]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/ksm.c
ksm: swap the two output parameters of chain/chain_prune
[mirror_ubuntu-artful-kernel.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
62b61f61 32#include <linux/memory.h>
31dbd01f 33#include <linux/mmu_notifier.h>
2c6854fd 34#include <linux/swap.h>
f8af4da3 35#include <linux/ksm.h>
4ca3a69b 36#include <linux/hashtable.h>
878aee7d 37#include <linux/freezer.h>
72788c38 38#include <linux/oom.h>
90bd6fd3 39#include <linux/numa.h>
f8af4da3 40
31dbd01f 41#include <asm/tlbflush.h>
73848b46 42#include "internal.h"
31dbd01f 43
e850dcf5
HD
44#ifdef CONFIG_NUMA
45#define NUMA(x) (x)
46#define DO_NUMA(x) do { (x); } while (0)
47#else
48#define NUMA(x) (0)
49#define DO_NUMA(x) do { } while (0)
50#endif
51
31dbd01f
IE
52/*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
93 */
94
95/**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
100 * @mm: the mm that this information is valid for
101 */
102struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
6514d511 105 struct rmap_item *rmap_list;
31dbd01f
IE
106 struct mm_struct *mm;
107};
108
109/**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
6514d511 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
6514d511 121 struct rmap_item **rmap_list;
31dbd01f
IE
122 unsigned long seqnr;
123};
124
7b6ba2c7
HD
125/**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
4146d2d6 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
731b565d 129 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 130 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 131 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 132 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
731b565d
AA
133 * @chain_prune_time: time of the last full garbage collection
134 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 135 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
136 */
137struct stable_node {
4146d2d6
HD
138 union {
139 struct rb_node node; /* when node of stable tree */
140 struct { /* when listed for migration */
141 struct list_head *head;
731b565d
AA
142 struct {
143 struct hlist_node hlist_dup;
144 struct list_head list;
145 };
4146d2d6
HD
146 };
147 };
7b6ba2c7 148 struct hlist_head hlist;
731b565d
AA
149 union {
150 unsigned long kpfn;
151 unsigned long chain_prune_time;
152 };
153 /*
154 * STABLE_NODE_CHAIN can be any negative number in
155 * rmap_hlist_len negative range, but better not -1 to be able
156 * to reliably detect underflows.
157 */
158#define STABLE_NODE_CHAIN -1024
159 int rmap_hlist_len;
4146d2d6
HD
160#ifdef CONFIG_NUMA
161 int nid;
162#endif
7b6ba2c7
HD
163};
164
31dbd01f
IE
165/**
166 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 167 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 168 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 169 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
170 * @mm: the memory structure this rmap_item is pointing into
171 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
172 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
173 * @node: rb node of this rmap_item in the unstable tree
174 * @head: pointer to stable_node heading this list in the stable tree
175 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
176 */
177struct rmap_item {
6514d511 178 struct rmap_item *rmap_list;
bc56620b
HD
179 union {
180 struct anon_vma *anon_vma; /* when stable */
181#ifdef CONFIG_NUMA
182 int nid; /* when node of unstable tree */
183#endif
184 };
31dbd01f
IE
185 struct mm_struct *mm;
186 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 187 unsigned int oldchecksum; /* when unstable */
31dbd01f 188 union {
7b6ba2c7
HD
189 struct rb_node node; /* when node of unstable tree */
190 struct { /* when listed from stable tree */
191 struct stable_node *head;
192 struct hlist_node hlist;
193 };
31dbd01f
IE
194 };
195};
196
197#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
198#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
199#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
200
201/* The stable and unstable tree heads */
ef53d16c
HD
202static struct rb_root one_stable_tree[1] = { RB_ROOT };
203static struct rb_root one_unstable_tree[1] = { RB_ROOT };
204static struct rb_root *root_stable_tree = one_stable_tree;
205static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 206
4146d2d6
HD
207/* Recently migrated nodes of stable tree, pending proper placement */
208static LIST_HEAD(migrate_nodes);
731b565d 209#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 210
4ca3a69b
SL
211#define MM_SLOTS_HASH_BITS 10
212static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
213
214static struct mm_slot ksm_mm_head = {
215 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
216};
217static struct ksm_scan ksm_scan = {
218 .mm_slot = &ksm_mm_head,
219};
220
221static struct kmem_cache *rmap_item_cache;
7b6ba2c7 222static struct kmem_cache *stable_node_cache;
31dbd01f
IE
223static struct kmem_cache *mm_slot_cache;
224
225/* The number of nodes in the stable tree */
b4028260 226static unsigned long ksm_pages_shared;
31dbd01f 227
e178dfde 228/* The number of page slots additionally sharing those nodes */
b4028260 229static unsigned long ksm_pages_sharing;
31dbd01f 230
473b0ce4
HD
231/* The number of nodes in the unstable tree */
232static unsigned long ksm_pages_unshared;
233
234/* The number of rmap_items in use: to calculate pages_volatile */
235static unsigned long ksm_rmap_items;
236
731b565d
AA
237/* The number of stable_node chains */
238static unsigned long ksm_stable_node_chains;
239
240/* The number of stable_node dups linked to the stable_node chains */
241static unsigned long ksm_stable_node_dups;
242
243/* Delay in pruning stale stable_node_dups in the stable_node_chains */
244static int ksm_stable_node_chains_prune_millisecs = 2000;
245
246/* Maximum number of page slots sharing a stable node */
247static int ksm_max_page_sharing = 256;
248
31dbd01f 249/* Number of pages ksmd should scan in one batch */
2c6854fd 250static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
251
252/* Milliseconds ksmd should sleep between batches */
2ffd8679 253static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 254
e850dcf5 255#ifdef CONFIG_NUMA
90bd6fd3
PH
256/* Zeroed when merging across nodes is not allowed */
257static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 258static int ksm_nr_node_ids = 1;
e850dcf5
HD
259#else
260#define ksm_merge_across_nodes 1U
ef53d16c 261#define ksm_nr_node_ids 1
e850dcf5 262#endif
90bd6fd3 263
31dbd01f
IE
264#define KSM_RUN_STOP 0
265#define KSM_RUN_MERGE 1
266#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
267#define KSM_RUN_OFFLINE 4
268static unsigned long ksm_run = KSM_RUN_STOP;
269static void wait_while_offlining(void);
31dbd01f
IE
270
271static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
272static DEFINE_MUTEX(ksm_thread_mutex);
273static DEFINE_SPINLOCK(ksm_mmlist_lock);
274
275#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
276 sizeof(struct __struct), __alignof__(struct __struct),\
277 (__flags), NULL)
278
279static int __init ksm_slab_init(void)
280{
281 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
282 if (!rmap_item_cache)
283 goto out;
284
7b6ba2c7
HD
285 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
286 if (!stable_node_cache)
287 goto out_free1;
288
31dbd01f
IE
289 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
290 if (!mm_slot_cache)
7b6ba2c7 291 goto out_free2;
31dbd01f
IE
292
293 return 0;
294
7b6ba2c7
HD
295out_free2:
296 kmem_cache_destroy(stable_node_cache);
297out_free1:
31dbd01f
IE
298 kmem_cache_destroy(rmap_item_cache);
299out:
300 return -ENOMEM;
301}
302
303static void __init ksm_slab_free(void)
304{
305 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 306 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
307 kmem_cache_destroy(rmap_item_cache);
308 mm_slot_cache = NULL;
309}
310
731b565d
AA
311static __always_inline bool is_stable_node_chain(struct stable_node *chain)
312{
313 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
314}
315
316static __always_inline bool is_stable_node_dup(struct stable_node *dup)
317{
318 return dup->head == STABLE_NODE_DUP_HEAD;
319}
320
321static inline void stable_node_chain_add_dup(struct stable_node *dup,
322 struct stable_node *chain)
323{
324 VM_BUG_ON(is_stable_node_dup(dup));
325 dup->head = STABLE_NODE_DUP_HEAD;
326 VM_BUG_ON(!is_stable_node_chain(chain));
327 hlist_add_head(&dup->hlist_dup, &chain->hlist);
328 ksm_stable_node_dups++;
329}
330
331static inline void __stable_node_dup_del(struct stable_node *dup)
332{
24f72136 333 VM_BUG_ON(!is_stable_node_dup(dup));
731b565d
AA
334 hlist_del(&dup->hlist_dup);
335 ksm_stable_node_dups--;
336}
337
338static inline void stable_node_dup_del(struct stable_node *dup)
339{
340 VM_BUG_ON(is_stable_node_chain(dup));
341 if (is_stable_node_dup(dup))
342 __stable_node_dup_del(dup);
343 else
344 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
345#ifdef CONFIG_DEBUG_VM
346 dup->head = NULL;
347#endif
348}
349
31dbd01f
IE
350static inline struct rmap_item *alloc_rmap_item(void)
351{
473b0ce4
HD
352 struct rmap_item *rmap_item;
353
386429be 354 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
355 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
356 if (rmap_item)
357 ksm_rmap_items++;
358 return rmap_item;
31dbd01f
IE
359}
360
361static inline void free_rmap_item(struct rmap_item *rmap_item)
362{
473b0ce4 363 ksm_rmap_items--;
31dbd01f
IE
364 rmap_item->mm = NULL; /* debug safety */
365 kmem_cache_free(rmap_item_cache, rmap_item);
366}
367
7b6ba2c7
HD
368static inline struct stable_node *alloc_stable_node(void)
369{
370 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
371}
372
373static inline void free_stable_node(struct stable_node *stable_node)
374{
731b565d
AA
375 VM_BUG_ON(stable_node->rmap_hlist_len &&
376 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
377 kmem_cache_free(stable_node_cache, stable_node);
378}
379
31dbd01f
IE
380static inline struct mm_slot *alloc_mm_slot(void)
381{
382 if (!mm_slot_cache) /* initialization failed */
383 return NULL;
384 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
385}
386
387static inline void free_mm_slot(struct mm_slot *mm_slot)
388{
389 kmem_cache_free(mm_slot_cache, mm_slot);
390}
391
31dbd01f
IE
392static struct mm_slot *get_mm_slot(struct mm_struct *mm)
393{
4ca3a69b
SL
394 struct mm_slot *slot;
395
b67bfe0d 396 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
397 if (slot->mm == mm)
398 return slot;
31dbd01f 399
31dbd01f
IE
400 return NULL;
401}
402
403static void insert_to_mm_slots_hash(struct mm_struct *mm,
404 struct mm_slot *mm_slot)
405{
31dbd01f 406 mm_slot->mm = mm;
4ca3a69b 407 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
408}
409
a913e182
HD
410/*
411 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
412 * page tables after it has passed through ksm_exit() - which, if necessary,
413 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
414 * a special flag: they can just back out as soon as mm_users goes to zero.
415 * ksm_test_exit() is used throughout to make this test for exit: in some
416 * places for correctness, in some places just to avoid unnecessary work.
417 */
418static inline bool ksm_test_exit(struct mm_struct *mm)
419{
420 return atomic_read(&mm->mm_users) == 0;
421}
422
31dbd01f
IE
423/*
424 * We use break_ksm to break COW on a ksm page: it's a stripped down
425 *
426 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
427 * put_page(page);
428 *
429 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
430 * in case the application has unmapped and remapped mm,addr meanwhile.
431 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
432 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
433 */
d952b791 434static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
435{
436 struct page *page;
d952b791 437 int ret = 0;
31dbd01f
IE
438
439 do {
440 cond_resched();
5117b3b8 441 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
22eccdd7 442 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
443 break;
444 if (PageKsm(page))
445 ret = handle_mm_fault(vma->vm_mm, vma, addr,
446 FAULT_FLAG_WRITE);
447 else
448 ret = VM_FAULT_WRITE;
449 put_page(page);
33692f27 450 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
451 /*
452 * We must loop because handle_mm_fault() may back out if there's
453 * any difficulty e.g. if pte accessed bit gets updated concurrently.
454 *
455 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
456 * COW has been broken, even if the vma does not permit VM_WRITE;
457 * but note that a concurrent fault might break PageKsm for us.
458 *
459 * VM_FAULT_SIGBUS could occur if we race with truncation of the
460 * backing file, which also invalidates anonymous pages: that's
461 * okay, that truncation will have unmapped the PageKsm for us.
462 *
463 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
464 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
465 * current task has TIF_MEMDIE set, and will be OOM killed on return
466 * to user; and ksmd, having no mm, would never be chosen for that.
467 *
468 * But if the mm is in a limited mem_cgroup, then the fault may fail
469 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
470 * even ksmd can fail in this way - though it's usually breaking ksm
471 * just to undo a merge it made a moment before, so unlikely to oom.
472 *
473 * That's a pity: we might therefore have more kernel pages allocated
474 * than we're counting as nodes in the stable tree; but ksm_do_scan
475 * will retry to break_cow on each pass, so should recover the page
476 * in due course. The important thing is to not let VM_MERGEABLE
477 * be cleared while any such pages might remain in the area.
478 */
479 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
480}
481
ef694222
BL
482static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
483 unsigned long addr)
484{
485 struct vm_area_struct *vma;
486 if (ksm_test_exit(mm))
487 return NULL;
488 vma = find_vma(mm, addr);
489 if (!vma || vma->vm_start > addr)
490 return NULL;
491 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
492 return NULL;
493 return vma;
494}
495
8dd3557a 496static void break_cow(struct rmap_item *rmap_item)
31dbd01f 497{
8dd3557a
HD
498 struct mm_struct *mm = rmap_item->mm;
499 unsigned long addr = rmap_item->address;
31dbd01f
IE
500 struct vm_area_struct *vma;
501
4035c07a
HD
502 /*
503 * It is not an accident that whenever we want to break COW
504 * to undo, we also need to drop a reference to the anon_vma.
505 */
9e60109f 506 put_anon_vma(rmap_item->anon_vma);
4035c07a 507
81464e30 508 down_read(&mm->mmap_sem);
ef694222
BL
509 vma = find_mergeable_vma(mm, addr);
510 if (vma)
511 break_ksm(vma, addr);
31dbd01f
IE
512 up_read(&mm->mmap_sem);
513}
514
29ad768c
AA
515static struct page *page_trans_compound_anon(struct page *page)
516{
517 if (PageTransCompound(page)) {
668f9abb 518 struct page *head = compound_head(page);
29ad768c 519 /*
22e5c47e
AA
520 * head may actually be splitted and freed from under
521 * us but it's ok here.
29ad768c 522 */
29ad768c
AA
523 if (PageAnon(head))
524 return head;
525 }
526 return NULL;
527}
528
31dbd01f
IE
529static struct page *get_mergeable_page(struct rmap_item *rmap_item)
530{
531 struct mm_struct *mm = rmap_item->mm;
532 unsigned long addr = rmap_item->address;
533 struct vm_area_struct *vma;
534 struct page *page;
535
536 down_read(&mm->mmap_sem);
ef694222
BL
537 vma = find_mergeable_vma(mm, addr);
538 if (!vma)
31dbd01f
IE
539 goto out;
540
541 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 542 if (IS_ERR_OR_NULL(page))
31dbd01f 543 goto out;
29ad768c 544 if (PageAnon(page) || page_trans_compound_anon(page)) {
31dbd01f
IE
545 flush_anon_page(vma, page, addr);
546 flush_dcache_page(page);
547 } else {
548 put_page(page);
c8f95ed1
AA
549out:
550 page = NULL;
31dbd01f
IE
551 }
552 up_read(&mm->mmap_sem);
553 return page;
554}
555
90bd6fd3
PH
556/*
557 * This helper is used for getting right index into array of tree roots.
558 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
559 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
560 * every node has its own stable and unstable tree.
561 */
562static inline int get_kpfn_nid(unsigned long kpfn)
563{
d8fc16a8 564 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
565}
566
731b565d
AA
567static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
568 struct rb_root *root)
569{
570 struct stable_node *chain = alloc_stable_node();
571 VM_BUG_ON(is_stable_node_chain(dup));
572 if (likely(chain)) {
573 INIT_HLIST_HEAD(&chain->hlist);
574 chain->chain_prune_time = jiffies;
575 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
576#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
577 chain->nid = -1; /* debug */
578#endif
579 ksm_stable_node_chains++;
580
581 /*
582 * Put the stable node chain in the first dimension of
583 * the stable tree and at the same time remove the old
584 * stable node.
585 */
586 rb_replace_node(&dup->node, &chain->node, root);
587
588 /*
589 * Move the old stable node to the second dimension
590 * queued in the hlist_dup. The invariant is that all
591 * dup stable_nodes in the chain->hlist point to pages
592 * that are wrprotected and have the exact same
593 * content.
594 */
595 stable_node_chain_add_dup(dup, chain);
596 }
597 return chain;
598}
599
600static inline void free_stable_node_chain(struct stable_node *chain,
601 struct rb_root *root)
602{
603 rb_erase(&chain->node, root);
604 free_stable_node(chain);
605 ksm_stable_node_chains--;
606}
607
4035c07a
HD
608static void remove_node_from_stable_tree(struct stable_node *stable_node)
609{
610 struct rmap_item *rmap_item;
4035c07a 611
731b565d
AA
612 /* check it's not STABLE_NODE_CHAIN or negative */
613 BUG_ON(stable_node->rmap_hlist_len < 0);
614
b67bfe0d 615 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
616 if (rmap_item->hlist.next)
617 ksm_pages_sharing--;
618 else
619 ksm_pages_shared--;
731b565d
AA
620 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
621 stable_node->rmap_hlist_len--;
9e60109f 622 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
623 rmap_item->address &= PAGE_MASK;
624 cond_resched();
625 }
626
731b565d
AA
627 /*
628 * We need the second aligned pointer of the migrate_nodes
629 * list_head to stay clear from the rb_parent_color union
630 * (aligned and different than any node) and also different
631 * from &migrate_nodes. This will verify that future list.h changes
632 * don't break STABLE_NODE_DUP_HEAD.
633 */
634#if GCC_VERSION >= 40903 /* only recent gcc can handle it */
635 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
636 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
637#endif
638
4146d2d6
HD
639 if (stable_node->head == &migrate_nodes)
640 list_del(&stable_node->list);
641 else
731b565d 642 stable_node_dup_del(stable_node);
4035c07a
HD
643 free_stable_node(stable_node);
644}
645
646/*
647 * get_ksm_page: checks if the page indicated by the stable node
648 * is still its ksm page, despite having held no reference to it.
649 * In which case we can trust the content of the page, and it
650 * returns the gotten page; but if the page has now been zapped,
651 * remove the stale node from the stable tree and return NULL.
c8d6553b 652 * But beware, the stable node's page might be being migrated.
4035c07a
HD
653 *
654 * You would expect the stable_node to hold a reference to the ksm page.
655 * But if it increments the page's count, swapping out has to wait for
656 * ksmd to come around again before it can free the page, which may take
657 * seconds or even minutes: much too unresponsive. So instead we use a
658 * "keyhole reference": access to the ksm page from the stable node peeps
659 * out through its keyhole to see if that page still holds the right key,
660 * pointing back to this stable node. This relies on freeing a PageAnon
661 * page to reset its page->mapping to NULL, and relies on no other use of
662 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
663 * is on its way to being freed; but it is an anomaly to bear in mind.
664 */
8fdb3dbf 665static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
666{
667 struct page *page;
668 void *expected_mapping;
c8d6553b 669 unsigned long kpfn;
4035c07a 670
4035c07a
HD
671 expected_mapping = (void *)stable_node +
672 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
c8d6553b 673again:
4db0c3c2 674 kpfn = READ_ONCE(stable_node->kpfn);
c8d6553b
HD
675 page = pfn_to_page(kpfn);
676
677 /*
678 * page is computed from kpfn, so on most architectures reading
679 * page->mapping is naturally ordered after reading node->kpfn,
680 * but on Alpha we need to be more careful.
681 */
682 smp_read_barrier_depends();
4db0c3c2 683 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 684 goto stale;
c8d6553b
HD
685
686 /*
687 * We cannot do anything with the page while its refcount is 0.
688 * Usually 0 means free, or tail of a higher-order page: in which
689 * case this node is no longer referenced, and should be freed;
690 * however, it might mean that the page is under page_freeze_refs().
691 * The __remove_mapping() case is easy, again the node is now stale;
692 * but if page is swapcache in migrate_page_move_mapping(), it might
693 * still be our page, in which case it's essential to keep the node.
694 */
695 while (!get_page_unless_zero(page)) {
696 /*
697 * Another check for page->mapping != expected_mapping would
698 * work here too. We have chosen the !PageSwapCache test to
699 * optimize the common case, when the page is or is about to
700 * be freed: PageSwapCache is cleared (under spin_lock_irq)
701 * in the freeze_refs section of __remove_mapping(); but Anon
702 * page->mapping reset to NULL later, in free_pages_prepare().
703 */
704 if (!PageSwapCache(page))
705 goto stale;
706 cpu_relax();
707 }
708
4db0c3c2 709 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
710 put_page(page);
711 goto stale;
712 }
c8d6553b 713
8fdb3dbf 714 if (lock_it) {
8aafa6a4 715 lock_page(page);
4db0c3c2 716 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
717 unlock_page(page);
718 put_page(page);
719 goto stale;
720 }
721 }
4035c07a 722 return page;
c8d6553b 723
4035c07a 724stale:
c8d6553b
HD
725 /*
726 * We come here from above when page->mapping or !PageSwapCache
727 * suggests that the node is stale; but it might be under migration.
728 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
729 * before checking whether node->kpfn has been changed.
730 */
731 smp_rmb();
4db0c3c2 732 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 733 goto again;
4035c07a
HD
734 remove_node_from_stable_tree(stable_node);
735 return NULL;
736}
737
31dbd01f
IE
738/*
739 * Removing rmap_item from stable or unstable tree.
740 * This function will clean the information from the stable/unstable tree.
741 */
742static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
743{
7b6ba2c7
HD
744 if (rmap_item->address & STABLE_FLAG) {
745 struct stable_node *stable_node;
5ad64688 746 struct page *page;
31dbd01f 747
7b6ba2c7 748 stable_node = rmap_item->head;
8aafa6a4 749 page = get_ksm_page(stable_node, true);
4035c07a
HD
750 if (!page)
751 goto out;
5ad64688 752
7b6ba2c7 753 hlist_del(&rmap_item->hlist);
4035c07a
HD
754 unlock_page(page);
755 put_page(page);
08beca44 756
98666f8a 757 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
758 ksm_pages_sharing--;
759 else
7b6ba2c7 760 ksm_pages_shared--;
731b565d
AA
761 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
762 stable_node->rmap_hlist_len--;
31dbd01f 763
9e60109f 764 put_anon_vma(rmap_item->anon_vma);
93d17715 765 rmap_item->address &= PAGE_MASK;
31dbd01f 766
7b6ba2c7 767 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
768 unsigned char age;
769 /*
9ba69294 770 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 771 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
772 * But be careful when an mm is exiting: do the rb_erase
773 * if this rmap_item was inserted by this scan, rather
774 * than left over from before.
31dbd01f
IE
775 */
776 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 777 BUG_ON(age > 1);
31dbd01f 778 if (!age)
90bd6fd3 779 rb_erase(&rmap_item->node,
ef53d16c 780 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 781 ksm_pages_unshared--;
93d17715 782 rmap_item->address &= PAGE_MASK;
31dbd01f 783 }
4035c07a 784out:
31dbd01f
IE
785 cond_resched(); /* we're called from many long loops */
786}
787
31dbd01f 788static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 789 struct rmap_item **rmap_list)
31dbd01f 790{
6514d511
HD
791 while (*rmap_list) {
792 struct rmap_item *rmap_item = *rmap_list;
793 *rmap_list = rmap_item->rmap_list;
31dbd01f 794 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
795 free_rmap_item(rmap_item);
796 }
797}
798
799/*
e850dcf5 800 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
801 * than check every pte of a given vma, the locking doesn't quite work for
802 * that - an rmap_item is assigned to the stable tree after inserting ksm
803 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
804 * rmap_items from parent to child at fork time (so as not to waste time
805 * if exit comes before the next scan reaches it).
81464e30
HD
806 *
807 * Similarly, although we'd like to remove rmap_items (so updating counts
808 * and freeing memory) when unmerging an area, it's easier to leave that
809 * to the next pass of ksmd - consider, for example, how ksmd might be
810 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 811 */
d952b791
HD
812static int unmerge_ksm_pages(struct vm_area_struct *vma,
813 unsigned long start, unsigned long end)
31dbd01f
IE
814{
815 unsigned long addr;
d952b791 816 int err = 0;
31dbd01f 817
d952b791 818 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
819 if (ksm_test_exit(vma->vm_mm))
820 break;
d952b791
HD
821 if (signal_pending(current))
822 err = -ERESTARTSYS;
823 else
824 err = break_ksm(vma, addr);
825 }
826 return err;
31dbd01f
IE
827}
828
2ffd8679
HD
829#ifdef CONFIG_SYSFS
830/*
831 * Only called through the sysfs control interface:
832 */
cbf86cfe
HD
833static int remove_stable_node(struct stable_node *stable_node)
834{
835 struct page *page;
836 int err;
837
838 page = get_ksm_page(stable_node, true);
839 if (!page) {
840 /*
841 * get_ksm_page did remove_node_from_stable_tree itself.
842 */
843 return 0;
844 }
845
8fdb3dbf
HD
846 if (WARN_ON_ONCE(page_mapped(page))) {
847 /*
848 * This should not happen: but if it does, just refuse to let
849 * merge_across_nodes be switched - there is no need to panic.
850 */
cbf86cfe 851 err = -EBUSY;
8fdb3dbf 852 } else {
cbf86cfe 853 /*
8fdb3dbf
HD
854 * The stable node did not yet appear stale to get_ksm_page(),
855 * since that allows for an unmapped ksm page to be recognized
856 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
857 * This page might be in a pagevec waiting to be freed,
858 * or it might be PageSwapCache (perhaps under writeback),
859 * or it might have been removed from swapcache a moment ago.
860 */
861 set_page_stable_node(page, NULL);
862 remove_node_from_stable_tree(stable_node);
863 err = 0;
864 }
865
866 unlock_page(page);
867 put_page(page);
868 return err;
869}
870
731b565d
AA
871static int remove_stable_node_chain(struct stable_node *stable_node,
872 struct rb_root *root)
873{
874 struct stable_node *dup;
875 struct hlist_node *hlist_safe;
876
877 if (!is_stable_node_chain(stable_node)) {
878 VM_BUG_ON(is_stable_node_dup(stable_node));
879 if (remove_stable_node(stable_node))
880 return true;
881 else
882 return false;
883 }
884
885 hlist_for_each_entry_safe(dup, hlist_safe,
886 &stable_node->hlist, hlist_dup) {
887 VM_BUG_ON(!is_stable_node_dup(dup));
888 if (remove_stable_node(dup))
889 return true;
890 }
891 BUG_ON(!hlist_empty(&stable_node->hlist));
892 free_stable_node_chain(stable_node, root);
893 return false;
894}
895
cbf86cfe
HD
896static int remove_all_stable_nodes(void)
897{
898 struct stable_node *stable_node;
4146d2d6 899 struct list_head *this, *next;
cbf86cfe
HD
900 int nid;
901 int err = 0;
902
ef53d16c 903 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
904 while (root_stable_tree[nid].rb_node) {
905 stable_node = rb_entry(root_stable_tree[nid].rb_node,
906 struct stable_node, node);
731b565d
AA
907 if (remove_stable_node_chain(stable_node,
908 root_stable_tree + nid)) {
cbf86cfe
HD
909 err = -EBUSY;
910 break; /* proceed to next nid */
911 }
912 cond_resched();
913 }
914 }
4146d2d6
HD
915 list_for_each_safe(this, next, &migrate_nodes) {
916 stable_node = list_entry(this, struct stable_node, list);
917 if (remove_stable_node(stable_node))
918 err = -EBUSY;
919 cond_resched();
920 }
cbf86cfe
HD
921 return err;
922}
923
d952b791 924static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
925{
926 struct mm_slot *mm_slot;
927 struct mm_struct *mm;
928 struct vm_area_struct *vma;
d952b791
HD
929 int err = 0;
930
931 spin_lock(&ksm_mmlist_lock);
9ba69294 932 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
933 struct mm_slot, mm_list);
934 spin_unlock(&ksm_mmlist_lock);
31dbd01f 935
9ba69294
HD
936 for (mm_slot = ksm_scan.mm_slot;
937 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
938 mm = mm_slot->mm;
939 down_read(&mm->mmap_sem);
940 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
941 if (ksm_test_exit(mm))
942 break;
31dbd01f
IE
943 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
944 continue;
d952b791
HD
945 err = unmerge_ksm_pages(vma,
946 vma->vm_start, vma->vm_end);
9ba69294
HD
947 if (err)
948 goto error;
31dbd01f 949 }
9ba69294 950
6514d511 951 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
d952b791
HD
952
953 spin_lock(&ksm_mmlist_lock);
9ba69294 954 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 955 struct mm_slot, mm_list);
9ba69294 956 if (ksm_test_exit(mm)) {
4ca3a69b 957 hash_del(&mm_slot->link);
9ba69294
HD
958 list_del(&mm_slot->mm_list);
959 spin_unlock(&ksm_mmlist_lock);
960
961 free_mm_slot(mm_slot);
962 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
963 up_read(&mm->mmap_sem);
964 mmdrop(mm);
965 } else {
966 spin_unlock(&ksm_mmlist_lock);
967 up_read(&mm->mmap_sem);
968 }
31dbd01f
IE
969 }
970
cbf86cfe
HD
971 /* Clean up stable nodes, but don't worry if some are still busy */
972 remove_all_stable_nodes();
d952b791 973 ksm_scan.seqnr = 0;
9ba69294
HD
974 return 0;
975
976error:
977 up_read(&mm->mmap_sem);
31dbd01f 978 spin_lock(&ksm_mmlist_lock);
d952b791 979 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 980 spin_unlock(&ksm_mmlist_lock);
d952b791 981 return err;
31dbd01f 982}
2ffd8679 983#endif /* CONFIG_SYSFS */
31dbd01f 984
31dbd01f
IE
985static u32 calc_checksum(struct page *page)
986{
987 u32 checksum;
9b04c5fe 988 void *addr = kmap_atomic(page);
31dbd01f 989 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 990 kunmap_atomic(addr);
31dbd01f
IE
991 return checksum;
992}
993
994static int memcmp_pages(struct page *page1, struct page *page2)
995{
996 char *addr1, *addr2;
997 int ret;
998
9b04c5fe
CW
999 addr1 = kmap_atomic(page1);
1000 addr2 = kmap_atomic(page2);
31dbd01f 1001 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
1002 kunmap_atomic(addr2);
1003 kunmap_atomic(addr1);
31dbd01f
IE
1004 return ret;
1005}
1006
1007static inline int pages_identical(struct page *page1, struct page *page2)
1008{
1009 return !memcmp_pages(page1, page2);
1010}
1011
1012static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1013 pte_t *orig_pte)
1014{
1015 struct mm_struct *mm = vma->vm_mm;
1016 unsigned long addr;
1017 pte_t *ptep;
1018 spinlock_t *ptl;
1019 int swapped;
1020 int err = -EFAULT;
6bdb913f
HE
1021 unsigned long mmun_start; /* For mmu_notifiers */
1022 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f
IE
1023
1024 addr = page_address_in_vma(page, vma);
1025 if (addr == -EFAULT)
1026 goto out;
1027
29ad768c 1028 BUG_ON(PageTransCompound(page));
6bdb913f
HE
1029
1030 mmun_start = addr;
1031 mmun_end = addr + PAGE_SIZE;
1032 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1033
31dbd01f
IE
1034 ptep = page_check_address(page, mm, addr, &ptl, 0);
1035 if (!ptep)
6bdb913f 1036 goto out_mn;
31dbd01f 1037
4e31635c 1038 if (pte_write(*ptep) || pte_dirty(*ptep)) {
31dbd01f
IE
1039 pte_t entry;
1040
1041 swapped = PageSwapCache(page);
1042 flush_cache_page(vma, addr, page_to_pfn(page));
1043 /*
25985edc 1044 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
1045 * take any lock, therefore the check that we are going to make
1046 * with the pagecount against the mapcount is racey and
1047 * O_DIRECT can happen right after the check.
1048 * So we clear the pte and flush the tlb before the check
1049 * this assure us that no O_DIRECT can happen after the check
1050 * or in the middle of the check.
1051 */
34ee645e 1052 entry = ptep_clear_flush_notify(vma, addr, ptep);
31dbd01f
IE
1053 /*
1054 * Check that no O_DIRECT or similar I/O is in progress on the
1055 * page
1056 */
31e855ea 1057 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
cb532375 1058 set_pte_at(mm, addr, ptep, entry);
31dbd01f
IE
1059 goto out_unlock;
1060 }
4e31635c
HD
1061 if (pte_dirty(entry))
1062 set_page_dirty(page);
1063 entry = pte_mkclean(pte_wrprotect(entry));
31dbd01f
IE
1064 set_pte_at_notify(mm, addr, ptep, entry);
1065 }
1066 *orig_pte = *ptep;
1067 err = 0;
1068
1069out_unlock:
1070 pte_unmap_unlock(ptep, ptl);
6bdb913f
HE
1071out_mn:
1072 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1073out:
1074 return err;
1075}
1076
1077/**
1078 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1079 * @vma: vma that holds the pte pointing to page
1080 * @page: the page we are replacing by kpage
1081 * @kpage: the ksm page we replace page by
31dbd01f
IE
1082 * @orig_pte: the original value of the pte
1083 *
1084 * Returns 0 on success, -EFAULT on failure.
1085 */
8dd3557a
HD
1086static int replace_page(struct vm_area_struct *vma, struct page *page,
1087 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1088{
1089 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
1090 pmd_t *pmd;
1091 pte_t *ptep;
1092 spinlock_t *ptl;
1093 unsigned long addr;
31dbd01f 1094 int err = -EFAULT;
6bdb913f
HE
1095 unsigned long mmun_start; /* For mmu_notifiers */
1096 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 1097
8dd3557a 1098 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1099 if (addr == -EFAULT)
1100 goto out;
1101
6219049a
BL
1102 pmd = mm_find_pmd(mm, addr);
1103 if (!pmd)
31dbd01f 1104 goto out;
31dbd01f 1105
6bdb913f
HE
1106 mmun_start = addr;
1107 mmun_end = addr + PAGE_SIZE;
1108 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1109
31dbd01f
IE
1110 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1111 if (!pte_same(*ptep, orig_pte)) {
1112 pte_unmap_unlock(ptep, ptl);
6bdb913f 1113 goto out_mn;
31dbd01f
IE
1114 }
1115
8dd3557a 1116 get_page(kpage);
5ad64688 1117 page_add_anon_rmap(kpage, vma, addr);
31dbd01f
IE
1118
1119 flush_cache_page(vma, addr, pte_pfn(*ptep));
34ee645e 1120 ptep_clear_flush_notify(vma, addr, ptep);
8dd3557a 1121 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
31dbd01f 1122
8dd3557a 1123 page_remove_rmap(page);
ae52a2ad
HD
1124 if (!page_mapped(page))
1125 try_to_free_swap(page);
8dd3557a 1126 put_page(page);
31dbd01f
IE
1127
1128 pte_unmap_unlock(ptep, ptl);
1129 err = 0;
6bdb913f
HE
1130out_mn:
1131 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1132out:
1133 return err;
1134}
1135
29ad768c
AA
1136static int page_trans_compound_anon_split(struct page *page)
1137{
1138 int ret = 0;
1139 struct page *transhuge_head = page_trans_compound_anon(page);
1140 if (transhuge_head) {
1141 /* Get the reference on the head to split it. */
1142 if (get_page_unless_zero(transhuge_head)) {
1143 /*
1144 * Recheck we got the reference while the head
1145 * was still anonymous.
1146 */
1147 if (PageAnon(transhuge_head))
1148 ret = split_huge_page(transhuge_head);
1149 else
1150 /*
1151 * Retry later if split_huge_page run
1152 * from under us.
1153 */
1154 ret = 1;
1155 put_page(transhuge_head);
1156 } else
1157 /* Retry later if split_huge_page run from under us. */
1158 ret = 1;
1159 }
1160 return ret;
1161}
1162
31dbd01f
IE
1163/*
1164 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1165 * @vma: the vma that holds the pte pointing to page
1166 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1167 * @kpage: the PageKsm page that we want to map instead of page,
1168 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1169 *
1170 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1171 */
1172static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1173 struct page *page, struct page *kpage)
31dbd01f
IE
1174{
1175 pte_t orig_pte = __pte(0);
1176 int err = -EFAULT;
1177
db114b83
HD
1178 if (page == kpage) /* ksm page forked */
1179 return 0;
1180
29ad768c
AA
1181 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1182 goto out;
1183 BUG_ON(PageTransCompound(page));
8dd3557a 1184 if (!PageAnon(page))
31dbd01f
IE
1185 goto out;
1186
31dbd01f
IE
1187 /*
1188 * We need the page lock to read a stable PageSwapCache in
1189 * write_protect_page(). We use trylock_page() instead of
1190 * lock_page() because we don't want to wait here - we
1191 * prefer to continue scanning and merging different pages,
1192 * then come back to this page when it is unlocked.
1193 */
8dd3557a 1194 if (!trylock_page(page))
31e855ea 1195 goto out;
31dbd01f
IE
1196 /*
1197 * If this anonymous page is mapped only here, its pte may need
1198 * to be write-protected. If it's mapped elsewhere, all of its
1199 * ptes are necessarily already write-protected. But in either
1200 * case, we need to lock and check page_count is not raised.
1201 */
80e14822
HD
1202 if (write_protect_page(vma, page, &orig_pte) == 0) {
1203 if (!kpage) {
1204 /*
1205 * While we hold page lock, upgrade page from
1206 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1207 * stable_tree_insert() will update stable_node.
1208 */
1209 set_page_stable_node(page, NULL);
1210 mark_page_accessed(page);
1211 err = 0;
1212 } else if (pages_identical(page, kpage))
1213 err = replace_page(vma, page, kpage, orig_pte);
1214 }
31dbd01f 1215
80e14822 1216 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1217 munlock_vma_page(page);
5ad64688
HD
1218 if (!PageMlocked(kpage)) {
1219 unlock_page(page);
5ad64688
HD
1220 lock_page(kpage);
1221 mlock_vma_page(kpage);
1222 page = kpage; /* for final unlock */
1223 }
1224 }
73848b46 1225
8dd3557a 1226 unlock_page(page);
31dbd01f
IE
1227out:
1228 return err;
1229}
1230
81464e30
HD
1231/*
1232 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1233 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1234 *
1235 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1236 */
8dd3557a
HD
1237static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1238 struct page *page, struct page *kpage)
81464e30 1239{
8dd3557a 1240 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1241 struct vm_area_struct *vma;
1242 int err = -EFAULT;
1243
8dd3557a 1244 down_read(&mm->mmap_sem);
85c6e8dd
AA
1245 vma = find_mergeable_vma(mm, rmap_item->address);
1246 if (!vma)
81464e30
HD
1247 goto out;
1248
8dd3557a 1249 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1250 if (err)
1251 goto out;
1252
bc56620b
HD
1253 /* Unstable nid is in union with stable anon_vma: remove first */
1254 remove_rmap_item_from_tree(rmap_item);
1255
db114b83 1256 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1257 rmap_item->anon_vma = vma->anon_vma;
1258 get_anon_vma(vma->anon_vma);
81464e30 1259out:
8dd3557a 1260 up_read(&mm->mmap_sem);
81464e30
HD
1261 return err;
1262}
1263
31dbd01f
IE
1264/*
1265 * try_to_merge_two_pages - take two identical pages and prepare them
1266 * to be merged into one page.
1267 *
8dd3557a
HD
1268 * This function returns the kpage if we successfully merged two identical
1269 * pages into one ksm page, NULL otherwise.
31dbd01f 1270 *
80e14822 1271 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1272 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1273 */
8dd3557a
HD
1274static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1275 struct page *page,
1276 struct rmap_item *tree_rmap_item,
1277 struct page *tree_page)
31dbd01f 1278{
80e14822 1279 int err;
31dbd01f 1280
80e14822 1281 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1282 if (!err) {
8dd3557a 1283 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1284 tree_page, page);
31dbd01f 1285 /*
81464e30
HD
1286 * If that fails, we have a ksm page with only one pte
1287 * pointing to it: so break it.
31dbd01f 1288 */
4035c07a 1289 if (err)
8dd3557a 1290 break_cow(rmap_item);
31dbd01f 1291 }
80e14822 1292 return err ? NULL : page;
31dbd01f
IE
1293}
1294
731b565d
AA
1295static __always_inline
1296bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1297{
1298 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1299 /*
1300 * Check that at least one mapping still exists, otherwise
1301 * there's no much point to merge and share with this
1302 * stable_node, as the underlying tree_page of the other
1303 * sharer is going to be freed soon.
1304 */
1305 return stable_node->rmap_hlist_len &&
1306 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1307}
1308
1309static __always_inline
1310bool is_page_sharing_candidate(struct stable_node *stable_node)
1311{
1312 return __is_page_sharing_candidate(stable_node, 0);
1313}
1314
052f849b
AA
1315struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1316 struct stable_node **_stable_node,
1317 struct rb_root *root,
1318 bool prune_stale_stable_nodes)
731b565d 1319{
24f72136 1320 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
731b565d 1321 struct hlist_node *hlist_safe;
052f849b 1322 struct page *_tree_page, *tree_page = NULL;
731b565d
AA
1323 int nr = 0;
1324 int found_rmap_hlist_len;
1325
1326 if (!prune_stale_stable_nodes ||
1327 time_before(jiffies, stable_node->chain_prune_time +
1328 msecs_to_jiffies(
1329 ksm_stable_node_chains_prune_millisecs)))
1330 prune_stale_stable_nodes = false;
1331 else
1332 stable_node->chain_prune_time = jiffies;
1333
1334 hlist_for_each_entry_safe(dup, hlist_safe,
1335 &stable_node->hlist, hlist_dup) {
1336 cond_resched();
1337 /*
1338 * We must walk all stable_node_dup to prune the stale
1339 * stable nodes during lookup.
1340 *
1341 * get_ksm_page can drop the nodes from the
1342 * stable_node->hlist if they point to freed pages
1343 * (that's why we do a _safe walk). The "dup"
1344 * stable_node parameter itself will be freed from
1345 * under us if it returns NULL.
1346 */
1347 _tree_page = get_ksm_page(dup, false);
1348 if (!_tree_page)
1349 continue;
1350 nr += 1;
1351 if (is_page_sharing_candidate(dup)) {
1352 if (!found ||
1353 dup->rmap_hlist_len > found_rmap_hlist_len) {
1354 if (found)
052f849b 1355 put_page(tree_page);
731b565d
AA
1356 found = dup;
1357 found_rmap_hlist_len = found->rmap_hlist_len;
052f849b 1358 tree_page = _tree_page;
731b565d 1359
052f849b 1360 /* skip put_page for found dup */
731b565d
AA
1361 if (!prune_stale_stable_nodes)
1362 break;
731b565d
AA
1363 continue;
1364 }
1365 }
1366 put_page(_tree_page);
1367 }
1368
1369 /*
1370 * nr is relevant only if prune_stale_stable_nodes is true,
1371 * otherwise we may break the loop at nr == 1 even if there
1372 * are multiple entries.
1373 */
1374 if (prune_stale_stable_nodes && found) {
1375 if (nr == 1) {
1376 /*
1377 * If there's not just one entry it would
1378 * corrupt memory, better BUG_ON. In KSM
1379 * context with no lock held it's not even
1380 * fatal.
1381 */
1382 BUG_ON(stable_node->hlist.first->next);
1383
1384 /*
1385 * There's just one entry and it is below the
1386 * deduplication limit so drop the chain.
1387 */
1388 rb_replace_node(&stable_node->node, &found->node,
1389 root);
1390 free_stable_node(stable_node);
1391 ksm_stable_node_chains--;
1392 ksm_stable_node_dups--;
24f72136 1393 /*
3fc3175e
AA
1394 * NOTE: the caller depends on the stable_node
1395 * to be equal to stable_node_dup if the chain
1396 * was collapsed.
24f72136 1397 */
3fc3175e
AA
1398 *_stable_node = found;
1399 /*
1400 * Just for robustneess as stable_node is
1401 * otherwise left as a stable pointer, the
1402 * compiler shall optimize it away at build
1403 * time.
1404 */
1405 stable_node = NULL;
731b565d
AA
1406 } else if (__is_page_sharing_candidate(found, 1)) {
1407 /*
1408 * Refile our candidate at the head
1409 * after the prune if our candidate
1410 * can accept one more future sharing
1411 * in addition to the one underway.
1412 */
1413 hlist_del(&found->hlist_dup);
1414 hlist_add_head(&found->hlist_dup,
1415 &stable_node->hlist);
1416 }
1417 }
1418
052f849b
AA
1419 *_stable_node_dup = found;
1420 return tree_page;
731b565d
AA
1421}
1422
1423static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1424 struct rb_root *root)
1425{
1426 if (!is_stable_node_chain(stable_node))
1427 return stable_node;
1428 if (hlist_empty(&stable_node->hlist)) {
1429 free_stable_node_chain(stable_node, root);
1430 return NULL;
1431 }
1432 return hlist_entry(stable_node->hlist.first,
1433 typeof(*stable_node), hlist_dup);
1434}
1435
052f849b
AA
1436/*
1437 * Like for get_ksm_page, this function can free the *_stable_node and
1438 * *_stable_node_dup if the returned tree_page is NULL.
1439 *
1440 * It can also free and overwrite *_stable_node with the found
1441 * stable_node_dup if the chain is collapsed (in which case
1442 * *_stable_node will be equal to *_stable_node_dup like if the chain
1443 * never existed). It's up to the caller to verify tree_page is not
1444 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1445 *
1446 * *_stable_node_dup is really a second output parameter of this
1447 * function and will be overwritten in all cases, the caller doesn't
1448 * need to initialize it.
1449 */
1450static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1451 struct stable_node **_stable_node,
1452 struct rb_root *root,
1453 bool prune_stale_stable_nodes)
731b565d 1454{
24f72136 1455 struct stable_node *stable_node = *_stable_node;
731b565d
AA
1456 if (!is_stable_node_chain(stable_node)) {
1457 if (is_page_sharing_candidate(stable_node)) {
052f849b
AA
1458 *_stable_node_dup = stable_node;
1459 return get_ksm_page(stable_node, false);
731b565d 1460 }
052f849b
AA
1461 /*
1462 * _stable_node_dup set to NULL means the stable_node
1463 * reached the ksm_max_page_sharing limit.
1464 */
1465 *_stable_node_dup = NULL;
731b565d
AA
1466 return NULL;
1467 }
052f849b 1468 return stable_node_dup(_stable_node_dup, _stable_node, root,
731b565d
AA
1469 prune_stale_stable_nodes);
1470}
1471
052f849b
AA
1472static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1473 struct stable_node **s_n,
1474 struct rb_root *root)
731b565d 1475{
052f849b 1476 return __stable_node_chain(s_n_d, s_n, root, true);
731b565d
AA
1477}
1478
052f849b
AA
1479static __always_inline struct page *chain(struct stable_node **s_n_d,
1480 struct stable_node *s_n,
1481 struct rb_root *root)
731b565d 1482{
052f849b
AA
1483 struct stable_node *old_stable_node = s_n;
1484 struct page *tree_page;
1485
1486 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1487 /* not pruning dups so s_n cannot have changed */
1488 VM_BUG_ON(s_n != old_stable_node);
1489 return tree_page;
731b565d
AA
1490}
1491
31dbd01f 1492/*
8dd3557a 1493 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1494 *
1495 * This function checks if there is a page inside the stable tree
1496 * with identical content to the page that we are scanning right now.
1497 *
7b6ba2c7 1498 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1499 * NULL otherwise.
1500 */
62b61f61 1501static struct page *stable_tree_search(struct page *page)
31dbd01f 1502{
90bd6fd3 1503 int nid;
ef53d16c 1504 struct rb_root *root;
4146d2d6
HD
1505 struct rb_node **new;
1506 struct rb_node *parent;
731b565d 1507 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1508 struct stable_node *page_node;
31dbd01f 1509
4146d2d6
HD
1510 page_node = page_stable_node(page);
1511 if (page_node && page_node->head != &migrate_nodes) {
1512 /* ksm page forked */
08beca44 1513 get_page(page);
62b61f61 1514 return page;
08beca44
HD
1515 }
1516
90bd6fd3 1517 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1518 root = root_stable_tree + nid;
4146d2d6 1519again:
ef53d16c 1520 new = &root->rb_node;
4146d2d6 1521 parent = NULL;
90bd6fd3 1522
4146d2d6 1523 while (*new) {
4035c07a 1524 struct page *tree_page;
31dbd01f
IE
1525 int ret;
1526
08beca44 1527 cond_resched();
4146d2d6 1528 stable_node = rb_entry(*new, struct stable_node, node);
731b565d 1529 stable_node_any = NULL;
052f849b 1530 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
24f72136
AA
1531 /*
1532 * NOTE: stable_node may have been freed by
1533 * chain_prune() if the returned stable_node_dup is
1534 * not NULL. stable_node_dup may have been inserted in
1535 * the rbtree instead as a regular stable_node (in
1536 * order to collapse the stable_node chain if a single
3fc3175e
AA
1537 * stable_node dup was found in it). In such case the
1538 * stable_node is overwritten by the calleee to point
1539 * to the stable_node_dup that was collapsed in the
1540 * stable rbtree and stable_node will be equal to
1541 * stable_node_dup like if the chain never existed.
24f72136 1542 */
731b565d
AA
1543 if (!stable_node_dup) {
1544 /*
1545 * Either all stable_node dups were full in
1546 * this stable_node chain, or this chain was
1547 * empty and should be rb_erased.
1548 */
1549 stable_node_any = stable_node_dup_any(stable_node,
1550 root);
1551 if (!stable_node_any) {
1552 /* rb_erase just run */
1553 goto again;
1554 }
1555 /*
1556 * Take any of the stable_node dups page of
1557 * this stable_node chain to let the tree walk
1558 * continue. All KSM pages belonging to the
1559 * stable_node dups in a stable_node chain
1560 * have the same content and they're
1561 * wrprotected at all times. Any will work
1562 * fine to continue the walk.
1563 */
1564 tree_page = get_ksm_page(stable_node_any, false);
1565 }
1566 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1567 if (!tree_page) {
1568 /*
1569 * If we walked over a stale stable_node,
1570 * get_ksm_page() will call rb_erase() and it
1571 * may rebalance the tree from under us. So
1572 * restart the search from scratch. Returning
1573 * NULL would be safe too, but we'd generate
1574 * false negative insertions just because some
1575 * stable_node was stale.
1576 */
1577 goto again;
1578 }
31dbd01f 1579
4035c07a 1580 ret = memcmp_pages(page, tree_page);
c8d6553b 1581 put_page(tree_page);
31dbd01f 1582
4146d2d6 1583 parent = *new;
c8d6553b 1584 if (ret < 0)
4146d2d6 1585 new = &parent->rb_left;
c8d6553b 1586 else if (ret > 0)
4146d2d6 1587 new = &parent->rb_right;
c8d6553b 1588 else {
731b565d
AA
1589 if (page_node) {
1590 VM_BUG_ON(page_node->head != &migrate_nodes);
1591 /*
1592 * Test if the migrated page should be merged
1593 * into a stable node dup. If the mapcount is
1594 * 1 we can migrate it with another KSM page
1595 * without adding it to the chain.
1596 */
1597 if (page_mapcount(page) > 1)
1598 goto chain_append;
1599 }
1600
1601 if (!stable_node_dup) {
1602 /*
1603 * If the stable_node is a chain and
1604 * we got a payload match in memcmp
1605 * but we cannot merge the scanned
1606 * page in any of the existing
1607 * stable_node dups because they're
1608 * all full, we need to wait the
1609 * scanned page to find itself a match
1610 * in the unstable tree to create a
1611 * brand new KSM page to add later to
1612 * the dups of this stable_node.
1613 */
1614 return NULL;
1615 }
1616
c8d6553b
HD
1617 /*
1618 * Lock and unlock the stable_node's page (which
1619 * might already have been migrated) so that page
1620 * migration is sure to notice its raised count.
1621 * It would be more elegant to return stable_node
1622 * than kpage, but that involves more changes.
1623 */
731b565d
AA
1624 tree_page = get_ksm_page(stable_node_dup, true);
1625 if (unlikely(!tree_page))
1626 /*
1627 * The tree may have been rebalanced,
1628 * so re-evaluate parent and new.
1629 */
4146d2d6 1630 goto again;
731b565d
AA
1631 unlock_page(tree_page);
1632
1633 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1634 NUMA(stable_node_dup->nid)) {
1635 put_page(tree_page);
1636 goto replace;
1637 }
1638 return tree_page;
c8d6553b 1639 }
31dbd01f
IE
1640 }
1641
4146d2d6
HD
1642 if (!page_node)
1643 return NULL;
1644
1645 list_del(&page_node->list);
1646 DO_NUMA(page_node->nid = nid);
1647 rb_link_node(&page_node->node, parent, new);
ef53d16c 1648 rb_insert_color(&page_node->node, root);
731b565d
AA
1649out:
1650 if (is_page_sharing_candidate(page_node)) {
1651 get_page(page);
1652 return page;
1653 } else
1654 return NULL;
4146d2d6
HD
1655
1656replace:
24f72136
AA
1657 /*
1658 * If stable_node was a chain and chain_prune collapsed it,
3fc3175e
AA
1659 * stable_node has been updated to be the new regular
1660 * stable_node. A collapse of the chain is indistinguishable
1661 * from the case there was no chain in the stable
1662 * rbtree. Otherwise stable_node is the chain and
1663 * stable_node_dup is the dup to replace.
24f72136 1664 */
3fc3175e 1665 if (stable_node_dup == stable_node) {
24f72136
AA
1666 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1667 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
731b565d
AA
1668 /* there is no chain */
1669 if (page_node) {
1670 VM_BUG_ON(page_node->head != &migrate_nodes);
1671 list_del(&page_node->list);
1672 DO_NUMA(page_node->nid = nid);
24f72136
AA
1673 rb_replace_node(&stable_node_dup->node,
1674 &page_node->node,
731b565d
AA
1675 root);
1676 if (is_page_sharing_candidate(page_node))
1677 get_page(page);
1678 else
1679 page = NULL;
1680 } else {
24f72136 1681 rb_erase(&stable_node_dup->node, root);
731b565d
AA
1682 page = NULL;
1683 }
4146d2d6 1684 } else {
731b565d
AA
1685 VM_BUG_ON(!is_stable_node_chain(stable_node));
1686 __stable_node_dup_del(stable_node_dup);
1687 if (page_node) {
1688 VM_BUG_ON(page_node->head != &migrate_nodes);
1689 list_del(&page_node->list);
1690 DO_NUMA(page_node->nid = nid);
1691 stable_node_chain_add_dup(page_node, stable_node);
1692 if (is_page_sharing_candidate(page_node))
1693 get_page(page);
1694 else
1695 page = NULL;
1696 } else {
1697 page = NULL;
1698 }
4146d2d6 1699 }
731b565d
AA
1700 stable_node_dup->head = &migrate_nodes;
1701 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1702 return page;
731b565d
AA
1703
1704chain_append:
1705 /* stable_node_dup could be null if it reached the limit */
1706 if (!stable_node_dup)
1707 stable_node_dup = stable_node_any;
24f72136
AA
1708 /*
1709 * If stable_node was a chain and chain_prune collapsed it,
3fc3175e
AA
1710 * stable_node has been updated to be the new regular
1711 * stable_node. A collapse of the chain is indistinguishable
1712 * from the case there was no chain in the stable
1713 * rbtree. Otherwise stable_node is the chain and
1714 * stable_node_dup is the dup to replace.
24f72136 1715 */
3fc3175e 1716 if (stable_node_dup == stable_node) {
24f72136
AA
1717 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1718 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
731b565d
AA
1719 /* chain is missing so create it */
1720 stable_node = alloc_stable_node_chain(stable_node_dup,
1721 root);
1722 if (!stable_node)
1723 return NULL;
1724 }
1725 /*
1726 * Add this stable_node dup that was
1727 * migrated to the stable_node chain
1728 * of the current nid for this page
1729 * content.
1730 */
24f72136
AA
1731 VM_BUG_ON(!is_stable_node_chain(stable_node));
1732 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
731b565d
AA
1733 VM_BUG_ON(page_node->head != &migrate_nodes);
1734 list_del(&page_node->list);
1735 DO_NUMA(page_node->nid = nid);
1736 stable_node_chain_add_dup(page_node, stable_node);
1737 goto out;
31dbd01f
IE
1738}
1739
1740/*
e850dcf5 1741 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1742 * into the stable tree.
1743 *
7b6ba2c7
HD
1744 * This function returns the stable tree node just allocated on success,
1745 * NULL otherwise.
31dbd01f 1746 */
7b6ba2c7 1747static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1748{
90bd6fd3
PH
1749 int nid;
1750 unsigned long kpfn;
ef53d16c 1751 struct rb_root *root;
90bd6fd3 1752 struct rb_node **new;
f2e5ff85 1753 struct rb_node *parent;
731b565d
AA
1754 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1755 bool need_chain = false;
31dbd01f 1756
90bd6fd3
PH
1757 kpfn = page_to_pfn(kpage);
1758 nid = get_kpfn_nid(kpfn);
ef53d16c 1759 root = root_stable_tree + nid;
f2e5ff85
AA
1760again:
1761 parent = NULL;
ef53d16c 1762 new = &root->rb_node;
90bd6fd3 1763
31dbd01f 1764 while (*new) {
4035c07a 1765 struct page *tree_page;
31dbd01f
IE
1766 int ret;
1767
08beca44 1768 cond_resched();
7b6ba2c7 1769 stable_node = rb_entry(*new, struct stable_node, node);
731b565d 1770 stable_node_any = NULL;
052f849b 1771 tree_page = chain(&stable_node_dup, stable_node, root);
731b565d
AA
1772 if (!stable_node_dup) {
1773 /*
1774 * Either all stable_node dups were full in
1775 * this stable_node chain, or this chain was
1776 * empty and should be rb_erased.
1777 */
1778 stable_node_any = stable_node_dup_any(stable_node,
1779 root);
1780 if (!stable_node_any) {
1781 /* rb_erase just run */
1782 goto again;
1783 }
1784 /*
1785 * Take any of the stable_node dups page of
1786 * this stable_node chain to let the tree walk
1787 * continue. All KSM pages belonging to the
1788 * stable_node dups in a stable_node chain
1789 * have the same content and they're
1790 * wrprotected at all times. Any will work
1791 * fine to continue the walk.
1792 */
1793 tree_page = get_ksm_page(stable_node_any, false);
1794 }
1795 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1796 if (!tree_page) {
1797 /*
1798 * If we walked over a stale stable_node,
1799 * get_ksm_page() will call rb_erase() and it
1800 * may rebalance the tree from under us. So
1801 * restart the search from scratch. Returning
1802 * NULL would be safe too, but we'd generate
1803 * false negative insertions just because some
1804 * stable_node was stale.
1805 */
1806 goto again;
1807 }
31dbd01f 1808
4035c07a
HD
1809 ret = memcmp_pages(kpage, tree_page);
1810 put_page(tree_page);
31dbd01f
IE
1811
1812 parent = *new;
1813 if (ret < 0)
1814 new = &parent->rb_left;
1815 else if (ret > 0)
1816 new = &parent->rb_right;
1817 else {
731b565d
AA
1818 need_chain = true;
1819 break;
31dbd01f
IE
1820 }
1821 }
1822
731b565d
AA
1823 stable_node_dup = alloc_stable_node();
1824 if (!stable_node_dup)
7b6ba2c7 1825 return NULL;
31dbd01f 1826
731b565d
AA
1827 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1828 stable_node_dup->kpfn = kpfn;
1829 set_page_stable_node(kpage, stable_node_dup);
1830 stable_node_dup->rmap_hlist_len = 0;
1831 DO_NUMA(stable_node_dup->nid = nid);
1832 if (!need_chain) {
1833 rb_link_node(&stable_node_dup->node, parent, new);
1834 rb_insert_color(&stable_node_dup->node, root);
1835 } else {
1836 if (!is_stable_node_chain(stable_node)) {
1837 struct stable_node *orig = stable_node;
1838 /* chain is missing so create it */
1839 stable_node = alloc_stable_node_chain(orig, root);
1840 if (!stable_node) {
1841 free_stable_node(stable_node_dup);
1842 return NULL;
1843 }
1844 }
1845 stable_node_chain_add_dup(stable_node_dup, stable_node);
1846 }
08beca44 1847
731b565d 1848 return stable_node_dup;
31dbd01f
IE
1849}
1850
1851/*
8dd3557a
HD
1852 * unstable_tree_search_insert - search for identical page,
1853 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1854 *
1855 * This function searches for a page in the unstable tree identical to the
1856 * page currently being scanned; and if no identical page is found in the
1857 * tree, we insert rmap_item as a new object into the unstable tree.
1858 *
1859 * This function returns pointer to rmap_item found to be identical
1860 * to the currently scanned page, NULL otherwise.
1861 *
1862 * This function does both searching and inserting, because they share
1863 * the same walking algorithm in an rbtree.
1864 */
8dd3557a
HD
1865static
1866struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1867 struct page *page,
1868 struct page **tree_pagep)
31dbd01f 1869{
90bd6fd3
PH
1870 struct rb_node **new;
1871 struct rb_root *root;
31dbd01f 1872 struct rb_node *parent = NULL;
90bd6fd3
PH
1873 int nid;
1874
1875 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1876 root = root_unstable_tree + nid;
90bd6fd3 1877 new = &root->rb_node;
31dbd01f
IE
1878
1879 while (*new) {
1880 struct rmap_item *tree_rmap_item;
8dd3557a 1881 struct page *tree_page;
31dbd01f
IE
1882 int ret;
1883
d178f27f 1884 cond_resched();
31dbd01f 1885 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1886 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1887 if (!tree_page)
31dbd01f
IE
1888 return NULL;
1889
1890 /*
8dd3557a 1891 * Don't substitute a ksm page for a forked page.
31dbd01f 1892 */
8dd3557a
HD
1893 if (page == tree_page) {
1894 put_page(tree_page);
31dbd01f
IE
1895 return NULL;
1896 }
1897
8dd3557a 1898 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1899
1900 parent = *new;
1901 if (ret < 0) {
8dd3557a 1902 put_page(tree_page);
31dbd01f
IE
1903 new = &parent->rb_left;
1904 } else if (ret > 0) {
8dd3557a 1905 put_page(tree_page);
31dbd01f 1906 new = &parent->rb_right;
b599cbdf
HD
1907 } else if (!ksm_merge_across_nodes &&
1908 page_to_nid(tree_page) != nid) {
1909 /*
1910 * If tree_page has been migrated to another NUMA node,
1911 * it will be flushed out and put in the right unstable
1912 * tree next time: only merge with it when across_nodes.
1913 */
1914 put_page(tree_page);
1915 return NULL;
31dbd01f 1916 } else {
8dd3557a 1917 *tree_pagep = tree_page;
31dbd01f
IE
1918 return tree_rmap_item;
1919 }
1920 }
1921
7b6ba2c7 1922 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1923 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1924 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1925 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1926 rb_insert_color(&rmap_item->node, root);
31dbd01f 1927
473b0ce4 1928 ksm_pages_unshared++;
31dbd01f
IE
1929 return NULL;
1930}
1931
1932/*
1933 * stable_tree_append - add another rmap_item to the linked list of
1934 * rmap_items hanging off a given node of the stable tree, all sharing
1935 * the same ksm page.
1936 */
1937static void stable_tree_append(struct rmap_item *rmap_item,
731b565d
AA
1938 struct stable_node *stable_node,
1939 bool max_page_sharing_bypass)
31dbd01f 1940{
731b565d
AA
1941 /*
1942 * rmap won't find this mapping if we don't insert the
1943 * rmap_item in the right stable_node
1944 * duplicate. page_migration could break later if rmap breaks,
1945 * so we can as well crash here. We really need to check for
1946 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1947 * for other negative values as an undeflow if detected here
1948 * for the first time (and not when decreasing rmap_hlist_len)
1949 * would be sign of memory corruption in the stable_node.
1950 */
1951 BUG_ON(stable_node->rmap_hlist_len < 0);
1952
1953 stable_node->rmap_hlist_len++;
1954 if (!max_page_sharing_bypass)
1955 /* possibly non fatal but unexpected overflow, only warn */
1956 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1957 ksm_max_page_sharing);
1958
7b6ba2c7 1959 rmap_item->head = stable_node;
31dbd01f 1960 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1961 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1962
7b6ba2c7
HD
1963 if (rmap_item->hlist.next)
1964 ksm_pages_sharing++;
1965 else
1966 ksm_pages_shared++;
31dbd01f
IE
1967}
1968
1969/*
81464e30
HD
1970 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1971 * if not, compare checksum to previous and if it's the same, see if page can
1972 * be inserted into the unstable tree, or merged with a page already there and
1973 * both transferred to the stable tree.
31dbd01f
IE
1974 *
1975 * @page: the page that we are searching identical page to.
1976 * @rmap_item: the reverse mapping into the virtual address of this page
1977 */
1978static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1979{
31dbd01f 1980 struct rmap_item *tree_rmap_item;
8dd3557a 1981 struct page *tree_page = NULL;
7b6ba2c7 1982 struct stable_node *stable_node;
8dd3557a 1983 struct page *kpage;
31dbd01f
IE
1984 unsigned int checksum;
1985 int err;
731b565d 1986 bool max_page_sharing_bypass = false;
31dbd01f 1987
4146d2d6
HD
1988 stable_node = page_stable_node(page);
1989 if (stable_node) {
1990 if (stable_node->head != &migrate_nodes &&
731b565d
AA
1991 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
1992 NUMA(stable_node->nid)) {
1993 stable_node_dup_del(stable_node);
4146d2d6
HD
1994 stable_node->head = &migrate_nodes;
1995 list_add(&stable_node->list, stable_node->head);
1996 }
1997 if (stable_node->head != &migrate_nodes &&
1998 rmap_item->head == stable_node)
1999 return;
731b565d
AA
2000 /*
2001 * If it's a KSM fork, allow it to go over the sharing limit
2002 * without warnings.
2003 */
2004 if (!is_page_sharing_candidate(stable_node))
2005 max_page_sharing_bypass = true;
4146d2d6 2006 }
31dbd01f
IE
2007
2008 /* We first start with searching the page inside the stable tree */
62b61f61 2009 kpage = stable_tree_search(page);
4146d2d6
HD
2010 if (kpage == page && rmap_item->head == stable_node) {
2011 put_page(kpage);
2012 return;
2013 }
2014
2015 remove_rmap_item_from_tree(rmap_item);
2016
62b61f61 2017 if (kpage) {
08beca44 2018 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2019 if (!err) {
2020 /*
2021 * The page was successfully merged:
2022 * add its rmap_item to the stable tree.
2023 */
5ad64688 2024 lock_page(kpage);
731b565d
AA
2025 stable_tree_append(rmap_item, page_stable_node(kpage),
2026 max_page_sharing_bypass);
5ad64688 2027 unlock_page(kpage);
31dbd01f 2028 }
8dd3557a 2029 put_page(kpage);
31dbd01f
IE
2030 return;
2031 }
2032
2033 /*
4035c07a
HD
2034 * If the hash value of the page has changed from the last time
2035 * we calculated it, this page is changing frequently: therefore we
2036 * don't want to insert it in the unstable tree, and we don't want
2037 * to waste our time searching for something identical to it there.
31dbd01f
IE
2038 */
2039 checksum = calc_checksum(page);
2040 if (rmap_item->oldchecksum != checksum) {
2041 rmap_item->oldchecksum = checksum;
2042 return;
2043 }
2044
8dd3557a
HD
2045 tree_rmap_item =
2046 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2047 if (tree_rmap_item) {
8dd3557a
HD
2048 kpage = try_to_merge_two_pages(rmap_item, page,
2049 tree_rmap_item, tree_page);
2050 put_page(tree_page);
8dd3557a 2051 if (kpage) {
bc56620b
HD
2052 /*
2053 * The pages were successfully merged: insert new
2054 * node in the stable tree and add both rmap_items.
2055 */
5ad64688 2056 lock_page(kpage);
7b6ba2c7
HD
2057 stable_node = stable_tree_insert(kpage);
2058 if (stable_node) {
731b565d
AA
2059 stable_tree_append(tree_rmap_item, stable_node,
2060 false);
2061 stable_tree_append(rmap_item, stable_node,
2062 false);
7b6ba2c7 2063 }
5ad64688 2064 unlock_page(kpage);
7b6ba2c7 2065
31dbd01f
IE
2066 /*
2067 * If we fail to insert the page into the stable tree,
2068 * we will have 2 virtual addresses that are pointing
2069 * to a ksm page left outside the stable tree,
2070 * in which case we need to break_cow on both.
2071 */
7b6ba2c7 2072 if (!stable_node) {
8dd3557a
HD
2073 break_cow(tree_rmap_item);
2074 break_cow(rmap_item);
31dbd01f
IE
2075 }
2076 }
31dbd01f
IE
2077 }
2078}
2079
2080static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2081 struct rmap_item **rmap_list,
31dbd01f
IE
2082 unsigned long addr)
2083{
2084 struct rmap_item *rmap_item;
2085
6514d511
HD
2086 while (*rmap_list) {
2087 rmap_item = *rmap_list;
93d17715 2088 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2089 return rmap_item;
31dbd01f
IE
2090 if (rmap_item->address > addr)
2091 break;
6514d511 2092 *rmap_list = rmap_item->rmap_list;
31dbd01f 2093 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2094 free_rmap_item(rmap_item);
2095 }
2096
2097 rmap_item = alloc_rmap_item();
2098 if (rmap_item) {
2099 /* It has already been zeroed */
2100 rmap_item->mm = mm_slot->mm;
2101 rmap_item->address = addr;
6514d511
HD
2102 rmap_item->rmap_list = *rmap_list;
2103 *rmap_list = rmap_item;
31dbd01f
IE
2104 }
2105 return rmap_item;
2106}
2107
2108static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2109{
2110 struct mm_struct *mm;
2111 struct mm_slot *slot;
2112 struct vm_area_struct *vma;
2113 struct rmap_item *rmap_item;
90bd6fd3 2114 int nid;
31dbd01f
IE
2115
2116 if (list_empty(&ksm_mm_head.mm_list))
2117 return NULL;
2118
2119 slot = ksm_scan.mm_slot;
2120 if (slot == &ksm_mm_head) {
2919bfd0
HD
2121 /*
2122 * A number of pages can hang around indefinitely on per-cpu
2123 * pagevecs, raised page count preventing write_protect_page
2124 * from merging them. Though it doesn't really matter much,
2125 * it is puzzling to see some stuck in pages_volatile until
2126 * other activity jostles them out, and they also prevented
2127 * LTP's KSM test from succeeding deterministically; so drain
2128 * them here (here rather than on entry to ksm_do_scan(),
2129 * so we don't IPI too often when pages_to_scan is set low).
2130 */
2131 lru_add_drain_all();
2132
4146d2d6
HD
2133 /*
2134 * Whereas stale stable_nodes on the stable_tree itself
2135 * get pruned in the regular course of stable_tree_search(),
2136 * those moved out to the migrate_nodes list can accumulate:
2137 * so prune them once before each full scan.
2138 */
2139 if (!ksm_merge_across_nodes) {
2140 struct stable_node *stable_node;
2141 struct list_head *this, *next;
2142 struct page *page;
2143
2144 list_for_each_safe(this, next, &migrate_nodes) {
2145 stable_node = list_entry(this,
2146 struct stable_node, list);
2147 page = get_ksm_page(stable_node, false);
2148 if (page)
2149 put_page(page);
2150 cond_resched();
2151 }
2152 }
2153
ef53d16c 2154 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2155 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2156
2157 spin_lock(&ksm_mmlist_lock);
2158 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2159 ksm_scan.mm_slot = slot;
2160 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2161 /*
2162 * Although we tested list_empty() above, a racing __ksm_exit
2163 * of the last mm on the list may have removed it since then.
2164 */
2165 if (slot == &ksm_mm_head)
2166 return NULL;
31dbd01f
IE
2167next_mm:
2168 ksm_scan.address = 0;
6514d511 2169 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2170 }
2171
2172 mm = slot->mm;
2173 down_read(&mm->mmap_sem);
9ba69294
HD
2174 if (ksm_test_exit(mm))
2175 vma = NULL;
2176 else
2177 vma = find_vma(mm, ksm_scan.address);
2178
2179 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2180 if (!(vma->vm_flags & VM_MERGEABLE))
2181 continue;
2182 if (ksm_scan.address < vma->vm_start)
2183 ksm_scan.address = vma->vm_start;
2184 if (!vma->anon_vma)
2185 ksm_scan.address = vma->vm_end;
2186
2187 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2188 if (ksm_test_exit(mm))
2189 break;
31dbd01f 2190 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
2191 if (IS_ERR_OR_NULL(*page)) {
2192 ksm_scan.address += PAGE_SIZE;
2193 cond_resched();
2194 continue;
2195 }
29ad768c
AA
2196 if (PageAnon(*page) ||
2197 page_trans_compound_anon(*page)) {
31dbd01f
IE
2198 flush_anon_page(vma, *page, ksm_scan.address);
2199 flush_dcache_page(*page);
2200 rmap_item = get_next_rmap_item(slot,
6514d511 2201 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2202 if (rmap_item) {
6514d511
HD
2203 ksm_scan.rmap_list =
2204 &rmap_item->rmap_list;
31dbd01f
IE
2205 ksm_scan.address += PAGE_SIZE;
2206 } else
2207 put_page(*page);
2208 up_read(&mm->mmap_sem);
2209 return rmap_item;
2210 }
21ae5b01 2211 put_page(*page);
31dbd01f
IE
2212 ksm_scan.address += PAGE_SIZE;
2213 cond_resched();
2214 }
2215 }
2216
9ba69294
HD
2217 if (ksm_test_exit(mm)) {
2218 ksm_scan.address = 0;
6514d511 2219 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2220 }
31dbd01f
IE
2221 /*
2222 * Nuke all the rmap_items that are above this current rmap:
2223 * because there were no VM_MERGEABLE vmas with such addresses.
2224 */
6514d511 2225 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
2226
2227 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2228 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2229 struct mm_slot, mm_list);
2230 if (ksm_scan.address == 0) {
2231 /*
2232 * We've completed a full scan of all vmas, holding mmap_sem
2233 * throughout, and found no VM_MERGEABLE: so do the same as
2234 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2235 * This applies either when cleaning up after __ksm_exit
2236 * (but beware: we can reach here even before __ksm_exit),
2237 * or when all VM_MERGEABLE areas have been unmapped (and
2238 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 2239 */
4ca3a69b 2240 hash_del(&slot->link);
cd551f97 2241 list_del(&slot->mm_list);
9ba69294
HD
2242 spin_unlock(&ksm_mmlist_lock);
2243
cd551f97
HD
2244 free_mm_slot(slot);
2245 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
2246 up_read(&mm->mmap_sem);
2247 mmdrop(mm);
2248 } else {
2249 spin_unlock(&ksm_mmlist_lock);
2250 up_read(&mm->mmap_sem);
cd551f97 2251 }
31dbd01f
IE
2252
2253 /* Repeat until we've completed scanning the whole list */
cd551f97 2254 slot = ksm_scan.mm_slot;
31dbd01f
IE
2255 if (slot != &ksm_mm_head)
2256 goto next_mm;
2257
31dbd01f
IE
2258 ksm_scan.seqnr++;
2259 return NULL;
2260}
2261
2262/**
2263 * ksm_do_scan - the ksm scanner main worker function.
2264 * @scan_npages - number of pages we want to scan before we return.
2265 */
2266static void ksm_do_scan(unsigned int scan_npages)
2267{
2268 struct rmap_item *rmap_item;
22eccdd7 2269 struct page *uninitialized_var(page);
31dbd01f 2270
878aee7d 2271 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2272 cond_resched();
2273 rmap_item = scan_get_next_rmap_item(&page);
2274 if (!rmap_item)
2275 return;
4146d2d6 2276 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2277 put_page(page);
2278 }
2279}
2280
6e158384
HD
2281static int ksmd_should_run(void)
2282{
2283 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2284}
2285
31dbd01f
IE
2286static int ksm_scan_thread(void *nothing)
2287{
878aee7d 2288 set_freezable();
339aa624 2289 set_user_nice(current, 5);
31dbd01f
IE
2290
2291 while (!kthread_should_stop()) {
6e158384 2292 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2293 wait_while_offlining();
6e158384 2294 if (ksmd_should_run())
31dbd01f 2295 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2296 mutex_unlock(&ksm_thread_mutex);
2297
878aee7d
AA
2298 try_to_freeze();
2299
6e158384 2300 if (ksmd_should_run()) {
31dbd01f
IE
2301 schedule_timeout_interruptible(
2302 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2303 } else {
878aee7d 2304 wait_event_freezable(ksm_thread_wait,
6e158384 2305 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2306 }
2307 }
2308 return 0;
2309}
2310
f8af4da3
HD
2311int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2312 unsigned long end, int advice, unsigned long *vm_flags)
2313{
2314 struct mm_struct *mm = vma->vm_mm;
d952b791 2315 int err;
f8af4da3
HD
2316
2317 switch (advice) {
2318 case MADV_MERGEABLE:
2319 /*
2320 * Be somewhat over-protective for now!
2321 */
2322 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2323 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2324 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2325 return 0; /* just ignore the advice */
2326
cc2383ec
KK
2327#ifdef VM_SAO
2328 if (*vm_flags & VM_SAO)
2329 return 0;
2330#endif
2331
d952b791
HD
2332 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2333 err = __ksm_enter(mm);
2334 if (err)
2335 return err;
2336 }
f8af4da3
HD
2337
2338 *vm_flags |= VM_MERGEABLE;
2339 break;
2340
2341 case MADV_UNMERGEABLE:
2342 if (!(*vm_flags & VM_MERGEABLE))
2343 return 0; /* just ignore the advice */
2344
d952b791
HD
2345 if (vma->anon_vma) {
2346 err = unmerge_ksm_pages(vma, start, end);
2347 if (err)
2348 return err;
2349 }
f8af4da3
HD
2350
2351 *vm_flags &= ~VM_MERGEABLE;
2352 break;
2353 }
2354
2355 return 0;
2356}
2357
2358int __ksm_enter(struct mm_struct *mm)
2359{
6e158384
HD
2360 struct mm_slot *mm_slot;
2361 int needs_wakeup;
2362
2363 mm_slot = alloc_mm_slot();
31dbd01f
IE
2364 if (!mm_slot)
2365 return -ENOMEM;
2366
6e158384
HD
2367 /* Check ksm_run too? Would need tighter locking */
2368 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2369
31dbd01f
IE
2370 spin_lock(&ksm_mmlist_lock);
2371 insert_to_mm_slots_hash(mm, mm_slot);
2372 /*
cbf86cfe
HD
2373 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2374 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2375 * down a little; when fork is followed by immediate exec, we don't
2376 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2377 *
2378 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2379 * scanning cursor, otherwise KSM pages in newly forked mms will be
2380 * missed: then we might as well insert at the end of the list.
31dbd01f 2381 */
cbf86cfe
HD
2382 if (ksm_run & KSM_RUN_UNMERGE)
2383 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2384 else
2385 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2386 spin_unlock(&ksm_mmlist_lock);
2387
f8af4da3 2388 set_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 2389 atomic_inc(&mm->mm_count);
6e158384
HD
2390
2391 if (needs_wakeup)
2392 wake_up_interruptible(&ksm_thread_wait);
2393
f8af4da3
HD
2394 return 0;
2395}
2396
1c2fb7a4 2397void __ksm_exit(struct mm_struct *mm)
f8af4da3 2398{
cd551f97 2399 struct mm_slot *mm_slot;
9ba69294 2400 int easy_to_free = 0;
cd551f97 2401
31dbd01f 2402 /*
9ba69294
HD
2403 * This process is exiting: if it's straightforward (as is the
2404 * case when ksmd was never running), free mm_slot immediately.
2405 * But if it's at the cursor or has rmap_items linked to it, use
2406 * mmap_sem to synchronize with any break_cows before pagetables
2407 * are freed, and leave the mm_slot on the list for ksmd to free.
2408 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2409 */
9ba69294 2410
cd551f97
HD
2411 spin_lock(&ksm_mmlist_lock);
2412 mm_slot = get_mm_slot(mm);
9ba69294 2413 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2414 if (!mm_slot->rmap_list) {
4ca3a69b 2415 hash_del(&mm_slot->link);
9ba69294
HD
2416 list_del(&mm_slot->mm_list);
2417 easy_to_free = 1;
2418 } else {
2419 list_move(&mm_slot->mm_list,
2420 &ksm_scan.mm_slot->mm_list);
2421 }
cd551f97 2422 }
cd551f97
HD
2423 spin_unlock(&ksm_mmlist_lock);
2424
9ba69294
HD
2425 if (easy_to_free) {
2426 free_mm_slot(mm_slot);
2427 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2428 mmdrop(mm);
2429 } else if (mm_slot) {
9ba69294
HD
2430 down_write(&mm->mmap_sem);
2431 up_write(&mm->mmap_sem);
9ba69294 2432 }
31dbd01f
IE
2433}
2434
cbf86cfe 2435struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2436 struct vm_area_struct *vma, unsigned long address)
2437{
cbf86cfe 2438 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
2439 struct page *new_page;
2440
cbf86cfe
HD
2441 if (PageKsm(page)) {
2442 if (page_stable_node(page) &&
2443 !(ksm_run & KSM_RUN_UNMERGE))
2444 return page; /* no need to copy it */
2445 } else if (!anon_vma) {
2446 return page; /* no need to copy it */
2447 } else if (anon_vma->root == vma->anon_vma->root &&
2448 page->index == linear_page_index(vma, address)) {
2449 return page; /* still no need to copy it */
2450 }
2451 if (!PageUptodate(page))
2452 return page; /* let do_swap_page report the error */
2453
5ad64688
HD
2454 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2455 if (new_page) {
2456 copy_user_highpage(new_page, page, address, vma);
2457
2458 SetPageDirty(new_page);
2459 __SetPageUptodate(new_page);
5ad64688 2460 __set_page_locked(new_page);
5ad64688
HD
2461 }
2462
5ad64688
HD
2463 return new_page;
2464}
2465
051ac83a 2466int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
2467{
2468 struct stable_node *stable_node;
e9995ef9
HD
2469 struct rmap_item *rmap_item;
2470 int ret = SWAP_AGAIN;
2471 int search_new_forks = 0;
2472
309381fe 2473 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
2474
2475 /*
2476 * Rely on the page lock to protect against concurrent modifications
2477 * to that page's node of the stable tree.
2478 */
309381fe 2479 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
2480
2481 stable_node = page_stable_node(page);
2482 if (!stable_node)
2483 return ret;
2484again:
b67bfe0d 2485 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2486 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2487 struct anon_vma_chain *vmac;
e9995ef9
HD
2488 struct vm_area_struct *vma;
2489
ad12695f 2490 cond_resched();
b6b19f25 2491 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2492 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2493 0, ULONG_MAX) {
ad12695f 2494 cond_resched();
5beb4930 2495 vma = vmac->vma;
e9995ef9
HD
2496 if (rmap_item->address < vma->vm_start ||
2497 rmap_item->address >= vma->vm_end)
2498 continue;
2499 /*
2500 * Initially we examine only the vma which covers this
2501 * rmap_item; but later, if there is still work to do,
2502 * we examine covering vmas in other mms: in case they
2503 * were forked from the original since ksmd passed.
2504 */
2505 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2506 continue;
2507
0dd1c7bb
JK
2508 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2509 continue;
2510
051ac83a
JK
2511 ret = rwc->rmap_one(page, vma,
2512 rmap_item->address, rwc->arg);
e9995ef9 2513 if (ret != SWAP_AGAIN) {
b6b19f25 2514 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2515 goto out;
2516 }
0dd1c7bb
JK
2517 if (rwc->done && rwc->done(page)) {
2518 anon_vma_unlock_read(anon_vma);
2519 goto out;
2520 }
e9995ef9 2521 }
b6b19f25 2522 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2523 }
2524 if (!search_new_forks++)
2525 goto again;
2526out:
2527 return ret;
2528}
2529
52629506 2530#ifdef CONFIG_MIGRATION
e9995ef9
HD
2531void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2532{
2533 struct stable_node *stable_node;
2534
309381fe
SL
2535 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2536 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2537 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
2538
2539 stable_node = page_stable_node(newpage);
2540 if (stable_node) {
309381fe 2541 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 2542 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
2543 /*
2544 * newpage->mapping was set in advance; now we need smp_wmb()
2545 * to make sure that the new stable_node->kpfn is visible
2546 * to get_ksm_page() before it can see that oldpage->mapping
2547 * has gone stale (or that PageSwapCache has been cleared).
2548 */
2549 smp_wmb();
2550 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
2551 }
2552}
2553#endif /* CONFIG_MIGRATION */
2554
62b61f61 2555#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2556static void wait_while_offlining(void)
2557{
2558 while (ksm_run & KSM_RUN_OFFLINE) {
2559 mutex_unlock(&ksm_thread_mutex);
2560 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2561 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2562 mutex_lock(&ksm_thread_mutex);
2563 }
2564}
2565
731b565d
AA
2566static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2567 unsigned long start_pfn,
2568 unsigned long end_pfn)
2569{
2570 if (stable_node->kpfn >= start_pfn &&
2571 stable_node->kpfn < end_pfn) {
2572 /*
2573 * Don't get_ksm_page, page has already gone:
2574 * which is why we keep kpfn instead of page*
2575 */
2576 remove_node_from_stable_tree(stable_node);
2577 return true;
2578 }
2579 return false;
2580}
2581
2582static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2583 unsigned long start_pfn,
2584 unsigned long end_pfn,
2585 struct rb_root *root)
2586{
2587 struct stable_node *dup;
2588 struct hlist_node *hlist_safe;
2589
2590 if (!is_stable_node_chain(stable_node)) {
2591 VM_BUG_ON(is_stable_node_dup(stable_node));
2592 return stable_node_dup_remove_range(stable_node, start_pfn,
2593 end_pfn);
2594 }
2595
2596 hlist_for_each_entry_safe(dup, hlist_safe,
2597 &stable_node->hlist, hlist_dup) {
2598 VM_BUG_ON(!is_stable_node_dup(dup));
2599 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2600 }
2601 if (hlist_empty(&stable_node->hlist)) {
2602 free_stable_node_chain(stable_node, root);
2603 return true; /* notify caller that tree was rebalanced */
2604 } else
2605 return false;
2606}
2607
ee0ea59c
HD
2608static void ksm_check_stable_tree(unsigned long start_pfn,
2609 unsigned long end_pfn)
62b61f61 2610{
ee0ea59c 2611 struct stable_node *stable_node;
4146d2d6 2612 struct list_head *this, *next;
62b61f61 2613 struct rb_node *node;
90bd6fd3 2614 int nid;
62b61f61 2615
ef53d16c
HD
2616 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2617 node = rb_first(root_stable_tree + nid);
ee0ea59c 2618 while (node) {
90bd6fd3 2619 stable_node = rb_entry(node, struct stable_node, node);
731b565d
AA
2620 if (stable_node_chain_remove_range(stable_node,
2621 start_pfn, end_pfn,
2622 root_stable_tree +
2623 nid))
ef53d16c 2624 node = rb_first(root_stable_tree + nid);
731b565d 2625 else
ee0ea59c
HD
2626 node = rb_next(node);
2627 cond_resched();
90bd6fd3 2628 }
ee0ea59c 2629 }
4146d2d6
HD
2630 list_for_each_safe(this, next, &migrate_nodes) {
2631 stable_node = list_entry(this, struct stable_node, list);
2632 if (stable_node->kpfn >= start_pfn &&
2633 stable_node->kpfn < end_pfn)
2634 remove_node_from_stable_tree(stable_node);
2635 cond_resched();
2636 }
62b61f61
HD
2637}
2638
2639static int ksm_memory_callback(struct notifier_block *self,
2640 unsigned long action, void *arg)
2641{
2642 struct memory_notify *mn = arg;
62b61f61
HD
2643
2644 switch (action) {
2645 case MEM_GOING_OFFLINE:
2646 /*
ef4d43a8
HD
2647 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2648 * and remove_all_stable_nodes() while memory is going offline:
2649 * it is unsafe for them to touch the stable tree at this time.
2650 * But unmerge_ksm_pages(), rmap lookups and other entry points
2651 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2652 */
ef4d43a8
HD
2653 mutex_lock(&ksm_thread_mutex);
2654 ksm_run |= KSM_RUN_OFFLINE;
2655 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2656 break;
2657
2658 case MEM_OFFLINE:
2659 /*
2660 * Most of the work is done by page migration; but there might
2661 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2662 * pages which have been offlined: prune those from the tree,
2663 * otherwise get_ksm_page() might later try to access a
2664 * non-existent struct page.
62b61f61 2665 */
ee0ea59c
HD
2666 ksm_check_stable_tree(mn->start_pfn,
2667 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2668 /* fallthrough */
2669
2670 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2671 mutex_lock(&ksm_thread_mutex);
2672 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2673 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2674
2675 smp_mb(); /* wake_up_bit advises this */
2676 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2677 break;
2678 }
2679 return NOTIFY_OK;
2680}
ef4d43a8
HD
2681#else
2682static void wait_while_offlining(void)
2683{
2684}
62b61f61
HD
2685#endif /* CONFIG_MEMORY_HOTREMOVE */
2686
2ffd8679
HD
2687#ifdef CONFIG_SYSFS
2688/*
2689 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2690 */
2691
31dbd01f
IE
2692#define KSM_ATTR_RO(_name) \
2693 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2694#define KSM_ATTR(_name) \
2695 static struct kobj_attribute _name##_attr = \
2696 __ATTR(_name, 0644, _name##_show, _name##_store)
2697
2698static ssize_t sleep_millisecs_show(struct kobject *kobj,
2699 struct kobj_attribute *attr, char *buf)
2700{
2701 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2702}
2703
2704static ssize_t sleep_millisecs_store(struct kobject *kobj,
2705 struct kobj_attribute *attr,
2706 const char *buf, size_t count)
2707{
2708 unsigned long msecs;
2709 int err;
2710
3dbb95f7 2711 err = kstrtoul(buf, 10, &msecs);
31dbd01f
IE
2712 if (err || msecs > UINT_MAX)
2713 return -EINVAL;
2714
2715 ksm_thread_sleep_millisecs = msecs;
2716
2717 return count;
2718}
2719KSM_ATTR(sleep_millisecs);
2720
2721static ssize_t pages_to_scan_show(struct kobject *kobj,
2722 struct kobj_attribute *attr, char *buf)
2723{
2724 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2725}
2726
2727static ssize_t pages_to_scan_store(struct kobject *kobj,
2728 struct kobj_attribute *attr,
2729 const char *buf, size_t count)
2730{
2731 int err;
2732 unsigned long nr_pages;
2733
3dbb95f7 2734 err = kstrtoul(buf, 10, &nr_pages);
31dbd01f
IE
2735 if (err || nr_pages > UINT_MAX)
2736 return -EINVAL;
2737
2738 ksm_thread_pages_to_scan = nr_pages;
2739
2740 return count;
2741}
2742KSM_ATTR(pages_to_scan);
2743
2744static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2745 char *buf)
2746{
ef4d43a8 2747 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2748}
2749
2750static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2751 const char *buf, size_t count)
2752{
2753 int err;
2754 unsigned long flags;
2755
3dbb95f7 2756 err = kstrtoul(buf, 10, &flags);
31dbd01f
IE
2757 if (err || flags > UINT_MAX)
2758 return -EINVAL;
2759 if (flags > KSM_RUN_UNMERGE)
2760 return -EINVAL;
2761
2762 /*
2763 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2764 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2765 * breaking COW to free the pages_shared (but leaves mm_slots
2766 * on the list for when ksmd may be set running again).
31dbd01f
IE
2767 */
2768
2769 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2770 wait_while_offlining();
31dbd01f
IE
2771 if (ksm_run != flags) {
2772 ksm_run = flags;
d952b791 2773 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2774 set_current_oom_origin();
d952b791 2775 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2776 clear_current_oom_origin();
d952b791
HD
2777 if (err) {
2778 ksm_run = KSM_RUN_STOP;
2779 count = err;
2780 }
2781 }
31dbd01f
IE
2782 }
2783 mutex_unlock(&ksm_thread_mutex);
2784
2785 if (flags & KSM_RUN_MERGE)
2786 wake_up_interruptible(&ksm_thread_wait);
2787
2788 return count;
2789}
2790KSM_ATTR(run);
2791
90bd6fd3
PH
2792#ifdef CONFIG_NUMA
2793static ssize_t merge_across_nodes_show(struct kobject *kobj,
2794 struct kobj_attribute *attr, char *buf)
2795{
2796 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2797}
2798
2799static ssize_t merge_across_nodes_store(struct kobject *kobj,
2800 struct kobj_attribute *attr,
2801 const char *buf, size_t count)
2802{
2803 int err;
2804 unsigned long knob;
2805
2806 err = kstrtoul(buf, 10, &knob);
2807 if (err)
2808 return err;
2809 if (knob > 1)
2810 return -EINVAL;
2811
2812 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2813 wait_while_offlining();
90bd6fd3 2814 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2815 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2816 err = -EBUSY;
ef53d16c
HD
2817 else if (root_stable_tree == one_stable_tree) {
2818 struct rb_root *buf;
2819 /*
2820 * This is the first time that we switch away from the
2821 * default of merging across nodes: must now allocate
2822 * a buffer to hold as many roots as may be needed.
2823 * Allocate stable and unstable together:
2824 * MAXSMP NODES_SHIFT 10 will use 16kB.
2825 */
bafe1e14
JP
2826 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2827 GFP_KERNEL);
ef53d16c
HD
2828 /* Let us assume that RB_ROOT is NULL is zero */
2829 if (!buf)
2830 err = -ENOMEM;
2831 else {
2832 root_stable_tree = buf;
2833 root_unstable_tree = buf + nr_node_ids;
2834 /* Stable tree is empty but not the unstable */
2835 root_unstable_tree[0] = one_unstable_tree[0];
2836 }
2837 }
2838 if (!err) {
90bd6fd3 2839 ksm_merge_across_nodes = knob;
ef53d16c
HD
2840 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2841 }
90bd6fd3
PH
2842 }
2843 mutex_unlock(&ksm_thread_mutex);
2844
2845 return err ? err : count;
2846}
2847KSM_ATTR(merge_across_nodes);
2848#endif
2849
731b565d
AA
2850static ssize_t max_page_sharing_show(struct kobject *kobj,
2851 struct kobj_attribute *attr, char *buf)
2852{
2853 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2854}
2855
2856static ssize_t max_page_sharing_store(struct kobject *kobj,
2857 struct kobj_attribute *attr,
2858 const char *buf, size_t count)
2859{
2860 int err;
2861 int knob;
2862
2863 err = kstrtoint(buf, 10, &knob);
2864 if (err)
2865 return err;
2866 /*
2867 * When a KSM page is created it is shared by 2 mappings. This
2868 * being a signed comparison, it implicitly verifies it's not
2869 * negative.
2870 */
2871 if (knob < 2)
2872 return -EINVAL;
2873
2874 if (READ_ONCE(ksm_max_page_sharing) == knob)
2875 return count;
2876
2877 mutex_lock(&ksm_thread_mutex);
2878 wait_while_offlining();
2879 if (ksm_max_page_sharing != knob) {
2880 if (ksm_pages_shared || remove_all_stable_nodes())
2881 err = -EBUSY;
2882 else
2883 ksm_max_page_sharing = knob;
2884 }
2885 mutex_unlock(&ksm_thread_mutex);
2886
2887 return err ? err : count;
2888}
2889KSM_ATTR(max_page_sharing);
2890
b4028260
HD
2891static ssize_t pages_shared_show(struct kobject *kobj,
2892 struct kobj_attribute *attr, char *buf)
2893{
2894 return sprintf(buf, "%lu\n", ksm_pages_shared);
2895}
2896KSM_ATTR_RO(pages_shared);
2897
2898static ssize_t pages_sharing_show(struct kobject *kobj,
2899 struct kobj_attribute *attr, char *buf)
2900{
e178dfde 2901 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
2902}
2903KSM_ATTR_RO(pages_sharing);
2904
473b0ce4
HD
2905static ssize_t pages_unshared_show(struct kobject *kobj,
2906 struct kobj_attribute *attr, char *buf)
2907{
2908 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2909}
2910KSM_ATTR_RO(pages_unshared);
2911
2912static ssize_t pages_volatile_show(struct kobject *kobj,
2913 struct kobj_attribute *attr, char *buf)
2914{
2915 long ksm_pages_volatile;
2916
2917 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2918 - ksm_pages_sharing - ksm_pages_unshared;
2919 /*
2920 * It was not worth any locking to calculate that statistic,
2921 * but it might therefore sometimes be negative: conceal that.
2922 */
2923 if (ksm_pages_volatile < 0)
2924 ksm_pages_volatile = 0;
2925 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2926}
2927KSM_ATTR_RO(pages_volatile);
2928
731b565d
AA
2929static ssize_t stable_node_dups_show(struct kobject *kobj,
2930 struct kobj_attribute *attr, char *buf)
2931{
2932 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
2933}
2934KSM_ATTR_RO(stable_node_dups);
2935
2936static ssize_t stable_node_chains_show(struct kobject *kobj,
2937 struct kobj_attribute *attr, char *buf)
2938{
2939 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
2940}
2941KSM_ATTR_RO(stable_node_chains);
2942
2943static ssize_t
2944stable_node_chains_prune_millisecs_show(struct kobject *kobj,
2945 struct kobj_attribute *attr,
2946 char *buf)
2947{
2948 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2949}
2950
2951static ssize_t
2952stable_node_chains_prune_millisecs_store(struct kobject *kobj,
2953 struct kobj_attribute *attr,
2954 const char *buf, size_t count)
2955{
2956 unsigned long msecs;
2957 int err;
2958
2959 err = kstrtoul(buf, 10, &msecs);
2960 if (err || msecs > UINT_MAX)
2961 return -EINVAL;
2962
2963 ksm_stable_node_chains_prune_millisecs = msecs;
2964
2965 return count;
2966}
2967KSM_ATTR(stable_node_chains_prune_millisecs);
2968
473b0ce4
HD
2969static ssize_t full_scans_show(struct kobject *kobj,
2970 struct kobj_attribute *attr, char *buf)
2971{
2972 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2973}
2974KSM_ATTR_RO(full_scans);
2975
31dbd01f
IE
2976static struct attribute *ksm_attrs[] = {
2977 &sleep_millisecs_attr.attr,
2978 &pages_to_scan_attr.attr,
2979 &run_attr.attr,
b4028260
HD
2980 &pages_shared_attr.attr,
2981 &pages_sharing_attr.attr,
473b0ce4
HD
2982 &pages_unshared_attr.attr,
2983 &pages_volatile_attr.attr,
2984 &full_scans_attr.attr,
90bd6fd3
PH
2985#ifdef CONFIG_NUMA
2986 &merge_across_nodes_attr.attr,
2987#endif
731b565d
AA
2988 &max_page_sharing_attr.attr,
2989 &stable_node_chains_attr.attr,
2990 &stable_node_dups_attr.attr,
2991 &stable_node_chains_prune_millisecs_attr.attr,
31dbd01f
IE
2992 NULL,
2993};
2994
2995static struct attribute_group ksm_attr_group = {
2996 .attrs = ksm_attrs,
2997 .name = "ksm",
2998};
2ffd8679 2999#endif /* CONFIG_SYSFS */
31dbd01f
IE
3000
3001static int __init ksm_init(void)
3002{
3003 struct task_struct *ksm_thread;
3004 int err;
3005
3006 err = ksm_slab_init();
3007 if (err)
3008 goto out;
3009
31dbd01f
IE
3010 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3011 if (IS_ERR(ksm_thread)) {
25acde31 3012 pr_err("ksm: creating kthread failed\n");
31dbd01f 3013 err = PTR_ERR(ksm_thread);
d9f8984c 3014 goto out_free;
31dbd01f
IE
3015 }
3016
2ffd8679 3017#ifdef CONFIG_SYSFS
31dbd01f
IE
3018 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3019 if (err) {
25acde31 3020 pr_err("ksm: register sysfs failed\n");
2ffd8679 3021 kthread_stop(ksm_thread);
d9f8984c 3022 goto out_free;
31dbd01f 3023 }
c73602ad
HD
3024#else
3025 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3026
2ffd8679 3027#endif /* CONFIG_SYSFS */
31dbd01f 3028
62b61f61 3029#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3030 /* There is no significance to this priority 100 */
62b61f61
HD
3031 hotplug_memory_notifier(ksm_memory_callback, 100);
3032#endif
31dbd01f
IE
3033 return 0;
3034
d9f8984c 3035out_free:
31dbd01f
IE
3036 ksm_slab_free();
3037out:
3038 return err;
f8af4da3 3039}
a64fb3cd 3040subsys_initcall(ksm_init);