]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/ksm.c
UBUNTU: Start new release
[mirror_ubuntu-zesty-kernel.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
62b61f61 32#include <linux/memory.h>
31dbd01f 33#include <linux/mmu_notifier.h>
2c6854fd 34#include <linux/swap.h>
f8af4da3 35#include <linux/ksm.h>
4ca3a69b 36#include <linux/hashtable.h>
878aee7d 37#include <linux/freezer.h>
72788c38 38#include <linux/oom.h>
90bd6fd3 39#include <linux/numa.h>
f8af4da3 40
31dbd01f 41#include <asm/tlbflush.h>
73848b46 42#include "internal.h"
31dbd01f 43
e850dcf5
HD
44#ifdef CONFIG_NUMA
45#define NUMA(x) (x)
46#define DO_NUMA(x) do { (x); } while (0)
47#else
48#define NUMA(x) (0)
49#define DO_NUMA(x) do { } while (0)
50#endif
51
31dbd01f
IE
52/*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
93 */
94
95/**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
100 * @mm: the mm that this information is valid for
101 */
102struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
6514d511 105 struct rmap_item *rmap_list;
31dbd01f
IE
106 struct mm_struct *mm;
107};
108
109/**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
6514d511 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
6514d511 121 struct rmap_item **rmap_list;
31dbd01f
IE
122 unsigned long seqnr;
123};
124
7b6ba2c7
HD
125/**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
4146d2d6 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
731b565d 129 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 130 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 131 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 132 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
731b565d
AA
133 * @chain_prune_time: time of the last full garbage collection
134 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 135 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
136 */
137struct stable_node {
4146d2d6
HD
138 union {
139 struct rb_node node; /* when node of stable tree */
140 struct { /* when listed for migration */
141 struct list_head *head;
731b565d
AA
142 struct {
143 struct hlist_node hlist_dup;
144 struct list_head list;
145 };
4146d2d6
HD
146 };
147 };
7b6ba2c7 148 struct hlist_head hlist;
731b565d
AA
149 union {
150 unsigned long kpfn;
151 unsigned long chain_prune_time;
152 };
153 /*
154 * STABLE_NODE_CHAIN can be any negative number in
155 * rmap_hlist_len negative range, but better not -1 to be able
156 * to reliably detect underflows.
157 */
158#define STABLE_NODE_CHAIN -1024
159 int rmap_hlist_len;
4146d2d6
HD
160#ifdef CONFIG_NUMA
161 int nid;
162#endif
7b6ba2c7
HD
163};
164
31dbd01f
IE
165/**
166 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 167 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 168 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 169 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
170 * @mm: the memory structure this rmap_item is pointing into
171 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
172 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
173 * @node: rb node of this rmap_item in the unstable tree
174 * @head: pointer to stable_node heading this list in the stable tree
175 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
176 */
177struct rmap_item {
6514d511 178 struct rmap_item *rmap_list;
bc56620b
HD
179 union {
180 struct anon_vma *anon_vma; /* when stable */
181#ifdef CONFIG_NUMA
182 int nid; /* when node of unstable tree */
183#endif
184 };
31dbd01f
IE
185 struct mm_struct *mm;
186 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 187 unsigned int oldchecksum; /* when unstable */
31dbd01f 188 union {
7b6ba2c7
HD
189 struct rb_node node; /* when node of unstable tree */
190 struct { /* when listed from stable tree */
191 struct stable_node *head;
192 struct hlist_node hlist;
193 };
31dbd01f
IE
194 };
195};
196
197#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
198#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
199#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
200
201/* The stable and unstable tree heads */
ef53d16c
HD
202static struct rb_root one_stable_tree[1] = { RB_ROOT };
203static struct rb_root one_unstable_tree[1] = { RB_ROOT };
204static struct rb_root *root_stable_tree = one_stable_tree;
205static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 206
4146d2d6
HD
207/* Recently migrated nodes of stable tree, pending proper placement */
208static LIST_HEAD(migrate_nodes);
731b565d 209#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 210
4ca3a69b
SL
211#define MM_SLOTS_HASH_BITS 10
212static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
213
214static struct mm_slot ksm_mm_head = {
215 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
216};
217static struct ksm_scan ksm_scan = {
218 .mm_slot = &ksm_mm_head,
219};
220
221static struct kmem_cache *rmap_item_cache;
7b6ba2c7 222static struct kmem_cache *stable_node_cache;
31dbd01f
IE
223static struct kmem_cache *mm_slot_cache;
224
225/* The number of nodes in the stable tree */
b4028260 226static unsigned long ksm_pages_shared;
31dbd01f 227
e178dfde 228/* The number of page slots additionally sharing those nodes */
b4028260 229static unsigned long ksm_pages_sharing;
31dbd01f 230
473b0ce4
HD
231/* The number of nodes in the unstable tree */
232static unsigned long ksm_pages_unshared;
233
234/* The number of rmap_items in use: to calculate pages_volatile */
235static unsigned long ksm_rmap_items;
236
731b565d
AA
237/* The number of stable_node chains */
238static unsigned long ksm_stable_node_chains;
239
240/* The number of stable_node dups linked to the stable_node chains */
241static unsigned long ksm_stable_node_dups;
242
243/* Delay in pruning stale stable_node_dups in the stable_node_chains */
244static int ksm_stable_node_chains_prune_millisecs = 2000;
245
246/* Maximum number of page slots sharing a stable node */
247static int ksm_max_page_sharing = 256;
248
31dbd01f 249/* Number of pages ksmd should scan in one batch */
2c6854fd 250static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
251
252/* Milliseconds ksmd should sleep between batches */
2ffd8679 253static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 254
e850dcf5 255#ifdef CONFIG_NUMA
90bd6fd3
PH
256/* Zeroed when merging across nodes is not allowed */
257static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 258static int ksm_nr_node_ids = 1;
e850dcf5
HD
259#else
260#define ksm_merge_across_nodes 1U
ef53d16c 261#define ksm_nr_node_ids 1
e850dcf5 262#endif
90bd6fd3 263
31dbd01f
IE
264#define KSM_RUN_STOP 0
265#define KSM_RUN_MERGE 1
266#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
267#define KSM_RUN_OFFLINE 4
268static unsigned long ksm_run = KSM_RUN_STOP;
269static void wait_while_offlining(void);
31dbd01f
IE
270
271static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
272static DEFINE_MUTEX(ksm_thread_mutex);
273static DEFINE_SPINLOCK(ksm_mmlist_lock);
274
275#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
276 sizeof(struct __struct), __alignof__(struct __struct),\
277 (__flags), NULL)
278
279static int __init ksm_slab_init(void)
280{
281 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
282 if (!rmap_item_cache)
283 goto out;
284
7b6ba2c7
HD
285 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
286 if (!stable_node_cache)
287 goto out_free1;
288
31dbd01f
IE
289 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
290 if (!mm_slot_cache)
7b6ba2c7 291 goto out_free2;
31dbd01f
IE
292
293 return 0;
294
7b6ba2c7
HD
295out_free2:
296 kmem_cache_destroy(stable_node_cache);
297out_free1:
31dbd01f
IE
298 kmem_cache_destroy(rmap_item_cache);
299out:
300 return -ENOMEM;
301}
302
303static void __init ksm_slab_free(void)
304{
305 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 306 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
307 kmem_cache_destroy(rmap_item_cache);
308 mm_slot_cache = NULL;
309}
310
731b565d
AA
311static __always_inline bool is_stable_node_chain(struct stable_node *chain)
312{
313 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
314}
315
316static __always_inline bool is_stable_node_dup(struct stable_node *dup)
317{
318 return dup->head == STABLE_NODE_DUP_HEAD;
319}
320
321static inline void stable_node_chain_add_dup(struct stable_node *dup,
322 struct stable_node *chain)
323{
324 VM_BUG_ON(is_stable_node_dup(dup));
325 dup->head = STABLE_NODE_DUP_HEAD;
326 VM_BUG_ON(!is_stable_node_chain(chain));
327 hlist_add_head(&dup->hlist_dup, &chain->hlist);
328 ksm_stable_node_dups++;
329}
330
331static inline void __stable_node_dup_del(struct stable_node *dup)
332{
24f72136 333 VM_BUG_ON(!is_stable_node_dup(dup));
731b565d
AA
334 hlist_del(&dup->hlist_dup);
335 ksm_stable_node_dups--;
336}
337
338static inline void stable_node_dup_del(struct stable_node *dup)
339{
340 VM_BUG_ON(is_stable_node_chain(dup));
341 if (is_stable_node_dup(dup))
342 __stable_node_dup_del(dup);
343 else
344 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
345#ifdef CONFIG_DEBUG_VM
346 dup->head = NULL;
347#endif
348}
349
31dbd01f
IE
350static inline struct rmap_item *alloc_rmap_item(void)
351{
473b0ce4
HD
352 struct rmap_item *rmap_item;
353
386429be 354 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
355 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
356 if (rmap_item)
357 ksm_rmap_items++;
358 return rmap_item;
31dbd01f
IE
359}
360
361static inline void free_rmap_item(struct rmap_item *rmap_item)
362{
473b0ce4 363 ksm_rmap_items--;
31dbd01f
IE
364 rmap_item->mm = NULL; /* debug safety */
365 kmem_cache_free(rmap_item_cache, rmap_item);
366}
367
7b6ba2c7
HD
368static inline struct stable_node *alloc_stable_node(void)
369{
370 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
371}
372
373static inline void free_stable_node(struct stable_node *stable_node)
374{
731b565d
AA
375 VM_BUG_ON(stable_node->rmap_hlist_len &&
376 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
377 kmem_cache_free(stable_node_cache, stable_node);
378}
379
31dbd01f
IE
380static inline struct mm_slot *alloc_mm_slot(void)
381{
382 if (!mm_slot_cache) /* initialization failed */
383 return NULL;
384 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
385}
386
387static inline void free_mm_slot(struct mm_slot *mm_slot)
388{
389 kmem_cache_free(mm_slot_cache, mm_slot);
390}
391
31dbd01f
IE
392static struct mm_slot *get_mm_slot(struct mm_struct *mm)
393{
4ca3a69b
SL
394 struct mm_slot *slot;
395
b67bfe0d 396 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
397 if (slot->mm == mm)
398 return slot;
31dbd01f 399
31dbd01f
IE
400 return NULL;
401}
402
403static void insert_to_mm_slots_hash(struct mm_struct *mm,
404 struct mm_slot *mm_slot)
405{
31dbd01f 406 mm_slot->mm = mm;
4ca3a69b 407 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
408}
409
a913e182
HD
410/*
411 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
412 * page tables after it has passed through ksm_exit() - which, if necessary,
413 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
414 * a special flag: they can just back out as soon as mm_users goes to zero.
415 * ksm_test_exit() is used throughout to make this test for exit: in some
416 * places for correctness, in some places just to avoid unnecessary work.
417 */
418static inline bool ksm_test_exit(struct mm_struct *mm)
419{
420 return atomic_read(&mm->mm_users) == 0;
421}
422
31dbd01f
IE
423/*
424 * We use break_ksm to break COW on a ksm page: it's a stripped down
425 *
426 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
427 * put_page(page);
428 *
429 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
430 * in case the application has unmapped and remapped mm,addr meanwhile.
431 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
432 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
433 */
d952b791 434static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
435{
436 struct page *page;
d952b791 437 int ret = 0;
31dbd01f
IE
438
439 do {
440 cond_resched();
5117b3b8 441 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
22eccdd7 442 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
443 break;
444 if (PageKsm(page))
445 ret = handle_mm_fault(vma->vm_mm, vma, addr,
446 FAULT_FLAG_WRITE);
447 else
448 ret = VM_FAULT_WRITE;
449 put_page(page);
33692f27 450 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
451 /*
452 * We must loop because handle_mm_fault() may back out if there's
453 * any difficulty e.g. if pte accessed bit gets updated concurrently.
454 *
455 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
456 * COW has been broken, even if the vma does not permit VM_WRITE;
457 * but note that a concurrent fault might break PageKsm for us.
458 *
459 * VM_FAULT_SIGBUS could occur if we race with truncation of the
460 * backing file, which also invalidates anonymous pages: that's
461 * okay, that truncation will have unmapped the PageKsm for us.
462 *
463 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
464 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
465 * current task has TIF_MEMDIE set, and will be OOM killed on return
466 * to user; and ksmd, having no mm, would never be chosen for that.
467 *
468 * But if the mm is in a limited mem_cgroup, then the fault may fail
469 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
470 * even ksmd can fail in this way - though it's usually breaking ksm
471 * just to undo a merge it made a moment before, so unlikely to oom.
472 *
473 * That's a pity: we might therefore have more kernel pages allocated
474 * than we're counting as nodes in the stable tree; but ksm_do_scan
475 * will retry to break_cow on each pass, so should recover the page
476 * in due course. The important thing is to not let VM_MERGEABLE
477 * be cleared while any such pages might remain in the area.
478 */
479 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
480}
481
ef694222
BL
482static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
483 unsigned long addr)
484{
485 struct vm_area_struct *vma;
486 if (ksm_test_exit(mm))
487 return NULL;
488 vma = find_vma(mm, addr);
489 if (!vma || vma->vm_start > addr)
490 return NULL;
491 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
492 return NULL;
493 return vma;
494}
495
8dd3557a 496static void break_cow(struct rmap_item *rmap_item)
31dbd01f 497{
8dd3557a
HD
498 struct mm_struct *mm = rmap_item->mm;
499 unsigned long addr = rmap_item->address;
31dbd01f
IE
500 struct vm_area_struct *vma;
501
4035c07a
HD
502 /*
503 * It is not an accident that whenever we want to break COW
504 * to undo, we also need to drop a reference to the anon_vma.
505 */
9e60109f 506 put_anon_vma(rmap_item->anon_vma);
4035c07a 507
81464e30 508 down_read(&mm->mmap_sem);
ef694222
BL
509 vma = find_mergeable_vma(mm, addr);
510 if (vma)
511 break_ksm(vma, addr);
31dbd01f
IE
512 up_read(&mm->mmap_sem);
513}
514
29ad768c
AA
515static struct page *page_trans_compound_anon(struct page *page)
516{
517 if (PageTransCompound(page)) {
668f9abb 518 struct page *head = compound_head(page);
29ad768c 519 /*
22e5c47e
AA
520 * head may actually be splitted and freed from under
521 * us but it's ok here.
29ad768c 522 */
29ad768c
AA
523 if (PageAnon(head))
524 return head;
525 }
526 return NULL;
527}
528
31dbd01f
IE
529static struct page *get_mergeable_page(struct rmap_item *rmap_item)
530{
531 struct mm_struct *mm = rmap_item->mm;
532 unsigned long addr = rmap_item->address;
533 struct vm_area_struct *vma;
534 struct page *page;
535
536 down_read(&mm->mmap_sem);
ef694222
BL
537 vma = find_mergeable_vma(mm, addr);
538 if (!vma)
31dbd01f
IE
539 goto out;
540
541 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 542 if (IS_ERR_OR_NULL(page))
31dbd01f 543 goto out;
29ad768c 544 if (PageAnon(page) || page_trans_compound_anon(page)) {
31dbd01f
IE
545 flush_anon_page(vma, page, addr);
546 flush_dcache_page(page);
547 } else {
548 put_page(page);
c8f95ed1
AA
549out:
550 page = NULL;
31dbd01f
IE
551 }
552 up_read(&mm->mmap_sem);
553 return page;
554}
555
90bd6fd3
PH
556/*
557 * This helper is used for getting right index into array of tree roots.
558 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
559 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
560 * every node has its own stable and unstable tree.
561 */
562static inline int get_kpfn_nid(unsigned long kpfn)
563{
d8fc16a8 564 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
565}
566
731b565d
AA
567static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
568 struct rb_root *root)
569{
570 struct stable_node *chain = alloc_stable_node();
571 VM_BUG_ON(is_stable_node_chain(dup));
572 if (likely(chain)) {
573 INIT_HLIST_HEAD(&chain->hlist);
574 chain->chain_prune_time = jiffies;
575 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
576#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
577 chain->nid = -1; /* debug */
578#endif
579 ksm_stable_node_chains++;
580
581 /*
582 * Put the stable node chain in the first dimension of
583 * the stable tree and at the same time remove the old
584 * stable node.
585 */
586 rb_replace_node(&dup->node, &chain->node, root);
587
588 /*
589 * Move the old stable node to the second dimension
590 * queued in the hlist_dup. The invariant is that all
591 * dup stable_nodes in the chain->hlist point to pages
592 * that are wrprotected and have the exact same
593 * content.
594 */
595 stable_node_chain_add_dup(dup, chain);
596 }
597 return chain;
598}
599
600static inline void free_stable_node_chain(struct stable_node *chain,
601 struct rb_root *root)
602{
603 rb_erase(&chain->node, root);
604 free_stable_node(chain);
605 ksm_stable_node_chains--;
606}
607
4035c07a
HD
608static void remove_node_from_stable_tree(struct stable_node *stable_node)
609{
610 struct rmap_item *rmap_item;
4035c07a 611
731b565d
AA
612 /* check it's not STABLE_NODE_CHAIN or negative */
613 BUG_ON(stable_node->rmap_hlist_len < 0);
614
b67bfe0d 615 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
616 if (rmap_item->hlist.next)
617 ksm_pages_sharing--;
618 else
619 ksm_pages_shared--;
731b565d
AA
620 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
621 stable_node->rmap_hlist_len--;
9e60109f 622 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
623 rmap_item->address &= PAGE_MASK;
624 cond_resched();
625 }
626
731b565d
AA
627 /*
628 * We need the second aligned pointer of the migrate_nodes
629 * list_head to stay clear from the rb_parent_color union
630 * (aligned and different than any node) and also different
631 * from &migrate_nodes. This will verify that future list.h changes
632 * don't break STABLE_NODE_DUP_HEAD.
633 */
634#if GCC_VERSION >= 40903 /* only recent gcc can handle it */
635 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
636 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
637#endif
638
4146d2d6
HD
639 if (stable_node->head == &migrate_nodes)
640 list_del(&stable_node->list);
641 else
731b565d 642 stable_node_dup_del(stable_node);
4035c07a
HD
643 free_stable_node(stable_node);
644}
645
646/*
647 * get_ksm_page: checks if the page indicated by the stable node
648 * is still its ksm page, despite having held no reference to it.
649 * In which case we can trust the content of the page, and it
650 * returns the gotten page; but if the page has now been zapped,
651 * remove the stale node from the stable tree and return NULL.
c8d6553b 652 * But beware, the stable node's page might be being migrated.
4035c07a
HD
653 *
654 * You would expect the stable_node to hold a reference to the ksm page.
655 * But if it increments the page's count, swapping out has to wait for
656 * ksmd to come around again before it can free the page, which may take
657 * seconds or even minutes: much too unresponsive. So instead we use a
658 * "keyhole reference": access to the ksm page from the stable node peeps
659 * out through its keyhole to see if that page still holds the right key,
660 * pointing back to this stable node. This relies on freeing a PageAnon
661 * page to reset its page->mapping to NULL, and relies on no other use of
662 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
663 * is on its way to being freed; but it is an anomaly to bear in mind.
664 */
8fdb3dbf 665static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
666{
667 struct page *page;
668 void *expected_mapping;
c8d6553b 669 unsigned long kpfn;
4035c07a 670
4035c07a
HD
671 expected_mapping = (void *)stable_node +
672 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
c8d6553b 673again:
4db0c3c2 674 kpfn = READ_ONCE(stable_node->kpfn);
c8d6553b
HD
675 page = pfn_to_page(kpfn);
676
677 /*
678 * page is computed from kpfn, so on most architectures reading
679 * page->mapping is naturally ordered after reading node->kpfn,
680 * but on Alpha we need to be more careful.
681 */
682 smp_read_barrier_depends();
4db0c3c2 683 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 684 goto stale;
c8d6553b
HD
685
686 /*
687 * We cannot do anything with the page while its refcount is 0.
688 * Usually 0 means free, or tail of a higher-order page: in which
689 * case this node is no longer referenced, and should be freed;
690 * however, it might mean that the page is under page_freeze_refs().
691 * The __remove_mapping() case is easy, again the node is now stale;
692 * but if page is swapcache in migrate_page_move_mapping(), it might
693 * still be our page, in which case it's essential to keep the node.
694 */
695 while (!get_page_unless_zero(page)) {
696 /*
697 * Another check for page->mapping != expected_mapping would
698 * work here too. We have chosen the !PageSwapCache test to
699 * optimize the common case, when the page is or is about to
700 * be freed: PageSwapCache is cleared (under spin_lock_irq)
701 * in the freeze_refs section of __remove_mapping(); but Anon
702 * page->mapping reset to NULL later, in free_pages_prepare().
703 */
704 if (!PageSwapCache(page))
705 goto stale;
706 cpu_relax();
707 }
708
4db0c3c2 709 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
710 put_page(page);
711 goto stale;
712 }
c8d6553b 713
8fdb3dbf 714 if (lock_it) {
8aafa6a4 715 lock_page(page);
4db0c3c2 716 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
717 unlock_page(page);
718 put_page(page);
719 goto stale;
720 }
721 }
4035c07a 722 return page;
c8d6553b 723
4035c07a 724stale:
c8d6553b
HD
725 /*
726 * We come here from above when page->mapping or !PageSwapCache
727 * suggests that the node is stale; but it might be under migration.
728 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
729 * before checking whether node->kpfn has been changed.
730 */
731 smp_rmb();
4db0c3c2 732 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 733 goto again;
4035c07a
HD
734 remove_node_from_stable_tree(stable_node);
735 return NULL;
736}
737
31dbd01f
IE
738/*
739 * Removing rmap_item from stable or unstable tree.
740 * This function will clean the information from the stable/unstable tree.
741 */
742static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
743{
7b6ba2c7
HD
744 if (rmap_item->address & STABLE_FLAG) {
745 struct stable_node *stable_node;
5ad64688 746 struct page *page;
31dbd01f 747
7b6ba2c7 748 stable_node = rmap_item->head;
8aafa6a4 749 page = get_ksm_page(stable_node, true);
4035c07a
HD
750 if (!page)
751 goto out;
5ad64688 752
7b6ba2c7 753 hlist_del(&rmap_item->hlist);
4035c07a
HD
754 unlock_page(page);
755 put_page(page);
08beca44 756
98666f8a 757 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
758 ksm_pages_sharing--;
759 else
7b6ba2c7 760 ksm_pages_shared--;
731b565d
AA
761 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
762 stable_node->rmap_hlist_len--;
31dbd01f 763
9e60109f 764 put_anon_vma(rmap_item->anon_vma);
93d17715 765 rmap_item->address &= PAGE_MASK;
31dbd01f 766
7b6ba2c7 767 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
768 unsigned char age;
769 /*
9ba69294 770 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 771 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
772 * But be careful when an mm is exiting: do the rb_erase
773 * if this rmap_item was inserted by this scan, rather
774 * than left over from before.
31dbd01f
IE
775 */
776 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 777 BUG_ON(age > 1);
31dbd01f 778 if (!age)
90bd6fd3 779 rb_erase(&rmap_item->node,
ef53d16c 780 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 781 ksm_pages_unshared--;
93d17715 782 rmap_item->address &= PAGE_MASK;
31dbd01f 783 }
4035c07a 784out:
31dbd01f
IE
785 cond_resched(); /* we're called from many long loops */
786}
787
31dbd01f 788static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 789 struct rmap_item **rmap_list)
31dbd01f 790{
6514d511
HD
791 while (*rmap_list) {
792 struct rmap_item *rmap_item = *rmap_list;
793 *rmap_list = rmap_item->rmap_list;
31dbd01f 794 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
795 free_rmap_item(rmap_item);
796 }
797}
798
799/*
e850dcf5 800 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
801 * than check every pte of a given vma, the locking doesn't quite work for
802 * that - an rmap_item is assigned to the stable tree after inserting ksm
803 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
804 * rmap_items from parent to child at fork time (so as not to waste time
805 * if exit comes before the next scan reaches it).
81464e30
HD
806 *
807 * Similarly, although we'd like to remove rmap_items (so updating counts
808 * and freeing memory) when unmerging an area, it's easier to leave that
809 * to the next pass of ksmd - consider, for example, how ksmd might be
810 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 811 */
d952b791
HD
812static int unmerge_ksm_pages(struct vm_area_struct *vma,
813 unsigned long start, unsigned long end)
31dbd01f
IE
814{
815 unsigned long addr;
d952b791 816 int err = 0;
31dbd01f 817
d952b791 818 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
819 if (ksm_test_exit(vma->vm_mm))
820 break;
d952b791
HD
821 if (signal_pending(current))
822 err = -ERESTARTSYS;
823 else
824 err = break_ksm(vma, addr);
825 }
826 return err;
31dbd01f
IE
827}
828
2ffd8679
HD
829#ifdef CONFIG_SYSFS
830/*
831 * Only called through the sysfs control interface:
832 */
cbf86cfe
HD
833static int remove_stable_node(struct stable_node *stable_node)
834{
835 struct page *page;
836 int err;
837
838 page = get_ksm_page(stable_node, true);
839 if (!page) {
840 /*
841 * get_ksm_page did remove_node_from_stable_tree itself.
842 */
843 return 0;
844 }
845
8fdb3dbf
HD
846 if (WARN_ON_ONCE(page_mapped(page))) {
847 /*
848 * This should not happen: but if it does, just refuse to let
849 * merge_across_nodes be switched - there is no need to panic.
850 */
cbf86cfe 851 err = -EBUSY;
8fdb3dbf 852 } else {
cbf86cfe 853 /*
8fdb3dbf
HD
854 * The stable node did not yet appear stale to get_ksm_page(),
855 * since that allows for an unmapped ksm page to be recognized
856 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
857 * This page might be in a pagevec waiting to be freed,
858 * or it might be PageSwapCache (perhaps under writeback),
859 * or it might have been removed from swapcache a moment ago.
860 */
861 set_page_stable_node(page, NULL);
862 remove_node_from_stable_tree(stable_node);
863 err = 0;
864 }
865
866 unlock_page(page);
867 put_page(page);
868 return err;
869}
870
731b565d
AA
871static int remove_stable_node_chain(struct stable_node *stable_node,
872 struct rb_root *root)
873{
874 struct stable_node *dup;
875 struct hlist_node *hlist_safe;
876
877 if (!is_stable_node_chain(stable_node)) {
878 VM_BUG_ON(is_stable_node_dup(stable_node));
879 if (remove_stable_node(stable_node))
880 return true;
881 else
882 return false;
883 }
884
885 hlist_for_each_entry_safe(dup, hlist_safe,
886 &stable_node->hlist, hlist_dup) {
887 VM_BUG_ON(!is_stable_node_dup(dup));
888 if (remove_stable_node(dup))
889 return true;
890 }
891 BUG_ON(!hlist_empty(&stable_node->hlist));
892 free_stable_node_chain(stable_node, root);
893 return false;
894}
895
cbf86cfe
HD
896static int remove_all_stable_nodes(void)
897{
898 struct stable_node *stable_node;
4146d2d6 899 struct list_head *this, *next;
cbf86cfe
HD
900 int nid;
901 int err = 0;
902
ef53d16c 903 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
904 while (root_stable_tree[nid].rb_node) {
905 stable_node = rb_entry(root_stable_tree[nid].rb_node,
906 struct stable_node, node);
731b565d
AA
907 if (remove_stable_node_chain(stable_node,
908 root_stable_tree + nid)) {
cbf86cfe
HD
909 err = -EBUSY;
910 break; /* proceed to next nid */
911 }
912 cond_resched();
913 }
914 }
4146d2d6
HD
915 list_for_each_safe(this, next, &migrate_nodes) {
916 stable_node = list_entry(this, struct stable_node, list);
917 if (remove_stable_node(stable_node))
918 err = -EBUSY;
919 cond_resched();
920 }
cbf86cfe
HD
921 return err;
922}
923
d952b791 924static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
925{
926 struct mm_slot *mm_slot;
927 struct mm_struct *mm;
928 struct vm_area_struct *vma;
d952b791
HD
929 int err = 0;
930
931 spin_lock(&ksm_mmlist_lock);
9ba69294 932 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
933 struct mm_slot, mm_list);
934 spin_unlock(&ksm_mmlist_lock);
31dbd01f 935
9ba69294
HD
936 for (mm_slot = ksm_scan.mm_slot;
937 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
938 mm = mm_slot->mm;
939 down_read(&mm->mmap_sem);
940 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
941 if (ksm_test_exit(mm))
942 break;
31dbd01f
IE
943 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
944 continue;
d952b791
HD
945 err = unmerge_ksm_pages(vma,
946 vma->vm_start, vma->vm_end);
9ba69294
HD
947 if (err)
948 goto error;
31dbd01f 949 }
9ba69294 950
6514d511 951 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
d952b791
HD
952
953 spin_lock(&ksm_mmlist_lock);
9ba69294 954 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 955 struct mm_slot, mm_list);
9ba69294 956 if (ksm_test_exit(mm)) {
4ca3a69b 957 hash_del(&mm_slot->link);
9ba69294
HD
958 list_del(&mm_slot->mm_list);
959 spin_unlock(&ksm_mmlist_lock);
960
961 free_mm_slot(mm_slot);
962 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
963 up_read(&mm->mmap_sem);
964 mmdrop(mm);
965 } else {
966 spin_unlock(&ksm_mmlist_lock);
967 up_read(&mm->mmap_sem);
968 }
31dbd01f
IE
969 }
970
cbf86cfe
HD
971 /* Clean up stable nodes, but don't worry if some are still busy */
972 remove_all_stable_nodes();
d952b791 973 ksm_scan.seqnr = 0;
9ba69294
HD
974 return 0;
975
976error:
977 up_read(&mm->mmap_sem);
31dbd01f 978 spin_lock(&ksm_mmlist_lock);
d952b791 979 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 980 spin_unlock(&ksm_mmlist_lock);
d952b791 981 return err;
31dbd01f 982}
2ffd8679 983#endif /* CONFIG_SYSFS */
31dbd01f 984
31dbd01f
IE
985static u32 calc_checksum(struct page *page)
986{
987 u32 checksum;
9b04c5fe 988 void *addr = kmap_atomic(page);
31dbd01f 989 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 990 kunmap_atomic(addr);
31dbd01f
IE
991 return checksum;
992}
993
994static int memcmp_pages(struct page *page1, struct page *page2)
995{
996 char *addr1, *addr2;
997 int ret;
998
9b04c5fe
CW
999 addr1 = kmap_atomic(page1);
1000 addr2 = kmap_atomic(page2);
31dbd01f 1001 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
1002 kunmap_atomic(addr2);
1003 kunmap_atomic(addr1);
31dbd01f
IE
1004 return ret;
1005}
1006
1007static inline int pages_identical(struct page *page1, struct page *page2)
1008{
1009 return !memcmp_pages(page1, page2);
1010}
1011
1012static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1013 pte_t *orig_pte)
1014{
1015 struct mm_struct *mm = vma->vm_mm;
1016 unsigned long addr;
1017 pte_t *ptep;
1018 spinlock_t *ptl;
1019 int swapped;
1020 int err = -EFAULT;
6bdb913f
HE
1021 unsigned long mmun_start; /* For mmu_notifiers */
1022 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f
IE
1023
1024 addr = page_address_in_vma(page, vma);
1025 if (addr == -EFAULT)
1026 goto out;
1027
29ad768c 1028 BUG_ON(PageTransCompound(page));
6bdb913f
HE
1029
1030 mmun_start = addr;
1031 mmun_end = addr + PAGE_SIZE;
1032 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1033
31dbd01f
IE
1034 ptep = page_check_address(page, mm, addr, &ptl, 0);
1035 if (!ptep)
6bdb913f 1036 goto out_mn;
31dbd01f 1037
4e31635c 1038 if (pte_write(*ptep) || pte_dirty(*ptep)) {
31dbd01f
IE
1039 pte_t entry;
1040
1041 swapped = PageSwapCache(page);
1042 flush_cache_page(vma, addr, page_to_pfn(page));
1043 /*
25985edc 1044 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
1045 * take any lock, therefore the check that we are going to make
1046 * with the pagecount against the mapcount is racey and
1047 * O_DIRECT can happen right after the check.
1048 * So we clear the pte and flush the tlb before the check
1049 * this assure us that no O_DIRECT can happen after the check
1050 * or in the middle of the check.
1051 */
34ee645e 1052 entry = ptep_clear_flush_notify(vma, addr, ptep);
31dbd01f
IE
1053 /*
1054 * Check that no O_DIRECT or similar I/O is in progress on the
1055 * page
1056 */
31e855ea 1057 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
cb532375 1058 set_pte_at(mm, addr, ptep, entry);
31dbd01f
IE
1059 goto out_unlock;
1060 }
4e31635c
HD
1061 if (pte_dirty(entry))
1062 set_page_dirty(page);
1063 entry = pte_mkclean(pte_wrprotect(entry));
31dbd01f
IE
1064 set_pte_at_notify(mm, addr, ptep, entry);
1065 }
1066 *orig_pte = *ptep;
1067 err = 0;
1068
1069out_unlock:
1070 pte_unmap_unlock(ptep, ptl);
6bdb913f
HE
1071out_mn:
1072 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1073out:
1074 return err;
1075}
1076
1077/**
1078 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1079 * @vma: vma that holds the pte pointing to page
1080 * @page: the page we are replacing by kpage
1081 * @kpage: the ksm page we replace page by
31dbd01f
IE
1082 * @orig_pte: the original value of the pte
1083 *
1084 * Returns 0 on success, -EFAULT on failure.
1085 */
8dd3557a
HD
1086static int replace_page(struct vm_area_struct *vma, struct page *page,
1087 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1088{
1089 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
1090 pmd_t *pmd;
1091 pte_t *ptep;
1092 spinlock_t *ptl;
1093 unsigned long addr;
31dbd01f 1094 int err = -EFAULT;
6bdb913f
HE
1095 unsigned long mmun_start; /* For mmu_notifiers */
1096 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 1097
8dd3557a 1098 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1099 if (addr == -EFAULT)
1100 goto out;
1101
6219049a
BL
1102 pmd = mm_find_pmd(mm, addr);
1103 if (!pmd)
31dbd01f 1104 goto out;
31dbd01f 1105
6bdb913f
HE
1106 mmun_start = addr;
1107 mmun_end = addr + PAGE_SIZE;
1108 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1109
31dbd01f
IE
1110 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1111 if (!pte_same(*ptep, orig_pte)) {
1112 pte_unmap_unlock(ptep, ptl);
6bdb913f 1113 goto out_mn;
31dbd01f
IE
1114 }
1115
8dd3557a 1116 get_page(kpage);
5ad64688 1117 page_add_anon_rmap(kpage, vma, addr);
31dbd01f
IE
1118
1119 flush_cache_page(vma, addr, pte_pfn(*ptep));
34ee645e 1120 ptep_clear_flush_notify(vma, addr, ptep);
8dd3557a 1121 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
31dbd01f 1122
8dd3557a 1123 page_remove_rmap(page);
ae52a2ad
HD
1124 if (!page_mapped(page))
1125 try_to_free_swap(page);
8dd3557a 1126 put_page(page);
31dbd01f
IE
1127
1128 pte_unmap_unlock(ptep, ptl);
1129 err = 0;
6bdb913f
HE
1130out_mn:
1131 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1132out:
1133 return err;
1134}
1135
29ad768c
AA
1136static int page_trans_compound_anon_split(struct page *page)
1137{
1138 int ret = 0;
1139 struct page *transhuge_head = page_trans_compound_anon(page);
1140 if (transhuge_head) {
1141 /* Get the reference on the head to split it. */
1142 if (get_page_unless_zero(transhuge_head)) {
1143 /*
1144 * Recheck we got the reference while the head
1145 * was still anonymous.
1146 */
1147 if (PageAnon(transhuge_head))
1148 ret = split_huge_page(transhuge_head);
1149 else
1150 /*
1151 * Retry later if split_huge_page run
1152 * from under us.
1153 */
1154 ret = 1;
1155 put_page(transhuge_head);
1156 } else
1157 /* Retry later if split_huge_page run from under us. */
1158 ret = 1;
1159 }
1160 return ret;
1161}
1162
31dbd01f
IE
1163/*
1164 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1165 * @vma: the vma that holds the pte pointing to page
1166 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1167 * @kpage: the PageKsm page that we want to map instead of page,
1168 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1169 *
1170 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1171 */
1172static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1173 struct page *page, struct page *kpage)
31dbd01f
IE
1174{
1175 pte_t orig_pte = __pte(0);
1176 int err = -EFAULT;
1177
db114b83
HD
1178 if (page == kpage) /* ksm page forked */
1179 return 0;
1180
29ad768c
AA
1181 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1182 goto out;
1183 BUG_ON(PageTransCompound(page));
8dd3557a 1184 if (!PageAnon(page))
31dbd01f
IE
1185 goto out;
1186
31dbd01f
IE
1187 /*
1188 * We need the page lock to read a stable PageSwapCache in
1189 * write_protect_page(). We use trylock_page() instead of
1190 * lock_page() because we don't want to wait here - we
1191 * prefer to continue scanning and merging different pages,
1192 * then come back to this page when it is unlocked.
1193 */
8dd3557a 1194 if (!trylock_page(page))
31e855ea 1195 goto out;
31dbd01f
IE
1196 /*
1197 * If this anonymous page is mapped only here, its pte may need
1198 * to be write-protected. If it's mapped elsewhere, all of its
1199 * ptes are necessarily already write-protected. But in either
1200 * case, we need to lock and check page_count is not raised.
1201 */
80e14822
HD
1202 if (write_protect_page(vma, page, &orig_pte) == 0) {
1203 if (!kpage) {
1204 /*
1205 * While we hold page lock, upgrade page from
1206 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1207 * stable_tree_insert() will update stable_node.
1208 */
1209 set_page_stable_node(page, NULL);
1210 mark_page_accessed(page);
1211 err = 0;
1212 } else if (pages_identical(page, kpage))
1213 err = replace_page(vma, page, kpage, orig_pte);
1214 }
31dbd01f 1215
80e14822 1216 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1217 munlock_vma_page(page);
5ad64688
HD
1218 if (!PageMlocked(kpage)) {
1219 unlock_page(page);
5ad64688
HD
1220 lock_page(kpage);
1221 mlock_vma_page(kpage);
1222 page = kpage; /* for final unlock */
1223 }
1224 }
73848b46 1225
8dd3557a 1226 unlock_page(page);
31dbd01f
IE
1227out:
1228 return err;
1229}
1230
81464e30
HD
1231/*
1232 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1233 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1234 *
1235 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1236 */
8dd3557a
HD
1237static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1238 struct page *page, struct page *kpage)
81464e30 1239{
8dd3557a 1240 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1241 struct vm_area_struct *vma;
1242 int err = -EFAULT;
1243
8dd3557a 1244 down_read(&mm->mmap_sem);
85c6e8dd
AA
1245 vma = find_mergeable_vma(mm, rmap_item->address);
1246 if (!vma)
81464e30
HD
1247 goto out;
1248
8dd3557a 1249 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1250 if (err)
1251 goto out;
1252
bc56620b
HD
1253 /* Unstable nid is in union with stable anon_vma: remove first */
1254 remove_rmap_item_from_tree(rmap_item);
1255
db114b83 1256 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1257 rmap_item->anon_vma = vma->anon_vma;
1258 get_anon_vma(vma->anon_vma);
81464e30 1259out:
8dd3557a 1260 up_read(&mm->mmap_sem);
81464e30
HD
1261 return err;
1262}
1263
31dbd01f
IE
1264/*
1265 * try_to_merge_two_pages - take two identical pages and prepare them
1266 * to be merged into one page.
1267 *
8dd3557a
HD
1268 * This function returns the kpage if we successfully merged two identical
1269 * pages into one ksm page, NULL otherwise.
31dbd01f 1270 *
80e14822 1271 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1272 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1273 */
8dd3557a
HD
1274static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1275 struct page *page,
1276 struct rmap_item *tree_rmap_item,
1277 struct page *tree_page)
31dbd01f 1278{
80e14822 1279 int err;
31dbd01f 1280
80e14822 1281 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1282 if (!err) {
8dd3557a 1283 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1284 tree_page, page);
31dbd01f 1285 /*
81464e30
HD
1286 * If that fails, we have a ksm page with only one pte
1287 * pointing to it: so break it.
31dbd01f 1288 */
4035c07a 1289 if (err)
8dd3557a 1290 break_cow(rmap_item);
31dbd01f 1291 }
80e14822 1292 return err ? NULL : page;
31dbd01f
IE
1293}
1294
731b565d
AA
1295static __always_inline
1296bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1297{
1298 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1299 /*
1300 * Check that at least one mapping still exists, otherwise
1301 * there's no much point to merge and share with this
1302 * stable_node, as the underlying tree_page of the other
1303 * sharer is going to be freed soon.
1304 */
1305 return stable_node->rmap_hlist_len &&
1306 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1307}
1308
1309static __always_inline
1310bool is_page_sharing_candidate(struct stable_node *stable_node)
1311{
1312 return __is_page_sharing_candidate(stable_node, 0);
1313}
1314
052f849b
AA
1315struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1316 struct stable_node **_stable_node,
1317 struct rb_root *root,
1318 bool prune_stale_stable_nodes)
731b565d 1319{
24f72136 1320 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
731b565d 1321 struct hlist_node *hlist_safe;
052f849b 1322 struct page *_tree_page, *tree_page = NULL;
731b565d
AA
1323 int nr = 0;
1324 int found_rmap_hlist_len;
1325
1326 if (!prune_stale_stable_nodes ||
1327 time_before(jiffies, stable_node->chain_prune_time +
1328 msecs_to_jiffies(
1329 ksm_stable_node_chains_prune_millisecs)))
1330 prune_stale_stable_nodes = false;
1331 else
1332 stable_node->chain_prune_time = jiffies;
1333
1334 hlist_for_each_entry_safe(dup, hlist_safe,
1335 &stable_node->hlist, hlist_dup) {
1336 cond_resched();
1337 /*
1338 * We must walk all stable_node_dup to prune the stale
1339 * stable nodes during lookup.
1340 *
1341 * get_ksm_page can drop the nodes from the
1342 * stable_node->hlist if they point to freed pages
1343 * (that's why we do a _safe walk). The "dup"
1344 * stable_node parameter itself will be freed from
1345 * under us if it returns NULL.
1346 */
1347 _tree_page = get_ksm_page(dup, false);
1348 if (!_tree_page)
1349 continue;
1350 nr += 1;
1351 if (is_page_sharing_candidate(dup)) {
1352 if (!found ||
1353 dup->rmap_hlist_len > found_rmap_hlist_len) {
1354 if (found)
052f849b 1355 put_page(tree_page);
731b565d
AA
1356 found = dup;
1357 found_rmap_hlist_len = found->rmap_hlist_len;
052f849b 1358 tree_page = _tree_page;
731b565d 1359
052f849b 1360 /* skip put_page for found dup */
731b565d
AA
1361 if (!prune_stale_stable_nodes)
1362 break;
731b565d
AA
1363 continue;
1364 }
1365 }
1366 put_page(_tree_page);
1367 }
1368
cd482447
AA
1369 if (found) {
1370 /*
1371 * nr is counting all dups in the chain only if
1372 * prune_stale_stable_nodes is true, otherwise we may
1373 * break the loop at nr == 1 even if there are
1374 * multiple entries.
1375 */
1376 if (prune_stale_stable_nodes && nr == 1) {
731b565d
AA
1377 /*
1378 * If there's not just one entry it would
1379 * corrupt memory, better BUG_ON. In KSM
1380 * context with no lock held it's not even
1381 * fatal.
1382 */
1383 BUG_ON(stable_node->hlist.first->next);
1384
1385 /*
1386 * There's just one entry and it is below the
1387 * deduplication limit so drop the chain.
1388 */
1389 rb_replace_node(&stable_node->node, &found->node,
1390 root);
1391 free_stable_node(stable_node);
1392 ksm_stable_node_chains--;
1393 ksm_stable_node_dups--;
24f72136 1394 /*
3fc3175e
AA
1395 * NOTE: the caller depends on the stable_node
1396 * to be equal to stable_node_dup if the chain
1397 * was collapsed.
24f72136 1398 */
3fc3175e
AA
1399 *_stable_node = found;
1400 /*
1401 * Just for robustneess as stable_node is
1402 * otherwise left as a stable pointer, the
1403 * compiler shall optimize it away at build
1404 * time.
1405 */
1406 stable_node = NULL;
cd482447
AA
1407 } else if (stable_node->hlist.first != &found->hlist_dup &&
1408 __is_page_sharing_candidate(found, 1)) {
731b565d 1409 /*
cd482447
AA
1410 * If the found stable_node dup can accept one
1411 * more future merge (in addition to the one
1412 * that is underway) and is not at the head of
1413 * the chain, put it there so next search will
1414 * be quicker in the !prune_stale_stable_nodes
1415 * case.
1416 *
1417 * NOTE: it would be inaccurate to use nr > 1
1418 * instead of checking the hlist.first pointer
1419 * directly, because in the
1420 * prune_stale_stable_nodes case "nr" isn't
1421 * the position of the found dup in the chain,
1422 * but the total number of dups in the chain.
731b565d
AA
1423 */
1424 hlist_del(&found->hlist_dup);
1425 hlist_add_head(&found->hlist_dup,
1426 &stable_node->hlist);
1427 }
1428 }
1429
052f849b
AA
1430 *_stable_node_dup = found;
1431 return tree_page;
731b565d
AA
1432}
1433
1434static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1435 struct rb_root *root)
1436{
1437 if (!is_stable_node_chain(stable_node))
1438 return stable_node;
1439 if (hlist_empty(&stable_node->hlist)) {
1440 free_stable_node_chain(stable_node, root);
1441 return NULL;
1442 }
1443 return hlist_entry(stable_node->hlist.first,
1444 typeof(*stable_node), hlist_dup);
1445}
1446
052f849b
AA
1447/*
1448 * Like for get_ksm_page, this function can free the *_stable_node and
1449 * *_stable_node_dup if the returned tree_page is NULL.
1450 *
1451 * It can also free and overwrite *_stable_node with the found
1452 * stable_node_dup if the chain is collapsed (in which case
1453 * *_stable_node will be equal to *_stable_node_dup like if the chain
1454 * never existed). It's up to the caller to verify tree_page is not
1455 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1456 *
1457 * *_stable_node_dup is really a second output parameter of this
1458 * function and will be overwritten in all cases, the caller doesn't
1459 * need to initialize it.
1460 */
1461static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1462 struct stable_node **_stable_node,
1463 struct rb_root *root,
1464 bool prune_stale_stable_nodes)
731b565d 1465{
24f72136 1466 struct stable_node *stable_node = *_stable_node;
731b565d
AA
1467 if (!is_stable_node_chain(stable_node)) {
1468 if (is_page_sharing_candidate(stable_node)) {
052f849b
AA
1469 *_stable_node_dup = stable_node;
1470 return get_ksm_page(stable_node, false);
731b565d 1471 }
052f849b
AA
1472 /*
1473 * _stable_node_dup set to NULL means the stable_node
1474 * reached the ksm_max_page_sharing limit.
1475 */
1476 *_stable_node_dup = NULL;
731b565d
AA
1477 return NULL;
1478 }
052f849b 1479 return stable_node_dup(_stable_node_dup, _stable_node, root,
731b565d
AA
1480 prune_stale_stable_nodes);
1481}
1482
052f849b
AA
1483static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1484 struct stable_node **s_n,
1485 struct rb_root *root)
731b565d 1486{
052f849b 1487 return __stable_node_chain(s_n_d, s_n, root, true);
731b565d
AA
1488}
1489
052f849b
AA
1490static __always_inline struct page *chain(struct stable_node **s_n_d,
1491 struct stable_node *s_n,
1492 struct rb_root *root)
731b565d 1493{
052f849b
AA
1494 struct stable_node *old_stable_node = s_n;
1495 struct page *tree_page;
1496
1497 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1498 /* not pruning dups so s_n cannot have changed */
1499 VM_BUG_ON(s_n != old_stable_node);
1500 return tree_page;
731b565d
AA
1501}
1502
31dbd01f 1503/*
8dd3557a 1504 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1505 *
1506 * This function checks if there is a page inside the stable tree
1507 * with identical content to the page that we are scanning right now.
1508 *
7b6ba2c7 1509 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1510 * NULL otherwise.
1511 */
62b61f61 1512static struct page *stable_tree_search(struct page *page)
31dbd01f 1513{
90bd6fd3 1514 int nid;
ef53d16c 1515 struct rb_root *root;
4146d2d6
HD
1516 struct rb_node **new;
1517 struct rb_node *parent;
731b565d 1518 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1519 struct stable_node *page_node;
31dbd01f 1520
4146d2d6
HD
1521 page_node = page_stable_node(page);
1522 if (page_node && page_node->head != &migrate_nodes) {
1523 /* ksm page forked */
08beca44 1524 get_page(page);
62b61f61 1525 return page;
08beca44
HD
1526 }
1527
90bd6fd3 1528 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1529 root = root_stable_tree + nid;
4146d2d6 1530again:
ef53d16c 1531 new = &root->rb_node;
4146d2d6 1532 parent = NULL;
90bd6fd3 1533
4146d2d6 1534 while (*new) {
4035c07a 1535 struct page *tree_page;
31dbd01f
IE
1536 int ret;
1537
08beca44 1538 cond_resched();
4146d2d6 1539 stable_node = rb_entry(*new, struct stable_node, node);
731b565d 1540 stable_node_any = NULL;
052f849b 1541 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
24f72136
AA
1542 /*
1543 * NOTE: stable_node may have been freed by
1544 * chain_prune() if the returned stable_node_dup is
1545 * not NULL. stable_node_dup may have been inserted in
1546 * the rbtree instead as a regular stable_node (in
1547 * order to collapse the stable_node chain if a single
3fc3175e
AA
1548 * stable_node dup was found in it). In such case the
1549 * stable_node is overwritten by the calleee to point
1550 * to the stable_node_dup that was collapsed in the
1551 * stable rbtree and stable_node will be equal to
1552 * stable_node_dup like if the chain never existed.
24f72136 1553 */
731b565d
AA
1554 if (!stable_node_dup) {
1555 /*
1556 * Either all stable_node dups were full in
1557 * this stable_node chain, or this chain was
1558 * empty and should be rb_erased.
1559 */
1560 stable_node_any = stable_node_dup_any(stable_node,
1561 root);
1562 if (!stable_node_any) {
1563 /* rb_erase just run */
1564 goto again;
1565 }
1566 /*
1567 * Take any of the stable_node dups page of
1568 * this stable_node chain to let the tree walk
1569 * continue. All KSM pages belonging to the
1570 * stable_node dups in a stable_node chain
1571 * have the same content and they're
1572 * wrprotected at all times. Any will work
1573 * fine to continue the walk.
1574 */
1575 tree_page = get_ksm_page(stable_node_any, false);
1576 }
1577 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1578 if (!tree_page) {
1579 /*
1580 * If we walked over a stale stable_node,
1581 * get_ksm_page() will call rb_erase() and it
1582 * may rebalance the tree from under us. So
1583 * restart the search from scratch. Returning
1584 * NULL would be safe too, but we'd generate
1585 * false negative insertions just because some
1586 * stable_node was stale.
1587 */
1588 goto again;
1589 }
31dbd01f 1590
4035c07a 1591 ret = memcmp_pages(page, tree_page);
c8d6553b 1592 put_page(tree_page);
31dbd01f 1593
4146d2d6 1594 parent = *new;
c8d6553b 1595 if (ret < 0)
4146d2d6 1596 new = &parent->rb_left;
c8d6553b 1597 else if (ret > 0)
4146d2d6 1598 new = &parent->rb_right;
c8d6553b 1599 else {
731b565d
AA
1600 if (page_node) {
1601 VM_BUG_ON(page_node->head != &migrate_nodes);
1602 /*
1603 * Test if the migrated page should be merged
1604 * into a stable node dup. If the mapcount is
1605 * 1 we can migrate it with another KSM page
1606 * without adding it to the chain.
1607 */
1608 if (page_mapcount(page) > 1)
1609 goto chain_append;
1610 }
1611
1612 if (!stable_node_dup) {
1613 /*
1614 * If the stable_node is a chain and
1615 * we got a payload match in memcmp
1616 * but we cannot merge the scanned
1617 * page in any of the existing
1618 * stable_node dups because they're
1619 * all full, we need to wait the
1620 * scanned page to find itself a match
1621 * in the unstable tree to create a
1622 * brand new KSM page to add later to
1623 * the dups of this stable_node.
1624 */
1625 return NULL;
1626 }
1627
c8d6553b
HD
1628 /*
1629 * Lock and unlock the stable_node's page (which
1630 * might already have been migrated) so that page
1631 * migration is sure to notice its raised count.
1632 * It would be more elegant to return stable_node
1633 * than kpage, but that involves more changes.
1634 */
731b565d
AA
1635 tree_page = get_ksm_page(stable_node_dup, true);
1636 if (unlikely(!tree_page))
1637 /*
1638 * The tree may have been rebalanced,
1639 * so re-evaluate parent and new.
1640 */
4146d2d6 1641 goto again;
731b565d
AA
1642 unlock_page(tree_page);
1643
1644 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1645 NUMA(stable_node_dup->nid)) {
1646 put_page(tree_page);
1647 goto replace;
1648 }
1649 return tree_page;
c8d6553b 1650 }
31dbd01f
IE
1651 }
1652
4146d2d6
HD
1653 if (!page_node)
1654 return NULL;
1655
1656 list_del(&page_node->list);
1657 DO_NUMA(page_node->nid = nid);
1658 rb_link_node(&page_node->node, parent, new);
ef53d16c 1659 rb_insert_color(&page_node->node, root);
731b565d
AA
1660out:
1661 if (is_page_sharing_candidate(page_node)) {
1662 get_page(page);
1663 return page;
1664 } else
1665 return NULL;
4146d2d6
HD
1666
1667replace:
24f72136
AA
1668 /*
1669 * If stable_node was a chain and chain_prune collapsed it,
3fc3175e
AA
1670 * stable_node has been updated to be the new regular
1671 * stable_node. A collapse of the chain is indistinguishable
1672 * from the case there was no chain in the stable
1673 * rbtree. Otherwise stable_node is the chain and
1674 * stable_node_dup is the dup to replace.
24f72136 1675 */
3fc3175e 1676 if (stable_node_dup == stable_node) {
24f72136
AA
1677 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1678 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
731b565d
AA
1679 /* there is no chain */
1680 if (page_node) {
1681 VM_BUG_ON(page_node->head != &migrate_nodes);
1682 list_del(&page_node->list);
1683 DO_NUMA(page_node->nid = nid);
24f72136
AA
1684 rb_replace_node(&stable_node_dup->node,
1685 &page_node->node,
731b565d
AA
1686 root);
1687 if (is_page_sharing_candidate(page_node))
1688 get_page(page);
1689 else
1690 page = NULL;
1691 } else {
24f72136 1692 rb_erase(&stable_node_dup->node, root);
731b565d
AA
1693 page = NULL;
1694 }
4146d2d6 1695 } else {
731b565d
AA
1696 VM_BUG_ON(!is_stable_node_chain(stable_node));
1697 __stable_node_dup_del(stable_node_dup);
1698 if (page_node) {
1699 VM_BUG_ON(page_node->head != &migrate_nodes);
1700 list_del(&page_node->list);
1701 DO_NUMA(page_node->nid = nid);
1702 stable_node_chain_add_dup(page_node, stable_node);
1703 if (is_page_sharing_candidate(page_node))
1704 get_page(page);
1705 else
1706 page = NULL;
1707 } else {
1708 page = NULL;
1709 }
4146d2d6 1710 }
731b565d
AA
1711 stable_node_dup->head = &migrate_nodes;
1712 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1713 return page;
731b565d
AA
1714
1715chain_append:
1716 /* stable_node_dup could be null if it reached the limit */
1717 if (!stable_node_dup)
1718 stable_node_dup = stable_node_any;
24f72136
AA
1719 /*
1720 * If stable_node was a chain and chain_prune collapsed it,
3fc3175e
AA
1721 * stable_node has been updated to be the new regular
1722 * stable_node. A collapse of the chain is indistinguishable
1723 * from the case there was no chain in the stable
1724 * rbtree. Otherwise stable_node is the chain and
1725 * stable_node_dup is the dup to replace.
24f72136 1726 */
3fc3175e 1727 if (stable_node_dup == stable_node) {
24f72136
AA
1728 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1729 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
731b565d
AA
1730 /* chain is missing so create it */
1731 stable_node = alloc_stable_node_chain(stable_node_dup,
1732 root);
1733 if (!stable_node)
1734 return NULL;
1735 }
1736 /*
1737 * Add this stable_node dup that was
1738 * migrated to the stable_node chain
1739 * of the current nid for this page
1740 * content.
1741 */
24f72136
AA
1742 VM_BUG_ON(!is_stable_node_chain(stable_node));
1743 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
731b565d
AA
1744 VM_BUG_ON(page_node->head != &migrate_nodes);
1745 list_del(&page_node->list);
1746 DO_NUMA(page_node->nid = nid);
1747 stable_node_chain_add_dup(page_node, stable_node);
1748 goto out;
31dbd01f
IE
1749}
1750
1751/*
e850dcf5 1752 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1753 * into the stable tree.
1754 *
7b6ba2c7
HD
1755 * This function returns the stable tree node just allocated on success,
1756 * NULL otherwise.
31dbd01f 1757 */
7b6ba2c7 1758static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1759{
90bd6fd3
PH
1760 int nid;
1761 unsigned long kpfn;
ef53d16c 1762 struct rb_root *root;
90bd6fd3 1763 struct rb_node **new;
f2e5ff85 1764 struct rb_node *parent;
731b565d
AA
1765 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1766 bool need_chain = false;
31dbd01f 1767
90bd6fd3
PH
1768 kpfn = page_to_pfn(kpage);
1769 nid = get_kpfn_nid(kpfn);
ef53d16c 1770 root = root_stable_tree + nid;
f2e5ff85
AA
1771again:
1772 parent = NULL;
ef53d16c 1773 new = &root->rb_node;
90bd6fd3 1774
31dbd01f 1775 while (*new) {
4035c07a 1776 struct page *tree_page;
31dbd01f
IE
1777 int ret;
1778
08beca44 1779 cond_resched();
7b6ba2c7 1780 stable_node = rb_entry(*new, struct stable_node, node);
731b565d 1781 stable_node_any = NULL;
052f849b 1782 tree_page = chain(&stable_node_dup, stable_node, root);
731b565d
AA
1783 if (!stable_node_dup) {
1784 /*
1785 * Either all stable_node dups were full in
1786 * this stable_node chain, or this chain was
1787 * empty and should be rb_erased.
1788 */
1789 stable_node_any = stable_node_dup_any(stable_node,
1790 root);
1791 if (!stable_node_any) {
1792 /* rb_erase just run */
1793 goto again;
1794 }
1795 /*
1796 * Take any of the stable_node dups page of
1797 * this stable_node chain to let the tree walk
1798 * continue. All KSM pages belonging to the
1799 * stable_node dups in a stable_node chain
1800 * have the same content and they're
1801 * wrprotected at all times. Any will work
1802 * fine to continue the walk.
1803 */
1804 tree_page = get_ksm_page(stable_node_any, false);
1805 }
1806 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1807 if (!tree_page) {
1808 /*
1809 * If we walked over a stale stable_node,
1810 * get_ksm_page() will call rb_erase() and it
1811 * may rebalance the tree from under us. So
1812 * restart the search from scratch. Returning
1813 * NULL would be safe too, but we'd generate
1814 * false negative insertions just because some
1815 * stable_node was stale.
1816 */
1817 goto again;
1818 }
31dbd01f 1819
4035c07a
HD
1820 ret = memcmp_pages(kpage, tree_page);
1821 put_page(tree_page);
31dbd01f
IE
1822
1823 parent = *new;
1824 if (ret < 0)
1825 new = &parent->rb_left;
1826 else if (ret > 0)
1827 new = &parent->rb_right;
1828 else {
731b565d
AA
1829 need_chain = true;
1830 break;
31dbd01f
IE
1831 }
1832 }
1833
731b565d
AA
1834 stable_node_dup = alloc_stable_node();
1835 if (!stable_node_dup)
7b6ba2c7 1836 return NULL;
31dbd01f 1837
731b565d
AA
1838 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1839 stable_node_dup->kpfn = kpfn;
1840 set_page_stable_node(kpage, stable_node_dup);
1841 stable_node_dup->rmap_hlist_len = 0;
1842 DO_NUMA(stable_node_dup->nid = nid);
1843 if (!need_chain) {
1844 rb_link_node(&stable_node_dup->node, parent, new);
1845 rb_insert_color(&stable_node_dup->node, root);
1846 } else {
1847 if (!is_stable_node_chain(stable_node)) {
1848 struct stable_node *orig = stable_node;
1849 /* chain is missing so create it */
1850 stable_node = alloc_stable_node_chain(orig, root);
1851 if (!stable_node) {
1852 free_stable_node(stable_node_dup);
1853 return NULL;
1854 }
1855 }
1856 stable_node_chain_add_dup(stable_node_dup, stable_node);
1857 }
08beca44 1858
731b565d 1859 return stable_node_dup;
31dbd01f
IE
1860}
1861
1862/*
8dd3557a
HD
1863 * unstable_tree_search_insert - search for identical page,
1864 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1865 *
1866 * This function searches for a page in the unstable tree identical to the
1867 * page currently being scanned; and if no identical page is found in the
1868 * tree, we insert rmap_item as a new object into the unstable tree.
1869 *
1870 * This function returns pointer to rmap_item found to be identical
1871 * to the currently scanned page, NULL otherwise.
1872 *
1873 * This function does both searching and inserting, because they share
1874 * the same walking algorithm in an rbtree.
1875 */
8dd3557a
HD
1876static
1877struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1878 struct page *page,
1879 struct page **tree_pagep)
31dbd01f 1880{
90bd6fd3
PH
1881 struct rb_node **new;
1882 struct rb_root *root;
31dbd01f 1883 struct rb_node *parent = NULL;
90bd6fd3
PH
1884 int nid;
1885
1886 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1887 root = root_unstable_tree + nid;
90bd6fd3 1888 new = &root->rb_node;
31dbd01f
IE
1889
1890 while (*new) {
1891 struct rmap_item *tree_rmap_item;
8dd3557a 1892 struct page *tree_page;
31dbd01f
IE
1893 int ret;
1894
d178f27f 1895 cond_resched();
31dbd01f 1896 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1897 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1898 if (!tree_page)
31dbd01f
IE
1899 return NULL;
1900
1901 /*
8dd3557a 1902 * Don't substitute a ksm page for a forked page.
31dbd01f 1903 */
8dd3557a
HD
1904 if (page == tree_page) {
1905 put_page(tree_page);
31dbd01f
IE
1906 return NULL;
1907 }
1908
8dd3557a 1909 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1910
1911 parent = *new;
1912 if (ret < 0) {
8dd3557a 1913 put_page(tree_page);
31dbd01f
IE
1914 new = &parent->rb_left;
1915 } else if (ret > 0) {
8dd3557a 1916 put_page(tree_page);
31dbd01f 1917 new = &parent->rb_right;
b599cbdf
HD
1918 } else if (!ksm_merge_across_nodes &&
1919 page_to_nid(tree_page) != nid) {
1920 /*
1921 * If tree_page has been migrated to another NUMA node,
1922 * it will be flushed out and put in the right unstable
1923 * tree next time: only merge with it when across_nodes.
1924 */
1925 put_page(tree_page);
1926 return NULL;
31dbd01f 1927 } else {
8dd3557a 1928 *tree_pagep = tree_page;
31dbd01f
IE
1929 return tree_rmap_item;
1930 }
1931 }
1932
7b6ba2c7 1933 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1934 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1935 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1936 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1937 rb_insert_color(&rmap_item->node, root);
31dbd01f 1938
473b0ce4 1939 ksm_pages_unshared++;
31dbd01f
IE
1940 return NULL;
1941}
1942
1943/*
1944 * stable_tree_append - add another rmap_item to the linked list of
1945 * rmap_items hanging off a given node of the stable tree, all sharing
1946 * the same ksm page.
1947 */
1948static void stable_tree_append(struct rmap_item *rmap_item,
731b565d
AA
1949 struct stable_node *stable_node,
1950 bool max_page_sharing_bypass)
31dbd01f 1951{
731b565d
AA
1952 /*
1953 * rmap won't find this mapping if we don't insert the
1954 * rmap_item in the right stable_node
1955 * duplicate. page_migration could break later if rmap breaks,
1956 * so we can as well crash here. We really need to check for
1957 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1958 * for other negative values as an undeflow if detected here
1959 * for the first time (and not when decreasing rmap_hlist_len)
1960 * would be sign of memory corruption in the stable_node.
1961 */
1962 BUG_ON(stable_node->rmap_hlist_len < 0);
1963
1964 stable_node->rmap_hlist_len++;
1965 if (!max_page_sharing_bypass)
1966 /* possibly non fatal but unexpected overflow, only warn */
1967 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1968 ksm_max_page_sharing);
1969
7b6ba2c7 1970 rmap_item->head = stable_node;
31dbd01f 1971 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1972 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1973
7b6ba2c7
HD
1974 if (rmap_item->hlist.next)
1975 ksm_pages_sharing++;
1976 else
1977 ksm_pages_shared++;
31dbd01f
IE
1978}
1979
1980/*
81464e30
HD
1981 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1982 * if not, compare checksum to previous and if it's the same, see if page can
1983 * be inserted into the unstable tree, or merged with a page already there and
1984 * both transferred to the stable tree.
31dbd01f
IE
1985 *
1986 * @page: the page that we are searching identical page to.
1987 * @rmap_item: the reverse mapping into the virtual address of this page
1988 */
1989static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1990{
31dbd01f 1991 struct rmap_item *tree_rmap_item;
8dd3557a 1992 struct page *tree_page = NULL;
7b6ba2c7 1993 struct stable_node *stable_node;
8dd3557a 1994 struct page *kpage;
31dbd01f
IE
1995 unsigned int checksum;
1996 int err;
731b565d 1997 bool max_page_sharing_bypass = false;
31dbd01f 1998
4146d2d6
HD
1999 stable_node = page_stable_node(page);
2000 if (stable_node) {
2001 if (stable_node->head != &migrate_nodes &&
731b565d
AA
2002 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2003 NUMA(stable_node->nid)) {
2004 stable_node_dup_del(stable_node);
4146d2d6
HD
2005 stable_node->head = &migrate_nodes;
2006 list_add(&stable_node->list, stable_node->head);
2007 }
2008 if (stable_node->head != &migrate_nodes &&
2009 rmap_item->head == stable_node)
2010 return;
731b565d
AA
2011 /*
2012 * If it's a KSM fork, allow it to go over the sharing limit
2013 * without warnings.
2014 */
2015 if (!is_page_sharing_candidate(stable_node))
2016 max_page_sharing_bypass = true;
4146d2d6 2017 }
31dbd01f
IE
2018
2019 /* We first start with searching the page inside the stable tree */
62b61f61 2020 kpage = stable_tree_search(page);
4146d2d6
HD
2021 if (kpage == page && rmap_item->head == stable_node) {
2022 put_page(kpage);
2023 return;
2024 }
2025
2026 remove_rmap_item_from_tree(rmap_item);
2027
62b61f61 2028 if (kpage) {
08beca44 2029 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2030 if (!err) {
2031 /*
2032 * The page was successfully merged:
2033 * add its rmap_item to the stable tree.
2034 */
5ad64688 2035 lock_page(kpage);
731b565d
AA
2036 stable_tree_append(rmap_item, page_stable_node(kpage),
2037 max_page_sharing_bypass);
5ad64688 2038 unlock_page(kpage);
31dbd01f 2039 }
8dd3557a 2040 put_page(kpage);
31dbd01f
IE
2041 return;
2042 }
2043
2044 /*
4035c07a
HD
2045 * If the hash value of the page has changed from the last time
2046 * we calculated it, this page is changing frequently: therefore we
2047 * don't want to insert it in the unstable tree, and we don't want
2048 * to waste our time searching for something identical to it there.
31dbd01f
IE
2049 */
2050 checksum = calc_checksum(page);
2051 if (rmap_item->oldchecksum != checksum) {
2052 rmap_item->oldchecksum = checksum;
2053 return;
2054 }
2055
8dd3557a
HD
2056 tree_rmap_item =
2057 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2058 if (tree_rmap_item) {
8dd3557a
HD
2059 kpage = try_to_merge_two_pages(rmap_item, page,
2060 tree_rmap_item, tree_page);
2061 put_page(tree_page);
8dd3557a 2062 if (kpage) {
bc56620b
HD
2063 /*
2064 * The pages were successfully merged: insert new
2065 * node in the stable tree and add both rmap_items.
2066 */
5ad64688 2067 lock_page(kpage);
7b6ba2c7
HD
2068 stable_node = stable_tree_insert(kpage);
2069 if (stable_node) {
731b565d
AA
2070 stable_tree_append(tree_rmap_item, stable_node,
2071 false);
2072 stable_tree_append(rmap_item, stable_node,
2073 false);
7b6ba2c7 2074 }
5ad64688 2075 unlock_page(kpage);
7b6ba2c7 2076
31dbd01f
IE
2077 /*
2078 * If we fail to insert the page into the stable tree,
2079 * we will have 2 virtual addresses that are pointing
2080 * to a ksm page left outside the stable tree,
2081 * in which case we need to break_cow on both.
2082 */
7b6ba2c7 2083 if (!stable_node) {
8dd3557a
HD
2084 break_cow(tree_rmap_item);
2085 break_cow(rmap_item);
31dbd01f
IE
2086 }
2087 }
31dbd01f
IE
2088 }
2089}
2090
2091static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2092 struct rmap_item **rmap_list,
31dbd01f
IE
2093 unsigned long addr)
2094{
2095 struct rmap_item *rmap_item;
2096
6514d511
HD
2097 while (*rmap_list) {
2098 rmap_item = *rmap_list;
93d17715 2099 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2100 return rmap_item;
31dbd01f
IE
2101 if (rmap_item->address > addr)
2102 break;
6514d511 2103 *rmap_list = rmap_item->rmap_list;
31dbd01f 2104 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2105 free_rmap_item(rmap_item);
2106 }
2107
2108 rmap_item = alloc_rmap_item();
2109 if (rmap_item) {
2110 /* It has already been zeroed */
2111 rmap_item->mm = mm_slot->mm;
2112 rmap_item->address = addr;
6514d511
HD
2113 rmap_item->rmap_list = *rmap_list;
2114 *rmap_list = rmap_item;
31dbd01f
IE
2115 }
2116 return rmap_item;
2117}
2118
2119static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2120{
2121 struct mm_struct *mm;
2122 struct mm_slot *slot;
2123 struct vm_area_struct *vma;
2124 struct rmap_item *rmap_item;
90bd6fd3 2125 int nid;
31dbd01f
IE
2126
2127 if (list_empty(&ksm_mm_head.mm_list))
2128 return NULL;
2129
2130 slot = ksm_scan.mm_slot;
2131 if (slot == &ksm_mm_head) {
2919bfd0
HD
2132 /*
2133 * A number of pages can hang around indefinitely on per-cpu
2134 * pagevecs, raised page count preventing write_protect_page
2135 * from merging them. Though it doesn't really matter much,
2136 * it is puzzling to see some stuck in pages_volatile until
2137 * other activity jostles them out, and they also prevented
2138 * LTP's KSM test from succeeding deterministically; so drain
2139 * them here (here rather than on entry to ksm_do_scan(),
2140 * so we don't IPI too often when pages_to_scan is set low).
2141 */
2142 lru_add_drain_all();
2143
4146d2d6
HD
2144 /*
2145 * Whereas stale stable_nodes on the stable_tree itself
2146 * get pruned in the regular course of stable_tree_search(),
2147 * those moved out to the migrate_nodes list can accumulate:
2148 * so prune them once before each full scan.
2149 */
2150 if (!ksm_merge_across_nodes) {
2151 struct stable_node *stable_node;
2152 struct list_head *this, *next;
2153 struct page *page;
2154
2155 list_for_each_safe(this, next, &migrate_nodes) {
2156 stable_node = list_entry(this,
2157 struct stable_node, list);
2158 page = get_ksm_page(stable_node, false);
2159 if (page)
2160 put_page(page);
2161 cond_resched();
2162 }
2163 }
2164
ef53d16c 2165 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2166 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2167
2168 spin_lock(&ksm_mmlist_lock);
2169 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2170 ksm_scan.mm_slot = slot;
2171 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2172 /*
2173 * Although we tested list_empty() above, a racing __ksm_exit
2174 * of the last mm on the list may have removed it since then.
2175 */
2176 if (slot == &ksm_mm_head)
2177 return NULL;
31dbd01f
IE
2178next_mm:
2179 ksm_scan.address = 0;
6514d511 2180 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2181 }
2182
2183 mm = slot->mm;
2184 down_read(&mm->mmap_sem);
9ba69294
HD
2185 if (ksm_test_exit(mm))
2186 vma = NULL;
2187 else
2188 vma = find_vma(mm, ksm_scan.address);
2189
2190 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2191 if (!(vma->vm_flags & VM_MERGEABLE))
2192 continue;
2193 if (ksm_scan.address < vma->vm_start)
2194 ksm_scan.address = vma->vm_start;
2195 if (!vma->anon_vma)
2196 ksm_scan.address = vma->vm_end;
2197
2198 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2199 if (ksm_test_exit(mm))
2200 break;
31dbd01f 2201 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
2202 if (IS_ERR_OR_NULL(*page)) {
2203 ksm_scan.address += PAGE_SIZE;
2204 cond_resched();
2205 continue;
2206 }
29ad768c
AA
2207 if (PageAnon(*page) ||
2208 page_trans_compound_anon(*page)) {
31dbd01f
IE
2209 flush_anon_page(vma, *page, ksm_scan.address);
2210 flush_dcache_page(*page);
2211 rmap_item = get_next_rmap_item(slot,
6514d511 2212 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2213 if (rmap_item) {
6514d511
HD
2214 ksm_scan.rmap_list =
2215 &rmap_item->rmap_list;
31dbd01f
IE
2216 ksm_scan.address += PAGE_SIZE;
2217 } else
2218 put_page(*page);
2219 up_read(&mm->mmap_sem);
2220 return rmap_item;
2221 }
21ae5b01 2222 put_page(*page);
31dbd01f
IE
2223 ksm_scan.address += PAGE_SIZE;
2224 cond_resched();
2225 }
2226 }
2227
9ba69294
HD
2228 if (ksm_test_exit(mm)) {
2229 ksm_scan.address = 0;
6514d511 2230 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2231 }
31dbd01f
IE
2232 /*
2233 * Nuke all the rmap_items that are above this current rmap:
2234 * because there were no VM_MERGEABLE vmas with such addresses.
2235 */
6514d511 2236 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
2237
2238 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2239 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2240 struct mm_slot, mm_list);
2241 if (ksm_scan.address == 0) {
2242 /*
2243 * We've completed a full scan of all vmas, holding mmap_sem
2244 * throughout, and found no VM_MERGEABLE: so do the same as
2245 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2246 * This applies either when cleaning up after __ksm_exit
2247 * (but beware: we can reach here even before __ksm_exit),
2248 * or when all VM_MERGEABLE areas have been unmapped (and
2249 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 2250 */
4ca3a69b 2251 hash_del(&slot->link);
cd551f97 2252 list_del(&slot->mm_list);
9ba69294
HD
2253 spin_unlock(&ksm_mmlist_lock);
2254
cd551f97
HD
2255 free_mm_slot(slot);
2256 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
2257 up_read(&mm->mmap_sem);
2258 mmdrop(mm);
2259 } else {
2260 spin_unlock(&ksm_mmlist_lock);
2261 up_read(&mm->mmap_sem);
cd551f97 2262 }
31dbd01f
IE
2263
2264 /* Repeat until we've completed scanning the whole list */
cd551f97 2265 slot = ksm_scan.mm_slot;
31dbd01f
IE
2266 if (slot != &ksm_mm_head)
2267 goto next_mm;
2268
31dbd01f
IE
2269 ksm_scan.seqnr++;
2270 return NULL;
2271}
2272
2273/**
2274 * ksm_do_scan - the ksm scanner main worker function.
2275 * @scan_npages - number of pages we want to scan before we return.
2276 */
2277static void ksm_do_scan(unsigned int scan_npages)
2278{
2279 struct rmap_item *rmap_item;
22eccdd7 2280 struct page *uninitialized_var(page);
31dbd01f 2281
878aee7d 2282 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2283 cond_resched();
2284 rmap_item = scan_get_next_rmap_item(&page);
2285 if (!rmap_item)
2286 return;
4146d2d6 2287 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2288 put_page(page);
2289 }
2290}
2291
6e158384
HD
2292static int ksmd_should_run(void)
2293{
2294 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2295}
2296
31dbd01f
IE
2297static int ksm_scan_thread(void *nothing)
2298{
878aee7d 2299 set_freezable();
339aa624 2300 set_user_nice(current, 5);
31dbd01f
IE
2301
2302 while (!kthread_should_stop()) {
6e158384 2303 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2304 wait_while_offlining();
6e158384 2305 if (ksmd_should_run())
31dbd01f 2306 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2307 mutex_unlock(&ksm_thread_mutex);
2308
878aee7d
AA
2309 try_to_freeze();
2310
6e158384 2311 if (ksmd_should_run()) {
31dbd01f
IE
2312 schedule_timeout_interruptible(
2313 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2314 } else {
878aee7d 2315 wait_event_freezable(ksm_thread_wait,
6e158384 2316 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2317 }
2318 }
2319 return 0;
2320}
2321
f8af4da3
HD
2322int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2323 unsigned long end, int advice, unsigned long *vm_flags)
2324{
2325 struct mm_struct *mm = vma->vm_mm;
d952b791 2326 int err;
f8af4da3
HD
2327
2328 switch (advice) {
2329 case MADV_MERGEABLE:
2330 /*
2331 * Be somewhat over-protective for now!
2332 */
2333 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2334 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2335 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2336 return 0; /* just ignore the advice */
2337
cc2383ec
KK
2338#ifdef VM_SAO
2339 if (*vm_flags & VM_SAO)
2340 return 0;
2341#endif
2342
d952b791
HD
2343 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2344 err = __ksm_enter(mm);
2345 if (err)
2346 return err;
2347 }
f8af4da3
HD
2348
2349 *vm_flags |= VM_MERGEABLE;
2350 break;
2351
2352 case MADV_UNMERGEABLE:
2353 if (!(*vm_flags & VM_MERGEABLE))
2354 return 0; /* just ignore the advice */
2355
d952b791
HD
2356 if (vma->anon_vma) {
2357 err = unmerge_ksm_pages(vma, start, end);
2358 if (err)
2359 return err;
2360 }
f8af4da3
HD
2361
2362 *vm_flags &= ~VM_MERGEABLE;
2363 break;
2364 }
2365
2366 return 0;
2367}
2368
2369int __ksm_enter(struct mm_struct *mm)
2370{
6e158384
HD
2371 struct mm_slot *mm_slot;
2372 int needs_wakeup;
2373
2374 mm_slot = alloc_mm_slot();
31dbd01f
IE
2375 if (!mm_slot)
2376 return -ENOMEM;
2377
6e158384
HD
2378 /* Check ksm_run too? Would need tighter locking */
2379 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2380
31dbd01f
IE
2381 spin_lock(&ksm_mmlist_lock);
2382 insert_to_mm_slots_hash(mm, mm_slot);
2383 /*
cbf86cfe
HD
2384 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2385 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2386 * down a little; when fork is followed by immediate exec, we don't
2387 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2388 *
2389 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2390 * scanning cursor, otherwise KSM pages in newly forked mms will be
2391 * missed: then we might as well insert at the end of the list.
31dbd01f 2392 */
cbf86cfe
HD
2393 if (ksm_run & KSM_RUN_UNMERGE)
2394 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2395 else
2396 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2397 spin_unlock(&ksm_mmlist_lock);
2398
f8af4da3 2399 set_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 2400 atomic_inc(&mm->mm_count);
6e158384
HD
2401
2402 if (needs_wakeup)
2403 wake_up_interruptible(&ksm_thread_wait);
2404
f8af4da3
HD
2405 return 0;
2406}
2407
1c2fb7a4 2408void __ksm_exit(struct mm_struct *mm)
f8af4da3 2409{
cd551f97 2410 struct mm_slot *mm_slot;
9ba69294 2411 int easy_to_free = 0;
cd551f97 2412
31dbd01f 2413 /*
9ba69294
HD
2414 * This process is exiting: if it's straightforward (as is the
2415 * case when ksmd was never running), free mm_slot immediately.
2416 * But if it's at the cursor or has rmap_items linked to it, use
2417 * mmap_sem to synchronize with any break_cows before pagetables
2418 * are freed, and leave the mm_slot on the list for ksmd to free.
2419 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2420 */
9ba69294 2421
cd551f97
HD
2422 spin_lock(&ksm_mmlist_lock);
2423 mm_slot = get_mm_slot(mm);
9ba69294 2424 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2425 if (!mm_slot->rmap_list) {
4ca3a69b 2426 hash_del(&mm_slot->link);
9ba69294
HD
2427 list_del(&mm_slot->mm_list);
2428 easy_to_free = 1;
2429 } else {
2430 list_move(&mm_slot->mm_list,
2431 &ksm_scan.mm_slot->mm_list);
2432 }
cd551f97 2433 }
cd551f97
HD
2434 spin_unlock(&ksm_mmlist_lock);
2435
9ba69294
HD
2436 if (easy_to_free) {
2437 free_mm_slot(mm_slot);
2438 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2439 mmdrop(mm);
2440 } else if (mm_slot) {
9ba69294
HD
2441 down_write(&mm->mmap_sem);
2442 up_write(&mm->mmap_sem);
9ba69294 2443 }
31dbd01f
IE
2444}
2445
cbf86cfe 2446struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2447 struct vm_area_struct *vma, unsigned long address)
2448{
cbf86cfe 2449 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
2450 struct page *new_page;
2451
cbf86cfe
HD
2452 if (PageKsm(page)) {
2453 if (page_stable_node(page) &&
2454 !(ksm_run & KSM_RUN_UNMERGE))
2455 return page; /* no need to copy it */
2456 } else if (!anon_vma) {
2457 return page; /* no need to copy it */
2458 } else if (anon_vma->root == vma->anon_vma->root &&
2459 page->index == linear_page_index(vma, address)) {
2460 return page; /* still no need to copy it */
2461 }
2462 if (!PageUptodate(page))
2463 return page; /* let do_swap_page report the error */
2464
5ad64688
HD
2465 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2466 if (new_page) {
2467 copy_user_highpage(new_page, page, address, vma);
2468
2469 SetPageDirty(new_page);
2470 __SetPageUptodate(new_page);
5ad64688 2471 __set_page_locked(new_page);
5ad64688
HD
2472 }
2473
5ad64688
HD
2474 return new_page;
2475}
2476
051ac83a 2477int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
2478{
2479 struct stable_node *stable_node;
e9995ef9
HD
2480 struct rmap_item *rmap_item;
2481 int ret = SWAP_AGAIN;
2482 int search_new_forks = 0;
2483
309381fe 2484 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
2485
2486 /*
2487 * Rely on the page lock to protect against concurrent modifications
2488 * to that page's node of the stable tree.
2489 */
309381fe 2490 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
2491
2492 stable_node = page_stable_node(page);
2493 if (!stable_node)
2494 return ret;
2495again:
b67bfe0d 2496 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2497 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2498 struct anon_vma_chain *vmac;
e9995ef9
HD
2499 struct vm_area_struct *vma;
2500
ad12695f 2501 cond_resched();
b6b19f25 2502 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2503 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2504 0, ULONG_MAX) {
ad12695f 2505 cond_resched();
5beb4930 2506 vma = vmac->vma;
e9995ef9
HD
2507 if (rmap_item->address < vma->vm_start ||
2508 rmap_item->address >= vma->vm_end)
2509 continue;
2510 /*
2511 * Initially we examine only the vma which covers this
2512 * rmap_item; but later, if there is still work to do,
2513 * we examine covering vmas in other mms: in case they
2514 * were forked from the original since ksmd passed.
2515 */
2516 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2517 continue;
2518
0dd1c7bb
JK
2519 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2520 continue;
2521
051ac83a
JK
2522 ret = rwc->rmap_one(page, vma,
2523 rmap_item->address, rwc->arg);
e9995ef9 2524 if (ret != SWAP_AGAIN) {
b6b19f25 2525 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2526 goto out;
2527 }
0dd1c7bb
JK
2528 if (rwc->done && rwc->done(page)) {
2529 anon_vma_unlock_read(anon_vma);
2530 goto out;
2531 }
e9995ef9 2532 }
b6b19f25 2533 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2534 }
2535 if (!search_new_forks++)
2536 goto again;
2537out:
2538 return ret;
2539}
2540
52629506 2541#ifdef CONFIG_MIGRATION
e9995ef9
HD
2542void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2543{
2544 struct stable_node *stable_node;
2545
309381fe
SL
2546 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2547 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2548 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
2549
2550 stable_node = page_stable_node(newpage);
2551 if (stable_node) {
309381fe 2552 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 2553 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
2554 /*
2555 * newpage->mapping was set in advance; now we need smp_wmb()
2556 * to make sure that the new stable_node->kpfn is visible
2557 * to get_ksm_page() before it can see that oldpage->mapping
2558 * has gone stale (or that PageSwapCache has been cleared).
2559 */
2560 smp_wmb();
2561 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
2562 }
2563}
2564#endif /* CONFIG_MIGRATION */
2565
62b61f61 2566#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2567static void wait_while_offlining(void)
2568{
2569 while (ksm_run & KSM_RUN_OFFLINE) {
2570 mutex_unlock(&ksm_thread_mutex);
2571 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2572 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2573 mutex_lock(&ksm_thread_mutex);
2574 }
2575}
2576
731b565d
AA
2577static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2578 unsigned long start_pfn,
2579 unsigned long end_pfn)
2580{
2581 if (stable_node->kpfn >= start_pfn &&
2582 stable_node->kpfn < end_pfn) {
2583 /*
2584 * Don't get_ksm_page, page has already gone:
2585 * which is why we keep kpfn instead of page*
2586 */
2587 remove_node_from_stable_tree(stable_node);
2588 return true;
2589 }
2590 return false;
2591}
2592
2593static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2594 unsigned long start_pfn,
2595 unsigned long end_pfn,
2596 struct rb_root *root)
2597{
2598 struct stable_node *dup;
2599 struct hlist_node *hlist_safe;
2600
2601 if (!is_stable_node_chain(stable_node)) {
2602 VM_BUG_ON(is_stable_node_dup(stable_node));
2603 return stable_node_dup_remove_range(stable_node, start_pfn,
2604 end_pfn);
2605 }
2606
2607 hlist_for_each_entry_safe(dup, hlist_safe,
2608 &stable_node->hlist, hlist_dup) {
2609 VM_BUG_ON(!is_stable_node_dup(dup));
2610 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2611 }
2612 if (hlist_empty(&stable_node->hlist)) {
2613 free_stable_node_chain(stable_node, root);
2614 return true; /* notify caller that tree was rebalanced */
2615 } else
2616 return false;
2617}
2618
ee0ea59c
HD
2619static void ksm_check_stable_tree(unsigned long start_pfn,
2620 unsigned long end_pfn)
62b61f61 2621{
ee0ea59c 2622 struct stable_node *stable_node;
4146d2d6 2623 struct list_head *this, *next;
62b61f61 2624 struct rb_node *node;
90bd6fd3 2625 int nid;
62b61f61 2626
ef53d16c
HD
2627 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2628 node = rb_first(root_stable_tree + nid);
ee0ea59c 2629 while (node) {
90bd6fd3 2630 stable_node = rb_entry(node, struct stable_node, node);
731b565d
AA
2631 if (stable_node_chain_remove_range(stable_node,
2632 start_pfn, end_pfn,
2633 root_stable_tree +
2634 nid))
ef53d16c 2635 node = rb_first(root_stable_tree + nid);
731b565d 2636 else
ee0ea59c
HD
2637 node = rb_next(node);
2638 cond_resched();
90bd6fd3 2639 }
ee0ea59c 2640 }
4146d2d6
HD
2641 list_for_each_safe(this, next, &migrate_nodes) {
2642 stable_node = list_entry(this, struct stable_node, list);
2643 if (stable_node->kpfn >= start_pfn &&
2644 stable_node->kpfn < end_pfn)
2645 remove_node_from_stable_tree(stable_node);
2646 cond_resched();
2647 }
62b61f61
HD
2648}
2649
2650static int ksm_memory_callback(struct notifier_block *self,
2651 unsigned long action, void *arg)
2652{
2653 struct memory_notify *mn = arg;
62b61f61
HD
2654
2655 switch (action) {
2656 case MEM_GOING_OFFLINE:
2657 /*
ef4d43a8
HD
2658 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2659 * and remove_all_stable_nodes() while memory is going offline:
2660 * it is unsafe for them to touch the stable tree at this time.
2661 * But unmerge_ksm_pages(), rmap lookups and other entry points
2662 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2663 */
ef4d43a8
HD
2664 mutex_lock(&ksm_thread_mutex);
2665 ksm_run |= KSM_RUN_OFFLINE;
2666 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2667 break;
2668
2669 case MEM_OFFLINE:
2670 /*
2671 * Most of the work is done by page migration; but there might
2672 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2673 * pages which have been offlined: prune those from the tree,
2674 * otherwise get_ksm_page() might later try to access a
2675 * non-existent struct page.
62b61f61 2676 */
ee0ea59c
HD
2677 ksm_check_stable_tree(mn->start_pfn,
2678 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2679 /* fallthrough */
2680
2681 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2682 mutex_lock(&ksm_thread_mutex);
2683 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2684 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2685
2686 smp_mb(); /* wake_up_bit advises this */
2687 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2688 break;
2689 }
2690 return NOTIFY_OK;
2691}
ef4d43a8
HD
2692#else
2693static void wait_while_offlining(void)
2694{
2695}
62b61f61
HD
2696#endif /* CONFIG_MEMORY_HOTREMOVE */
2697
2ffd8679
HD
2698#ifdef CONFIG_SYSFS
2699/*
2700 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2701 */
2702
31dbd01f
IE
2703#define KSM_ATTR_RO(_name) \
2704 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2705#define KSM_ATTR(_name) \
2706 static struct kobj_attribute _name##_attr = \
2707 __ATTR(_name, 0644, _name##_show, _name##_store)
2708
2709static ssize_t sleep_millisecs_show(struct kobject *kobj,
2710 struct kobj_attribute *attr, char *buf)
2711{
2712 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2713}
2714
2715static ssize_t sleep_millisecs_store(struct kobject *kobj,
2716 struct kobj_attribute *attr,
2717 const char *buf, size_t count)
2718{
2719 unsigned long msecs;
2720 int err;
2721
3dbb95f7 2722 err = kstrtoul(buf, 10, &msecs);
31dbd01f
IE
2723 if (err || msecs > UINT_MAX)
2724 return -EINVAL;
2725
2726 ksm_thread_sleep_millisecs = msecs;
2727
2728 return count;
2729}
2730KSM_ATTR(sleep_millisecs);
2731
2732static ssize_t pages_to_scan_show(struct kobject *kobj,
2733 struct kobj_attribute *attr, char *buf)
2734{
2735 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2736}
2737
2738static ssize_t pages_to_scan_store(struct kobject *kobj,
2739 struct kobj_attribute *attr,
2740 const char *buf, size_t count)
2741{
2742 int err;
2743 unsigned long nr_pages;
2744
3dbb95f7 2745 err = kstrtoul(buf, 10, &nr_pages);
31dbd01f
IE
2746 if (err || nr_pages > UINT_MAX)
2747 return -EINVAL;
2748
2749 ksm_thread_pages_to_scan = nr_pages;
2750
2751 return count;
2752}
2753KSM_ATTR(pages_to_scan);
2754
2755static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2756 char *buf)
2757{
ef4d43a8 2758 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2759}
2760
2761static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2762 const char *buf, size_t count)
2763{
2764 int err;
2765 unsigned long flags;
2766
3dbb95f7 2767 err = kstrtoul(buf, 10, &flags);
31dbd01f
IE
2768 if (err || flags > UINT_MAX)
2769 return -EINVAL;
2770 if (flags > KSM_RUN_UNMERGE)
2771 return -EINVAL;
2772
2773 /*
2774 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2775 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2776 * breaking COW to free the pages_shared (but leaves mm_slots
2777 * on the list for when ksmd may be set running again).
31dbd01f
IE
2778 */
2779
2780 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2781 wait_while_offlining();
31dbd01f
IE
2782 if (ksm_run != flags) {
2783 ksm_run = flags;
d952b791 2784 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2785 set_current_oom_origin();
d952b791 2786 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2787 clear_current_oom_origin();
d952b791
HD
2788 if (err) {
2789 ksm_run = KSM_RUN_STOP;
2790 count = err;
2791 }
2792 }
31dbd01f
IE
2793 }
2794 mutex_unlock(&ksm_thread_mutex);
2795
2796 if (flags & KSM_RUN_MERGE)
2797 wake_up_interruptible(&ksm_thread_wait);
2798
2799 return count;
2800}
2801KSM_ATTR(run);
2802
90bd6fd3
PH
2803#ifdef CONFIG_NUMA
2804static ssize_t merge_across_nodes_show(struct kobject *kobj,
2805 struct kobj_attribute *attr, char *buf)
2806{
2807 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2808}
2809
2810static ssize_t merge_across_nodes_store(struct kobject *kobj,
2811 struct kobj_attribute *attr,
2812 const char *buf, size_t count)
2813{
2814 int err;
2815 unsigned long knob;
2816
2817 err = kstrtoul(buf, 10, &knob);
2818 if (err)
2819 return err;
2820 if (knob > 1)
2821 return -EINVAL;
2822
2823 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2824 wait_while_offlining();
90bd6fd3 2825 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2826 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2827 err = -EBUSY;
ef53d16c
HD
2828 else if (root_stable_tree == one_stable_tree) {
2829 struct rb_root *buf;
2830 /*
2831 * This is the first time that we switch away from the
2832 * default of merging across nodes: must now allocate
2833 * a buffer to hold as many roots as may be needed.
2834 * Allocate stable and unstable together:
2835 * MAXSMP NODES_SHIFT 10 will use 16kB.
2836 */
bafe1e14
JP
2837 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2838 GFP_KERNEL);
ef53d16c
HD
2839 /* Let us assume that RB_ROOT is NULL is zero */
2840 if (!buf)
2841 err = -ENOMEM;
2842 else {
2843 root_stable_tree = buf;
2844 root_unstable_tree = buf + nr_node_ids;
2845 /* Stable tree is empty but not the unstable */
2846 root_unstable_tree[0] = one_unstable_tree[0];
2847 }
2848 }
2849 if (!err) {
90bd6fd3 2850 ksm_merge_across_nodes = knob;
ef53d16c
HD
2851 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2852 }
90bd6fd3
PH
2853 }
2854 mutex_unlock(&ksm_thread_mutex);
2855
2856 return err ? err : count;
2857}
2858KSM_ATTR(merge_across_nodes);
2859#endif
2860
731b565d
AA
2861static ssize_t max_page_sharing_show(struct kobject *kobj,
2862 struct kobj_attribute *attr, char *buf)
2863{
2864 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2865}
2866
2867static ssize_t max_page_sharing_store(struct kobject *kobj,
2868 struct kobj_attribute *attr,
2869 const char *buf, size_t count)
2870{
2871 int err;
2872 int knob;
2873
2874 err = kstrtoint(buf, 10, &knob);
2875 if (err)
2876 return err;
2877 /*
2878 * When a KSM page is created it is shared by 2 mappings. This
2879 * being a signed comparison, it implicitly verifies it's not
2880 * negative.
2881 */
2882 if (knob < 2)
2883 return -EINVAL;
2884
2885 if (READ_ONCE(ksm_max_page_sharing) == knob)
2886 return count;
2887
2888 mutex_lock(&ksm_thread_mutex);
2889 wait_while_offlining();
2890 if (ksm_max_page_sharing != knob) {
2891 if (ksm_pages_shared || remove_all_stable_nodes())
2892 err = -EBUSY;
2893 else
2894 ksm_max_page_sharing = knob;
2895 }
2896 mutex_unlock(&ksm_thread_mutex);
2897
2898 return err ? err : count;
2899}
2900KSM_ATTR(max_page_sharing);
2901
b4028260
HD
2902static ssize_t pages_shared_show(struct kobject *kobj,
2903 struct kobj_attribute *attr, char *buf)
2904{
2905 return sprintf(buf, "%lu\n", ksm_pages_shared);
2906}
2907KSM_ATTR_RO(pages_shared);
2908
2909static ssize_t pages_sharing_show(struct kobject *kobj,
2910 struct kobj_attribute *attr, char *buf)
2911{
e178dfde 2912 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
2913}
2914KSM_ATTR_RO(pages_sharing);
2915
473b0ce4
HD
2916static ssize_t pages_unshared_show(struct kobject *kobj,
2917 struct kobj_attribute *attr, char *buf)
2918{
2919 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2920}
2921KSM_ATTR_RO(pages_unshared);
2922
2923static ssize_t pages_volatile_show(struct kobject *kobj,
2924 struct kobj_attribute *attr, char *buf)
2925{
2926 long ksm_pages_volatile;
2927
2928 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2929 - ksm_pages_sharing - ksm_pages_unshared;
2930 /*
2931 * It was not worth any locking to calculate that statistic,
2932 * but it might therefore sometimes be negative: conceal that.
2933 */
2934 if (ksm_pages_volatile < 0)
2935 ksm_pages_volatile = 0;
2936 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2937}
2938KSM_ATTR_RO(pages_volatile);
2939
731b565d
AA
2940static ssize_t stable_node_dups_show(struct kobject *kobj,
2941 struct kobj_attribute *attr, char *buf)
2942{
2943 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
2944}
2945KSM_ATTR_RO(stable_node_dups);
2946
2947static ssize_t stable_node_chains_show(struct kobject *kobj,
2948 struct kobj_attribute *attr, char *buf)
2949{
2950 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
2951}
2952KSM_ATTR_RO(stable_node_chains);
2953
2954static ssize_t
2955stable_node_chains_prune_millisecs_show(struct kobject *kobj,
2956 struct kobj_attribute *attr,
2957 char *buf)
2958{
2959 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2960}
2961
2962static ssize_t
2963stable_node_chains_prune_millisecs_store(struct kobject *kobj,
2964 struct kobj_attribute *attr,
2965 const char *buf, size_t count)
2966{
2967 unsigned long msecs;
2968 int err;
2969
2970 err = kstrtoul(buf, 10, &msecs);
2971 if (err || msecs > UINT_MAX)
2972 return -EINVAL;
2973
2974 ksm_stable_node_chains_prune_millisecs = msecs;
2975
2976 return count;
2977}
2978KSM_ATTR(stable_node_chains_prune_millisecs);
2979
473b0ce4
HD
2980static ssize_t full_scans_show(struct kobject *kobj,
2981 struct kobj_attribute *attr, char *buf)
2982{
2983 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2984}
2985KSM_ATTR_RO(full_scans);
2986
31dbd01f
IE
2987static struct attribute *ksm_attrs[] = {
2988 &sleep_millisecs_attr.attr,
2989 &pages_to_scan_attr.attr,
2990 &run_attr.attr,
b4028260
HD
2991 &pages_shared_attr.attr,
2992 &pages_sharing_attr.attr,
473b0ce4
HD
2993 &pages_unshared_attr.attr,
2994 &pages_volatile_attr.attr,
2995 &full_scans_attr.attr,
90bd6fd3
PH
2996#ifdef CONFIG_NUMA
2997 &merge_across_nodes_attr.attr,
2998#endif
731b565d
AA
2999 &max_page_sharing_attr.attr,
3000 &stable_node_chains_attr.attr,
3001 &stable_node_dups_attr.attr,
3002 &stable_node_chains_prune_millisecs_attr.attr,
31dbd01f
IE
3003 NULL,
3004};
3005
3006static struct attribute_group ksm_attr_group = {
3007 .attrs = ksm_attrs,
3008 .name = "ksm",
3009};
2ffd8679 3010#endif /* CONFIG_SYSFS */
31dbd01f
IE
3011
3012static int __init ksm_init(void)
3013{
3014 struct task_struct *ksm_thread;
3015 int err;
3016
3017 err = ksm_slab_init();
3018 if (err)
3019 goto out;
3020
31dbd01f
IE
3021 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3022 if (IS_ERR(ksm_thread)) {
25acde31 3023 pr_err("ksm: creating kthread failed\n");
31dbd01f 3024 err = PTR_ERR(ksm_thread);
d9f8984c 3025 goto out_free;
31dbd01f
IE
3026 }
3027
2ffd8679 3028#ifdef CONFIG_SYSFS
31dbd01f
IE
3029 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3030 if (err) {
25acde31 3031 pr_err("ksm: register sysfs failed\n");
2ffd8679 3032 kthread_stop(ksm_thread);
d9f8984c 3033 goto out_free;
31dbd01f 3034 }
c73602ad
HD
3035#else
3036 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3037
2ffd8679 3038#endif /* CONFIG_SYSFS */
31dbd01f 3039
62b61f61 3040#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3041 /* There is no significance to this priority 100 */
62b61f61
HD
3042 hotplug_memory_notifier(ksm_memory_callback, 100);
3043#endif
31dbd01f
IE
3044 return 0;
3045
d9f8984c 3046out_free:
31dbd01f
IE
3047 ksm_slab_free();
3048out:
3049 return err;
f8af4da3 3050}
a64fb3cd 3051subsys_initcall(ksm_init);