]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/ksm.c
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
[mirror_ubuntu-jammy-kernel.git] / mm / ksm.c
CommitLineData
7a338472 1// SPDX-License-Identifier: GPL-2.0-only
f8af4da3 2/*
31dbd01f
IE
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
36b2528d 8 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
36b2528d 13 * Hugh Dickins
f8af4da3
HD
14 */
15
16#include <linux/errno.h>
31dbd01f
IE
17#include <linux/mm.h>
18#include <linux/fs.h>
f8af4da3 19#include <linux/mman.h>
31dbd01f 20#include <linux/sched.h>
6e84f315 21#include <linux/sched/mm.h>
f7ccbae4 22#include <linux/sched/coredump.h>
31dbd01f
IE
23#include <linux/rwsem.h>
24#include <linux/pagemap.h>
25#include <linux/rmap.h>
26#include <linux/spinlock.h>
59e1a2f4 27#include <linux/xxhash.h>
31dbd01f
IE
28#include <linux/delay.h>
29#include <linux/kthread.h>
30#include <linux/wait.h>
31#include <linux/slab.h>
32#include <linux/rbtree.h>
62b61f61 33#include <linux/memory.h>
31dbd01f 34#include <linux/mmu_notifier.h>
2c6854fd 35#include <linux/swap.h>
f8af4da3 36#include <linux/ksm.h>
4ca3a69b 37#include <linux/hashtable.h>
878aee7d 38#include <linux/freezer.h>
72788c38 39#include <linux/oom.h>
90bd6fd3 40#include <linux/numa.h>
f8af4da3 41
31dbd01f 42#include <asm/tlbflush.h>
73848b46 43#include "internal.h"
31dbd01f 44
e850dcf5
HD
45#ifdef CONFIG_NUMA
46#define NUMA(x) (x)
47#define DO_NUMA(x) do { (x); } while (0)
48#else
49#define NUMA(x) (0)
50#define DO_NUMA(x) do { } while (0)
51#endif
52
5a2ca3ef
MR
53/**
54 * DOC: Overview
55 *
31dbd01f
IE
56 * A few notes about the KSM scanning process,
57 * to make it easier to understand the data structures below:
58 *
59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
60 * contents into a data structure that holds pointers to the pages' locations.
61 *
62 * Since the contents of the pages may change at any moment, KSM cannot just
63 * insert the pages into a normal sorted tree and expect it to find anything.
64 * Therefore KSM uses two data structures - the stable and the unstable tree.
65 *
66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67 * by their contents. Because each such page is write-protected, searching on
68 * this tree is fully assured to be working (except when pages are unmapped),
69 * and therefore this tree is called the stable tree.
70 *
5a2ca3ef
MR
71 * The stable tree node includes information required for reverse
72 * mapping from a KSM page to virtual addresses that map this page.
73 *
74 * In order to avoid large latencies of the rmap walks on KSM pages,
75 * KSM maintains two types of nodes in the stable tree:
76 *
77 * * the regular nodes that keep the reverse mapping structures in a
78 * linked list
79 * * the "chains" that link nodes ("dups") that represent the same
80 * write protected memory content, but each "dup" corresponds to a
81 * different KSM page copy of that content
82 *
83 * Internally, the regular nodes, "dups" and "chains" are represented
9303c9d5 84 * using the same struct stable_node structure.
5a2ca3ef 85 *
31dbd01f
IE
86 * In addition to the stable tree, KSM uses a second data structure called the
87 * unstable tree: this tree holds pointers to pages which have been found to
88 * be "unchanged for a period of time". The unstable tree sorts these pages
89 * by their contents, but since they are not write-protected, KSM cannot rely
90 * upon the unstable tree to work correctly - the unstable tree is liable to
91 * be corrupted as its contents are modified, and so it is called unstable.
92 *
93 * KSM solves this problem by several techniques:
94 *
95 * 1) The unstable tree is flushed every time KSM completes scanning all
96 * memory areas, and then the tree is rebuilt again from the beginning.
97 * 2) KSM will only insert into the unstable tree, pages whose hash value
98 * has not changed since the previous scan of all memory areas.
99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100 * colors of the nodes and not on their contents, assuring that even when
101 * the tree gets "corrupted" it won't get out of balance, so scanning time
102 * remains the same (also, searching and inserting nodes in an rbtree uses
103 * the same algorithm, so we have no overhead when we flush and rebuild).
104 * 4) KSM never flushes the stable tree, which means that even if it were to
105 * take 10 attempts to find a page in the unstable tree, once it is found,
106 * it is secured in the stable tree. (When we scan a new page, we first
107 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
108 *
109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
111 */
112
113/**
114 * struct mm_slot - ksm information per mm that is being scanned
115 * @link: link to the mm_slots hash list
116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
118 * @mm: the mm that this information is valid for
119 */
120struct mm_slot {
121 struct hlist_node link;
122 struct list_head mm_list;
6514d511 123 struct rmap_item *rmap_list;
31dbd01f
IE
124 struct mm_struct *mm;
125};
126
127/**
128 * struct ksm_scan - cursor for scanning
129 * @mm_slot: the current mm_slot we are scanning
130 * @address: the next address inside that to be scanned
6514d511 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
132 * @seqnr: count of completed full scans (needed when removing unstable node)
133 *
134 * There is only the one ksm_scan instance of this cursor structure.
135 */
136struct ksm_scan {
137 struct mm_slot *mm_slot;
138 unsigned long address;
6514d511 139 struct rmap_item **rmap_list;
31dbd01f
IE
140 unsigned long seqnr;
141};
142
7b6ba2c7
HD
143/**
144 * struct stable_node - node of the stable rbtree
145 * @node: rb node of this ksm page in the stable tree
4146d2d6 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 148 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 149 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
151 * @chain_prune_time: time of the last full garbage collection
152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
154 */
155struct stable_node {
4146d2d6
HD
156 union {
157 struct rb_node node; /* when node of stable tree */
158 struct { /* when listed for migration */
159 struct list_head *head;
2c653d0e
AA
160 struct {
161 struct hlist_node hlist_dup;
162 struct list_head list;
163 };
4146d2d6
HD
164 };
165 };
7b6ba2c7 166 struct hlist_head hlist;
2c653d0e
AA
167 union {
168 unsigned long kpfn;
169 unsigned long chain_prune_time;
170 };
171 /*
172 * STABLE_NODE_CHAIN can be any negative number in
173 * rmap_hlist_len negative range, but better not -1 to be able
174 * to reliably detect underflows.
175 */
176#define STABLE_NODE_CHAIN -1024
177 int rmap_hlist_len;
4146d2d6
HD
178#ifdef CONFIG_NUMA
179 int nid;
180#endif
7b6ba2c7
HD
181};
182
31dbd01f
IE
183/**
184 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
188 * @mm: the memory structure this rmap_item is pointing into
189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
191 * @node: rb node of this rmap_item in the unstable tree
192 * @head: pointer to stable_node heading this list in the stable tree
193 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
194 */
195struct rmap_item {
6514d511 196 struct rmap_item *rmap_list;
bc56620b
HD
197 union {
198 struct anon_vma *anon_vma; /* when stable */
199#ifdef CONFIG_NUMA
200 int nid; /* when node of unstable tree */
201#endif
202 };
31dbd01f
IE
203 struct mm_struct *mm;
204 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 205 unsigned int oldchecksum; /* when unstable */
31dbd01f 206 union {
7b6ba2c7
HD
207 struct rb_node node; /* when node of unstable tree */
208 struct { /* when listed from stable tree */
209 struct stable_node *head;
210 struct hlist_node hlist;
211 };
31dbd01f
IE
212 };
213};
214
215#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
216#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
217#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
218
219/* The stable and unstable tree heads */
ef53d16c
HD
220static struct rb_root one_stable_tree[1] = { RB_ROOT };
221static struct rb_root one_unstable_tree[1] = { RB_ROOT };
222static struct rb_root *root_stable_tree = one_stable_tree;
223static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 224
4146d2d6
HD
225/* Recently migrated nodes of stable tree, pending proper placement */
226static LIST_HEAD(migrate_nodes);
2c653d0e 227#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 228
4ca3a69b
SL
229#define MM_SLOTS_HASH_BITS 10
230static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
231
232static struct mm_slot ksm_mm_head = {
233 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
234};
235static struct ksm_scan ksm_scan = {
236 .mm_slot = &ksm_mm_head,
237};
238
239static struct kmem_cache *rmap_item_cache;
7b6ba2c7 240static struct kmem_cache *stable_node_cache;
31dbd01f
IE
241static struct kmem_cache *mm_slot_cache;
242
243/* The number of nodes in the stable tree */
b4028260 244static unsigned long ksm_pages_shared;
31dbd01f 245
e178dfde 246/* The number of page slots additionally sharing those nodes */
b4028260 247static unsigned long ksm_pages_sharing;
31dbd01f 248
473b0ce4
HD
249/* The number of nodes in the unstable tree */
250static unsigned long ksm_pages_unshared;
251
252/* The number of rmap_items in use: to calculate pages_volatile */
253static unsigned long ksm_rmap_items;
254
2c653d0e
AA
255/* The number of stable_node chains */
256static unsigned long ksm_stable_node_chains;
257
258/* The number of stable_node dups linked to the stable_node chains */
259static unsigned long ksm_stable_node_dups;
260
261/* Delay in pruning stale stable_node_dups in the stable_node_chains */
584ff0df 262static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
2c653d0e
AA
263
264/* Maximum number of page slots sharing a stable node */
265static int ksm_max_page_sharing = 256;
266
31dbd01f 267/* Number of pages ksmd should scan in one batch */
2c6854fd 268static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
269
270/* Milliseconds ksmd should sleep between batches */
2ffd8679 271static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 272
e86c59b1
CI
273/* Checksum of an empty (zeroed) page */
274static unsigned int zero_checksum __read_mostly;
275
276/* Whether to merge empty (zeroed) pages with actual zero pages */
277static bool ksm_use_zero_pages __read_mostly;
278
e850dcf5 279#ifdef CONFIG_NUMA
90bd6fd3
PH
280/* Zeroed when merging across nodes is not allowed */
281static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 282static int ksm_nr_node_ids = 1;
e850dcf5
HD
283#else
284#define ksm_merge_across_nodes 1U
ef53d16c 285#define ksm_nr_node_ids 1
e850dcf5 286#endif
90bd6fd3 287
31dbd01f
IE
288#define KSM_RUN_STOP 0
289#define KSM_RUN_MERGE 1
290#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
291#define KSM_RUN_OFFLINE 4
292static unsigned long ksm_run = KSM_RUN_STOP;
293static void wait_while_offlining(void);
31dbd01f
IE
294
295static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
fcf9a0ef 296static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
31dbd01f
IE
297static DEFINE_MUTEX(ksm_thread_mutex);
298static DEFINE_SPINLOCK(ksm_mmlist_lock);
299
300#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301 sizeof(struct __struct), __alignof__(struct __struct),\
302 (__flags), NULL)
303
304static int __init ksm_slab_init(void)
305{
306 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307 if (!rmap_item_cache)
308 goto out;
309
7b6ba2c7
HD
310 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311 if (!stable_node_cache)
312 goto out_free1;
313
31dbd01f
IE
314 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315 if (!mm_slot_cache)
7b6ba2c7 316 goto out_free2;
31dbd01f
IE
317
318 return 0;
319
7b6ba2c7
HD
320out_free2:
321 kmem_cache_destroy(stable_node_cache);
322out_free1:
31dbd01f
IE
323 kmem_cache_destroy(rmap_item_cache);
324out:
325 return -ENOMEM;
326}
327
328static void __init ksm_slab_free(void)
329{
330 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 331 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
332 kmem_cache_destroy(rmap_item_cache);
333 mm_slot_cache = NULL;
334}
335
2c653d0e
AA
336static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337{
338 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339}
340
341static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342{
343 return dup->head == STABLE_NODE_DUP_HEAD;
344}
345
346static inline void stable_node_chain_add_dup(struct stable_node *dup,
347 struct stable_node *chain)
348{
349 VM_BUG_ON(is_stable_node_dup(dup));
350 dup->head = STABLE_NODE_DUP_HEAD;
351 VM_BUG_ON(!is_stable_node_chain(chain));
352 hlist_add_head(&dup->hlist_dup, &chain->hlist);
353 ksm_stable_node_dups++;
354}
355
356static inline void __stable_node_dup_del(struct stable_node *dup)
357{
b4fecc67 358 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
359 hlist_del(&dup->hlist_dup);
360 ksm_stable_node_dups--;
361}
362
363static inline void stable_node_dup_del(struct stable_node *dup)
364{
365 VM_BUG_ON(is_stable_node_chain(dup));
366 if (is_stable_node_dup(dup))
367 __stable_node_dup_del(dup);
368 else
369 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370#ifdef CONFIG_DEBUG_VM
371 dup->head = NULL;
372#endif
373}
374
31dbd01f
IE
375static inline struct rmap_item *alloc_rmap_item(void)
376{
473b0ce4
HD
377 struct rmap_item *rmap_item;
378
5b398e41 379 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
381 if (rmap_item)
382 ksm_rmap_items++;
383 return rmap_item;
31dbd01f
IE
384}
385
386static inline void free_rmap_item(struct rmap_item *rmap_item)
387{
473b0ce4 388 ksm_rmap_items--;
31dbd01f
IE
389 rmap_item->mm = NULL; /* debug safety */
390 kmem_cache_free(rmap_item_cache, rmap_item);
391}
392
7b6ba2c7
HD
393static inline struct stable_node *alloc_stable_node(void)
394{
6213055f 395 /*
396 * The allocation can take too long with GFP_KERNEL when memory is under
397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
398 * grants access to memory reserves, helping to avoid this problem.
399 */
400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
401}
402
403static inline void free_stable_node(struct stable_node *stable_node)
404{
2c653d0e
AA
405 VM_BUG_ON(stable_node->rmap_hlist_len &&
406 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
407 kmem_cache_free(stable_node_cache, stable_node);
408}
409
31dbd01f
IE
410static inline struct mm_slot *alloc_mm_slot(void)
411{
412 if (!mm_slot_cache) /* initialization failed */
413 return NULL;
414 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415}
416
417static inline void free_mm_slot(struct mm_slot *mm_slot)
418{
419 kmem_cache_free(mm_slot_cache, mm_slot);
420}
421
31dbd01f
IE
422static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423{
4ca3a69b
SL
424 struct mm_slot *slot;
425
b67bfe0d 426 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
427 if (slot->mm == mm)
428 return slot;
31dbd01f 429
31dbd01f
IE
430 return NULL;
431}
432
433static void insert_to_mm_slots_hash(struct mm_struct *mm,
434 struct mm_slot *mm_slot)
435{
31dbd01f 436 mm_slot->mm = mm;
4ca3a69b 437 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
438}
439
a913e182
HD
440/*
441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442 * page tables after it has passed through ksm_exit() - which, if necessary,
c1e8d7c6 443 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
a913e182
HD
444 * a special flag: they can just back out as soon as mm_users goes to zero.
445 * ksm_test_exit() is used throughout to make this test for exit: in some
446 * places for correctness, in some places just to avoid unnecessary work.
447 */
448static inline bool ksm_test_exit(struct mm_struct *mm)
449{
450 return atomic_read(&mm->mm_users) == 0;
451}
452
31dbd01f
IE
453/*
454 * We use break_ksm to break COW on a ksm page: it's a stripped down
455 *
7a9547fd 456 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
31dbd01f
IE
457 * put_page(page);
458 *
459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460 * in case the application has unmapped and remapped mm,addr meanwhile.
461 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
bbcd53c9 462 * mmap of /dev/mem, where we would not want to touch it.
1b2ee126
DH
463 *
464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465 * of the process that owns 'vma'. We also do not want to enforce
466 * protection keys here anyway.
31dbd01f 467 */
d952b791 468static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
469{
470 struct page *page;
50a7ca3c 471 vm_fault_t ret = 0;
31dbd01f
IE
472
473 do {
474 cond_resched();
1b2ee126
DH
475 page = follow_page(vma, addr,
476 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
22eccdd7 477 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
478 break;
479 if (PageKsm(page))
dcddffd4 480 ret = handle_mm_fault(vma, addr,
bce617ed
PX
481 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
482 NULL);
31dbd01f
IE
483 else
484 ret = VM_FAULT_WRITE;
485 put_page(page);
33692f27 486 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
487 /*
488 * We must loop because handle_mm_fault() may back out if there's
489 * any difficulty e.g. if pte accessed bit gets updated concurrently.
490 *
491 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
492 * COW has been broken, even if the vma does not permit VM_WRITE;
493 * but note that a concurrent fault might break PageKsm for us.
494 *
495 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496 * backing file, which also invalidates anonymous pages: that's
497 * okay, that truncation will have unmapped the PageKsm for us.
498 *
499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501 * current task has TIF_MEMDIE set, and will be OOM killed on return
502 * to user; and ksmd, having no mm, would never be chosen for that.
503 *
504 * But if the mm is in a limited mem_cgroup, then the fault may fail
505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506 * even ksmd can fail in this way - though it's usually breaking ksm
507 * just to undo a merge it made a moment before, so unlikely to oom.
508 *
509 * That's a pity: we might therefore have more kernel pages allocated
510 * than we're counting as nodes in the stable tree; but ksm_do_scan
511 * will retry to break_cow on each pass, so should recover the page
512 * in due course. The important thing is to not let VM_MERGEABLE
513 * be cleared while any such pages might remain in the area.
514 */
515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
516}
517
ef694222
BL
518static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
519 unsigned long addr)
520{
521 struct vm_area_struct *vma;
522 if (ksm_test_exit(mm))
523 return NULL;
ff69fb81
LH
524 vma = vma_lookup(mm, addr);
525 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
ef694222
BL
526 return NULL;
527 return vma;
528}
529
8dd3557a 530static void break_cow(struct rmap_item *rmap_item)
31dbd01f 531{
8dd3557a
HD
532 struct mm_struct *mm = rmap_item->mm;
533 unsigned long addr = rmap_item->address;
31dbd01f
IE
534 struct vm_area_struct *vma;
535
4035c07a
HD
536 /*
537 * It is not an accident that whenever we want to break COW
538 * to undo, we also need to drop a reference to the anon_vma.
539 */
9e60109f 540 put_anon_vma(rmap_item->anon_vma);
4035c07a 541
d8ed45c5 542 mmap_read_lock(mm);
ef694222
BL
543 vma = find_mergeable_vma(mm, addr);
544 if (vma)
545 break_ksm(vma, addr);
d8ed45c5 546 mmap_read_unlock(mm);
31dbd01f
IE
547}
548
549static struct page *get_mergeable_page(struct rmap_item *rmap_item)
550{
551 struct mm_struct *mm = rmap_item->mm;
552 unsigned long addr = rmap_item->address;
553 struct vm_area_struct *vma;
554 struct page *page;
555
d8ed45c5 556 mmap_read_lock(mm);
ef694222
BL
557 vma = find_mergeable_vma(mm, addr);
558 if (!vma)
31dbd01f
IE
559 goto out;
560
561 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 562 if (IS_ERR_OR_NULL(page))
31dbd01f 563 goto out;
f765f540 564 if (PageAnon(page)) {
31dbd01f
IE
565 flush_anon_page(vma, page, addr);
566 flush_dcache_page(page);
567 } else {
568 put_page(page);
c8f95ed1
AA
569out:
570 page = NULL;
31dbd01f 571 }
d8ed45c5 572 mmap_read_unlock(mm);
31dbd01f
IE
573 return page;
574}
575
90bd6fd3
PH
576/*
577 * This helper is used for getting right index into array of tree roots.
578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
579 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
580 * every node has its own stable and unstable tree.
581 */
582static inline int get_kpfn_nid(unsigned long kpfn)
583{
d8fc16a8 584 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
585}
586
2c653d0e
AA
587static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
588 struct rb_root *root)
589{
590 struct stable_node *chain = alloc_stable_node();
591 VM_BUG_ON(is_stable_node_chain(dup));
592 if (likely(chain)) {
593 INIT_HLIST_HEAD(&chain->hlist);
594 chain->chain_prune_time = jiffies;
595 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
596#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
98fa15f3 597 chain->nid = NUMA_NO_NODE; /* debug */
2c653d0e
AA
598#endif
599 ksm_stable_node_chains++;
600
601 /*
602 * Put the stable node chain in the first dimension of
603 * the stable tree and at the same time remove the old
604 * stable node.
605 */
606 rb_replace_node(&dup->node, &chain->node, root);
607
608 /*
609 * Move the old stable node to the second dimension
610 * queued in the hlist_dup. The invariant is that all
611 * dup stable_nodes in the chain->hlist point to pages
457aef94 612 * that are write protected and have the exact same
2c653d0e
AA
613 * content.
614 */
615 stable_node_chain_add_dup(dup, chain);
616 }
617 return chain;
618}
619
620static inline void free_stable_node_chain(struct stable_node *chain,
621 struct rb_root *root)
622{
623 rb_erase(&chain->node, root);
624 free_stable_node(chain);
625 ksm_stable_node_chains--;
626}
627
4035c07a
HD
628static void remove_node_from_stable_tree(struct stable_node *stable_node)
629{
630 struct rmap_item *rmap_item;
4035c07a 631
2c653d0e
AA
632 /* check it's not STABLE_NODE_CHAIN or negative */
633 BUG_ON(stable_node->rmap_hlist_len < 0);
634
b67bfe0d 635 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
636 if (rmap_item->hlist.next)
637 ksm_pages_sharing--;
638 else
639 ksm_pages_shared--;
2c653d0e
AA
640 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
641 stable_node->rmap_hlist_len--;
9e60109f 642 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
643 rmap_item->address &= PAGE_MASK;
644 cond_resched();
645 }
646
2c653d0e
AA
647 /*
648 * We need the second aligned pointer of the migrate_nodes
649 * list_head to stay clear from the rb_parent_color union
650 * (aligned and different than any node) and also different
651 * from &migrate_nodes. This will verify that future list.h changes
815f0ddb 652 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
2c653d0e 653 */
2c653d0e
AA
654 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
655 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
2c653d0e 656
4146d2d6
HD
657 if (stable_node->head == &migrate_nodes)
658 list_del(&stable_node->list);
659 else
2c653d0e 660 stable_node_dup_del(stable_node);
4035c07a
HD
661 free_stable_node(stable_node);
662}
663
2cee57d1
YS
664enum get_ksm_page_flags {
665 GET_KSM_PAGE_NOLOCK,
666 GET_KSM_PAGE_LOCK,
667 GET_KSM_PAGE_TRYLOCK
668};
669
4035c07a
HD
670/*
671 * get_ksm_page: checks if the page indicated by the stable node
672 * is still its ksm page, despite having held no reference to it.
673 * In which case we can trust the content of the page, and it
674 * returns the gotten page; but if the page has now been zapped,
675 * remove the stale node from the stable tree and return NULL.
c8d6553b 676 * But beware, the stable node's page might be being migrated.
4035c07a
HD
677 *
678 * You would expect the stable_node to hold a reference to the ksm page.
679 * But if it increments the page's count, swapping out has to wait for
680 * ksmd to come around again before it can free the page, which may take
681 * seconds or even minutes: much too unresponsive. So instead we use a
682 * "keyhole reference": access to the ksm page from the stable node peeps
683 * out through its keyhole to see if that page still holds the right key,
684 * pointing back to this stable node. This relies on freeing a PageAnon
685 * page to reset its page->mapping to NULL, and relies on no other use of
686 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
687 * is on its way to being freed; but it is an anomaly to bear in mind.
688 */
2cee57d1
YS
689static struct page *get_ksm_page(struct stable_node *stable_node,
690 enum get_ksm_page_flags flags)
4035c07a
HD
691{
692 struct page *page;
693 void *expected_mapping;
c8d6553b 694 unsigned long kpfn;
4035c07a 695
bda807d4
MK
696 expected_mapping = (void *)((unsigned long)stable_node |
697 PAGE_MAPPING_KSM);
c8d6553b 698again:
08df4774 699 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
c8d6553b 700 page = pfn_to_page(kpfn);
4db0c3c2 701 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 702 goto stale;
c8d6553b
HD
703
704 /*
705 * We cannot do anything with the page while its refcount is 0.
706 * Usually 0 means free, or tail of a higher-order page: in which
707 * case this node is no longer referenced, and should be freed;
1c4c3b99 708 * however, it might mean that the page is under page_ref_freeze().
c8d6553b 709 * The __remove_mapping() case is easy, again the node is now stale;
52d1e606
KT
710 * the same is in reuse_ksm_page() case; but if page is swapcache
711 * in migrate_page_move_mapping(), it might still be our page,
712 * in which case it's essential to keep the node.
c8d6553b
HD
713 */
714 while (!get_page_unless_zero(page)) {
715 /*
716 * Another check for page->mapping != expected_mapping would
717 * work here too. We have chosen the !PageSwapCache test to
718 * optimize the common case, when the page is or is about to
719 * be freed: PageSwapCache is cleared (under spin_lock_irq)
1c4c3b99 720 * in the ref_freeze section of __remove_mapping(); but Anon
c8d6553b
HD
721 * page->mapping reset to NULL later, in free_pages_prepare().
722 */
723 if (!PageSwapCache(page))
724 goto stale;
725 cpu_relax();
726 }
727
4db0c3c2 728 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
729 put_page(page);
730 goto stale;
731 }
c8d6553b 732
2cee57d1
YS
733 if (flags == GET_KSM_PAGE_TRYLOCK) {
734 if (!trylock_page(page)) {
735 put_page(page);
736 return ERR_PTR(-EBUSY);
737 }
738 } else if (flags == GET_KSM_PAGE_LOCK)
8aafa6a4 739 lock_page(page);
2cee57d1
YS
740
741 if (flags != GET_KSM_PAGE_NOLOCK) {
4db0c3c2 742 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
743 unlock_page(page);
744 put_page(page);
745 goto stale;
746 }
747 }
4035c07a 748 return page;
c8d6553b 749
4035c07a 750stale:
c8d6553b
HD
751 /*
752 * We come here from above when page->mapping or !PageSwapCache
753 * suggests that the node is stale; but it might be under migration.
754 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
755 * before checking whether node->kpfn has been changed.
756 */
757 smp_rmb();
4db0c3c2 758 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 759 goto again;
4035c07a
HD
760 remove_node_from_stable_tree(stable_node);
761 return NULL;
762}
763
31dbd01f
IE
764/*
765 * Removing rmap_item from stable or unstable tree.
766 * This function will clean the information from the stable/unstable tree.
767 */
768static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
769{
7b6ba2c7
HD
770 if (rmap_item->address & STABLE_FLAG) {
771 struct stable_node *stable_node;
5ad64688 772 struct page *page;
31dbd01f 773
7b6ba2c7 774 stable_node = rmap_item->head;
62862290 775 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
4035c07a
HD
776 if (!page)
777 goto out;
5ad64688 778
7b6ba2c7 779 hlist_del(&rmap_item->hlist);
62862290 780 unlock_page(page);
4035c07a 781 put_page(page);
08beca44 782
98666f8a 783 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
784 ksm_pages_sharing--;
785 else
7b6ba2c7 786 ksm_pages_shared--;
2c653d0e
AA
787 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
788 stable_node->rmap_hlist_len--;
31dbd01f 789
9e60109f 790 put_anon_vma(rmap_item->anon_vma);
c89a384e 791 rmap_item->head = NULL;
93d17715 792 rmap_item->address &= PAGE_MASK;
31dbd01f 793
7b6ba2c7 794 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
795 unsigned char age;
796 /*
9ba69294 797 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 798 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
799 * But be careful when an mm is exiting: do the rb_erase
800 * if this rmap_item was inserted by this scan, rather
801 * than left over from before.
31dbd01f
IE
802 */
803 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 804 BUG_ON(age > 1);
31dbd01f 805 if (!age)
90bd6fd3 806 rb_erase(&rmap_item->node,
ef53d16c 807 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 808 ksm_pages_unshared--;
93d17715 809 rmap_item->address &= PAGE_MASK;
31dbd01f 810 }
4035c07a 811out:
31dbd01f
IE
812 cond_resched(); /* we're called from many long loops */
813}
814
420be4ed 815static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
31dbd01f 816{
6514d511
HD
817 while (*rmap_list) {
818 struct rmap_item *rmap_item = *rmap_list;
819 *rmap_list = rmap_item->rmap_list;
31dbd01f 820 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
821 free_rmap_item(rmap_item);
822 }
823}
824
825/*
e850dcf5 826 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
827 * than check every pte of a given vma, the locking doesn't quite work for
828 * that - an rmap_item is assigned to the stable tree after inserting ksm
c1e8d7c6 829 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
31dbd01f
IE
830 * rmap_items from parent to child at fork time (so as not to waste time
831 * if exit comes before the next scan reaches it).
81464e30
HD
832 *
833 * Similarly, although we'd like to remove rmap_items (so updating counts
834 * and freeing memory) when unmerging an area, it's easier to leave that
835 * to the next pass of ksmd - consider, for example, how ksmd might be
836 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 837 */
d952b791
HD
838static int unmerge_ksm_pages(struct vm_area_struct *vma,
839 unsigned long start, unsigned long end)
31dbd01f
IE
840{
841 unsigned long addr;
d952b791 842 int err = 0;
31dbd01f 843
d952b791 844 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
845 if (ksm_test_exit(vma->vm_mm))
846 break;
d952b791
HD
847 if (signal_pending(current))
848 err = -ERESTARTSYS;
849 else
850 err = break_ksm(vma, addr);
851 }
852 return err;
31dbd01f
IE
853}
854
88484826
MR
855static inline struct stable_node *page_stable_node(struct page *page)
856{
857 return PageKsm(page) ? page_rmapping(page) : NULL;
858}
859
860static inline void set_page_stable_node(struct page *page,
861 struct stable_node *stable_node)
862{
863 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
864}
865
2ffd8679
HD
866#ifdef CONFIG_SYSFS
867/*
868 * Only called through the sysfs control interface:
869 */
cbf86cfe
HD
870static int remove_stable_node(struct stable_node *stable_node)
871{
872 struct page *page;
873 int err;
874
2cee57d1 875 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
cbf86cfe
HD
876 if (!page) {
877 /*
878 * get_ksm_page did remove_node_from_stable_tree itself.
879 */
880 return 0;
881 }
882
9a63236f
AR
883 /*
884 * Page could be still mapped if this races with __mmput() running in
885 * between ksm_exit() and exit_mmap(). Just refuse to let
886 * merge_across_nodes/max_page_sharing be switched.
887 */
888 err = -EBUSY;
889 if (!page_mapped(page)) {
cbf86cfe 890 /*
8fdb3dbf
HD
891 * The stable node did not yet appear stale to get_ksm_page(),
892 * since that allows for an unmapped ksm page to be recognized
893 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
894 * This page might be in a pagevec waiting to be freed,
895 * or it might be PageSwapCache (perhaps under writeback),
896 * or it might have been removed from swapcache a moment ago.
897 */
898 set_page_stable_node(page, NULL);
899 remove_node_from_stable_tree(stable_node);
900 err = 0;
901 }
902
903 unlock_page(page);
904 put_page(page);
905 return err;
906}
907
2c653d0e
AA
908static int remove_stable_node_chain(struct stable_node *stable_node,
909 struct rb_root *root)
910{
911 struct stable_node *dup;
912 struct hlist_node *hlist_safe;
913
914 if (!is_stable_node_chain(stable_node)) {
915 VM_BUG_ON(is_stable_node_dup(stable_node));
916 if (remove_stable_node(stable_node))
917 return true;
918 else
919 return false;
920 }
921
922 hlist_for_each_entry_safe(dup, hlist_safe,
923 &stable_node->hlist, hlist_dup) {
924 VM_BUG_ON(!is_stable_node_dup(dup));
925 if (remove_stable_node(dup))
926 return true;
927 }
928 BUG_ON(!hlist_empty(&stable_node->hlist));
929 free_stable_node_chain(stable_node, root);
930 return false;
931}
932
cbf86cfe
HD
933static int remove_all_stable_nodes(void)
934{
03640418 935 struct stable_node *stable_node, *next;
cbf86cfe
HD
936 int nid;
937 int err = 0;
938
ef53d16c 939 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
940 while (root_stable_tree[nid].rb_node) {
941 stable_node = rb_entry(root_stable_tree[nid].rb_node,
942 struct stable_node, node);
2c653d0e
AA
943 if (remove_stable_node_chain(stable_node,
944 root_stable_tree + nid)) {
cbf86cfe
HD
945 err = -EBUSY;
946 break; /* proceed to next nid */
947 }
948 cond_resched();
949 }
950 }
03640418 951 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
952 if (remove_stable_node(stable_node))
953 err = -EBUSY;
954 cond_resched();
955 }
cbf86cfe
HD
956 return err;
957}
958
d952b791 959static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
960{
961 struct mm_slot *mm_slot;
962 struct mm_struct *mm;
963 struct vm_area_struct *vma;
d952b791
HD
964 int err = 0;
965
966 spin_lock(&ksm_mmlist_lock);
9ba69294 967 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
968 struct mm_slot, mm_list);
969 spin_unlock(&ksm_mmlist_lock);
31dbd01f 970
9ba69294
HD
971 for (mm_slot = ksm_scan.mm_slot;
972 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f 973 mm = mm_slot->mm;
d8ed45c5 974 mmap_read_lock(mm);
31dbd01f 975 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
976 if (ksm_test_exit(mm))
977 break;
31dbd01f
IE
978 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
979 continue;
d952b791
HD
980 err = unmerge_ksm_pages(vma,
981 vma->vm_start, vma->vm_end);
9ba69294
HD
982 if (err)
983 goto error;
31dbd01f 984 }
9ba69294 985
420be4ed 986 remove_trailing_rmap_items(&mm_slot->rmap_list);
d8ed45c5 987 mmap_read_unlock(mm);
d952b791
HD
988
989 spin_lock(&ksm_mmlist_lock);
9ba69294 990 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 991 struct mm_slot, mm_list);
9ba69294 992 if (ksm_test_exit(mm)) {
4ca3a69b 993 hash_del(&mm_slot->link);
9ba69294
HD
994 list_del(&mm_slot->mm_list);
995 spin_unlock(&ksm_mmlist_lock);
996
997 free_mm_slot(mm_slot);
998 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 999 mmdrop(mm);
7496fea9 1000 } else
9ba69294 1001 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
1002 }
1003
cbf86cfe
HD
1004 /* Clean up stable nodes, but don't worry if some are still busy */
1005 remove_all_stable_nodes();
d952b791 1006 ksm_scan.seqnr = 0;
9ba69294
HD
1007 return 0;
1008
1009error:
d8ed45c5 1010 mmap_read_unlock(mm);
31dbd01f 1011 spin_lock(&ksm_mmlist_lock);
d952b791 1012 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 1013 spin_unlock(&ksm_mmlist_lock);
d952b791 1014 return err;
31dbd01f 1015}
2ffd8679 1016#endif /* CONFIG_SYSFS */
31dbd01f 1017
31dbd01f
IE
1018static u32 calc_checksum(struct page *page)
1019{
1020 u32 checksum;
9b04c5fe 1021 void *addr = kmap_atomic(page);
59e1a2f4 1022 checksum = xxhash(addr, PAGE_SIZE, 0);
9b04c5fe 1023 kunmap_atomic(addr);
31dbd01f
IE
1024 return checksum;
1025}
1026
31dbd01f
IE
1027static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1028 pte_t *orig_pte)
1029{
1030 struct mm_struct *mm = vma->vm_mm;
36eaff33
KS
1031 struct page_vma_mapped_walk pvmw = {
1032 .page = page,
1033 .vma = vma,
1034 };
31dbd01f
IE
1035 int swapped;
1036 int err = -EFAULT;
ac46d4f3 1037 struct mmu_notifier_range range;
31dbd01f 1038
36eaff33
KS
1039 pvmw.address = page_address_in_vma(page, vma);
1040 if (pvmw.address == -EFAULT)
31dbd01f
IE
1041 goto out;
1042
29ad768c 1043 BUG_ON(PageTransCompound(page));
6bdb913f 1044
7269f999 1045 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 1046 pvmw.address,
ac46d4f3
JG
1047 pvmw.address + PAGE_SIZE);
1048 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1049
36eaff33 1050 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1051 goto out_mn;
36eaff33
KS
1052 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1053 goto out_unlock;
31dbd01f 1054
595cd8f2 1055 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
b3a81d08
MK
1056 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1057 mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1058 pte_t entry;
1059
1060 swapped = PageSwapCache(page);
36eaff33 1061 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1062 /*
25985edc 1063 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f 1064 * take any lock, therefore the check that we are going to make
f0953a1b 1065 * with the pagecount against the mapcount is racy and
31dbd01f
IE
1066 * O_DIRECT can happen right after the check.
1067 * So we clear the pte and flush the tlb before the check
1068 * this assure us that no O_DIRECT can happen after the check
1069 * or in the middle of the check.
0f10851e
JG
1070 *
1071 * No need to notify as we are downgrading page table to read
1072 * only not changing it to point to a new page.
1073 *
ad56b738 1074 * See Documentation/vm/mmu_notifier.rst
31dbd01f 1075 */
0f10851e 1076 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1077 /*
1078 * Check that no O_DIRECT or similar I/O is in progress on the
1079 * page
1080 */
31e855ea 1081 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1082 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1083 goto out_unlock;
1084 }
4e31635c
HD
1085 if (pte_dirty(entry))
1086 set_page_dirty(page);
595cd8f2
AK
1087
1088 if (pte_protnone(entry))
1089 entry = pte_mkclean(pte_clear_savedwrite(entry));
1090 else
1091 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 1092 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1093 }
36eaff33 1094 *orig_pte = *pvmw.pte;
31dbd01f
IE
1095 err = 0;
1096
1097out_unlock:
36eaff33 1098 page_vma_mapped_walk_done(&pvmw);
6bdb913f 1099out_mn:
ac46d4f3 1100 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1101out:
1102 return err;
1103}
1104
1105/**
1106 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1107 * @vma: vma that holds the pte pointing to page
1108 * @page: the page we are replacing by kpage
1109 * @kpage: the ksm page we replace page by
31dbd01f
IE
1110 * @orig_pte: the original value of the pte
1111 *
1112 * Returns 0 on success, -EFAULT on failure.
1113 */
8dd3557a
HD
1114static int replace_page(struct vm_area_struct *vma, struct page *page,
1115 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1116{
1117 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
1118 pmd_t *pmd;
1119 pte_t *ptep;
e86c59b1 1120 pte_t newpte;
31dbd01f
IE
1121 spinlock_t *ptl;
1122 unsigned long addr;
31dbd01f 1123 int err = -EFAULT;
ac46d4f3 1124 struct mmu_notifier_range range;
31dbd01f 1125
8dd3557a 1126 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1127 if (addr == -EFAULT)
1128 goto out;
1129
6219049a
BL
1130 pmd = mm_find_pmd(mm, addr);
1131 if (!pmd)
31dbd01f 1132 goto out;
31dbd01f 1133
7269f999 1134 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
6f4f13e8 1135 addr + PAGE_SIZE);
ac46d4f3 1136 mmu_notifier_invalidate_range_start(&range);
6bdb913f 1137
31dbd01f
IE
1138 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1139 if (!pte_same(*ptep, orig_pte)) {
1140 pte_unmap_unlock(ptep, ptl);
6bdb913f 1141 goto out_mn;
31dbd01f
IE
1142 }
1143
e86c59b1
CI
1144 /*
1145 * No need to check ksm_use_zero_pages here: we can only have a
457aef94 1146 * zero_page here if ksm_use_zero_pages was enabled already.
e86c59b1
CI
1147 */
1148 if (!is_zero_pfn(page_to_pfn(kpage))) {
1149 get_page(kpage);
1150 page_add_anon_rmap(kpage, vma, addr, false);
1151 newpte = mk_pte(kpage, vma->vm_page_prot);
1152 } else {
1153 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1154 vma->vm_page_prot));
a38c015f
CI
1155 /*
1156 * We're replacing an anonymous page with a zero page, which is
1157 * not anonymous. We need to do proper accounting otherwise we
1158 * will get wrong values in /proc, and a BUG message in dmesg
1159 * when tearing down the mm.
1160 */
1161 dec_mm_counter(mm, MM_ANONPAGES);
e86c59b1 1162 }
31dbd01f
IE
1163
1164 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1165 /*
1166 * No need to notify as we are replacing a read only page with another
1167 * read only page with the same content.
1168 *
ad56b738 1169 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
1170 */
1171 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1172 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1173
d281ee61 1174 page_remove_rmap(page, false);
ae52a2ad
HD
1175 if (!page_mapped(page))
1176 try_to_free_swap(page);
8dd3557a 1177 put_page(page);
31dbd01f
IE
1178
1179 pte_unmap_unlock(ptep, ptl);
1180 err = 0;
6bdb913f 1181out_mn:
ac46d4f3 1182 mmu_notifier_invalidate_range_end(&range);
31dbd01f
IE
1183out:
1184 return err;
1185}
1186
1187/*
1188 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1189 * @vma: the vma that holds the pte pointing to page
1190 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1191 * @kpage: the PageKsm page that we want to map instead of page,
1192 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1193 *
1194 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1195 */
1196static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1197 struct page *page, struct page *kpage)
31dbd01f
IE
1198{
1199 pte_t orig_pte = __pte(0);
1200 int err = -EFAULT;
1201
db114b83
HD
1202 if (page == kpage) /* ksm page forked */
1203 return 0;
1204
8dd3557a 1205 if (!PageAnon(page))
31dbd01f
IE
1206 goto out;
1207
31dbd01f
IE
1208 /*
1209 * We need the page lock to read a stable PageSwapCache in
1210 * write_protect_page(). We use trylock_page() instead of
1211 * lock_page() because we don't want to wait here - we
1212 * prefer to continue scanning and merging different pages,
1213 * then come back to this page when it is unlocked.
1214 */
8dd3557a 1215 if (!trylock_page(page))
31e855ea 1216 goto out;
f765f540
KS
1217
1218 if (PageTransCompound(page)) {
a7306c34 1219 if (split_huge_page(page))
f765f540
KS
1220 goto out_unlock;
1221 }
1222
31dbd01f
IE
1223 /*
1224 * If this anonymous page is mapped only here, its pte may need
1225 * to be write-protected. If it's mapped elsewhere, all of its
1226 * ptes are necessarily already write-protected. But in either
1227 * case, we need to lock and check page_count is not raised.
1228 */
80e14822
HD
1229 if (write_protect_page(vma, page, &orig_pte) == 0) {
1230 if (!kpage) {
1231 /*
1232 * While we hold page lock, upgrade page from
1233 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1234 * stable_tree_insert() will update stable_node.
1235 */
1236 set_page_stable_node(page, NULL);
1237 mark_page_accessed(page);
337ed7eb
MK
1238 /*
1239 * Page reclaim just frees a clean page with no dirty
1240 * ptes: make sure that the ksm page would be swapped.
1241 */
1242 if (!PageDirty(page))
1243 SetPageDirty(page);
80e14822
HD
1244 err = 0;
1245 } else if (pages_identical(page, kpage))
1246 err = replace_page(vma, page, kpage, orig_pte);
1247 }
31dbd01f 1248
80e14822 1249 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1250 munlock_vma_page(page);
5ad64688
HD
1251 if (!PageMlocked(kpage)) {
1252 unlock_page(page);
5ad64688
HD
1253 lock_page(kpage);
1254 mlock_vma_page(kpage);
1255 page = kpage; /* for final unlock */
1256 }
1257 }
73848b46 1258
f765f540 1259out_unlock:
8dd3557a 1260 unlock_page(page);
31dbd01f
IE
1261out:
1262 return err;
1263}
1264
81464e30
HD
1265/*
1266 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1267 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1268 *
1269 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1270 */
8dd3557a
HD
1271static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1272 struct page *page, struct page *kpage)
81464e30 1273{
8dd3557a 1274 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1275 struct vm_area_struct *vma;
1276 int err = -EFAULT;
1277
d8ed45c5 1278 mmap_read_lock(mm);
85c6e8dd
AA
1279 vma = find_mergeable_vma(mm, rmap_item->address);
1280 if (!vma)
81464e30
HD
1281 goto out;
1282
8dd3557a 1283 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1284 if (err)
1285 goto out;
1286
bc56620b
HD
1287 /* Unstable nid is in union with stable anon_vma: remove first */
1288 remove_rmap_item_from_tree(rmap_item);
1289
c1e8d7c6 1290 /* Must get reference to anon_vma while still holding mmap_lock */
9e60109f
PZ
1291 rmap_item->anon_vma = vma->anon_vma;
1292 get_anon_vma(vma->anon_vma);
81464e30 1293out:
d8ed45c5 1294 mmap_read_unlock(mm);
81464e30
HD
1295 return err;
1296}
1297
31dbd01f
IE
1298/*
1299 * try_to_merge_two_pages - take two identical pages and prepare them
1300 * to be merged into one page.
1301 *
8dd3557a
HD
1302 * This function returns the kpage if we successfully merged two identical
1303 * pages into one ksm page, NULL otherwise.
31dbd01f 1304 *
80e14822 1305 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1306 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1307 */
8dd3557a
HD
1308static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1309 struct page *page,
1310 struct rmap_item *tree_rmap_item,
1311 struct page *tree_page)
31dbd01f 1312{
80e14822 1313 int err;
31dbd01f 1314
80e14822 1315 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1316 if (!err) {
8dd3557a 1317 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1318 tree_page, page);
31dbd01f 1319 /*
81464e30
HD
1320 * If that fails, we have a ksm page with only one pte
1321 * pointing to it: so break it.
31dbd01f 1322 */
4035c07a 1323 if (err)
8dd3557a 1324 break_cow(rmap_item);
31dbd01f 1325 }
80e14822 1326 return err ? NULL : page;
31dbd01f
IE
1327}
1328
2c653d0e
AA
1329static __always_inline
1330bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1331{
1332 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1333 /*
1334 * Check that at least one mapping still exists, otherwise
1335 * there's no much point to merge and share with this
1336 * stable_node, as the underlying tree_page of the other
1337 * sharer is going to be freed soon.
1338 */
1339 return stable_node->rmap_hlist_len &&
1340 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1341}
1342
1343static __always_inline
1344bool is_page_sharing_candidate(struct stable_node *stable_node)
1345{
1346 return __is_page_sharing_candidate(stable_node, 0);
1347}
1348
c01f0b54
CIK
1349static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1350 struct stable_node **_stable_node,
1351 struct rb_root *root,
1352 bool prune_stale_stable_nodes)
2c653d0e 1353{
b4fecc67 1354 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1355 struct hlist_node *hlist_safe;
8dc5ffcd 1356 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1357 int nr = 0;
1358 int found_rmap_hlist_len;
1359
1360 if (!prune_stale_stable_nodes ||
1361 time_before(jiffies, stable_node->chain_prune_time +
1362 msecs_to_jiffies(
1363 ksm_stable_node_chains_prune_millisecs)))
1364 prune_stale_stable_nodes = false;
1365 else
1366 stable_node->chain_prune_time = jiffies;
1367
1368 hlist_for_each_entry_safe(dup, hlist_safe,
1369 &stable_node->hlist, hlist_dup) {
1370 cond_resched();
1371 /*
1372 * We must walk all stable_node_dup to prune the stale
1373 * stable nodes during lookup.
1374 *
1375 * get_ksm_page can drop the nodes from the
1376 * stable_node->hlist if they point to freed pages
1377 * (that's why we do a _safe walk). The "dup"
1378 * stable_node parameter itself will be freed from
1379 * under us if it returns NULL.
1380 */
2cee57d1 1381 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1382 if (!_tree_page)
1383 continue;
1384 nr += 1;
1385 if (is_page_sharing_candidate(dup)) {
1386 if (!found ||
1387 dup->rmap_hlist_len > found_rmap_hlist_len) {
1388 if (found)
8dc5ffcd 1389 put_page(tree_page);
2c653d0e
AA
1390 found = dup;
1391 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1392 tree_page = _tree_page;
2c653d0e 1393
8dc5ffcd 1394 /* skip put_page for found dup */
2c653d0e
AA
1395 if (!prune_stale_stable_nodes)
1396 break;
2c653d0e
AA
1397 continue;
1398 }
1399 }
1400 put_page(_tree_page);
1401 }
1402
80b18dfa
AA
1403 if (found) {
1404 /*
1405 * nr is counting all dups in the chain only if
1406 * prune_stale_stable_nodes is true, otherwise we may
1407 * break the loop at nr == 1 even if there are
1408 * multiple entries.
1409 */
1410 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1411 /*
1412 * If there's not just one entry it would
1413 * corrupt memory, better BUG_ON. In KSM
1414 * context with no lock held it's not even
1415 * fatal.
1416 */
1417 BUG_ON(stable_node->hlist.first->next);
1418
1419 /*
1420 * There's just one entry and it is below the
1421 * deduplication limit so drop the chain.
1422 */
1423 rb_replace_node(&stable_node->node, &found->node,
1424 root);
1425 free_stable_node(stable_node);
1426 ksm_stable_node_chains--;
1427 ksm_stable_node_dups--;
b4fecc67 1428 /*
0ba1d0f7
AA
1429 * NOTE: the caller depends on the stable_node
1430 * to be equal to stable_node_dup if the chain
1431 * was collapsed.
b4fecc67 1432 */
0ba1d0f7
AA
1433 *_stable_node = found;
1434 /*
f0953a1b 1435 * Just for robustness, as stable_node is
0ba1d0f7
AA
1436 * otherwise left as a stable pointer, the
1437 * compiler shall optimize it away at build
1438 * time.
1439 */
1440 stable_node = NULL;
80b18dfa
AA
1441 } else if (stable_node->hlist.first != &found->hlist_dup &&
1442 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1443 /*
80b18dfa
AA
1444 * If the found stable_node dup can accept one
1445 * more future merge (in addition to the one
1446 * that is underway) and is not at the head of
1447 * the chain, put it there so next search will
1448 * be quicker in the !prune_stale_stable_nodes
1449 * case.
1450 *
1451 * NOTE: it would be inaccurate to use nr > 1
1452 * instead of checking the hlist.first pointer
1453 * directly, because in the
1454 * prune_stale_stable_nodes case "nr" isn't
1455 * the position of the found dup in the chain,
1456 * but the total number of dups in the chain.
2c653d0e
AA
1457 */
1458 hlist_del(&found->hlist_dup);
1459 hlist_add_head(&found->hlist_dup,
1460 &stable_node->hlist);
1461 }
1462 }
1463
8dc5ffcd
AA
1464 *_stable_node_dup = found;
1465 return tree_page;
2c653d0e
AA
1466}
1467
1468static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1469 struct rb_root *root)
1470{
1471 if (!is_stable_node_chain(stable_node))
1472 return stable_node;
1473 if (hlist_empty(&stable_node->hlist)) {
1474 free_stable_node_chain(stable_node, root);
1475 return NULL;
1476 }
1477 return hlist_entry(stable_node->hlist.first,
1478 typeof(*stable_node), hlist_dup);
1479}
1480
8dc5ffcd
AA
1481/*
1482 * Like for get_ksm_page, this function can free the *_stable_node and
1483 * *_stable_node_dup if the returned tree_page is NULL.
1484 *
1485 * It can also free and overwrite *_stable_node with the found
1486 * stable_node_dup if the chain is collapsed (in which case
1487 * *_stable_node will be equal to *_stable_node_dup like if the chain
1488 * never existed). It's up to the caller to verify tree_page is not
1489 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1490 *
1491 * *_stable_node_dup is really a second output parameter of this
1492 * function and will be overwritten in all cases, the caller doesn't
1493 * need to initialize it.
1494 */
1495static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1496 struct stable_node **_stable_node,
1497 struct rb_root *root,
1498 bool prune_stale_stable_nodes)
2c653d0e 1499{
b4fecc67 1500 struct stable_node *stable_node = *_stable_node;
2c653d0e
AA
1501 if (!is_stable_node_chain(stable_node)) {
1502 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd 1503 *_stable_node_dup = stable_node;
2cee57d1 1504 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
2c653d0e 1505 }
8dc5ffcd
AA
1506 /*
1507 * _stable_node_dup set to NULL means the stable_node
1508 * reached the ksm_max_page_sharing limit.
1509 */
1510 *_stable_node_dup = NULL;
2c653d0e
AA
1511 return NULL;
1512 }
8dc5ffcd 1513 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1514 prune_stale_stable_nodes);
1515}
1516
8dc5ffcd
AA
1517static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1518 struct stable_node **s_n,
1519 struct rb_root *root)
2c653d0e 1520{
8dc5ffcd 1521 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1522}
1523
8dc5ffcd
AA
1524static __always_inline struct page *chain(struct stable_node **s_n_d,
1525 struct stable_node *s_n,
1526 struct rb_root *root)
2c653d0e 1527{
8dc5ffcd
AA
1528 struct stable_node *old_stable_node = s_n;
1529 struct page *tree_page;
1530
1531 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1532 /* not pruning dups so s_n cannot have changed */
1533 VM_BUG_ON(s_n != old_stable_node);
1534 return tree_page;
2c653d0e
AA
1535}
1536
31dbd01f 1537/*
8dd3557a 1538 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1539 *
1540 * This function checks if there is a page inside the stable tree
1541 * with identical content to the page that we are scanning right now.
1542 *
7b6ba2c7 1543 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1544 * NULL otherwise.
1545 */
62b61f61 1546static struct page *stable_tree_search(struct page *page)
31dbd01f 1547{
90bd6fd3 1548 int nid;
ef53d16c 1549 struct rb_root *root;
4146d2d6
HD
1550 struct rb_node **new;
1551 struct rb_node *parent;
2c653d0e 1552 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1553 struct stable_node *page_node;
31dbd01f 1554
4146d2d6
HD
1555 page_node = page_stable_node(page);
1556 if (page_node && page_node->head != &migrate_nodes) {
1557 /* ksm page forked */
08beca44 1558 get_page(page);
62b61f61 1559 return page;
08beca44
HD
1560 }
1561
90bd6fd3 1562 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1563 root = root_stable_tree + nid;
4146d2d6 1564again:
ef53d16c 1565 new = &root->rb_node;
4146d2d6 1566 parent = NULL;
90bd6fd3 1567
4146d2d6 1568 while (*new) {
4035c07a 1569 struct page *tree_page;
31dbd01f
IE
1570 int ret;
1571
08beca44 1572 cond_resched();
4146d2d6 1573 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1574 stable_node_any = NULL;
8dc5ffcd 1575 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1576 /*
1577 * NOTE: stable_node may have been freed by
1578 * chain_prune() if the returned stable_node_dup is
1579 * not NULL. stable_node_dup may have been inserted in
1580 * the rbtree instead as a regular stable_node (in
1581 * order to collapse the stable_node chain if a single
0ba1d0f7
AA
1582 * stable_node dup was found in it). In such case the
1583 * stable_node is overwritten by the calleee to point
1584 * to the stable_node_dup that was collapsed in the
1585 * stable rbtree and stable_node will be equal to
1586 * stable_node_dup like if the chain never existed.
b4fecc67 1587 */
2c653d0e
AA
1588 if (!stable_node_dup) {
1589 /*
1590 * Either all stable_node dups were full in
1591 * this stable_node chain, or this chain was
1592 * empty and should be rb_erased.
1593 */
1594 stable_node_any = stable_node_dup_any(stable_node,
1595 root);
1596 if (!stable_node_any) {
1597 /* rb_erase just run */
1598 goto again;
1599 }
1600 /*
1601 * Take any of the stable_node dups page of
1602 * this stable_node chain to let the tree walk
1603 * continue. All KSM pages belonging to the
1604 * stable_node dups in a stable_node chain
1605 * have the same content and they're
457aef94 1606 * write protected at all times. Any will work
2c653d0e
AA
1607 * fine to continue the walk.
1608 */
2cee57d1
YS
1609 tree_page = get_ksm_page(stable_node_any,
1610 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1611 }
1612 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1613 if (!tree_page) {
1614 /*
1615 * If we walked over a stale stable_node,
1616 * get_ksm_page() will call rb_erase() and it
1617 * may rebalance the tree from under us. So
1618 * restart the search from scratch. Returning
1619 * NULL would be safe too, but we'd generate
1620 * false negative insertions just because some
1621 * stable_node was stale.
1622 */
1623 goto again;
1624 }
31dbd01f 1625
4035c07a 1626 ret = memcmp_pages(page, tree_page);
c8d6553b 1627 put_page(tree_page);
31dbd01f 1628
4146d2d6 1629 parent = *new;
c8d6553b 1630 if (ret < 0)
4146d2d6 1631 new = &parent->rb_left;
c8d6553b 1632 else if (ret > 0)
4146d2d6 1633 new = &parent->rb_right;
c8d6553b 1634 else {
2c653d0e
AA
1635 if (page_node) {
1636 VM_BUG_ON(page_node->head != &migrate_nodes);
1637 /*
1638 * Test if the migrated page should be merged
1639 * into a stable node dup. If the mapcount is
1640 * 1 we can migrate it with another KSM page
1641 * without adding it to the chain.
1642 */
1643 if (page_mapcount(page) > 1)
1644 goto chain_append;
1645 }
1646
1647 if (!stable_node_dup) {
1648 /*
1649 * If the stable_node is a chain and
1650 * we got a payload match in memcmp
1651 * but we cannot merge the scanned
1652 * page in any of the existing
1653 * stable_node dups because they're
1654 * all full, we need to wait the
1655 * scanned page to find itself a match
1656 * in the unstable tree to create a
1657 * brand new KSM page to add later to
1658 * the dups of this stable_node.
1659 */
1660 return NULL;
1661 }
1662
c8d6553b
HD
1663 /*
1664 * Lock and unlock the stable_node's page (which
1665 * might already have been migrated) so that page
1666 * migration is sure to notice its raised count.
1667 * It would be more elegant to return stable_node
1668 * than kpage, but that involves more changes.
1669 */
2cee57d1
YS
1670 tree_page = get_ksm_page(stable_node_dup,
1671 GET_KSM_PAGE_TRYLOCK);
1672
1673 if (PTR_ERR(tree_page) == -EBUSY)
1674 return ERR_PTR(-EBUSY);
1675
2c653d0e
AA
1676 if (unlikely(!tree_page))
1677 /*
1678 * The tree may have been rebalanced,
1679 * so re-evaluate parent and new.
1680 */
4146d2d6 1681 goto again;
2c653d0e
AA
1682 unlock_page(tree_page);
1683
1684 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1685 NUMA(stable_node_dup->nid)) {
1686 put_page(tree_page);
1687 goto replace;
1688 }
1689 return tree_page;
c8d6553b 1690 }
31dbd01f
IE
1691 }
1692
4146d2d6
HD
1693 if (!page_node)
1694 return NULL;
1695
1696 list_del(&page_node->list);
1697 DO_NUMA(page_node->nid = nid);
1698 rb_link_node(&page_node->node, parent, new);
ef53d16c 1699 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1700out:
1701 if (is_page_sharing_candidate(page_node)) {
1702 get_page(page);
1703 return page;
1704 } else
1705 return NULL;
4146d2d6
HD
1706
1707replace:
b4fecc67
AA
1708 /*
1709 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1710 * stable_node has been updated to be the new regular
1711 * stable_node. A collapse of the chain is indistinguishable
1712 * from the case there was no chain in the stable
1713 * rbtree. Otherwise stable_node is the chain and
1714 * stable_node_dup is the dup to replace.
b4fecc67 1715 */
0ba1d0f7 1716 if (stable_node_dup == stable_node) {
b4fecc67
AA
1717 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1718 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1719 /* there is no chain */
1720 if (page_node) {
1721 VM_BUG_ON(page_node->head != &migrate_nodes);
1722 list_del(&page_node->list);
1723 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1724 rb_replace_node(&stable_node_dup->node,
1725 &page_node->node,
2c653d0e
AA
1726 root);
1727 if (is_page_sharing_candidate(page_node))
1728 get_page(page);
1729 else
1730 page = NULL;
1731 } else {
b4fecc67 1732 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1733 page = NULL;
1734 }
4146d2d6 1735 } else {
2c653d0e
AA
1736 VM_BUG_ON(!is_stable_node_chain(stable_node));
1737 __stable_node_dup_del(stable_node_dup);
1738 if (page_node) {
1739 VM_BUG_ON(page_node->head != &migrate_nodes);
1740 list_del(&page_node->list);
1741 DO_NUMA(page_node->nid = nid);
1742 stable_node_chain_add_dup(page_node, stable_node);
1743 if (is_page_sharing_candidate(page_node))
1744 get_page(page);
1745 else
1746 page = NULL;
1747 } else {
1748 page = NULL;
1749 }
4146d2d6 1750 }
2c653d0e
AA
1751 stable_node_dup->head = &migrate_nodes;
1752 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1753 return page;
2c653d0e
AA
1754
1755chain_append:
1756 /* stable_node_dup could be null if it reached the limit */
1757 if (!stable_node_dup)
1758 stable_node_dup = stable_node_any;
b4fecc67
AA
1759 /*
1760 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1761 * stable_node has been updated to be the new regular
1762 * stable_node. A collapse of the chain is indistinguishable
1763 * from the case there was no chain in the stable
1764 * rbtree. Otherwise stable_node is the chain and
1765 * stable_node_dup is the dup to replace.
b4fecc67 1766 */
0ba1d0f7 1767 if (stable_node_dup == stable_node) {
b4fecc67 1768 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1769 /* chain is missing so create it */
1770 stable_node = alloc_stable_node_chain(stable_node_dup,
1771 root);
1772 if (!stable_node)
1773 return NULL;
1774 }
1775 /*
1776 * Add this stable_node dup that was
1777 * migrated to the stable_node chain
1778 * of the current nid for this page
1779 * content.
1780 */
b4fecc67 1781 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1782 VM_BUG_ON(page_node->head != &migrate_nodes);
1783 list_del(&page_node->list);
1784 DO_NUMA(page_node->nid = nid);
1785 stable_node_chain_add_dup(page_node, stable_node);
1786 goto out;
31dbd01f
IE
1787}
1788
1789/*
e850dcf5 1790 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1791 * into the stable tree.
1792 *
7b6ba2c7
HD
1793 * This function returns the stable tree node just allocated on success,
1794 * NULL otherwise.
31dbd01f 1795 */
7b6ba2c7 1796static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1797{
90bd6fd3
PH
1798 int nid;
1799 unsigned long kpfn;
ef53d16c 1800 struct rb_root *root;
90bd6fd3 1801 struct rb_node **new;
f2e5ff85 1802 struct rb_node *parent;
2c653d0e
AA
1803 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1804 bool need_chain = false;
31dbd01f 1805
90bd6fd3
PH
1806 kpfn = page_to_pfn(kpage);
1807 nid = get_kpfn_nid(kpfn);
ef53d16c 1808 root = root_stable_tree + nid;
f2e5ff85
AA
1809again:
1810 parent = NULL;
ef53d16c 1811 new = &root->rb_node;
90bd6fd3 1812
31dbd01f 1813 while (*new) {
4035c07a 1814 struct page *tree_page;
31dbd01f
IE
1815 int ret;
1816
08beca44 1817 cond_resched();
7b6ba2c7 1818 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1819 stable_node_any = NULL;
8dc5ffcd 1820 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1821 if (!stable_node_dup) {
1822 /*
1823 * Either all stable_node dups were full in
1824 * this stable_node chain, or this chain was
1825 * empty and should be rb_erased.
1826 */
1827 stable_node_any = stable_node_dup_any(stable_node,
1828 root);
1829 if (!stable_node_any) {
1830 /* rb_erase just run */
1831 goto again;
1832 }
1833 /*
1834 * Take any of the stable_node dups page of
1835 * this stable_node chain to let the tree walk
1836 * continue. All KSM pages belonging to the
1837 * stable_node dups in a stable_node chain
1838 * have the same content and they're
457aef94 1839 * write protected at all times. Any will work
2c653d0e
AA
1840 * fine to continue the walk.
1841 */
2cee57d1
YS
1842 tree_page = get_ksm_page(stable_node_any,
1843 GET_KSM_PAGE_NOLOCK);
2c653d0e
AA
1844 }
1845 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1846 if (!tree_page) {
1847 /*
1848 * If we walked over a stale stable_node,
1849 * get_ksm_page() will call rb_erase() and it
1850 * may rebalance the tree from under us. So
1851 * restart the search from scratch. Returning
1852 * NULL would be safe too, but we'd generate
1853 * false negative insertions just because some
1854 * stable_node was stale.
1855 */
1856 goto again;
1857 }
31dbd01f 1858
4035c07a
HD
1859 ret = memcmp_pages(kpage, tree_page);
1860 put_page(tree_page);
31dbd01f
IE
1861
1862 parent = *new;
1863 if (ret < 0)
1864 new = &parent->rb_left;
1865 else if (ret > 0)
1866 new = &parent->rb_right;
1867 else {
2c653d0e
AA
1868 need_chain = true;
1869 break;
31dbd01f
IE
1870 }
1871 }
1872
2c653d0e
AA
1873 stable_node_dup = alloc_stable_node();
1874 if (!stable_node_dup)
7b6ba2c7 1875 return NULL;
31dbd01f 1876
2c653d0e
AA
1877 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1878 stable_node_dup->kpfn = kpfn;
1879 set_page_stable_node(kpage, stable_node_dup);
1880 stable_node_dup->rmap_hlist_len = 0;
1881 DO_NUMA(stable_node_dup->nid = nid);
1882 if (!need_chain) {
1883 rb_link_node(&stable_node_dup->node, parent, new);
1884 rb_insert_color(&stable_node_dup->node, root);
1885 } else {
1886 if (!is_stable_node_chain(stable_node)) {
1887 struct stable_node *orig = stable_node;
1888 /* chain is missing so create it */
1889 stable_node = alloc_stable_node_chain(orig, root);
1890 if (!stable_node) {
1891 free_stable_node(stable_node_dup);
1892 return NULL;
1893 }
1894 }
1895 stable_node_chain_add_dup(stable_node_dup, stable_node);
1896 }
08beca44 1897
2c653d0e 1898 return stable_node_dup;
31dbd01f
IE
1899}
1900
1901/*
8dd3557a
HD
1902 * unstable_tree_search_insert - search for identical page,
1903 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1904 *
1905 * This function searches for a page in the unstable tree identical to the
1906 * page currently being scanned; and if no identical page is found in the
1907 * tree, we insert rmap_item as a new object into the unstable tree.
1908 *
1909 * This function returns pointer to rmap_item found to be identical
1910 * to the currently scanned page, NULL otherwise.
1911 *
1912 * This function does both searching and inserting, because they share
1913 * the same walking algorithm in an rbtree.
1914 */
8dd3557a
HD
1915static
1916struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1917 struct page *page,
1918 struct page **tree_pagep)
31dbd01f 1919{
90bd6fd3
PH
1920 struct rb_node **new;
1921 struct rb_root *root;
31dbd01f 1922 struct rb_node *parent = NULL;
90bd6fd3
PH
1923 int nid;
1924
1925 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1926 root = root_unstable_tree + nid;
90bd6fd3 1927 new = &root->rb_node;
31dbd01f
IE
1928
1929 while (*new) {
1930 struct rmap_item *tree_rmap_item;
8dd3557a 1931 struct page *tree_page;
31dbd01f
IE
1932 int ret;
1933
d178f27f 1934 cond_resched();
31dbd01f 1935 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1936 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1937 if (!tree_page)
31dbd01f
IE
1938 return NULL;
1939
1940 /*
8dd3557a 1941 * Don't substitute a ksm page for a forked page.
31dbd01f 1942 */
8dd3557a
HD
1943 if (page == tree_page) {
1944 put_page(tree_page);
31dbd01f
IE
1945 return NULL;
1946 }
1947
8dd3557a 1948 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1949
1950 parent = *new;
1951 if (ret < 0) {
8dd3557a 1952 put_page(tree_page);
31dbd01f
IE
1953 new = &parent->rb_left;
1954 } else if (ret > 0) {
8dd3557a 1955 put_page(tree_page);
31dbd01f 1956 new = &parent->rb_right;
b599cbdf
HD
1957 } else if (!ksm_merge_across_nodes &&
1958 page_to_nid(tree_page) != nid) {
1959 /*
1960 * If tree_page has been migrated to another NUMA node,
1961 * it will be flushed out and put in the right unstable
1962 * tree next time: only merge with it when across_nodes.
1963 */
1964 put_page(tree_page);
1965 return NULL;
31dbd01f 1966 } else {
8dd3557a 1967 *tree_pagep = tree_page;
31dbd01f
IE
1968 return tree_rmap_item;
1969 }
1970 }
1971
7b6ba2c7 1972 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1973 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1974 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1975 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1976 rb_insert_color(&rmap_item->node, root);
31dbd01f 1977
473b0ce4 1978 ksm_pages_unshared++;
31dbd01f
IE
1979 return NULL;
1980}
1981
1982/*
1983 * stable_tree_append - add another rmap_item to the linked list of
1984 * rmap_items hanging off a given node of the stable tree, all sharing
1985 * the same ksm page.
1986 */
1987static void stable_tree_append(struct rmap_item *rmap_item,
2c653d0e
AA
1988 struct stable_node *stable_node,
1989 bool max_page_sharing_bypass)
31dbd01f 1990{
2c653d0e
AA
1991 /*
1992 * rmap won't find this mapping if we don't insert the
1993 * rmap_item in the right stable_node
1994 * duplicate. page_migration could break later if rmap breaks,
1995 * so we can as well crash here. We really need to check for
1996 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
457aef94 1997 * for other negative values as an underflow if detected here
2c653d0e
AA
1998 * for the first time (and not when decreasing rmap_hlist_len)
1999 * would be sign of memory corruption in the stable_node.
2000 */
2001 BUG_ON(stable_node->rmap_hlist_len < 0);
2002
2003 stable_node->rmap_hlist_len++;
2004 if (!max_page_sharing_bypass)
2005 /* possibly non fatal but unexpected overflow, only warn */
2006 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2007 ksm_max_page_sharing);
2008
7b6ba2c7 2009 rmap_item->head = stable_node;
31dbd01f 2010 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 2011 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 2012
7b6ba2c7
HD
2013 if (rmap_item->hlist.next)
2014 ksm_pages_sharing++;
2015 else
2016 ksm_pages_shared++;
31dbd01f
IE
2017}
2018
2019/*
81464e30
HD
2020 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2021 * if not, compare checksum to previous and if it's the same, see if page can
2022 * be inserted into the unstable tree, or merged with a page already there and
2023 * both transferred to the stable tree.
31dbd01f
IE
2024 *
2025 * @page: the page that we are searching identical page to.
2026 * @rmap_item: the reverse mapping into the virtual address of this page
2027 */
2028static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2029{
4b22927f 2030 struct mm_struct *mm = rmap_item->mm;
31dbd01f 2031 struct rmap_item *tree_rmap_item;
8dd3557a 2032 struct page *tree_page = NULL;
7b6ba2c7 2033 struct stable_node *stable_node;
8dd3557a 2034 struct page *kpage;
31dbd01f
IE
2035 unsigned int checksum;
2036 int err;
2c653d0e 2037 bool max_page_sharing_bypass = false;
31dbd01f 2038
4146d2d6
HD
2039 stable_node = page_stable_node(page);
2040 if (stable_node) {
2041 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2042 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2043 NUMA(stable_node->nid)) {
2044 stable_node_dup_del(stable_node);
4146d2d6
HD
2045 stable_node->head = &migrate_nodes;
2046 list_add(&stable_node->list, stable_node->head);
2047 }
2048 if (stable_node->head != &migrate_nodes &&
2049 rmap_item->head == stable_node)
2050 return;
2c653d0e
AA
2051 /*
2052 * If it's a KSM fork, allow it to go over the sharing limit
2053 * without warnings.
2054 */
2055 if (!is_page_sharing_candidate(stable_node))
2056 max_page_sharing_bypass = true;
4146d2d6 2057 }
31dbd01f
IE
2058
2059 /* We first start with searching the page inside the stable tree */
62b61f61 2060 kpage = stable_tree_search(page);
4146d2d6
HD
2061 if (kpage == page && rmap_item->head == stable_node) {
2062 put_page(kpage);
2063 return;
2064 }
2065
2066 remove_rmap_item_from_tree(rmap_item);
2067
62b61f61 2068 if (kpage) {
2cee57d1
YS
2069 if (PTR_ERR(kpage) == -EBUSY)
2070 return;
2071
08beca44 2072 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2073 if (!err) {
2074 /*
2075 * The page was successfully merged:
2076 * add its rmap_item to the stable tree.
2077 */
5ad64688 2078 lock_page(kpage);
2c653d0e
AA
2079 stable_tree_append(rmap_item, page_stable_node(kpage),
2080 max_page_sharing_bypass);
5ad64688 2081 unlock_page(kpage);
31dbd01f 2082 }
8dd3557a 2083 put_page(kpage);
31dbd01f
IE
2084 return;
2085 }
2086
2087 /*
4035c07a
HD
2088 * If the hash value of the page has changed from the last time
2089 * we calculated it, this page is changing frequently: therefore we
2090 * don't want to insert it in the unstable tree, and we don't want
2091 * to waste our time searching for something identical to it there.
31dbd01f
IE
2092 */
2093 checksum = calc_checksum(page);
2094 if (rmap_item->oldchecksum != checksum) {
2095 rmap_item->oldchecksum = checksum;
2096 return;
2097 }
2098
e86c59b1
CI
2099 /*
2100 * Same checksum as an empty page. We attempt to merge it with the
2101 * appropriate zero page if the user enabled this via sysfs.
2102 */
2103 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2104 struct vm_area_struct *vma;
2105
d8ed45c5 2106 mmap_read_lock(mm);
4b22927f 2107 vma = find_mergeable_vma(mm, rmap_item->address);
56df70a6
MS
2108 if (vma) {
2109 err = try_to_merge_one_page(vma, page,
2110 ZERO_PAGE(rmap_item->address));
2111 } else {
2112 /*
2113 * If the vma is out of date, we do not need to
2114 * continue.
2115 */
2116 err = 0;
2117 }
d8ed45c5 2118 mmap_read_unlock(mm);
e86c59b1
CI
2119 /*
2120 * In case of failure, the page was not really empty, so we
2121 * need to continue. Otherwise we're done.
2122 */
2123 if (!err)
2124 return;
2125 }
8dd3557a
HD
2126 tree_rmap_item =
2127 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2128 if (tree_rmap_item) {
77da2ba0
CI
2129 bool split;
2130
8dd3557a
HD
2131 kpage = try_to_merge_two_pages(rmap_item, page,
2132 tree_rmap_item, tree_page);
77da2ba0
CI
2133 /*
2134 * If both pages we tried to merge belong to the same compound
2135 * page, then we actually ended up increasing the reference
2136 * count of the same compound page twice, and split_huge_page
2137 * failed.
2138 * Here we set a flag if that happened, and we use it later to
2139 * try split_huge_page again. Since we call put_page right
2140 * afterwards, the reference count will be correct and
2141 * split_huge_page should succeed.
2142 */
2143 split = PageTransCompound(page)
2144 && compound_head(page) == compound_head(tree_page);
8dd3557a 2145 put_page(tree_page);
8dd3557a 2146 if (kpage) {
bc56620b
HD
2147 /*
2148 * The pages were successfully merged: insert new
2149 * node in the stable tree and add both rmap_items.
2150 */
5ad64688 2151 lock_page(kpage);
7b6ba2c7
HD
2152 stable_node = stable_tree_insert(kpage);
2153 if (stable_node) {
2c653d0e
AA
2154 stable_tree_append(tree_rmap_item, stable_node,
2155 false);
2156 stable_tree_append(rmap_item, stable_node,
2157 false);
7b6ba2c7 2158 }
5ad64688 2159 unlock_page(kpage);
7b6ba2c7 2160
31dbd01f
IE
2161 /*
2162 * If we fail to insert the page into the stable tree,
2163 * we will have 2 virtual addresses that are pointing
2164 * to a ksm page left outside the stable tree,
2165 * in which case we need to break_cow on both.
2166 */
7b6ba2c7 2167 if (!stable_node) {
8dd3557a
HD
2168 break_cow(tree_rmap_item);
2169 break_cow(rmap_item);
31dbd01f 2170 }
77da2ba0
CI
2171 } else if (split) {
2172 /*
2173 * We are here if we tried to merge two pages and
2174 * failed because they both belonged to the same
2175 * compound page. We will split the page now, but no
2176 * merging will take place.
2177 * We do not want to add the cost of a full lock; if
2178 * the page is locked, it is better to skip it and
2179 * perhaps try again later.
2180 */
2181 if (!trylock_page(page))
2182 return;
2183 split_huge_page(page);
2184 unlock_page(page);
31dbd01f 2185 }
31dbd01f
IE
2186 }
2187}
2188
2189static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2190 struct rmap_item **rmap_list,
31dbd01f
IE
2191 unsigned long addr)
2192{
2193 struct rmap_item *rmap_item;
2194
6514d511
HD
2195 while (*rmap_list) {
2196 rmap_item = *rmap_list;
93d17715 2197 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2198 return rmap_item;
31dbd01f
IE
2199 if (rmap_item->address > addr)
2200 break;
6514d511 2201 *rmap_list = rmap_item->rmap_list;
31dbd01f 2202 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2203 free_rmap_item(rmap_item);
2204 }
2205
2206 rmap_item = alloc_rmap_item();
2207 if (rmap_item) {
2208 /* It has already been zeroed */
2209 rmap_item->mm = mm_slot->mm;
2210 rmap_item->address = addr;
6514d511
HD
2211 rmap_item->rmap_list = *rmap_list;
2212 *rmap_list = rmap_item;
31dbd01f
IE
2213 }
2214 return rmap_item;
2215}
2216
2217static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2218{
2219 struct mm_struct *mm;
2220 struct mm_slot *slot;
2221 struct vm_area_struct *vma;
2222 struct rmap_item *rmap_item;
90bd6fd3 2223 int nid;
31dbd01f
IE
2224
2225 if (list_empty(&ksm_mm_head.mm_list))
2226 return NULL;
2227
2228 slot = ksm_scan.mm_slot;
2229 if (slot == &ksm_mm_head) {
2919bfd0
HD
2230 /*
2231 * A number of pages can hang around indefinitely on per-cpu
2232 * pagevecs, raised page count preventing write_protect_page
2233 * from merging them. Though it doesn't really matter much,
2234 * it is puzzling to see some stuck in pages_volatile until
2235 * other activity jostles them out, and they also prevented
2236 * LTP's KSM test from succeeding deterministically; so drain
2237 * them here (here rather than on entry to ksm_do_scan(),
2238 * so we don't IPI too often when pages_to_scan is set low).
2239 */
2240 lru_add_drain_all();
2241
4146d2d6
HD
2242 /*
2243 * Whereas stale stable_nodes on the stable_tree itself
2244 * get pruned in the regular course of stable_tree_search(),
2245 * those moved out to the migrate_nodes list can accumulate:
2246 * so prune them once before each full scan.
2247 */
2248 if (!ksm_merge_across_nodes) {
03640418 2249 struct stable_node *stable_node, *next;
4146d2d6
HD
2250 struct page *page;
2251
03640418
GT
2252 list_for_each_entry_safe(stable_node, next,
2253 &migrate_nodes, list) {
2cee57d1
YS
2254 page = get_ksm_page(stable_node,
2255 GET_KSM_PAGE_NOLOCK);
4146d2d6
HD
2256 if (page)
2257 put_page(page);
2258 cond_resched();
2259 }
2260 }
2261
ef53d16c 2262 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2263 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2264
2265 spin_lock(&ksm_mmlist_lock);
2266 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2267 ksm_scan.mm_slot = slot;
2268 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2269 /*
2270 * Although we tested list_empty() above, a racing __ksm_exit
2271 * of the last mm on the list may have removed it since then.
2272 */
2273 if (slot == &ksm_mm_head)
2274 return NULL;
31dbd01f
IE
2275next_mm:
2276 ksm_scan.address = 0;
6514d511 2277 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2278 }
2279
2280 mm = slot->mm;
d8ed45c5 2281 mmap_read_lock(mm);
9ba69294
HD
2282 if (ksm_test_exit(mm))
2283 vma = NULL;
2284 else
2285 vma = find_vma(mm, ksm_scan.address);
2286
2287 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2288 if (!(vma->vm_flags & VM_MERGEABLE))
2289 continue;
2290 if (ksm_scan.address < vma->vm_start)
2291 ksm_scan.address = vma->vm_start;
2292 if (!vma->anon_vma)
2293 ksm_scan.address = vma->vm_end;
2294
2295 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2296 if (ksm_test_exit(mm))
2297 break;
31dbd01f 2298 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
2299 if (IS_ERR_OR_NULL(*page)) {
2300 ksm_scan.address += PAGE_SIZE;
2301 cond_resched();
2302 continue;
2303 }
f765f540 2304 if (PageAnon(*page)) {
31dbd01f
IE
2305 flush_anon_page(vma, *page, ksm_scan.address);
2306 flush_dcache_page(*page);
2307 rmap_item = get_next_rmap_item(slot,
6514d511 2308 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2309 if (rmap_item) {
6514d511
HD
2310 ksm_scan.rmap_list =
2311 &rmap_item->rmap_list;
31dbd01f
IE
2312 ksm_scan.address += PAGE_SIZE;
2313 } else
2314 put_page(*page);
d8ed45c5 2315 mmap_read_unlock(mm);
31dbd01f
IE
2316 return rmap_item;
2317 }
21ae5b01 2318 put_page(*page);
31dbd01f
IE
2319 ksm_scan.address += PAGE_SIZE;
2320 cond_resched();
2321 }
2322 }
2323
9ba69294
HD
2324 if (ksm_test_exit(mm)) {
2325 ksm_scan.address = 0;
6514d511 2326 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2327 }
31dbd01f
IE
2328 /*
2329 * Nuke all the rmap_items that are above this current rmap:
2330 * because there were no VM_MERGEABLE vmas with such addresses.
2331 */
420be4ed 2332 remove_trailing_rmap_items(ksm_scan.rmap_list);
31dbd01f
IE
2333
2334 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2335 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2336 struct mm_slot, mm_list);
2337 if (ksm_scan.address == 0) {
2338 /*
c1e8d7c6 2339 * We've completed a full scan of all vmas, holding mmap_lock
cd551f97
HD
2340 * throughout, and found no VM_MERGEABLE: so do the same as
2341 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2342 * This applies either when cleaning up after __ksm_exit
2343 * (but beware: we can reach here even before __ksm_exit),
2344 * or when all VM_MERGEABLE areas have been unmapped (and
c1e8d7c6 2345 * mmap_lock then protects against race with MADV_MERGEABLE).
cd551f97 2346 */
4ca3a69b 2347 hash_del(&slot->link);
cd551f97 2348 list_del(&slot->mm_list);
9ba69294
HD
2349 spin_unlock(&ksm_mmlist_lock);
2350
cd551f97
HD
2351 free_mm_slot(slot);
2352 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
d8ed45c5 2353 mmap_read_unlock(mm);
9ba69294
HD
2354 mmdrop(mm);
2355 } else {
d8ed45c5 2356 mmap_read_unlock(mm);
7496fea9 2357 /*
3e4e28c5 2358 * mmap_read_unlock(mm) first because after
7496fea9
ZC
2359 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2360 * already have been freed under us by __ksm_exit()
2361 * because the "mm_slot" is still hashed and
2362 * ksm_scan.mm_slot doesn't point to it anymore.
2363 */
2364 spin_unlock(&ksm_mmlist_lock);
cd551f97 2365 }
31dbd01f
IE
2366
2367 /* Repeat until we've completed scanning the whole list */
cd551f97 2368 slot = ksm_scan.mm_slot;
31dbd01f
IE
2369 if (slot != &ksm_mm_head)
2370 goto next_mm;
2371
31dbd01f
IE
2372 ksm_scan.seqnr++;
2373 return NULL;
2374}
2375
2376/**
2377 * ksm_do_scan - the ksm scanner main worker function.
b7701a5f 2378 * @scan_npages: number of pages we want to scan before we return.
31dbd01f
IE
2379 */
2380static void ksm_do_scan(unsigned int scan_npages)
2381{
2382 struct rmap_item *rmap_item;
3f649ab7 2383 struct page *page;
31dbd01f 2384
878aee7d 2385 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2386 cond_resched();
2387 rmap_item = scan_get_next_rmap_item(&page);
2388 if (!rmap_item)
2389 return;
4146d2d6 2390 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2391 put_page(page);
2392 }
2393}
2394
6e158384
HD
2395static int ksmd_should_run(void)
2396{
2397 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2398}
2399
31dbd01f
IE
2400static int ksm_scan_thread(void *nothing)
2401{
fcf9a0ef
KT
2402 unsigned int sleep_ms;
2403
878aee7d 2404 set_freezable();
339aa624 2405 set_user_nice(current, 5);
31dbd01f
IE
2406
2407 while (!kthread_should_stop()) {
6e158384 2408 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2409 wait_while_offlining();
6e158384 2410 if (ksmd_should_run())
31dbd01f 2411 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2412 mutex_unlock(&ksm_thread_mutex);
2413
878aee7d
AA
2414 try_to_freeze();
2415
6e158384 2416 if (ksmd_should_run()) {
fcf9a0ef 2417 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
b0c28a28
AV
2418 if (sleep_ms >= 1000)
2419 wait_event_interruptible_timeout(ksm_iter_wait,
2420 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2421 msecs_to_jiffies(round_jiffies_relative(sleep_ms)));
2422 else
2423 wait_event_interruptible_timeout(ksm_iter_wait,
2424 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2425 msecs_to_jiffies(sleep_ms));
31dbd01f 2426 } else {
878aee7d 2427 wait_event_freezable(ksm_thread_wait,
6e158384 2428 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2429 }
2430 }
2431 return 0;
2432}
2433
f8af4da3
HD
2434int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2435 unsigned long end, int advice, unsigned long *vm_flags)
2436{
2437 struct mm_struct *mm = vma->vm_mm;
d952b791 2438 int err;
f8af4da3
HD
2439
2440 switch (advice) {
2441 case MADV_MERGEABLE:
2442 /*
2443 * Be somewhat over-protective for now!
2444 */
2445 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2446 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2447 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2448 return 0; /* just ignore the advice */
2449
e1fb4a08
DJ
2450 if (vma_is_dax(vma))
2451 return 0;
2452
12564485
SA
2453#ifdef VM_SAO
2454 if (*vm_flags & VM_SAO)
2455 return 0;
2456#endif
74a04967
KA
2457#ifdef VM_SPARC_ADI
2458 if (*vm_flags & VM_SPARC_ADI)
2459 return 0;
2460#endif
cc2383ec 2461
d952b791
HD
2462 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2463 err = __ksm_enter(mm);
2464 if (err)
2465 return err;
2466 }
f8af4da3
HD
2467
2468 *vm_flags |= VM_MERGEABLE;
2469 break;
2470
2471 case MADV_UNMERGEABLE:
2472 if (!(*vm_flags & VM_MERGEABLE))
2473 return 0; /* just ignore the advice */
2474
d952b791
HD
2475 if (vma->anon_vma) {
2476 err = unmerge_ksm_pages(vma, start, end);
2477 if (err)
2478 return err;
2479 }
f8af4da3
HD
2480
2481 *vm_flags &= ~VM_MERGEABLE;
2482 break;
2483 }
2484
2485 return 0;
2486}
33cf1707 2487EXPORT_SYMBOL_GPL(ksm_madvise);
f8af4da3
HD
2488
2489int __ksm_enter(struct mm_struct *mm)
2490{
6e158384
HD
2491 struct mm_slot *mm_slot;
2492 int needs_wakeup;
2493
2494 mm_slot = alloc_mm_slot();
31dbd01f
IE
2495 if (!mm_slot)
2496 return -ENOMEM;
2497
6e158384
HD
2498 /* Check ksm_run too? Would need tighter locking */
2499 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2500
31dbd01f
IE
2501 spin_lock(&ksm_mmlist_lock);
2502 insert_to_mm_slots_hash(mm, mm_slot);
2503 /*
cbf86cfe
HD
2504 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2505 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2506 * down a little; when fork is followed by immediate exec, we don't
2507 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2508 *
2509 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2510 * scanning cursor, otherwise KSM pages in newly forked mms will be
2511 * missed: then we might as well insert at the end of the list.
31dbd01f 2512 */
cbf86cfe
HD
2513 if (ksm_run & KSM_RUN_UNMERGE)
2514 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2515 else
2516 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2517 spin_unlock(&ksm_mmlist_lock);
2518
f8af4da3 2519 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2520 mmgrab(mm);
6e158384
HD
2521
2522 if (needs_wakeup)
2523 wake_up_interruptible(&ksm_thread_wait);
2524
f8af4da3
HD
2525 return 0;
2526}
2527
1c2fb7a4 2528void __ksm_exit(struct mm_struct *mm)
f8af4da3 2529{
cd551f97 2530 struct mm_slot *mm_slot;
9ba69294 2531 int easy_to_free = 0;
cd551f97 2532
31dbd01f 2533 /*
9ba69294
HD
2534 * This process is exiting: if it's straightforward (as is the
2535 * case when ksmd was never running), free mm_slot immediately.
2536 * But if it's at the cursor or has rmap_items linked to it, use
c1e8d7c6 2537 * mmap_lock to synchronize with any break_cows before pagetables
9ba69294
HD
2538 * are freed, and leave the mm_slot on the list for ksmd to free.
2539 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2540 */
9ba69294 2541
cd551f97
HD
2542 spin_lock(&ksm_mmlist_lock);
2543 mm_slot = get_mm_slot(mm);
9ba69294 2544 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2545 if (!mm_slot->rmap_list) {
4ca3a69b 2546 hash_del(&mm_slot->link);
9ba69294
HD
2547 list_del(&mm_slot->mm_list);
2548 easy_to_free = 1;
2549 } else {
2550 list_move(&mm_slot->mm_list,
2551 &ksm_scan.mm_slot->mm_list);
2552 }
cd551f97 2553 }
cd551f97
HD
2554 spin_unlock(&ksm_mmlist_lock);
2555
9ba69294
HD
2556 if (easy_to_free) {
2557 free_mm_slot(mm_slot);
2558 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2559 mmdrop(mm);
2560 } else if (mm_slot) {
d8ed45c5
ML
2561 mmap_write_lock(mm);
2562 mmap_write_unlock(mm);
9ba69294 2563 }
31dbd01f
IE
2564}
2565
cbf86cfe 2566struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2567 struct vm_area_struct *vma, unsigned long address)
2568{
cbf86cfe 2569 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
2570 struct page *new_page;
2571
cbf86cfe
HD
2572 if (PageKsm(page)) {
2573 if (page_stable_node(page) &&
2574 !(ksm_run & KSM_RUN_UNMERGE))
2575 return page; /* no need to copy it */
2576 } else if (!anon_vma) {
2577 return page; /* no need to copy it */
2578 } else if (anon_vma->root == vma->anon_vma->root &&
2579 page->index == linear_page_index(vma, address)) {
2580 return page; /* still no need to copy it */
2581 }
2582 if (!PageUptodate(page))
2583 return page; /* let do_swap_page report the error */
2584
5ad64688 2585 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
62fdb163
HD
2586 if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2587 put_page(new_page);
2588 new_page = NULL;
2589 }
5ad64688
HD
2590 if (new_page) {
2591 copy_user_highpage(new_page, page, address, vma);
2592
2593 SetPageDirty(new_page);
2594 __SetPageUptodate(new_page);
48c935ad 2595 __SetPageLocked(new_page);
5ad64688
HD
2596 }
2597
5ad64688
HD
2598 return new_page;
2599}
2600
1df631ae 2601void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
2602{
2603 struct stable_node *stable_node;
e9995ef9 2604 struct rmap_item *rmap_item;
e9995ef9
HD
2605 int search_new_forks = 0;
2606
309381fe 2607 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
2608
2609 /*
2610 * Rely on the page lock to protect against concurrent modifications
2611 * to that page's node of the stable tree.
2612 */
309381fe 2613 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
2614
2615 stable_node = page_stable_node(page);
2616 if (!stable_node)
1df631ae 2617 return;
e9995ef9 2618again:
b67bfe0d 2619 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2620 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2621 struct anon_vma_chain *vmac;
e9995ef9
HD
2622 struct vm_area_struct *vma;
2623
ad12695f 2624 cond_resched();
b6b19f25 2625 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2626 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2627 0, ULONG_MAX) {
1105a2fc
JH
2628 unsigned long addr;
2629
ad12695f 2630 cond_resched();
5beb4930 2631 vma = vmac->vma;
1105a2fc
JH
2632
2633 /* Ignore the stable/unstable/sqnr flags */
cd7fae26 2634 addr = rmap_item->address & PAGE_MASK;
1105a2fc
JH
2635
2636 if (addr < vma->vm_start || addr >= vma->vm_end)
e9995ef9
HD
2637 continue;
2638 /*
2639 * Initially we examine only the vma which covers this
2640 * rmap_item; but later, if there is still work to do,
2641 * we examine covering vmas in other mms: in case they
2642 * were forked from the original since ksmd passed.
2643 */
2644 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2645 continue;
2646
0dd1c7bb
JK
2647 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2648 continue;
2649
1105a2fc 2650 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
b6b19f25 2651 anon_vma_unlock_read(anon_vma);
1df631ae 2652 return;
e9995ef9 2653 }
0dd1c7bb
JK
2654 if (rwc->done && rwc->done(page)) {
2655 anon_vma_unlock_read(anon_vma);
1df631ae 2656 return;
0dd1c7bb 2657 }
e9995ef9 2658 }
b6b19f25 2659 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2660 }
2661 if (!search_new_forks++)
2662 goto again;
e9995ef9
HD
2663}
2664
52629506 2665#ifdef CONFIG_MIGRATION
e9995ef9
HD
2666void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2667{
2668 struct stable_node *stable_node;
2669
309381fe
SL
2670 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2671 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2672 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
2673
2674 stable_node = page_stable_node(newpage);
2675 if (stable_node) {
309381fe 2676 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 2677 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
2678 /*
2679 * newpage->mapping was set in advance; now we need smp_wmb()
2680 * to make sure that the new stable_node->kpfn is visible
2681 * to get_ksm_page() before it can see that oldpage->mapping
2682 * has gone stale (or that PageSwapCache has been cleared).
2683 */
2684 smp_wmb();
2685 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
2686 }
2687}
2688#endif /* CONFIG_MIGRATION */
2689
62b61f61 2690#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2691static void wait_while_offlining(void)
2692{
2693 while (ksm_run & KSM_RUN_OFFLINE) {
2694 mutex_unlock(&ksm_thread_mutex);
2695 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2696 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2697 mutex_lock(&ksm_thread_mutex);
2698 }
2699}
2700
2c653d0e
AA
2701static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2702 unsigned long start_pfn,
2703 unsigned long end_pfn)
2704{
2705 if (stable_node->kpfn >= start_pfn &&
2706 stable_node->kpfn < end_pfn) {
2707 /*
2708 * Don't get_ksm_page, page has already gone:
2709 * which is why we keep kpfn instead of page*
2710 */
2711 remove_node_from_stable_tree(stable_node);
2712 return true;
2713 }
2714 return false;
2715}
2716
2717static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2718 unsigned long start_pfn,
2719 unsigned long end_pfn,
2720 struct rb_root *root)
2721{
2722 struct stable_node *dup;
2723 struct hlist_node *hlist_safe;
2724
2725 if (!is_stable_node_chain(stable_node)) {
2726 VM_BUG_ON(is_stable_node_dup(stable_node));
2727 return stable_node_dup_remove_range(stable_node, start_pfn,
2728 end_pfn);
2729 }
2730
2731 hlist_for_each_entry_safe(dup, hlist_safe,
2732 &stable_node->hlist, hlist_dup) {
2733 VM_BUG_ON(!is_stable_node_dup(dup));
2734 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2735 }
2736 if (hlist_empty(&stable_node->hlist)) {
2737 free_stable_node_chain(stable_node, root);
2738 return true; /* notify caller that tree was rebalanced */
2739 } else
2740 return false;
2741}
2742
ee0ea59c
HD
2743static void ksm_check_stable_tree(unsigned long start_pfn,
2744 unsigned long end_pfn)
62b61f61 2745{
03640418 2746 struct stable_node *stable_node, *next;
62b61f61 2747 struct rb_node *node;
90bd6fd3 2748 int nid;
62b61f61 2749
ef53d16c
HD
2750 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2751 node = rb_first(root_stable_tree + nid);
ee0ea59c 2752 while (node) {
90bd6fd3 2753 stable_node = rb_entry(node, struct stable_node, node);
2c653d0e
AA
2754 if (stable_node_chain_remove_range(stable_node,
2755 start_pfn, end_pfn,
2756 root_stable_tree +
2757 nid))
ef53d16c 2758 node = rb_first(root_stable_tree + nid);
2c653d0e 2759 else
ee0ea59c
HD
2760 node = rb_next(node);
2761 cond_resched();
90bd6fd3 2762 }
ee0ea59c 2763 }
03640418 2764 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2765 if (stable_node->kpfn >= start_pfn &&
2766 stable_node->kpfn < end_pfn)
2767 remove_node_from_stable_tree(stable_node);
2768 cond_resched();
2769 }
62b61f61
HD
2770}
2771
2772static int ksm_memory_callback(struct notifier_block *self,
2773 unsigned long action, void *arg)
2774{
2775 struct memory_notify *mn = arg;
62b61f61
HD
2776
2777 switch (action) {
2778 case MEM_GOING_OFFLINE:
2779 /*
ef4d43a8
HD
2780 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2781 * and remove_all_stable_nodes() while memory is going offline:
2782 * it is unsafe for them to touch the stable tree at this time.
2783 * But unmerge_ksm_pages(), rmap lookups and other entry points
2784 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2785 */
ef4d43a8
HD
2786 mutex_lock(&ksm_thread_mutex);
2787 ksm_run |= KSM_RUN_OFFLINE;
2788 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2789 break;
2790
2791 case MEM_OFFLINE:
2792 /*
2793 * Most of the work is done by page migration; but there might
2794 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2795 * pages which have been offlined: prune those from the tree,
2796 * otherwise get_ksm_page() might later try to access a
2797 * non-existent struct page.
62b61f61 2798 */
ee0ea59c
HD
2799 ksm_check_stable_tree(mn->start_pfn,
2800 mn->start_pfn + mn->nr_pages);
e4a9bc58 2801 fallthrough;
62b61f61 2802 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2803 mutex_lock(&ksm_thread_mutex);
2804 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2805 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2806
2807 smp_mb(); /* wake_up_bit advises this */
2808 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2809 break;
2810 }
2811 return NOTIFY_OK;
2812}
ef4d43a8
HD
2813#else
2814static void wait_while_offlining(void)
2815{
2816}
62b61f61
HD
2817#endif /* CONFIG_MEMORY_HOTREMOVE */
2818
2ffd8679
HD
2819#ifdef CONFIG_SYSFS
2820/*
2821 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2822 */
2823
31dbd01f
IE
2824#define KSM_ATTR_RO(_name) \
2825 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2826#define KSM_ATTR(_name) \
2827 static struct kobj_attribute _name##_attr = \
2828 __ATTR(_name, 0644, _name##_show, _name##_store)
2829
2830static ssize_t sleep_millisecs_show(struct kobject *kobj,
2831 struct kobj_attribute *attr, char *buf)
2832{
ae7a927d 2833 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
31dbd01f
IE
2834}
2835
2836static ssize_t sleep_millisecs_store(struct kobject *kobj,
2837 struct kobj_attribute *attr,
2838 const char *buf, size_t count)
2839{
dfefd226 2840 unsigned int msecs;
31dbd01f
IE
2841 int err;
2842
dfefd226
AD
2843 err = kstrtouint(buf, 10, &msecs);
2844 if (err)
31dbd01f
IE
2845 return -EINVAL;
2846
2847 ksm_thread_sleep_millisecs = msecs;
fcf9a0ef 2848 wake_up_interruptible(&ksm_iter_wait);
31dbd01f
IE
2849
2850 return count;
2851}
2852KSM_ATTR(sleep_millisecs);
2853
2854static ssize_t pages_to_scan_show(struct kobject *kobj,
2855 struct kobj_attribute *attr, char *buf)
2856{
ae7a927d 2857 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
31dbd01f
IE
2858}
2859
2860static ssize_t pages_to_scan_store(struct kobject *kobj,
2861 struct kobj_attribute *attr,
2862 const char *buf, size_t count)
2863{
dfefd226 2864 unsigned int nr_pages;
31dbd01f 2865 int err;
31dbd01f 2866
dfefd226
AD
2867 err = kstrtouint(buf, 10, &nr_pages);
2868 if (err)
31dbd01f
IE
2869 return -EINVAL;
2870
2871 ksm_thread_pages_to_scan = nr_pages;
2872
2873 return count;
2874}
2875KSM_ATTR(pages_to_scan);
2876
2877static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2878 char *buf)
2879{
ae7a927d 2880 return sysfs_emit(buf, "%lu\n", ksm_run);
31dbd01f
IE
2881}
2882
2883static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2884 const char *buf, size_t count)
2885{
dfefd226 2886 unsigned int flags;
31dbd01f 2887 int err;
31dbd01f 2888
dfefd226
AD
2889 err = kstrtouint(buf, 10, &flags);
2890 if (err)
31dbd01f
IE
2891 return -EINVAL;
2892 if (flags > KSM_RUN_UNMERGE)
2893 return -EINVAL;
2894
2895 /*
2896 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2897 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2898 * breaking COW to free the pages_shared (but leaves mm_slots
2899 * on the list for when ksmd may be set running again).
31dbd01f
IE
2900 */
2901
2902 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2903 wait_while_offlining();
31dbd01f
IE
2904 if (ksm_run != flags) {
2905 ksm_run = flags;
d952b791 2906 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2907 set_current_oom_origin();
d952b791 2908 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2909 clear_current_oom_origin();
d952b791
HD
2910 if (err) {
2911 ksm_run = KSM_RUN_STOP;
2912 count = err;
2913 }
2914 }
31dbd01f
IE
2915 }
2916 mutex_unlock(&ksm_thread_mutex);
2917
2918 if (flags & KSM_RUN_MERGE)
2919 wake_up_interruptible(&ksm_thread_wait);
2920
2921 return count;
2922}
2923KSM_ATTR(run);
2924
90bd6fd3
PH
2925#ifdef CONFIG_NUMA
2926static ssize_t merge_across_nodes_show(struct kobject *kobj,
ae7a927d 2927 struct kobj_attribute *attr, char *buf)
90bd6fd3 2928{
ae7a927d 2929 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
90bd6fd3
PH
2930}
2931
2932static ssize_t merge_across_nodes_store(struct kobject *kobj,
2933 struct kobj_attribute *attr,
2934 const char *buf, size_t count)
2935{
2936 int err;
2937 unsigned long knob;
2938
2939 err = kstrtoul(buf, 10, &knob);
2940 if (err)
2941 return err;
2942 if (knob > 1)
2943 return -EINVAL;
2944
2945 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2946 wait_while_offlining();
90bd6fd3 2947 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2948 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2949 err = -EBUSY;
ef53d16c
HD
2950 else if (root_stable_tree == one_stable_tree) {
2951 struct rb_root *buf;
2952 /*
2953 * This is the first time that we switch away from the
2954 * default of merging across nodes: must now allocate
2955 * a buffer to hold as many roots as may be needed.
2956 * Allocate stable and unstable together:
2957 * MAXSMP NODES_SHIFT 10 will use 16kB.
2958 */
bafe1e14
JP
2959 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2960 GFP_KERNEL);
ef53d16c
HD
2961 /* Let us assume that RB_ROOT is NULL is zero */
2962 if (!buf)
2963 err = -ENOMEM;
2964 else {
2965 root_stable_tree = buf;
2966 root_unstable_tree = buf + nr_node_ids;
2967 /* Stable tree is empty but not the unstable */
2968 root_unstable_tree[0] = one_unstable_tree[0];
2969 }
2970 }
2971 if (!err) {
90bd6fd3 2972 ksm_merge_across_nodes = knob;
ef53d16c
HD
2973 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2974 }
90bd6fd3
PH
2975 }
2976 mutex_unlock(&ksm_thread_mutex);
2977
2978 return err ? err : count;
2979}
2980KSM_ATTR(merge_across_nodes);
2981#endif
2982
e86c59b1 2983static ssize_t use_zero_pages_show(struct kobject *kobj,
ae7a927d 2984 struct kobj_attribute *attr, char *buf)
e86c59b1 2985{
ae7a927d 2986 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
e86c59b1
CI
2987}
2988static ssize_t use_zero_pages_store(struct kobject *kobj,
2989 struct kobj_attribute *attr,
2990 const char *buf, size_t count)
2991{
2992 int err;
2993 bool value;
2994
2995 err = kstrtobool(buf, &value);
2996 if (err)
2997 return -EINVAL;
2998
2999 ksm_use_zero_pages = value;
3000
3001 return count;
3002}
3003KSM_ATTR(use_zero_pages);
3004
2c653d0e
AA
3005static ssize_t max_page_sharing_show(struct kobject *kobj,
3006 struct kobj_attribute *attr, char *buf)
3007{
ae7a927d 3008 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
2c653d0e
AA
3009}
3010
3011static ssize_t max_page_sharing_store(struct kobject *kobj,
3012 struct kobj_attribute *attr,
3013 const char *buf, size_t count)
3014{
3015 int err;
3016 int knob;
3017
3018 err = kstrtoint(buf, 10, &knob);
3019 if (err)
3020 return err;
3021 /*
3022 * When a KSM page is created it is shared by 2 mappings. This
3023 * being a signed comparison, it implicitly verifies it's not
3024 * negative.
3025 */
3026 if (knob < 2)
3027 return -EINVAL;
3028
3029 if (READ_ONCE(ksm_max_page_sharing) == knob)
3030 return count;
3031
3032 mutex_lock(&ksm_thread_mutex);
3033 wait_while_offlining();
3034 if (ksm_max_page_sharing != knob) {
3035 if (ksm_pages_shared || remove_all_stable_nodes())
3036 err = -EBUSY;
3037 else
3038 ksm_max_page_sharing = knob;
3039 }
3040 mutex_unlock(&ksm_thread_mutex);
3041
3042 return err ? err : count;
3043}
3044KSM_ATTR(max_page_sharing);
3045
b4028260
HD
3046static ssize_t pages_shared_show(struct kobject *kobj,
3047 struct kobj_attribute *attr, char *buf)
3048{
ae7a927d 3049 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
b4028260
HD
3050}
3051KSM_ATTR_RO(pages_shared);
3052
3053static ssize_t pages_sharing_show(struct kobject *kobj,
3054 struct kobj_attribute *attr, char *buf)
3055{
ae7a927d 3056 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
3057}
3058KSM_ATTR_RO(pages_sharing);
3059
473b0ce4
HD
3060static ssize_t pages_unshared_show(struct kobject *kobj,
3061 struct kobj_attribute *attr, char *buf)
3062{
ae7a927d 3063 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
473b0ce4
HD
3064}
3065KSM_ATTR_RO(pages_unshared);
3066
3067static ssize_t pages_volatile_show(struct kobject *kobj,
3068 struct kobj_attribute *attr, char *buf)
3069{
3070 long ksm_pages_volatile;
3071
3072 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3073 - ksm_pages_sharing - ksm_pages_unshared;
3074 /*
3075 * It was not worth any locking to calculate that statistic,
3076 * but it might therefore sometimes be negative: conceal that.
3077 */
3078 if (ksm_pages_volatile < 0)
3079 ksm_pages_volatile = 0;
ae7a927d 3080 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
473b0ce4
HD
3081}
3082KSM_ATTR_RO(pages_volatile);
3083
2c653d0e
AA
3084static ssize_t stable_node_dups_show(struct kobject *kobj,
3085 struct kobj_attribute *attr, char *buf)
3086{
ae7a927d 3087 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
2c653d0e
AA
3088}
3089KSM_ATTR_RO(stable_node_dups);
3090
3091static ssize_t stable_node_chains_show(struct kobject *kobj,
3092 struct kobj_attribute *attr, char *buf)
3093{
ae7a927d 3094 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
2c653d0e
AA
3095}
3096KSM_ATTR_RO(stable_node_chains);
3097
3098static ssize_t
3099stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3100 struct kobj_attribute *attr,
3101 char *buf)
3102{
ae7a927d 3103 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2c653d0e
AA
3104}
3105
3106static ssize_t
3107stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3108 struct kobj_attribute *attr,
3109 const char *buf, size_t count)
3110{
584ff0df 3111 unsigned int msecs;
2c653d0e
AA
3112 int err;
3113
584ff0df
ZB
3114 err = kstrtouint(buf, 10, &msecs);
3115 if (err)
2c653d0e
AA
3116 return -EINVAL;
3117
3118 ksm_stable_node_chains_prune_millisecs = msecs;
3119
3120 return count;
3121}
3122KSM_ATTR(stable_node_chains_prune_millisecs);
3123
473b0ce4
HD
3124static ssize_t full_scans_show(struct kobject *kobj,
3125 struct kobj_attribute *attr, char *buf)
3126{
ae7a927d 3127 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
473b0ce4
HD
3128}
3129KSM_ATTR_RO(full_scans);
3130
31dbd01f
IE
3131static struct attribute *ksm_attrs[] = {
3132 &sleep_millisecs_attr.attr,
3133 &pages_to_scan_attr.attr,
3134 &run_attr.attr,
b4028260
HD
3135 &pages_shared_attr.attr,
3136 &pages_sharing_attr.attr,
473b0ce4
HD
3137 &pages_unshared_attr.attr,
3138 &pages_volatile_attr.attr,
3139 &full_scans_attr.attr,
90bd6fd3
PH
3140#ifdef CONFIG_NUMA
3141 &merge_across_nodes_attr.attr,
3142#endif
2c653d0e
AA
3143 &max_page_sharing_attr.attr,
3144 &stable_node_chains_attr.attr,
3145 &stable_node_dups_attr.attr,
3146 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3147 &use_zero_pages_attr.attr,
31dbd01f
IE
3148 NULL,
3149};
3150
f907c26a 3151static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3152 .attrs = ksm_attrs,
3153 .name = "ksm",
3154};
2ffd8679 3155#endif /* CONFIG_SYSFS */
31dbd01f
IE
3156
3157static int __init ksm_init(void)
3158{
3159 struct task_struct *ksm_thread;
3160 int err;
3161
e86c59b1
CI
3162 /* The correct value depends on page size and endianness */
3163 zero_checksum = calc_checksum(ZERO_PAGE(0));
3164 /* Default to false for backwards compatibility */
3165 ksm_use_zero_pages = false;
3166
31dbd01f
IE
3167 err = ksm_slab_init();
3168 if (err)
3169 goto out;
3170
31dbd01f
IE
3171 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3172 if (IS_ERR(ksm_thread)) {
25acde31 3173 pr_err("ksm: creating kthread failed\n");
31dbd01f 3174 err = PTR_ERR(ksm_thread);
d9f8984c 3175 goto out_free;
31dbd01f
IE
3176 }
3177
2ffd8679 3178#ifdef CONFIG_SYSFS
31dbd01f
IE
3179 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3180 if (err) {
25acde31 3181 pr_err("ksm: register sysfs failed\n");
2ffd8679 3182 kthread_stop(ksm_thread);
d9f8984c 3183 goto out_free;
31dbd01f 3184 }
c73602ad
HD
3185#else
3186 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3187
2ffd8679 3188#endif /* CONFIG_SYSFS */
31dbd01f 3189
62b61f61 3190#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3191 /* There is no significance to this priority 100 */
62b61f61
HD
3192 hotplug_memory_notifier(ksm_memory_callback, 100);
3193#endif
31dbd01f
IE
3194 return 0;
3195
d9f8984c 3196out_free:
31dbd01f
IE
3197 ksm_slab_free();
3198out:
3199 return err;
f8af4da3 3200}
a64fb3cd 3201subsys_initcall(ksm_init);