]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/ksm.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
62b61f61 32#include <linux/memory.h>
31dbd01f 33#include <linux/mmu_notifier.h>
2c6854fd 34#include <linux/swap.h>
f8af4da3 35#include <linux/ksm.h>
4ca3a69b 36#include <linux/hashtable.h>
878aee7d 37#include <linux/freezer.h>
72788c38 38#include <linux/oom.h>
90bd6fd3 39#include <linux/numa.h>
f8af4da3 40
31dbd01f 41#include <asm/tlbflush.h>
73848b46 42#include "internal.h"
31dbd01f 43
e850dcf5
HD
44#ifdef CONFIG_NUMA
45#define NUMA(x) (x)
46#define DO_NUMA(x) do { (x); } while (0)
47#else
48#define NUMA(x) (0)
49#define DO_NUMA(x) do { } while (0)
50#endif
51
31dbd01f
IE
52/*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
93 */
94
95/**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
100 * @mm: the mm that this information is valid for
101 */
102struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
6514d511 105 struct rmap_item *rmap_list;
31dbd01f
IE
106 struct mm_struct *mm;
107};
108
109/**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
6514d511 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
6514d511 121 struct rmap_item **rmap_list;
31dbd01f
IE
122 unsigned long seqnr;
123};
124
7b6ba2c7
HD
125/**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
4146d2d6
HD
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 130 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6
HD
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
133 */
134struct stable_node {
4146d2d6
HD
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
7b6ba2c7 142 struct hlist_head hlist;
62b61f61 143 unsigned long kpfn;
4146d2d6
HD
144#ifdef CONFIG_NUMA
145 int nid;
146#endif
7b6ba2c7
HD
147};
148
31dbd01f
IE
149/**
150 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
160 */
161struct rmap_item {
6514d511 162 struct rmap_item *rmap_list;
bc56620b
HD
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165#ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167#endif
168 };
31dbd01f
IE
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 171 unsigned int oldchecksum; /* when unstable */
31dbd01f 172 union {
7b6ba2c7
HD
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
31dbd01f
IE
178 };
179};
180
181#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
182#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
184
185/* The stable and unstable tree heads */
ef53d16c
HD
186static struct rb_root one_stable_tree[1] = { RB_ROOT };
187static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188static struct rb_root *root_stable_tree = one_stable_tree;
189static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 190
4146d2d6
HD
191/* Recently migrated nodes of stable tree, pending proper placement */
192static LIST_HEAD(migrate_nodes);
193
4ca3a69b
SL
194#define MM_SLOTS_HASH_BITS 10
195static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
196
197static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199};
200static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
202};
203
204static struct kmem_cache *rmap_item_cache;
7b6ba2c7 205static struct kmem_cache *stable_node_cache;
31dbd01f
IE
206static struct kmem_cache *mm_slot_cache;
207
208/* The number of nodes in the stable tree */
b4028260 209static unsigned long ksm_pages_shared;
31dbd01f 210
e178dfde 211/* The number of page slots additionally sharing those nodes */
b4028260 212static unsigned long ksm_pages_sharing;
31dbd01f 213
473b0ce4
HD
214/* The number of nodes in the unstable tree */
215static unsigned long ksm_pages_unshared;
216
217/* The number of rmap_items in use: to calculate pages_volatile */
218static unsigned long ksm_rmap_items;
219
31dbd01f 220/* Number of pages ksmd should scan in one batch */
2c6854fd 221static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
222
223/* Milliseconds ksmd should sleep between batches */
2ffd8679 224static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 225
e86c59b1
CI
226/* Checksum of an empty (zeroed) page */
227static unsigned int zero_checksum __read_mostly;
228
229/* Whether to merge empty (zeroed) pages with actual zero pages */
230static bool ksm_use_zero_pages __read_mostly;
231
e850dcf5 232#ifdef CONFIG_NUMA
90bd6fd3
PH
233/* Zeroed when merging across nodes is not allowed */
234static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 235static int ksm_nr_node_ids = 1;
e850dcf5
HD
236#else
237#define ksm_merge_across_nodes 1U
ef53d16c 238#define ksm_nr_node_ids 1
e850dcf5 239#endif
90bd6fd3 240
31dbd01f
IE
241#define KSM_RUN_STOP 0
242#define KSM_RUN_MERGE 1
243#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
244#define KSM_RUN_OFFLINE 4
245static unsigned long ksm_run = KSM_RUN_STOP;
246static void wait_while_offlining(void);
31dbd01f
IE
247
248static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
249static DEFINE_MUTEX(ksm_thread_mutex);
250static DEFINE_SPINLOCK(ksm_mmlist_lock);
251
252#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
253 sizeof(struct __struct), __alignof__(struct __struct),\
254 (__flags), NULL)
255
256static int __init ksm_slab_init(void)
257{
258 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
259 if (!rmap_item_cache)
260 goto out;
261
7b6ba2c7
HD
262 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
263 if (!stable_node_cache)
264 goto out_free1;
265
31dbd01f
IE
266 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
267 if (!mm_slot_cache)
7b6ba2c7 268 goto out_free2;
31dbd01f
IE
269
270 return 0;
271
7b6ba2c7
HD
272out_free2:
273 kmem_cache_destroy(stable_node_cache);
274out_free1:
31dbd01f
IE
275 kmem_cache_destroy(rmap_item_cache);
276out:
277 return -ENOMEM;
278}
279
280static void __init ksm_slab_free(void)
281{
282 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 283 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
284 kmem_cache_destroy(rmap_item_cache);
285 mm_slot_cache = NULL;
286}
287
288static inline struct rmap_item *alloc_rmap_item(void)
289{
473b0ce4
HD
290 struct rmap_item *rmap_item;
291
5b398e41 292 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
293 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
294 if (rmap_item)
295 ksm_rmap_items++;
296 return rmap_item;
31dbd01f
IE
297}
298
299static inline void free_rmap_item(struct rmap_item *rmap_item)
300{
473b0ce4 301 ksm_rmap_items--;
31dbd01f
IE
302 rmap_item->mm = NULL; /* debug safety */
303 kmem_cache_free(rmap_item_cache, rmap_item);
304}
305
7b6ba2c7
HD
306static inline struct stable_node *alloc_stable_node(void)
307{
6213055f 308 /*
309 * The allocation can take too long with GFP_KERNEL when memory is under
310 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
311 * grants access to memory reserves, helping to avoid this problem.
312 */
313 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
314}
315
316static inline void free_stable_node(struct stable_node *stable_node)
317{
318 kmem_cache_free(stable_node_cache, stable_node);
319}
320
31dbd01f
IE
321static inline struct mm_slot *alloc_mm_slot(void)
322{
323 if (!mm_slot_cache) /* initialization failed */
324 return NULL;
325 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
326}
327
328static inline void free_mm_slot(struct mm_slot *mm_slot)
329{
330 kmem_cache_free(mm_slot_cache, mm_slot);
331}
332
31dbd01f
IE
333static struct mm_slot *get_mm_slot(struct mm_struct *mm)
334{
4ca3a69b
SL
335 struct mm_slot *slot;
336
b67bfe0d 337 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
338 if (slot->mm == mm)
339 return slot;
31dbd01f 340
31dbd01f
IE
341 return NULL;
342}
343
344static void insert_to_mm_slots_hash(struct mm_struct *mm,
345 struct mm_slot *mm_slot)
346{
31dbd01f 347 mm_slot->mm = mm;
4ca3a69b 348 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
349}
350
a913e182
HD
351/*
352 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
353 * page tables after it has passed through ksm_exit() - which, if necessary,
354 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
355 * a special flag: they can just back out as soon as mm_users goes to zero.
356 * ksm_test_exit() is used throughout to make this test for exit: in some
357 * places for correctness, in some places just to avoid unnecessary work.
358 */
359static inline bool ksm_test_exit(struct mm_struct *mm)
360{
361 return atomic_read(&mm->mm_users) == 0;
362}
363
31dbd01f
IE
364/*
365 * We use break_ksm to break COW on a ksm page: it's a stripped down
366 *
d4edcf0d 367 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
31dbd01f
IE
368 * put_page(page);
369 *
370 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
371 * in case the application has unmapped and remapped mm,addr meanwhile.
372 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
373 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
1b2ee126
DH
374 *
375 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
376 * of the process that owns 'vma'. We also do not want to enforce
377 * protection keys here anyway.
31dbd01f 378 */
d952b791 379static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
380{
381 struct page *page;
d952b791 382 int ret = 0;
31dbd01f
IE
383
384 do {
385 cond_resched();
1b2ee126
DH
386 page = follow_page(vma, addr,
387 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
22eccdd7 388 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
389 break;
390 if (PageKsm(page))
dcddffd4
KS
391 ret = handle_mm_fault(vma, addr,
392 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
31dbd01f
IE
393 else
394 ret = VM_FAULT_WRITE;
395 put_page(page);
33692f27 396 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
397 /*
398 * We must loop because handle_mm_fault() may back out if there's
399 * any difficulty e.g. if pte accessed bit gets updated concurrently.
400 *
401 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
402 * COW has been broken, even if the vma does not permit VM_WRITE;
403 * but note that a concurrent fault might break PageKsm for us.
404 *
405 * VM_FAULT_SIGBUS could occur if we race with truncation of the
406 * backing file, which also invalidates anonymous pages: that's
407 * okay, that truncation will have unmapped the PageKsm for us.
408 *
409 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
410 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
411 * current task has TIF_MEMDIE set, and will be OOM killed on return
412 * to user; and ksmd, having no mm, would never be chosen for that.
413 *
414 * But if the mm is in a limited mem_cgroup, then the fault may fail
415 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
416 * even ksmd can fail in this way - though it's usually breaking ksm
417 * just to undo a merge it made a moment before, so unlikely to oom.
418 *
419 * That's a pity: we might therefore have more kernel pages allocated
420 * than we're counting as nodes in the stable tree; but ksm_do_scan
421 * will retry to break_cow on each pass, so should recover the page
422 * in due course. The important thing is to not let VM_MERGEABLE
423 * be cleared while any such pages might remain in the area.
424 */
425 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
426}
427
ef694222
BL
428static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
429 unsigned long addr)
430{
431 struct vm_area_struct *vma;
432 if (ksm_test_exit(mm))
433 return NULL;
434 vma = find_vma(mm, addr);
435 if (!vma || vma->vm_start > addr)
436 return NULL;
437 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
438 return NULL;
439 return vma;
440}
441
8dd3557a 442static void break_cow(struct rmap_item *rmap_item)
31dbd01f 443{
8dd3557a
HD
444 struct mm_struct *mm = rmap_item->mm;
445 unsigned long addr = rmap_item->address;
31dbd01f
IE
446 struct vm_area_struct *vma;
447
4035c07a
HD
448 /*
449 * It is not an accident that whenever we want to break COW
450 * to undo, we also need to drop a reference to the anon_vma.
451 */
9e60109f 452 put_anon_vma(rmap_item->anon_vma);
4035c07a 453
81464e30 454 down_read(&mm->mmap_sem);
ef694222
BL
455 vma = find_mergeable_vma(mm, addr);
456 if (vma)
457 break_ksm(vma, addr);
31dbd01f
IE
458 up_read(&mm->mmap_sem);
459}
460
461static struct page *get_mergeable_page(struct rmap_item *rmap_item)
462{
463 struct mm_struct *mm = rmap_item->mm;
464 unsigned long addr = rmap_item->address;
465 struct vm_area_struct *vma;
466 struct page *page;
467
468 down_read(&mm->mmap_sem);
ef694222
BL
469 vma = find_mergeable_vma(mm, addr);
470 if (!vma)
31dbd01f
IE
471 goto out;
472
473 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 474 if (IS_ERR_OR_NULL(page))
31dbd01f 475 goto out;
f765f540 476 if (PageAnon(page)) {
31dbd01f
IE
477 flush_anon_page(vma, page, addr);
478 flush_dcache_page(page);
479 } else {
480 put_page(page);
c8f95ed1
AA
481out:
482 page = NULL;
31dbd01f
IE
483 }
484 up_read(&mm->mmap_sem);
485 return page;
486}
487
90bd6fd3
PH
488/*
489 * This helper is used for getting right index into array of tree roots.
490 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
491 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
492 * every node has its own stable and unstable tree.
493 */
494static inline int get_kpfn_nid(unsigned long kpfn)
495{
d8fc16a8 496 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
497}
498
4035c07a
HD
499static void remove_node_from_stable_tree(struct stable_node *stable_node)
500{
501 struct rmap_item *rmap_item;
4035c07a 502
b67bfe0d 503 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
504 if (rmap_item->hlist.next)
505 ksm_pages_sharing--;
506 else
507 ksm_pages_shared--;
9e60109f 508 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
509 rmap_item->address &= PAGE_MASK;
510 cond_resched();
511 }
512
4146d2d6
HD
513 if (stable_node->head == &migrate_nodes)
514 list_del(&stable_node->list);
515 else
516 rb_erase(&stable_node->node,
ef53d16c 517 root_stable_tree + NUMA(stable_node->nid));
4035c07a
HD
518 free_stable_node(stable_node);
519}
520
521/*
522 * get_ksm_page: checks if the page indicated by the stable node
523 * is still its ksm page, despite having held no reference to it.
524 * In which case we can trust the content of the page, and it
525 * returns the gotten page; but if the page has now been zapped,
526 * remove the stale node from the stable tree and return NULL.
c8d6553b 527 * But beware, the stable node's page might be being migrated.
4035c07a
HD
528 *
529 * You would expect the stable_node to hold a reference to the ksm page.
530 * But if it increments the page's count, swapping out has to wait for
531 * ksmd to come around again before it can free the page, which may take
532 * seconds or even minutes: much too unresponsive. So instead we use a
533 * "keyhole reference": access to the ksm page from the stable node peeps
534 * out through its keyhole to see if that page still holds the right key,
535 * pointing back to this stable node. This relies on freeing a PageAnon
536 * page to reset its page->mapping to NULL, and relies on no other use of
537 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
538 * is on its way to being freed; but it is an anomaly to bear in mind.
539 */
8fdb3dbf 540static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
541{
542 struct page *page;
543 void *expected_mapping;
c8d6553b 544 unsigned long kpfn;
4035c07a 545
bda807d4
MK
546 expected_mapping = (void *)((unsigned long)stable_node |
547 PAGE_MAPPING_KSM);
c8d6553b 548again:
4db0c3c2 549 kpfn = READ_ONCE(stable_node->kpfn);
c8d6553b
HD
550 page = pfn_to_page(kpfn);
551
552 /*
553 * page is computed from kpfn, so on most architectures reading
554 * page->mapping is naturally ordered after reading node->kpfn,
555 * but on Alpha we need to be more careful.
556 */
557 smp_read_barrier_depends();
4db0c3c2 558 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 559 goto stale;
c8d6553b
HD
560
561 /*
562 * We cannot do anything with the page while its refcount is 0.
563 * Usually 0 means free, or tail of a higher-order page: in which
564 * case this node is no longer referenced, and should be freed;
565 * however, it might mean that the page is under page_freeze_refs().
566 * The __remove_mapping() case is easy, again the node is now stale;
567 * but if page is swapcache in migrate_page_move_mapping(), it might
568 * still be our page, in which case it's essential to keep the node.
569 */
570 while (!get_page_unless_zero(page)) {
571 /*
572 * Another check for page->mapping != expected_mapping would
573 * work here too. We have chosen the !PageSwapCache test to
574 * optimize the common case, when the page is or is about to
575 * be freed: PageSwapCache is cleared (under spin_lock_irq)
576 * in the freeze_refs section of __remove_mapping(); but Anon
577 * page->mapping reset to NULL later, in free_pages_prepare().
578 */
579 if (!PageSwapCache(page))
580 goto stale;
581 cpu_relax();
582 }
583
4db0c3c2 584 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
585 put_page(page);
586 goto stale;
587 }
c8d6553b 588
8fdb3dbf 589 if (lock_it) {
8aafa6a4 590 lock_page(page);
4db0c3c2 591 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
592 unlock_page(page);
593 put_page(page);
594 goto stale;
595 }
596 }
4035c07a 597 return page;
c8d6553b 598
4035c07a 599stale:
c8d6553b
HD
600 /*
601 * We come here from above when page->mapping or !PageSwapCache
602 * suggests that the node is stale; but it might be under migration.
603 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
604 * before checking whether node->kpfn has been changed.
605 */
606 smp_rmb();
4db0c3c2 607 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 608 goto again;
4035c07a
HD
609 remove_node_from_stable_tree(stable_node);
610 return NULL;
611}
612
31dbd01f
IE
613/*
614 * Removing rmap_item from stable or unstable tree.
615 * This function will clean the information from the stable/unstable tree.
616 */
617static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
618{
7b6ba2c7
HD
619 if (rmap_item->address & STABLE_FLAG) {
620 struct stable_node *stable_node;
5ad64688 621 struct page *page;
31dbd01f 622
7b6ba2c7 623 stable_node = rmap_item->head;
8aafa6a4 624 page = get_ksm_page(stable_node, true);
4035c07a
HD
625 if (!page)
626 goto out;
5ad64688 627
7b6ba2c7 628 hlist_del(&rmap_item->hlist);
4035c07a
HD
629 unlock_page(page);
630 put_page(page);
08beca44 631
98666f8a 632 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
633 ksm_pages_sharing--;
634 else
7b6ba2c7 635 ksm_pages_shared--;
31dbd01f 636
9e60109f 637 put_anon_vma(rmap_item->anon_vma);
93d17715 638 rmap_item->address &= PAGE_MASK;
31dbd01f 639
7b6ba2c7 640 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
641 unsigned char age;
642 /*
9ba69294 643 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 644 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
645 * But be careful when an mm is exiting: do the rb_erase
646 * if this rmap_item was inserted by this scan, rather
647 * than left over from before.
31dbd01f
IE
648 */
649 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 650 BUG_ON(age > 1);
31dbd01f 651 if (!age)
90bd6fd3 652 rb_erase(&rmap_item->node,
ef53d16c 653 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 654 ksm_pages_unshared--;
93d17715 655 rmap_item->address &= PAGE_MASK;
31dbd01f 656 }
4035c07a 657out:
31dbd01f
IE
658 cond_resched(); /* we're called from many long loops */
659}
660
31dbd01f 661static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 662 struct rmap_item **rmap_list)
31dbd01f 663{
6514d511
HD
664 while (*rmap_list) {
665 struct rmap_item *rmap_item = *rmap_list;
666 *rmap_list = rmap_item->rmap_list;
31dbd01f 667 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
668 free_rmap_item(rmap_item);
669 }
670}
671
672/*
e850dcf5 673 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
674 * than check every pte of a given vma, the locking doesn't quite work for
675 * that - an rmap_item is assigned to the stable tree after inserting ksm
676 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
677 * rmap_items from parent to child at fork time (so as not to waste time
678 * if exit comes before the next scan reaches it).
81464e30
HD
679 *
680 * Similarly, although we'd like to remove rmap_items (so updating counts
681 * and freeing memory) when unmerging an area, it's easier to leave that
682 * to the next pass of ksmd - consider, for example, how ksmd might be
683 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 684 */
d952b791
HD
685static int unmerge_ksm_pages(struct vm_area_struct *vma,
686 unsigned long start, unsigned long end)
31dbd01f
IE
687{
688 unsigned long addr;
d952b791 689 int err = 0;
31dbd01f 690
d952b791 691 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
692 if (ksm_test_exit(vma->vm_mm))
693 break;
d952b791
HD
694 if (signal_pending(current))
695 err = -ERESTARTSYS;
696 else
697 err = break_ksm(vma, addr);
698 }
699 return err;
31dbd01f
IE
700}
701
2ffd8679
HD
702#ifdef CONFIG_SYSFS
703/*
704 * Only called through the sysfs control interface:
705 */
cbf86cfe
HD
706static int remove_stable_node(struct stable_node *stable_node)
707{
708 struct page *page;
709 int err;
710
711 page = get_ksm_page(stable_node, true);
712 if (!page) {
713 /*
714 * get_ksm_page did remove_node_from_stable_tree itself.
715 */
716 return 0;
717 }
718
8fdb3dbf
HD
719 if (WARN_ON_ONCE(page_mapped(page))) {
720 /*
721 * This should not happen: but if it does, just refuse to let
722 * merge_across_nodes be switched - there is no need to panic.
723 */
cbf86cfe 724 err = -EBUSY;
8fdb3dbf 725 } else {
cbf86cfe 726 /*
8fdb3dbf
HD
727 * The stable node did not yet appear stale to get_ksm_page(),
728 * since that allows for an unmapped ksm page to be recognized
729 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
730 * This page might be in a pagevec waiting to be freed,
731 * or it might be PageSwapCache (perhaps under writeback),
732 * or it might have been removed from swapcache a moment ago.
733 */
734 set_page_stable_node(page, NULL);
735 remove_node_from_stable_tree(stable_node);
736 err = 0;
737 }
738
739 unlock_page(page);
740 put_page(page);
741 return err;
742}
743
744static int remove_all_stable_nodes(void)
745{
03640418 746 struct stable_node *stable_node, *next;
cbf86cfe
HD
747 int nid;
748 int err = 0;
749
ef53d16c 750 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
751 while (root_stable_tree[nid].rb_node) {
752 stable_node = rb_entry(root_stable_tree[nid].rb_node,
753 struct stable_node, node);
754 if (remove_stable_node(stable_node)) {
755 err = -EBUSY;
756 break; /* proceed to next nid */
757 }
758 cond_resched();
759 }
760 }
03640418 761 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
762 if (remove_stable_node(stable_node))
763 err = -EBUSY;
764 cond_resched();
765 }
cbf86cfe
HD
766 return err;
767}
768
d952b791 769static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
770{
771 struct mm_slot *mm_slot;
772 struct mm_struct *mm;
773 struct vm_area_struct *vma;
d952b791
HD
774 int err = 0;
775
776 spin_lock(&ksm_mmlist_lock);
9ba69294 777 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
778 struct mm_slot, mm_list);
779 spin_unlock(&ksm_mmlist_lock);
31dbd01f 780
9ba69294
HD
781 for (mm_slot = ksm_scan.mm_slot;
782 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
783 mm = mm_slot->mm;
784 down_read(&mm->mmap_sem);
785 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
786 if (ksm_test_exit(mm))
787 break;
31dbd01f
IE
788 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
789 continue;
d952b791
HD
790 err = unmerge_ksm_pages(vma,
791 vma->vm_start, vma->vm_end);
9ba69294
HD
792 if (err)
793 goto error;
31dbd01f 794 }
9ba69294 795
6514d511 796 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
7496fea9 797 up_read(&mm->mmap_sem);
d952b791
HD
798
799 spin_lock(&ksm_mmlist_lock);
9ba69294 800 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 801 struct mm_slot, mm_list);
9ba69294 802 if (ksm_test_exit(mm)) {
4ca3a69b 803 hash_del(&mm_slot->link);
9ba69294
HD
804 list_del(&mm_slot->mm_list);
805 spin_unlock(&ksm_mmlist_lock);
806
807 free_mm_slot(mm_slot);
808 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 809 mmdrop(mm);
7496fea9 810 } else
9ba69294 811 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
812 }
813
cbf86cfe
HD
814 /* Clean up stable nodes, but don't worry if some are still busy */
815 remove_all_stable_nodes();
d952b791 816 ksm_scan.seqnr = 0;
9ba69294
HD
817 return 0;
818
819error:
820 up_read(&mm->mmap_sem);
31dbd01f 821 spin_lock(&ksm_mmlist_lock);
d952b791 822 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 823 spin_unlock(&ksm_mmlist_lock);
d952b791 824 return err;
31dbd01f 825}
2ffd8679 826#endif /* CONFIG_SYSFS */
31dbd01f 827
31dbd01f
IE
828static u32 calc_checksum(struct page *page)
829{
830 u32 checksum;
9b04c5fe 831 void *addr = kmap_atomic(page);
31dbd01f 832 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 833 kunmap_atomic(addr);
31dbd01f
IE
834 return checksum;
835}
836
837static int memcmp_pages(struct page *page1, struct page *page2)
838{
839 char *addr1, *addr2;
840 int ret;
841
9b04c5fe
CW
842 addr1 = kmap_atomic(page1);
843 addr2 = kmap_atomic(page2);
31dbd01f 844 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
845 kunmap_atomic(addr2);
846 kunmap_atomic(addr1);
31dbd01f
IE
847 return ret;
848}
849
850static inline int pages_identical(struct page *page1, struct page *page2)
851{
852 return !memcmp_pages(page1, page2);
853}
854
855static int write_protect_page(struct vm_area_struct *vma, struct page *page,
856 pte_t *orig_pte)
857{
858 struct mm_struct *mm = vma->vm_mm;
36eaff33
KS
859 struct page_vma_mapped_walk pvmw = {
860 .page = page,
861 .vma = vma,
862 };
31dbd01f
IE
863 int swapped;
864 int err = -EFAULT;
6bdb913f
HE
865 unsigned long mmun_start; /* For mmu_notifiers */
866 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 867
36eaff33
KS
868 pvmw.address = page_address_in_vma(page, vma);
869 if (pvmw.address == -EFAULT)
31dbd01f
IE
870 goto out;
871
29ad768c 872 BUG_ON(PageTransCompound(page));
6bdb913f 873
36eaff33
KS
874 mmun_start = pvmw.address;
875 mmun_end = pvmw.address + PAGE_SIZE;
6bdb913f
HE
876 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
877
36eaff33 878 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 879 goto out_mn;
36eaff33
KS
880 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
881 goto out_unlock;
31dbd01f 882
595cd8f2
AK
883 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
884 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) {
31dbd01f
IE
885 pte_t entry;
886
887 swapped = PageSwapCache(page);
36eaff33 888 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 889 /*
25985edc 890 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
891 * take any lock, therefore the check that we are going to make
892 * with the pagecount against the mapcount is racey and
893 * O_DIRECT can happen right after the check.
894 * So we clear the pte and flush the tlb before the check
895 * this assure us that no O_DIRECT can happen after the check
896 * or in the middle of the check.
897 */
36eaff33 898 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
899 /*
900 * Check that no O_DIRECT or similar I/O is in progress on the
901 * page
902 */
31e855ea 903 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 904 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
905 goto out_unlock;
906 }
4e31635c
HD
907 if (pte_dirty(entry))
908 set_page_dirty(page);
595cd8f2
AK
909
910 if (pte_protnone(entry))
911 entry = pte_mkclean(pte_clear_savedwrite(entry));
912 else
913 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 914 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 915 }
36eaff33 916 *orig_pte = *pvmw.pte;
31dbd01f
IE
917 err = 0;
918
919out_unlock:
36eaff33 920 page_vma_mapped_walk_done(&pvmw);
6bdb913f
HE
921out_mn:
922 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
923out:
924 return err;
925}
926
927/**
928 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
929 * @vma: vma that holds the pte pointing to page
930 * @page: the page we are replacing by kpage
931 * @kpage: the ksm page we replace page by
31dbd01f
IE
932 * @orig_pte: the original value of the pte
933 *
934 * Returns 0 on success, -EFAULT on failure.
935 */
8dd3557a
HD
936static int replace_page(struct vm_area_struct *vma, struct page *page,
937 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
938{
939 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
940 pmd_t *pmd;
941 pte_t *ptep;
e86c59b1 942 pte_t newpte;
31dbd01f
IE
943 spinlock_t *ptl;
944 unsigned long addr;
31dbd01f 945 int err = -EFAULT;
6bdb913f
HE
946 unsigned long mmun_start; /* For mmu_notifiers */
947 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 948
8dd3557a 949 addr = page_address_in_vma(page, vma);
31dbd01f
IE
950 if (addr == -EFAULT)
951 goto out;
952
6219049a
BL
953 pmd = mm_find_pmd(mm, addr);
954 if (!pmd)
31dbd01f 955 goto out;
31dbd01f 956
6bdb913f
HE
957 mmun_start = addr;
958 mmun_end = addr + PAGE_SIZE;
959 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
960
31dbd01f
IE
961 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
962 if (!pte_same(*ptep, orig_pte)) {
963 pte_unmap_unlock(ptep, ptl);
6bdb913f 964 goto out_mn;
31dbd01f
IE
965 }
966
e86c59b1
CI
967 /*
968 * No need to check ksm_use_zero_pages here: we can only have a
969 * zero_page here if ksm_use_zero_pages was enabled alreaady.
970 */
971 if (!is_zero_pfn(page_to_pfn(kpage))) {
972 get_page(kpage);
973 page_add_anon_rmap(kpage, vma, addr, false);
974 newpte = mk_pte(kpage, vma->vm_page_prot);
975 } else {
976 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
977 vma->vm_page_prot));
978 }
31dbd01f
IE
979
980 flush_cache_page(vma, addr, pte_pfn(*ptep));
34ee645e 981 ptep_clear_flush_notify(vma, addr, ptep);
e86c59b1 982 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 983
d281ee61 984 page_remove_rmap(page, false);
ae52a2ad
HD
985 if (!page_mapped(page))
986 try_to_free_swap(page);
8dd3557a 987 put_page(page);
31dbd01f
IE
988
989 pte_unmap_unlock(ptep, ptl);
990 err = 0;
6bdb913f
HE
991out_mn:
992 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
993out:
994 return err;
995}
996
997/*
998 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
999 * @vma: the vma that holds the pte pointing to page
1000 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1001 * @kpage: the PageKsm page that we want to map instead of page,
1002 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1003 *
1004 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1005 */
1006static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1007 struct page *page, struct page *kpage)
31dbd01f
IE
1008{
1009 pte_t orig_pte = __pte(0);
1010 int err = -EFAULT;
1011
db114b83
HD
1012 if (page == kpage) /* ksm page forked */
1013 return 0;
1014
8dd3557a 1015 if (!PageAnon(page))
31dbd01f
IE
1016 goto out;
1017
31dbd01f
IE
1018 /*
1019 * We need the page lock to read a stable PageSwapCache in
1020 * write_protect_page(). We use trylock_page() instead of
1021 * lock_page() because we don't want to wait here - we
1022 * prefer to continue scanning and merging different pages,
1023 * then come back to this page when it is unlocked.
1024 */
8dd3557a 1025 if (!trylock_page(page))
31e855ea 1026 goto out;
f765f540
KS
1027
1028 if (PageTransCompound(page)) {
1029 err = split_huge_page(page);
1030 if (err)
1031 goto out_unlock;
1032 }
1033
31dbd01f
IE
1034 /*
1035 * If this anonymous page is mapped only here, its pte may need
1036 * to be write-protected. If it's mapped elsewhere, all of its
1037 * ptes are necessarily already write-protected. But in either
1038 * case, we need to lock and check page_count is not raised.
1039 */
80e14822
HD
1040 if (write_protect_page(vma, page, &orig_pte) == 0) {
1041 if (!kpage) {
1042 /*
1043 * While we hold page lock, upgrade page from
1044 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1045 * stable_tree_insert() will update stable_node.
1046 */
1047 set_page_stable_node(page, NULL);
1048 mark_page_accessed(page);
337ed7eb
MK
1049 /*
1050 * Page reclaim just frees a clean page with no dirty
1051 * ptes: make sure that the ksm page would be swapped.
1052 */
1053 if (!PageDirty(page))
1054 SetPageDirty(page);
80e14822
HD
1055 err = 0;
1056 } else if (pages_identical(page, kpage))
1057 err = replace_page(vma, page, kpage, orig_pte);
1058 }
31dbd01f 1059
80e14822 1060 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1061 munlock_vma_page(page);
5ad64688
HD
1062 if (!PageMlocked(kpage)) {
1063 unlock_page(page);
5ad64688
HD
1064 lock_page(kpage);
1065 mlock_vma_page(kpage);
1066 page = kpage; /* for final unlock */
1067 }
1068 }
73848b46 1069
f765f540 1070out_unlock:
8dd3557a 1071 unlock_page(page);
31dbd01f
IE
1072out:
1073 return err;
1074}
1075
81464e30
HD
1076/*
1077 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1078 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1079 *
1080 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1081 */
8dd3557a
HD
1082static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1083 struct page *page, struct page *kpage)
81464e30 1084{
8dd3557a 1085 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1086 struct vm_area_struct *vma;
1087 int err = -EFAULT;
1088
8dd3557a 1089 down_read(&mm->mmap_sem);
85c6e8dd
AA
1090 vma = find_mergeable_vma(mm, rmap_item->address);
1091 if (!vma)
81464e30
HD
1092 goto out;
1093
8dd3557a 1094 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1095 if (err)
1096 goto out;
1097
bc56620b
HD
1098 /* Unstable nid is in union with stable anon_vma: remove first */
1099 remove_rmap_item_from_tree(rmap_item);
1100
db114b83 1101 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1102 rmap_item->anon_vma = vma->anon_vma;
1103 get_anon_vma(vma->anon_vma);
81464e30 1104out:
8dd3557a 1105 up_read(&mm->mmap_sem);
81464e30
HD
1106 return err;
1107}
1108
31dbd01f
IE
1109/*
1110 * try_to_merge_two_pages - take two identical pages and prepare them
1111 * to be merged into one page.
1112 *
8dd3557a
HD
1113 * This function returns the kpage if we successfully merged two identical
1114 * pages into one ksm page, NULL otherwise.
31dbd01f 1115 *
80e14822 1116 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1117 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1118 */
8dd3557a
HD
1119static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1120 struct page *page,
1121 struct rmap_item *tree_rmap_item,
1122 struct page *tree_page)
31dbd01f 1123{
80e14822 1124 int err;
31dbd01f 1125
80e14822 1126 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1127 if (!err) {
8dd3557a 1128 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1129 tree_page, page);
31dbd01f 1130 /*
81464e30
HD
1131 * If that fails, we have a ksm page with only one pte
1132 * pointing to it: so break it.
31dbd01f 1133 */
4035c07a 1134 if (err)
8dd3557a 1135 break_cow(rmap_item);
31dbd01f 1136 }
80e14822 1137 return err ? NULL : page;
31dbd01f
IE
1138}
1139
31dbd01f 1140/*
8dd3557a 1141 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1142 *
1143 * This function checks if there is a page inside the stable tree
1144 * with identical content to the page that we are scanning right now.
1145 *
7b6ba2c7 1146 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1147 * NULL otherwise.
1148 */
62b61f61 1149static struct page *stable_tree_search(struct page *page)
31dbd01f 1150{
90bd6fd3 1151 int nid;
ef53d16c 1152 struct rb_root *root;
4146d2d6
HD
1153 struct rb_node **new;
1154 struct rb_node *parent;
1155 struct stable_node *stable_node;
1156 struct stable_node *page_node;
31dbd01f 1157
4146d2d6
HD
1158 page_node = page_stable_node(page);
1159 if (page_node && page_node->head != &migrate_nodes) {
1160 /* ksm page forked */
08beca44 1161 get_page(page);
62b61f61 1162 return page;
08beca44
HD
1163 }
1164
90bd6fd3 1165 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1166 root = root_stable_tree + nid;
4146d2d6 1167again:
ef53d16c 1168 new = &root->rb_node;
4146d2d6 1169 parent = NULL;
90bd6fd3 1170
4146d2d6 1171 while (*new) {
4035c07a 1172 struct page *tree_page;
31dbd01f
IE
1173 int ret;
1174
08beca44 1175 cond_resched();
4146d2d6 1176 stable_node = rb_entry(*new, struct stable_node, node);
8aafa6a4 1177 tree_page = get_ksm_page(stable_node, false);
f2e5ff85
AA
1178 if (!tree_page) {
1179 /*
1180 * If we walked over a stale stable_node,
1181 * get_ksm_page() will call rb_erase() and it
1182 * may rebalance the tree from under us. So
1183 * restart the search from scratch. Returning
1184 * NULL would be safe too, but we'd generate
1185 * false negative insertions just because some
1186 * stable_node was stale.
1187 */
1188 goto again;
1189 }
31dbd01f 1190
4035c07a 1191 ret = memcmp_pages(page, tree_page);
c8d6553b 1192 put_page(tree_page);
31dbd01f 1193
4146d2d6 1194 parent = *new;
c8d6553b 1195 if (ret < 0)
4146d2d6 1196 new = &parent->rb_left;
c8d6553b 1197 else if (ret > 0)
4146d2d6 1198 new = &parent->rb_right;
c8d6553b
HD
1199 else {
1200 /*
1201 * Lock and unlock the stable_node's page (which
1202 * might already have been migrated) so that page
1203 * migration is sure to notice its raised count.
1204 * It would be more elegant to return stable_node
1205 * than kpage, but that involves more changes.
1206 */
1207 tree_page = get_ksm_page(stable_node, true);
4146d2d6 1208 if (tree_page) {
c8d6553b 1209 unlock_page(tree_page);
4146d2d6
HD
1210 if (get_kpfn_nid(stable_node->kpfn) !=
1211 NUMA(stable_node->nid)) {
1212 put_page(tree_page);
1213 goto replace;
1214 }
1215 return tree_page;
1216 }
1217 /*
1218 * There is now a place for page_node, but the tree may
1219 * have been rebalanced, so re-evaluate parent and new.
1220 */
1221 if (page_node)
1222 goto again;
1223 return NULL;
c8d6553b 1224 }
31dbd01f
IE
1225 }
1226
4146d2d6
HD
1227 if (!page_node)
1228 return NULL;
1229
1230 list_del(&page_node->list);
1231 DO_NUMA(page_node->nid = nid);
1232 rb_link_node(&page_node->node, parent, new);
ef53d16c 1233 rb_insert_color(&page_node->node, root);
4146d2d6
HD
1234 get_page(page);
1235 return page;
1236
1237replace:
1238 if (page_node) {
1239 list_del(&page_node->list);
1240 DO_NUMA(page_node->nid = nid);
ef53d16c 1241 rb_replace_node(&stable_node->node, &page_node->node, root);
4146d2d6
HD
1242 get_page(page);
1243 } else {
ef53d16c 1244 rb_erase(&stable_node->node, root);
4146d2d6
HD
1245 page = NULL;
1246 }
1247 stable_node->head = &migrate_nodes;
1248 list_add(&stable_node->list, stable_node->head);
1249 return page;
31dbd01f
IE
1250}
1251
1252/*
e850dcf5 1253 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1254 * into the stable tree.
1255 *
7b6ba2c7
HD
1256 * This function returns the stable tree node just allocated on success,
1257 * NULL otherwise.
31dbd01f 1258 */
7b6ba2c7 1259static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1260{
90bd6fd3
PH
1261 int nid;
1262 unsigned long kpfn;
ef53d16c 1263 struct rb_root *root;
90bd6fd3 1264 struct rb_node **new;
f2e5ff85 1265 struct rb_node *parent;
7b6ba2c7 1266 struct stable_node *stable_node;
31dbd01f 1267
90bd6fd3
PH
1268 kpfn = page_to_pfn(kpage);
1269 nid = get_kpfn_nid(kpfn);
ef53d16c 1270 root = root_stable_tree + nid;
f2e5ff85
AA
1271again:
1272 parent = NULL;
ef53d16c 1273 new = &root->rb_node;
90bd6fd3 1274
31dbd01f 1275 while (*new) {
4035c07a 1276 struct page *tree_page;
31dbd01f
IE
1277 int ret;
1278
08beca44 1279 cond_resched();
7b6ba2c7 1280 stable_node = rb_entry(*new, struct stable_node, node);
8aafa6a4 1281 tree_page = get_ksm_page(stable_node, false);
f2e5ff85
AA
1282 if (!tree_page) {
1283 /*
1284 * If we walked over a stale stable_node,
1285 * get_ksm_page() will call rb_erase() and it
1286 * may rebalance the tree from under us. So
1287 * restart the search from scratch. Returning
1288 * NULL would be safe too, but we'd generate
1289 * false negative insertions just because some
1290 * stable_node was stale.
1291 */
1292 goto again;
1293 }
31dbd01f 1294
4035c07a
HD
1295 ret = memcmp_pages(kpage, tree_page);
1296 put_page(tree_page);
31dbd01f
IE
1297
1298 parent = *new;
1299 if (ret < 0)
1300 new = &parent->rb_left;
1301 else if (ret > 0)
1302 new = &parent->rb_right;
1303 else {
1304 /*
1305 * It is not a bug that stable_tree_search() didn't
1306 * find this node: because at that time our page was
1307 * not yet write-protected, so may have changed since.
1308 */
1309 return NULL;
1310 }
1311 }
1312
7b6ba2c7
HD
1313 stable_node = alloc_stable_node();
1314 if (!stable_node)
1315 return NULL;
31dbd01f 1316
7b6ba2c7 1317 INIT_HLIST_HEAD(&stable_node->hlist);
90bd6fd3 1318 stable_node->kpfn = kpfn;
08beca44 1319 set_page_stable_node(kpage, stable_node);
4146d2d6 1320 DO_NUMA(stable_node->nid = nid);
e850dcf5 1321 rb_link_node(&stable_node->node, parent, new);
ef53d16c 1322 rb_insert_color(&stable_node->node, root);
08beca44 1323
7b6ba2c7 1324 return stable_node;
31dbd01f
IE
1325}
1326
1327/*
8dd3557a
HD
1328 * unstable_tree_search_insert - search for identical page,
1329 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1330 *
1331 * This function searches for a page in the unstable tree identical to the
1332 * page currently being scanned; and if no identical page is found in the
1333 * tree, we insert rmap_item as a new object into the unstable tree.
1334 *
1335 * This function returns pointer to rmap_item found to be identical
1336 * to the currently scanned page, NULL otherwise.
1337 *
1338 * This function does both searching and inserting, because they share
1339 * the same walking algorithm in an rbtree.
1340 */
8dd3557a
HD
1341static
1342struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1343 struct page *page,
1344 struct page **tree_pagep)
31dbd01f 1345{
90bd6fd3
PH
1346 struct rb_node **new;
1347 struct rb_root *root;
31dbd01f 1348 struct rb_node *parent = NULL;
90bd6fd3
PH
1349 int nid;
1350
1351 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1352 root = root_unstable_tree + nid;
90bd6fd3 1353 new = &root->rb_node;
31dbd01f
IE
1354
1355 while (*new) {
1356 struct rmap_item *tree_rmap_item;
8dd3557a 1357 struct page *tree_page;
31dbd01f
IE
1358 int ret;
1359
d178f27f 1360 cond_resched();
31dbd01f 1361 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1362 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1363 if (!tree_page)
31dbd01f
IE
1364 return NULL;
1365
1366 /*
8dd3557a 1367 * Don't substitute a ksm page for a forked page.
31dbd01f 1368 */
8dd3557a
HD
1369 if (page == tree_page) {
1370 put_page(tree_page);
31dbd01f
IE
1371 return NULL;
1372 }
1373
8dd3557a 1374 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1375
1376 parent = *new;
1377 if (ret < 0) {
8dd3557a 1378 put_page(tree_page);
31dbd01f
IE
1379 new = &parent->rb_left;
1380 } else if (ret > 0) {
8dd3557a 1381 put_page(tree_page);
31dbd01f 1382 new = &parent->rb_right;
b599cbdf
HD
1383 } else if (!ksm_merge_across_nodes &&
1384 page_to_nid(tree_page) != nid) {
1385 /*
1386 * If tree_page has been migrated to another NUMA node,
1387 * it will be flushed out and put in the right unstable
1388 * tree next time: only merge with it when across_nodes.
1389 */
1390 put_page(tree_page);
1391 return NULL;
31dbd01f 1392 } else {
8dd3557a 1393 *tree_pagep = tree_page;
31dbd01f
IE
1394 return tree_rmap_item;
1395 }
1396 }
1397
7b6ba2c7 1398 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1399 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1400 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1401 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1402 rb_insert_color(&rmap_item->node, root);
31dbd01f 1403
473b0ce4 1404 ksm_pages_unshared++;
31dbd01f
IE
1405 return NULL;
1406}
1407
1408/*
1409 * stable_tree_append - add another rmap_item to the linked list of
1410 * rmap_items hanging off a given node of the stable tree, all sharing
1411 * the same ksm page.
1412 */
1413static void stable_tree_append(struct rmap_item *rmap_item,
7b6ba2c7 1414 struct stable_node *stable_node)
31dbd01f 1415{
7b6ba2c7 1416 rmap_item->head = stable_node;
31dbd01f 1417 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1418 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1419
7b6ba2c7
HD
1420 if (rmap_item->hlist.next)
1421 ksm_pages_sharing++;
1422 else
1423 ksm_pages_shared++;
31dbd01f
IE
1424}
1425
1426/*
81464e30
HD
1427 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1428 * if not, compare checksum to previous and if it's the same, see if page can
1429 * be inserted into the unstable tree, or merged with a page already there and
1430 * both transferred to the stable tree.
31dbd01f
IE
1431 *
1432 * @page: the page that we are searching identical page to.
1433 * @rmap_item: the reverse mapping into the virtual address of this page
1434 */
1435static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1436{
31dbd01f 1437 struct rmap_item *tree_rmap_item;
8dd3557a 1438 struct page *tree_page = NULL;
7b6ba2c7 1439 struct stable_node *stable_node;
8dd3557a 1440 struct page *kpage;
31dbd01f
IE
1441 unsigned int checksum;
1442 int err;
1443
4146d2d6
HD
1444 stable_node = page_stable_node(page);
1445 if (stable_node) {
1446 if (stable_node->head != &migrate_nodes &&
1447 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1448 rb_erase(&stable_node->node,
ef53d16c 1449 root_stable_tree + NUMA(stable_node->nid));
4146d2d6
HD
1450 stable_node->head = &migrate_nodes;
1451 list_add(&stable_node->list, stable_node->head);
1452 }
1453 if (stable_node->head != &migrate_nodes &&
1454 rmap_item->head == stable_node)
1455 return;
1456 }
31dbd01f
IE
1457
1458 /* We first start with searching the page inside the stable tree */
62b61f61 1459 kpage = stable_tree_search(page);
4146d2d6
HD
1460 if (kpage == page && rmap_item->head == stable_node) {
1461 put_page(kpage);
1462 return;
1463 }
1464
1465 remove_rmap_item_from_tree(rmap_item);
1466
62b61f61 1467 if (kpage) {
08beca44 1468 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
1469 if (!err) {
1470 /*
1471 * The page was successfully merged:
1472 * add its rmap_item to the stable tree.
1473 */
5ad64688 1474 lock_page(kpage);
62b61f61 1475 stable_tree_append(rmap_item, page_stable_node(kpage));
5ad64688 1476 unlock_page(kpage);
31dbd01f 1477 }
8dd3557a 1478 put_page(kpage);
31dbd01f
IE
1479 return;
1480 }
1481
1482 /*
4035c07a
HD
1483 * If the hash value of the page has changed from the last time
1484 * we calculated it, this page is changing frequently: therefore we
1485 * don't want to insert it in the unstable tree, and we don't want
1486 * to waste our time searching for something identical to it there.
31dbd01f
IE
1487 */
1488 checksum = calc_checksum(page);
1489 if (rmap_item->oldchecksum != checksum) {
1490 rmap_item->oldchecksum = checksum;
1491 return;
1492 }
1493
e86c59b1
CI
1494 /*
1495 * Same checksum as an empty page. We attempt to merge it with the
1496 * appropriate zero page if the user enabled this via sysfs.
1497 */
1498 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
1499 struct vm_area_struct *vma;
1500
1501 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
1502 err = try_to_merge_one_page(vma, page,
1503 ZERO_PAGE(rmap_item->address));
1504 /*
1505 * In case of failure, the page was not really empty, so we
1506 * need to continue. Otherwise we're done.
1507 */
1508 if (!err)
1509 return;
1510 }
8dd3557a
HD
1511 tree_rmap_item =
1512 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 1513 if (tree_rmap_item) {
8dd3557a
HD
1514 kpage = try_to_merge_two_pages(rmap_item, page,
1515 tree_rmap_item, tree_page);
1516 put_page(tree_page);
8dd3557a 1517 if (kpage) {
bc56620b
HD
1518 /*
1519 * The pages were successfully merged: insert new
1520 * node in the stable tree and add both rmap_items.
1521 */
5ad64688 1522 lock_page(kpage);
7b6ba2c7
HD
1523 stable_node = stable_tree_insert(kpage);
1524 if (stable_node) {
1525 stable_tree_append(tree_rmap_item, stable_node);
1526 stable_tree_append(rmap_item, stable_node);
1527 }
5ad64688 1528 unlock_page(kpage);
7b6ba2c7 1529
31dbd01f
IE
1530 /*
1531 * If we fail to insert the page into the stable tree,
1532 * we will have 2 virtual addresses that are pointing
1533 * to a ksm page left outside the stable tree,
1534 * in which case we need to break_cow on both.
1535 */
7b6ba2c7 1536 if (!stable_node) {
8dd3557a
HD
1537 break_cow(tree_rmap_item);
1538 break_cow(rmap_item);
31dbd01f
IE
1539 }
1540 }
31dbd01f
IE
1541 }
1542}
1543
1544static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 1545 struct rmap_item **rmap_list,
31dbd01f
IE
1546 unsigned long addr)
1547{
1548 struct rmap_item *rmap_item;
1549
6514d511
HD
1550 while (*rmap_list) {
1551 rmap_item = *rmap_list;
93d17715 1552 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 1553 return rmap_item;
31dbd01f
IE
1554 if (rmap_item->address > addr)
1555 break;
6514d511 1556 *rmap_list = rmap_item->rmap_list;
31dbd01f 1557 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1558 free_rmap_item(rmap_item);
1559 }
1560
1561 rmap_item = alloc_rmap_item();
1562 if (rmap_item) {
1563 /* It has already been zeroed */
1564 rmap_item->mm = mm_slot->mm;
1565 rmap_item->address = addr;
6514d511
HD
1566 rmap_item->rmap_list = *rmap_list;
1567 *rmap_list = rmap_item;
31dbd01f
IE
1568 }
1569 return rmap_item;
1570}
1571
1572static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1573{
1574 struct mm_struct *mm;
1575 struct mm_slot *slot;
1576 struct vm_area_struct *vma;
1577 struct rmap_item *rmap_item;
90bd6fd3 1578 int nid;
31dbd01f
IE
1579
1580 if (list_empty(&ksm_mm_head.mm_list))
1581 return NULL;
1582
1583 slot = ksm_scan.mm_slot;
1584 if (slot == &ksm_mm_head) {
2919bfd0
HD
1585 /*
1586 * A number of pages can hang around indefinitely on per-cpu
1587 * pagevecs, raised page count preventing write_protect_page
1588 * from merging them. Though it doesn't really matter much,
1589 * it is puzzling to see some stuck in pages_volatile until
1590 * other activity jostles them out, and they also prevented
1591 * LTP's KSM test from succeeding deterministically; so drain
1592 * them here (here rather than on entry to ksm_do_scan(),
1593 * so we don't IPI too often when pages_to_scan is set low).
1594 */
1595 lru_add_drain_all();
1596
4146d2d6
HD
1597 /*
1598 * Whereas stale stable_nodes on the stable_tree itself
1599 * get pruned in the regular course of stable_tree_search(),
1600 * those moved out to the migrate_nodes list can accumulate:
1601 * so prune them once before each full scan.
1602 */
1603 if (!ksm_merge_across_nodes) {
03640418 1604 struct stable_node *stable_node, *next;
4146d2d6
HD
1605 struct page *page;
1606
03640418
GT
1607 list_for_each_entry_safe(stable_node, next,
1608 &migrate_nodes, list) {
4146d2d6
HD
1609 page = get_ksm_page(stable_node, false);
1610 if (page)
1611 put_page(page);
1612 cond_resched();
1613 }
1614 }
1615
ef53d16c 1616 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 1617 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
1618
1619 spin_lock(&ksm_mmlist_lock);
1620 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1621 ksm_scan.mm_slot = slot;
1622 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
1623 /*
1624 * Although we tested list_empty() above, a racing __ksm_exit
1625 * of the last mm on the list may have removed it since then.
1626 */
1627 if (slot == &ksm_mm_head)
1628 return NULL;
31dbd01f
IE
1629next_mm:
1630 ksm_scan.address = 0;
6514d511 1631 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
1632 }
1633
1634 mm = slot->mm;
1635 down_read(&mm->mmap_sem);
9ba69294
HD
1636 if (ksm_test_exit(mm))
1637 vma = NULL;
1638 else
1639 vma = find_vma(mm, ksm_scan.address);
1640
1641 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
1642 if (!(vma->vm_flags & VM_MERGEABLE))
1643 continue;
1644 if (ksm_scan.address < vma->vm_start)
1645 ksm_scan.address = vma->vm_start;
1646 if (!vma->anon_vma)
1647 ksm_scan.address = vma->vm_end;
1648
1649 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
1650 if (ksm_test_exit(mm))
1651 break;
31dbd01f 1652 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
1653 if (IS_ERR_OR_NULL(*page)) {
1654 ksm_scan.address += PAGE_SIZE;
1655 cond_resched();
1656 continue;
1657 }
f765f540 1658 if (PageAnon(*page)) {
31dbd01f
IE
1659 flush_anon_page(vma, *page, ksm_scan.address);
1660 flush_dcache_page(*page);
1661 rmap_item = get_next_rmap_item(slot,
6514d511 1662 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 1663 if (rmap_item) {
6514d511
HD
1664 ksm_scan.rmap_list =
1665 &rmap_item->rmap_list;
31dbd01f
IE
1666 ksm_scan.address += PAGE_SIZE;
1667 } else
1668 put_page(*page);
1669 up_read(&mm->mmap_sem);
1670 return rmap_item;
1671 }
21ae5b01 1672 put_page(*page);
31dbd01f
IE
1673 ksm_scan.address += PAGE_SIZE;
1674 cond_resched();
1675 }
1676 }
1677
9ba69294
HD
1678 if (ksm_test_exit(mm)) {
1679 ksm_scan.address = 0;
6514d511 1680 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 1681 }
31dbd01f
IE
1682 /*
1683 * Nuke all the rmap_items that are above this current rmap:
1684 * because there were no VM_MERGEABLE vmas with such addresses.
1685 */
6514d511 1686 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
1687
1688 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
1689 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1690 struct mm_slot, mm_list);
1691 if (ksm_scan.address == 0) {
1692 /*
1693 * We've completed a full scan of all vmas, holding mmap_sem
1694 * throughout, and found no VM_MERGEABLE: so do the same as
1695 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
1696 * This applies either when cleaning up after __ksm_exit
1697 * (but beware: we can reach here even before __ksm_exit),
1698 * or when all VM_MERGEABLE areas have been unmapped (and
1699 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 1700 */
4ca3a69b 1701 hash_del(&slot->link);
cd551f97 1702 list_del(&slot->mm_list);
9ba69294
HD
1703 spin_unlock(&ksm_mmlist_lock);
1704
cd551f97
HD
1705 free_mm_slot(slot);
1706 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
1707 up_read(&mm->mmap_sem);
1708 mmdrop(mm);
1709 } else {
9ba69294 1710 up_read(&mm->mmap_sem);
7496fea9
ZC
1711 /*
1712 * up_read(&mm->mmap_sem) first because after
1713 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1714 * already have been freed under us by __ksm_exit()
1715 * because the "mm_slot" is still hashed and
1716 * ksm_scan.mm_slot doesn't point to it anymore.
1717 */
1718 spin_unlock(&ksm_mmlist_lock);
cd551f97 1719 }
31dbd01f
IE
1720
1721 /* Repeat until we've completed scanning the whole list */
cd551f97 1722 slot = ksm_scan.mm_slot;
31dbd01f
IE
1723 if (slot != &ksm_mm_head)
1724 goto next_mm;
1725
31dbd01f
IE
1726 ksm_scan.seqnr++;
1727 return NULL;
1728}
1729
1730/**
1731 * ksm_do_scan - the ksm scanner main worker function.
1732 * @scan_npages - number of pages we want to scan before we return.
1733 */
1734static void ksm_do_scan(unsigned int scan_npages)
1735{
1736 struct rmap_item *rmap_item;
22eccdd7 1737 struct page *uninitialized_var(page);
31dbd01f 1738
878aee7d 1739 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
1740 cond_resched();
1741 rmap_item = scan_get_next_rmap_item(&page);
1742 if (!rmap_item)
1743 return;
4146d2d6 1744 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
1745 put_page(page);
1746 }
1747}
1748
6e158384
HD
1749static int ksmd_should_run(void)
1750{
1751 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1752}
1753
31dbd01f
IE
1754static int ksm_scan_thread(void *nothing)
1755{
878aee7d 1756 set_freezable();
339aa624 1757 set_user_nice(current, 5);
31dbd01f
IE
1758
1759 while (!kthread_should_stop()) {
6e158384 1760 mutex_lock(&ksm_thread_mutex);
ef4d43a8 1761 wait_while_offlining();
6e158384 1762 if (ksmd_should_run())
31dbd01f 1763 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
1764 mutex_unlock(&ksm_thread_mutex);
1765
878aee7d
AA
1766 try_to_freeze();
1767
6e158384 1768 if (ksmd_should_run()) {
31dbd01f
IE
1769 schedule_timeout_interruptible(
1770 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1771 } else {
878aee7d 1772 wait_event_freezable(ksm_thread_wait,
6e158384 1773 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
1774 }
1775 }
1776 return 0;
1777}
1778
f8af4da3
HD
1779int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1780 unsigned long end, int advice, unsigned long *vm_flags)
1781{
1782 struct mm_struct *mm = vma->vm_mm;
d952b791 1783 int err;
f8af4da3
HD
1784
1785 switch (advice) {
1786 case MADV_MERGEABLE:
1787 /*
1788 * Be somewhat over-protective for now!
1789 */
1790 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1791 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 1792 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
1793 return 0; /* just ignore the advice */
1794
cc2383ec
KK
1795#ifdef VM_SAO
1796 if (*vm_flags & VM_SAO)
1797 return 0;
1798#endif
1799
d952b791
HD
1800 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1801 err = __ksm_enter(mm);
1802 if (err)
1803 return err;
1804 }
f8af4da3
HD
1805
1806 *vm_flags |= VM_MERGEABLE;
1807 break;
1808
1809 case MADV_UNMERGEABLE:
1810 if (!(*vm_flags & VM_MERGEABLE))
1811 return 0; /* just ignore the advice */
1812
d952b791
HD
1813 if (vma->anon_vma) {
1814 err = unmerge_ksm_pages(vma, start, end);
1815 if (err)
1816 return err;
1817 }
f8af4da3
HD
1818
1819 *vm_flags &= ~VM_MERGEABLE;
1820 break;
1821 }
1822
1823 return 0;
1824}
1825
1826int __ksm_enter(struct mm_struct *mm)
1827{
6e158384
HD
1828 struct mm_slot *mm_slot;
1829 int needs_wakeup;
1830
1831 mm_slot = alloc_mm_slot();
31dbd01f
IE
1832 if (!mm_slot)
1833 return -ENOMEM;
1834
6e158384
HD
1835 /* Check ksm_run too? Would need tighter locking */
1836 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1837
31dbd01f
IE
1838 spin_lock(&ksm_mmlist_lock);
1839 insert_to_mm_slots_hash(mm, mm_slot);
1840 /*
cbf86cfe
HD
1841 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1842 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
1843 * down a little; when fork is followed by immediate exec, we don't
1844 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
1845 *
1846 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1847 * scanning cursor, otherwise KSM pages in newly forked mms will be
1848 * missed: then we might as well insert at the end of the list.
31dbd01f 1849 */
cbf86cfe
HD
1850 if (ksm_run & KSM_RUN_UNMERGE)
1851 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1852 else
1853 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
1854 spin_unlock(&ksm_mmlist_lock);
1855
f8af4da3 1856 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 1857 mmgrab(mm);
6e158384
HD
1858
1859 if (needs_wakeup)
1860 wake_up_interruptible(&ksm_thread_wait);
1861
f8af4da3
HD
1862 return 0;
1863}
1864
1c2fb7a4 1865void __ksm_exit(struct mm_struct *mm)
f8af4da3 1866{
cd551f97 1867 struct mm_slot *mm_slot;
9ba69294 1868 int easy_to_free = 0;
cd551f97 1869
31dbd01f 1870 /*
9ba69294
HD
1871 * This process is exiting: if it's straightforward (as is the
1872 * case when ksmd was never running), free mm_slot immediately.
1873 * But if it's at the cursor or has rmap_items linked to it, use
1874 * mmap_sem to synchronize with any break_cows before pagetables
1875 * are freed, and leave the mm_slot on the list for ksmd to free.
1876 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 1877 */
9ba69294 1878
cd551f97
HD
1879 spin_lock(&ksm_mmlist_lock);
1880 mm_slot = get_mm_slot(mm);
9ba69294 1881 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 1882 if (!mm_slot->rmap_list) {
4ca3a69b 1883 hash_del(&mm_slot->link);
9ba69294
HD
1884 list_del(&mm_slot->mm_list);
1885 easy_to_free = 1;
1886 } else {
1887 list_move(&mm_slot->mm_list,
1888 &ksm_scan.mm_slot->mm_list);
1889 }
cd551f97 1890 }
cd551f97
HD
1891 spin_unlock(&ksm_mmlist_lock);
1892
9ba69294
HD
1893 if (easy_to_free) {
1894 free_mm_slot(mm_slot);
1895 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1896 mmdrop(mm);
1897 } else if (mm_slot) {
9ba69294
HD
1898 down_write(&mm->mmap_sem);
1899 up_write(&mm->mmap_sem);
9ba69294 1900 }
31dbd01f
IE
1901}
1902
cbf86cfe 1903struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
1904 struct vm_area_struct *vma, unsigned long address)
1905{
cbf86cfe 1906 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
1907 struct page *new_page;
1908
cbf86cfe
HD
1909 if (PageKsm(page)) {
1910 if (page_stable_node(page) &&
1911 !(ksm_run & KSM_RUN_UNMERGE))
1912 return page; /* no need to copy it */
1913 } else if (!anon_vma) {
1914 return page; /* no need to copy it */
1915 } else if (anon_vma->root == vma->anon_vma->root &&
1916 page->index == linear_page_index(vma, address)) {
1917 return page; /* still no need to copy it */
1918 }
1919 if (!PageUptodate(page))
1920 return page; /* let do_swap_page report the error */
1921
5ad64688
HD
1922 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1923 if (new_page) {
1924 copy_user_highpage(new_page, page, address, vma);
1925
1926 SetPageDirty(new_page);
1927 __SetPageUptodate(new_page);
48c935ad 1928 __SetPageLocked(new_page);
5ad64688
HD
1929 }
1930
5ad64688
HD
1931 return new_page;
1932}
1933
051ac83a 1934int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
1935{
1936 struct stable_node *stable_node;
e9995ef9
HD
1937 struct rmap_item *rmap_item;
1938 int ret = SWAP_AGAIN;
1939 int search_new_forks = 0;
1940
309381fe 1941 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
1942
1943 /*
1944 * Rely on the page lock to protect against concurrent modifications
1945 * to that page's node of the stable tree.
1946 */
309381fe 1947 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
1948
1949 stable_node = page_stable_node(page);
1950 if (!stable_node)
1951 return ret;
1952again:
b67bfe0d 1953 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 1954 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1955 struct anon_vma_chain *vmac;
e9995ef9
HD
1956 struct vm_area_struct *vma;
1957
ad12695f 1958 cond_resched();
b6b19f25 1959 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1960 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1961 0, ULONG_MAX) {
ad12695f 1962 cond_resched();
5beb4930 1963 vma = vmac->vma;
e9995ef9
HD
1964 if (rmap_item->address < vma->vm_start ||
1965 rmap_item->address >= vma->vm_end)
1966 continue;
1967 /*
1968 * Initially we examine only the vma which covers this
1969 * rmap_item; but later, if there is still work to do,
1970 * we examine covering vmas in other mms: in case they
1971 * were forked from the original since ksmd passed.
1972 */
1973 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1974 continue;
1975
0dd1c7bb
JK
1976 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1977 continue;
1978
051ac83a
JK
1979 ret = rwc->rmap_one(page, vma,
1980 rmap_item->address, rwc->arg);
e9995ef9 1981 if (ret != SWAP_AGAIN) {
b6b19f25 1982 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1983 goto out;
1984 }
0dd1c7bb
JK
1985 if (rwc->done && rwc->done(page)) {
1986 anon_vma_unlock_read(anon_vma);
1987 goto out;
1988 }
e9995ef9 1989 }
b6b19f25 1990 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1991 }
1992 if (!search_new_forks++)
1993 goto again;
1994out:
1995 return ret;
1996}
1997
52629506 1998#ifdef CONFIG_MIGRATION
e9995ef9
HD
1999void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2000{
2001 struct stable_node *stable_node;
2002
309381fe
SL
2003 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2004 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2005 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
2006
2007 stable_node = page_stable_node(newpage);
2008 if (stable_node) {
309381fe 2009 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 2010 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
2011 /*
2012 * newpage->mapping was set in advance; now we need smp_wmb()
2013 * to make sure that the new stable_node->kpfn is visible
2014 * to get_ksm_page() before it can see that oldpage->mapping
2015 * has gone stale (or that PageSwapCache has been cleared).
2016 */
2017 smp_wmb();
2018 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
2019 }
2020}
2021#endif /* CONFIG_MIGRATION */
2022
62b61f61 2023#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2024static void wait_while_offlining(void)
2025{
2026 while (ksm_run & KSM_RUN_OFFLINE) {
2027 mutex_unlock(&ksm_thread_mutex);
2028 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2029 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2030 mutex_lock(&ksm_thread_mutex);
2031 }
2032}
2033
ee0ea59c
HD
2034static void ksm_check_stable_tree(unsigned long start_pfn,
2035 unsigned long end_pfn)
62b61f61 2036{
03640418 2037 struct stable_node *stable_node, *next;
62b61f61 2038 struct rb_node *node;
90bd6fd3 2039 int nid;
62b61f61 2040
ef53d16c
HD
2041 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2042 node = rb_first(root_stable_tree + nid);
ee0ea59c 2043 while (node) {
90bd6fd3
PH
2044 stable_node = rb_entry(node, struct stable_node, node);
2045 if (stable_node->kpfn >= start_pfn &&
ee0ea59c
HD
2046 stable_node->kpfn < end_pfn) {
2047 /*
2048 * Don't get_ksm_page, page has already gone:
2049 * which is why we keep kpfn instead of page*
2050 */
2051 remove_node_from_stable_tree(stable_node);
ef53d16c 2052 node = rb_first(root_stable_tree + nid);
ee0ea59c
HD
2053 } else
2054 node = rb_next(node);
2055 cond_resched();
90bd6fd3 2056 }
ee0ea59c 2057 }
03640418 2058 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2059 if (stable_node->kpfn >= start_pfn &&
2060 stable_node->kpfn < end_pfn)
2061 remove_node_from_stable_tree(stable_node);
2062 cond_resched();
2063 }
62b61f61
HD
2064}
2065
2066static int ksm_memory_callback(struct notifier_block *self,
2067 unsigned long action, void *arg)
2068{
2069 struct memory_notify *mn = arg;
62b61f61
HD
2070
2071 switch (action) {
2072 case MEM_GOING_OFFLINE:
2073 /*
ef4d43a8
HD
2074 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2075 * and remove_all_stable_nodes() while memory is going offline:
2076 * it is unsafe for them to touch the stable tree at this time.
2077 * But unmerge_ksm_pages(), rmap lookups and other entry points
2078 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2079 */
ef4d43a8
HD
2080 mutex_lock(&ksm_thread_mutex);
2081 ksm_run |= KSM_RUN_OFFLINE;
2082 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2083 break;
2084
2085 case MEM_OFFLINE:
2086 /*
2087 * Most of the work is done by page migration; but there might
2088 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2089 * pages which have been offlined: prune those from the tree,
2090 * otherwise get_ksm_page() might later try to access a
2091 * non-existent struct page.
62b61f61 2092 */
ee0ea59c
HD
2093 ksm_check_stable_tree(mn->start_pfn,
2094 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2095 /* fallthrough */
2096
2097 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2098 mutex_lock(&ksm_thread_mutex);
2099 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2100 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2101
2102 smp_mb(); /* wake_up_bit advises this */
2103 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2104 break;
2105 }
2106 return NOTIFY_OK;
2107}
ef4d43a8
HD
2108#else
2109static void wait_while_offlining(void)
2110{
2111}
62b61f61
HD
2112#endif /* CONFIG_MEMORY_HOTREMOVE */
2113
2ffd8679
HD
2114#ifdef CONFIG_SYSFS
2115/*
2116 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2117 */
2118
31dbd01f
IE
2119#define KSM_ATTR_RO(_name) \
2120 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2121#define KSM_ATTR(_name) \
2122 static struct kobj_attribute _name##_attr = \
2123 __ATTR(_name, 0644, _name##_show, _name##_store)
2124
2125static ssize_t sleep_millisecs_show(struct kobject *kobj,
2126 struct kobj_attribute *attr, char *buf)
2127{
2128 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2129}
2130
2131static ssize_t sleep_millisecs_store(struct kobject *kobj,
2132 struct kobj_attribute *attr,
2133 const char *buf, size_t count)
2134{
2135 unsigned long msecs;
2136 int err;
2137
3dbb95f7 2138 err = kstrtoul(buf, 10, &msecs);
31dbd01f
IE
2139 if (err || msecs > UINT_MAX)
2140 return -EINVAL;
2141
2142 ksm_thread_sleep_millisecs = msecs;
2143
2144 return count;
2145}
2146KSM_ATTR(sleep_millisecs);
2147
2148static ssize_t pages_to_scan_show(struct kobject *kobj,
2149 struct kobj_attribute *attr, char *buf)
2150{
2151 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2152}
2153
2154static ssize_t pages_to_scan_store(struct kobject *kobj,
2155 struct kobj_attribute *attr,
2156 const char *buf, size_t count)
2157{
2158 int err;
2159 unsigned long nr_pages;
2160
3dbb95f7 2161 err = kstrtoul(buf, 10, &nr_pages);
31dbd01f
IE
2162 if (err || nr_pages > UINT_MAX)
2163 return -EINVAL;
2164
2165 ksm_thread_pages_to_scan = nr_pages;
2166
2167 return count;
2168}
2169KSM_ATTR(pages_to_scan);
2170
2171static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2172 char *buf)
2173{
ef4d43a8 2174 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2175}
2176
2177static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2178 const char *buf, size_t count)
2179{
2180 int err;
2181 unsigned long flags;
2182
3dbb95f7 2183 err = kstrtoul(buf, 10, &flags);
31dbd01f
IE
2184 if (err || flags > UINT_MAX)
2185 return -EINVAL;
2186 if (flags > KSM_RUN_UNMERGE)
2187 return -EINVAL;
2188
2189 /*
2190 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2191 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2192 * breaking COW to free the pages_shared (but leaves mm_slots
2193 * on the list for when ksmd may be set running again).
31dbd01f
IE
2194 */
2195
2196 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2197 wait_while_offlining();
31dbd01f
IE
2198 if (ksm_run != flags) {
2199 ksm_run = flags;
d952b791 2200 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2201 set_current_oom_origin();
d952b791 2202 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2203 clear_current_oom_origin();
d952b791
HD
2204 if (err) {
2205 ksm_run = KSM_RUN_STOP;
2206 count = err;
2207 }
2208 }
31dbd01f
IE
2209 }
2210 mutex_unlock(&ksm_thread_mutex);
2211
2212 if (flags & KSM_RUN_MERGE)
2213 wake_up_interruptible(&ksm_thread_wait);
2214
2215 return count;
2216}
2217KSM_ATTR(run);
2218
90bd6fd3
PH
2219#ifdef CONFIG_NUMA
2220static ssize_t merge_across_nodes_show(struct kobject *kobj,
2221 struct kobj_attribute *attr, char *buf)
2222{
2223 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2224}
2225
2226static ssize_t merge_across_nodes_store(struct kobject *kobj,
2227 struct kobj_attribute *attr,
2228 const char *buf, size_t count)
2229{
2230 int err;
2231 unsigned long knob;
2232
2233 err = kstrtoul(buf, 10, &knob);
2234 if (err)
2235 return err;
2236 if (knob > 1)
2237 return -EINVAL;
2238
2239 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2240 wait_while_offlining();
90bd6fd3 2241 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2242 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2243 err = -EBUSY;
ef53d16c
HD
2244 else if (root_stable_tree == one_stable_tree) {
2245 struct rb_root *buf;
2246 /*
2247 * This is the first time that we switch away from the
2248 * default of merging across nodes: must now allocate
2249 * a buffer to hold as many roots as may be needed.
2250 * Allocate stable and unstable together:
2251 * MAXSMP NODES_SHIFT 10 will use 16kB.
2252 */
bafe1e14
JP
2253 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2254 GFP_KERNEL);
ef53d16c
HD
2255 /* Let us assume that RB_ROOT is NULL is zero */
2256 if (!buf)
2257 err = -ENOMEM;
2258 else {
2259 root_stable_tree = buf;
2260 root_unstable_tree = buf + nr_node_ids;
2261 /* Stable tree is empty but not the unstable */
2262 root_unstable_tree[0] = one_unstable_tree[0];
2263 }
2264 }
2265 if (!err) {
90bd6fd3 2266 ksm_merge_across_nodes = knob;
ef53d16c
HD
2267 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2268 }
90bd6fd3
PH
2269 }
2270 mutex_unlock(&ksm_thread_mutex);
2271
2272 return err ? err : count;
2273}
2274KSM_ATTR(merge_across_nodes);
2275#endif
2276
e86c59b1
CI
2277static ssize_t use_zero_pages_show(struct kobject *kobj,
2278 struct kobj_attribute *attr, char *buf)
2279{
2280 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2281}
2282static ssize_t use_zero_pages_store(struct kobject *kobj,
2283 struct kobj_attribute *attr,
2284 const char *buf, size_t count)
2285{
2286 int err;
2287 bool value;
2288
2289 err = kstrtobool(buf, &value);
2290 if (err)
2291 return -EINVAL;
2292
2293 ksm_use_zero_pages = value;
2294
2295 return count;
2296}
2297KSM_ATTR(use_zero_pages);
2298
b4028260
HD
2299static ssize_t pages_shared_show(struct kobject *kobj,
2300 struct kobj_attribute *attr, char *buf)
2301{
2302 return sprintf(buf, "%lu\n", ksm_pages_shared);
2303}
2304KSM_ATTR_RO(pages_shared);
2305
2306static ssize_t pages_sharing_show(struct kobject *kobj,
2307 struct kobj_attribute *attr, char *buf)
2308{
e178dfde 2309 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
2310}
2311KSM_ATTR_RO(pages_sharing);
2312
473b0ce4
HD
2313static ssize_t pages_unshared_show(struct kobject *kobj,
2314 struct kobj_attribute *attr, char *buf)
2315{
2316 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2317}
2318KSM_ATTR_RO(pages_unshared);
2319
2320static ssize_t pages_volatile_show(struct kobject *kobj,
2321 struct kobj_attribute *attr, char *buf)
2322{
2323 long ksm_pages_volatile;
2324
2325 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2326 - ksm_pages_sharing - ksm_pages_unshared;
2327 /*
2328 * It was not worth any locking to calculate that statistic,
2329 * but it might therefore sometimes be negative: conceal that.
2330 */
2331 if (ksm_pages_volatile < 0)
2332 ksm_pages_volatile = 0;
2333 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2334}
2335KSM_ATTR_RO(pages_volatile);
2336
2337static ssize_t full_scans_show(struct kobject *kobj,
2338 struct kobj_attribute *attr, char *buf)
2339{
2340 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2341}
2342KSM_ATTR_RO(full_scans);
2343
31dbd01f
IE
2344static struct attribute *ksm_attrs[] = {
2345 &sleep_millisecs_attr.attr,
2346 &pages_to_scan_attr.attr,
2347 &run_attr.attr,
b4028260
HD
2348 &pages_shared_attr.attr,
2349 &pages_sharing_attr.attr,
473b0ce4
HD
2350 &pages_unshared_attr.attr,
2351 &pages_volatile_attr.attr,
2352 &full_scans_attr.attr,
90bd6fd3
PH
2353#ifdef CONFIG_NUMA
2354 &merge_across_nodes_attr.attr,
2355#endif
e86c59b1 2356 &use_zero_pages_attr.attr,
31dbd01f
IE
2357 NULL,
2358};
2359
2360static struct attribute_group ksm_attr_group = {
2361 .attrs = ksm_attrs,
2362 .name = "ksm",
2363};
2ffd8679 2364#endif /* CONFIG_SYSFS */
31dbd01f
IE
2365
2366static int __init ksm_init(void)
2367{
2368 struct task_struct *ksm_thread;
2369 int err;
2370
e86c59b1
CI
2371 /* The correct value depends on page size and endianness */
2372 zero_checksum = calc_checksum(ZERO_PAGE(0));
2373 /* Default to false for backwards compatibility */
2374 ksm_use_zero_pages = false;
2375
31dbd01f
IE
2376 err = ksm_slab_init();
2377 if (err)
2378 goto out;
2379
31dbd01f
IE
2380 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2381 if (IS_ERR(ksm_thread)) {
25acde31 2382 pr_err("ksm: creating kthread failed\n");
31dbd01f 2383 err = PTR_ERR(ksm_thread);
d9f8984c 2384 goto out_free;
31dbd01f
IE
2385 }
2386
2ffd8679 2387#ifdef CONFIG_SYSFS
31dbd01f
IE
2388 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2389 if (err) {
25acde31 2390 pr_err("ksm: register sysfs failed\n");
2ffd8679 2391 kthread_stop(ksm_thread);
d9f8984c 2392 goto out_free;
31dbd01f 2393 }
c73602ad
HD
2394#else
2395 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2396
2ffd8679 2397#endif /* CONFIG_SYSFS */
31dbd01f 2398
62b61f61 2399#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 2400 /* There is no significance to this priority 100 */
62b61f61
HD
2401 hotplug_memory_notifier(ksm_memory_callback, 100);
2402#endif
31dbd01f
IE
2403 return 0;
2404
d9f8984c 2405out_free:
31dbd01f
IE
2406 ksm_slab_free();
2407out:
2408 return err;
f8af4da3 2409}
a64fb3cd 2410subsys_initcall(ksm_init);