]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/ksm.c
UBUNTU: SAUCE: Clear Linux: ksm-wakeups
[mirror_ubuntu-bionic-kernel.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
28#include <linux/jhash.h>
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
31dbd01f 45
e850dcf5
HD
46#ifdef CONFIG_NUMA
47#define NUMA(x) (x)
48#define DO_NUMA(x) do { (x); } while (0)
49#else
50#define NUMA(x) (0)
51#define DO_NUMA(x) do { } while (0)
52#endif
53
31dbd01f
IE
54/*
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
57 *
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
60 *
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
64 *
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
69 *
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
76 *
77 * KSM solves this problem by several techniques:
78 *
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
92 *
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
95 */
96
97/**
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
102 * @mm: the mm that this information is valid for
103 */
104struct mm_slot {
105 struct hlist_node link;
106 struct list_head mm_list;
6514d511 107 struct rmap_item *rmap_list;
31dbd01f
IE
108 struct mm_struct *mm;
109};
110
111/**
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
6514d511 115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
116 * @seqnr: count of completed full scans (needed when removing unstable node)
117 *
118 * There is only the one ksm_scan instance of this cursor structure.
119 */
120struct ksm_scan {
121 struct mm_slot *mm_slot;
122 unsigned long address;
6514d511 123 struct rmap_item **rmap_list;
31dbd01f
IE
124 unsigned long seqnr;
125};
126
7b6ba2c7
HD
127/**
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
4146d2d6 130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 132 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 133 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
135 * @chain_prune_time: time of the last full garbage collection
136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
138 */
139struct stable_node {
4146d2d6
HD
140 union {
141 struct rb_node node; /* when node of stable tree */
142 struct { /* when listed for migration */
143 struct list_head *head;
2c653d0e
AA
144 struct {
145 struct hlist_node hlist_dup;
146 struct list_head list;
147 };
4146d2d6
HD
148 };
149 };
7b6ba2c7 150 struct hlist_head hlist;
2c653d0e
AA
151 union {
152 unsigned long kpfn;
153 unsigned long chain_prune_time;
154 };
155 /*
156 * STABLE_NODE_CHAIN can be any negative number in
157 * rmap_hlist_len negative range, but better not -1 to be able
158 * to reliably detect underflows.
159 */
160#define STABLE_NODE_CHAIN -1024
161 int rmap_hlist_len;
4146d2d6
HD
162#ifdef CONFIG_NUMA
163 int nid;
164#endif
7b6ba2c7
HD
165};
166
31dbd01f
IE
167/**
168 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
172 * @mm: the memory structure this rmap_item is pointing into
173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
175 * @node: rb node of this rmap_item in the unstable tree
176 * @head: pointer to stable_node heading this list in the stable tree
177 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
178 */
179struct rmap_item {
6514d511 180 struct rmap_item *rmap_list;
bc56620b
HD
181 union {
182 struct anon_vma *anon_vma; /* when stable */
183#ifdef CONFIG_NUMA
184 int nid; /* when node of unstable tree */
185#endif
186 };
31dbd01f
IE
187 struct mm_struct *mm;
188 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 189 unsigned int oldchecksum; /* when unstable */
31dbd01f 190 union {
7b6ba2c7
HD
191 struct rb_node node; /* when node of unstable tree */
192 struct { /* when listed from stable tree */
193 struct stable_node *head;
194 struct hlist_node hlist;
195 };
31dbd01f
IE
196 };
197};
198
199#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
200#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
201#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
202
203/* The stable and unstable tree heads */
ef53d16c
HD
204static struct rb_root one_stable_tree[1] = { RB_ROOT };
205static struct rb_root one_unstable_tree[1] = { RB_ROOT };
206static struct rb_root *root_stable_tree = one_stable_tree;
207static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 208
4146d2d6
HD
209/* Recently migrated nodes of stable tree, pending proper placement */
210static LIST_HEAD(migrate_nodes);
2c653d0e 211#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 212
4ca3a69b
SL
213#define MM_SLOTS_HASH_BITS 10
214static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
215
216static struct mm_slot ksm_mm_head = {
217 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
218};
219static struct ksm_scan ksm_scan = {
220 .mm_slot = &ksm_mm_head,
221};
222
223static struct kmem_cache *rmap_item_cache;
7b6ba2c7 224static struct kmem_cache *stable_node_cache;
31dbd01f
IE
225static struct kmem_cache *mm_slot_cache;
226
227/* The number of nodes in the stable tree */
b4028260 228static unsigned long ksm_pages_shared;
31dbd01f 229
e178dfde 230/* The number of page slots additionally sharing those nodes */
b4028260 231static unsigned long ksm_pages_sharing;
31dbd01f 232
473b0ce4
HD
233/* The number of nodes in the unstable tree */
234static unsigned long ksm_pages_unshared;
235
236/* The number of rmap_items in use: to calculate pages_volatile */
237static unsigned long ksm_rmap_items;
238
2c653d0e
AA
239/* The number of stable_node chains */
240static unsigned long ksm_stable_node_chains;
241
242/* The number of stable_node dups linked to the stable_node chains */
243static unsigned long ksm_stable_node_dups;
244
245/* Delay in pruning stale stable_node_dups in the stable_node_chains */
246static int ksm_stable_node_chains_prune_millisecs = 2000;
247
248/* Maximum number of page slots sharing a stable node */
249static int ksm_max_page_sharing = 256;
250
31dbd01f 251/* Number of pages ksmd should scan in one batch */
2c6854fd 252static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
253
254/* Milliseconds ksmd should sleep between batches */
2ffd8679 255static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 256
e86c59b1
CI
257/* Checksum of an empty (zeroed) page */
258static unsigned int zero_checksum __read_mostly;
259
260/* Whether to merge empty (zeroed) pages with actual zero pages */
261static bool ksm_use_zero_pages __read_mostly;
262
e850dcf5 263#ifdef CONFIG_NUMA
90bd6fd3
PH
264/* Zeroed when merging across nodes is not allowed */
265static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 266static int ksm_nr_node_ids = 1;
e850dcf5
HD
267#else
268#define ksm_merge_across_nodes 1U
ef53d16c 269#define ksm_nr_node_ids 1
e850dcf5 270#endif
90bd6fd3 271
31dbd01f
IE
272#define KSM_RUN_STOP 0
273#define KSM_RUN_MERGE 1
274#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
275#define KSM_RUN_OFFLINE 4
276static unsigned long ksm_run = KSM_RUN_STOP;
277static void wait_while_offlining(void);
31dbd01f
IE
278
279static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
280static DEFINE_MUTEX(ksm_thread_mutex);
281static DEFINE_SPINLOCK(ksm_mmlist_lock);
282
283#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284 sizeof(struct __struct), __alignof__(struct __struct),\
285 (__flags), NULL)
286
287static int __init ksm_slab_init(void)
288{
289 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
290 if (!rmap_item_cache)
291 goto out;
292
7b6ba2c7
HD
293 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
294 if (!stable_node_cache)
295 goto out_free1;
296
31dbd01f
IE
297 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
298 if (!mm_slot_cache)
7b6ba2c7 299 goto out_free2;
31dbd01f
IE
300
301 return 0;
302
7b6ba2c7
HD
303out_free2:
304 kmem_cache_destroy(stable_node_cache);
305out_free1:
31dbd01f
IE
306 kmem_cache_destroy(rmap_item_cache);
307out:
308 return -ENOMEM;
309}
310
311static void __init ksm_slab_free(void)
312{
313 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 314 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
315 kmem_cache_destroy(rmap_item_cache);
316 mm_slot_cache = NULL;
317}
318
2c653d0e
AA
319static __always_inline bool is_stable_node_chain(struct stable_node *chain)
320{
321 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
322}
323
324static __always_inline bool is_stable_node_dup(struct stable_node *dup)
325{
326 return dup->head == STABLE_NODE_DUP_HEAD;
327}
328
329static inline void stable_node_chain_add_dup(struct stable_node *dup,
330 struct stable_node *chain)
331{
332 VM_BUG_ON(is_stable_node_dup(dup));
333 dup->head = STABLE_NODE_DUP_HEAD;
334 VM_BUG_ON(!is_stable_node_chain(chain));
335 hlist_add_head(&dup->hlist_dup, &chain->hlist);
336 ksm_stable_node_dups++;
337}
338
339static inline void __stable_node_dup_del(struct stable_node *dup)
340{
b4fecc67 341 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
342 hlist_del(&dup->hlist_dup);
343 ksm_stable_node_dups--;
344}
345
346static inline void stable_node_dup_del(struct stable_node *dup)
347{
348 VM_BUG_ON(is_stable_node_chain(dup));
349 if (is_stable_node_dup(dup))
350 __stable_node_dup_del(dup);
351 else
352 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
353#ifdef CONFIG_DEBUG_VM
354 dup->head = NULL;
355#endif
356}
357
31dbd01f
IE
358static inline struct rmap_item *alloc_rmap_item(void)
359{
473b0ce4
HD
360 struct rmap_item *rmap_item;
361
5b398e41 362 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
363 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
364 if (rmap_item)
365 ksm_rmap_items++;
366 return rmap_item;
31dbd01f
IE
367}
368
369static inline void free_rmap_item(struct rmap_item *rmap_item)
370{
473b0ce4 371 ksm_rmap_items--;
31dbd01f
IE
372 rmap_item->mm = NULL; /* debug safety */
373 kmem_cache_free(rmap_item_cache, rmap_item);
374}
375
7b6ba2c7
HD
376static inline struct stable_node *alloc_stable_node(void)
377{
6213055f 378 /*
379 * The allocation can take too long with GFP_KERNEL when memory is under
380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
381 * grants access to memory reserves, helping to avoid this problem.
382 */
383 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
384}
385
386static inline void free_stable_node(struct stable_node *stable_node)
387{
2c653d0e
AA
388 VM_BUG_ON(stable_node->rmap_hlist_len &&
389 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
390 kmem_cache_free(stable_node_cache, stable_node);
391}
392
31dbd01f
IE
393static inline struct mm_slot *alloc_mm_slot(void)
394{
395 if (!mm_slot_cache) /* initialization failed */
396 return NULL;
397 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
398}
399
400static inline void free_mm_slot(struct mm_slot *mm_slot)
401{
402 kmem_cache_free(mm_slot_cache, mm_slot);
403}
404
31dbd01f
IE
405static struct mm_slot *get_mm_slot(struct mm_struct *mm)
406{
4ca3a69b
SL
407 struct mm_slot *slot;
408
b67bfe0d 409 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
410 if (slot->mm == mm)
411 return slot;
31dbd01f 412
31dbd01f
IE
413 return NULL;
414}
415
416static void insert_to_mm_slots_hash(struct mm_struct *mm,
417 struct mm_slot *mm_slot)
418{
31dbd01f 419 mm_slot->mm = mm;
4ca3a69b 420 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
421}
422
a913e182
HD
423/*
424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425 * page tables after it has passed through ksm_exit() - which, if necessary,
426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
427 * a special flag: they can just back out as soon as mm_users goes to zero.
428 * ksm_test_exit() is used throughout to make this test for exit: in some
429 * places for correctness, in some places just to avoid unnecessary work.
430 */
431static inline bool ksm_test_exit(struct mm_struct *mm)
432{
433 return atomic_read(&mm->mm_users) == 0;
434}
435
31dbd01f
IE
436/*
437 * We use break_ksm to break COW on a ksm page: it's a stripped down
438 *
d4edcf0d 439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
31dbd01f
IE
440 * put_page(page);
441 *
442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443 * in case the application has unmapped and remapped mm,addr meanwhile.
444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
1b2ee126
DH
446 *
447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448 * of the process that owns 'vma'. We also do not want to enforce
449 * protection keys here anyway.
31dbd01f 450 */
d952b791 451static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
452{
453 struct page *page;
d952b791 454 int ret = 0;
31dbd01f
IE
455
456 do {
457 cond_resched();
1b2ee126
DH
458 page = follow_page(vma, addr,
459 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
22eccdd7 460 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
461 break;
462 if (PageKsm(page))
dcddffd4
KS
463 ret = handle_mm_fault(vma, addr,
464 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
31dbd01f
IE
465 else
466 ret = VM_FAULT_WRITE;
467 put_page(page);
33692f27 468 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
469 /*
470 * We must loop because handle_mm_fault() may back out if there's
471 * any difficulty e.g. if pte accessed bit gets updated concurrently.
472 *
473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474 * COW has been broken, even if the vma does not permit VM_WRITE;
475 * but note that a concurrent fault might break PageKsm for us.
476 *
477 * VM_FAULT_SIGBUS could occur if we race with truncation of the
478 * backing file, which also invalidates anonymous pages: that's
479 * okay, that truncation will have unmapped the PageKsm for us.
480 *
481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483 * current task has TIF_MEMDIE set, and will be OOM killed on return
484 * to user; and ksmd, having no mm, would never be chosen for that.
485 *
486 * But if the mm is in a limited mem_cgroup, then the fault may fail
487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488 * even ksmd can fail in this way - though it's usually breaking ksm
489 * just to undo a merge it made a moment before, so unlikely to oom.
490 *
491 * That's a pity: we might therefore have more kernel pages allocated
492 * than we're counting as nodes in the stable tree; but ksm_do_scan
493 * will retry to break_cow on each pass, so should recover the page
494 * in due course. The important thing is to not let VM_MERGEABLE
495 * be cleared while any such pages might remain in the area.
496 */
497 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
498}
499
ef694222
BL
500static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
501 unsigned long addr)
502{
503 struct vm_area_struct *vma;
504 if (ksm_test_exit(mm))
505 return NULL;
506 vma = find_vma(mm, addr);
507 if (!vma || vma->vm_start > addr)
508 return NULL;
509 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
510 return NULL;
511 return vma;
512}
513
8dd3557a 514static void break_cow(struct rmap_item *rmap_item)
31dbd01f 515{
8dd3557a
HD
516 struct mm_struct *mm = rmap_item->mm;
517 unsigned long addr = rmap_item->address;
31dbd01f
IE
518 struct vm_area_struct *vma;
519
4035c07a
HD
520 /*
521 * It is not an accident that whenever we want to break COW
522 * to undo, we also need to drop a reference to the anon_vma.
523 */
9e60109f 524 put_anon_vma(rmap_item->anon_vma);
4035c07a 525
81464e30 526 down_read(&mm->mmap_sem);
ef694222
BL
527 vma = find_mergeable_vma(mm, addr);
528 if (vma)
529 break_ksm(vma, addr);
31dbd01f
IE
530 up_read(&mm->mmap_sem);
531}
532
533static struct page *get_mergeable_page(struct rmap_item *rmap_item)
534{
535 struct mm_struct *mm = rmap_item->mm;
536 unsigned long addr = rmap_item->address;
537 struct vm_area_struct *vma;
538 struct page *page;
539
540 down_read(&mm->mmap_sem);
ef694222
BL
541 vma = find_mergeable_vma(mm, addr);
542 if (!vma)
31dbd01f
IE
543 goto out;
544
545 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 546 if (IS_ERR_OR_NULL(page))
31dbd01f 547 goto out;
f765f540 548 if (PageAnon(page)) {
31dbd01f
IE
549 flush_anon_page(vma, page, addr);
550 flush_dcache_page(page);
551 } else {
552 put_page(page);
c8f95ed1
AA
553out:
554 page = NULL;
31dbd01f
IE
555 }
556 up_read(&mm->mmap_sem);
557 return page;
558}
559
90bd6fd3
PH
560/*
561 * This helper is used for getting right index into array of tree roots.
562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564 * every node has its own stable and unstable tree.
565 */
566static inline int get_kpfn_nid(unsigned long kpfn)
567{
d8fc16a8 568 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
569}
570
2c653d0e
AA
571static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
572 struct rb_root *root)
573{
574 struct stable_node *chain = alloc_stable_node();
575 VM_BUG_ON(is_stable_node_chain(dup));
576 if (likely(chain)) {
577 INIT_HLIST_HEAD(&chain->hlist);
578 chain->chain_prune_time = jiffies;
579 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
580#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581 chain->nid = -1; /* debug */
582#endif
583 ksm_stable_node_chains++;
584
585 /*
586 * Put the stable node chain in the first dimension of
587 * the stable tree and at the same time remove the old
588 * stable node.
589 */
590 rb_replace_node(&dup->node, &chain->node, root);
591
592 /*
593 * Move the old stable node to the second dimension
594 * queued in the hlist_dup. The invariant is that all
595 * dup stable_nodes in the chain->hlist point to pages
596 * that are wrprotected and have the exact same
597 * content.
598 */
599 stable_node_chain_add_dup(dup, chain);
600 }
601 return chain;
602}
603
604static inline void free_stable_node_chain(struct stable_node *chain,
605 struct rb_root *root)
606{
607 rb_erase(&chain->node, root);
608 free_stable_node(chain);
609 ksm_stable_node_chains--;
610}
611
4035c07a
HD
612static void remove_node_from_stable_tree(struct stable_node *stable_node)
613{
614 struct rmap_item *rmap_item;
4035c07a 615
2c653d0e
AA
616 /* check it's not STABLE_NODE_CHAIN or negative */
617 BUG_ON(stable_node->rmap_hlist_len < 0);
618
b67bfe0d 619 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
620 if (rmap_item->hlist.next)
621 ksm_pages_sharing--;
622 else
623 ksm_pages_shared--;
2c653d0e
AA
624 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
625 stable_node->rmap_hlist_len--;
9e60109f 626 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
627 rmap_item->address &= PAGE_MASK;
628 cond_resched();
629 }
630
2c653d0e
AA
631 /*
632 * We need the second aligned pointer of the migrate_nodes
633 * list_head to stay clear from the rb_parent_color union
634 * (aligned and different than any node) and also different
635 * from &migrate_nodes. This will verify that future list.h changes
636 * don't break STABLE_NODE_DUP_HEAD.
637 */
638#if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
641#endif
642
4146d2d6
HD
643 if (stable_node->head == &migrate_nodes)
644 list_del(&stable_node->list);
645 else
2c653d0e 646 stable_node_dup_del(stable_node);
4035c07a
HD
647 free_stable_node(stable_node);
648}
649
650/*
651 * get_ksm_page: checks if the page indicated by the stable node
652 * is still its ksm page, despite having held no reference to it.
653 * In which case we can trust the content of the page, and it
654 * returns the gotten page; but if the page has now been zapped,
655 * remove the stale node from the stable tree and return NULL.
c8d6553b 656 * But beware, the stable node's page might be being migrated.
4035c07a
HD
657 *
658 * You would expect the stable_node to hold a reference to the ksm page.
659 * But if it increments the page's count, swapping out has to wait for
660 * ksmd to come around again before it can free the page, which may take
661 * seconds or even minutes: much too unresponsive. So instead we use a
662 * "keyhole reference": access to the ksm page from the stable node peeps
663 * out through its keyhole to see if that page still holds the right key,
664 * pointing back to this stable node. This relies on freeing a PageAnon
665 * page to reset its page->mapping to NULL, and relies on no other use of
666 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
667 * is on its way to being freed; but it is an anomaly to bear in mind.
668 */
8fdb3dbf 669static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
670{
671 struct page *page;
672 void *expected_mapping;
c8d6553b 673 unsigned long kpfn;
4035c07a 674
bda807d4
MK
675 expected_mapping = (void *)((unsigned long)stable_node |
676 PAGE_MAPPING_KSM);
c8d6553b 677again:
4db0c3c2 678 kpfn = READ_ONCE(stable_node->kpfn);
c8d6553b
HD
679 page = pfn_to_page(kpfn);
680
681 /*
682 * page is computed from kpfn, so on most architectures reading
683 * page->mapping is naturally ordered after reading node->kpfn,
684 * but on Alpha we need to be more careful.
685 */
686 smp_read_barrier_depends();
4db0c3c2 687 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 688 goto stale;
c8d6553b
HD
689
690 /*
691 * We cannot do anything with the page while its refcount is 0.
692 * Usually 0 means free, or tail of a higher-order page: in which
693 * case this node is no longer referenced, and should be freed;
694 * however, it might mean that the page is under page_freeze_refs().
695 * The __remove_mapping() case is easy, again the node is now stale;
696 * but if page is swapcache in migrate_page_move_mapping(), it might
697 * still be our page, in which case it's essential to keep the node.
698 */
699 while (!get_page_unless_zero(page)) {
700 /*
701 * Another check for page->mapping != expected_mapping would
702 * work here too. We have chosen the !PageSwapCache test to
703 * optimize the common case, when the page is or is about to
704 * be freed: PageSwapCache is cleared (under spin_lock_irq)
705 * in the freeze_refs section of __remove_mapping(); but Anon
706 * page->mapping reset to NULL later, in free_pages_prepare().
707 */
708 if (!PageSwapCache(page))
709 goto stale;
710 cpu_relax();
711 }
712
4db0c3c2 713 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
714 put_page(page);
715 goto stale;
716 }
c8d6553b 717
8fdb3dbf 718 if (lock_it) {
8aafa6a4 719 lock_page(page);
4db0c3c2 720 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
721 unlock_page(page);
722 put_page(page);
723 goto stale;
724 }
725 }
4035c07a 726 return page;
c8d6553b 727
4035c07a 728stale:
c8d6553b
HD
729 /*
730 * We come here from above when page->mapping or !PageSwapCache
731 * suggests that the node is stale; but it might be under migration.
732 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
733 * before checking whether node->kpfn has been changed.
734 */
735 smp_rmb();
4db0c3c2 736 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 737 goto again;
4035c07a
HD
738 remove_node_from_stable_tree(stable_node);
739 return NULL;
740}
741
31dbd01f
IE
742/*
743 * Removing rmap_item from stable or unstable tree.
744 * This function will clean the information from the stable/unstable tree.
745 */
746static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
747{
7b6ba2c7
HD
748 if (rmap_item->address & STABLE_FLAG) {
749 struct stable_node *stable_node;
5ad64688 750 struct page *page;
31dbd01f 751
7b6ba2c7 752 stable_node = rmap_item->head;
8aafa6a4 753 page = get_ksm_page(stable_node, true);
4035c07a
HD
754 if (!page)
755 goto out;
5ad64688 756
7b6ba2c7 757 hlist_del(&rmap_item->hlist);
4035c07a
HD
758 unlock_page(page);
759 put_page(page);
08beca44 760
98666f8a 761 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
762 ksm_pages_sharing--;
763 else
7b6ba2c7 764 ksm_pages_shared--;
2c653d0e
AA
765 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
766 stable_node->rmap_hlist_len--;
31dbd01f 767
9e60109f 768 put_anon_vma(rmap_item->anon_vma);
93d17715 769 rmap_item->address &= PAGE_MASK;
31dbd01f 770
7b6ba2c7 771 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
772 unsigned char age;
773 /*
9ba69294 774 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 775 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
776 * But be careful when an mm is exiting: do the rb_erase
777 * if this rmap_item was inserted by this scan, rather
778 * than left over from before.
31dbd01f
IE
779 */
780 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 781 BUG_ON(age > 1);
31dbd01f 782 if (!age)
90bd6fd3 783 rb_erase(&rmap_item->node,
ef53d16c 784 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 785 ksm_pages_unshared--;
93d17715 786 rmap_item->address &= PAGE_MASK;
31dbd01f 787 }
4035c07a 788out:
31dbd01f
IE
789 cond_resched(); /* we're called from many long loops */
790}
791
31dbd01f 792static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 793 struct rmap_item **rmap_list)
31dbd01f 794{
6514d511
HD
795 while (*rmap_list) {
796 struct rmap_item *rmap_item = *rmap_list;
797 *rmap_list = rmap_item->rmap_list;
31dbd01f 798 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
799 free_rmap_item(rmap_item);
800 }
801}
802
803/*
e850dcf5 804 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
805 * than check every pte of a given vma, the locking doesn't quite work for
806 * that - an rmap_item is assigned to the stable tree after inserting ksm
807 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
808 * rmap_items from parent to child at fork time (so as not to waste time
809 * if exit comes before the next scan reaches it).
81464e30
HD
810 *
811 * Similarly, although we'd like to remove rmap_items (so updating counts
812 * and freeing memory) when unmerging an area, it's easier to leave that
813 * to the next pass of ksmd - consider, for example, how ksmd might be
814 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 815 */
d952b791
HD
816static int unmerge_ksm_pages(struct vm_area_struct *vma,
817 unsigned long start, unsigned long end)
31dbd01f
IE
818{
819 unsigned long addr;
d952b791 820 int err = 0;
31dbd01f 821
d952b791 822 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
823 if (ksm_test_exit(vma->vm_mm))
824 break;
d952b791
HD
825 if (signal_pending(current))
826 err = -ERESTARTSYS;
827 else
828 err = break_ksm(vma, addr);
829 }
830 return err;
31dbd01f
IE
831}
832
2ffd8679
HD
833#ifdef CONFIG_SYSFS
834/*
835 * Only called through the sysfs control interface:
836 */
cbf86cfe
HD
837static int remove_stable_node(struct stable_node *stable_node)
838{
839 struct page *page;
840 int err;
841
842 page = get_ksm_page(stable_node, true);
843 if (!page) {
844 /*
845 * get_ksm_page did remove_node_from_stable_tree itself.
846 */
847 return 0;
848 }
849
8fdb3dbf
HD
850 if (WARN_ON_ONCE(page_mapped(page))) {
851 /*
852 * This should not happen: but if it does, just refuse to let
853 * merge_across_nodes be switched - there is no need to panic.
854 */
cbf86cfe 855 err = -EBUSY;
8fdb3dbf 856 } else {
cbf86cfe 857 /*
8fdb3dbf
HD
858 * The stable node did not yet appear stale to get_ksm_page(),
859 * since that allows for an unmapped ksm page to be recognized
860 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
861 * This page might be in a pagevec waiting to be freed,
862 * or it might be PageSwapCache (perhaps under writeback),
863 * or it might have been removed from swapcache a moment ago.
864 */
865 set_page_stable_node(page, NULL);
866 remove_node_from_stable_tree(stable_node);
867 err = 0;
868 }
869
870 unlock_page(page);
871 put_page(page);
872 return err;
873}
874
2c653d0e
AA
875static int remove_stable_node_chain(struct stable_node *stable_node,
876 struct rb_root *root)
877{
878 struct stable_node *dup;
879 struct hlist_node *hlist_safe;
880
881 if (!is_stable_node_chain(stable_node)) {
882 VM_BUG_ON(is_stable_node_dup(stable_node));
883 if (remove_stable_node(stable_node))
884 return true;
885 else
886 return false;
887 }
888
889 hlist_for_each_entry_safe(dup, hlist_safe,
890 &stable_node->hlist, hlist_dup) {
891 VM_BUG_ON(!is_stable_node_dup(dup));
892 if (remove_stable_node(dup))
893 return true;
894 }
895 BUG_ON(!hlist_empty(&stable_node->hlist));
896 free_stable_node_chain(stable_node, root);
897 return false;
898}
899
cbf86cfe
HD
900static int remove_all_stable_nodes(void)
901{
03640418 902 struct stable_node *stable_node, *next;
cbf86cfe
HD
903 int nid;
904 int err = 0;
905
ef53d16c 906 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
907 while (root_stable_tree[nid].rb_node) {
908 stable_node = rb_entry(root_stable_tree[nid].rb_node,
909 struct stable_node, node);
2c653d0e
AA
910 if (remove_stable_node_chain(stable_node,
911 root_stable_tree + nid)) {
cbf86cfe
HD
912 err = -EBUSY;
913 break; /* proceed to next nid */
914 }
915 cond_resched();
916 }
917 }
03640418 918 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
919 if (remove_stable_node(stable_node))
920 err = -EBUSY;
921 cond_resched();
922 }
cbf86cfe
HD
923 return err;
924}
925
d952b791 926static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
927{
928 struct mm_slot *mm_slot;
929 struct mm_struct *mm;
930 struct vm_area_struct *vma;
d952b791
HD
931 int err = 0;
932
933 spin_lock(&ksm_mmlist_lock);
9ba69294 934 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
935 struct mm_slot, mm_list);
936 spin_unlock(&ksm_mmlist_lock);
31dbd01f 937
9ba69294
HD
938 for (mm_slot = ksm_scan.mm_slot;
939 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
940 mm = mm_slot->mm;
941 down_read(&mm->mmap_sem);
942 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
943 if (ksm_test_exit(mm))
944 break;
31dbd01f
IE
945 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
946 continue;
d952b791
HD
947 err = unmerge_ksm_pages(vma,
948 vma->vm_start, vma->vm_end);
9ba69294
HD
949 if (err)
950 goto error;
31dbd01f 951 }
9ba69294 952
6514d511 953 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
7496fea9 954 up_read(&mm->mmap_sem);
d952b791
HD
955
956 spin_lock(&ksm_mmlist_lock);
9ba69294 957 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 958 struct mm_slot, mm_list);
9ba69294 959 if (ksm_test_exit(mm)) {
4ca3a69b 960 hash_del(&mm_slot->link);
9ba69294
HD
961 list_del(&mm_slot->mm_list);
962 spin_unlock(&ksm_mmlist_lock);
963
964 free_mm_slot(mm_slot);
965 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 966 mmdrop(mm);
7496fea9 967 } else
9ba69294 968 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
969 }
970
cbf86cfe
HD
971 /* Clean up stable nodes, but don't worry if some are still busy */
972 remove_all_stable_nodes();
d952b791 973 ksm_scan.seqnr = 0;
9ba69294
HD
974 return 0;
975
976error:
977 up_read(&mm->mmap_sem);
31dbd01f 978 spin_lock(&ksm_mmlist_lock);
d952b791 979 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 980 spin_unlock(&ksm_mmlist_lock);
d952b791 981 return err;
31dbd01f 982}
2ffd8679 983#endif /* CONFIG_SYSFS */
31dbd01f 984
31dbd01f
IE
985static u32 calc_checksum(struct page *page)
986{
987 u32 checksum;
9b04c5fe 988 void *addr = kmap_atomic(page);
31dbd01f 989 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 990 kunmap_atomic(addr);
31dbd01f
IE
991 return checksum;
992}
993
994static int memcmp_pages(struct page *page1, struct page *page2)
995{
996 char *addr1, *addr2;
997 int ret;
998
9b04c5fe
CW
999 addr1 = kmap_atomic(page1);
1000 addr2 = kmap_atomic(page2);
31dbd01f 1001 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
1002 kunmap_atomic(addr2);
1003 kunmap_atomic(addr1);
31dbd01f
IE
1004 return ret;
1005}
1006
1007static inline int pages_identical(struct page *page1, struct page *page2)
1008{
1009 return !memcmp_pages(page1, page2);
1010}
1011
1012static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1013 pte_t *orig_pte)
1014{
1015 struct mm_struct *mm = vma->vm_mm;
36eaff33
KS
1016 struct page_vma_mapped_walk pvmw = {
1017 .page = page,
1018 .vma = vma,
1019 };
31dbd01f
IE
1020 int swapped;
1021 int err = -EFAULT;
6bdb913f
HE
1022 unsigned long mmun_start; /* For mmu_notifiers */
1023 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 1024
36eaff33
KS
1025 pvmw.address = page_address_in_vma(page, vma);
1026 if (pvmw.address == -EFAULT)
31dbd01f
IE
1027 goto out;
1028
29ad768c 1029 BUG_ON(PageTransCompound(page));
6bdb913f 1030
36eaff33
KS
1031 mmun_start = pvmw.address;
1032 mmun_end = pvmw.address + PAGE_SIZE;
6bdb913f
HE
1033 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1034
36eaff33 1035 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1036 goto out_mn;
36eaff33
KS
1037 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1038 goto out_unlock;
31dbd01f 1039
595cd8f2 1040 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
b3a81d08
MK
1041 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1042 mm_tlb_flush_pending(mm)) {
31dbd01f
IE
1043 pte_t entry;
1044
1045 swapped = PageSwapCache(page);
36eaff33 1046 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1047 /*
25985edc 1048 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
1049 * take any lock, therefore the check that we are going to make
1050 * with the pagecount against the mapcount is racey and
1051 * O_DIRECT can happen right after the check.
1052 * So we clear the pte and flush the tlb before the check
1053 * this assure us that no O_DIRECT can happen after the check
1054 * or in the middle of the check.
0f10851e
JG
1055 *
1056 * No need to notify as we are downgrading page table to read
1057 * only not changing it to point to a new page.
1058 *
1059 * See Documentation/vm/mmu_notifier.txt
31dbd01f 1060 */
0f10851e 1061 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1062 /*
1063 * Check that no O_DIRECT or similar I/O is in progress on the
1064 * page
1065 */
31e855ea 1066 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1067 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1068 goto out_unlock;
1069 }
4e31635c
HD
1070 if (pte_dirty(entry))
1071 set_page_dirty(page);
595cd8f2
AK
1072
1073 if (pte_protnone(entry))
1074 entry = pte_mkclean(pte_clear_savedwrite(entry));
1075 else
1076 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 1077 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1078 }
36eaff33 1079 *orig_pte = *pvmw.pte;
31dbd01f
IE
1080 err = 0;
1081
1082out_unlock:
36eaff33 1083 page_vma_mapped_walk_done(&pvmw);
6bdb913f
HE
1084out_mn:
1085 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1086out:
1087 return err;
1088}
1089
1090/**
1091 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1092 * @vma: vma that holds the pte pointing to page
1093 * @page: the page we are replacing by kpage
1094 * @kpage: the ksm page we replace page by
31dbd01f
IE
1095 * @orig_pte: the original value of the pte
1096 *
1097 * Returns 0 on success, -EFAULT on failure.
1098 */
8dd3557a
HD
1099static int replace_page(struct vm_area_struct *vma, struct page *page,
1100 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1101{
1102 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
1103 pmd_t *pmd;
1104 pte_t *ptep;
e86c59b1 1105 pte_t newpte;
31dbd01f
IE
1106 spinlock_t *ptl;
1107 unsigned long addr;
31dbd01f 1108 int err = -EFAULT;
6bdb913f
HE
1109 unsigned long mmun_start; /* For mmu_notifiers */
1110 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 1111
8dd3557a 1112 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1113 if (addr == -EFAULT)
1114 goto out;
1115
6219049a
BL
1116 pmd = mm_find_pmd(mm, addr);
1117 if (!pmd)
31dbd01f 1118 goto out;
31dbd01f 1119
6bdb913f
HE
1120 mmun_start = addr;
1121 mmun_end = addr + PAGE_SIZE;
1122 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1123
31dbd01f
IE
1124 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1125 if (!pte_same(*ptep, orig_pte)) {
1126 pte_unmap_unlock(ptep, ptl);
6bdb913f 1127 goto out_mn;
31dbd01f
IE
1128 }
1129
e86c59b1
CI
1130 /*
1131 * No need to check ksm_use_zero_pages here: we can only have a
1132 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1133 */
1134 if (!is_zero_pfn(page_to_pfn(kpage))) {
1135 get_page(kpage);
1136 page_add_anon_rmap(kpage, vma, addr, false);
1137 newpte = mk_pte(kpage, vma->vm_page_prot);
1138 } else {
1139 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1140 vma->vm_page_prot));
1141 }
31dbd01f
IE
1142
1143 flush_cache_page(vma, addr, pte_pfn(*ptep));
0f10851e
JG
1144 /*
1145 * No need to notify as we are replacing a read only page with another
1146 * read only page with the same content.
1147 *
1148 * See Documentation/vm/mmu_notifier.txt
1149 */
1150 ptep_clear_flush(vma, addr, ptep);
e86c59b1 1151 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1152
d281ee61 1153 page_remove_rmap(page, false);
ae52a2ad
HD
1154 if (!page_mapped(page))
1155 try_to_free_swap(page);
8dd3557a 1156 put_page(page);
31dbd01f
IE
1157
1158 pte_unmap_unlock(ptep, ptl);
1159 err = 0;
6bdb913f
HE
1160out_mn:
1161 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1162out:
1163 return err;
1164}
1165
1166/*
1167 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1168 * @vma: the vma that holds the pte pointing to page
1169 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1170 * @kpage: the PageKsm page that we want to map instead of page,
1171 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1172 *
1173 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1174 */
1175static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1176 struct page *page, struct page *kpage)
31dbd01f
IE
1177{
1178 pte_t orig_pte = __pte(0);
1179 int err = -EFAULT;
1180
db114b83
HD
1181 if (page == kpage) /* ksm page forked */
1182 return 0;
1183
8dd3557a 1184 if (!PageAnon(page))
31dbd01f
IE
1185 goto out;
1186
31dbd01f
IE
1187 /*
1188 * We need the page lock to read a stable PageSwapCache in
1189 * write_protect_page(). We use trylock_page() instead of
1190 * lock_page() because we don't want to wait here - we
1191 * prefer to continue scanning and merging different pages,
1192 * then come back to this page when it is unlocked.
1193 */
8dd3557a 1194 if (!trylock_page(page))
31e855ea 1195 goto out;
f765f540
KS
1196
1197 if (PageTransCompound(page)) {
a7306c34 1198 if (split_huge_page(page))
f765f540
KS
1199 goto out_unlock;
1200 }
1201
31dbd01f
IE
1202 /*
1203 * If this anonymous page is mapped only here, its pte may need
1204 * to be write-protected. If it's mapped elsewhere, all of its
1205 * ptes are necessarily already write-protected. But in either
1206 * case, we need to lock and check page_count is not raised.
1207 */
80e14822
HD
1208 if (write_protect_page(vma, page, &orig_pte) == 0) {
1209 if (!kpage) {
1210 /*
1211 * While we hold page lock, upgrade page from
1212 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1213 * stable_tree_insert() will update stable_node.
1214 */
1215 set_page_stable_node(page, NULL);
1216 mark_page_accessed(page);
337ed7eb
MK
1217 /*
1218 * Page reclaim just frees a clean page with no dirty
1219 * ptes: make sure that the ksm page would be swapped.
1220 */
1221 if (!PageDirty(page))
1222 SetPageDirty(page);
80e14822
HD
1223 err = 0;
1224 } else if (pages_identical(page, kpage))
1225 err = replace_page(vma, page, kpage, orig_pte);
1226 }
31dbd01f 1227
80e14822 1228 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1229 munlock_vma_page(page);
5ad64688
HD
1230 if (!PageMlocked(kpage)) {
1231 unlock_page(page);
5ad64688
HD
1232 lock_page(kpage);
1233 mlock_vma_page(kpage);
1234 page = kpage; /* for final unlock */
1235 }
1236 }
73848b46 1237
f765f540 1238out_unlock:
8dd3557a 1239 unlock_page(page);
31dbd01f
IE
1240out:
1241 return err;
1242}
1243
81464e30
HD
1244/*
1245 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1246 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1247 *
1248 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1249 */
8dd3557a
HD
1250static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1251 struct page *page, struct page *kpage)
81464e30 1252{
8dd3557a 1253 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1254 struct vm_area_struct *vma;
1255 int err = -EFAULT;
1256
8dd3557a 1257 down_read(&mm->mmap_sem);
85c6e8dd
AA
1258 vma = find_mergeable_vma(mm, rmap_item->address);
1259 if (!vma)
81464e30
HD
1260 goto out;
1261
8dd3557a 1262 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1263 if (err)
1264 goto out;
1265
bc56620b
HD
1266 /* Unstable nid is in union with stable anon_vma: remove first */
1267 remove_rmap_item_from_tree(rmap_item);
1268
db114b83 1269 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1270 rmap_item->anon_vma = vma->anon_vma;
1271 get_anon_vma(vma->anon_vma);
81464e30 1272out:
8dd3557a 1273 up_read(&mm->mmap_sem);
81464e30
HD
1274 return err;
1275}
1276
31dbd01f
IE
1277/*
1278 * try_to_merge_two_pages - take two identical pages and prepare them
1279 * to be merged into one page.
1280 *
8dd3557a
HD
1281 * This function returns the kpage if we successfully merged two identical
1282 * pages into one ksm page, NULL otherwise.
31dbd01f 1283 *
80e14822 1284 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1285 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1286 */
8dd3557a
HD
1287static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1288 struct page *page,
1289 struct rmap_item *tree_rmap_item,
1290 struct page *tree_page)
31dbd01f 1291{
80e14822 1292 int err;
31dbd01f 1293
80e14822 1294 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1295 if (!err) {
8dd3557a 1296 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1297 tree_page, page);
31dbd01f 1298 /*
81464e30
HD
1299 * If that fails, we have a ksm page with only one pte
1300 * pointing to it: so break it.
31dbd01f 1301 */
4035c07a 1302 if (err)
8dd3557a 1303 break_cow(rmap_item);
31dbd01f 1304 }
80e14822 1305 return err ? NULL : page;
31dbd01f
IE
1306}
1307
2c653d0e
AA
1308static __always_inline
1309bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1310{
1311 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1312 /*
1313 * Check that at least one mapping still exists, otherwise
1314 * there's no much point to merge and share with this
1315 * stable_node, as the underlying tree_page of the other
1316 * sharer is going to be freed soon.
1317 */
1318 return stable_node->rmap_hlist_len &&
1319 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1320}
1321
1322static __always_inline
1323bool is_page_sharing_candidate(struct stable_node *stable_node)
1324{
1325 return __is_page_sharing_candidate(stable_node, 0);
1326}
1327
8dc5ffcd
AA
1328struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1329 struct stable_node **_stable_node,
1330 struct rb_root *root,
1331 bool prune_stale_stable_nodes)
2c653d0e 1332{
b4fecc67 1333 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1334 struct hlist_node *hlist_safe;
8dc5ffcd 1335 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1336 int nr = 0;
1337 int found_rmap_hlist_len;
1338
1339 if (!prune_stale_stable_nodes ||
1340 time_before(jiffies, stable_node->chain_prune_time +
1341 msecs_to_jiffies(
1342 ksm_stable_node_chains_prune_millisecs)))
1343 prune_stale_stable_nodes = false;
1344 else
1345 stable_node->chain_prune_time = jiffies;
1346
1347 hlist_for_each_entry_safe(dup, hlist_safe,
1348 &stable_node->hlist, hlist_dup) {
1349 cond_resched();
1350 /*
1351 * We must walk all stable_node_dup to prune the stale
1352 * stable nodes during lookup.
1353 *
1354 * get_ksm_page can drop the nodes from the
1355 * stable_node->hlist if they point to freed pages
1356 * (that's why we do a _safe walk). The "dup"
1357 * stable_node parameter itself will be freed from
1358 * under us if it returns NULL.
1359 */
1360 _tree_page = get_ksm_page(dup, false);
1361 if (!_tree_page)
1362 continue;
1363 nr += 1;
1364 if (is_page_sharing_candidate(dup)) {
1365 if (!found ||
1366 dup->rmap_hlist_len > found_rmap_hlist_len) {
1367 if (found)
8dc5ffcd 1368 put_page(tree_page);
2c653d0e
AA
1369 found = dup;
1370 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1371 tree_page = _tree_page;
2c653d0e 1372
8dc5ffcd 1373 /* skip put_page for found dup */
2c653d0e
AA
1374 if (!prune_stale_stable_nodes)
1375 break;
2c653d0e
AA
1376 continue;
1377 }
1378 }
1379 put_page(_tree_page);
1380 }
1381
80b18dfa
AA
1382 if (found) {
1383 /*
1384 * nr is counting all dups in the chain only if
1385 * prune_stale_stable_nodes is true, otherwise we may
1386 * break the loop at nr == 1 even if there are
1387 * multiple entries.
1388 */
1389 if (prune_stale_stable_nodes && nr == 1) {
2c653d0e
AA
1390 /*
1391 * If there's not just one entry it would
1392 * corrupt memory, better BUG_ON. In KSM
1393 * context with no lock held it's not even
1394 * fatal.
1395 */
1396 BUG_ON(stable_node->hlist.first->next);
1397
1398 /*
1399 * There's just one entry and it is below the
1400 * deduplication limit so drop the chain.
1401 */
1402 rb_replace_node(&stable_node->node, &found->node,
1403 root);
1404 free_stable_node(stable_node);
1405 ksm_stable_node_chains--;
1406 ksm_stable_node_dups--;
b4fecc67 1407 /*
0ba1d0f7
AA
1408 * NOTE: the caller depends on the stable_node
1409 * to be equal to stable_node_dup if the chain
1410 * was collapsed.
b4fecc67 1411 */
0ba1d0f7
AA
1412 *_stable_node = found;
1413 /*
1414 * Just for robustneess as stable_node is
1415 * otherwise left as a stable pointer, the
1416 * compiler shall optimize it away at build
1417 * time.
1418 */
1419 stable_node = NULL;
80b18dfa
AA
1420 } else if (stable_node->hlist.first != &found->hlist_dup &&
1421 __is_page_sharing_candidate(found, 1)) {
2c653d0e 1422 /*
80b18dfa
AA
1423 * If the found stable_node dup can accept one
1424 * more future merge (in addition to the one
1425 * that is underway) and is not at the head of
1426 * the chain, put it there so next search will
1427 * be quicker in the !prune_stale_stable_nodes
1428 * case.
1429 *
1430 * NOTE: it would be inaccurate to use nr > 1
1431 * instead of checking the hlist.first pointer
1432 * directly, because in the
1433 * prune_stale_stable_nodes case "nr" isn't
1434 * the position of the found dup in the chain,
1435 * but the total number of dups in the chain.
2c653d0e
AA
1436 */
1437 hlist_del(&found->hlist_dup);
1438 hlist_add_head(&found->hlist_dup,
1439 &stable_node->hlist);
1440 }
1441 }
1442
8dc5ffcd
AA
1443 *_stable_node_dup = found;
1444 return tree_page;
2c653d0e
AA
1445}
1446
1447static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1448 struct rb_root *root)
1449{
1450 if (!is_stable_node_chain(stable_node))
1451 return stable_node;
1452 if (hlist_empty(&stable_node->hlist)) {
1453 free_stable_node_chain(stable_node, root);
1454 return NULL;
1455 }
1456 return hlist_entry(stable_node->hlist.first,
1457 typeof(*stable_node), hlist_dup);
1458}
1459
8dc5ffcd
AA
1460/*
1461 * Like for get_ksm_page, this function can free the *_stable_node and
1462 * *_stable_node_dup if the returned tree_page is NULL.
1463 *
1464 * It can also free and overwrite *_stable_node with the found
1465 * stable_node_dup if the chain is collapsed (in which case
1466 * *_stable_node will be equal to *_stable_node_dup like if the chain
1467 * never existed). It's up to the caller to verify tree_page is not
1468 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1469 *
1470 * *_stable_node_dup is really a second output parameter of this
1471 * function and will be overwritten in all cases, the caller doesn't
1472 * need to initialize it.
1473 */
1474static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1475 struct stable_node **_stable_node,
1476 struct rb_root *root,
1477 bool prune_stale_stable_nodes)
2c653d0e 1478{
b4fecc67 1479 struct stable_node *stable_node = *_stable_node;
2c653d0e
AA
1480 if (!is_stable_node_chain(stable_node)) {
1481 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd
AA
1482 *_stable_node_dup = stable_node;
1483 return get_ksm_page(stable_node, false);
2c653d0e 1484 }
8dc5ffcd
AA
1485 /*
1486 * _stable_node_dup set to NULL means the stable_node
1487 * reached the ksm_max_page_sharing limit.
1488 */
1489 *_stable_node_dup = NULL;
2c653d0e
AA
1490 return NULL;
1491 }
8dc5ffcd 1492 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1493 prune_stale_stable_nodes);
1494}
1495
8dc5ffcd
AA
1496static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1497 struct stable_node **s_n,
1498 struct rb_root *root)
2c653d0e 1499{
8dc5ffcd 1500 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1501}
1502
8dc5ffcd
AA
1503static __always_inline struct page *chain(struct stable_node **s_n_d,
1504 struct stable_node *s_n,
1505 struct rb_root *root)
2c653d0e 1506{
8dc5ffcd
AA
1507 struct stable_node *old_stable_node = s_n;
1508 struct page *tree_page;
1509
1510 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1511 /* not pruning dups so s_n cannot have changed */
1512 VM_BUG_ON(s_n != old_stable_node);
1513 return tree_page;
2c653d0e
AA
1514}
1515
31dbd01f 1516/*
8dd3557a 1517 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1518 *
1519 * This function checks if there is a page inside the stable tree
1520 * with identical content to the page that we are scanning right now.
1521 *
7b6ba2c7 1522 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1523 * NULL otherwise.
1524 */
62b61f61 1525static struct page *stable_tree_search(struct page *page)
31dbd01f 1526{
90bd6fd3 1527 int nid;
ef53d16c 1528 struct rb_root *root;
4146d2d6
HD
1529 struct rb_node **new;
1530 struct rb_node *parent;
2c653d0e 1531 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1532 struct stable_node *page_node;
31dbd01f 1533
4146d2d6
HD
1534 page_node = page_stable_node(page);
1535 if (page_node && page_node->head != &migrate_nodes) {
1536 /* ksm page forked */
08beca44 1537 get_page(page);
62b61f61 1538 return page;
08beca44
HD
1539 }
1540
90bd6fd3 1541 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1542 root = root_stable_tree + nid;
4146d2d6 1543again:
ef53d16c 1544 new = &root->rb_node;
4146d2d6 1545 parent = NULL;
90bd6fd3 1546
4146d2d6 1547 while (*new) {
4035c07a 1548 struct page *tree_page;
31dbd01f
IE
1549 int ret;
1550
08beca44 1551 cond_resched();
4146d2d6 1552 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1553 stable_node_any = NULL;
8dc5ffcd 1554 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1555 /*
1556 * NOTE: stable_node may have been freed by
1557 * chain_prune() if the returned stable_node_dup is
1558 * not NULL. stable_node_dup may have been inserted in
1559 * the rbtree instead as a regular stable_node (in
1560 * order to collapse the stable_node chain if a single
0ba1d0f7
AA
1561 * stable_node dup was found in it). In such case the
1562 * stable_node is overwritten by the calleee to point
1563 * to the stable_node_dup that was collapsed in the
1564 * stable rbtree and stable_node will be equal to
1565 * stable_node_dup like if the chain never existed.
b4fecc67 1566 */
2c653d0e
AA
1567 if (!stable_node_dup) {
1568 /*
1569 * Either all stable_node dups were full in
1570 * this stable_node chain, or this chain was
1571 * empty and should be rb_erased.
1572 */
1573 stable_node_any = stable_node_dup_any(stable_node,
1574 root);
1575 if (!stable_node_any) {
1576 /* rb_erase just run */
1577 goto again;
1578 }
1579 /*
1580 * Take any of the stable_node dups page of
1581 * this stable_node chain to let the tree walk
1582 * continue. All KSM pages belonging to the
1583 * stable_node dups in a stable_node chain
1584 * have the same content and they're
1585 * wrprotected at all times. Any will work
1586 * fine to continue the walk.
1587 */
1588 tree_page = get_ksm_page(stable_node_any, false);
1589 }
1590 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1591 if (!tree_page) {
1592 /*
1593 * If we walked over a stale stable_node,
1594 * get_ksm_page() will call rb_erase() and it
1595 * may rebalance the tree from under us. So
1596 * restart the search from scratch. Returning
1597 * NULL would be safe too, but we'd generate
1598 * false negative insertions just because some
1599 * stable_node was stale.
1600 */
1601 goto again;
1602 }
31dbd01f 1603
4035c07a 1604 ret = memcmp_pages(page, tree_page);
c8d6553b 1605 put_page(tree_page);
31dbd01f 1606
4146d2d6 1607 parent = *new;
c8d6553b 1608 if (ret < 0)
4146d2d6 1609 new = &parent->rb_left;
c8d6553b 1610 else if (ret > 0)
4146d2d6 1611 new = &parent->rb_right;
c8d6553b 1612 else {
2c653d0e
AA
1613 if (page_node) {
1614 VM_BUG_ON(page_node->head != &migrate_nodes);
1615 /*
1616 * Test if the migrated page should be merged
1617 * into a stable node dup. If the mapcount is
1618 * 1 we can migrate it with another KSM page
1619 * without adding it to the chain.
1620 */
1621 if (page_mapcount(page) > 1)
1622 goto chain_append;
1623 }
1624
1625 if (!stable_node_dup) {
1626 /*
1627 * If the stable_node is a chain and
1628 * we got a payload match in memcmp
1629 * but we cannot merge the scanned
1630 * page in any of the existing
1631 * stable_node dups because they're
1632 * all full, we need to wait the
1633 * scanned page to find itself a match
1634 * in the unstable tree to create a
1635 * brand new KSM page to add later to
1636 * the dups of this stable_node.
1637 */
1638 return NULL;
1639 }
1640
c8d6553b
HD
1641 /*
1642 * Lock and unlock the stable_node's page (which
1643 * might already have been migrated) so that page
1644 * migration is sure to notice its raised count.
1645 * It would be more elegant to return stable_node
1646 * than kpage, but that involves more changes.
1647 */
2c653d0e
AA
1648 tree_page = get_ksm_page(stable_node_dup, true);
1649 if (unlikely(!tree_page))
1650 /*
1651 * The tree may have been rebalanced,
1652 * so re-evaluate parent and new.
1653 */
4146d2d6 1654 goto again;
2c653d0e
AA
1655 unlock_page(tree_page);
1656
1657 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1658 NUMA(stable_node_dup->nid)) {
1659 put_page(tree_page);
1660 goto replace;
1661 }
1662 return tree_page;
c8d6553b 1663 }
31dbd01f
IE
1664 }
1665
4146d2d6
HD
1666 if (!page_node)
1667 return NULL;
1668
1669 list_del(&page_node->list);
1670 DO_NUMA(page_node->nid = nid);
1671 rb_link_node(&page_node->node, parent, new);
ef53d16c 1672 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1673out:
1674 if (is_page_sharing_candidate(page_node)) {
1675 get_page(page);
1676 return page;
1677 } else
1678 return NULL;
4146d2d6
HD
1679
1680replace:
b4fecc67
AA
1681 /*
1682 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1683 * stable_node has been updated to be the new regular
1684 * stable_node. A collapse of the chain is indistinguishable
1685 * from the case there was no chain in the stable
1686 * rbtree. Otherwise stable_node is the chain and
1687 * stable_node_dup is the dup to replace.
b4fecc67 1688 */
0ba1d0f7 1689 if (stable_node_dup == stable_node) {
b4fecc67
AA
1690 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1691 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1692 /* there is no chain */
1693 if (page_node) {
1694 VM_BUG_ON(page_node->head != &migrate_nodes);
1695 list_del(&page_node->list);
1696 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1697 rb_replace_node(&stable_node_dup->node,
1698 &page_node->node,
2c653d0e
AA
1699 root);
1700 if (is_page_sharing_candidate(page_node))
1701 get_page(page);
1702 else
1703 page = NULL;
1704 } else {
b4fecc67 1705 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1706 page = NULL;
1707 }
4146d2d6 1708 } else {
2c653d0e
AA
1709 VM_BUG_ON(!is_stable_node_chain(stable_node));
1710 __stable_node_dup_del(stable_node_dup);
1711 if (page_node) {
1712 VM_BUG_ON(page_node->head != &migrate_nodes);
1713 list_del(&page_node->list);
1714 DO_NUMA(page_node->nid = nid);
1715 stable_node_chain_add_dup(page_node, stable_node);
1716 if (is_page_sharing_candidate(page_node))
1717 get_page(page);
1718 else
1719 page = NULL;
1720 } else {
1721 page = NULL;
1722 }
4146d2d6 1723 }
2c653d0e
AA
1724 stable_node_dup->head = &migrate_nodes;
1725 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1726 return page;
2c653d0e
AA
1727
1728chain_append:
1729 /* stable_node_dup could be null if it reached the limit */
1730 if (!stable_node_dup)
1731 stable_node_dup = stable_node_any;
b4fecc67
AA
1732 /*
1733 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1734 * stable_node has been updated to be the new regular
1735 * stable_node. A collapse of the chain is indistinguishable
1736 * from the case there was no chain in the stable
1737 * rbtree. Otherwise stable_node is the chain and
1738 * stable_node_dup is the dup to replace.
b4fecc67 1739 */
0ba1d0f7 1740 if (stable_node_dup == stable_node) {
b4fecc67
AA
1741 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1742 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1743 /* chain is missing so create it */
1744 stable_node = alloc_stable_node_chain(stable_node_dup,
1745 root);
1746 if (!stable_node)
1747 return NULL;
1748 }
1749 /*
1750 * Add this stable_node dup that was
1751 * migrated to the stable_node chain
1752 * of the current nid for this page
1753 * content.
1754 */
b4fecc67
AA
1755 VM_BUG_ON(!is_stable_node_chain(stable_node));
1756 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1757 VM_BUG_ON(page_node->head != &migrate_nodes);
1758 list_del(&page_node->list);
1759 DO_NUMA(page_node->nid = nid);
1760 stable_node_chain_add_dup(page_node, stable_node);
1761 goto out;
31dbd01f
IE
1762}
1763
1764/*
e850dcf5 1765 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1766 * into the stable tree.
1767 *
7b6ba2c7
HD
1768 * This function returns the stable tree node just allocated on success,
1769 * NULL otherwise.
31dbd01f 1770 */
7b6ba2c7 1771static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1772{
90bd6fd3
PH
1773 int nid;
1774 unsigned long kpfn;
ef53d16c 1775 struct rb_root *root;
90bd6fd3 1776 struct rb_node **new;
f2e5ff85 1777 struct rb_node *parent;
2c653d0e
AA
1778 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1779 bool need_chain = false;
31dbd01f 1780
90bd6fd3
PH
1781 kpfn = page_to_pfn(kpage);
1782 nid = get_kpfn_nid(kpfn);
ef53d16c 1783 root = root_stable_tree + nid;
f2e5ff85
AA
1784again:
1785 parent = NULL;
ef53d16c 1786 new = &root->rb_node;
90bd6fd3 1787
31dbd01f 1788 while (*new) {
4035c07a 1789 struct page *tree_page;
31dbd01f
IE
1790 int ret;
1791
08beca44 1792 cond_resched();
7b6ba2c7 1793 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1794 stable_node_any = NULL;
8dc5ffcd 1795 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1796 if (!stable_node_dup) {
1797 /*
1798 * Either all stable_node dups were full in
1799 * this stable_node chain, or this chain was
1800 * empty and should be rb_erased.
1801 */
1802 stable_node_any = stable_node_dup_any(stable_node,
1803 root);
1804 if (!stable_node_any) {
1805 /* rb_erase just run */
1806 goto again;
1807 }
1808 /*
1809 * Take any of the stable_node dups page of
1810 * this stable_node chain to let the tree walk
1811 * continue. All KSM pages belonging to the
1812 * stable_node dups in a stable_node chain
1813 * have the same content and they're
1814 * wrprotected at all times. Any will work
1815 * fine to continue the walk.
1816 */
1817 tree_page = get_ksm_page(stable_node_any, false);
1818 }
1819 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1820 if (!tree_page) {
1821 /*
1822 * If we walked over a stale stable_node,
1823 * get_ksm_page() will call rb_erase() and it
1824 * may rebalance the tree from under us. So
1825 * restart the search from scratch. Returning
1826 * NULL would be safe too, but we'd generate
1827 * false negative insertions just because some
1828 * stable_node was stale.
1829 */
1830 goto again;
1831 }
31dbd01f 1832
4035c07a
HD
1833 ret = memcmp_pages(kpage, tree_page);
1834 put_page(tree_page);
31dbd01f
IE
1835
1836 parent = *new;
1837 if (ret < 0)
1838 new = &parent->rb_left;
1839 else if (ret > 0)
1840 new = &parent->rb_right;
1841 else {
2c653d0e
AA
1842 need_chain = true;
1843 break;
31dbd01f
IE
1844 }
1845 }
1846
2c653d0e
AA
1847 stable_node_dup = alloc_stable_node();
1848 if (!stable_node_dup)
7b6ba2c7 1849 return NULL;
31dbd01f 1850
2c653d0e
AA
1851 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1852 stable_node_dup->kpfn = kpfn;
1853 set_page_stable_node(kpage, stable_node_dup);
1854 stable_node_dup->rmap_hlist_len = 0;
1855 DO_NUMA(stable_node_dup->nid = nid);
1856 if (!need_chain) {
1857 rb_link_node(&stable_node_dup->node, parent, new);
1858 rb_insert_color(&stable_node_dup->node, root);
1859 } else {
1860 if (!is_stable_node_chain(stable_node)) {
1861 struct stable_node *orig = stable_node;
1862 /* chain is missing so create it */
1863 stable_node = alloc_stable_node_chain(orig, root);
1864 if (!stable_node) {
1865 free_stable_node(stable_node_dup);
1866 return NULL;
1867 }
1868 }
1869 stable_node_chain_add_dup(stable_node_dup, stable_node);
1870 }
08beca44 1871
2c653d0e 1872 return stable_node_dup;
31dbd01f
IE
1873}
1874
1875/*
8dd3557a
HD
1876 * unstable_tree_search_insert - search for identical page,
1877 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1878 *
1879 * This function searches for a page in the unstable tree identical to the
1880 * page currently being scanned; and if no identical page is found in the
1881 * tree, we insert rmap_item as a new object into the unstable tree.
1882 *
1883 * This function returns pointer to rmap_item found to be identical
1884 * to the currently scanned page, NULL otherwise.
1885 *
1886 * This function does both searching and inserting, because they share
1887 * the same walking algorithm in an rbtree.
1888 */
8dd3557a
HD
1889static
1890struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1891 struct page *page,
1892 struct page **tree_pagep)
31dbd01f 1893{
90bd6fd3
PH
1894 struct rb_node **new;
1895 struct rb_root *root;
31dbd01f 1896 struct rb_node *parent = NULL;
90bd6fd3
PH
1897 int nid;
1898
1899 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1900 root = root_unstable_tree + nid;
90bd6fd3 1901 new = &root->rb_node;
31dbd01f
IE
1902
1903 while (*new) {
1904 struct rmap_item *tree_rmap_item;
8dd3557a 1905 struct page *tree_page;
31dbd01f
IE
1906 int ret;
1907
d178f27f 1908 cond_resched();
31dbd01f 1909 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1910 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1911 if (!tree_page)
31dbd01f
IE
1912 return NULL;
1913
1914 /*
8dd3557a 1915 * Don't substitute a ksm page for a forked page.
31dbd01f 1916 */
8dd3557a
HD
1917 if (page == tree_page) {
1918 put_page(tree_page);
31dbd01f
IE
1919 return NULL;
1920 }
1921
8dd3557a 1922 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1923
1924 parent = *new;
1925 if (ret < 0) {
8dd3557a 1926 put_page(tree_page);
31dbd01f
IE
1927 new = &parent->rb_left;
1928 } else if (ret > 0) {
8dd3557a 1929 put_page(tree_page);
31dbd01f 1930 new = &parent->rb_right;
b599cbdf
HD
1931 } else if (!ksm_merge_across_nodes &&
1932 page_to_nid(tree_page) != nid) {
1933 /*
1934 * If tree_page has been migrated to another NUMA node,
1935 * it will be flushed out and put in the right unstable
1936 * tree next time: only merge with it when across_nodes.
1937 */
1938 put_page(tree_page);
1939 return NULL;
31dbd01f 1940 } else {
8dd3557a 1941 *tree_pagep = tree_page;
31dbd01f
IE
1942 return tree_rmap_item;
1943 }
1944 }
1945
7b6ba2c7 1946 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1947 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1948 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1949 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1950 rb_insert_color(&rmap_item->node, root);
31dbd01f 1951
473b0ce4 1952 ksm_pages_unshared++;
31dbd01f
IE
1953 return NULL;
1954}
1955
1956/*
1957 * stable_tree_append - add another rmap_item to the linked list of
1958 * rmap_items hanging off a given node of the stable tree, all sharing
1959 * the same ksm page.
1960 */
1961static void stable_tree_append(struct rmap_item *rmap_item,
2c653d0e
AA
1962 struct stable_node *stable_node,
1963 bool max_page_sharing_bypass)
31dbd01f 1964{
2c653d0e
AA
1965 /*
1966 * rmap won't find this mapping if we don't insert the
1967 * rmap_item in the right stable_node
1968 * duplicate. page_migration could break later if rmap breaks,
1969 * so we can as well crash here. We really need to check for
1970 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1971 * for other negative values as an undeflow if detected here
1972 * for the first time (and not when decreasing rmap_hlist_len)
1973 * would be sign of memory corruption in the stable_node.
1974 */
1975 BUG_ON(stable_node->rmap_hlist_len < 0);
1976
1977 stable_node->rmap_hlist_len++;
1978 if (!max_page_sharing_bypass)
1979 /* possibly non fatal but unexpected overflow, only warn */
1980 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1981 ksm_max_page_sharing);
1982
7b6ba2c7 1983 rmap_item->head = stable_node;
31dbd01f 1984 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1985 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1986
7b6ba2c7
HD
1987 if (rmap_item->hlist.next)
1988 ksm_pages_sharing++;
1989 else
1990 ksm_pages_shared++;
31dbd01f
IE
1991}
1992
1993/*
81464e30
HD
1994 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1995 * if not, compare checksum to previous and if it's the same, see if page can
1996 * be inserted into the unstable tree, or merged with a page already there and
1997 * both transferred to the stable tree.
31dbd01f
IE
1998 *
1999 * @page: the page that we are searching identical page to.
2000 * @rmap_item: the reverse mapping into the virtual address of this page
2001 */
2002static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2003{
4b22927f 2004 struct mm_struct *mm = rmap_item->mm;
31dbd01f 2005 struct rmap_item *tree_rmap_item;
8dd3557a 2006 struct page *tree_page = NULL;
7b6ba2c7 2007 struct stable_node *stable_node;
8dd3557a 2008 struct page *kpage;
31dbd01f
IE
2009 unsigned int checksum;
2010 int err;
2c653d0e 2011 bool max_page_sharing_bypass = false;
31dbd01f 2012
4146d2d6
HD
2013 stable_node = page_stable_node(page);
2014 if (stable_node) {
2015 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
2016 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2017 NUMA(stable_node->nid)) {
2018 stable_node_dup_del(stable_node);
4146d2d6
HD
2019 stable_node->head = &migrate_nodes;
2020 list_add(&stable_node->list, stable_node->head);
2021 }
2022 if (stable_node->head != &migrate_nodes &&
2023 rmap_item->head == stable_node)
2024 return;
2c653d0e
AA
2025 /*
2026 * If it's a KSM fork, allow it to go over the sharing limit
2027 * without warnings.
2028 */
2029 if (!is_page_sharing_candidate(stable_node))
2030 max_page_sharing_bypass = true;
4146d2d6 2031 }
31dbd01f
IE
2032
2033 /* We first start with searching the page inside the stable tree */
62b61f61 2034 kpage = stable_tree_search(page);
4146d2d6
HD
2035 if (kpage == page && rmap_item->head == stable_node) {
2036 put_page(kpage);
2037 return;
2038 }
2039
2040 remove_rmap_item_from_tree(rmap_item);
2041
62b61f61 2042 if (kpage) {
08beca44 2043 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2044 if (!err) {
2045 /*
2046 * The page was successfully merged:
2047 * add its rmap_item to the stable tree.
2048 */
5ad64688 2049 lock_page(kpage);
2c653d0e
AA
2050 stable_tree_append(rmap_item, page_stable_node(kpage),
2051 max_page_sharing_bypass);
5ad64688 2052 unlock_page(kpage);
31dbd01f 2053 }
8dd3557a 2054 put_page(kpage);
31dbd01f
IE
2055 return;
2056 }
2057
2058 /*
4035c07a
HD
2059 * If the hash value of the page has changed from the last time
2060 * we calculated it, this page is changing frequently: therefore we
2061 * don't want to insert it in the unstable tree, and we don't want
2062 * to waste our time searching for something identical to it there.
31dbd01f
IE
2063 */
2064 checksum = calc_checksum(page);
2065 if (rmap_item->oldchecksum != checksum) {
2066 rmap_item->oldchecksum = checksum;
2067 return;
2068 }
2069
e86c59b1
CI
2070 /*
2071 * Same checksum as an empty page. We attempt to merge it with the
2072 * appropriate zero page if the user enabled this via sysfs.
2073 */
2074 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2075 struct vm_area_struct *vma;
2076
4b22927f
KT
2077 down_read(&mm->mmap_sem);
2078 vma = find_mergeable_vma(mm, rmap_item->address);
e86c59b1
CI
2079 err = try_to_merge_one_page(vma, page,
2080 ZERO_PAGE(rmap_item->address));
4b22927f 2081 up_read(&mm->mmap_sem);
e86c59b1
CI
2082 /*
2083 * In case of failure, the page was not really empty, so we
2084 * need to continue. Otherwise we're done.
2085 */
2086 if (!err)
2087 return;
2088 }
8dd3557a
HD
2089 tree_rmap_item =
2090 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2091 if (tree_rmap_item) {
8dd3557a
HD
2092 kpage = try_to_merge_two_pages(rmap_item, page,
2093 tree_rmap_item, tree_page);
2094 put_page(tree_page);
8dd3557a 2095 if (kpage) {
bc56620b
HD
2096 /*
2097 * The pages were successfully merged: insert new
2098 * node in the stable tree and add both rmap_items.
2099 */
5ad64688 2100 lock_page(kpage);
7b6ba2c7
HD
2101 stable_node = stable_tree_insert(kpage);
2102 if (stable_node) {
2c653d0e
AA
2103 stable_tree_append(tree_rmap_item, stable_node,
2104 false);
2105 stable_tree_append(rmap_item, stable_node,
2106 false);
7b6ba2c7 2107 }
5ad64688 2108 unlock_page(kpage);
7b6ba2c7 2109
31dbd01f
IE
2110 /*
2111 * If we fail to insert the page into the stable tree,
2112 * we will have 2 virtual addresses that are pointing
2113 * to a ksm page left outside the stable tree,
2114 * in which case we need to break_cow on both.
2115 */
7b6ba2c7 2116 if (!stable_node) {
8dd3557a
HD
2117 break_cow(tree_rmap_item);
2118 break_cow(rmap_item);
31dbd01f
IE
2119 }
2120 }
31dbd01f
IE
2121 }
2122}
2123
2124static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2125 struct rmap_item **rmap_list,
31dbd01f
IE
2126 unsigned long addr)
2127{
2128 struct rmap_item *rmap_item;
2129
6514d511
HD
2130 while (*rmap_list) {
2131 rmap_item = *rmap_list;
93d17715 2132 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2133 return rmap_item;
31dbd01f
IE
2134 if (rmap_item->address > addr)
2135 break;
6514d511 2136 *rmap_list = rmap_item->rmap_list;
31dbd01f 2137 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2138 free_rmap_item(rmap_item);
2139 }
2140
2141 rmap_item = alloc_rmap_item();
2142 if (rmap_item) {
2143 /* It has already been zeroed */
2144 rmap_item->mm = mm_slot->mm;
2145 rmap_item->address = addr;
6514d511
HD
2146 rmap_item->rmap_list = *rmap_list;
2147 *rmap_list = rmap_item;
31dbd01f
IE
2148 }
2149 return rmap_item;
2150}
2151
2152static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2153{
2154 struct mm_struct *mm;
2155 struct mm_slot *slot;
2156 struct vm_area_struct *vma;
2157 struct rmap_item *rmap_item;
90bd6fd3 2158 int nid;
31dbd01f
IE
2159
2160 if (list_empty(&ksm_mm_head.mm_list))
2161 return NULL;
2162
2163 slot = ksm_scan.mm_slot;
2164 if (slot == &ksm_mm_head) {
2919bfd0
HD
2165 /*
2166 * A number of pages can hang around indefinitely on per-cpu
2167 * pagevecs, raised page count preventing write_protect_page
2168 * from merging them. Though it doesn't really matter much,
2169 * it is puzzling to see some stuck in pages_volatile until
2170 * other activity jostles them out, and they also prevented
2171 * LTP's KSM test from succeeding deterministically; so drain
2172 * them here (here rather than on entry to ksm_do_scan(),
2173 * so we don't IPI too often when pages_to_scan is set low).
2174 */
2175 lru_add_drain_all();
2176
4146d2d6
HD
2177 /*
2178 * Whereas stale stable_nodes on the stable_tree itself
2179 * get pruned in the regular course of stable_tree_search(),
2180 * those moved out to the migrate_nodes list can accumulate:
2181 * so prune them once before each full scan.
2182 */
2183 if (!ksm_merge_across_nodes) {
03640418 2184 struct stable_node *stable_node, *next;
4146d2d6
HD
2185 struct page *page;
2186
03640418
GT
2187 list_for_each_entry_safe(stable_node, next,
2188 &migrate_nodes, list) {
4146d2d6
HD
2189 page = get_ksm_page(stable_node, false);
2190 if (page)
2191 put_page(page);
2192 cond_resched();
2193 }
2194 }
2195
ef53d16c 2196 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2197 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2198
2199 spin_lock(&ksm_mmlist_lock);
2200 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2201 ksm_scan.mm_slot = slot;
2202 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2203 /*
2204 * Although we tested list_empty() above, a racing __ksm_exit
2205 * of the last mm on the list may have removed it since then.
2206 */
2207 if (slot == &ksm_mm_head)
2208 return NULL;
31dbd01f
IE
2209next_mm:
2210 ksm_scan.address = 0;
6514d511 2211 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2212 }
2213
2214 mm = slot->mm;
2215 down_read(&mm->mmap_sem);
9ba69294
HD
2216 if (ksm_test_exit(mm))
2217 vma = NULL;
2218 else
2219 vma = find_vma(mm, ksm_scan.address);
2220
2221 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2222 if (!(vma->vm_flags & VM_MERGEABLE))
2223 continue;
2224 if (ksm_scan.address < vma->vm_start)
2225 ksm_scan.address = vma->vm_start;
2226 if (!vma->anon_vma)
2227 ksm_scan.address = vma->vm_end;
2228
2229 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2230 if (ksm_test_exit(mm))
2231 break;
31dbd01f 2232 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
2233 if (IS_ERR_OR_NULL(*page)) {
2234 ksm_scan.address += PAGE_SIZE;
2235 cond_resched();
2236 continue;
2237 }
f765f540 2238 if (PageAnon(*page)) {
31dbd01f
IE
2239 flush_anon_page(vma, *page, ksm_scan.address);
2240 flush_dcache_page(*page);
2241 rmap_item = get_next_rmap_item(slot,
6514d511 2242 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2243 if (rmap_item) {
6514d511
HD
2244 ksm_scan.rmap_list =
2245 &rmap_item->rmap_list;
31dbd01f
IE
2246 ksm_scan.address += PAGE_SIZE;
2247 } else
2248 put_page(*page);
2249 up_read(&mm->mmap_sem);
2250 return rmap_item;
2251 }
21ae5b01 2252 put_page(*page);
31dbd01f
IE
2253 ksm_scan.address += PAGE_SIZE;
2254 cond_resched();
2255 }
2256 }
2257
9ba69294
HD
2258 if (ksm_test_exit(mm)) {
2259 ksm_scan.address = 0;
6514d511 2260 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2261 }
31dbd01f
IE
2262 /*
2263 * Nuke all the rmap_items that are above this current rmap:
2264 * because there were no VM_MERGEABLE vmas with such addresses.
2265 */
6514d511 2266 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
2267
2268 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2269 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2270 struct mm_slot, mm_list);
2271 if (ksm_scan.address == 0) {
2272 /*
2273 * We've completed a full scan of all vmas, holding mmap_sem
2274 * throughout, and found no VM_MERGEABLE: so do the same as
2275 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2276 * This applies either when cleaning up after __ksm_exit
2277 * (but beware: we can reach here even before __ksm_exit),
2278 * or when all VM_MERGEABLE areas have been unmapped (and
2279 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 2280 */
4ca3a69b 2281 hash_del(&slot->link);
cd551f97 2282 list_del(&slot->mm_list);
9ba69294
HD
2283 spin_unlock(&ksm_mmlist_lock);
2284
cd551f97
HD
2285 free_mm_slot(slot);
2286 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
2287 up_read(&mm->mmap_sem);
2288 mmdrop(mm);
2289 } else {
9ba69294 2290 up_read(&mm->mmap_sem);
7496fea9
ZC
2291 /*
2292 * up_read(&mm->mmap_sem) first because after
2293 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2294 * already have been freed under us by __ksm_exit()
2295 * because the "mm_slot" is still hashed and
2296 * ksm_scan.mm_slot doesn't point to it anymore.
2297 */
2298 spin_unlock(&ksm_mmlist_lock);
cd551f97 2299 }
31dbd01f
IE
2300
2301 /* Repeat until we've completed scanning the whole list */
cd551f97 2302 slot = ksm_scan.mm_slot;
31dbd01f
IE
2303 if (slot != &ksm_mm_head)
2304 goto next_mm;
2305
31dbd01f
IE
2306 ksm_scan.seqnr++;
2307 return NULL;
2308}
2309
2310/**
2311 * ksm_do_scan - the ksm scanner main worker function.
2312 * @scan_npages - number of pages we want to scan before we return.
2313 */
2314static void ksm_do_scan(unsigned int scan_npages)
2315{
2316 struct rmap_item *rmap_item;
22eccdd7 2317 struct page *uninitialized_var(page);
31dbd01f 2318
878aee7d 2319 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2320 cond_resched();
2321 rmap_item = scan_get_next_rmap_item(&page);
2322 if (!rmap_item)
2323 return;
4146d2d6 2324 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2325 put_page(page);
2326 }
2327}
2328
6e158384
HD
2329static int ksmd_should_run(void)
2330{
2331 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2332}
2333
31dbd01f
IE
2334static int ksm_scan_thread(void *nothing)
2335{
878aee7d 2336 set_freezable();
339aa624 2337 set_user_nice(current, 5);
31dbd01f
IE
2338
2339 while (!kthread_should_stop()) {
6e158384 2340 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2341 wait_while_offlining();
6e158384 2342 if (ksmd_should_run())
31dbd01f 2343 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2344 mutex_unlock(&ksm_thread_mutex);
2345
878aee7d
AA
2346 try_to_freeze();
2347
6e158384 2348 if (ksmd_should_run()) {
daa3ffc6
AV
2349 if (ksm_thread_sleep_millisecs >= 1000)
2350 schedule_timeout_interruptible(
2351 msecs_to_jiffies(round_jiffies_relative(ksm_thread_sleep_millisecs)));
2352 else
2353 schedule_timeout_interruptible(
2354 msecs_to_jiffies(ksm_thread_sleep_millisecs));
31dbd01f 2355 } else {
878aee7d 2356 wait_event_freezable(ksm_thread_wait,
6e158384 2357 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2358 }
2359 }
2360 return 0;
2361}
2362
f8af4da3
HD
2363int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2364 unsigned long end, int advice, unsigned long *vm_flags)
2365{
2366 struct mm_struct *mm = vma->vm_mm;
d952b791 2367 int err;
f8af4da3
HD
2368
2369 switch (advice) {
2370 case MADV_MERGEABLE:
2371 /*
2372 * Be somewhat over-protective for now!
2373 */
2374 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2375 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2376 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2377 return 0; /* just ignore the advice */
2378
cc2383ec
KK
2379#ifdef VM_SAO
2380 if (*vm_flags & VM_SAO)
2381 return 0;
2382#endif
2383
d952b791
HD
2384 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2385 err = __ksm_enter(mm);
2386 if (err)
2387 return err;
2388 }
f8af4da3
HD
2389
2390 *vm_flags |= VM_MERGEABLE;
2391 break;
2392
2393 case MADV_UNMERGEABLE:
2394 if (!(*vm_flags & VM_MERGEABLE))
2395 return 0; /* just ignore the advice */
2396
d952b791
HD
2397 if (vma->anon_vma) {
2398 err = unmerge_ksm_pages(vma, start, end);
2399 if (err)
2400 return err;
2401 }
f8af4da3
HD
2402
2403 *vm_flags &= ~VM_MERGEABLE;
2404 break;
2405 }
2406
2407 return 0;
2408}
2409
2410int __ksm_enter(struct mm_struct *mm)
2411{
6e158384
HD
2412 struct mm_slot *mm_slot;
2413 int needs_wakeup;
2414
2415 mm_slot = alloc_mm_slot();
31dbd01f
IE
2416 if (!mm_slot)
2417 return -ENOMEM;
2418
6e158384
HD
2419 /* Check ksm_run too? Would need tighter locking */
2420 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2421
31dbd01f
IE
2422 spin_lock(&ksm_mmlist_lock);
2423 insert_to_mm_slots_hash(mm, mm_slot);
2424 /*
cbf86cfe
HD
2425 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2426 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2427 * down a little; when fork is followed by immediate exec, we don't
2428 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2429 *
2430 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2431 * scanning cursor, otherwise KSM pages in newly forked mms will be
2432 * missed: then we might as well insert at the end of the list.
31dbd01f 2433 */
cbf86cfe
HD
2434 if (ksm_run & KSM_RUN_UNMERGE)
2435 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2436 else
2437 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2438 spin_unlock(&ksm_mmlist_lock);
2439
f8af4da3 2440 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2441 mmgrab(mm);
6e158384
HD
2442
2443 if (needs_wakeup)
2444 wake_up_interruptible(&ksm_thread_wait);
2445
f8af4da3
HD
2446 return 0;
2447}
2448
1c2fb7a4 2449void __ksm_exit(struct mm_struct *mm)
f8af4da3 2450{
cd551f97 2451 struct mm_slot *mm_slot;
9ba69294 2452 int easy_to_free = 0;
cd551f97 2453
31dbd01f 2454 /*
9ba69294
HD
2455 * This process is exiting: if it's straightforward (as is the
2456 * case when ksmd was never running), free mm_slot immediately.
2457 * But if it's at the cursor or has rmap_items linked to it, use
2458 * mmap_sem to synchronize with any break_cows before pagetables
2459 * are freed, and leave the mm_slot on the list for ksmd to free.
2460 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2461 */
9ba69294 2462
cd551f97
HD
2463 spin_lock(&ksm_mmlist_lock);
2464 mm_slot = get_mm_slot(mm);
9ba69294 2465 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2466 if (!mm_slot->rmap_list) {
4ca3a69b 2467 hash_del(&mm_slot->link);
9ba69294
HD
2468 list_del(&mm_slot->mm_list);
2469 easy_to_free = 1;
2470 } else {
2471 list_move(&mm_slot->mm_list,
2472 &ksm_scan.mm_slot->mm_list);
2473 }
cd551f97 2474 }
cd551f97
HD
2475 spin_unlock(&ksm_mmlist_lock);
2476
9ba69294
HD
2477 if (easy_to_free) {
2478 free_mm_slot(mm_slot);
2479 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2480 mmdrop(mm);
2481 } else if (mm_slot) {
9ba69294
HD
2482 down_write(&mm->mmap_sem);
2483 up_write(&mm->mmap_sem);
9ba69294 2484 }
31dbd01f
IE
2485}
2486
cbf86cfe 2487struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2488 struct vm_area_struct *vma, unsigned long address)
2489{
cbf86cfe 2490 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
2491 struct page *new_page;
2492
cbf86cfe
HD
2493 if (PageKsm(page)) {
2494 if (page_stable_node(page) &&
2495 !(ksm_run & KSM_RUN_UNMERGE))
2496 return page; /* no need to copy it */
2497 } else if (!anon_vma) {
2498 return page; /* no need to copy it */
2499 } else if (anon_vma->root == vma->anon_vma->root &&
2500 page->index == linear_page_index(vma, address)) {
2501 return page; /* still no need to copy it */
2502 }
2503 if (!PageUptodate(page))
2504 return page; /* let do_swap_page report the error */
2505
5ad64688
HD
2506 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2507 if (new_page) {
2508 copy_user_highpage(new_page, page, address, vma);
2509
2510 SetPageDirty(new_page);
2511 __SetPageUptodate(new_page);
48c935ad 2512 __SetPageLocked(new_page);
5ad64688
HD
2513 }
2514
5ad64688
HD
2515 return new_page;
2516}
2517
1df631ae 2518void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
2519{
2520 struct stable_node *stable_node;
e9995ef9 2521 struct rmap_item *rmap_item;
e9995ef9
HD
2522 int search_new_forks = 0;
2523
309381fe 2524 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
2525
2526 /*
2527 * Rely on the page lock to protect against concurrent modifications
2528 * to that page's node of the stable tree.
2529 */
309381fe 2530 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
2531
2532 stable_node = page_stable_node(page);
2533 if (!stable_node)
1df631ae 2534 return;
e9995ef9 2535again:
b67bfe0d 2536 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2537 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2538 struct anon_vma_chain *vmac;
e9995ef9
HD
2539 struct vm_area_struct *vma;
2540
ad12695f 2541 cond_resched();
b6b19f25 2542 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2543 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2544 0, ULONG_MAX) {
ad12695f 2545 cond_resched();
5beb4930 2546 vma = vmac->vma;
e9995ef9
HD
2547 if (rmap_item->address < vma->vm_start ||
2548 rmap_item->address >= vma->vm_end)
2549 continue;
2550 /*
2551 * Initially we examine only the vma which covers this
2552 * rmap_item; but later, if there is still work to do,
2553 * we examine covering vmas in other mms: in case they
2554 * were forked from the original since ksmd passed.
2555 */
2556 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2557 continue;
2558
0dd1c7bb
JK
2559 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2560 continue;
2561
e4b82222 2562 if (!rwc->rmap_one(page, vma,
1df631ae 2563 rmap_item->address, rwc->arg)) {
b6b19f25 2564 anon_vma_unlock_read(anon_vma);
1df631ae 2565 return;
e9995ef9 2566 }
0dd1c7bb
JK
2567 if (rwc->done && rwc->done(page)) {
2568 anon_vma_unlock_read(anon_vma);
1df631ae 2569 return;
0dd1c7bb 2570 }
e9995ef9 2571 }
b6b19f25 2572 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2573 }
2574 if (!search_new_forks++)
2575 goto again;
e9995ef9
HD
2576}
2577
52629506 2578#ifdef CONFIG_MIGRATION
e9995ef9
HD
2579void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2580{
2581 struct stable_node *stable_node;
2582
309381fe
SL
2583 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2584 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2585 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
2586
2587 stable_node = page_stable_node(newpage);
2588 if (stable_node) {
309381fe 2589 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 2590 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
2591 /*
2592 * newpage->mapping was set in advance; now we need smp_wmb()
2593 * to make sure that the new stable_node->kpfn is visible
2594 * to get_ksm_page() before it can see that oldpage->mapping
2595 * has gone stale (or that PageSwapCache has been cleared).
2596 */
2597 smp_wmb();
2598 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
2599 }
2600}
2601#endif /* CONFIG_MIGRATION */
2602
62b61f61 2603#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2604static void wait_while_offlining(void)
2605{
2606 while (ksm_run & KSM_RUN_OFFLINE) {
2607 mutex_unlock(&ksm_thread_mutex);
2608 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2609 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2610 mutex_lock(&ksm_thread_mutex);
2611 }
2612}
2613
2c653d0e
AA
2614static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2615 unsigned long start_pfn,
2616 unsigned long end_pfn)
2617{
2618 if (stable_node->kpfn >= start_pfn &&
2619 stable_node->kpfn < end_pfn) {
2620 /*
2621 * Don't get_ksm_page, page has already gone:
2622 * which is why we keep kpfn instead of page*
2623 */
2624 remove_node_from_stable_tree(stable_node);
2625 return true;
2626 }
2627 return false;
2628}
2629
2630static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2631 unsigned long start_pfn,
2632 unsigned long end_pfn,
2633 struct rb_root *root)
2634{
2635 struct stable_node *dup;
2636 struct hlist_node *hlist_safe;
2637
2638 if (!is_stable_node_chain(stable_node)) {
2639 VM_BUG_ON(is_stable_node_dup(stable_node));
2640 return stable_node_dup_remove_range(stable_node, start_pfn,
2641 end_pfn);
2642 }
2643
2644 hlist_for_each_entry_safe(dup, hlist_safe,
2645 &stable_node->hlist, hlist_dup) {
2646 VM_BUG_ON(!is_stable_node_dup(dup));
2647 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2648 }
2649 if (hlist_empty(&stable_node->hlist)) {
2650 free_stable_node_chain(stable_node, root);
2651 return true; /* notify caller that tree was rebalanced */
2652 } else
2653 return false;
2654}
2655
ee0ea59c
HD
2656static void ksm_check_stable_tree(unsigned long start_pfn,
2657 unsigned long end_pfn)
62b61f61 2658{
03640418 2659 struct stable_node *stable_node, *next;
62b61f61 2660 struct rb_node *node;
90bd6fd3 2661 int nid;
62b61f61 2662
ef53d16c
HD
2663 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2664 node = rb_first(root_stable_tree + nid);
ee0ea59c 2665 while (node) {
90bd6fd3 2666 stable_node = rb_entry(node, struct stable_node, node);
2c653d0e
AA
2667 if (stable_node_chain_remove_range(stable_node,
2668 start_pfn, end_pfn,
2669 root_stable_tree +
2670 nid))
ef53d16c 2671 node = rb_first(root_stable_tree + nid);
2c653d0e 2672 else
ee0ea59c
HD
2673 node = rb_next(node);
2674 cond_resched();
90bd6fd3 2675 }
ee0ea59c 2676 }
03640418 2677 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2678 if (stable_node->kpfn >= start_pfn &&
2679 stable_node->kpfn < end_pfn)
2680 remove_node_from_stable_tree(stable_node);
2681 cond_resched();
2682 }
62b61f61
HD
2683}
2684
2685static int ksm_memory_callback(struct notifier_block *self,
2686 unsigned long action, void *arg)
2687{
2688 struct memory_notify *mn = arg;
62b61f61
HD
2689
2690 switch (action) {
2691 case MEM_GOING_OFFLINE:
2692 /*
ef4d43a8
HD
2693 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2694 * and remove_all_stable_nodes() while memory is going offline:
2695 * it is unsafe for them to touch the stable tree at this time.
2696 * But unmerge_ksm_pages(), rmap lookups and other entry points
2697 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2698 */
ef4d43a8
HD
2699 mutex_lock(&ksm_thread_mutex);
2700 ksm_run |= KSM_RUN_OFFLINE;
2701 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2702 break;
2703
2704 case MEM_OFFLINE:
2705 /*
2706 * Most of the work is done by page migration; but there might
2707 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2708 * pages which have been offlined: prune those from the tree,
2709 * otherwise get_ksm_page() might later try to access a
2710 * non-existent struct page.
62b61f61 2711 */
ee0ea59c
HD
2712 ksm_check_stable_tree(mn->start_pfn,
2713 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2714 /* fallthrough */
2715
2716 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2717 mutex_lock(&ksm_thread_mutex);
2718 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2719 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2720
2721 smp_mb(); /* wake_up_bit advises this */
2722 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2723 break;
2724 }
2725 return NOTIFY_OK;
2726}
ef4d43a8
HD
2727#else
2728static void wait_while_offlining(void)
2729{
2730}
62b61f61
HD
2731#endif /* CONFIG_MEMORY_HOTREMOVE */
2732
2ffd8679
HD
2733#ifdef CONFIG_SYSFS
2734/*
2735 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2736 */
2737
31dbd01f
IE
2738#define KSM_ATTR_RO(_name) \
2739 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2740#define KSM_ATTR(_name) \
2741 static struct kobj_attribute _name##_attr = \
2742 __ATTR(_name, 0644, _name##_show, _name##_store)
2743
2744static ssize_t sleep_millisecs_show(struct kobject *kobj,
2745 struct kobj_attribute *attr, char *buf)
2746{
2747 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2748}
2749
2750static ssize_t sleep_millisecs_store(struct kobject *kobj,
2751 struct kobj_attribute *attr,
2752 const char *buf, size_t count)
2753{
2754 unsigned long msecs;
2755 int err;
2756
3dbb95f7 2757 err = kstrtoul(buf, 10, &msecs);
31dbd01f
IE
2758 if (err || msecs > UINT_MAX)
2759 return -EINVAL;
2760
2761 ksm_thread_sleep_millisecs = msecs;
2762
2763 return count;
2764}
2765KSM_ATTR(sleep_millisecs);
2766
2767static ssize_t pages_to_scan_show(struct kobject *kobj,
2768 struct kobj_attribute *attr, char *buf)
2769{
2770 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2771}
2772
2773static ssize_t pages_to_scan_store(struct kobject *kobj,
2774 struct kobj_attribute *attr,
2775 const char *buf, size_t count)
2776{
2777 int err;
2778 unsigned long nr_pages;
2779
3dbb95f7 2780 err = kstrtoul(buf, 10, &nr_pages);
31dbd01f
IE
2781 if (err || nr_pages > UINT_MAX)
2782 return -EINVAL;
2783
2784 ksm_thread_pages_to_scan = nr_pages;
2785
2786 return count;
2787}
2788KSM_ATTR(pages_to_scan);
2789
2790static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2791 char *buf)
2792{
ef4d43a8 2793 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2794}
2795
2796static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2797 const char *buf, size_t count)
2798{
2799 int err;
2800 unsigned long flags;
2801
3dbb95f7 2802 err = kstrtoul(buf, 10, &flags);
31dbd01f
IE
2803 if (err || flags > UINT_MAX)
2804 return -EINVAL;
2805 if (flags > KSM_RUN_UNMERGE)
2806 return -EINVAL;
2807
2808 /*
2809 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2810 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2811 * breaking COW to free the pages_shared (but leaves mm_slots
2812 * on the list for when ksmd may be set running again).
31dbd01f
IE
2813 */
2814
2815 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2816 wait_while_offlining();
31dbd01f
IE
2817 if (ksm_run != flags) {
2818 ksm_run = flags;
d952b791 2819 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2820 set_current_oom_origin();
d952b791 2821 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2822 clear_current_oom_origin();
d952b791
HD
2823 if (err) {
2824 ksm_run = KSM_RUN_STOP;
2825 count = err;
2826 }
2827 }
31dbd01f
IE
2828 }
2829 mutex_unlock(&ksm_thread_mutex);
2830
2831 if (flags & KSM_RUN_MERGE)
2832 wake_up_interruptible(&ksm_thread_wait);
2833
2834 return count;
2835}
2836KSM_ATTR(run);
2837
90bd6fd3
PH
2838#ifdef CONFIG_NUMA
2839static ssize_t merge_across_nodes_show(struct kobject *kobj,
2840 struct kobj_attribute *attr, char *buf)
2841{
2842 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2843}
2844
2845static ssize_t merge_across_nodes_store(struct kobject *kobj,
2846 struct kobj_attribute *attr,
2847 const char *buf, size_t count)
2848{
2849 int err;
2850 unsigned long knob;
2851
2852 err = kstrtoul(buf, 10, &knob);
2853 if (err)
2854 return err;
2855 if (knob > 1)
2856 return -EINVAL;
2857
2858 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2859 wait_while_offlining();
90bd6fd3 2860 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2861 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2862 err = -EBUSY;
ef53d16c
HD
2863 else if (root_stable_tree == one_stable_tree) {
2864 struct rb_root *buf;
2865 /*
2866 * This is the first time that we switch away from the
2867 * default of merging across nodes: must now allocate
2868 * a buffer to hold as many roots as may be needed.
2869 * Allocate stable and unstable together:
2870 * MAXSMP NODES_SHIFT 10 will use 16kB.
2871 */
bafe1e14
JP
2872 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2873 GFP_KERNEL);
ef53d16c
HD
2874 /* Let us assume that RB_ROOT is NULL is zero */
2875 if (!buf)
2876 err = -ENOMEM;
2877 else {
2878 root_stable_tree = buf;
2879 root_unstable_tree = buf + nr_node_ids;
2880 /* Stable tree is empty but not the unstable */
2881 root_unstable_tree[0] = one_unstable_tree[0];
2882 }
2883 }
2884 if (!err) {
90bd6fd3 2885 ksm_merge_across_nodes = knob;
ef53d16c
HD
2886 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2887 }
90bd6fd3
PH
2888 }
2889 mutex_unlock(&ksm_thread_mutex);
2890
2891 return err ? err : count;
2892}
2893KSM_ATTR(merge_across_nodes);
2894#endif
2895
e86c59b1
CI
2896static ssize_t use_zero_pages_show(struct kobject *kobj,
2897 struct kobj_attribute *attr, char *buf)
2898{
2899 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2900}
2901static ssize_t use_zero_pages_store(struct kobject *kobj,
2902 struct kobj_attribute *attr,
2903 const char *buf, size_t count)
2904{
2905 int err;
2906 bool value;
2907
2908 err = kstrtobool(buf, &value);
2909 if (err)
2910 return -EINVAL;
2911
2912 ksm_use_zero_pages = value;
2913
2914 return count;
2915}
2916KSM_ATTR(use_zero_pages);
2917
2c653d0e
AA
2918static ssize_t max_page_sharing_show(struct kobject *kobj,
2919 struct kobj_attribute *attr, char *buf)
2920{
2921 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2922}
2923
2924static ssize_t max_page_sharing_store(struct kobject *kobj,
2925 struct kobj_attribute *attr,
2926 const char *buf, size_t count)
2927{
2928 int err;
2929 int knob;
2930
2931 err = kstrtoint(buf, 10, &knob);
2932 if (err)
2933 return err;
2934 /*
2935 * When a KSM page is created it is shared by 2 mappings. This
2936 * being a signed comparison, it implicitly verifies it's not
2937 * negative.
2938 */
2939 if (knob < 2)
2940 return -EINVAL;
2941
2942 if (READ_ONCE(ksm_max_page_sharing) == knob)
2943 return count;
2944
2945 mutex_lock(&ksm_thread_mutex);
2946 wait_while_offlining();
2947 if (ksm_max_page_sharing != knob) {
2948 if (ksm_pages_shared || remove_all_stable_nodes())
2949 err = -EBUSY;
2950 else
2951 ksm_max_page_sharing = knob;
2952 }
2953 mutex_unlock(&ksm_thread_mutex);
2954
2955 return err ? err : count;
2956}
2957KSM_ATTR(max_page_sharing);
2958
b4028260
HD
2959static ssize_t pages_shared_show(struct kobject *kobj,
2960 struct kobj_attribute *attr, char *buf)
2961{
2962 return sprintf(buf, "%lu\n", ksm_pages_shared);
2963}
2964KSM_ATTR_RO(pages_shared);
2965
2966static ssize_t pages_sharing_show(struct kobject *kobj,
2967 struct kobj_attribute *attr, char *buf)
2968{
e178dfde 2969 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
2970}
2971KSM_ATTR_RO(pages_sharing);
2972
473b0ce4
HD
2973static ssize_t pages_unshared_show(struct kobject *kobj,
2974 struct kobj_attribute *attr, char *buf)
2975{
2976 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2977}
2978KSM_ATTR_RO(pages_unshared);
2979
2980static ssize_t pages_volatile_show(struct kobject *kobj,
2981 struct kobj_attribute *attr, char *buf)
2982{
2983 long ksm_pages_volatile;
2984
2985 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2986 - ksm_pages_sharing - ksm_pages_unshared;
2987 /*
2988 * It was not worth any locking to calculate that statistic,
2989 * but it might therefore sometimes be negative: conceal that.
2990 */
2991 if (ksm_pages_volatile < 0)
2992 ksm_pages_volatile = 0;
2993 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2994}
2995KSM_ATTR_RO(pages_volatile);
2996
2c653d0e
AA
2997static ssize_t stable_node_dups_show(struct kobject *kobj,
2998 struct kobj_attribute *attr, char *buf)
2999{
3000 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3001}
3002KSM_ATTR_RO(stable_node_dups);
3003
3004static ssize_t stable_node_chains_show(struct kobject *kobj,
3005 struct kobj_attribute *attr, char *buf)
3006{
3007 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3008}
3009KSM_ATTR_RO(stable_node_chains);
3010
3011static ssize_t
3012stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3013 struct kobj_attribute *attr,
3014 char *buf)
3015{
3016 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3017}
3018
3019static ssize_t
3020stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3021 struct kobj_attribute *attr,
3022 const char *buf, size_t count)
3023{
3024 unsigned long msecs;
3025 int err;
3026
3027 err = kstrtoul(buf, 10, &msecs);
3028 if (err || msecs > UINT_MAX)
3029 return -EINVAL;
3030
3031 ksm_stable_node_chains_prune_millisecs = msecs;
3032
3033 return count;
3034}
3035KSM_ATTR(stable_node_chains_prune_millisecs);
3036
473b0ce4
HD
3037static ssize_t full_scans_show(struct kobject *kobj,
3038 struct kobj_attribute *attr, char *buf)
3039{
3040 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3041}
3042KSM_ATTR_RO(full_scans);
3043
31dbd01f
IE
3044static struct attribute *ksm_attrs[] = {
3045 &sleep_millisecs_attr.attr,
3046 &pages_to_scan_attr.attr,
3047 &run_attr.attr,
b4028260
HD
3048 &pages_shared_attr.attr,
3049 &pages_sharing_attr.attr,
473b0ce4
HD
3050 &pages_unshared_attr.attr,
3051 &pages_volatile_attr.attr,
3052 &full_scans_attr.attr,
90bd6fd3
PH
3053#ifdef CONFIG_NUMA
3054 &merge_across_nodes_attr.attr,
3055#endif
2c653d0e
AA
3056 &max_page_sharing_attr.attr,
3057 &stable_node_chains_attr.attr,
3058 &stable_node_dups_attr.attr,
3059 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3060 &use_zero_pages_attr.attr,
31dbd01f
IE
3061 NULL,
3062};
3063
f907c26a 3064static const struct attribute_group ksm_attr_group = {
31dbd01f
IE
3065 .attrs = ksm_attrs,
3066 .name = "ksm",
3067};
2ffd8679 3068#endif /* CONFIG_SYSFS */
31dbd01f
IE
3069
3070static int __init ksm_init(void)
3071{
3072 struct task_struct *ksm_thread;
3073 int err;
3074
e86c59b1
CI
3075 /* The correct value depends on page size and endianness */
3076 zero_checksum = calc_checksum(ZERO_PAGE(0));
3077 /* Default to false for backwards compatibility */
3078 ksm_use_zero_pages = false;
3079
31dbd01f
IE
3080 err = ksm_slab_init();
3081 if (err)
3082 goto out;
3083
31dbd01f
IE
3084 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3085 if (IS_ERR(ksm_thread)) {
25acde31 3086 pr_err("ksm: creating kthread failed\n");
31dbd01f 3087 err = PTR_ERR(ksm_thread);
d9f8984c 3088 goto out_free;
31dbd01f
IE
3089 }
3090
2ffd8679 3091#ifdef CONFIG_SYSFS
31dbd01f
IE
3092 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3093 if (err) {
25acde31 3094 pr_err("ksm: register sysfs failed\n");
2ffd8679 3095 kthread_stop(ksm_thread);
d9f8984c 3096 goto out_free;
31dbd01f 3097 }
c73602ad
HD
3098#else
3099 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3100
2ffd8679 3101#endif /* CONFIG_SYSFS */
31dbd01f 3102
62b61f61 3103#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3104 /* There is no significance to this priority 100 */
62b61f61
HD
3105 hotplug_memory_notifier(ksm_memory_callback, 100);
3106#endif
31dbd01f
IE
3107 return 0;
3108
d9f8984c 3109out_free:
31dbd01f
IE
3110 ksm_slab_free();
3111out:
3112 return err;
f8af4da3 3113}
a64fb3cd 3114subsys_initcall(ksm_init);