]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/ksm.c
ksm: mem cgroup charge swapin copy
[mirror_ubuntu-bionic-kernel.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
32#include <linux/mmu_notifier.h>
2c6854fd 33#include <linux/swap.h>
f8af4da3
HD
34#include <linux/ksm.h>
35
31dbd01f 36#include <asm/tlbflush.h>
73848b46 37#include "internal.h"
31dbd01f
IE
38
39/*
40 * A few notes about the KSM scanning process,
41 * to make it easier to understand the data structures below:
42 *
43 * In order to reduce excessive scanning, KSM sorts the memory pages by their
44 * contents into a data structure that holds pointers to the pages' locations.
45 *
46 * Since the contents of the pages may change at any moment, KSM cannot just
47 * insert the pages into a normal sorted tree and expect it to find anything.
48 * Therefore KSM uses two data structures - the stable and the unstable tree.
49 *
50 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
51 * by their contents. Because each such page is write-protected, searching on
52 * this tree is fully assured to be working (except when pages are unmapped),
53 * and therefore this tree is called the stable tree.
54 *
55 * In addition to the stable tree, KSM uses a second data structure called the
56 * unstable tree: this tree holds pointers to pages which have been found to
57 * be "unchanged for a period of time". The unstable tree sorts these pages
58 * by their contents, but since they are not write-protected, KSM cannot rely
59 * upon the unstable tree to work correctly - the unstable tree is liable to
60 * be corrupted as its contents are modified, and so it is called unstable.
61 *
62 * KSM solves this problem by several techniques:
63 *
64 * 1) The unstable tree is flushed every time KSM completes scanning all
65 * memory areas, and then the tree is rebuilt again from the beginning.
66 * 2) KSM will only insert into the unstable tree, pages whose hash value
67 * has not changed since the previous scan of all memory areas.
68 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
69 * colors of the nodes and not on their contents, assuring that even when
70 * the tree gets "corrupted" it won't get out of balance, so scanning time
71 * remains the same (also, searching and inserting nodes in an rbtree uses
72 * the same algorithm, so we have no overhead when we flush and rebuild).
73 * 4) KSM never flushes the stable tree, which means that even if it were to
74 * take 10 attempts to find a page in the unstable tree, once it is found,
75 * it is secured in the stable tree. (When we scan a new page, we first
76 * compare it against the stable tree, and then against the unstable tree.)
77 */
78
79/**
80 * struct mm_slot - ksm information per mm that is being scanned
81 * @link: link to the mm_slots hash list
82 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 83 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
84 * @mm: the mm that this information is valid for
85 */
86struct mm_slot {
87 struct hlist_node link;
88 struct list_head mm_list;
6514d511 89 struct rmap_item *rmap_list;
31dbd01f
IE
90 struct mm_struct *mm;
91};
92
93/**
94 * struct ksm_scan - cursor for scanning
95 * @mm_slot: the current mm_slot we are scanning
96 * @address: the next address inside that to be scanned
6514d511 97 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
98 * @seqnr: count of completed full scans (needed when removing unstable node)
99 *
100 * There is only the one ksm_scan instance of this cursor structure.
101 */
102struct ksm_scan {
103 struct mm_slot *mm_slot;
104 unsigned long address;
6514d511 105 struct rmap_item **rmap_list;
31dbd01f
IE
106 unsigned long seqnr;
107};
108
7b6ba2c7
HD
109/**
110 * struct stable_node - node of the stable rbtree
08beca44 111 * @page: pointer to struct page of the ksm page
7b6ba2c7
HD
112 * @node: rb node of this ksm page in the stable tree
113 * @hlist: hlist head of rmap_items using this ksm page
114 */
115struct stable_node {
08beca44 116 struct page *page;
7b6ba2c7
HD
117 struct rb_node node;
118 struct hlist_head hlist;
119};
120
31dbd01f
IE
121/**
122 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 123 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 124 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
31dbd01f
IE
125 * @mm: the memory structure this rmap_item is pointing into
126 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
127 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
128 * @node: rb node of this rmap_item in the unstable tree
129 * @head: pointer to stable_node heading this list in the stable tree
130 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
131 */
132struct rmap_item {
6514d511 133 struct rmap_item *rmap_list;
db114b83 134 struct anon_vma *anon_vma; /* when stable */
31dbd01f
IE
135 struct mm_struct *mm;
136 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 137 unsigned int oldchecksum; /* when unstable */
31dbd01f 138 union {
7b6ba2c7
HD
139 struct rb_node node; /* when node of unstable tree */
140 struct { /* when listed from stable tree */
141 struct stable_node *head;
142 struct hlist_node hlist;
143 };
31dbd01f
IE
144 };
145};
146
147#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
148#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
149#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
150
151/* The stable and unstable tree heads */
152static struct rb_root root_stable_tree = RB_ROOT;
153static struct rb_root root_unstable_tree = RB_ROOT;
154
155#define MM_SLOTS_HASH_HEADS 1024
156static struct hlist_head *mm_slots_hash;
157
158static struct mm_slot ksm_mm_head = {
159 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
160};
161static struct ksm_scan ksm_scan = {
162 .mm_slot = &ksm_mm_head,
163};
164
165static struct kmem_cache *rmap_item_cache;
7b6ba2c7 166static struct kmem_cache *stable_node_cache;
31dbd01f
IE
167static struct kmem_cache *mm_slot_cache;
168
169/* The number of nodes in the stable tree */
b4028260 170static unsigned long ksm_pages_shared;
31dbd01f 171
e178dfde 172/* The number of page slots additionally sharing those nodes */
b4028260 173static unsigned long ksm_pages_sharing;
31dbd01f 174
473b0ce4
HD
175/* The number of nodes in the unstable tree */
176static unsigned long ksm_pages_unshared;
177
178/* The number of rmap_items in use: to calculate pages_volatile */
179static unsigned long ksm_rmap_items;
180
31dbd01f 181/* Limit on the number of unswappable pages used */
2c6854fd 182static unsigned long ksm_max_kernel_pages;
31dbd01f
IE
183
184/* Number of pages ksmd should scan in one batch */
2c6854fd 185static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
186
187/* Milliseconds ksmd should sleep between batches */
2ffd8679 188static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f
IE
189
190#define KSM_RUN_STOP 0
191#define KSM_RUN_MERGE 1
192#define KSM_RUN_UNMERGE 2
2c6854fd 193static unsigned int ksm_run = KSM_RUN_STOP;
31dbd01f
IE
194
195static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
196static DEFINE_MUTEX(ksm_thread_mutex);
197static DEFINE_SPINLOCK(ksm_mmlist_lock);
198
199#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
200 sizeof(struct __struct), __alignof__(struct __struct),\
201 (__flags), NULL)
202
203static int __init ksm_slab_init(void)
204{
205 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
206 if (!rmap_item_cache)
207 goto out;
208
7b6ba2c7
HD
209 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
210 if (!stable_node_cache)
211 goto out_free1;
212
31dbd01f
IE
213 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
214 if (!mm_slot_cache)
7b6ba2c7 215 goto out_free2;
31dbd01f
IE
216
217 return 0;
218
7b6ba2c7
HD
219out_free2:
220 kmem_cache_destroy(stable_node_cache);
221out_free1:
31dbd01f
IE
222 kmem_cache_destroy(rmap_item_cache);
223out:
224 return -ENOMEM;
225}
226
227static void __init ksm_slab_free(void)
228{
229 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 230 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
231 kmem_cache_destroy(rmap_item_cache);
232 mm_slot_cache = NULL;
233}
234
235static inline struct rmap_item *alloc_rmap_item(void)
236{
473b0ce4
HD
237 struct rmap_item *rmap_item;
238
239 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
240 if (rmap_item)
241 ksm_rmap_items++;
242 return rmap_item;
31dbd01f
IE
243}
244
245static inline void free_rmap_item(struct rmap_item *rmap_item)
246{
473b0ce4 247 ksm_rmap_items--;
31dbd01f
IE
248 rmap_item->mm = NULL; /* debug safety */
249 kmem_cache_free(rmap_item_cache, rmap_item);
250}
251
7b6ba2c7
HD
252static inline struct stable_node *alloc_stable_node(void)
253{
254 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
255}
256
257static inline void free_stable_node(struct stable_node *stable_node)
258{
259 kmem_cache_free(stable_node_cache, stable_node);
260}
261
31dbd01f
IE
262static inline struct mm_slot *alloc_mm_slot(void)
263{
264 if (!mm_slot_cache) /* initialization failed */
265 return NULL;
266 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
267}
268
269static inline void free_mm_slot(struct mm_slot *mm_slot)
270{
271 kmem_cache_free(mm_slot_cache, mm_slot);
272}
273
274static int __init mm_slots_hash_init(void)
275{
276 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
277 GFP_KERNEL);
278 if (!mm_slots_hash)
279 return -ENOMEM;
280 return 0;
281}
282
283static void __init mm_slots_hash_free(void)
284{
285 kfree(mm_slots_hash);
286}
287
288static struct mm_slot *get_mm_slot(struct mm_struct *mm)
289{
290 struct mm_slot *mm_slot;
291 struct hlist_head *bucket;
292 struct hlist_node *node;
293
294 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
295 % MM_SLOTS_HASH_HEADS];
296 hlist_for_each_entry(mm_slot, node, bucket, link) {
297 if (mm == mm_slot->mm)
298 return mm_slot;
299 }
300 return NULL;
301}
302
303static void insert_to_mm_slots_hash(struct mm_struct *mm,
304 struct mm_slot *mm_slot)
305{
306 struct hlist_head *bucket;
307
308 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
309 % MM_SLOTS_HASH_HEADS];
310 mm_slot->mm = mm;
31dbd01f
IE
311 hlist_add_head(&mm_slot->link, bucket);
312}
313
314static inline int in_stable_tree(struct rmap_item *rmap_item)
315{
316 return rmap_item->address & STABLE_FLAG;
317}
318
db114b83
HD
319static void hold_anon_vma(struct rmap_item *rmap_item,
320 struct anon_vma *anon_vma)
321{
322 rmap_item->anon_vma = anon_vma;
323 atomic_inc(&anon_vma->ksm_refcount);
324}
325
326static void drop_anon_vma(struct rmap_item *rmap_item)
327{
328 struct anon_vma *anon_vma = rmap_item->anon_vma;
329
330 if (atomic_dec_and_lock(&anon_vma->ksm_refcount, &anon_vma->lock)) {
331 int empty = list_empty(&anon_vma->head);
332 spin_unlock(&anon_vma->lock);
333 if (empty)
334 anon_vma_free(anon_vma);
335 }
336}
337
a913e182
HD
338/*
339 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
340 * page tables after it has passed through ksm_exit() - which, if necessary,
341 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
342 * a special flag: they can just back out as soon as mm_users goes to zero.
343 * ksm_test_exit() is used throughout to make this test for exit: in some
344 * places for correctness, in some places just to avoid unnecessary work.
345 */
346static inline bool ksm_test_exit(struct mm_struct *mm)
347{
348 return atomic_read(&mm->mm_users) == 0;
349}
350
31dbd01f
IE
351/*
352 * We use break_ksm to break COW on a ksm page: it's a stripped down
353 *
354 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
355 * put_page(page);
356 *
357 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
358 * in case the application has unmapped and remapped mm,addr meanwhile.
359 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
360 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
361 */
d952b791 362static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
363{
364 struct page *page;
d952b791 365 int ret = 0;
31dbd01f
IE
366
367 do {
368 cond_resched();
369 page = follow_page(vma, addr, FOLL_GET);
370 if (!page)
371 break;
372 if (PageKsm(page))
373 ret = handle_mm_fault(vma->vm_mm, vma, addr,
374 FAULT_FLAG_WRITE);
375 else
376 ret = VM_FAULT_WRITE;
377 put_page(page);
d952b791
HD
378 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
379 /*
380 * We must loop because handle_mm_fault() may back out if there's
381 * any difficulty e.g. if pte accessed bit gets updated concurrently.
382 *
383 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
384 * COW has been broken, even if the vma does not permit VM_WRITE;
385 * but note that a concurrent fault might break PageKsm for us.
386 *
387 * VM_FAULT_SIGBUS could occur if we race with truncation of the
388 * backing file, which also invalidates anonymous pages: that's
389 * okay, that truncation will have unmapped the PageKsm for us.
390 *
391 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
392 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
393 * current task has TIF_MEMDIE set, and will be OOM killed on return
394 * to user; and ksmd, having no mm, would never be chosen for that.
395 *
396 * But if the mm is in a limited mem_cgroup, then the fault may fail
397 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
398 * even ksmd can fail in this way - though it's usually breaking ksm
399 * just to undo a merge it made a moment before, so unlikely to oom.
400 *
401 * That's a pity: we might therefore have more kernel pages allocated
402 * than we're counting as nodes in the stable tree; but ksm_do_scan
403 * will retry to break_cow on each pass, so should recover the page
404 * in due course. The important thing is to not let VM_MERGEABLE
405 * be cleared while any such pages might remain in the area.
406 */
407 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
408}
409
8dd3557a 410static void break_cow(struct rmap_item *rmap_item)
31dbd01f 411{
8dd3557a
HD
412 struct mm_struct *mm = rmap_item->mm;
413 unsigned long addr = rmap_item->address;
31dbd01f
IE
414 struct vm_area_struct *vma;
415
4035c07a
HD
416 /*
417 * It is not an accident that whenever we want to break COW
418 * to undo, we also need to drop a reference to the anon_vma.
419 */
420 drop_anon_vma(rmap_item);
421
81464e30 422 down_read(&mm->mmap_sem);
9ba69294
HD
423 if (ksm_test_exit(mm))
424 goto out;
31dbd01f
IE
425 vma = find_vma(mm, addr);
426 if (!vma || vma->vm_start > addr)
81464e30 427 goto out;
31dbd01f 428 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
81464e30 429 goto out;
31dbd01f 430 break_ksm(vma, addr);
81464e30 431out:
31dbd01f
IE
432 up_read(&mm->mmap_sem);
433}
434
435static struct page *get_mergeable_page(struct rmap_item *rmap_item)
436{
437 struct mm_struct *mm = rmap_item->mm;
438 unsigned long addr = rmap_item->address;
439 struct vm_area_struct *vma;
440 struct page *page;
441
442 down_read(&mm->mmap_sem);
9ba69294
HD
443 if (ksm_test_exit(mm))
444 goto out;
31dbd01f
IE
445 vma = find_vma(mm, addr);
446 if (!vma || vma->vm_start > addr)
447 goto out;
448 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
449 goto out;
450
451 page = follow_page(vma, addr, FOLL_GET);
452 if (!page)
453 goto out;
454 if (PageAnon(page)) {
455 flush_anon_page(vma, page, addr);
456 flush_dcache_page(page);
457 } else {
458 put_page(page);
459out: page = NULL;
460 }
461 up_read(&mm->mmap_sem);
462 return page;
463}
464
4035c07a
HD
465static void remove_node_from_stable_tree(struct stable_node *stable_node)
466{
467 struct rmap_item *rmap_item;
468 struct hlist_node *hlist;
469
470 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
471 if (rmap_item->hlist.next)
472 ksm_pages_sharing--;
473 else
474 ksm_pages_shared--;
475 drop_anon_vma(rmap_item);
476 rmap_item->address &= PAGE_MASK;
477 cond_resched();
478 }
479
480 rb_erase(&stable_node->node, &root_stable_tree);
481 free_stable_node(stable_node);
482}
483
484/*
485 * get_ksm_page: checks if the page indicated by the stable node
486 * is still its ksm page, despite having held no reference to it.
487 * In which case we can trust the content of the page, and it
488 * returns the gotten page; but if the page has now been zapped,
489 * remove the stale node from the stable tree and return NULL.
490 *
491 * You would expect the stable_node to hold a reference to the ksm page.
492 * But if it increments the page's count, swapping out has to wait for
493 * ksmd to come around again before it can free the page, which may take
494 * seconds or even minutes: much too unresponsive. So instead we use a
495 * "keyhole reference": access to the ksm page from the stable node peeps
496 * out through its keyhole to see if that page still holds the right key,
497 * pointing back to this stable node. This relies on freeing a PageAnon
498 * page to reset its page->mapping to NULL, and relies on no other use of
499 * a page to put something that might look like our key in page->mapping.
500 *
501 * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
502 * but this is different - made simpler by ksm_thread_mutex being held, but
503 * interesting for assuming that no other use of the struct page could ever
504 * put our expected_mapping into page->mapping (or a field of the union which
505 * coincides with page->mapping). The RCU calls are not for KSM at all, but
506 * to keep the page_count protocol described with page_cache_get_speculative.
507 *
508 * Note: it is possible that get_ksm_page() will return NULL one moment,
509 * then page the next, if the page is in between page_freeze_refs() and
510 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
511 * is on its way to being freed; but it is an anomaly to bear in mind.
512 */
513static struct page *get_ksm_page(struct stable_node *stable_node)
514{
515 struct page *page;
516 void *expected_mapping;
517
518 page = stable_node->page;
519 expected_mapping = (void *)stable_node +
520 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
521 rcu_read_lock();
522 if (page->mapping != expected_mapping)
523 goto stale;
524 if (!get_page_unless_zero(page))
525 goto stale;
526 if (page->mapping != expected_mapping) {
527 put_page(page);
528 goto stale;
529 }
530 rcu_read_unlock();
531 return page;
532stale:
533 rcu_read_unlock();
534 remove_node_from_stable_tree(stable_node);
535 return NULL;
536}
537
31dbd01f
IE
538/*
539 * Removing rmap_item from stable or unstable tree.
540 * This function will clean the information from the stable/unstable tree.
541 */
542static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
543{
7b6ba2c7
HD
544 if (rmap_item->address & STABLE_FLAG) {
545 struct stable_node *stable_node;
5ad64688 546 struct page *page;
31dbd01f 547
7b6ba2c7 548 stable_node = rmap_item->head;
4035c07a
HD
549 page = get_ksm_page(stable_node);
550 if (!page)
551 goto out;
5ad64688 552
4035c07a 553 lock_page(page);
7b6ba2c7 554 hlist_del(&rmap_item->hlist);
4035c07a
HD
555 unlock_page(page);
556 put_page(page);
08beca44 557
4035c07a
HD
558 if (stable_node->hlist.first)
559 ksm_pages_sharing--;
560 else
7b6ba2c7 561 ksm_pages_shared--;
31dbd01f 562
db114b83 563 drop_anon_vma(rmap_item);
93d17715 564 rmap_item->address &= PAGE_MASK;
31dbd01f 565
7b6ba2c7 566 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
567 unsigned char age;
568 /*
9ba69294 569 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 570 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
571 * But be careful when an mm is exiting: do the rb_erase
572 * if this rmap_item was inserted by this scan, rather
573 * than left over from before.
31dbd01f
IE
574 */
575 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 576 BUG_ON(age > 1);
31dbd01f
IE
577 if (!age)
578 rb_erase(&rmap_item->node, &root_unstable_tree);
93d17715 579
473b0ce4 580 ksm_pages_unshared--;
93d17715 581 rmap_item->address &= PAGE_MASK;
31dbd01f 582 }
4035c07a 583out:
31dbd01f
IE
584 cond_resched(); /* we're called from many long loops */
585}
586
31dbd01f 587static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 588 struct rmap_item **rmap_list)
31dbd01f 589{
6514d511
HD
590 while (*rmap_list) {
591 struct rmap_item *rmap_item = *rmap_list;
592 *rmap_list = rmap_item->rmap_list;
31dbd01f 593 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
594 free_rmap_item(rmap_item);
595 }
596}
597
598/*
599 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
600 * than check every pte of a given vma, the locking doesn't quite work for
601 * that - an rmap_item is assigned to the stable tree after inserting ksm
602 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
603 * rmap_items from parent to child at fork time (so as not to waste time
604 * if exit comes before the next scan reaches it).
81464e30
HD
605 *
606 * Similarly, although we'd like to remove rmap_items (so updating counts
607 * and freeing memory) when unmerging an area, it's easier to leave that
608 * to the next pass of ksmd - consider, for example, how ksmd might be
609 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 610 */
d952b791
HD
611static int unmerge_ksm_pages(struct vm_area_struct *vma,
612 unsigned long start, unsigned long end)
31dbd01f
IE
613{
614 unsigned long addr;
d952b791 615 int err = 0;
31dbd01f 616
d952b791 617 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
618 if (ksm_test_exit(vma->vm_mm))
619 break;
d952b791
HD
620 if (signal_pending(current))
621 err = -ERESTARTSYS;
622 else
623 err = break_ksm(vma, addr);
624 }
625 return err;
31dbd01f
IE
626}
627
2ffd8679
HD
628#ifdef CONFIG_SYSFS
629/*
630 * Only called through the sysfs control interface:
631 */
d952b791 632static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
633{
634 struct mm_slot *mm_slot;
635 struct mm_struct *mm;
636 struct vm_area_struct *vma;
d952b791
HD
637 int err = 0;
638
639 spin_lock(&ksm_mmlist_lock);
9ba69294 640 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
641 struct mm_slot, mm_list);
642 spin_unlock(&ksm_mmlist_lock);
31dbd01f 643
9ba69294
HD
644 for (mm_slot = ksm_scan.mm_slot;
645 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
646 mm = mm_slot->mm;
647 down_read(&mm->mmap_sem);
648 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
649 if (ksm_test_exit(mm))
650 break;
31dbd01f
IE
651 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
652 continue;
d952b791
HD
653 err = unmerge_ksm_pages(vma,
654 vma->vm_start, vma->vm_end);
9ba69294
HD
655 if (err)
656 goto error;
31dbd01f 657 }
9ba69294 658
6514d511 659 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
d952b791
HD
660
661 spin_lock(&ksm_mmlist_lock);
9ba69294 662 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 663 struct mm_slot, mm_list);
9ba69294
HD
664 if (ksm_test_exit(mm)) {
665 hlist_del(&mm_slot->link);
666 list_del(&mm_slot->mm_list);
667 spin_unlock(&ksm_mmlist_lock);
668
669 free_mm_slot(mm_slot);
670 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
671 up_read(&mm->mmap_sem);
672 mmdrop(mm);
673 } else {
674 spin_unlock(&ksm_mmlist_lock);
675 up_read(&mm->mmap_sem);
676 }
31dbd01f
IE
677 }
678
d952b791 679 ksm_scan.seqnr = 0;
9ba69294
HD
680 return 0;
681
682error:
683 up_read(&mm->mmap_sem);
31dbd01f 684 spin_lock(&ksm_mmlist_lock);
d952b791 685 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 686 spin_unlock(&ksm_mmlist_lock);
d952b791 687 return err;
31dbd01f 688}
2ffd8679 689#endif /* CONFIG_SYSFS */
31dbd01f 690
31dbd01f
IE
691static u32 calc_checksum(struct page *page)
692{
693 u32 checksum;
694 void *addr = kmap_atomic(page, KM_USER0);
695 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
696 kunmap_atomic(addr, KM_USER0);
697 return checksum;
698}
699
700static int memcmp_pages(struct page *page1, struct page *page2)
701{
702 char *addr1, *addr2;
703 int ret;
704
705 addr1 = kmap_atomic(page1, KM_USER0);
706 addr2 = kmap_atomic(page2, KM_USER1);
707 ret = memcmp(addr1, addr2, PAGE_SIZE);
708 kunmap_atomic(addr2, KM_USER1);
709 kunmap_atomic(addr1, KM_USER0);
710 return ret;
711}
712
713static inline int pages_identical(struct page *page1, struct page *page2)
714{
715 return !memcmp_pages(page1, page2);
716}
717
718static int write_protect_page(struct vm_area_struct *vma, struct page *page,
719 pte_t *orig_pte)
720{
721 struct mm_struct *mm = vma->vm_mm;
722 unsigned long addr;
723 pte_t *ptep;
724 spinlock_t *ptl;
725 int swapped;
726 int err = -EFAULT;
727
728 addr = page_address_in_vma(page, vma);
729 if (addr == -EFAULT)
730 goto out;
731
732 ptep = page_check_address(page, mm, addr, &ptl, 0);
733 if (!ptep)
734 goto out;
735
736 if (pte_write(*ptep)) {
737 pte_t entry;
738
739 swapped = PageSwapCache(page);
740 flush_cache_page(vma, addr, page_to_pfn(page));
741 /*
742 * Ok this is tricky, when get_user_pages_fast() run it doesnt
743 * take any lock, therefore the check that we are going to make
744 * with the pagecount against the mapcount is racey and
745 * O_DIRECT can happen right after the check.
746 * So we clear the pte and flush the tlb before the check
747 * this assure us that no O_DIRECT can happen after the check
748 * or in the middle of the check.
749 */
750 entry = ptep_clear_flush(vma, addr, ptep);
751 /*
752 * Check that no O_DIRECT or similar I/O is in progress on the
753 * page
754 */
31e855ea 755 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
31dbd01f
IE
756 set_pte_at_notify(mm, addr, ptep, entry);
757 goto out_unlock;
758 }
759 entry = pte_wrprotect(entry);
760 set_pte_at_notify(mm, addr, ptep, entry);
761 }
762 *orig_pte = *ptep;
763 err = 0;
764
765out_unlock:
766 pte_unmap_unlock(ptep, ptl);
767out:
768 return err;
769}
770
771/**
772 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
773 * @vma: vma that holds the pte pointing to page
774 * @page: the page we are replacing by kpage
775 * @kpage: the ksm page we replace page by
31dbd01f
IE
776 * @orig_pte: the original value of the pte
777 *
778 * Returns 0 on success, -EFAULT on failure.
779 */
8dd3557a
HD
780static int replace_page(struct vm_area_struct *vma, struct page *page,
781 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
782{
783 struct mm_struct *mm = vma->vm_mm;
784 pgd_t *pgd;
785 pud_t *pud;
786 pmd_t *pmd;
787 pte_t *ptep;
788 spinlock_t *ptl;
789 unsigned long addr;
31dbd01f
IE
790 int err = -EFAULT;
791
8dd3557a 792 addr = page_address_in_vma(page, vma);
31dbd01f
IE
793 if (addr == -EFAULT)
794 goto out;
795
796 pgd = pgd_offset(mm, addr);
797 if (!pgd_present(*pgd))
798 goto out;
799
800 pud = pud_offset(pgd, addr);
801 if (!pud_present(*pud))
802 goto out;
803
804 pmd = pmd_offset(pud, addr);
805 if (!pmd_present(*pmd))
806 goto out;
807
808 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
809 if (!pte_same(*ptep, orig_pte)) {
810 pte_unmap_unlock(ptep, ptl);
811 goto out;
812 }
813
8dd3557a 814 get_page(kpage);
5ad64688 815 page_add_anon_rmap(kpage, vma, addr);
31dbd01f
IE
816
817 flush_cache_page(vma, addr, pte_pfn(*ptep));
818 ptep_clear_flush(vma, addr, ptep);
8dd3557a 819 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
31dbd01f 820
8dd3557a
HD
821 page_remove_rmap(page);
822 put_page(page);
31dbd01f
IE
823
824 pte_unmap_unlock(ptep, ptl);
825 err = 0;
826out:
827 return err;
828}
829
830/*
831 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
832 * @vma: the vma that holds the pte pointing to page
833 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
834 * @kpage: the PageKsm page that we want to map instead of page,
835 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
836 *
837 * This function returns 0 if the pages were merged, -EFAULT otherwise.
838 */
839static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 840 struct page *page, struct page *kpage)
31dbd01f
IE
841{
842 pte_t orig_pte = __pte(0);
843 int err = -EFAULT;
844
db114b83
HD
845 if (page == kpage) /* ksm page forked */
846 return 0;
847
31dbd01f
IE
848 if (!(vma->vm_flags & VM_MERGEABLE))
849 goto out;
8dd3557a 850 if (!PageAnon(page))
31dbd01f
IE
851 goto out;
852
31dbd01f
IE
853 /*
854 * We need the page lock to read a stable PageSwapCache in
855 * write_protect_page(). We use trylock_page() instead of
856 * lock_page() because we don't want to wait here - we
857 * prefer to continue scanning and merging different pages,
858 * then come back to this page when it is unlocked.
859 */
8dd3557a 860 if (!trylock_page(page))
31e855ea 861 goto out;
31dbd01f
IE
862 /*
863 * If this anonymous page is mapped only here, its pte may need
864 * to be write-protected. If it's mapped elsewhere, all of its
865 * ptes are necessarily already write-protected. But in either
866 * case, we need to lock and check page_count is not raised.
867 */
80e14822
HD
868 if (write_protect_page(vma, page, &orig_pte) == 0) {
869 if (!kpage) {
870 /*
871 * While we hold page lock, upgrade page from
872 * PageAnon+anon_vma to PageKsm+NULL stable_node:
873 * stable_tree_insert() will update stable_node.
874 */
875 set_page_stable_node(page, NULL);
876 mark_page_accessed(page);
877 err = 0;
878 } else if (pages_identical(page, kpage))
879 err = replace_page(vma, page, kpage, orig_pte);
880 }
31dbd01f 881
80e14822 882 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 883 munlock_vma_page(page);
5ad64688
HD
884 if (!PageMlocked(kpage)) {
885 unlock_page(page);
5ad64688
HD
886 lock_page(kpage);
887 mlock_vma_page(kpage);
888 page = kpage; /* for final unlock */
889 }
890 }
73848b46 891
8dd3557a 892 unlock_page(page);
31dbd01f
IE
893out:
894 return err;
895}
896
81464e30
HD
897/*
898 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
899 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
900 *
901 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 902 */
8dd3557a
HD
903static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
904 struct page *page, struct page *kpage)
81464e30 905{
8dd3557a 906 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
907 struct vm_area_struct *vma;
908 int err = -EFAULT;
909
8dd3557a
HD
910 down_read(&mm->mmap_sem);
911 if (ksm_test_exit(mm))
9ba69294 912 goto out;
8dd3557a
HD
913 vma = find_vma(mm, rmap_item->address);
914 if (!vma || vma->vm_start > rmap_item->address)
81464e30
HD
915 goto out;
916
8dd3557a 917 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
918 if (err)
919 goto out;
920
921 /* Must get reference to anon_vma while still holding mmap_sem */
922 hold_anon_vma(rmap_item, vma->anon_vma);
81464e30 923out:
8dd3557a 924 up_read(&mm->mmap_sem);
81464e30
HD
925 return err;
926}
927
31dbd01f
IE
928/*
929 * try_to_merge_two_pages - take two identical pages and prepare them
930 * to be merged into one page.
931 *
8dd3557a
HD
932 * This function returns the kpage if we successfully merged two identical
933 * pages into one ksm page, NULL otherwise.
31dbd01f 934 *
80e14822 935 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
936 * is already a ksm page, try_to_merge_with_ksm_page should be used.
937 */
8dd3557a
HD
938static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
939 struct page *page,
940 struct rmap_item *tree_rmap_item,
941 struct page *tree_page)
31dbd01f 942{
80e14822 943 int err;
31dbd01f
IE
944
945 /*
946 * The number of nodes in the stable tree
947 * is the number of kernel pages that we hold.
948 */
949 if (ksm_max_kernel_pages &&
b4028260 950 ksm_max_kernel_pages <= ksm_pages_shared)
8dd3557a 951 return NULL;
31dbd01f 952
80e14822 953 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 954 if (!err) {
8dd3557a 955 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 956 tree_page, page);
31dbd01f 957 /*
81464e30
HD
958 * If that fails, we have a ksm page with only one pte
959 * pointing to it: so break it.
31dbd01f 960 */
4035c07a 961 if (err)
8dd3557a 962 break_cow(rmap_item);
31dbd01f 963 }
80e14822 964 return err ? NULL : page;
31dbd01f
IE
965}
966
31dbd01f 967/*
8dd3557a 968 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
969 *
970 * This function checks if there is a page inside the stable tree
971 * with identical content to the page that we are scanning right now.
972 *
7b6ba2c7 973 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
974 * NULL otherwise.
975 */
08beca44 976static struct stable_node *stable_tree_search(struct page *page)
31dbd01f
IE
977{
978 struct rb_node *node = root_stable_tree.rb_node;
7b6ba2c7 979 struct stable_node *stable_node;
31dbd01f 980
08beca44
HD
981 stable_node = page_stable_node(page);
982 if (stable_node) { /* ksm page forked */
983 get_page(page);
984 return stable_node;
985 }
986
31dbd01f 987 while (node) {
4035c07a 988 struct page *tree_page;
31dbd01f
IE
989 int ret;
990
08beca44 991 cond_resched();
7b6ba2c7 992 stable_node = rb_entry(node, struct stable_node, node);
4035c07a
HD
993 tree_page = get_ksm_page(stable_node);
994 if (!tree_page)
995 return NULL;
31dbd01f 996
4035c07a 997 ret = memcmp_pages(page, tree_page);
31dbd01f 998
4035c07a
HD
999 if (ret < 0) {
1000 put_page(tree_page);
31dbd01f 1001 node = node->rb_left;
4035c07a
HD
1002 } else if (ret > 0) {
1003 put_page(tree_page);
31dbd01f 1004 node = node->rb_right;
4035c07a 1005 } else
7b6ba2c7 1006 return stable_node;
31dbd01f
IE
1007 }
1008
1009 return NULL;
1010}
1011
1012/*
1013 * stable_tree_insert - insert rmap_item pointing to new ksm page
1014 * into the stable tree.
1015 *
7b6ba2c7
HD
1016 * This function returns the stable tree node just allocated on success,
1017 * NULL otherwise.
31dbd01f 1018 */
7b6ba2c7 1019static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f
IE
1020{
1021 struct rb_node **new = &root_stable_tree.rb_node;
1022 struct rb_node *parent = NULL;
7b6ba2c7 1023 struct stable_node *stable_node;
31dbd01f
IE
1024
1025 while (*new) {
4035c07a 1026 struct page *tree_page;
31dbd01f
IE
1027 int ret;
1028
08beca44 1029 cond_resched();
7b6ba2c7 1030 stable_node = rb_entry(*new, struct stable_node, node);
4035c07a
HD
1031 tree_page = get_ksm_page(stable_node);
1032 if (!tree_page)
1033 return NULL;
31dbd01f 1034
4035c07a
HD
1035 ret = memcmp_pages(kpage, tree_page);
1036 put_page(tree_page);
31dbd01f
IE
1037
1038 parent = *new;
1039 if (ret < 0)
1040 new = &parent->rb_left;
1041 else if (ret > 0)
1042 new = &parent->rb_right;
1043 else {
1044 /*
1045 * It is not a bug that stable_tree_search() didn't
1046 * find this node: because at that time our page was
1047 * not yet write-protected, so may have changed since.
1048 */
1049 return NULL;
1050 }
1051 }
1052
7b6ba2c7
HD
1053 stable_node = alloc_stable_node();
1054 if (!stable_node)
1055 return NULL;
31dbd01f 1056
7b6ba2c7
HD
1057 rb_link_node(&stable_node->node, parent, new);
1058 rb_insert_color(&stable_node->node, &root_stable_tree);
1059
1060 INIT_HLIST_HEAD(&stable_node->hlist);
1061
08beca44
HD
1062 stable_node->page = kpage;
1063 set_page_stable_node(kpage, stable_node);
1064
7b6ba2c7 1065 return stable_node;
31dbd01f
IE
1066}
1067
1068/*
8dd3557a
HD
1069 * unstable_tree_search_insert - search for identical page,
1070 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1071 *
1072 * This function searches for a page in the unstable tree identical to the
1073 * page currently being scanned; and if no identical page is found in the
1074 * tree, we insert rmap_item as a new object into the unstable tree.
1075 *
1076 * This function returns pointer to rmap_item found to be identical
1077 * to the currently scanned page, NULL otherwise.
1078 *
1079 * This function does both searching and inserting, because they share
1080 * the same walking algorithm in an rbtree.
1081 */
8dd3557a
HD
1082static
1083struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1084 struct page *page,
1085 struct page **tree_pagep)
1086
31dbd01f
IE
1087{
1088 struct rb_node **new = &root_unstable_tree.rb_node;
1089 struct rb_node *parent = NULL;
1090
1091 while (*new) {
1092 struct rmap_item *tree_rmap_item;
8dd3557a 1093 struct page *tree_page;
31dbd01f
IE
1094 int ret;
1095
d178f27f 1096 cond_resched();
31dbd01f 1097 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a
HD
1098 tree_page = get_mergeable_page(tree_rmap_item);
1099 if (!tree_page)
31dbd01f
IE
1100 return NULL;
1101
1102 /*
8dd3557a 1103 * Don't substitute a ksm page for a forked page.
31dbd01f 1104 */
8dd3557a
HD
1105 if (page == tree_page) {
1106 put_page(tree_page);
31dbd01f
IE
1107 return NULL;
1108 }
1109
8dd3557a 1110 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1111
1112 parent = *new;
1113 if (ret < 0) {
8dd3557a 1114 put_page(tree_page);
31dbd01f
IE
1115 new = &parent->rb_left;
1116 } else if (ret > 0) {
8dd3557a 1117 put_page(tree_page);
31dbd01f
IE
1118 new = &parent->rb_right;
1119 } else {
8dd3557a 1120 *tree_pagep = tree_page;
31dbd01f
IE
1121 return tree_rmap_item;
1122 }
1123 }
1124
7b6ba2c7 1125 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f
IE
1126 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1127 rb_link_node(&rmap_item->node, parent, new);
1128 rb_insert_color(&rmap_item->node, &root_unstable_tree);
1129
473b0ce4 1130 ksm_pages_unshared++;
31dbd01f
IE
1131 return NULL;
1132}
1133
1134/*
1135 * stable_tree_append - add another rmap_item to the linked list of
1136 * rmap_items hanging off a given node of the stable tree, all sharing
1137 * the same ksm page.
1138 */
1139static void stable_tree_append(struct rmap_item *rmap_item,
7b6ba2c7 1140 struct stable_node *stable_node)
31dbd01f 1141{
7b6ba2c7 1142 rmap_item->head = stable_node;
31dbd01f 1143 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1144 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1145
7b6ba2c7
HD
1146 if (rmap_item->hlist.next)
1147 ksm_pages_sharing++;
1148 else
1149 ksm_pages_shared++;
31dbd01f
IE
1150}
1151
1152/*
81464e30
HD
1153 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1154 * if not, compare checksum to previous and if it's the same, see if page can
1155 * be inserted into the unstable tree, or merged with a page already there and
1156 * both transferred to the stable tree.
31dbd01f
IE
1157 *
1158 * @page: the page that we are searching identical page to.
1159 * @rmap_item: the reverse mapping into the virtual address of this page
1160 */
1161static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1162{
31dbd01f 1163 struct rmap_item *tree_rmap_item;
8dd3557a 1164 struct page *tree_page = NULL;
7b6ba2c7 1165 struct stable_node *stable_node;
8dd3557a 1166 struct page *kpage;
31dbd01f
IE
1167 unsigned int checksum;
1168 int err;
1169
93d17715 1170 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1171
1172 /* We first start with searching the page inside the stable tree */
08beca44 1173 stable_node = stable_tree_search(page);
7b6ba2c7 1174 if (stable_node) {
08beca44
HD
1175 kpage = stable_node->page;
1176 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
1177 if (!err) {
1178 /*
1179 * The page was successfully merged:
1180 * add its rmap_item to the stable tree.
1181 */
5ad64688 1182 lock_page(kpage);
7b6ba2c7 1183 stable_tree_append(rmap_item, stable_node);
5ad64688 1184 unlock_page(kpage);
31dbd01f 1185 }
8dd3557a 1186 put_page(kpage);
31dbd01f
IE
1187 return;
1188 }
1189
1190 /*
4035c07a
HD
1191 * If the hash value of the page has changed from the last time
1192 * we calculated it, this page is changing frequently: therefore we
1193 * don't want to insert it in the unstable tree, and we don't want
1194 * to waste our time searching for something identical to it there.
31dbd01f
IE
1195 */
1196 checksum = calc_checksum(page);
1197 if (rmap_item->oldchecksum != checksum) {
1198 rmap_item->oldchecksum = checksum;
1199 return;
1200 }
1201
8dd3557a
HD
1202 tree_rmap_item =
1203 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 1204 if (tree_rmap_item) {
8dd3557a
HD
1205 kpage = try_to_merge_two_pages(rmap_item, page,
1206 tree_rmap_item, tree_page);
1207 put_page(tree_page);
31dbd01f
IE
1208 /*
1209 * As soon as we merge this page, we want to remove the
1210 * rmap_item of the page we have merged with from the unstable
1211 * tree, and insert it instead as new node in the stable tree.
1212 */
8dd3557a 1213 if (kpage) {
93d17715 1214 remove_rmap_item_from_tree(tree_rmap_item);
473b0ce4 1215
5ad64688 1216 lock_page(kpage);
7b6ba2c7
HD
1217 stable_node = stable_tree_insert(kpage);
1218 if (stable_node) {
1219 stable_tree_append(tree_rmap_item, stable_node);
1220 stable_tree_append(rmap_item, stable_node);
1221 }
5ad64688 1222 unlock_page(kpage);
7b6ba2c7 1223
31dbd01f
IE
1224 /*
1225 * If we fail to insert the page into the stable tree,
1226 * we will have 2 virtual addresses that are pointing
1227 * to a ksm page left outside the stable tree,
1228 * in which case we need to break_cow on both.
1229 */
7b6ba2c7 1230 if (!stable_node) {
8dd3557a
HD
1231 break_cow(tree_rmap_item);
1232 break_cow(rmap_item);
31dbd01f
IE
1233 }
1234 }
31dbd01f
IE
1235 }
1236}
1237
1238static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 1239 struct rmap_item **rmap_list,
31dbd01f
IE
1240 unsigned long addr)
1241{
1242 struct rmap_item *rmap_item;
1243
6514d511
HD
1244 while (*rmap_list) {
1245 rmap_item = *rmap_list;
93d17715 1246 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 1247 return rmap_item;
31dbd01f
IE
1248 if (rmap_item->address > addr)
1249 break;
6514d511 1250 *rmap_list = rmap_item->rmap_list;
31dbd01f 1251 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1252 free_rmap_item(rmap_item);
1253 }
1254
1255 rmap_item = alloc_rmap_item();
1256 if (rmap_item) {
1257 /* It has already been zeroed */
1258 rmap_item->mm = mm_slot->mm;
1259 rmap_item->address = addr;
6514d511
HD
1260 rmap_item->rmap_list = *rmap_list;
1261 *rmap_list = rmap_item;
31dbd01f
IE
1262 }
1263 return rmap_item;
1264}
1265
1266static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1267{
1268 struct mm_struct *mm;
1269 struct mm_slot *slot;
1270 struct vm_area_struct *vma;
1271 struct rmap_item *rmap_item;
1272
1273 if (list_empty(&ksm_mm_head.mm_list))
1274 return NULL;
1275
1276 slot = ksm_scan.mm_slot;
1277 if (slot == &ksm_mm_head) {
1278 root_unstable_tree = RB_ROOT;
1279
1280 spin_lock(&ksm_mmlist_lock);
1281 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1282 ksm_scan.mm_slot = slot;
1283 spin_unlock(&ksm_mmlist_lock);
1284next_mm:
1285 ksm_scan.address = 0;
6514d511 1286 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
1287 }
1288
1289 mm = slot->mm;
1290 down_read(&mm->mmap_sem);
9ba69294
HD
1291 if (ksm_test_exit(mm))
1292 vma = NULL;
1293 else
1294 vma = find_vma(mm, ksm_scan.address);
1295
1296 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
1297 if (!(vma->vm_flags & VM_MERGEABLE))
1298 continue;
1299 if (ksm_scan.address < vma->vm_start)
1300 ksm_scan.address = vma->vm_start;
1301 if (!vma->anon_vma)
1302 ksm_scan.address = vma->vm_end;
1303
1304 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
1305 if (ksm_test_exit(mm))
1306 break;
31dbd01f
IE
1307 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1308 if (*page && PageAnon(*page)) {
1309 flush_anon_page(vma, *page, ksm_scan.address);
1310 flush_dcache_page(*page);
1311 rmap_item = get_next_rmap_item(slot,
6514d511 1312 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 1313 if (rmap_item) {
6514d511
HD
1314 ksm_scan.rmap_list =
1315 &rmap_item->rmap_list;
31dbd01f
IE
1316 ksm_scan.address += PAGE_SIZE;
1317 } else
1318 put_page(*page);
1319 up_read(&mm->mmap_sem);
1320 return rmap_item;
1321 }
1322 if (*page)
1323 put_page(*page);
1324 ksm_scan.address += PAGE_SIZE;
1325 cond_resched();
1326 }
1327 }
1328
9ba69294
HD
1329 if (ksm_test_exit(mm)) {
1330 ksm_scan.address = 0;
6514d511 1331 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 1332 }
31dbd01f
IE
1333 /*
1334 * Nuke all the rmap_items that are above this current rmap:
1335 * because there were no VM_MERGEABLE vmas with such addresses.
1336 */
6514d511 1337 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
1338
1339 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
1340 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1341 struct mm_slot, mm_list);
1342 if (ksm_scan.address == 0) {
1343 /*
1344 * We've completed a full scan of all vmas, holding mmap_sem
1345 * throughout, and found no VM_MERGEABLE: so do the same as
1346 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
1347 * This applies either when cleaning up after __ksm_exit
1348 * (but beware: we can reach here even before __ksm_exit),
1349 * or when all VM_MERGEABLE areas have been unmapped (and
1350 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97
HD
1351 */
1352 hlist_del(&slot->link);
1353 list_del(&slot->mm_list);
9ba69294
HD
1354 spin_unlock(&ksm_mmlist_lock);
1355
cd551f97
HD
1356 free_mm_slot(slot);
1357 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
1358 up_read(&mm->mmap_sem);
1359 mmdrop(mm);
1360 } else {
1361 spin_unlock(&ksm_mmlist_lock);
1362 up_read(&mm->mmap_sem);
cd551f97 1363 }
31dbd01f
IE
1364
1365 /* Repeat until we've completed scanning the whole list */
cd551f97 1366 slot = ksm_scan.mm_slot;
31dbd01f
IE
1367 if (slot != &ksm_mm_head)
1368 goto next_mm;
1369
31dbd01f
IE
1370 ksm_scan.seqnr++;
1371 return NULL;
1372}
1373
1374/**
1375 * ksm_do_scan - the ksm scanner main worker function.
1376 * @scan_npages - number of pages we want to scan before we return.
1377 */
1378static void ksm_do_scan(unsigned int scan_npages)
1379{
1380 struct rmap_item *rmap_item;
1381 struct page *page;
1382
1383 while (scan_npages--) {
1384 cond_resched();
1385 rmap_item = scan_get_next_rmap_item(&page);
1386 if (!rmap_item)
1387 return;
1388 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1389 cmp_and_merge_page(page, rmap_item);
1390 put_page(page);
1391 }
1392}
1393
6e158384
HD
1394static int ksmd_should_run(void)
1395{
1396 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1397}
1398
31dbd01f
IE
1399static int ksm_scan_thread(void *nothing)
1400{
339aa624 1401 set_user_nice(current, 5);
31dbd01f
IE
1402
1403 while (!kthread_should_stop()) {
6e158384
HD
1404 mutex_lock(&ksm_thread_mutex);
1405 if (ksmd_should_run())
31dbd01f 1406 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
1407 mutex_unlock(&ksm_thread_mutex);
1408
1409 if (ksmd_should_run()) {
31dbd01f
IE
1410 schedule_timeout_interruptible(
1411 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1412 } else {
1413 wait_event_interruptible(ksm_thread_wait,
6e158384 1414 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
1415 }
1416 }
1417 return 0;
1418}
1419
f8af4da3
HD
1420int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1421 unsigned long end, int advice, unsigned long *vm_flags)
1422{
1423 struct mm_struct *mm = vma->vm_mm;
d952b791 1424 int err;
f8af4da3
HD
1425
1426 switch (advice) {
1427 case MADV_MERGEABLE:
1428 /*
1429 * Be somewhat over-protective for now!
1430 */
1431 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1432 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1433 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
5ad64688 1434 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
f8af4da3
HD
1435 return 0; /* just ignore the advice */
1436
d952b791
HD
1437 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1438 err = __ksm_enter(mm);
1439 if (err)
1440 return err;
1441 }
f8af4da3
HD
1442
1443 *vm_flags |= VM_MERGEABLE;
1444 break;
1445
1446 case MADV_UNMERGEABLE:
1447 if (!(*vm_flags & VM_MERGEABLE))
1448 return 0; /* just ignore the advice */
1449
d952b791
HD
1450 if (vma->anon_vma) {
1451 err = unmerge_ksm_pages(vma, start, end);
1452 if (err)
1453 return err;
1454 }
f8af4da3
HD
1455
1456 *vm_flags &= ~VM_MERGEABLE;
1457 break;
1458 }
1459
1460 return 0;
1461}
1462
1463int __ksm_enter(struct mm_struct *mm)
1464{
6e158384
HD
1465 struct mm_slot *mm_slot;
1466 int needs_wakeup;
1467
1468 mm_slot = alloc_mm_slot();
31dbd01f
IE
1469 if (!mm_slot)
1470 return -ENOMEM;
1471
6e158384
HD
1472 /* Check ksm_run too? Would need tighter locking */
1473 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1474
31dbd01f
IE
1475 spin_lock(&ksm_mmlist_lock);
1476 insert_to_mm_slots_hash(mm, mm_slot);
1477 /*
1478 * Insert just behind the scanning cursor, to let the area settle
1479 * down a little; when fork is followed by immediate exec, we don't
1480 * want ksmd to waste time setting up and tearing down an rmap_list.
1481 */
1482 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1483 spin_unlock(&ksm_mmlist_lock);
1484
f8af4da3 1485 set_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1486 atomic_inc(&mm->mm_count);
6e158384
HD
1487
1488 if (needs_wakeup)
1489 wake_up_interruptible(&ksm_thread_wait);
1490
f8af4da3
HD
1491 return 0;
1492}
1493
1c2fb7a4 1494void __ksm_exit(struct mm_struct *mm)
f8af4da3 1495{
cd551f97 1496 struct mm_slot *mm_slot;
9ba69294 1497 int easy_to_free = 0;
cd551f97 1498
31dbd01f 1499 /*
9ba69294
HD
1500 * This process is exiting: if it's straightforward (as is the
1501 * case when ksmd was never running), free mm_slot immediately.
1502 * But if it's at the cursor or has rmap_items linked to it, use
1503 * mmap_sem to synchronize with any break_cows before pagetables
1504 * are freed, and leave the mm_slot on the list for ksmd to free.
1505 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 1506 */
9ba69294 1507
cd551f97
HD
1508 spin_lock(&ksm_mmlist_lock);
1509 mm_slot = get_mm_slot(mm);
9ba69294 1510 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 1511 if (!mm_slot->rmap_list) {
9ba69294
HD
1512 hlist_del(&mm_slot->link);
1513 list_del(&mm_slot->mm_list);
1514 easy_to_free = 1;
1515 } else {
1516 list_move(&mm_slot->mm_list,
1517 &ksm_scan.mm_slot->mm_list);
1518 }
cd551f97 1519 }
cd551f97
HD
1520 spin_unlock(&ksm_mmlist_lock);
1521
9ba69294
HD
1522 if (easy_to_free) {
1523 free_mm_slot(mm_slot);
1524 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1525 mmdrop(mm);
1526 } else if (mm_slot) {
9ba69294
HD
1527 down_write(&mm->mmap_sem);
1528 up_write(&mm->mmap_sem);
9ba69294 1529 }
31dbd01f
IE
1530}
1531
5ad64688
HD
1532struct page *ksm_does_need_to_copy(struct page *page,
1533 struct vm_area_struct *vma, unsigned long address)
1534{
1535 struct page *new_page;
1536
1537 unlock_page(page); /* any racers will COW it, not modify it */
1538
1539 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1540 if (new_page) {
1541 copy_user_highpage(new_page, page, address, vma);
1542
1543 SetPageDirty(new_page);
1544 __SetPageUptodate(new_page);
1545 SetPageSwapBacked(new_page);
1546 __set_page_locked(new_page);
1547
1548 if (page_evictable(new_page, vma))
1549 lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1550 else
1551 add_page_to_unevictable_list(new_page);
1552 }
1553
1554 page_cache_release(page);
1555 return new_page;
1556}
1557
1558int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1559 unsigned long *vm_flags)
1560{
1561 struct stable_node *stable_node;
1562 struct rmap_item *rmap_item;
1563 struct hlist_node *hlist;
1564 unsigned int mapcount = page_mapcount(page);
1565 int referenced = 0;
db114b83 1566 int search_new_forks = 0;
5ad64688
HD
1567
1568 VM_BUG_ON(!PageKsm(page));
1569 VM_BUG_ON(!PageLocked(page));
1570
1571 stable_node = page_stable_node(page);
1572 if (!stable_node)
1573 return 0;
db114b83 1574again:
5ad64688 1575 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
db114b83
HD
1576 struct anon_vma *anon_vma = rmap_item->anon_vma;
1577 struct vm_area_struct *vma;
5ad64688 1578
db114b83
HD
1579 spin_lock(&anon_vma->lock);
1580 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1581 if (rmap_item->address < vma->vm_start ||
1582 rmap_item->address >= vma->vm_end)
1583 continue;
1584 /*
1585 * Initially we examine only the vma which covers this
1586 * rmap_item; but later, if there is still work to do,
1587 * we examine covering vmas in other mms: in case they
1588 * were forked from the original since ksmd passed.
1589 */
1590 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1591 continue;
1592
1593 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1594 continue;
5ad64688 1595
db114b83 1596 referenced += page_referenced_one(page, vma,
5ad64688 1597 rmap_item->address, &mapcount, vm_flags);
db114b83
HD
1598 if (!search_new_forks || !mapcount)
1599 break;
1600 }
1601 spin_unlock(&anon_vma->lock);
5ad64688
HD
1602 if (!mapcount)
1603 goto out;
1604 }
db114b83
HD
1605 if (!search_new_forks++)
1606 goto again;
5ad64688 1607out:
5ad64688
HD
1608 return referenced;
1609}
1610
1611int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1612{
1613 struct stable_node *stable_node;
1614 struct hlist_node *hlist;
1615 struct rmap_item *rmap_item;
1616 int ret = SWAP_AGAIN;
db114b83 1617 int search_new_forks = 0;
5ad64688
HD
1618
1619 VM_BUG_ON(!PageKsm(page));
1620 VM_BUG_ON(!PageLocked(page));
1621
1622 stable_node = page_stable_node(page);
1623 if (!stable_node)
1624 return SWAP_FAIL;
db114b83 1625again:
5ad64688 1626 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
db114b83
HD
1627 struct anon_vma *anon_vma = rmap_item->anon_vma;
1628 struct vm_area_struct *vma;
5ad64688 1629
db114b83
HD
1630 spin_lock(&anon_vma->lock);
1631 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1632 if (rmap_item->address < vma->vm_start ||
1633 rmap_item->address >= vma->vm_end)
1634 continue;
1635 /*
1636 * Initially we examine only the vma which covers this
1637 * rmap_item; but later, if there is still work to do,
1638 * we examine covering vmas in other mms: in case they
1639 * were forked from the original since ksmd passed.
1640 */
1641 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1642 continue;
1643
1644 ret = try_to_unmap_one(page, vma,
1645 rmap_item->address, flags);
1646 if (ret != SWAP_AGAIN || !page_mapped(page)) {
1647 spin_unlock(&anon_vma->lock);
1648 goto out;
1649 }
1650 }
1651 spin_unlock(&anon_vma->lock);
5ad64688 1652 }
db114b83
HD
1653 if (!search_new_forks++)
1654 goto again;
5ad64688 1655out:
5ad64688
HD
1656 return ret;
1657}
1658
2ffd8679
HD
1659#ifdef CONFIG_SYSFS
1660/*
1661 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1662 */
1663
31dbd01f
IE
1664#define KSM_ATTR_RO(_name) \
1665 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1666#define KSM_ATTR(_name) \
1667 static struct kobj_attribute _name##_attr = \
1668 __ATTR(_name, 0644, _name##_show, _name##_store)
1669
1670static ssize_t sleep_millisecs_show(struct kobject *kobj,
1671 struct kobj_attribute *attr, char *buf)
1672{
1673 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1674}
1675
1676static ssize_t sleep_millisecs_store(struct kobject *kobj,
1677 struct kobj_attribute *attr,
1678 const char *buf, size_t count)
1679{
1680 unsigned long msecs;
1681 int err;
1682
1683 err = strict_strtoul(buf, 10, &msecs);
1684 if (err || msecs > UINT_MAX)
1685 return -EINVAL;
1686
1687 ksm_thread_sleep_millisecs = msecs;
1688
1689 return count;
1690}
1691KSM_ATTR(sleep_millisecs);
1692
1693static ssize_t pages_to_scan_show(struct kobject *kobj,
1694 struct kobj_attribute *attr, char *buf)
1695{
1696 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1697}
1698
1699static ssize_t pages_to_scan_store(struct kobject *kobj,
1700 struct kobj_attribute *attr,
1701 const char *buf, size_t count)
1702{
1703 int err;
1704 unsigned long nr_pages;
1705
1706 err = strict_strtoul(buf, 10, &nr_pages);
1707 if (err || nr_pages > UINT_MAX)
1708 return -EINVAL;
1709
1710 ksm_thread_pages_to_scan = nr_pages;
1711
1712 return count;
1713}
1714KSM_ATTR(pages_to_scan);
1715
1716static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1717 char *buf)
1718{
1719 return sprintf(buf, "%u\n", ksm_run);
1720}
1721
1722static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1723 const char *buf, size_t count)
1724{
1725 int err;
1726 unsigned long flags;
1727
1728 err = strict_strtoul(buf, 10, &flags);
1729 if (err || flags > UINT_MAX)
1730 return -EINVAL;
1731 if (flags > KSM_RUN_UNMERGE)
1732 return -EINVAL;
1733
1734 /*
1735 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1736 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
b4028260 1737 * breaking COW to free the unswappable pages_shared (but leaves
31dbd01f
IE
1738 * mm_slots on the list for when ksmd may be set running again).
1739 */
1740
1741 mutex_lock(&ksm_thread_mutex);
1742 if (ksm_run != flags) {
1743 ksm_run = flags;
d952b791 1744 if (flags & KSM_RUN_UNMERGE) {
35451bee 1745 current->flags |= PF_OOM_ORIGIN;
d952b791 1746 err = unmerge_and_remove_all_rmap_items();
35451bee 1747 current->flags &= ~PF_OOM_ORIGIN;
d952b791
HD
1748 if (err) {
1749 ksm_run = KSM_RUN_STOP;
1750 count = err;
1751 }
1752 }
31dbd01f
IE
1753 }
1754 mutex_unlock(&ksm_thread_mutex);
1755
1756 if (flags & KSM_RUN_MERGE)
1757 wake_up_interruptible(&ksm_thread_wait);
1758
1759 return count;
1760}
1761KSM_ATTR(run);
1762
31dbd01f
IE
1763static ssize_t max_kernel_pages_store(struct kobject *kobj,
1764 struct kobj_attribute *attr,
1765 const char *buf, size_t count)
1766{
1767 int err;
1768 unsigned long nr_pages;
1769
1770 err = strict_strtoul(buf, 10, &nr_pages);
1771 if (err)
1772 return -EINVAL;
1773
1774 ksm_max_kernel_pages = nr_pages;
1775
1776 return count;
1777}
1778
1779static ssize_t max_kernel_pages_show(struct kobject *kobj,
1780 struct kobj_attribute *attr, char *buf)
1781{
1782 return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1783}
1784KSM_ATTR(max_kernel_pages);
1785
b4028260
HD
1786static ssize_t pages_shared_show(struct kobject *kobj,
1787 struct kobj_attribute *attr, char *buf)
1788{
1789 return sprintf(buf, "%lu\n", ksm_pages_shared);
1790}
1791KSM_ATTR_RO(pages_shared);
1792
1793static ssize_t pages_sharing_show(struct kobject *kobj,
1794 struct kobj_attribute *attr, char *buf)
1795{
e178dfde 1796 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
1797}
1798KSM_ATTR_RO(pages_sharing);
1799
473b0ce4
HD
1800static ssize_t pages_unshared_show(struct kobject *kobj,
1801 struct kobj_attribute *attr, char *buf)
1802{
1803 return sprintf(buf, "%lu\n", ksm_pages_unshared);
1804}
1805KSM_ATTR_RO(pages_unshared);
1806
1807static ssize_t pages_volatile_show(struct kobject *kobj,
1808 struct kobj_attribute *attr, char *buf)
1809{
1810 long ksm_pages_volatile;
1811
1812 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1813 - ksm_pages_sharing - ksm_pages_unshared;
1814 /*
1815 * It was not worth any locking to calculate that statistic,
1816 * but it might therefore sometimes be negative: conceal that.
1817 */
1818 if (ksm_pages_volatile < 0)
1819 ksm_pages_volatile = 0;
1820 return sprintf(buf, "%ld\n", ksm_pages_volatile);
1821}
1822KSM_ATTR_RO(pages_volatile);
1823
1824static ssize_t full_scans_show(struct kobject *kobj,
1825 struct kobj_attribute *attr, char *buf)
1826{
1827 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1828}
1829KSM_ATTR_RO(full_scans);
1830
31dbd01f
IE
1831static struct attribute *ksm_attrs[] = {
1832 &sleep_millisecs_attr.attr,
1833 &pages_to_scan_attr.attr,
1834 &run_attr.attr,
31dbd01f 1835 &max_kernel_pages_attr.attr,
b4028260
HD
1836 &pages_shared_attr.attr,
1837 &pages_sharing_attr.attr,
473b0ce4
HD
1838 &pages_unshared_attr.attr,
1839 &pages_volatile_attr.attr,
1840 &full_scans_attr.attr,
31dbd01f
IE
1841 NULL,
1842};
1843
1844static struct attribute_group ksm_attr_group = {
1845 .attrs = ksm_attrs,
1846 .name = "ksm",
1847};
2ffd8679 1848#endif /* CONFIG_SYSFS */
31dbd01f
IE
1849
1850static int __init ksm_init(void)
1851{
1852 struct task_struct *ksm_thread;
1853 int err;
1854
c73602ad 1855 ksm_max_kernel_pages = totalram_pages / 4;
2c6854fd 1856
31dbd01f
IE
1857 err = ksm_slab_init();
1858 if (err)
1859 goto out;
1860
1861 err = mm_slots_hash_init();
1862 if (err)
1863 goto out_free1;
1864
1865 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1866 if (IS_ERR(ksm_thread)) {
1867 printk(KERN_ERR "ksm: creating kthread failed\n");
1868 err = PTR_ERR(ksm_thread);
1869 goto out_free2;
1870 }
1871
2ffd8679 1872#ifdef CONFIG_SYSFS
31dbd01f
IE
1873 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1874 if (err) {
1875 printk(KERN_ERR "ksm: register sysfs failed\n");
2ffd8679
HD
1876 kthread_stop(ksm_thread);
1877 goto out_free2;
31dbd01f 1878 }
c73602ad
HD
1879#else
1880 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
1881
2ffd8679 1882#endif /* CONFIG_SYSFS */
31dbd01f
IE
1883
1884 return 0;
1885
31dbd01f
IE
1886out_free2:
1887 mm_slots_hash_free();
1888out_free1:
1889 ksm_slab_free();
1890out:
1891 return err;
f8af4da3 1892}
31dbd01f 1893module_init(ksm_init)