]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/ksm.c
btrfs: cleaner_kthread() doesn't need explicit freeze
[mirror_ubuntu-artful-kernel.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
62b61f61 32#include <linux/memory.h>
31dbd01f 33#include <linux/mmu_notifier.h>
2c6854fd 34#include <linux/swap.h>
f8af4da3 35#include <linux/ksm.h>
4ca3a69b 36#include <linux/hashtable.h>
878aee7d 37#include <linux/freezer.h>
72788c38 38#include <linux/oom.h>
90bd6fd3 39#include <linux/numa.h>
f8af4da3 40
31dbd01f 41#include <asm/tlbflush.h>
73848b46 42#include "internal.h"
31dbd01f 43
e850dcf5
HD
44#ifdef CONFIG_NUMA
45#define NUMA(x) (x)
46#define DO_NUMA(x) do { (x); } while (0)
47#else
48#define NUMA(x) (0)
49#define DO_NUMA(x) do { } while (0)
50#endif
51
31dbd01f
IE
52/*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
93 */
94
95/**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
100 * @mm: the mm that this information is valid for
101 */
102struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
6514d511 105 struct rmap_item *rmap_list;
31dbd01f
IE
106 struct mm_struct *mm;
107};
108
109/**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
6514d511 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
6514d511 121 struct rmap_item **rmap_list;
31dbd01f
IE
122 unsigned long seqnr;
123};
124
7b6ba2c7
HD
125/**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
4146d2d6
HD
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 130 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6
HD
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
133 */
134struct stable_node {
4146d2d6
HD
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
7b6ba2c7 142 struct hlist_head hlist;
62b61f61 143 unsigned long kpfn;
4146d2d6
HD
144#ifdef CONFIG_NUMA
145 int nid;
146#endif
7b6ba2c7
HD
147};
148
31dbd01f
IE
149/**
150 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
160 */
161struct rmap_item {
6514d511 162 struct rmap_item *rmap_list;
bc56620b
HD
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165#ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167#endif
168 };
31dbd01f
IE
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 171 unsigned int oldchecksum; /* when unstable */
31dbd01f 172 union {
7b6ba2c7
HD
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
31dbd01f
IE
178 };
179};
180
181#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
182#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
184
185/* The stable and unstable tree heads */
ef53d16c
HD
186static struct rb_root one_stable_tree[1] = { RB_ROOT };
187static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188static struct rb_root *root_stable_tree = one_stable_tree;
189static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 190
4146d2d6
HD
191/* Recently migrated nodes of stable tree, pending proper placement */
192static LIST_HEAD(migrate_nodes);
193
4ca3a69b
SL
194#define MM_SLOTS_HASH_BITS 10
195static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
196
197static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199};
200static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
202};
203
204static struct kmem_cache *rmap_item_cache;
7b6ba2c7 205static struct kmem_cache *stable_node_cache;
31dbd01f
IE
206static struct kmem_cache *mm_slot_cache;
207
208/* The number of nodes in the stable tree */
b4028260 209static unsigned long ksm_pages_shared;
31dbd01f 210
e178dfde 211/* The number of page slots additionally sharing those nodes */
b4028260 212static unsigned long ksm_pages_sharing;
31dbd01f 213
473b0ce4
HD
214/* The number of nodes in the unstable tree */
215static unsigned long ksm_pages_unshared;
216
217/* The number of rmap_items in use: to calculate pages_volatile */
218static unsigned long ksm_rmap_items;
219
31dbd01f 220/* Number of pages ksmd should scan in one batch */
2c6854fd 221static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
222
223/* Milliseconds ksmd should sleep between batches */
2ffd8679 224static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 225
e850dcf5 226#ifdef CONFIG_NUMA
90bd6fd3
PH
227/* Zeroed when merging across nodes is not allowed */
228static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 229static int ksm_nr_node_ids = 1;
e850dcf5
HD
230#else
231#define ksm_merge_across_nodes 1U
ef53d16c 232#define ksm_nr_node_ids 1
e850dcf5 233#endif
90bd6fd3 234
31dbd01f
IE
235#define KSM_RUN_STOP 0
236#define KSM_RUN_MERGE 1
237#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
238#define KSM_RUN_OFFLINE 4
239static unsigned long ksm_run = KSM_RUN_STOP;
240static void wait_while_offlining(void);
31dbd01f
IE
241
242static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243static DEFINE_MUTEX(ksm_thread_mutex);
244static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 sizeof(struct __struct), __alignof__(struct __struct),\
248 (__flags), NULL)
249
250static int __init ksm_slab_init(void)
251{
252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 if (!rmap_item_cache)
254 goto out;
255
7b6ba2c7
HD
256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 if (!stable_node_cache)
258 goto out_free1;
259
31dbd01f
IE
260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 if (!mm_slot_cache)
7b6ba2c7 262 goto out_free2;
31dbd01f
IE
263
264 return 0;
265
7b6ba2c7
HD
266out_free2:
267 kmem_cache_destroy(stable_node_cache);
268out_free1:
31dbd01f
IE
269 kmem_cache_destroy(rmap_item_cache);
270out:
271 return -ENOMEM;
272}
273
274static void __init ksm_slab_free(void)
275{
276 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 277 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
278 kmem_cache_destroy(rmap_item_cache);
279 mm_slot_cache = NULL;
280}
281
282static inline struct rmap_item *alloc_rmap_item(void)
283{
473b0ce4
HD
284 struct rmap_item *rmap_item;
285
286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287 if (rmap_item)
288 ksm_rmap_items++;
289 return rmap_item;
31dbd01f
IE
290}
291
292static inline void free_rmap_item(struct rmap_item *rmap_item)
293{
473b0ce4 294 ksm_rmap_items--;
31dbd01f
IE
295 rmap_item->mm = NULL; /* debug safety */
296 kmem_cache_free(rmap_item_cache, rmap_item);
297}
298
7b6ba2c7
HD
299static inline struct stable_node *alloc_stable_node(void)
300{
301 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302}
303
304static inline void free_stable_node(struct stable_node *stable_node)
305{
306 kmem_cache_free(stable_node_cache, stable_node);
307}
308
31dbd01f
IE
309static inline struct mm_slot *alloc_mm_slot(void)
310{
311 if (!mm_slot_cache) /* initialization failed */
312 return NULL;
313 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314}
315
316static inline void free_mm_slot(struct mm_slot *mm_slot)
317{
318 kmem_cache_free(mm_slot_cache, mm_slot);
319}
320
31dbd01f
IE
321static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322{
4ca3a69b
SL
323 struct mm_slot *slot;
324
b67bfe0d 325 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
326 if (slot->mm == mm)
327 return slot;
31dbd01f 328
31dbd01f
IE
329 return NULL;
330}
331
332static void insert_to_mm_slots_hash(struct mm_struct *mm,
333 struct mm_slot *mm_slot)
334{
31dbd01f 335 mm_slot->mm = mm;
4ca3a69b 336 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
337}
338
a913e182
HD
339/*
340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341 * page tables after it has passed through ksm_exit() - which, if necessary,
342 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
343 * a special flag: they can just back out as soon as mm_users goes to zero.
344 * ksm_test_exit() is used throughout to make this test for exit: in some
345 * places for correctness, in some places just to avoid unnecessary work.
346 */
347static inline bool ksm_test_exit(struct mm_struct *mm)
348{
349 return atomic_read(&mm->mm_users) == 0;
350}
351
31dbd01f
IE
352/*
353 * We use break_ksm to break COW on a ksm page: it's a stripped down
354 *
355 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
356 * put_page(page);
357 *
358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359 * in case the application has unmapped and remapped mm,addr meanwhile.
360 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362 */
d952b791 363static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
364{
365 struct page *page;
d952b791 366 int ret = 0;
31dbd01f
IE
367
368 do {
369 cond_resched();
5117b3b8 370 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
22eccdd7 371 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
372 break;
373 if (PageKsm(page))
374 ret = handle_mm_fault(vma->vm_mm, vma, addr,
375 FAULT_FLAG_WRITE);
376 else
377 ret = VM_FAULT_WRITE;
378 put_page(page);
33692f27 379 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
380 /*
381 * We must loop because handle_mm_fault() may back out if there's
382 * any difficulty e.g. if pte accessed bit gets updated concurrently.
383 *
384 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385 * COW has been broken, even if the vma does not permit VM_WRITE;
386 * but note that a concurrent fault might break PageKsm for us.
387 *
388 * VM_FAULT_SIGBUS could occur if we race with truncation of the
389 * backing file, which also invalidates anonymous pages: that's
390 * okay, that truncation will have unmapped the PageKsm for us.
391 *
392 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394 * current task has TIF_MEMDIE set, and will be OOM killed on return
395 * to user; and ksmd, having no mm, would never be chosen for that.
396 *
397 * But if the mm is in a limited mem_cgroup, then the fault may fail
398 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399 * even ksmd can fail in this way - though it's usually breaking ksm
400 * just to undo a merge it made a moment before, so unlikely to oom.
401 *
402 * That's a pity: we might therefore have more kernel pages allocated
403 * than we're counting as nodes in the stable tree; but ksm_do_scan
404 * will retry to break_cow on each pass, so should recover the page
405 * in due course. The important thing is to not let VM_MERGEABLE
406 * be cleared while any such pages might remain in the area.
407 */
408 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
409}
410
ef694222
BL
411static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
412 unsigned long addr)
413{
414 struct vm_area_struct *vma;
415 if (ksm_test_exit(mm))
416 return NULL;
417 vma = find_vma(mm, addr);
418 if (!vma || vma->vm_start > addr)
419 return NULL;
420 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
421 return NULL;
422 return vma;
423}
424
8dd3557a 425static void break_cow(struct rmap_item *rmap_item)
31dbd01f 426{
8dd3557a
HD
427 struct mm_struct *mm = rmap_item->mm;
428 unsigned long addr = rmap_item->address;
31dbd01f
IE
429 struct vm_area_struct *vma;
430
4035c07a
HD
431 /*
432 * It is not an accident that whenever we want to break COW
433 * to undo, we also need to drop a reference to the anon_vma.
434 */
9e60109f 435 put_anon_vma(rmap_item->anon_vma);
4035c07a 436
81464e30 437 down_read(&mm->mmap_sem);
ef694222
BL
438 vma = find_mergeable_vma(mm, addr);
439 if (vma)
440 break_ksm(vma, addr);
31dbd01f
IE
441 up_read(&mm->mmap_sem);
442}
443
444static struct page *get_mergeable_page(struct rmap_item *rmap_item)
445{
446 struct mm_struct *mm = rmap_item->mm;
447 unsigned long addr = rmap_item->address;
448 struct vm_area_struct *vma;
449 struct page *page;
450
451 down_read(&mm->mmap_sem);
ef694222
BL
452 vma = find_mergeable_vma(mm, addr);
453 if (!vma)
31dbd01f
IE
454 goto out;
455
456 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 457 if (IS_ERR_OR_NULL(page))
31dbd01f 458 goto out;
f765f540 459 if (PageAnon(page)) {
31dbd01f
IE
460 flush_anon_page(vma, page, addr);
461 flush_dcache_page(page);
462 } else {
463 put_page(page);
c8f95ed1
AA
464out:
465 page = NULL;
31dbd01f
IE
466 }
467 up_read(&mm->mmap_sem);
468 return page;
469}
470
90bd6fd3
PH
471/*
472 * This helper is used for getting right index into array of tree roots.
473 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
474 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
475 * every node has its own stable and unstable tree.
476 */
477static inline int get_kpfn_nid(unsigned long kpfn)
478{
d8fc16a8 479 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
480}
481
4035c07a
HD
482static void remove_node_from_stable_tree(struct stable_node *stable_node)
483{
484 struct rmap_item *rmap_item;
4035c07a 485
b67bfe0d 486 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
487 if (rmap_item->hlist.next)
488 ksm_pages_sharing--;
489 else
490 ksm_pages_shared--;
9e60109f 491 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
492 rmap_item->address &= PAGE_MASK;
493 cond_resched();
494 }
495
4146d2d6
HD
496 if (stable_node->head == &migrate_nodes)
497 list_del(&stable_node->list);
498 else
499 rb_erase(&stable_node->node,
ef53d16c 500 root_stable_tree + NUMA(stable_node->nid));
4035c07a
HD
501 free_stable_node(stable_node);
502}
503
504/*
505 * get_ksm_page: checks if the page indicated by the stable node
506 * is still its ksm page, despite having held no reference to it.
507 * In which case we can trust the content of the page, and it
508 * returns the gotten page; but if the page has now been zapped,
509 * remove the stale node from the stable tree and return NULL.
c8d6553b 510 * But beware, the stable node's page might be being migrated.
4035c07a
HD
511 *
512 * You would expect the stable_node to hold a reference to the ksm page.
513 * But if it increments the page's count, swapping out has to wait for
514 * ksmd to come around again before it can free the page, which may take
515 * seconds or even minutes: much too unresponsive. So instead we use a
516 * "keyhole reference": access to the ksm page from the stable node peeps
517 * out through its keyhole to see if that page still holds the right key,
518 * pointing back to this stable node. This relies on freeing a PageAnon
519 * page to reset its page->mapping to NULL, and relies on no other use of
520 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
521 * is on its way to being freed; but it is an anomaly to bear in mind.
522 */
8fdb3dbf 523static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
524{
525 struct page *page;
526 void *expected_mapping;
c8d6553b 527 unsigned long kpfn;
4035c07a 528
4035c07a
HD
529 expected_mapping = (void *)stable_node +
530 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
c8d6553b 531again:
4db0c3c2 532 kpfn = READ_ONCE(stable_node->kpfn);
c8d6553b
HD
533 page = pfn_to_page(kpfn);
534
535 /*
536 * page is computed from kpfn, so on most architectures reading
537 * page->mapping is naturally ordered after reading node->kpfn,
538 * but on Alpha we need to be more careful.
539 */
540 smp_read_barrier_depends();
4db0c3c2 541 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 542 goto stale;
c8d6553b
HD
543
544 /*
545 * We cannot do anything with the page while its refcount is 0.
546 * Usually 0 means free, or tail of a higher-order page: in which
547 * case this node is no longer referenced, and should be freed;
548 * however, it might mean that the page is under page_freeze_refs().
549 * The __remove_mapping() case is easy, again the node is now stale;
550 * but if page is swapcache in migrate_page_move_mapping(), it might
551 * still be our page, in which case it's essential to keep the node.
552 */
553 while (!get_page_unless_zero(page)) {
554 /*
555 * Another check for page->mapping != expected_mapping would
556 * work here too. We have chosen the !PageSwapCache test to
557 * optimize the common case, when the page is or is about to
558 * be freed: PageSwapCache is cleared (under spin_lock_irq)
559 * in the freeze_refs section of __remove_mapping(); but Anon
560 * page->mapping reset to NULL later, in free_pages_prepare().
561 */
562 if (!PageSwapCache(page))
563 goto stale;
564 cpu_relax();
565 }
566
4db0c3c2 567 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
568 put_page(page);
569 goto stale;
570 }
c8d6553b 571
8fdb3dbf 572 if (lock_it) {
8aafa6a4 573 lock_page(page);
4db0c3c2 574 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
575 unlock_page(page);
576 put_page(page);
577 goto stale;
578 }
579 }
4035c07a 580 return page;
c8d6553b 581
4035c07a 582stale:
c8d6553b
HD
583 /*
584 * We come here from above when page->mapping or !PageSwapCache
585 * suggests that the node is stale; but it might be under migration.
586 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
587 * before checking whether node->kpfn has been changed.
588 */
589 smp_rmb();
4db0c3c2 590 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 591 goto again;
4035c07a
HD
592 remove_node_from_stable_tree(stable_node);
593 return NULL;
594}
595
31dbd01f
IE
596/*
597 * Removing rmap_item from stable or unstable tree.
598 * This function will clean the information from the stable/unstable tree.
599 */
600static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
601{
7b6ba2c7
HD
602 if (rmap_item->address & STABLE_FLAG) {
603 struct stable_node *stable_node;
5ad64688 604 struct page *page;
31dbd01f 605
7b6ba2c7 606 stable_node = rmap_item->head;
8aafa6a4 607 page = get_ksm_page(stable_node, true);
4035c07a
HD
608 if (!page)
609 goto out;
5ad64688 610
7b6ba2c7 611 hlist_del(&rmap_item->hlist);
4035c07a
HD
612 unlock_page(page);
613 put_page(page);
08beca44 614
98666f8a 615 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
616 ksm_pages_sharing--;
617 else
7b6ba2c7 618 ksm_pages_shared--;
31dbd01f 619
9e60109f 620 put_anon_vma(rmap_item->anon_vma);
93d17715 621 rmap_item->address &= PAGE_MASK;
31dbd01f 622
7b6ba2c7 623 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
624 unsigned char age;
625 /*
9ba69294 626 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 627 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
628 * But be careful when an mm is exiting: do the rb_erase
629 * if this rmap_item was inserted by this scan, rather
630 * than left over from before.
31dbd01f
IE
631 */
632 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 633 BUG_ON(age > 1);
31dbd01f 634 if (!age)
90bd6fd3 635 rb_erase(&rmap_item->node,
ef53d16c 636 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 637 ksm_pages_unshared--;
93d17715 638 rmap_item->address &= PAGE_MASK;
31dbd01f 639 }
4035c07a 640out:
31dbd01f
IE
641 cond_resched(); /* we're called from many long loops */
642}
643
31dbd01f 644static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 645 struct rmap_item **rmap_list)
31dbd01f 646{
6514d511
HD
647 while (*rmap_list) {
648 struct rmap_item *rmap_item = *rmap_list;
649 *rmap_list = rmap_item->rmap_list;
31dbd01f 650 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
651 free_rmap_item(rmap_item);
652 }
653}
654
655/*
e850dcf5 656 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
657 * than check every pte of a given vma, the locking doesn't quite work for
658 * that - an rmap_item is assigned to the stable tree after inserting ksm
659 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
660 * rmap_items from parent to child at fork time (so as not to waste time
661 * if exit comes before the next scan reaches it).
81464e30
HD
662 *
663 * Similarly, although we'd like to remove rmap_items (so updating counts
664 * and freeing memory) when unmerging an area, it's easier to leave that
665 * to the next pass of ksmd - consider, for example, how ksmd might be
666 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 667 */
d952b791
HD
668static int unmerge_ksm_pages(struct vm_area_struct *vma,
669 unsigned long start, unsigned long end)
31dbd01f
IE
670{
671 unsigned long addr;
d952b791 672 int err = 0;
31dbd01f 673
d952b791 674 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
675 if (ksm_test_exit(vma->vm_mm))
676 break;
d952b791
HD
677 if (signal_pending(current))
678 err = -ERESTARTSYS;
679 else
680 err = break_ksm(vma, addr);
681 }
682 return err;
31dbd01f
IE
683}
684
2ffd8679
HD
685#ifdef CONFIG_SYSFS
686/*
687 * Only called through the sysfs control interface:
688 */
cbf86cfe
HD
689static int remove_stable_node(struct stable_node *stable_node)
690{
691 struct page *page;
692 int err;
693
694 page = get_ksm_page(stable_node, true);
695 if (!page) {
696 /*
697 * get_ksm_page did remove_node_from_stable_tree itself.
698 */
699 return 0;
700 }
701
8fdb3dbf
HD
702 if (WARN_ON_ONCE(page_mapped(page))) {
703 /*
704 * This should not happen: but if it does, just refuse to let
705 * merge_across_nodes be switched - there is no need to panic.
706 */
cbf86cfe 707 err = -EBUSY;
8fdb3dbf 708 } else {
cbf86cfe 709 /*
8fdb3dbf
HD
710 * The stable node did not yet appear stale to get_ksm_page(),
711 * since that allows for an unmapped ksm page to be recognized
712 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
713 * This page might be in a pagevec waiting to be freed,
714 * or it might be PageSwapCache (perhaps under writeback),
715 * or it might have been removed from swapcache a moment ago.
716 */
717 set_page_stable_node(page, NULL);
718 remove_node_from_stable_tree(stable_node);
719 err = 0;
720 }
721
722 unlock_page(page);
723 put_page(page);
724 return err;
725}
726
727static int remove_all_stable_nodes(void)
728{
03640418 729 struct stable_node *stable_node, *next;
cbf86cfe
HD
730 int nid;
731 int err = 0;
732
ef53d16c 733 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
734 while (root_stable_tree[nid].rb_node) {
735 stable_node = rb_entry(root_stable_tree[nid].rb_node,
736 struct stable_node, node);
737 if (remove_stable_node(stable_node)) {
738 err = -EBUSY;
739 break; /* proceed to next nid */
740 }
741 cond_resched();
742 }
743 }
03640418 744 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
745 if (remove_stable_node(stable_node))
746 err = -EBUSY;
747 cond_resched();
748 }
cbf86cfe
HD
749 return err;
750}
751
d952b791 752static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
753{
754 struct mm_slot *mm_slot;
755 struct mm_struct *mm;
756 struct vm_area_struct *vma;
d952b791
HD
757 int err = 0;
758
759 spin_lock(&ksm_mmlist_lock);
9ba69294 760 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
761 struct mm_slot, mm_list);
762 spin_unlock(&ksm_mmlist_lock);
31dbd01f 763
9ba69294
HD
764 for (mm_slot = ksm_scan.mm_slot;
765 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
766 mm = mm_slot->mm;
767 down_read(&mm->mmap_sem);
768 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
769 if (ksm_test_exit(mm))
770 break;
31dbd01f
IE
771 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
772 continue;
d952b791
HD
773 err = unmerge_ksm_pages(vma,
774 vma->vm_start, vma->vm_end);
9ba69294
HD
775 if (err)
776 goto error;
31dbd01f 777 }
9ba69294 778
6514d511 779 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
d952b791
HD
780
781 spin_lock(&ksm_mmlist_lock);
9ba69294 782 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 783 struct mm_slot, mm_list);
9ba69294 784 if (ksm_test_exit(mm)) {
4ca3a69b 785 hash_del(&mm_slot->link);
9ba69294
HD
786 list_del(&mm_slot->mm_list);
787 spin_unlock(&ksm_mmlist_lock);
788
789 free_mm_slot(mm_slot);
790 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
791 up_read(&mm->mmap_sem);
792 mmdrop(mm);
793 } else {
794 spin_unlock(&ksm_mmlist_lock);
795 up_read(&mm->mmap_sem);
796 }
31dbd01f
IE
797 }
798
cbf86cfe
HD
799 /* Clean up stable nodes, but don't worry if some are still busy */
800 remove_all_stable_nodes();
d952b791 801 ksm_scan.seqnr = 0;
9ba69294
HD
802 return 0;
803
804error:
805 up_read(&mm->mmap_sem);
31dbd01f 806 spin_lock(&ksm_mmlist_lock);
d952b791 807 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 808 spin_unlock(&ksm_mmlist_lock);
d952b791 809 return err;
31dbd01f 810}
2ffd8679 811#endif /* CONFIG_SYSFS */
31dbd01f 812
31dbd01f
IE
813static u32 calc_checksum(struct page *page)
814{
815 u32 checksum;
9b04c5fe 816 void *addr = kmap_atomic(page);
31dbd01f 817 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 818 kunmap_atomic(addr);
31dbd01f
IE
819 return checksum;
820}
821
822static int memcmp_pages(struct page *page1, struct page *page2)
823{
824 char *addr1, *addr2;
825 int ret;
826
9b04c5fe
CW
827 addr1 = kmap_atomic(page1);
828 addr2 = kmap_atomic(page2);
31dbd01f 829 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
830 kunmap_atomic(addr2);
831 kunmap_atomic(addr1);
31dbd01f
IE
832 return ret;
833}
834
835static inline int pages_identical(struct page *page1, struct page *page2)
836{
837 return !memcmp_pages(page1, page2);
838}
839
840static int write_protect_page(struct vm_area_struct *vma, struct page *page,
841 pte_t *orig_pte)
842{
843 struct mm_struct *mm = vma->vm_mm;
844 unsigned long addr;
845 pte_t *ptep;
846 spinlock_t *ptl;
847 int swapped;
848 int err = -EFAULT;
6bdb913f
HE
849 unsigned long mmun_start; /* For mmu_notifiers */
850 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f
IE
851
852 addr = page_address_in_vma(page, vma);
853 if (addr == -EFAULT)
854 goto out;
855
29ad768c 856 BUG_ON(PageTransCompound(page));
6bdb913f
HE
857
858 mmun_start = addr;
859 mmun_end = addr + PAGE_SIZE;
860 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
861
31dbd01f
IE
862 ptep = page_check_address(page, mm, addr, &ptl, 0);
863 if (!ptep)
6bdb913f 864 goto out_mn;
31dbd01f 865
4e31635c 866 if (pte_write(*ptep) || pte_dirty(*ptep)) {
31dbd01f
IE
867 pte_t entry;
868
869 swapped = PageSwapCache(page);
870 flush_cache_page(vma, addr, page_to_pfn(page));
871 /*
25985edc 872 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
873 * take any lock, therefore the check that we are going to make
874 * with the pagecount against the mapcount is racey and
875 * O_DIRECT can happen right after the check.
876 * So we clear the pte and flush the tlb before the check
877 * this assure us that no O_DIRECT can happen after the check
878 * or in the middle of the check.
879 */
34ee645e 880 entry = ptep_clear_flush_notify(vma, addr, ptep);
31dbd01f
IE
881 /*
882 * Check that no O_DIRECT or similar I/O is in progress on the
883 * page
884 */
31e855ea 885 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
cb532375 886 set_pte_at(mm, addr, ptep, entry);
31dbd01f
IE
887 goto out_unlock;
888 }
4e31635c
HD
889 if (pte_dirty(entry))
890 set_page_dirty(page);
891 entry = pte_mkclean(pte_wrprotect(entry));
31dbd01f
IE
892 set_pte_at_notify(mm, addr, ptep, entry);
893 }
894 *orig_pte = *ptep;
895 err = 0;
896
897out_unlock:
898 pte_unmap_unlock(ptep, ptl);
6bdb913f
HE
899out_mn:
900 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
901out:
902 return err;
903}
904
905/**
906 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
907 * @vma: vma that holds the pte pointing to page
908 * @page: the page we are replacing by kpage
909 * @kpage: the ksm page we replace page by
31dbd01f
IE
910 * @orig_pte: the original value of the pte
911 *
912 * Returns 0 on success, -EFAULT on failure.
913 */
8dd3557a
HD
914static int replace_page(struct vm_area_struct *vma, struct page *page,
915 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
916{
917 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
918 pmd_t *pmd;
919 pte_t *ptep;
920 spinlock_t *ptl;
921 unsigned long addr;
31dbd01f 922 int err = -EFAULT;
6bdb913f
HE
923 unsigned long mmun_start; /* For mmu_notifiers */
924 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 925
8dd3557a 926 addr = page_address_in_vma(page, vma);
31dbd01f
IE
927 if (addr == -EFAULT)
928 goto out;
929
6219049a
BL
930 pmd = mm_find_pmd(mm, addr);
931 if (!pmd)
31dbd01f 932 goto out;
31dbd01f 933
6bdb913f
HE
934 mmun_start = addr;
935 mmun_end = addr + PAGE_SIZE;
936 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
937
31dbd01f
IE
938 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
939 if (!pte_same(*ptep, orig_pte)) {
940 pte_unmap_unlock(ptep, ptl);
6bdb913f 941 goto out_mn;
31dbd01f
IE
942 }
943
8dd3557a 944 get_page(kpage);
d281ee61 945 page_add_anon_rmap(kpage, vma, addr, false);
31dbd01f
IE
946
947 flush_cache_page(vma, addr, pte_pfn(*ptep));
34ee645e 948 ptep_clear_flush_notify(vma, addr, ptep);
8dd3557a 949 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
31dbd01f 950
d281ee61 951 page_remove_rmap(page, false);
ae52a2ad
HD
952 if (!page_mapped(page))
953 try_to_free_swap(page);
8dd3557a 954 put_page(page);
31dbd01f
IE
955
956 pte_unmap_unlock(ptep, ptl);
957 err = 0;
6bdb913f
HE
958out_mn:
959 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
960out:
961 return err;
962}
963
964/*
965 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
966 * @vma: the vma that holds the pte pointing to page
967 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
968 * @kpage: the PageKsm page that we want to map instead of page,
969 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
970 *
971 * This function returns 0 if the pages were merged, -EFAULT otherwise.
972 */
973static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 974 struct page *page, struct page *kpage)
31dbd01f
IE
975{
976 pte_t orig_pte = __pte(0);
977 int err = -EFAULT;
978
db114b83
HD
979 if (page == kpage) /* ksm page forked */
980 return 0;
981
8dd3557a 982 if (!PageAnon(page))
31dbd01f
IE
983 goto out;
984
31dbd01f
IE
985 /*
986 * We need the page lock to read a stable PageSwapCache in
987 * write_protect_page(). We use trylock_page() instead of
988 * lock_page() because we don't want to wait here - we
989 * prefer to continue scanning and merging different pages,
990 * then come back to this page when it is unlocked.
991 */
8dd3557a 992 if (!trylock_page(page))
31e855ea 993 goto out;
f765f540
KS
994
995 if (PageTransCompound(page)) {
996 err = split_huge_page(page);
997 if (err)
998 goto out_unlock;
999 }
1000
31dbd01f
IE
1001 /*
1002 * If this anonymous page is mapped only here, its pte may need
1003 * to be write-protected. If it's mapped elsewhere, all of its
1004 * ptes are necessarily already write-protected. But in either
1005 * case, we need to lock and check page_count is not raised.
1006 */
80e14822
HD
1007 if (write_protect_page(vma, page, &orig_pte) == 0) {
1008 if (!kpage) {
1009 /*
1010 * While we hold page lock, upgrade page from
1011 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1012 * stable_tree_insert() will update stable_node.
1013 */
1014 set_page_stable_node(page, NULL);
1015 mark_page_accessed(page);
337ed7eb
MK
1016 /*
1017 * Page reclaim just frees a clean page with no dirty
1018 * ptes: make sure that the ksm page would be swapped.
1019 */
1020 if (!PageDirty(page))
1021 SetPageDirty(page);
80e14822
HD
1022 err = 0;
1023 } else if (pages_identical(page, kpage))
1024 err = replace_page(vma, page, kpage, orig_pte);
1025 }
31dbd01f 1026
80e14822 1027 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1028 munlock_vma_page(page);
5ad64688
HD
1029 if (!PageMlocked(kpage)) {
1030 unlock_page(page);
5ad64688
HD
1031 lock_page(kpage);
1032 mlock_vma_page(kpage);
1033 page = kpage; /* for final unlock */
1034 }
1035 }
73848b46 1036
f765f540 1037out_unlock:
8dd3557a 1038 unlock_page(page);
31dbd01f
IE
1039out:
1040 return err;
1041}
1042
81464e30
HD
1043/*
1044 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1045 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1046 *
1047 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1048 */
8dd3557a
HD
1049static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1050 struct page *page, struct page *kpage)
81464e30 1051{
8dd3557a 1052 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1053 struct vm_area_struct *vma;
1054 int err = -EFAULT;
1055
8dd3557a 1056 down_read(&mm->mmap_sem);
85c6e8dd
AA
1057 vma = find_mergeable_vma(mm, rmap_item->address);
1058 if (!vma)
81464e30
HD
1059 goto out;
1060
8dd3557a 1061 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1062 if (err)
1063 goto out;
1064
bc56620b
HD
1065 /* Unstable nid is in union with stable anon_vma: remove first */
1066 remove_rmap_item_from_tree(rmap_item);
1067
db114b83 1068 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1069 rmap_item->anon_vma = vma->anon_vma;
1070 get_anon_vma(vma->anon_vma);
81464e30 1071out:
8dd3557a 1072 up_read(&mm->mmap_sem);
81464e30
HD
1073 return err;
1074}
1075
31dbd01f
IE
1076/*
1077 * try_to_merge_two_pages - take two identical pages and prepare them
1078 * to be merged into one page.
1079 *
8dd3557a
HD
1080 * This function returns the kpage if we successfully merged two identical
1081 * pages into one ksm page, NULL otherwise.
31dbd01f 1082 *
80e14822 1083 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1084 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1085 */
8dd3557a
HD
1086static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1087 struct page *page,
1088 struct rmap_item *tree_rmap_item,
1089 struct page *tree_page)
31dbd01f 1090{
80e14822 1091 int err;
31dbd01f 1092
80e14822 1093 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1094 if (!err) {
8dd3557a 1095 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1096 tree_page, page);
31dbd01f 1097 /*
81464e30
HD
1098 * If that fails, we have a ksm page with only one pte
1099 * pointing to it: so break it.
31dbd01f 1100 */
4035c07a 1101 if (err)
8dd3557a 1102 break_cow(rmap_item);
31dbd01f 1103 }
80e14822 1104 return err ? NULL : page;
31dbd01f
IE
1105}
1106
31dbd01f 1107/*
8dd3557a 1108 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1109 *
1110 * This function checks if there is a page inside the stable tree
1111 * with identical content to the page that we are scanning right now.
1112 *
7b6ba2c7 1113 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1114 * NULL otherwise.
1115 */
62b61f61 1116static struct page *stable_tree_search(struct page *page)
31dbd01f 1117{
90bd6fd3 1118 int nid;
ef53d16c 1119 struct rb_root *root;
4146d2d6
HD
1120 struct rb_node **new;
1121 struct rb_node *parent;
1122 struct stable_node *stable_node;
1123 struct stable_node *page_node;
31dbd01f 1124
4146d2d6
HD
1125 page_node = page_stable_node(page);
1126 if (page_node && page_node->head != &migrate_nodes) {
1127 /* ksm page forked */
08beca44 1128 get_page(page);
62b61f61 1129 return page;
08beca44
HD
1130 }
1131
90bd6fd3 1132 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1133 root = root_stable_tree + nid;
4146d2d6 1134again:
ef53d16c 1135 new = &root->rb_node;
4146d2d6 1136 parent = NULL;
90bd6fd3 1137
4146d2d6 1138 while (*new) {
4035c07a 1139 struct page *tree_page;
31dbd01f
IE
1140 int ret;
1141
08beca44 1142 cond_resched();
4146d2d6 1143 stable_node = rb_entry(*new, struct stable_node, node);
8aafa6a4 1144 tree_page = get_ksm_page(stable_node, false);
f2e5ff85
AA
1145 if (!tree_page) {
1146 /*
1147 * If we walked over a stale stable_node,
1148 * get_ksm_page() will call rb_erase() and it
1149 * may rebalance the tree from under us. So
1150 * restart the search from scratch. Returning
1151 * NULL would be safe too, but we'd generate
1152 * false negative insertions just because some
1153 * stable_node was stale.
1154 */
1155 goto again;
1156 }
31dbd01f 1157
4035c07a 1158 ret = memcmp_pages(page, tree_page);
c8d6553b 1159 put_page(tree_page);
31dbd01f 1160
4146d2d6 1161 parent = *new;
c8d6553b 1162 if (ret < 0)
4146d2d6 1163 new = &parent->rb_left;
c8d6553b 1164 else if (ret > 0)
4146d2d6 1165 new = &parent->rb_right;
c8d6553b
HD
1166 else {
1167 /*
1168 * Lock and unlock the stable_node's page (which
1169 * might already have been migrated) so that page
1170 * migration is sure to notice its raised count.
1171 * It would be more elegant to return stable_node
1172 * than kpage, but that involves more changes.
1173 */
1174 tree_page = get_ksm_page(stable_node, true);
4146d2d6 1175 if (tree_page) {
c8d6553b 1176 unlock_page(tree_page);
4146d2d6
HD
1177 if (get_kpfn_nid(stable_node->kpfn) !=
1178 NUMA(stable_node->nid)) {
1179 put_page(tree_page);
1180 goto replace;
1181 }
1182 return tree_page;
1183 }
1184 /*
1185 * There is now a place for page_node, but the tree may
1186 * have been rebalanced, so re-evaluate parent and new.
1187 */
1188 if (page_node)
1189 goto again;
1190 return NULL;
c8d6553b 1191 }
31dbd01f
IE
1192 }
1193
4146d2d6
HD
1194 if (!page_node)
1195 return NULL;
1196
1197 list_del(&page_node->list);
1198 DO_NUMA(page_node->nid = nid);
1199 rb_link_node(&page_node->node, parent, new);
ef53d16c 1200 rb_insert_color(&page_node->node, root);
4146d2d6
HD
1201 get_page(page);
1202 return page;
1203
1204replace:
1205 if (page_node) {
1206 list_del(&page_node->list);
1207 DO_NUMA(page_node->nid = nid);
ef53d16c 1208 rb_replace_node(&stable_node->node, &page_node->node, root);
4146d2d6
HD
1209 get_page(page);
1210 } else {
ef53d16c 1211 rb_erase(&stable_node->node, root);
4146d2d6
HD
1212 page = NULL;
1213 }
1214 stable_node->head = &migrate_nodes;
1215 list_add(&stable_node->list, stable_node->head);
1216 return page;
31dbd01f
IE
1217}
1218
1219/*
e850dcf5 1220 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1221 * into the stable tree.
1222 *
7b6ba2c7
HD
1223 * This function returns the stable tree node just allocated on success,
1224 * NULL otherwise.
31dbd01f 1225 */
7b6ba2c7 1226static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1227{
90bd6fd3
PH
1228 int nid;
1229 unsigned long kpfn;
ef53d16c 1230 struct rb_root *root;
90bd6fd3 1231 struct rb_node **new;
f2e5ff85 1232 struct rb_node *parent;
7b6ba2c7 1233 struct stable_node *stable_node;
31dbd01f 1234
90bd6fd3
PH
1235 kpfn = page_to_pfn(kpage);
1236 nid = get_kpfn_nid(kpfn);
ef53d16c 1237 root = root_stable_tree + nid;
f2e5ff85
AA
1238again:
1239 parent = NULL;
ef53d16c 1240 new = &root->rb_node;
90bd6fd3 1241
31dbd01f 1242 while (*new) {
4035c07a 1243 struct page *tree_page;
31dbd01f
IE
1244 int ret;
1245
08beca44 1246 cond_resched();
7b6ba2c7 1247 stable_node = rb_entry(*new, struct stable_node, node);
8aafa6a4 1248 tree_page = get_ksm_page(stable_node, false);
f2e5ff85
AA
1249 if (!tree_page) {
1250 /*
1251 * If we walked over a stale stable_node,
1252 * get_ksm_page() will call rb_erase() and it
1253 * may rebalance the tree from under us. So
1254 * restart the search from scratch. Returning
1255 * NULL would be safe too, but we'd generate
1256 * false negative insertions just because some
1257 * stable_node was stale.
1258 */
1259 goto again;
1260 }
31dbd01f 1261
4035c07a
HD
1262 ret = memcmp_pages(kpage, tree_page);
1263 put_page(tree_page);
31dbd01f
IE
1264
1265 parent = *new;
1266 if (ret < 0)
1267 new = &parent->rb_left;
1268 else if (ret > 0)
1269 new = &parent->rb_right;
1270 else {
1271 /*
1272 * It is not a bug that stable_tree_search() didn't
1273 * find this node: because at that time our page was
1274 * not yet write-protected, so may have changed since.
1275 */
1276 return NULL;
1277 }
1278 }
1279
7b6ba2c7
HD
1280 stable_node = alloc_stable_node();
1281 if (!stable_node)
1282 return NULL;
31dbd01f 1283
7b6ba2c7 1284 INIT_HLIST_HEAD(&stable_node->hlist);
90bd6fd3 1285 stable_node->kpfn = kpfn;
08beca44 1286 set_page_stable_node(kpage, stable_node);
4146d2d6 1287 DO_NUMA(stable_node->nid = nid);
e850dcf5 1288 rb_link_node(&stable_node->node, parent, new);
ef53d16c 1289 rb_insert_color(&stable_node->node, root);
08beca44 1290
7b6ba2c7 1291 return stable_node;
31dbd01f
IE
1292}
1293
1294/*
8dd3557a
HD
1295 * unstable_tree_search_insert - search for identical page,
1296 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1297 *
1298 * This function searches for a page in the unstable tree identical to the
1299 * page currently being scanned; and if no identical page is found in the
1300 * tree, we insert rmap_item as a new object into the unstable tree.
1301 *
1302 * This function returns pointer to rmap_item found to be identical
1303 * to the currently scanned page, NULL otherwise.
1304 *
1305 * This function does both searching and inserting, because they share
1306 * the same walking algorithm in an rbtree.
1307 */
8dd3557a
HD
1308static
1309struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1310 struct page *page,
1311 struct page **tree_pagep)
31dbd01f 1312{
90bd6fd3
PH
1313 struct rb_node **new;
1314 struct rb_root *root;
31dbd01f 1315 struct rb_node *parent = NULL;
90bd6fd3
PH
1316 int nid;
1317
1318 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1319 root = root_unstable_tree + nid;
90bd6fd3 1320 new = &root->rb_node;
31dbd01f
IE
1321
1322 while (*new) {
1323 struct rmap_item *tree_rmap_item;
8dd3557a 1324 struct page *tree_page;
31dbd01f
IE
1325 int ret;
1326
d178f27f 1327 cond_resched();
31dbd01f 1328 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1329 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1330 if (!tree_page)
31dbd01f
IE
1331 return NULL;
1332
1333 /*
8dd3557a 1334 * Don't substitute a ksm page for a forked page.
31dbd01f 1335 */
8dd3557a
HD
1336 if (page == tree_page) {
1337 put_page(tree_page);
31dbd01f
IE
1338 return NULL;
1339 }
1340
8dd3557a 1341 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1342
1343 parent = *new;
1344 if (ret < 0) {
8dd3557a 1345 put_page(tree_page);
31dbd01f
IE
1346 new = &parent->rb_left;
1347 } else if (ret > 0) {
8dd3557a 1348 put_page(tree_page);
31dbd01f 1349 new = &parent->rb_right;
b599cbdf
HD
1350 } else if (!ksm_merge_across_nodes &&
1351 page_to_nid(tree_page) != nid) {
1352 /*
1353 * If tree_page has been migrated to another NUMA node,
1354 * it will be flushed out and put in the right unstable
1355 * tree next time: only merge with it when across_nodes.
1356 */
1357 put_page(tree_page);
1358 return NULL;
31dbd01f 1359 } else {
8dd3557a 1360 *tree_pagep = tree_page;
31dbd01f
IE
1361 return tree_rmap_item;
1362 }
1363 }
1364
7b6ba2c7 1365 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1366 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1367 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1368 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1369 rb_insert_color(&rmap_item->node, root);
31dbd01f 1370
473b0ce4 1371 ksm_pages_unshared++;
31dbd01f
IE
1372 return NULL;
1373}
1374
1375/*
1376 * stable_tree_append - add another rmap_item to the linked list of
1377 * rmap_items hanging off a given node of the stable tree, all sharing
1378 * the same ksm page.
1379 */
1380static void stable_tree_append(struct rmap_item *rmap_item,
7b6ba2c7 1381 struct stable_node *stable_node)
31dbd01f 1382{
7b6ba2c7 1383 rmap_item->head = stable_node;
31dbd01f 1384 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1385 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1386
7b6ba2c7
HD
1387 if (rmap_item->hlist.next)
1388 ksm_pages_sharing++;
1389 else
1390 ksm_pages_shared++;
31dbd01f
IE
1391}
1392
1393/*
81464e30
HD
1394 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1395 * if not, compare checksum to previous and if it's the same, see if page can
1396 * be inserted into the unstable tree, or merged with a page already there and
1397 * both transferred to the stable tree.
31dbd01f
IE
1398 *
1399 * @page: the page that we are searching identical page to.
1400 * @rmap_item: the reverse mapping into the virtual address of this page
1401 */
1402static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1403{
31dbd01f 1404 struct rmap_item *tree_rmap_item;
8dd3557a 1405 struct page *tree_page = NULL;
7b6ba2c7 1406 struct stable_node *stable_node;
8dd3557a 1407 struct page *kpage;
31dbd01f
IE
1408 unsigned int checksum;
1409 int err;
1410
4146d2d6
HD
1411 stable_node = page_stable_node(page);
1412 if (stable_node) {
1413 if (stable_node->head != &migrate_nodes &&
1414 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1415 rb_erase(&stable_node->node,
ef53d16c 1416 root_stable_tree + NUMA(stable_node->nid));
4146d2d6
HD
1417 stable_node->head = &migrate_nodes;
1418 list_add(&stable_node->list, stable_node->head);
1419 }
1420 if (stable_node->head != &migrate_nodes &&
1421 rmap_item->head == stable_node)
1422 return;
1423 }
31dbd01f
IE
1424
1425 /* We first start with searching the page inside the stable tree */
62b61f61 1426 kpage = stable_tree_search(page);
4146d2d6
HD
1427 if (kpage == page && rmap_item->head == stable_node) {
1428 put_page(kpage);
1429 return;
1430 }
1431
1432 remove_rmap_item_from_tree(rmap_item);
1433
62b61f61 1434 if (kpage) {
08beca44 1435 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
1436 if (!err) {
1437 /*
1438 * The page was successfully merged:
1439 * add its rmap_item to the stable tree.
1440 */
5ad64688 1441 lock_page(kpage);
62b61f61 1442 stable_tree_append(rmap_item, page_stable_node(kpage));
5ad64688 1443 unlock_page(kpage);
31dbd01f 1444 }
8dd3557a 1445 put_page(kpage);
31dbd01f
IE
1446 return;
1447 }
1448
1449 /*
4035c07a
HD
1450 * If the hash value of the page has changed from the last time
1451 * we calculated it, this page is changing frequently: therefore we
1452 * don't want to insert it in the unstable tree, and we don't want
1453 * to waste our time searching for something identical to it there.
31dbd01f
IE
1454 */
1455 checksum = calc_checksum(page);
1456 if (rmap_item->oldchecksum != checksum) {
1457 rmap_item->oldchecksum = checksum;
1458 return;
1459 }
1460
8dd3557a
HD
1461 tree_rmap_item =
1462 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 1463 if (tree_rmap_item) {
8dd3557a
HD
1464 kpage = try_to_merge_two_pages(rmap_item, page,
1465 tree_rmap_item, tree_page);
1466 put_page(tree_page);
8dd3557a 1467 if (kpage) {
bc56620b
HD
1468 /*
1469 * The pages were successfully merged: insert new
1470 * node in the stable tree and add both rmap_items.
1471 */
5ad64688 1472 lock_page(kpage);
7b6ba2c7
HD
1473 stable_node = stable_tree_insert(kpage);
1474 if (stable_node) {
1475 stable_tree_append(tree_rmap_item, stable_node);
1476 stable_tree_append(rmap_item, stable_node);
1477 }
5ad64688 1478 unlock_page(kpage);
7b6ba2c7 1479
31dbd01f
IE
1480 /*
1481 * If we fail to insert the page into the stable tree,
1482 * we will have 2 virtual addresses that are pointing
1483 * to a ksm page left outside the stable tree,
1484 * in which case we need to break_cow on both.
1485 */
7b6ba2c7 1486 if (!stable_node) {
8dd3557a
HD
1487 break_cow(tree_rmap_item);
1488 break_cow(rmap_item);
31dbd01f
IE
1489 }
1490 }
31dbd01f
IE
1491 }
1492}
1493
1494static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 1495 struct rmap_item **rmap_list,
31dbd01f
IE
1496 unsigned long addr)
1497{
1498 struct rmap_item *rmap_item;
1499
6514d511
HD
1500 while (*rmap_list) {
1501 rmap_item = *rmap_list;
93d17715 1502 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 1503 return rmap_item;
31dbd01f
IE
1504 if (rmap_item->address > addr)
1505 break;
6514d511 1506 *rmap_list = rmap_item->rmap_list;
31dbd01f 1507 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1508 free_rmap_item(rmap_item);
1509 }
1510
1511 rmap_item = alloc_rmap_item();
1512 if (rmap_item) {
1513 /* It has already been zeroed */
1514 rmap_item->mm = mm_slot->mm;
1515 rmap_item->address = addr;
6514d511
HD
1516 rmap_item->rmap_list = *rmap_list;
1517 *rmap_list = rmap_item;
31dbd01f
IE
1518 }
1519 return rmap_item;
1520}
1521
1522static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1523{
1524 struct mm_struct *mm;
1525 struct mm_slot *slot;
1526 struct vm_area_struct *vma;
1527 struct rmap_item *rmap_item;
90bd6fd3 1528 int nid;
31dbd01f
IE
1529
1530 if (list_empty(&ksm_mm_head.mm_list))
1531 return NULL;
1532
1533 slot = ksm_scan.mm_slot;
1534 if (slot == &ksm_mm_head) {
2919bfd0
HD
1535 /*
1536 * A number of pages can hang around indefinitely on per-cpu
1537 * pagevecs, raised page count preventing write_protect_page
1538 * from merging them. Though it doesn't really matter much,
1539 * it is puzzling to see some stuck in pages_volatile until
1540 * other activity jostles them out, and they also prevented
1541 * LTP's KSM test from succeeding deterministically; so drain
1542 * them here (here rather than on entry to ksm_do_scan(),
1543 * so we don't IPI too often when pages_to_scan is set low).
1544 */
1545 lru_add_drain_all();
1546
4146d2d6
HD
1547 /*
1548 * Whereas stale stable_nodes on the stable_tree itself
1549 * get pruned in the regular course of stable_tree_search(),
1550 * those moved out to the migrate_nodes list can accumulate:
1551 * so prune them once before each full scan.
1552 */
1553 if (!ksm_merge_across_nodes) {
03640418 1554 struct stable_node *stable_node, *next;
4146d2d6
HD
1555 struct page *page;
1556
03640418
GT
1557 list_for_each_entry_safe(stable_node, next,
1558 &migrate_nodes, list) {
4146d2d6
HD
1559 page = get_ksm_page(stable_node, false);
1560 if (page)
1561 put_page(page);
1562 cond_resched();
1563 }
1564 }
1565
ef53d16c 1566 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 1567 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
1568
1569 spin_lock(&ksm_mmlist_lock);
1570 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1571 ksm_scan.mm_slot = slot;
1572 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
1573 /*
1574 * Although we tested list_empty() above, a racing __ksm_exit
1575 * of the last mm on the list may have removed it since then.
1576 */
1577 if (slot == &ksm_mm_head)
1578 return NULL;
31dbd01f
IE
1579next_mm:
1580 ksm_scan.address = 0;
6514d511 1581 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
1582 }
1583
1584 mm = slot->mm;
1585 down_read(&mm->mmap_sem);
9ba69294
HD
1586 if (ksm_test_exit(mm))
1587 vma = NULL;
1588 else
1589 vma = find_vma(mm, ksm_scan.address);
1590
1591 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
1592 if (!(vma->vm_flags & VM_MERGEABLE))
1593 continue;
1594 if (ksm_scan.address < vma->vm_start)
1595 ksm_scan.address = vma->vm_start;
1596 if (!vma->anon_vma)
1597 ksm_scan.address = vma->vm_end;
1598
1599 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
1600 if (ksm_test_exit(mm))
1601 break;
31dbd01f 1602 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
1603 if (IS_ERR_OR_NULL(*page)) {
1604 ksm_scan.address += PAGE_SIZE;
1605 cond_resched();
1606 continue;
1607 }
f765f540 1608 if (PageAnon(*page)) {
31dbd01f
IE
1609 flush_anon_page(vma, *page, ksm_scan.address);
1610 flush_dcache_page(*page);
1611 rmap_item = get_next_rmap_item(slot,
6514d511 1612 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 1613 if (rmap_item) {
6514d511
HD
1614 ksm_scan.rmap_list =
1615 &rmap_item->rmap_list;
31dbd01f
IE
1616 ksm_scan.address += PAGE_SIZE;
1617 } else
1618 put_page(*page);
1619 up_read(&mm->mmap_sem);
1620 return rmap_item;
1621 }
21ae5b01 1622 put_page(*page);
31dbd01f
IE
1623 ksm_scan.address += PAGE_SIZE;
1624 cond_resched();
1625 }
1626 }
1627
9ba69294
HD
1628 if (ksm_test_exit(mm)) {
1629 ksm_scan.address = 0;
6514d511 1630 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 1631 }
31dbd01f
IE
1632 /*
1633 * Nuke all the rmap_items that are above this current rmap:
1634 * because there were no VM_MERGEABLE vmas with such addresses.
1635 */
6514d511 1636 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
1637
1638 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
1639 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1640 struct mm_slot, mm_list);
1641 if (ksm_scan.address == 0) {
1642 /*
1643 * We've completed a full scan of all vmas, holding mmap_sem
1644 * throughout, and found no VM_MERGEABLE: so do the same as
1645 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
1646 * This applies either when cleaning up after __ksm_exit
1647 * (but beware: we can reach here even before __ksm_exit),
1648 * or when all VM_MERGEABLE areas have been unmapped (and
1649 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 1650 */
4ca3a69b 1651 hash_del(&slot->link);
cd551f97 1652 list_del(&slot->mm_list);
9ba69294
HD
1653 spin_unlock(&ksm_mmlist_lock);
1654
cd551f97
HD
1655 free_mm_slot(slot);
1656 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
1657 up_read(&mm->mmap_sem);
1658 mmdrop(mm);
1659 } else {
1660 spin_unlock(&ksm_mmlist_lock);
1661 up_read(&mm->mmap_sem);
cd551f97 1662 }
31dbd01f
IE
1663
1664 /* Repeat until we've completed scanning the whole list */
cd551f97 1665 slot = ksm_scan.mm_slot;
31dbd01f
IE
1666 if (slot != &ksm_mm_head)
1667 goto next_mm;
1668
31dbd01f
IE
1669 ksm_scan.seqnr++;
1670 return NULL;
1671}
1672
1673/**
1674 * ksm_do_scan - the ksm scanner main worker function.
1675 * @scan_npages - number of pages we want to scan before we return.
1676 */
1677static void ksm_do_scan(unsigned int scan_npages)
1678{
1679 struct rmap_item *rmap_item;
22eccdd7 1680 struct page *uninitialized_var(page);
31dbd01f 1681
878aee7d 1682 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
1683 cond_resched();
1684 rmap_item = scan_get_next_rmap_item(&page);
1685 if (!rmap_item)
1686 return;
4146d2d6 1687 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
1688 put_page(page);
1689 }
1690}
1691
6e158384
HD
1692static int ksmd_should_run(void)
1693{
1694 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1695}
1696
31dbd01f
IE
1697static int ksm_scan_thread(void *nothing)
1698{
878aee7d 1699 set_freezable();
339aa624 1700 set_user_nice(current, 5);
31dbd01f
IE
1701
1702 while (!kthread_should_stop()) {
6e158384 1703 mutex_lock(&ksm_thread_mutex);
ef4d43a8 1704 wait_while_offlining();
6e158384 1705 if (ksmd_should_run())
31dbd01f 1706 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
1707 mutex_unlock(&ksm_thread_mutex);
1708
878aee7d
AA
1709 try_to_freeze();
1710
6e158384 1711 if (ksmd_should_run()) {
31dbd01f
IE
1712 schedule_timeout_interruptible(
1713 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1714 } else {
878aee7d 1715 wait_event_freezable(ksm_thread_wait,
6e158384 1716 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
1717 }
1718 }
1719 return 0;
1720}
1721
f8af4da3
HD
1722int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1723 unsigned long end, int advice, unsigned long *vm_flags)
1724{
1725 struct mm_struct *mm = vma->vm_mm;
d952b791 1726 int err;
f8af4da3
HD
1727
1728 switch (advice) {
1729 case MADV_MERGEABLE:
1730 /*
1731 * Be somewhat over-protective for now!
1732 */
1733 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1734 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 1735 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
1736 return 0; /* just ignore the advice */
1737
cc2383ec
KK
1738#ifdef VM_SAO
1739 if (*vm_flags & VM_SAO)
1740 return 0;
1741#endif
1742
d952b791
HD
1743 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1744 err = __ksm_enter(mm);
1745 if (err)
1746 return err;
1747 }
f8af4da3
HD
1748
1749 *vm_flags |= VM_MERGEABLE;
1750 break;
1751
1752 case MADV_UNMERGEABLE:
1753 if (!(*vm_flags & VM_MERGEABLE))
1754 return 0; /* just ignore the advice */
1755
d952b791
HD
1756 if (vma->anon_vma) {
1757 err = unmerge_ksm_pages(vma, start, end);
1758 if (err)
1759 return err;
1760 }
f8af4da3
HD
1761
1762 *vm_flags &= ~VM_MERGEABLE;
1763 break;
1764 }
1765
1766 return 0;
1767}
1768
1769int __ksm_enter(struct mm_struct *mm)
1770{
6e158384
HD
1771 struct mm_slot *mm_slot;
1772 int needs_wakeup;
1773
1774 mm_slot = alloc_mm_slot();
31dbd01f
IE
1775 if (!mm_slot)
1776 return -ENOMEM;
1777
6e158384
HD
1778 /* Check ksm_run too? Would need tighter locking */
1779 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1780
31dbd01f
IE
1781 spin_lock(&ksm_mmlist_lock);
1782 insert_to_mm_slots_hash(mm, mm_slot);
1783 /*
cbf86cfe
HD
1784 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1785 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
1786 * down a little; when fork is followed by immediate exec, we don't
1787 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
1788 *
1789 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1790 * scanning cursor, otherwise KSM pages in newly forked mms will be
1791 * missed: then we might as well insert at the end of the list.
31dbd01f 1792 */
cbf86cfe
HD
1793 if (ksm_run & KSM_RUN_UNMERGE)
1794 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1795 else
1796 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
1797 spin_unlock(&ksm_mmlist_lock);
1798
f8af4da3 1799 set_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1800 atomic_inc(&mm->mm_count);
6e158384
HD
1801
1802 if (needs_wakeup)
1803 wake_up_interruptible(&ksm_thread_wait);
1804
f8af4da3
HD
1805 return 0;
1806}
1807
1c2fb7a4 1808void __ksm_exit(struct mm_struct *mm)
f8af4da3 1809{
cd551f97 1810 struct mm_slot *mm_slot;
9ba69294 1811 int easy_to_free = 0;
cd551f97 1812
31dbd01f 1813 /*
9ba69294
HD
1814 * This process is exiting: if it's straightforward (as is the
1815 * case when ksmd was never running), free mm_slot immediately.
1816 * But if it's at the cursor or has rmap_items linked to it, use
1817 * mmap_sem to synchronize with any break_cows before pagetables
1818 * are freed, and leave the mm_slot on the list for ksmd to free.
1819 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 1820 */
9ba69294 1821
cd551f97
HD
1822 spin_lock(&ksm_mmlist_lock);
1823 mm_slot = get_mm_slot(mm);
9ba69294 1824 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 1825 if (!mm_slot->rmap_list) {
4ca3a69b 1826 hash_del(&mm_slot->link);
9ba69294
HD
1827 list_del(&mm_slot->mm_list);
1828 easy_to_free = 1;
1829 } else {
1830 list_move(&mm_slot->mm_list,
1831 &ksm_scan.mm_slot->mm_list);
1832 }
cd551f97 1833 }
cd551f97
HD
1834 spin_unlock(&ksm_mmlist_lock);
1835
9ba69294
HD
1836 if (easy_to_free) {
1837 free_mm_slot(mm_slot);
1838 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1839 mmdrop(mm);
1840 } else if (mm_slot) {
9ba69294
HD
1841 down_write(&mm->mmap_sem);
1842 up_write(&mm->mmap_sem);
9ba69294 1843 }
31dbd01f
IE
1844}
1845
cbf86cfe 1846struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
1847 struct vm_area_struct *vma, unsigned long address)
1848{
cbf86cfe 1849 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
1850 struct page *new_page;
1851
cbf86cfe
HD
1852 if (PageKsm(page)) {
1853 if (page_stable_node(page) &&
1854 !(ksm_run & KSM_RUN_UNMERGE))
1855 return page; /* no need to copy it */
1856 } else if (!anon_vma) {
1857 return page; /* no need to copy it */
1858 } else if (anon_vma->root == vma->anon_vma->root &&
1859 page->index == linear_page_index(vma, address)) {
1860 return page; /* still no need to copy it */
1861 }
1862 if (!PageUptodate(page))
1863 return page; /* let do_swap_page report the error */
1864
5ad64688
HD
1865 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1866 if (new_page) {
1867 copy_user_highpage(new_page, page, address, vma);
1868
1869 SetPageDirty(new_page);
1870 __SetPageUptodate(new_page);
48c935ad 1871 __SetPageLocked(new_page);
5ad64688
HD
1872 }
1873
5ad64688
HD
1874 return new_page;
1875}
1876
051ac83a 1877int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1878{
1879 struct stable_node *stable_node;
e9995ef9
HD
1880 struct rmap_item *rmap_item;
1881 int ret = SWAP_AGAIN;
1882 int search_new_forks = 0;
1883
309381fe 1884 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
1885
1886 /*
1887 * Rely on the page lock to protect against concurrent modifications
1888 * to that page's node of the stable tree.
1889 */
309381fe 1890 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
1891
1892 stable_node = page_stable_node(page);
1893 if (!stable_node)
1894 return ret;
1895again:
b67bfe0d 1896 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 1897 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1898 struct anon_vma_chain *vmac;
e9995ef9
HD
1899 struct vm_area_struct *vma;
1900
ad12695f 1901 cond_resched();
b6b19f25 1902 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1903 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1904 0, ULONG_MAX) {
ad12695f 1905 cond_resched();
5beb4930 1906 vma = vmac->vma;
e9995ef9
HD
1907 if (rmap_item->address < vma->vm_start ||
1908 rmap_item->address >= vma->vm_end)
1909 continue;
1910 /*
1911 * Initially we examine only the vma which covers this
1912 * rmap_item; but later, if there is still work to do,
1913 * we examine covering vmas in other mms: in case they
1914 * were forked from the original since ksmd passed.
1915 */
1916 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1917 continue;
1918
0dd1c7bb
JK
1919 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1920 continue;
1921
051ac83a
JK
1922 ret = rwc->rmap_one(page, vma,
1923 rmap_item->address, rwc->arg);
e9995ef9 1924 if (ret != SWAP_AGAIN) {
b6b19f25 1925 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1926 goto out;
1927 }
0dd1c7bb
JK
1928 if (rwc->done && rwc->done(page)) {
1929 anon_vma_unlock_read(anon_vma);
1930 goto out;
1931 }
e9995ef9 1932 }
b6b19f25 1933 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1934 }
1935 if (!search_new_forks++)
1936 goto again;
1937out:
1938 return ret;
1939}
1940
52629506 1941#ifdef CONFIG_MIGRATION
e9995ef9
HD
1942void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1943{
1944 struct stable_node *stable_node;
1945
309381fe
SL
1946 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1947 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1948 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
1949
1950 stable_node = page_stable_node(newpage);
1951 if (stable_node) {
309381fe 1952 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 1953 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
1954 /*
1955 * newpage->mapping was set in advance; now we need smp_wmb()
1956 * to make sure that the new stable_node->kpfn is visible
1957 * to get_ksm_page() before it can see that oldpage->mapping
1958 * has gone stale (or that PageSwapCache has been cleared).
1959 */
1960 smp_wmb();
1961 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
1962 }
1963}
1964#endif /* CONFIG_MIGRATION */
1965
62b61f61 1966#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
1967static void wait_while_offlining(void)
1968{
1969 while (ksm_run & KSM_RUN_OFFLINE) {
1970 mutex_unlock(&ksm_thread_mutex);
1971 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 1972 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
1973 mutex_lock(&ksm_thread_mutex);
1974 }
1975}
1976
ee0ea59c
HD
1977static void ksm_check_stable_tree(unsigned long start_pfn,
1978 unsigned long end_pfn)
62b61f61 1979{
03640418 1980 struct stable_node *stable_node, *next;
62b61f61 1981 struct rb_node *node;
90bd6fd3 1982 int nid;
62b61f61 1983
ef53d16c
HD
1984 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1985 node = rb_first(root_stable_tree + nid);
ee0ea59c 1986 while (node) {
90bd6fd3
PH
1987 stable_node = rb_entry(node, struct stable_node, node);
1988 if (stable_node->kpfn >= start_pfn &&
ee0ea59c
HD
1989 stable_node->kpfn < end_pfn) {
1990 /*
1991 * Don't get_ksm_page, page has already gone:
1992 * which is why we keep kpfn instead of page*
1993 */
1994 remove_node_from_stable_tree(stable_node);
ef53d16c 1995 node = rb_first(root_stable_tree + nid);
ee0ea59c
HD
1996 } else
1997 node = rb_next(node);
1998 cond_resched();
90bd6fd3 1999 }
ee0ea59c 2000 }
03640418 2001 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2002 if (stable_node->kpfn >= start_pfn &&
2003 stable_node->kpfn < end_pfn)
2004 remove_node_from_stable_tree(stable_node);
2005 cond_resched();
2006 }
62b61f61
HD
2007}
2008
2009static int ksm_memory_callback(struct notifier_block *self,
2010 unsigned long action, void *arg)
2011{
2012 struct memory_notify *mn = arg;
62b61f61
HD
2013
2014 switch (action) {
2015 case MEM_GOING_OFFLINE:
2016 /*
ef4d43a8
HD
2017 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2018 * and remove_all_stable_nodes() while memory is going offline:
2019 * it is unsafe for them to touch the stable tree at this time.
2020 * But unmerge_ksm_pages(), rmap lookups and other entry points
2021 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2022 */
ef4d43a8
HD
2023 mutex_lock(&ksm_thread_mutex);
2024 ksm_run |= KSM_RUN_OFFLINE;
2025 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2026 break;
2027
2028 case MEM_OFFLINE:
2029 /*
2030 * Most of the work is done by page migration; but there might
2031 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2032 * pages which have been offlined: prune those from the tree,
2033 * otherwise get_ksm_page() might later try to access a
2034 * non-existent struct page.
62b61f61 2035 */
ee0ea59c
HD
2036 ksm_check_stable_tree(mn->start_pfn,
2037 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2038 /* fallthrough */
2039
2040 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2041 mutex_lock(&ksm_thread_mutex);
2042 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2043 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2044
2045 smp_mb(); /* wake_up_bit advises this */
2046 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2047 break;
2048 }
2049 return NOTIFY_OK;
2050}
ef4d43a8
HD
2051#else
2052static void wait_while_offlining(void)
2053{
2054}
62b61f61
HD
2055#endif /* CONFIG_MEMORY_HOTREMOVE */
2056
2ffd8679
HD
2057#ifdef CONFIG_SYSFS
2058/*
2059 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2060 */
2061
31dbd01f
IE
2062#define KSM_ATTR_RO(_name) \
2063 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2064#define KSM_ATTR(_name) \
2065 static struct kobj_attribute _name##_attr = \
2066 __ATTR(_name, 0644, _name##_show, _name##_store)
2067
2068static ssize_t sleep_millisecs_show(struct kobject *kobj,
2069 struct kobj_attribute *attr, char *buf)
2070{
2071 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2072}
2073
2074static ssize_t sleep_millisecs_store(struct kobject *kobj,
2075 struct kobj_attribute *attr,
2076 const char *buf, size_t count)
2077{
2078 unsigned long msecs;
2079 int err;
2080
3dbb95f7 2081 err = kstrtoul(buf, 10, &msecs);
31dbd01f
IE
2082 if (err || msecs > UINT_MAX)
2083 return -EINVAL;
2084
2085 ksm_thread_sleep_millisecs = msecs;
2086
2087 return count;
2088}
2089KSM_ATTR(sleep_millisecs);
2090
2091static ssize_t pages_to_scan_show(struct kobject *kobj,
2092 struct kobj_attribute *attr, char *buf)
2093{
2094 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2095}
2096
2097static ssize_t pages_to_scan_store(struct kobject *kobj,
2098 struct kobj_attribute *attr,
2099 const char *buf, size_t count)
2100{
2101 int err;
2102 unsigned long nr_pages;
2103
3dbb95f7 2104 err = kstrtoul(buf, 10, &nr_pages);
31dbd01f
IE
2105 if (err || nr_pages > UINT_MAX)
2106 return -EINVAL;
2107
2108 ksm_thread_pages_to_scan = nr_pages;
2109
2110 return count;
2111}
2112KSM_ATTR(pages_to_scan);
2113
2114static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2115 char *buf)
2116{
ef4d43a8 2117 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2118}
2119
2120static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2121 const char *buf, size_t count)
2122{
2123 int err;
2124 unsigned long flags;
2125
3dbb95f7 2126 err = kstrtoul(buf, 10, &flags);
31dbd01f
IE
2127 if (err || flags > UINT_MAX)
2128 return -EINVAL;
2129 if (flags > KSM_RUN_UNMERGE)
2130 return -EINVAL;
2131
2132 /*
2133 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2134 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2135 * breaking COW to free the pages_shared (but leaves mm_slots
2136 * on the list for when ksmd may be set running again).
31dbd01f
IE
2137 */
2138
2139 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2140 wait_while_offlining();
31dbd01f
IE
2141 if (ksm_run != flags) {
2142 ksm_run = flags;
d952b791 2143 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2144 set_current_oom_origin();
d952b791 2145 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2146 clear_current_oom_origin();
d952b791
HD
2147 if (err) {
2148 ksm_run = KSM_RUN_STOP;
2149 count = err;
2150 }
2151 }
31dbd01f
IE
2152 }
2153 mutex_unlock(&ksm_thread_mutex);
2154
2155 if (flags & KSM_RUN_MERGE)
2156 wake_up_interruptible(&ksm_thread_wait);
2157
2158 return count;
2159}
2160KSM_ATTR(run);
2161
90bd6fd3
PH
2162#ifdef CONFIG_NUMA
2163static ssize_t merge_across_nodes_show(struct kobject *kobj,
2164 struct kobj_attribute *attr, char *buf)
2165{
2166 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2167}
2168
2169static ssize_t merge_across_nodes_store(struct kobject *kobj,
2170 struct kobj_attribute *attr,
2171 const char *buf, size_t count)
2172{
2173 int err;
2174 unsigned long knob;
2175
2176 err = kstrtoul(buf, 10, &knob);
2177 if (err)
2178 return err;
2179 if (knob > 1)
2180 return -EINVAL;
2181
2182 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2183 wait_while_offlining();
90bd6fd3 2184 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2185 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2186 err = -EBUSY;
ef53d16c
HD
2187 else if (root_stable_tree == one_stable_tree) {
2188 struct rb_root *buf;
2189 /*
2190 * This is the first time that we switch away from the
2191 * default of merging across nodes: must now allocate
2192 * a buffer to hold as many roots as may be needed.
2193 * Allocate stable and unstable together:
2194 * MAXSMP NODES_SHIFT 10 will use 16kB.
2195 */
bafe1e14
JP
2196 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2197 GFP_KERNEL);
ef53d16c
HD
2198 /* Let us assume that RB_ROOT is NULL is zero */
2199 if (!buf)
2200 err = -ENOMEM;
2201 else {
2202 root_stable_tree = buf;
2203 root_unstable_tree = buf + nr_node_ids;
2204 /* Stable tree is empty but not the unstable */
2205 root_unstable_tree[0] = one_unstable_tree[0];
2206 }
2207 }
2208 if (!err) {
90bd6fd3 2209 ksm_merge_across_nodes = knob;
ef53d16c
HD
2210 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2211 }
90bd6fd3
PH
2212 }
2213 mutex_unlock(&ksm_thread_mutex);
2214
2215 return err ? err : count;
2216}
2217KSM_ATTR(merge_across_nodes);
2218#endif
2219
b4028260
HD
2220static ssize_t pages_shared_show(struct kobject *kobj,
2221 struct kobj_attribute *attr, char *buf)
2222{
2223 return sprintf(buf, "%lu\n", ksm_pages_shared);
2224}
2225KSM_ATTR_RO(pages_shared);
2226
2227static ssize_t pages_sharing_show(struct kobject *kobj,
2228 struct kobj_attribute *attr, char *buf)
2229{
e178dfde 2230 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
2231}
2232KSM_ATTR_RO(pages_sharing);
2233
473b0ce4
HD
2234static ssize_t pages_unshared_show(struct kobject *kobj,
2235 struct kobj_attribute *attr, char *buf)
2236{
2237 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2238}
2239KSM_ATTR_RO(pages_unshared);
2240
2241static ssize_t pages_volatile_show(struct kobject *kobj,
2242 struct kobj_attribute *attr, char *buf)
2243{
2244 long ksm_pages_volatile;
2245
2246 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2247 - ksm_pages_sharing - ksm_pages_unshared;
2248 /*
2249 * It was not worth any locking to calculate that statistic,
2250 * but it might therefore sometimes be negative: conceal that.
2251 */
2252 if (ksm_pages_volatile < 0)
2253 ksm_pages_volatile = 0;
2254 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2255}
2256KSM_ATTR_RO(pages_volatile);
2257
2258static ssize_t full_scans_show(struct kobject *kobj,
2259 struct kobj_attribute *attr, char *buf)
2260{
2261 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2262}
2263KSM_ATTR_RO(full_scans);
2264
31dbd01f
IE
2265static struct attribute *ksm_attrs[] = {
2266 &sleep_millisecs_attr.attr,
2267 &pages_to_scan_attr.attr,
2268 &run_attr.attr,
b4028260
HD
2269 &pages_shared_attr.attr,
2270 &pages_sharing_attr.attr,
473b0ce4
HD
2271 &pages_unshared_attr.attr,
2272 &pages_volatile_attr.attr,
2273 &full_scans_attr.attr,
90bd6fd3
PH
2274#ifdef CONFIG_NUMA
2275 &merge_across_nodes_attr.attr,
2276#endif
31dbd01f
IE
2277 NULL,
2278};
2279
2280static struct attribute_group ksm_attr_group = {
2281 .attrs = ksm_attrs,
2282 .name = "ksm",
2283};
2ffd8679 2284#endif /* CONFIG_SYSFS */
31dbd01f
IE
2285
2286static int __init ksm_init(void)
2287{
2288 struct task_struct *ksm_thread;
2289 int err;
2290
2291 err = ksm_slab_init();
2292 if (err)
2293 goto out;
2294
31dbd01f
IE
2295 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2296 if (IS_ERR(ksm_thread)) {
25acde31 2297 pr_err("ksm: creating kthread failed\n");
31dbd01f 2298 err = PTR_ERR(ksm_thread);
d9f8984c 2299 goto out_free;
31dbd01f
IE
2300 }
2301
2ffd8679 2302#ifdef CONFIG_SYSFS
31dbd01f
IE
2303 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2304 if (err) {
25acde31 2305 pr_err("ksm: register sysfs failed\n");
2ffd8679 2306 kthread_stop(ksm_thread);
d9f8984c 2307 goto out_free;
31dbd01f 2308 }
c73602ad
HD
2309#else
2310 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2311
2ffd8679 2312#endif /* CONFIG_SYSFS */
31dbd01f 2313
62b61f61 2314#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 2315 /* There is no significance to this priority 100 */
62b61f61
HD
2316 hotplug_memory_notifier(ksm_memory_callback, 100);
2317#endif
31dbd01f
IE
2318 return 0;
2319
d9f8984c 2320out_free:
31dbd01f
IE
2321 ksm_slab_free();
2322out:
2323 return err;
f8af4da3 2324}
a64fb3cd 2325subsys_initcall(ksm_init);