(&object->lock, flags);
1147#ifdef DEBUG
1148 /*
1149 * With a few exceptions there should be a maximum of
1150 * 1 reference to any object at this point.
1151 */
1152 if (atomic_read(&object->use_count) > 1) {
ae281064 1153 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1154 atomic_read(&object->use_count));
1155 dump_object_info(object);
1156 }
1157#endif
1158 /* reset the reference count (whiten the object) */
1159 object->count = 0;
1160 if (color_gray(object) && get_object(object))
1161 list_add_tail(&object->gray_list, &gray_list);
1162
1163 spin_unlock_irqrestore(&object->lock, flags);
1164 }
1165 rcu_read_unlock();
1166
1167 /* data/bss scanning */
4b8a9674
CM
1168 scan_block(_sdata, _edata, NULL, 1);
1169 scan_block(__bss_start, __bss_stop, NULL, 1);
3c7b4e6b
CM
1170
1171#ifdef CONFIG_SMP
1172 /* per-cpu sections scanning */
1173 for_each_possible_cpu(i)
1174 scan_block(__per_cpu_start + per_cpu_offset(i),
4b8a9674 1175 __per_cpu_end + per_cpu_offset(i), NULL, 1);
3c7b4e6b
CM
1176#endif
1177
1178 /*
1179 * Struct page scanning for each node. The code below is not yet safe
1180 * with MEMORY_HOTPLUG.
1181 */
1182 for_each_online_node(i) {
1183 pg_data_t *pgdat = NODE_DATA(i);
1184 unsigned long start_pfn = pgdat->node_start_pfn;
1185 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1186 unsigned long pfn;
1187
1188 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1189 struct page *page;
1190
1191 if (!pfn_valid(pfn))
1192 continue;
1193 page = pfn_to_page(pfn);
1194 /* only scan if page is in use */
1195 if (page_count(page) == 0)
1196 continue;
4b8a9674 1197 scan_block(page, page + 1, NULL, 1);
3c7b4e6b
CM
1198 }
1199 }
1200
1201 /*
43ed5d6e 1202 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1203 */
1204 if (kmemleak_stack_scan) {
43ed5d6e
CM
1205 struct task_struct *p, *g;
1206
3c7b4e6b 1207 read_lock(&tasklist_lock);
43ed5d6e
CM
1208 do_each_thread(g, p) {
1209 scan_block(task_stack_page(p), task_stack_page(p) +
1210 THREAD_SIZE, NULL, 0);
1211 } while_each_thread(g, p);
3c7b4e6b
CM
1212 read_unlock(&tasklist_lock);
1213 }
1214
1215 /*
1216 * Scan the objects already referenced from the sections scanned
04609ccc 1217 * above.
3c7b4e6b 1218 */
04609ccc 1219 scan_gray_list();
2587362e
CM
1220
1221 /*
04609ccc
CM
1222 * Check for new or unreferenced objects modified since the previous
1223 * scan and color them gray until the next scan.
2587362e
CM
1224 */
1225 rcu_read_lock();
1226 list_for_each_entry_rcu(object, &object_list, object_list) {
1227 spin_lock_irqsave(&object->lock, flags);
04609ccc
CM
1228 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1229 && update_checksum(object) && get_object(object)) {
1230 /* color it gray temporarily */
1231 object->count = object->min_count;
2587362e
CM
1232 list_add_tail(&object->gray_list, &gray_list);
1233 }
1234 spin_unlock_irqrestore(&object->lock, flags);
1235 }
1236 rcu_read_unlock();
1237
04609ccc
CM
1238 /*
1239 * Re-scan the gray list for modified unreferenced objects.
1240 */
1241 scan_gray_list();
4698c1f2 1242
17bb9e0d 1243 /*
04609ccc 1244 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1245 */
04609ccc 1246 if (scan_should_stop())
17bb9e0d
CM
1247 return;
1248
4698c1f2
CM
1249 /*
1250 * Scanning result reporting.
1251 */
1252 rcu_read_lock();
1253 list_for_each_entry_rcu(object, &object_list, object_list) {
1254 spin_lock_irqsave(&object->lock, flags);
1255 if (unreferenced_object(object) &&
1256 !(object->flags & OBJECT_REPORTED)) {
1257 object->flags |= OBJECT_REPORTED;
1258 new_leaks++;
1259 }
1260 spin_unlock_irqrestore(&object->lock, flags);
1261 }
1262 rcu_read_unlock();
1263
1264 if (new_leaks)
1265 pr_info("%d new suspected memory leaks (see "
1266 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1267
3c7b4e6b
CM
1268}
1269
1270/*
1271 * Thread function performing automatic memory scanning. Unreferenced objects
1272 * at the end of a memory scan are reported but only the first time.
1273 */
1274static int kmemleak_scan_thread(void *arg)
1275{
1276 static int first_run = 1;
1277
ae281064 1278 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1279 set_user_nice(current, 10);
3c7b4e6b
CM
1280
1281 /*
1282 * Wait before the first scan to allow the system to fully initialize.
1283 */
1284 if (first_run) {
1285 first_run = 0;
1286 ssleep(SECS_FIRST_SCAN);
1287 }
1288
1289 while (!kthread_should_stop()) {
3c7b4e6b
CM
1290 signed long timeout = jiffies_scan_wait;
1291
1292 mutex_lock(&scan_mutex);
3c7b4e6b 1293 kmemleak_scan();
3c7b4e6b 1294 mutex_unlock(&scan_mutex);
4698c1f2 1295
3c7b4e6b
CM
1296 /* wait before the next scan */
1297 while (timeout && !kthread_should_stop())
1298 timeout = schedule_timeout_interruptible(timeout);
1299 }
1300
ae281064 1301 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1302
1303 return 0;
1304}
1305
1306/*
1307 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1308 * with the scan_mutex held.
3c7b4e6b 1309 */
7eb0d5e5 1310static void start_scan_thread(void)
3c7b4e6b
CM
1311{
1312 if (scan_thread)
1313 return;
1314 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1315 if (IS_ERR(scan_thread)) {
ae281064 1316 pr_warning("Failed to create the scan thread\n");
3c7b4e6b
CM
1317 scan_thread = NULL;
1318 }
1319}
1320
1321/*
1322 * Stop the automatic memory scanning thread. This function must be called
4698c1f2 1323 * with the scan_mutex held.
3c7b4e6b 1324 */
7eb0d5e5 1325static void stop_scan_thread(void)
3c7b4e6b
CM
1326{
1327 if (scan_thread) {
1328 kthread_stop(scan_thread);
1329 scan_thread = NULL;
1330 }
1331}
1332
1333/*
1334 * Iterate over the object_list and return the first valid object at or after
1335 * the required position with its use_count incremented. The function triggers
1336 * a memory scanning when the pos argument points to the first position.
1337 */
1338static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1339{
1340 struct kmemleak_object *object;
1341 loff_t n = *pos;
b87324d0
CM
1342 int err;
1343
1344 err = mutex_lock_interruptible(&scan_mutex);
1345 if (err < 0)
1346 return ERR_PTR(err);
3c7b4e6b 1347
3c7b4e6b
CM
1348 rcu_read_lock();
1349 list_for_each_entry_rcu(object, &object_list, object_list) {
1350 if (n-- > 0)
1351 continue;
1352 if (get_object(object))
1353 goto out;
1354 }
1355 object = NULL;
1356out:
3c7b4e6b
CM
1357 return object;
1358}
1359
1360/*
1361 * Return the next object in the object_list. The function decrements the
1362 * use_count of the previous object and increases that of the next one.
1363 */
1364static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1365{
1366 struct kmemleak_object *prev_obj = v;
1367 struct kmemleak_object *next_obj = NULL;
1368 struct list_head *n = &prev_obj->object_list;
1369
1370 ++(*pos);
3c7b4e6b 1371
3c7b4e6b
CM
1372 list_for_each_continue_rcu(n, &object_list) {
1373 next_obj = list_entry(n, struct kmemleak_object, object_list);
1374 if (get_object(next_obj))
1375 break;
1376 }
288c857d 1377
3c7b4e6b
CM
1378 put_object(prev_obj);
1379 return next_obj;
1380}
1381
1382/*
1383 * Decrement the use_count of the last object required, if any.
1384 */
1385static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1386{
b87324d0
CM
1387 if (!IS_ERR(v)) {
1388 /*
1389 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1390 * waiting was interrupted, so only release it if !IS_ERR.
1391 */
f5886c7f 1392 rcu_read_unlock();
b87324d0
CM
1393 mutex_unlock(&scan_mutex);
1394 if (v)
1395 put_object(v);
1396 }
3c7b4e6b
CM
1397}
1398
1399/*
1400 * Print the information for an unreferenced object to the seq file.
1401 */
1402static int kmemleak_seq_show(struct seq_file *seq, void *v)
1403{
1404 struct kmemleak_object *object = v;
1405 unsigned long flags;
1406
1407 spin_lock_irqsave(&object->lock, flags);
288c857d 1408 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1409 print_unreferenced(seq, object);
3c7b4e6b
CM
1410 spin_unlock_irqrestore(&object->lock, flags);
1411 return 0;
1412}
1413
1414static const struct seq_operations kmemleak_seq_ops = {
1415 .start = kmemleak_seq_start,
1416 .next = kmemleak_seq_next,
1417 .stop = kmemleak_seq_stop,
1418 .show = kmemleak_seq_show,
1419};
1420
1421static int kmemleak_open(struct inode *inode, struct file *file)
1422{
3c7b4e6b
CM
1423 if (!atomic_read(&kmemleak_enabled))
1424 return -EBUSY;
1425
b87324d0 1426 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1427}
1428
1429static int kmemleak_release(struct inode *inode, struct file *file)
1430{
b87324d0 1431 return seq_release(inode, file);
3c7b4e6b
CM
1432}
1433
189d84ed
CM
1434static int dump_str_object_info(const char *str)
1435{
1436 unsigned long flags;
1437 struct kmemleak_object *object;
1438 unsigned long addr;
1439
1440 addr= simple_strtoul(str, NULL, 0);
1441 object = find_and_get_object(addr, 0);
1442 if (!object) {
1443 pr_info("Unknown object at 0x%08lx\n", addr);
1444 return -EINVAL;
1445 }
1446
1447 spin_lock_irqsave(&object->lock, flags);
1448 dump_object_info(object);
1449 spin_unlock_irqrestore(&object->lock, flags);
1450
1451 put_object(object);
1452 return 0;
1453}
1454
30b37101
LR
1455/*
1456 * We use grey instead of black to ensure we can do future scans on the same
1457 * objects. If we did not do future scans these black objects could
1458 * potentially contain references to newly allocated objects in the future and
1459 * we'd end up with false positives.
1460 */
1461static void kmemleak_clear(void)
1462{
1463 struct kmemleak_object *object;
1464 unsigned long flags;
1465
1466 rcu_read_lock();
1467 list_for_each_entry_rcu(object, &object_list, object_list) {
1468 spin_lock_irqsave(&object->lock, flags);
1469 if ((object->flags & OBJECT_REPORTED) &&
1470 unreferenced_object(object))
a1084c87 1471 __paint_it(object, KMEMLEAK_GREY);
30b37101
LR
1472 spin_unlock_irqrestore(&object->lock, flags);
1473 }
1474 rcu_read_unlock();
1475}
1476
3c7b4e6b
CM
1477/*
1478 * File write operation to configure kmemleak at run-time. The following
1479 * commands can be written to the /sys/kernel/debug/kmemleak file:
1480 * off - disable kmemleak (irreversible)
1481 * stack=on - enable the task stacks scanning
1482 * stack=off - disable the tasks stacks scanning
1483 * scan=on - start the automatic memory scanning thread
1484 * scan=off - stop the automatic memory scanning thread
1485 * scan=... - set the automatic memory scanning period in seconds (0 to
1486 * disable it)
4698c1f2 1487 * scan - trigger a memory scan
30b37101
LR
1488 * clear - mark all current reported unreferenced kmemleak objects as
1489 * grey to ignore printing them
189d84ed 1490 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1491 */
1492static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1493 size_t size, loff_t *ppos)
1494{
1495 char buf[64];
1496 int buf_size;
b87324d0 1497 int ret;
3c7b4e6b
CM
1498
1499 buf_size = min(size, (sizeof(buf) - 1));
1500 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1501 return -EFAULT;
1502 buf[buf_size] = 0;
1503
b87324d0
CM
1504 ret = mutex_lock_interruptible(&scan_mutex);
1505 if (ret < 0)
1506 return ret;
1507
3c7b4e6b
CM
1508 if (strncmp(buf, "off", 3) == 0)
1509 kmemleak_disable();
1510 else if (strncmp(buf, "stack=on", 8) == 0)
1511 kmemleak_stack_scan = 1;
1512 else if (strncmp(buf, "stack=off", 9) == 0)
1513 kmemleak_stack_scan = 0;
1514 else if (strncmp(buf, "scan=on", 7) == 0)
1515 start_scan_thread();
1516 else if (strncmp(buf, "scan=off", 8) == 0)
1517 stop_scan_thread();
1518 else if (strncmp(buf, "scan=", 5) == 0) {
1519 unsigned long secs;
3c7b4e6b 1520
b87324d0
CM
1521 ret = strict_strtoul(buf + 5, 0, &secs);
1522 if (ret < 0)
1523 goto out;
3c7b4e6b
CM
1524 stop_scan_thread();
1525 if (secs) {
1526 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1527 start_scan_thread();
1528 }
4698c1f2
CM
1529 } else if (strncmp(buf, "scan", 4) == 0)
1530 kmemleak_scan();
30b37101
LR
1531 else if (strncmp(buf, "clear", 5) == 0)
1532 kmemleak_clear();
189d84ed
CM
1533 else if (strncmp(buf, "dump=", 5) == 0)
1534 ret = dump_str_object_info(buf + 5);
4698c1f2 1535 else
b87324d0
CM
1536 ret = -EINVAL;
1537
1538out:
1539 mutex_unlock(&scan_mutex);
1540 if (ret < 0)
1541 return ret;
3c7b4e6b
CM
1542
1543 /* ignore the rest of the buffer, only one command at a time */
1544 *ppos += size;
1545 return size;
1546}
1547
1548static const struct file_operations kmemleak_fops = {
1549 .owner = THIS_MODULE,
1550 .open = kmemleak_open,
1551 .read = seq_read,
1552 .write = kmemleak_write,
1553 .llseek = seq_lseek,
1554 .release = kmemleak_release,
1555};
1556
1557/*
1558 * Perform the freeing of the kmemleak internal objects after waiting for any
1559 * current memory scan to complete.
1560 */
179a8100 1561static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b
CM
1562{
1563 struct kmemleak_object *object;
1564
4698c1f2 1565 mutex_lock(&scan_mutex);
3c7b4e6b 1566 stop_scan_thread();
3c7b4e6b 1567
3c7b4e6b
CM
1568 rcu_read_lock();
1569 list_for_each_entry_rcu(object, &object_list, object_list)
53238a60 1570 delete_object_full(object->pointer);
3c7b4e6b
CM
1571 rcu_read_unlock();
1572 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
1573}
1574
179a8100 1575static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
1576
1577/*
1578 * Disable kmemleak. No memory allocation/freeing will be traced once this
1579 * function is called. Disabling kmemleak is an irreversible operation.
1580 */
1581static void kmemleak_disable(void)
1582{
1583 /* atomically check whether it was already invoked */
1584 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1585 return;
1586
1587 /* stop any memory operation tracing */
1588 atomic_set(&kmemleak_early_log, 0);
1589 atomic_set(&kmemleak_enabled, 0);
1590
1591 /* check whether it is too early for a kernel thread */
1592 if (atomic_read(&kmemleak_initialized))
179a8100 1593 schedule_work(&cleanup_work);
3c7b4e6b
CM
1594
1595 pr_info("Kernel memory leak detector disabled\n");
1596}
1597
1598/*
1599 * Allow boot-time kmemleak disabling (enabled by default).
1600 */
1601static int kmemleak_boot_config(char *str)
1602{
1603 if (!str)
1604 return -EINVAL;
1605 if (strcmp(str, "off") == 0)
1606 kmemleak_disable();
1607 else if (strcmp(str, "on") != 0)
1608 return -EINVAL;
1609 return 0;
1610}
1611early_param("kmemleak", kmemleak_boot_config);
1612
1613/*
2030117d 1614 * Kmemleak initialization.
3c7b4e6b
CM
1615 */
1616void __init kmemleak_init(void)
1617{
1618 int i;
1619 unsigned long flags;
1620
3c7b4e6b
CM
1621 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1622 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1623
1624 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1625 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1626 INIT_PRIO_TREE_ROOT(&object_tree_root);
1627
1628 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1629 local_irq_save(flags);
1630 if (!atomic_read(&kmemleak_error)) {
1631 atomic_set(&kmemleak_enabled, 1);
1632 atomic_set(&kmemleak_early_log, 0);
1633 }
1634 local_irq_restore(flags);
1635
1636 /*
1637 * This is the point where tracking allocations is safe. Automatic
1638 * scanning is started during the late initcall. Add the early logged
1639 * callbacks to the kmemleak infrastructure.
1640 */
1641 for (i = 0; i < crt_early_log; i++) {
1642 struct early_log *log = &early_log[i];
1643
1644 switch (log->op_type) {
1645 case KMEMLEAK_ALLOC:
fd678967 1646 early_alloc(log);
3c7b4e6b
CM
1647 break;
1648 case KMEMLEAK_FREE:
1649 kmemleak_free(log->ptr);
1650 break;
53238a60
CM
1651 case KMEMLEAK_FREE_PART:
1652 kmemleak_free_part(log->ptr, log->size);
1653 break;
3c7b4e6b
CM
1654 case KMEMLEAK_NOT_LEAK:
1655 kmemleak_not_leak(log->ptr);
1656 break;
1657 case KMEMLEAK_IGNORE:
1658 kmemleak_ignore(log->ptr);
1659 break;
1660 case KMEMLEAK_SCAN_AREA:
c017b4be 1661 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
3c7b4e6b
CM
1662 break;
1663 case KMEMLEAK_NO_SCAN:
1664 kmemleak_no_scan(log->ptr);
1665 break;
1666 default:
1667 WARN_ON(1);
1668 }
1669 }
1670}
1671
1672/*
1673 * Late initialization function.
1674 */
1675static int __init kmemleak_late_init(void)
1676{
1677 struct dentry *dentry;
1678
1679 atomic_set(&kmemleak_initialized, 1);
1680
1681 if (atomic_read(&kmemleak_error)) {
1682 /*
1683 * Some error occured and kmemleak was disabled. There is a
1684 * small chance that kmemleak_disable() was called immediately
1685 * after setting kmemleak_initialized and we may end up with
1686 * two clean-up threads but serialized by scan_mutex.
1687 */
179a8100 1688 schedule_work(&cleanup_work);
3c7b4e6b
CM
1689 return -ENOMEM;
1690 }
1691
1692 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1693 &kmemleak_fops);
1694 if (!dentry)
ae281064 1695 pr_warning("Failed to create the debugfs kmemleak file\n");
4698c1f2 1696 mutex_lock(&scan_mutex);
3c7b4e6b 1697 start_scan_thread();
4698c1f2 1698 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
1699
1700 pr_info("Kernel memory leak detector initialized\n");
1701
1702 return 0;
1703}
1704late_initcall(kmemleak_late_init);